

Test Report No. : CE/2020/82184 Date : 2020/08/26 Page : 1 of 10

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

The following sample(s) was/were submitted and identified by/on behalf of the applicant as :

Sample Submitted By : Ajinomoto Fine-Techno Co., Inc.

Sample Description : CURED EPOXY RESIN

Style/Item No. : ABF-GX13code13/ABF-GX13code13R

Sample Receiving Date: 2020/08/14

Testing Period : 2020/08/14 to 2020/08/21

Test Requested

(1) As specified by client, with reference to RoHS 2011/65/EU Annex II and amending Directive (EU) 2015/863 to determine Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP contents in the submitted sample(s).

(2) Please refer to next pages for the other item(s).

Test Result(s) : Please refer to following pages.

Conclusion : (1) Based on the performed tests on submitted sample(s), the test results of Cadmium, Lead,

Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP comply with the limits as set by

RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Troy Chang / Manager - Ver SGS
Signed for and behalf of SGS TAIWAN LTD.
Chemical Laboratory - Taipei

PIN CODE: 99C9443A

Test Report No.: CE/2020/82184 Page: 2 of 10 Date: 2020/08/26

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

Test Result(s)

PART NAME No.1 : YELLOW/BEIGE LUMP

Took Itom/o	Unit	Method	MDL	Result	Limit
Test Item(s)	Unit			No.1	
Cadmium (Cd)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-OES.	2	n.d.	100
Lead (Pb)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-OES.	2	n.d.	1000
Mercury (Hg)	mg/kg	With reference to IEC 62321-4:2013+ AMD1:2017 and performed by ICP-OES.	2	n.d.	1000
Hexavalent Chromium Cr(VI)	mg/kg	With reference to IEC 62321-7-2: 2017 and performed by UV-VIS.	8	n.d.	1000
Sum of PBBs	mg/kg		-	n.d.	1000
Monobromobiphenyl	mg/kg		5	n.d.	-
Dibromobiphenyl	mg/kg		5	n.d.	-
Tribromobiphenyl	mg/kg		5	n.d.	-
Tetrabromobiphenyl	mg/kg		5	n.d.	-
Pentabromobiphenyl	mg/kg		5	n.d.	-
Hexabromobiphenyl	mg/kg		5	n.d.	-
Heptabromobiphenyl	mg/kg		5	n.d.	-
Octabromobiphenyl	mg/kg		5	n.d.	-
Nonabromobiphenyl	mg/kg	With reference to IEC 62321-6: 2015 and performed by GC/MS.	5	n.d.	-
Decabromobiphenyl	mg/kg		5	n.d.	-
Sum of PBDEs	mg/kg		-	n.d.	1000
Monobromodiphenyl ether	mg/kg		5	n.d.	-
Dibromodiphenyl ether	mg/kg		5	n.d.	-
Tribromodiphenyl ether	mg/kg		5	n.d.	-
Tetrabromodiphenyl ether	mg/kg		5	n.d.	-
Pentabromodiphenyl ether	mg/kg		5	n.d.	-
Hexabromodiphenyl ether	mg/kg		5	n.d.	-
Heptabromodiphenyl ether	mg/kg	1	5	n.d.	-
Octabromodiphenyl ether	mg/kg	1	5	n.d.	-
Nonabromodiphenyl ether	mg/kg	1	5	n.d.	-
Decabromodiphenyl ether	mg/kg		5	n.d.	-

Test Report No.: CE/2020/82184 Page: 3 of 10 Date: 2020/08/26

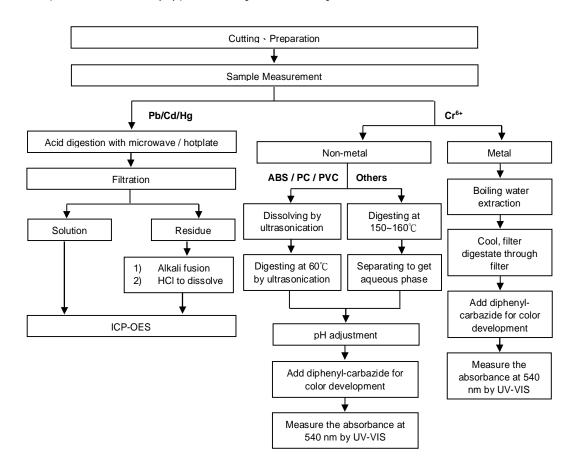
Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

Test Item(s)	Unit	Method	MDL	Result	— Limit I
rest item(s)		Wethod		No.1	
BBP (Butyl Benzyl phthalate) (CAS No.: 85-68-7)	mg/kg	With reference to IEC 62321-8: 2017. Analysis was performed by GC/MS.	50	n.d.	1000
DBP (Dibutyl phthalate) (CAS No.: 84-74-2)	mg/kg	With reference to IEC 62321-8: 2017. Analysis was performed by GC/MS.	50	n.d.	1000
DEHP (Di- (2-ethylhexyl) phthalate) (CAS No.: 117-81-7)	mg/kg	With reference to IEC 62321-8: 2017. Analysis was performed by GC/MS.	50	n.d.	1000
DIBP (Di-isobutyl phthalate) (CAS No.: 84-69-5)	mg/kg	With reference to IEC 62321-8: 2017. Analysis was performed by GC/MS.	50	n.d.	1000
Halogen					
Halogen-Fluorine (F) (CAS No.: 14762-94-8)	mg/kg	With reference to BS EN 14582: 2016. Analysis was performed by IC.	50	n.d.	-
Halogen-Chlorine (CI) (CAS No.: 22537-15-1)	mg/kg	With reference to BS EN 14582: 2016. Analysis was performed by IC.	50	235	-
Halogen-Bromine (Br) (CAS No.: 10097-32-2)	mg/kg	With reference to BS EN 14582: 2016. Analysis was performed by IC.	50	n.d.	-
Halogen-lodine (I) (CAS No.: 14362-44-8)	mg/kg	With reference to BS EN 14582: 2016. Analysis was performed by IC.	50	n.d.	-
PFOS and its salts (CAS No.: 1763-23-1 and its salts)	mg/kg	With reference to CEN/TS 15968: 2010. Analysis was performed by LC/MS.	0.01	n.d.	-
PFOA and its salts (CAS No.: 335-67-1 and its salts)	mg/kg	With reference to CEN/TS 15968: 2010. Analysis was performed by LC/MS.	0.01	n.d.	-
Antimony (Sb)	mg/kg	With reference to US EPA 3052: 1996. Analysis was performed by ICP-OES.	2	n.d.	-

