
IMXWGU
i.MX Windows 10 IoT User’s Guide
Rev. 1.4.1 — 31 July 2023 User guide

Document Information
Information Content

Keywords i.MX, Windows 10 IoT

Abstract i.MX Windows 10 IoT User’s Guide describes the process of building and installing Windows 10
IoT OS BSP (Board Support Package) for the i.MX platform. It also covers special i.MX features
and how to use them.

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

1 Overview

The User’s Guide describes the process of building and installing Windows 10 IoT OS BSP (Board Support
Package) for the i.MX platform. It also covers special i.MX features and how to use them. The guide lists the
steps to run the i.MX platform, including board DIP switch settings (see i.MX Windows 10 IoT Quick Start Guide,
IMXWQSG) and instructions on the usage and configuration of the U-Boot bootloader. Features covered in this
guide may be specific to particular boards or SoCs. For the capabilities of a particular board or SoC, see i.MX
Windows 10 IoT Release Notes (IMXWNR).

1.1 Audience
This chapter is intended for software, hardware, and system engineers planning to use the product and anyone
who wants to know more about the product.

1.2 Conventions
This chapter uses the following conventions:

• Courier New font: This font is used to identify commands, explicit command parameters, code examples,
expressions, data types, and directives.

1.3 How to start
The i.MX Windows 10 IoT BSP is a collection of binary files, source code, and support files you can use to
create a bootable Windows 10 IoT image for i.MX development systems.

1.4 Using Prebuilt Binaries to create an image
The Prebuilt Binary package contains prebuilt release-signed binaries of the drivers and firmware required for
Windows 10 IoT Enterprise to run on the NXP i.MX development boards. It is the fastest way to get started
running on physical hardware.

If you have downloaded the BSP with the Prebuilt Binaries, see i.MX Windows 10 IoT Quick Start Guide. It will
guide you through creating a Windows IoT image that includes the BSP binaries and deploying it to an i.MX
development board.

1.5 Using Source Files to create image
The BSP Source Files package contains the source files of the drivers and firmware required for Windows 10
IoT Enterprise to run on NXP i.MX development boards. It is intended to be used as a reference for partners
that have created their own hardware designs that use i.MX 8/9 families of SoCs and must customize the
drivers and firmware for their own design.

If you have downloaded an archive with BSP sources, first build Windows drivers and boot firmware from the
source before you can create a Windows IoT image and deploy it to your device. Start from Building Windows
10 IoT for NXP i.MX Processors that will guide you through the process of building Windows drivers and boot
firmware from the source. Once you have successfully built the driver and firmware binaries, you can go back
to the chapter in i.MX Windows 10 IoT Quick Start Guide that describes how to Deploy Windows IoT image to a
development board.

1.6 References
For more information about Windows 10 IoT Enterprise, see Microsoft online documentation.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
2 / 45

http://windowsondevices.com

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

The following quick start guides available on the NXP website contain basic information on the board and
setting it up:

• i.MX 8M Quad Evaluation Kit Quick Start Guide
• i.MX 8M Mini Evaluation Kit Quick Start Guide
• i.MX 8M Nano Evaluation Kit Quick Start Guide
• i.MX 8M Plus Evaluation Kit Quick Start Guide
• i.MX 8QuadXPlus Multisensory Enablement Kit
• i.MX 93 Evaluation Kit

Documentation is available online at nxp.com

2 Building Windows 10 IoT for NXP i.MX Processors

2.1 Building the drivers in the BSP

2.1.1 Required tools

The following tools are required to build the drivers:

• git
• git-lfs
• software to unpack zip, gzip, and tar archives
• Visual Studio 2019
• Windows Kits (ADK/SDK/WDK)

2.1.1.1 Visual Studio 2019

• Make sure that you install Visual Studio 2019 before the WDKso that the WDK can install a required plugin.
• Download Visual Studio 2019.
• During installation, select Desktop development with C++.
• During installation, select the following in the Individual components tab. If these options are not available, try

updating VS2019 to the Latest release:
– MSVC v142 - VS 2019 C++ ARM64 Spectre-mitigated libs (16.11)
– MSVC v142 - VS 2019 C++ ARM64 build tools (16.11)
– Windows 10 SDK (10.0.19041.0)

2.1.1.2 Windows Kits from Windows 10, version 2004 (10.0.19041.685)

Warning: Make sure that any previous versions of the ADK and WDK have been uninstalled!

• Install ADK 2004
– You can also install Windows PE add-on for ADK as it is needed for preparing installation of an SD card

later.
• Install WDK 2004

– Scroll down and select Windows 10, version 2004.
– Make sure that you allow the Visual Studio Extension to install after the WDK install is completed.

• If the WDK installer says it could not find the correct SDK version, install SDK 2004
– Scroll down and select Windows 10 SDK, version 2004 (10.0.19041.0).

• After installing all Windows Kits, restart the computer and check if you have the correct versions installed in
the Control panel.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
3 / 45

https://www.nxp.com/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-applications-processor:MCIMX8M-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-plus-applications-processor:8MPLUSLPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadxplus-multisensory-enablement-kit-mek:MCIMX8QXP-CPU
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK
http://www.nxp.com/
https://docs.microsoft.com/en-us/windows-hardware/drivers/other-wdk-downloads#step-1-install-visual-studio
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://docs.microsoft.com/en-us/windows-hardware/drivers/other-wdk-downloads
https://developer.microsoft.com/en-us/windows/downloads/sdk-archive/

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

2.1.2 Obtaining sources for building the drivers

For building the drivers, use the NXP i.MX BSP sources package provided as W<os_version>-imx-
windows-bsp-<build_date>.zip. The package contains sources for both the boot firmware and Windows
drivers.

2.1.2.1 Preparing source for building the drivers

To prepare sources for building drivers, follow these steps:

1. Create an empty directory, further referred as <BSP_DIR>, and extract the downloaded archive there. The
path to this directory must be as short as possible, containing only letters and underscores. Braces and
other special characters can cause build errors.

2. Populate the directory by running Init.bat.

2.1.3 Structure of Windows driver sources

The imx-windows-iot- sources of Windows drivers have the following structure:

BSP Contains boot firmware, driver binaries (generated at build time), and
scripts needed to deploy BSP to the development board.

build Contains build scripts and the VS2019 solution file.

components Contains third-party binaries and utility projects.

driver Contains driver sources.

hals Contains hal extension sources.

2.1.4 One-time environment setup

To generate driver packages on a development machine, install test certificates.

1. Open an Administrator Command Prompt.
2. Navigate to your BSP, the folder imx-windows-iot\build\tools.
3. Launch StartBuildEnv.bat.
4. Run SetupCertificate.bat to install the test certificates.
5. The HAL Extensions must be signed by certificates provided by Microsoft. The required certificates that are

included in WDK have expired. Download the Windows 11, version 22H2 EWDK and use the “Windows
OEM HAL Extension Test Cert 2017 \(TEST ONLY\)” and “Windows OEM Intermediate 2017 \(TEST ONLY
\)” found in the EWDK.iso file or contact Microsoft for help.

Some tools may not work correctly if LongPath is not enabled, therefore run the following command in the
console:

Execute reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /v
LongPathsEnabled /t REG_DWORD /d 1 command.

