

No. : CE/2020/31804

Date : 2020/03/16

Page: 1 of 8

A.L.M.T. Corp.

398-16. Murahigashiyama, Juriduka, Sakata-City, Yamagata, Japan

The following sample(s) was/were submitted and identified by/on behalf of the applicant as :

Sample Submitted By	:	A.L.M.T. Corp.
Sample Description	:	CPC plate
Sample Receiving Date	:	2020/03/09
Testing Period	:	2020/03/09 to 2020/03/16

- Test Requested : (1) As specified by client, with reference to RoHS 2011/65/EU Annex II and amending Directive (EU) 2015/863 to determine Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP contents in the submitted sample(s).
 (2) As specified by client, to test Halogen-Fluorine, Chlorine, Bromine, Iodine contents in the submitted sample.
 Test Result(s) : Please refer to following pages.
 (1) Based on the performed tests on submitted sample(s), the test results of Cadmium,
 - (1) Based on the performed tests on submitted sample(s), the test results of Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP comply with the limits as set by RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/terms-and-conditions/terms-e-document, attransaction format documents, available on request or accessible at http://www.sgs.com/en/terms-and-conditions/terms-e-document, attransaction form at http://www.sgs.com/en/terms-e-document, attransaction format documents, and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

No. : CE/2020/31804

Date : 2020/03/16

Page: 2 of 8

A.L.M.T. Corp.

398-16. Murahigashiyama, Juriduka, Sakata-City, Yamagata, Japan

Test Result(s)

PART NAME No.1

: COPPER COLORED METAL

Test Item(s)	Unit	Method	MDL	Result	Limit
	Onic	Metriod		No.1	
Cadmium (Cd)	mg/kg	With reference to IEC 62321-5 (2013) and performed by ICP-OES.	2	n.d.	100
Lead (Pb)	mg/kg	With reference to IEC 62321-5 (2013) and performed by ICP-OES.	2	n.d.	1000
Mercury (Hg)	mg/kg	With reference to IEC 62321- 4:2013+AMD1:2017 and performed by ICP-OES.	2	n.d.	1000
Hexavalent Chromium Cr(VI)(#2)	µg/cm²	With reference to IEC 62321-7-1 (2015) and performed by UV-VIS.	0.10	n.d.	-
Sum of PBBs	mg/kg		-	n.d.	1000
Monobromobiphenyl	mg/kg		5	n.d.	-
Dibromobiphenyl	mg/kg		5	n.d.	-
Tribromobiphenyl	mg/kg		5	n.d.	-
Tetrabromobiphenyl	mg/kg		5	n.d.	-
Pentabromobiphenyl	mg/kg		5	n.d.	-
Hexabromobiphenyl	mg/kg		5	n.d.	-
Heptabromobiphenyl	mg/kg		5	n.d.	-
Octabromobiphenyl	mg/kg		5	n.d.	-
Nonabromobiphenyl	mg/kg		5	n.d.	-
Decabromobiphenyl	mg/kg	With reference to IEC 62321-6	5	n.d.	-
Sum of PBDEs	mg/kg	(2015) and performed by GC/MS.	-	n.d.	1000
Monobromodiphenyl ether	mg/kg		5	n.d.	-
Dibromodiphenyl ether	mg/kg		5	n.d.	-
Tribromodiphenyl ether	mg/kg		5	n.d.	-
Tetrabromodiphenyl ether	mg/kg		5	n.d.	-
Pentabromodiphenyl ether	mg/kg		5	n.d.	-
Hexabromodiphenyl ether	mg/kg		5	n.d.	-
Heptabromodiphenyl ether	mg/kg		5	n.d.	-
Octabromodiphenyl ether	mg/kg		5	n.d.	-
Nonabromodiphenyl ether	mg/kg		5	n.d.	-
Decabromodiphenyl ether	mg/kg		5	n.d.	-

No. : CE/2020/31804

Date : 2020/03/16

A.L.M.T. Corp.