Note:

- 1. mg/kg = ppm; 0.1wt% = 1000ppm
- 2. MDL = Method Detection Limit
- 3. n.d. = Not Detected = less than MDL
- 4. " " = Not Regulated
- 5. PFOS and its salts including CAS No.: 29081-56-9, 2795-39-3, 29457-72-5, 70225-14-8, 56773-42-3, 251099-16-8, 307-35-7.
- 6. PFOA and its salts including CAS No.: 3825-26-1, 335-95-5, 2395-00-8, 335-93-3, 335-66-0.
- 7. The statement of compliance conformity is based on comparison of testing results and limits.

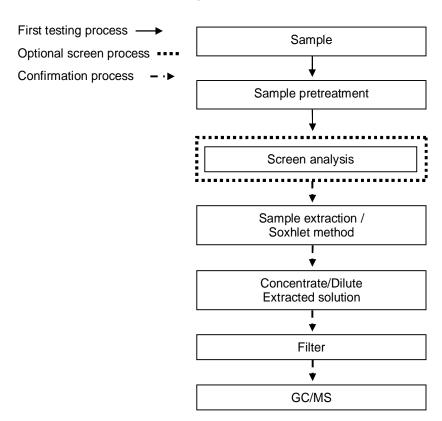

Test Report No.: CE/2020/82184 Page: 4 of 10 Date: 2020/08/26

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

Analytical flow chart of Heavy Metal

These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr⁶⁺ test method excluded)

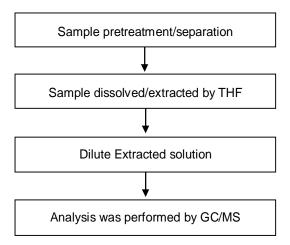


Test Report No.: CE/2020/82184 Page: 5 of 10 Date: 2020/08/26

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

Analytical flow chart - PBB / PBDE

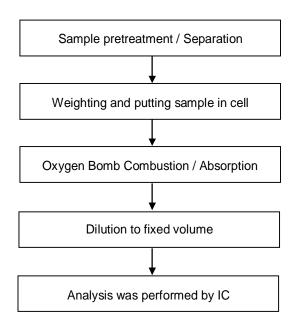

Test Report No.: CE/2020/82184 Page: 6 of 10 Date: 2020/08/26

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

Analytical flow chart - Phthalate

[Test method: IEC 62321-8]

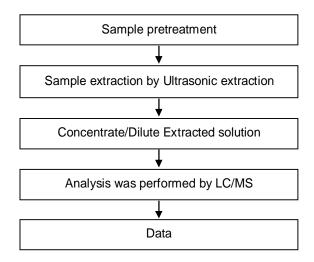


Test Report No.: CE/2020/82184 Page: 7 of 10 Date: 2020/08/26

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

Analytical flow chart - Halogen

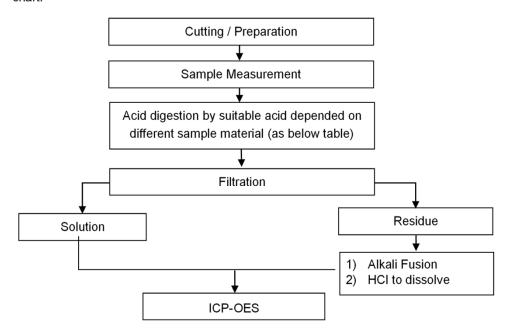


Test Report No.: CE/2020/82184 Page: 8 of 10 Date: 2020/08/26

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

Analytical flow chart - PFOA/PFOS


Test Report No.: CE/2020/82184 Page: 9 of 10 Date: 2020/08/26

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

Flow Chart of digestion for the elements analysis performed by ICP-OES

These samples were dissolved totally by pre-conditioning method according to below flow chart.

Steel, copper, aluminum, solder	Aqua regia, HNO ₃ , HCI, HF, H ₂ O ₂		
Glass	HNO ₃ /HF		
Gold, platinum, palladium, ceramic	Aqua regia		
Silver	HNO ₃		
Plastic	H ₂ SO ₄ , H ₂ O ₂ , HNO ₃ , HCI		
Others	Added appropriate reagent to total digestion		

Test Report No.: CE/2020/82184 Page: 10 of 10 Date: 2020/08/26

Ajinomoto Fine-Techno Co., Inc.

1-2 Suzuki-cho Kawasaki-ku Kawasaki-shi 210-0801 Japan

* The tested sample / part is marked by an arrow if it's shown on the photo. *

CE/2020/82184

** End of Report **