2.1.5 Building the drivers

1. Open the solution imx-windows-iot\build\solution\iMXPlatform\iMXPlatform.sln
located in the path where you have extracted BSP archive.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
4 / 45

https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

2. Choose the Debug or Release build type.
3. If the secure boot feature is enabled, it is required to use signed drivers.
4. To build, press Ctrl-Shift-B or choose Build -> Build Solution from the menu. It compiles all driver packages;

then imx-windows-iot\BSP\IoTEntOnNXP\drivers for deployment.
5. The updated drivers could now be injected into the installation image or manually installed to the running

development board.
• To manually install drivers, copy them to the development board via USB drive, network share, scp,

remote desktop. The drivers can be installed either by clicking install in right-click menu of the ‘inf’ file
or by the devcon command-line utility.

• To debug, use the .kdfiles of WinDBG.
• To initiate the driver reload, use devcon or reset the board.
• To create an installation SD card, see i.MX Windows 10 IoT Quick Start Guide.

2.2 Building ARM64 Firmware
This chapter describes the process of setting up a build environment to build the latest firmware and update the
firmware on the development board.

2.2.1 Required tools

• git
• git-lfs
• software to unpack zip, gzip, and tar archives

2.2.2 Obtaining sources for building ARM64 Firmware

For building the ARM64 Firmware, you need:

1. The NXP i.MX BSP sources package available at www.nxp.com.. The package contains sources for both
the boot firmware and Windows drivers.

2. The i.MX firmware and NXP Code Signing Tool (CST). Obtaining is described in Preparing sources for
building firmware.

2.2.2.1 Preparing sources for building firmware

1. Create an empty directory, further referred as <BSP_DIR>, and extract the downloaded archive there.

unzip W<os_version>-imx-windows-bsp-<build_ date>.zip -d win10-iot-bsp

The command creates the win10-iot-bsp directory containing .git repository with the BSP release.
Note: The path to this directory must be as short as possible, containing only letters and underscores.
Braces and other special characters can cause build errors.

2. Populate the directory by running Init.sh.
Note: Script checks out sources from the repository by git reset --hard. The Init.sh shall check
out submodules that are required to build the i.MX boot firmware by git submodule update --init
--recursive. During prerelease testing, the Init.sh executed inside Ubuntu environment has run into
“server certificate verification failed. CAfile: /etc/ssl/certs/ca-certificates.crt CRLfile:
none” error. The problem could be solved by installing apt-transport-https ca-certificates and
certificate update.

sudo apt update ; sudo apt-get install apt-transport-https
 ca-certificates -y ; sudo
\update-ca-certificates

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
5 / 45

https://www.nxp.com/docs/en/quick-reference-guide/IMXWQSG.pdf
http://www.nxp.com/

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

3. Extract the Code Signing Tool inside the bsp repository and rename the newly created folder to cst to get
the <BSP_DIR>/cst folder:

tar xf cst-3.1.0.tgz
mv release cst
rm cst-3.1.0.tgz

4. Extract the i.MX firmware from the NXP website and place it in firmware-imx.

chmod +x firmware-imx-8.18.bin
./firmware-imx-8.18.bin
mv firmware-imx-8.18 firmware-imx
rm firmware-imx-8.18.bin

Note: It extracts the tool inside the bsp repository and renames the newly created folder to firmware-imx
to get <BSP_DIR>/firmware-imx/firmware/ ddr/ in directory tree.

5. Your directory structure must contain the following folders.

- <BSP_DIR>
|- cst (manually downloaded)
|- firmware-imx (manually downloaded)
|- Documentation
|- MSRSec
|- RIoT
|- imx-atf
|- imx-mkimage
|- imx-optee-os
|- imx-windows-iot
|- mu_platform_nxp
|- patches
|- uboot-imx

2.2.3 Setting up your build environment

1. Start Linux environment such as:
• Dedicated Linux system
• Linux Virtual Machine
• Windows Subsystem for Linux (WSL setup instructions)

Note: W-imx-windows-bsp-.zip was validated with Ubuntu 20.04 in WSL and also in standalone
Ubuntu.

2. Obtain and prepare the BSP sources by following all steps described in Obtaining BSP sources. Use
Init.sh, not Init.bat to populate the repository and all submodules.

3. Install or update build tools. The shell commands below can be used to do this process on Ubuntu 20.04 or
18.04.

sudo apt-get update
sudo apt-get upgrade

4. If Ubuntu 18.04 and possibly other older distributions are used, the mono package might be outdated
causing the build to fail. For such distributions, add the mono repository to the system as described in
https://www.mono-project.com/download/stable/#download-lin before installing the mono package.

sudo apt install gnupg ca-certificates
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys \
 3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF
Optionally key could be downloaded to a file and added manually by
'apt-key add KEYFILE'. Now that certificate is installed we can
add official mono repository to repository list.
echo "deb https://download.mono-project.com/repo/ubuntu stable-bionic main" \

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
6 / 45

https://www.nxp.com/webapp/sps/download/license.jsp?colCode=IMX_CST_TOOL
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.18.bin
https://learn.microsoft.com/en-us/windows/wsl/install
https://www.mono-project.com/download/stable/#download-lin

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

 | sudo tee /etc/apt/sources.list.d/mono-official-stable.list
sudo apt update

Note: The process is valid for Ubuntu 18.04 in December 2021:
5. Install the required software. Note that the mu_project currently requires python 3.8 and higher.

sudo apt-get install attr build-essential python3.8 python3.8-dev \
 python3.8-venv device-tree-compiler bison flex swig iasl uuid-dev \
 wget git bc libssl-dev zlib1g-dev python3-pip mono-devel gawk libgnutls28-
dev

6. Download the Arm64 cross-compiler.

pushd ~
wget https://releases.linaro.org/components/toolchain/binaries/7.4-2019.02/\
aarch64-linux-gnu/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu.tar.xz
tar xf gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu.tar.xz
rm gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu.tar.xz
*\# The cross compiler prefix is required to be exported later
\# into AARCH64_TOOLCHAIN_PATH variable.
\# export AARCH64_TOOLCHAIN_PATH=~/gcc-linaro-7.4.1-2019.02\\
\# -x86_64_aarch64-linux-gnu/bin/aarch64-linux-gnu-*
popd

7. Change the directory to the BSP_DIR. The following commands reference the files inside the BSP directory.
That BSP_DIR contains extracted W-imx-windows-bsp-.zip.

cd BSP_DIR

8. Project MU strongly suggests the use of Python Virtual Environment for each workspace. In this case, BSP
revision-separated environments allow workspaces to keep specific Pip module versions without modifying
the global system state when the firmware is compiled.

python3.8 -m venv <path to new environment>
source <path to new environment>/bin/activate
eg.:
python3.8 -m venv ~/venv/win_fw_build
source ~/venv/win_fw_build/bin/activate

The virtual environment does not use system packages. Thus, do not use sudo when installing packages
using pip.

9. Install the required python packages.
a. Install or update mu_platform Python dependencies using pip.

pushd mu_platform_nxp
pip3 install -r requirements.txt --upgrade

b. Install the pycryptodome package (successor of pycrypto).

pip3 install pycryptodome

c. Install the pyelftools package.

pip3 install pyelftools

d. Install the cryptography package.

pip3 install cryptography

10. Setup the Mu platform. (This step is optional because buildme64.sh does these steps automatically.)
a. Setup and update submodules.

python3 NXP/MX8M_EVK/PlatformBuild.py --setup

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
7 / 45

https://microsoft.github.io/mu/CodeDevelopment/prerequisites/#all-operating-systems-python-virtual-environment-and-pytools

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

Note: If you return here facing problems during UEFI build, use --force to clean the environment.
Make sure to commit or stash all your changes first. The --force argument performs git reset –hard.

b. Initialize and update Mu platform dependencies.

python3 NXP/MX8M_EVK/PlatformBuild.py --update

Note: If this command fails, try upgrading mono. The best way to do it is to uninstall mono and reinstall
it from its official repository. The process is described at https://www.mono-project.com/download/stable/
#download-lin.