398-16. Murahigashiyama, Juriduka, Sakata-City, Yamagata, Japan

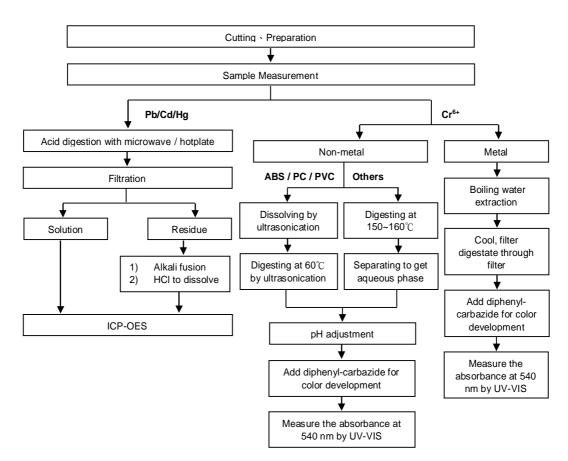
Test Item(s)	Unit	· · · ·	MDL	Result No.1	Limit
		Method			
DBP (Dibutyl phthalate) (CAS No.: 84-74-2)	mg/kg	With reference to IEC 62321-8 (2017). Analysis was performed by GC/MS.	50	n.d.	1000
BBP (Butyl Benzyl phthalate) (CAS No.: 85-68-7)	mg/kg	With reference to IEC 62321-8 (2017). Analysis was performed by GC/MS.	50	n.d.	1000
DEHP (Di- (2-ethylhexyl) phthalate) (CAS No.: 117-81-7)	mg/kg	With reference to IEC 62321-8 (2017). Analysis was performed by GC/MS.	50	n.d.	1000
DIBP (Di-isobutyl phthalate) (CAS No.: 84-69-5)	mg/kg	With reference to IEC 62321-8 (2017). Analysis was performed by GC/MS.	50	n.d.	1000
Halogen					
Halogen-Fluorine (F) (CAS No.: 14762-94-8)	mg/kg	With reference to BS EN 14582 (2016). Analysis was performed by IC.	50	n.d.	-
Halogen-Chlorine (Cl) (CAS No.: 22537-15-1)	mg/kg		50	n.d.	-
Halogen-Bromine (Br) (CAS No.: 10097-32-2)	mg/kg		50	n.d.	-
Halogen-Iodine (I) (CAS No.: 14362-44-8)	mg/kg		50	n.d.	-

Note :

- 1. mg/kg = ppm ; 0.1wt% = 1000ppm
- 2. MDL = Method Detection Limit
- 3. n.d. = Not Detected = below MDL
- 4. " " = Not Regulated
- 5. (#2) =
 - a. The sample is positive for Cr(VI) if the Cr(VI) concentration is greater than 0.13 µg/cm². The sample coating is considered to contain Cr(VI)
 - b. The sample is negative for Cr(VI) if Cr(VI) is n.d. (concentration less than 0.10 μ g/cm²). The coating is considered a non-Cr(VI) based coating
 - c. The result between 0.10 μ g/cm² and 0.13 μ g/cm² is considered to be inconclusive unavoidable coating variations may influence the determination.

No. : CE/2020/31804

Date : 2020/03/16


Page: 4 of 8

A.L.M.T. Corp.

398-16. Murahigashiyama, Juriduka, Sakata-City, Yamagata, Japan

Analytical flow chart of Heavy Metal

These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr⁶⁺ test method excluded)

No. : CE/2020/31804

Date : 2020/03/16

Page: 5 of 8

A.L.M.T. Corp.

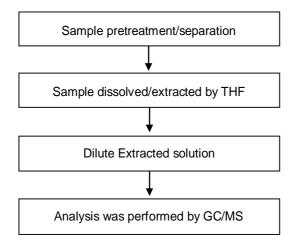
398-16. Murahigashiyama, Juriduka, Sakata-City, Yamagata, Japan

First testing process -----Sample Optional screen process Confirmation process - • • Sample pretreatment Screen analysis Sample extraction / Soxhlet method ¥ Concentrate/Dilute Extracted solution ¥ Filter Т ¥ GC/MS

Analytical flow chart – PBB / PBDE

No. : CE/2020/31804

Date : 2020/03/16

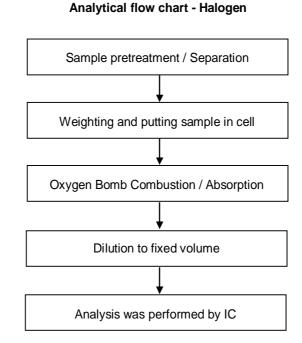

Page: 6 of 8

A.L.M.T. Corp.

398-16. Murahigashiyama, Juriduka, Sakata-City, Yamagata, Japan

Analytical flow chart - Phthalate

[Test method: IEC 62321-8]


No. : CE/2020/31804

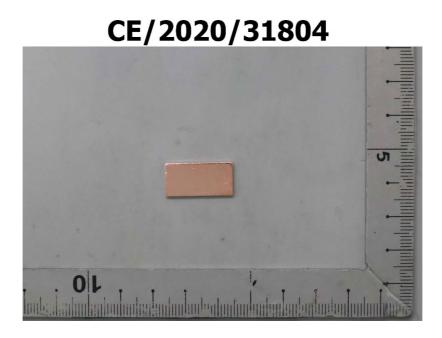
Date : 2020/03/16

Page: 7 of 8

A.L.M.T. Corp.

398-16. Murahigashiyama, Juriduka, Sakata-City, Yamagata, Japan

No. : CE/2020/31804


Date : 2020/03/16

Page: 8 of 8

A.L.M.T. Corp.

398-16. Murahigashiyama, Juriduka, Sakata-City, Yamagata, Japan

* The tested sample / part is marked by an arrow if it's shown on the photo. *

** End of Report **