11. Return to BSP root.

popd

2.2.4 Building the firmware

To build the boot firmware:

1. Open cmd prompt inside BSP_DIR.

cd <BSP_DIR>

2. Activate your python virtual environment (Use the path specified when creating the environment.)

source ~/venv/win_fw_build/bin/activate

3. Export AARCH64_TOOLCHAIN_PATH cross compiler prefix. In this guide, the toolchain has been placed
inside the home (~/) directory.

export AARCH64_TOOLCHAIN_PATH=~/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-
linux-gnu/bin/aarch64-linux-gnu-

4. Optionally, if there is a major update, you may need to step into mu_platform_nxp and run python3
NXP/MX8M_EVK/PlatformBuild.py with --setup --forceand then --update manually. To get
clean and up-to-date MU build environment, stash or commit your changes. The command performs git
reset --hard.

5. Build the firmware and create firmware.bin. To build the boot firmware, execute the buildme64.sh -b
<BOARD_NAME> -t all [-clean] script provided in BSP_DIR (the root of extracted BSP sources).

./buildme64.sh -b MX8M_EVK -t all -c

The buildme64.sh script bundled in BSP also copies flash.binand uefi.fit into <BSP_DIR> /
imx-windows-iot/components/Arm64BootFirmware/<board_name>. It allows to rebuild only UEFI
or U-boot.
• Use -b MX8M_EVK or -b 8M to select i.MX 8M EVK
• Use -b MX8M_MINI_EVK or -b 8Mm to select i.MX 8M Mini EVK
• Use -b MX8M_NANO_EVK or -b 8Mn to select i.MX 8M Nano EVK
• Use -b MX8M_PLUS_EVK or -b 8Mp to select i.MX 8M Plus EVK
• Use -b MX8QXP_MEK or -b 8X to select i.MX 8QXP_MEK
• Use -b MX93_11X11_EVK or -b 93 to select i.MX 93 EVK
• Use -t secured_efi to build signed_firmware_uuu.bin

Options for builds:
• -b|-board specifies the board for which binaries will be built

– all = build all devices,
– 8M, MX8M_EVK
– 8Mm, MX8M_MINI_EVK
– 8Mn, MX8M_NANO_EVK
– 8Mp, MX8M_PLUS_EVK

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
8 / 45

https://www.mono-project.com/download/stable/#download-lin
https://www.mono-project.com/download/stable/#download-lin

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

– 8X, MX8QXP_MEK
– 93, MX93_11X11_EVK

• -t|-target_app specifies a target to build
– all = build all components
– u|uboot = build u-boot (by default with UUU tool)
– optee = build optee core
– apps|tee_apps = build optee trusted applications
– uimg|uboot_image = create bootable image
– tools|uefi_tools = build UEFI tools
– uefi = build UEFI
– profile_dev = build UEFI with development profile (set by default)
– profile_secure = build UEFI with secure profile
– profile_frontpage = build UEFI with frontpage profile
– secured_efi|secured_uefi = build UEFI in secure mode + sign image(the name of the resulting

firmware is prefixed with signed_)
• [-cap|-capsule] creates capsule
• [-c|-clean] cleans build files before build
• [-fw|-fw_bin] requests build of firmware from existing binaries
• [-nu|-no_uuu] builds uboot without UUU tool (the name of the resulting firmware does not contain
_uuu suffix)

• [-h|-help] prints manual for script usage
• [-bc|build_configuration] specifies build configuration of UEFI (RELEASE is selected as default)

– release or RELEASE = for Release version of uefi
– debug or DEBUG = for Debug version of uefi

• [-ao|-advance_option] Advanced options for experienced users
– rpmb_reset_fat = clears RPMB FAT
– rpmb_write_key = writes RPMB KEY into RPMB
– no_rpmb_test_key = uses Hardware-Unique key (HUK) instead of TEST KEY (TEST KEY is used as

default)
– optee_core_v = turns on verbose mode of OpTEE core
– optee_core_vv = turns on the highest verbose mode of OpTEE core
– optee_ta_v = turns on verbose mode of OpTEE trusted applications
– optee_ta_vv = turns on the highest verbose mode of OpTEE trusted applications

• [TARGET_WINDOWS_BSP_DIR] Specifies path to imx-windows-iot, in which the firmware shall be
updated.

• [KEY_ROOT] specifies path to custom PKI root
6. To deploy firmware_uuu.bin to the i.MX development board, follow the process described in i.MX

Windows 10 IoT Quick Start Guide.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
9 / 45

https://www.nxp.com/docs/en/quick-reference-guide/IMXWQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMXWQSG.pdf

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

2.2.5 Common causes of build errors

1. ImportError: No module named Crypto.PublicKey.
• This error is encountered when the pycryptodome module is missing or in case obsolete pycrypto is

removed.
2. Unable to enter directory. Directory does not exist.

• We have run into this problem in case gitmodules were not downloaded completely (for example,
MSRSec is empty) or cst or firmware directories were missing. Try repeating the Obtaining BSP
sources step by step.

3. The build fails in WSL while the BSP is located somewhere in /mnt/c of the WSL.
• Try setfattr -n system.wsl_case_sensitive -v 1 <BSP_DIR>. OP-Tee also requires

symbolic links. We have been able to build boot firmware in /mnt/c/ on Windows OS version 1909.
Workaround is to copy the BSP to WSL filesystem, for example, to HOME.

3 Display/GPU driver

This chapter contains several notes related to Windows i.MX GPU driver. The kernel graphic driver consists
among others of the GPU driver galcore.sys and the display controller driver dispctrl.dll. The setup
information file galcore.inf contains several parameters that are written into the Windows registry database
and later used for the driver configuration. To change these parameters, one of following options can be done:

• Update the registry database directly under the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Control\Class{4d36e968-e325-11ce-bfc1-08002be10318}\0000 key. Then you can either reboot
the board, or restart the driver using devcon (devcon.exe restart ACPI\VERI700x), or Disable device and
Enable device using Device Manager for Display adapters\i.MX GPU device.

• Update the INF file and uninstall/re-install the GPU driver, and then reboot.

3.1 Display interface selection
The following Registry (INF) parameter is used to select the display interface for a particular display.
Applicability is platform-dependent, see Quick Start Guide, the features list for a particular platform, and
limitations in Release Notes. If a platform supports only one possibility, the parameter is ignored. For specific
hardware configuration, see the platform reference manual.

Display<n>Interface (where <n> display id = 0,1,2,...) parameter is of REG_DWORD type.

Possible values:

DISP_INTERFACE_HDMI = 0x1

DISP_INTERFACE_MIPI_DSI0 = 0x2

DISP_INTERFACE_MIPI_DSI1 = 0x3

DISP_INTERFACE_LVDS0 = 0x4

DISP_INTERFACE_LVDS1 = 0x5

DISP_INTERFACE_LVDS_DUAL0 = 0x6

DISP_INTERFACE_PARALLEL_LCD = 0x7

3.2 Display resolution and timing parameters
The display resolution is configured differently for individual display interfaces.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
10 / 45

https://www.nxp.com/docs/en/quick-reference-guide/IMXWQSG.pdf
https://www.nxp.com/docs/en/release-note/IMXWNR.pdf

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

3.2.1 HDMI display interface

The display is configured with native display resolution read from the EDID of the connected display. Typically,
this is 1920x1080@60 Hz for most standard HDMI monitors. It is not possible to change/override the native
resolution.

Currently, the maximum resolution supported by the display driver is 1080p (1920x1080@60 Hz), which is also
set if the native display resolution exceeds this maximum.

3.2.2 LVDS, MIPI-DSI and Parallel display interfaces

The display resolution and timing parameters are obtained from the following registry parameter:

Display<n>EDID (where <n> display id = 0,1,2,...), parameter is of REG_BINARY type.

The parameter contains EDID data encoded according to the EDID structure v1.4 data format (standard
published by VESA). The first data block 128 bytes long is used, that is, only basic EDID structure without
any extensions. Resolution and timing parameters are parsed from Standard timing information - Descriptor
1 (offsets 54 - 71), specifically pixel clock, horizontal active pixels resp. vertical active lines, blanking pixels,
synchronization pulse width, front porch, and VSYNC, HSYNC signals polarity. During EDID loading from the
registry, the EDID header is checked (offsets 0 - 7) and the checksum must match (offset 127). Other EDID data
are irrelevant to the GPU driver. Default EDID data in INF file sets 1280x720@60 Hz mode.

The BSP package contains pre-prepared testing EDID data for several standard modes: see <BSP>\imx-
windows-iot\driver\display\dispdll\util\include\edidtst.h

3.3 Display specific parameters

3.3.1 LVDS display interface

Registry (INF) parameters related to LVDS interface:

• The Display<n>BusDataWidth (where <n> is display id = 0,1,2,...) parameter of the REG_DWORD type
determines the number of pixels mapped to the output signal. 24 bpp or 18 bpp are supported. The default
value is 24.

• The Display<n>BusMapping (where <n> is display id = 0,1,2,...) parameter of the REG_DWORD
type determines the pixel mapping type in the output signal. DISP_BUS_MAPPING_SPWG = 0x1 or
DISP_BUS_MAPPING_JEIDA = 0x2 are supported. The default value is 0x1.

3.3.2 MIPI-DSI display interface

Registry (INF) parameters related to MIPI-DSI interface:

• The Display<n>NumLanes (where <n> is display id = 0,1,2,...) parameter of the REG_DWORD type
determines the number of DSI lanes. Possible values are 1-4, the default value is 4.

• The Display<n>ChannelId (where <n> is display id = 0,1,2,...) parameter of the REG_DWORD type
determines the virtual channel ID of the display. The default value is 0.

3.4 Display support in firmware
Display-related peripherals are configured in u-boot for i.MX 8M and i.MX 8QXP and the following paragraphs
are not valid for them. The following description is related to the firmware driver for i.MX 8M Plus, i.MX 8M
Nano, i.MX 8M Mini and i.MX 93.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
11 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

3.4.1 Firmware display interface selection

The firmware display interface can be selected in the giMX8TokenSpaceGuid.PcdDisplayInterfac
e parameter in the platform description file (dsc) located in <BSP>/mu_platform_nxp/NXP/<Board>/
<Board>.dsc. Possible values are HDMI = 0, MIPI_DSI = 1, LVDS0 = 2, LVDS1 = 3, LVDS dual
= 4. The available display interfaces are dependent on specific boards (see Release Notes or SoC reference
manual for more information). The parameter is used for interfaces that do not allow automatic detection.

Automatic detection is implemented for HDMI-based display interfaces that include IMX-MIPI-HDMI (MIPI-DSI
to HDMI converter), IMX-LVDS-HDMI (LVDS to HDMI converter), and native HDMI interface. These interfaces
are probed in the same order of priority and if successfully detected, giMX8TokenSpaceGuid.PcdDisplay
Interface is overridden with the detected display interface.

After changing any of the parameters, the firmware must be recompiled.

3.4.2 Firmware display resolution

The firmware display resolution is stored in the PreferredTiming variable. This variable is initialized in
the LcdDisplayDetect function in theiMX8LcdHwLib.c or iMX93DisplayHwLib.c file respectively.
These source files contain several pre-defined resolutions and timing parameters. For example, to select
1024x768@60 resolution initialize the PreferredTiming variable: LcdInitPreferredTiming
(&PreferredTiming_1024x768_60, &PreferredTiming);

For HDMI-based display interfaces (see previous paragraph), the giMX8TokenSpaceGuid.PcdDisplay
ReadEDID parameter (TRUE/FALSE) allows enabling/disabling EDID reading. The resolution and display
parameters are then extracted from the Detailed Timing descriptor of EDID data (native resolution). The gi
MX8TokenSpaceGuid.PcdDisplayForceConverterMaxResolution parameter (TRUE/FALSE) allows
clamping display resolution to the supported maximum, that is, if the EDID Detailed Timing descriptor contains
a resolution higher than the supported maxim, EDID data are discarded, and supported maximum resolution
is used instead. Both these parameters are located in the platform description file (dsc) - see the previous
paragraph.

After changing any of the parameters, the firmware must be recompiled.

Note: Only a limited set of pixel clocks is supported, so for a new resolution with a pixel clock different from pre-
defined in the above source files, the corresponding clock driver must be updated.

4 Power management

Power management consists of the Processor Power Management (PPM) that includes low-power state
transition of processor cores and of the Device Power Management (DPM) that includes power gating and
clock gating of individual devices. An important part of customization of power management is the Power
Engine Plugin (PEP) driver that defines the processor and platform low-power states and can handle power
and clock gating for individual devices. This chapter contains information on the current support of power
management for i.MX 8/9 platforms, relevant tools, and utilities.

4.1 Power management user scenarios
We consider 2 power scenarios that could be of interest for vendors using i.MX 8/9 platforms:

• At runtime: reduce runtime power consumption by putting unused resources to temporary possibly short sleep
states:
devices - to clock gating/power gating or other low-power states, for example, D3/F1, CPUs to CPU-suspend
in Standby or Power Down mode.

• When IoT device is idle: platform entering low-power idle states (wait state, power off state) with minimal
power consumption and wake-up capability via selected devices.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
12 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

4.2 Device power management DPM on i.MX 8/9 platforms
There are working samples of power management framework (PoFx) callbacks in I2C and PWM drivers. The
functionality must be enabled by I2C_POWER_MANAGEMENT and PWM_POWER_MANAGEMENT macros.

The Dx states are Devices states (D0=Running, D3=low power)

The Fx states are Components states (F0=Running, F1=low power)

The i.MX 8/9 implementation is based on the Single Component KMDF Power Framework (PoFx) Sample
provided by Microsoft.

The power state transitions from D0/F0 to D3/F1 and back are based on the device activity (for example,
running some test traffic). The device power state can be checked in WinDbg using the !fxdevice command.
The state transition happens based on OS decision (made incl. the S0 Idle Timeout), and the driver is notified
using the PO_FX_COMPONENT_IDLE_STATE_CALLBACK. It must change HW status to low-power (if
State > 0) or to running (if State = 0). The functionality is located in the files imxi2cpofx.h/cpp and
imxpwm_pofx.h/cpp. The PoFx functionality can be copied to other drivers based on specific vendor
requirements.

The Device driver interacts with Windows PoFx framework using the WdfDeviceAssignS0IdleSettings and Wdf
DeviceWdmAssignPowerFrameworkSettings methods.

When the power management support is implemented in the device driver, the Power Management tab
becomes visible in the device properties in the Device Manager:

Figure 1. Power-managed devices I2C PWM

4.3 Processor power management PPM on i.MX 8/9 platforms
The Power Engine Plugin (PEP) driver is visible in the Device Manager -> System devices for all the
supported i.MX 8/9 boards:

Figure 2. PEP in Device Manager

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
13 / 45

https://learn.microsoft.com/en-us/samples/microsoft/windows-driver-samples/kmdf-power-framework-pofx-sample/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-po_fx_component_idle_state_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdeviceassigns0idlesettings
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdevicewdmassignpowerframeworksettings
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdevicewdmassignpowerframeworksettings

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

The PEP handles putting of CPU cores to coordinated low-power (sleep) states as requested by the operating
system. The call sequence that puts the CPU core to sleep looks as follows:

WindowsOS -> PEP::AcceptProcessorNotification -> PEP:: PpmIdleExecute -> WFI
 (Wait for
 Interrupt instruction)

WindowsOS -> PEP::AcceptProcessorNotification -> PEP:: PpmIdleExecute -> SCM
 call
 ->Imx-Atf PSCI CPU_SUSPEND -> HW instructions to CPU sleep

The sleeping CPU core is woken from the sleep state by interrupt, either a Processor to Processor Interrupt
(PPI) for example, IRQ27 or by device interrupt IRQ > 32, for example, a USB device like mouse or keyboard.
See section related to IRQs.

PEP and Imx-Atf: ATF is the Arm Trusted Firmware, integrated with Uefi and Uboot in firmware.bin. The
ATF implements the PowerStateCoordinatedInterface (PSCI industry standard, DEN0022E_Power_State_
Coordination_Interface.pdf) from ARM specification, incl. the CPU_SUSPEND method used to put CPU cores
into low-power sleep states. The CPU_SUSPEND can specify either standby or Power-down mode. When the
last CPU core goes into the low-power Power-down mode, the whole platform must enter the platform power
down, which includes DDR self-refresh, and setup for wake-up using selected interrupts. In Release Milestone
6, the platform power down is not yet fully integrated with Win10 IoT OS so it needs more effort to have this
functional.

The PEP also ensures that before entering the Coordinated low-power state (defined in PEP) all devices are in
the required low-power state. This is defined in PEP: DpmDeviceIdleContraints, the constraints are expected to
be extended in future releases.

PEP and WinDbg: the PEP driver is loaded in Windows OS as one of the first drivers during startup. It can
be replaced and debugged with WinDbg as usual. Enable the #define DBG_MESSAGE_PRINTING in
imxpep_dbg.h file to get traces in the WinDbg command window.

4.4 Power management tools and debugging
The following tools can be used to analyze the current Power management functionality:

Utility Description

powercfg /a Available sleep states

powercfg /sleepstudy Sleep study HTML report

powercfg /energy Energy efficiency analysis and issues

WinDbg !fxdevice Device power management status

4.4.1 powercfg /a

This command displays the available sleep states.

In i.MX that uses the Modern Standby the only supported state is S0 Low Power Idle - Network Connected.

C:\> powercfg /a
The following sleep states are available on this system:
 Standby (S0 Low Power Idle) Network Connected

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
14 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

4.4.2 powercfg /sleepstudy

This command generates a detailed HTML report with analysis of Sleep states during last 3 days.

It includes how many % of time was spent in Deepest Runtime Idle Platform State (DRIPS) during each Sleep
period.

Figure 3. Sleep study drips

4.4.3 powercfg /energy

This command generates energy consumption analysis and issues report.

4.4.4 WinDbg !fxdevice

The fxdevice command gives detailed status and history of power state transition of each power managed
device.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
15 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

For example I2C2 in D0 state when active, in D3 state (power down) when idle, and the PoFx IRP log:

!fxdevice ... find the relevant device

Within 30 sec after I2C test run => active D0/F0 state:
!fxdevice 0xffffaf8256372010
 DevNode: 0xffffaf8251115aa0
 UniqueId: "_SB.I2C2"
 InstancePath: "ACPI\NXP0104\2"
 Device Power State: PowerDeviceD0
 Component Count: 1
 Component 0: Current:F0/Deepest:F1 - IDLE (RefCount = 0)

After 30 sec after I2C test run => low power D3/F1 state:
!fxdevice 0xffffaf8256372010
 DevNode: 0xffffaf8251115aa0
 UniqueId: "_SB.I2C2"
 InstancePath: "ACPI\NXP0104\2"
 Device Power State: PowerDeviceD3
 Component Count: 1
 Component 0: Current:F1/Deepest:F1 - IDLE (RefCount = 0)

nt!DbgBreakPointWithStatus:
fffff803`43c08330 d43e0000 brk #0xF000
0: kd> !fxdevice ffffaf82570e9aa0
!fxdevice 0xffffaf82570e9aa0
 DevNode: 0xffffaf8251115aa0
 UniqueId: "_SB.I2C2"
 InstancePath: "ACPI\NXP0104\2"
 Device Power State: PowerDeviceD3
 PEP Owner: Default PEP
 Acpi Plugin: 0
 Acpi Handle: 0
 Device Status Flags: DevicePowerNotRequired_DeviceNotified
 DevicePowerNotRequired_ReceivedFromPEP
 Device Idle Timeout: 0000000000
 Device Power On: No Activity
 Device Power Off: No Activity
 Device Unregister: No Activity
 Component Count: 1
 Component 0: Current:F1/Deepest:F1 - IDLE (RefCount = 0)
 Pep Component: 0xffffaf8256df24d0
 Active: 0 Latency: 0 Residency: 0 Wake: 0 Dx IRP: 0 WW IRP: 0
 Component Idle State Change: No Activity
 Component Activation: No Activity
 Component Active: No Activity
 Log has 25 entries starting at 0:
 # IntTime CPU Cid Tid
 --- ---------------- ---- ---- ----
 0 000000076660627f 3 4 f0 Device registered with 1 component(s)
 1 000000076660627f 3 4 f0 Start power management
 2 000000076660627f 3 4 f0 Component 0 latency set to 8000001
 3 000000076660627f 3 4 f0 Component 0 residency set to 120000001
 4 0000000766609e64 1 4 5c0 Component 0 changed to idle state F1
 5 0000000766609e64 1 4 5c0 Power not required from default PEP
 6 0000000766609e64 1 4 5c0 Power not required to device
 7 0000000766609e64 2 4 ec Power IRP requested with status 0
 8 0000000766609e64 2 4 ec Power IRP type D3 dispatched to device
 stack

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
16 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

 9 0000000766609e64 3 4 e0 Device power state changed to D3
 10 0000000766633b5a 1 4 ec Power required from default PEP
 11 0000000766633b5a 1 4 ec Power required to device
 12 0000000766633b5a 1 4 ec Driver device power required callback
 pending
 13 0000000766633b5a 1 4 ec Power IRP requested with status 0
 14 0000000766633b5a 1 4 ec Power IRP type D0 dispatched to device
 stack
 15 0000000766638961 2 4 b78 Device power state changed to D0
 16 0000000766638961 2 4 b78 Device powered
 17 0000000766638961 2 4 b78 Driver device power required callback
 completed
 18 0000000766638961 3 4 18 Component 0 changed to idle state F0
 19 000000076ddba246 0 4 18 Component 0 changed to idle state F1
 20 000000076ddba246 0 4 18 Power not required from default PEP
 21 000000076ddba246 0 4 18 Power not required to device
 22 000000076ddba246 0 4 b78 Power IRP requested with status 0
 23 000000076ddba246 0 4 b78 Power IRP type D3 dispatched to device
 stack
 24 000000076ddba246 0 4 e0 Device power state changed to D3

5 Secure boot

5.1 Basic concepts
Secure Boot is a feature that prevents loading malicious pieces of software (rootkits) during the system boot.
To perform a secure boot, the feature has to be supported by the whole boot chain, starting at the device ROM
code and ending in Windows. For more information on how to prepare the board for Secure Boot, see Secure
Provisioning.

For more detailed information on each platform, see:

• Secure boot on i.MX 8M
• Secure boot on i.MX 8QXP
• Secure boot on i.MX 93

5.2 Secure boot on i.MX 8M

5.2.1 System boot on i.MX 8M

The boot process starts after device's power-on reset. The hardware logic forces the processor to start
executing internal ROM code. Based on the state of the register BOOT_MODE[13:0] together with eFUSEs
and GPIO pins (depends on configuration), the ROM code selects a boot device (Serial NOR Flash via FlexSPI,
NAND flash, SD/MMC, Serial (SPI) NOR). The boot process then continues executing the code from the boot
device. ROM searches Image Vector Table (IVT) on the address, which is based on the selected boot device.
For example, 0x8400 for i.MX 8M Mini SD/eMMC boot. There it finds an entry point for the code jump. For
more details, see i.MX 8M Mini Applications Processor Reference Manual

5.2.2 System boot components

There are many software components involved in the boot process to run some complex operating systems,
including Windows. This project uses U-Boot SPL as the first stage bootloader (also called Secondary Program
Loader, SPL). On i.MX 8M, the processor has very limited access to peripherals when exiting ROM code area,
since most of them are not initialized. Thus, the first stage bootloader must fit system's on-chip RAM (OCRAM).
Its main purpose is to initialize DDR to get access to full system memory and to load a proper second stage
IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
17 / 45

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-family-armcortex-a53-cortex-m4-audio-voice-video:i.MX8M

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

bootloader. The first stage boot loader and second stage bootloader are considered SoC/firmware bootloaders,
whereas UEFI provides environment for Microsoft and OEMs.

Figure 4. Boot flow

5.2.2.1 U-Boot SPL

This project uses U-Boot SPL as the first-stage bootloader. The main purpose of U-Boot SPL is to initialize
external memory that is needed to run proper U-Boot. The U-Boot SPL loads a few more components that
are participate in the configuration and security of the device - Device Tree blob, OP-TEE, and ARM Trusted
firmware.

5.2.2.2 Device Tree Blob

Device Tree Blob (DTB) is a binary representation of Device Tree. Device Tree is a data format for description
of system hardware in a format of tree of device nodes. The format is understood (and required) for example, by
U-Boot proper and Linux kernel. Thanks to Device Tree, a single program binary can support multiple platforms,
just by changing DTB that is used.

5.2.2.3 OP-TEE

Open Portable Trusted Execution Environment (OP-TEE) is an opensource implementation of Trusted
Execution Environment using ARM TrustZone technology. It provides a way of running applications within
secure world. This project uses OP-TEE as runtime environment for fTPM and Authenticated Variables.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
18 / 45

https://github.com/nxp-imx/uboot-imx
https://elinux.org/Device_Tree_Reference
https://www.op-tee.org/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

5.2.2.4 ATF

ARM Trusted Firmware is an implementation of firmware running with elevated privileges (EL3) and is used
mostly as a proxy between the OS running in non-secure world and OP-TEE running in secure world.

5.2.2.5 U-Boot proper

The U-Boot proper is used in this project to perform early display initialization and load the UEFI bootloader.
When enabled (disabled by default), the U-Boot provides powerful CLI interface and can serve as a tool for
device provisioning and/or debugging.

5.2.2.6 UEFI

The Unified Extensible Firmware Interface (UEFI) is a specification defining a unified interface between the
firmware and the OS. UEFI firmware does the rest of the initialization and hands off the control to Windows Boot
Manager.

For more details, see Boot and UEFI.

5.2.3 Ensuring firmware security

To ensure integrity and to prove genuinity of all boot components, they need to be signed, and the validity of the
digital signature must be verified before passing the control to the next stage of the boot.

5.2.3.1 Security configuration

The reaction of the chip on various security events is massively dependent on its security configuration that may
be affected by several fuses and HAB.

5.2.3.1.1 Open/Closed

The open/closed state determines whether SECO allows execution of unauthenticated program images.
Open chip allows execution of any program image - unauthenticated images and authenticated images
with bad signature. Closed chip allows only execution of authenticated images. The state is defined by the
SEC_CONFIG[1:0] eFUSE:

Fuse value Effect

00 Reserved

01 Open

1x Closed

5.2.3.1.2 SRKH

The Super Root Key Hash (SRKH) is a set of 8 eFUSES that contain a combined hash of hashes of particular
Super Root Keys. They are one of the main components of the HAB chain of trust.

5.2.3.2 Bootloader verification chain

All firmware signatures are generated at build time using private keys from the HAB chain of trust.

1. ROM Code verifies U-Boot SPL
2. U-Boot SPL checks Device Tree Blob, ATF, OP-TEE, U-Boot proper, and UEFI
3. UEFI checks efi modules and Windows Boot Manager

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
19 / 45

https://github.com/nxp-imx/uboot-imx
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/boot-and-uefi
https://boundarydevices.com/high-assurance-boot-hab-i-mx8m-edition/

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

ROM code cannot be changed and is considered trusted. To verify the signature of SPL, ROM contains a
module called High Assurance Boot.

HAB is a software component responsible for verifying digital signatures. Its API is available to external
applications via ROM vector table (RVT). Before jumping to SPL, ROM verifies the signature of SPL. Only a
valid SPL signature allows booting flow to proceed (see Chip lifecycle).

Once loaded and verified, U-Boot SPL is also considered secure and trusted. U-Boot SPL loads the
container image containing Device Tree Blob, ATF, OP-TEE, U-Boot proper, and UEFI. When building with -
t secured_efi, the U-Boot SPL verifies the signature of each component of the FIT image. The U-Boot
SPL will proceed to the proper U-Boot only with the matching signature. The verification is realized by the HAB
module.

5.2.3.3 HAB chain of trust

HAB chain of trust is a set of certificates and keys, forming Public Key Infrastructure (PKI) used for signing and
verification of Secure Boot components handled by HAB. This repository contains a pre-generated PKI. To use
your own PKI, point the environment variable KEY_ROOT to your key root folder.

Important: Building BSP with the default KEY_ROOT produces signed, but insecure binaries since they are
signed with well-known keys!

NXP provides a set of tools, called CST that helps with generating custom PKI and signing.

The HAB chain of trust consists of single Certification Authority (CA), four Super Root Keys (SRK) and
(optionally) four image (IMG) keys and command sequence file (CSF) keys. Depending on HAB version,
firmware images and CSFs can be signed directly by SRK (HABv4) or by IMG and CSF keys that are signed by
appropriate SRK (HABv4.1.2 FastAuth).

Figure 5. "HAB chain of trust"

5.2.3.4 i.MX firmware image verification

Even though the SECO (AHAB) is responsible for signature verification, the verification key itself cannot be
burned to eFUSES since there are not enough of them. To circumvent that, only a footprint of the key is written
to the device. The verification key itself is then packed along the signature to the firmware binary. HAB then
verifies the key against the footprint and uses the key to verify the signature. This information is stored in the
CSF block, see Figure 5

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
20 / 45

https://www.nxp.com/webapp/sps/download/view_license.jsp?colCode=IMX_CST_TOOL

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

Figure 6. Firmware image composition

When HAB verifies the signature of i.MX firmware image, the steps as follows:

1. Get the CSF location from IVT.
2. Extract the SRK table from CSF.
3. Compute SRKH and verify against fuses. Break if invalid.
4. Verify the CSF and IMG certificates by appropriate SRK from the SRK table. Break if invalid.
5. Verify the CSF signature and the image signature.

5.3 Secure boot on i.MX 8QXP

5.3.1 System boot on i.MX 8QXP

Compared to i.MX 8M, where the system boots from ARM Cortex-A cores from ROM memory, i.MX 8QXP starts
its boot in a dedicated security subsystem (SECO) and a system control unit (SCU). They are separate ARM
Cortex-M cores that run their own code, starting in their respective ROMs. During the boot process, there is
a firmware downloaded for each of these cores, where their program flow continues. Then, firmware for other
system cores is loaded. SCU ROM code selects a boot device (SD/MMC, NAND flash, FlexSPI NOR flash,
Serial downloader on USB) based on SCU_BOOT_MODE pins and Force Boot From Fuse efuse. The first

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
21 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

stage bootloader for application cores may then be loaded directly to RAM (compared to i.MX 8M, which needs
an SPL, that will fit into OCRAM and set up the DDR first).

For more details, see chapter 5.5 Secure Boot Flow with SCU and SECO in i.MX
DualX/8DualXPlus/8QuadXPlus Applications Processor Reference Manual

5.3.2 i.MX boot containers

Application images that participate in i.MX 8QXP system boot are packed into so-called containers and at least
two of them are needed to boot the board. The first one is provided and signed by NXP and contains SECO
FW. The second one contains SCU FW and application code for other cores. Each container consists of the
container header, the container signature block (may be empty) and one or more images. Each image has its
own header, which defines the load address and entry point. Containers are composed using the imx-mkimage
tool.

Figure 7. i.MX boot containers

5.3.3 System boot components

There are many software components involved in the boot process to run some complex operating systems,
including Windows. This project uses U-Boot SPL as the first-stage bootloader (also called Secondary
Program Loader, SPL). The first-stage bootloader and second-stage bootloader are considered SoC/firmware
bootloaders, whereas UEFI provides environment for Microsoft and OEMs.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
22 / 45

https://www.nxp.com/webapp/Download?colCode=IMX8DQXPRM
https://www.nxp.com/webapp/Download?colCode=IMX8DQXPRM

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

Figure 8. System boot components

5.3.3.1 U-Boot SPL

This project uses U-Boot SPL as the first-stage bootloader. The main purpose of U-Boot SPL is to initialize
external memory that is needed in order to run proper U-Boot. The U-Boot SPL actually loads a few more
components that are participate on the configuration and security of the device - Device Tree blob, OP-TEE,
and ARM Trusted firmware.

5.3.3.2 Device Tree Blob

Device Tree Blob (DTB) is a binary representation of Device Tree. Device Tree is a data format for description
of system hardware in a format of tree of device nodes. The format is understood (and required) for example, by
U-Boot proper and Linux kernel. Thanks to Device Tree, a single program binary can support multiple platforms,
just by changing DTB that is used.

5.3.3.3 OP-TEE

Open Portable Trusted Execution Environment (OP-TEE) is an opensource implementation of Trusted
Execution Environment using ARM TrustZone technology. It provides a way of running applications within
secure world. This project uses OP-TEE as runtime environment for fTPM and Authenticated Variables.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
23 / 45

https://github.com/nxp-imx/uboot-imx
https://elinux.org/Device_Tree_Reference
https://www.op-tee.org/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

5.3.3.4 ATF

ARM Trusted Firmware is an implementation of firmware running with elevated privileges (EL3) and is used
mostly as a proxy between the OS running in non-secure world and OP-TEE running in secure world.

5.3.3.5 U-Boot proper

The U-Boot proper is used in this project to perform early display initialization and load the UEFI bootloader.
When enabled (disabled by default), the U-Boot provides powerful CLI interface and can serve as a tool for
device provisioning and/or debugging.

5.3.3.6 UEFI

The Unified Extensible Firmware Interface (UEFI) is a specification defining a unified interface between the
firmware and the OS. UEFI firmware does the rest of the initialization and hands off the control to Windows Boot
Manager.

For more details, see Boot and UEFI.

5.3.4 Ensuring firmware security

To ensure integrity and to prove genuinity of all boot components, they need to be signed, and the validity of the
digital signature must be verified before passing the control to the next stage of the boot.

5.3.4.1 Security configuration

The reaction of the chip on various security events is massively dependent on its security configuration that may
be affected by several fuses and SECO.

5.3.4.1.1 Open/Closed

The open/closed state determines whether SECO allows execution of unauthenticated program images. Open
chip allows execution of any program image - unauthenticated images and authenticated images with bad
signature. Closed chip allows only execution of authenticated images. The state can be controlled, for example,
from U-Boot cli via the `ahab_status` command. The status can be either `NXP closed` (open) or `OEM
closed` (closed).

Example:

`=> ahab_status`

`Lifecycle: 0x0020, NXP closed`

5.3.4.1.2 SRKH

The Super Root Key Hash (SRKH) is a set of 16 eFUSES (on i.MX 8QXP) that contain a combined hash of
hashes of particular Super Root Keys. They are one of the main components of the Advanced High Assurance
Boot (AHAB) chain of trust.

5.3.4.2 Bootloader verification chain

All firmware signatures are generated at build time using private keys from the AHAB chain of trust.

1. SECO verifies Container 1 (SECO FW) and Container 2 (SCU FW+SPL)

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
24 / 45

https://github.com/nxp-imx/uboot-imx
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/boot-and-uefi

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

2. SPL checks Container 3 (ATF, OP-TEE, U-Boot proper, and UEFI)
3. UEFI checks efi modules and Windows Boot Manager

SCU and SECO ROM code cannot be changed and is considered trusted. To verify the signature of SPL,
SCU relies on SECO FW that does the signature check via its AHAB module. When the chip is closed, only a
valid SPL signature allows booting flow to proceed (see Chip lifecycle). Once loaded and verified, U-Boot SPL
is also considered secure and trusted. U-Boot SPL loads the container image containing Device Tree Blob,
ATF, OP-TEE, U-Boot proper and UEFI. When building with -t secured_efi, the U-Boot SPL verifies the
signature of each component of the FIT image. The U-Boot SPL proceeds to the proper U-Boot only when a
matching signature is present. The SPL requests signature verification from SECO AHAB.

U-Boot proper asks SECO for signature verification of UEFI firmware. The binary was already checked by
SPL since it is a part of the container that is loaded by SPL; however, U-Boot currently does not support partial
signature checking (enabled in SPL, but disabled in U-Boot proper). The U-Boot proper hands off the control to
UEFI.

5.3.4.3 AHAB chain of trust

AHAB chain of trust is a set of certificates and keys, forming Public Key Infrastructure (PKI) used for signing and
verification of Secure Boot components handled by AHAB. This repository contains a pre-generated PKI. To use
your own PKI, point environment variable KEY_ROOT to your key root folder.

Important: Building BSP with the default KEY_ROOT will produce signed, but not secure binaries since they
are signed with well-known keys!

NXP provides a set of tools, called CST that helps with generating custom PKI and signing.

The AHAB chain of trust consists of single Certification Authority (CA), four Super Root Keys (SRK) and
(optionally) four subordinate (SGK) keys. When using SGK keys (SRK generated with CA flag set), the firmware
container is signed by the SGK key. Otherwise, the container is signed directly by the SRK key.

Figure 9. AHAB chain of trust

5.3.4.4 i.MX firmware image verification

Even though the SECO (AHAB) is responsible for signature verification, the verification key itself cannot be
burned to eFUSES since there are not enough of them. To circumvent that, only a footprint of the key is written
to the device. The verification key itself is then packed along with the signature to the firmware binary. SECO
then verifies the key against the footprint and then uses the key to verify the signature.

When SECO verifies the signature of the i.MX firmware image, it does the following:

1. Get the SRK table location from the container signature header.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
25 / 45

https://www.nxp.com/webapp/sps/download/view_license.jsp?colCode=IMX_CST_TOOL

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

2. Extract the SRK table.
3. Compute SRKH and verify against fuses. Break if invalid.
4. (optional) Verify the SGK certificate by an appropriate SRK from the SRK table. Break if invalid.
5. Verify the container signature.

5.4 Secure boot on i.MX 93

5.4.1 System boot on i.MX 93

i.MX 93 boots from on-chip ROM code. Based on various fuse values and boot switches, the ROM selects the
proper boot medium and flow. Secure aspects of the platform boot are handled by EdgeLock secure enclave
ROM (ELE). The boot ROM contains Advanced High Assurance Boot (AHAB) library that enables secure boot
functionality, with ELE as a backend. For more details, see chapter 8.1 Single Boot Flow (Cortex-A55) in i.MX
93 Applications Processor Reference Manual.

5.4.2 i.MX Boot Containers

Application images that participate in i.MX 93 system boot are packed into so-called images and containers. A
boot container may contain one or more boot images (A55 image, M33 image, and ELE FW). Each container
consists of the container header, the container signature block (may be empty), and one or more images. Each
image has its own load address and entry point. Containers are composed using the `imx-mkimage` tool.

Figure 10. i.MX 93 Containers

5.4.3 System boot components

There are many software components involved in the boot process to run some complex operating systems,
including Windows. This project uses U-Boot SPL as the first stage bootloader (also called Secondary Program
Loader, SPL).

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
26 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

The first-stage bootloader and second-stage bootloader are considered SoC/firmware bootloaders, whereas
UEFI provides an environment for Microsoft and OEMs.

Figure 11. Boot flow on i.MX 93

5.4.3.1 U-Boot SPL

This project uses U-Boot SPL as the first stage bootloader. Compared to i.MX 8M, the SPL has access to
full system memory. The purpose of SPL on i.MX 93 is to load other firmware components to non-continuous
memory. The SPL understands the i.MX container format and loads the following components that participate
in the configuration and security of the device to their respective load addresses: OP-TEE, ARM Trusted
Firmware, U-Boot proper, and UEFI firmware.

5.4.3.2 Device Tree Blob

Device Tree Blob (DTB) is a binary representation of Device Tree. Device Tree is a data format for description
of system hardware in a format of tree of device nodes. The format is understood (and required) for example, by
U-Boot proper and Linux kernel. Thanks to Device Tree, a single program binary can support multiple platforms,
just by changing DTB that is used.

5.4.3.3 OP-TEE

Open Portable Trusted Execution Environment (OP-TEE) is an opensource implementation of Trusted
Execution Environment using ARM TrustZone technology. It provides a way of running applications within
secure world. This project uses OP-TEE as runtime environment for fTPM and Authenticated Variables.

5.4.3.4 ATF

ARM Trusted Firmware is an implementation of firmware running with elevated privileges (EL3) and is used
mostly as a proxy between the OS running in non-secure world and OP-TEE running in secure world.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
27 / 45

https://elinux.org/Device_Tree_Reference
https://www.op-tee.org/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

5.4.3.5 U-Boot proper

The U-Boot proper is used in this project to perform early display initialization and load the UEFI bootloader.
When enabled (disabled by default), the U-Boot provides powerful CLI interface and can serve as a tool for
device provisioning and/or debugging.

5.4.3.6 UEFI

The Unified Extensible Firmware Interface (UEFI) is a specification defining a unified interface between the
firmware and the OS. UEFI firmware does the rest of the initialization and hands off the control to Windows Boot
Manager.

For more details, see Boot and UEFI.

5.4.4 Ensuring firmware security

To ensure integrity and to prove genuinity of all boot components, they need to be signed, and the validity of the
digital signature must be verified before passing the control to the next stage of the boot.

5.4.4.1 Security configuration

The reaction of the chip on various security events is massively dependent on its security configuration that may
be affected by several fuses and ELE.

5.4.4.1.1 Open/Closed

The open/closed state determines whether AHAB allows execution of unauthenticated program images. Open
chip allows execution of any program image - unauthenticated images and authenticated images with bad
signature. Closed chip allows only execution of authenticated images. The state can be controlled, for example,
from U-Boot cli via the `ahab_status` command. The status can be either `NXP closed` (open) or `OEM
closed` (closed).

Example:

`=> ahab_status`

`Lifecycle: 0x0020, NXP closed`

5.4.4.1.2 SRKH

The Super Root Key Hash (SRKH) on i.MX 93 is the SHA256 hash of the SRK table. The SRKH is stored in a
set of 8 32-bit eFUSES that contain the hash of the SRK table, containing Super Root Keys. They are one of the
main components of the Advanced High Assurance Boot (AHAB) chain of trust.

5.4.4.2 Bootloader verification chain

All firmware signatures are generated at build time using private keys from AHAB chain of trust.

1. ELE verifies Container 1 (AHAB) and Container 2 (SPL)
2. SPL checks Container 3 (ATF, OP-TEE, U-Boot proper, and UEFI)
3. UEFI checks efi modules and Windows Boot Manager

ROM code cannot be changed and is considered trusted. To verify the signature of SPL, ROM relies on ELE
that does the signature check via its AHAB module. When the chip is closed, only a valid SPL signature allows

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
28 / 45

https://github.com/nxp-imx/uboot-imx
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/boot-and-uefi

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

booting flow to proceed (see Chip lifecycle). Once loaded and verified, U-Boot SPL is also considered secure
and trusted. U-Boot SPL loads the container image containing Device Tree Blob, ATF, OP-TEE, U-Boot proper
and UEFI. When building with -t secured_efi, the U-Boot SPL verifies the signature of each component of
the FIT image. The U-Boot SPL proceeds to the proper U-Boot only when a matching signature is present. The
SPL requests signature verification from ELE/AHAB.

5.4.4.3 AHAB chain of trust

AHAB chain of trust is a set of certificates and keys, forming Public Key Infrastructure (PKI) used for signing and
verification of Secure Boot components handled by AHAB. This repository contains a pre-generated PKI. To use
your own PKI, point environment variable KEY_ROOT to your key root folder.

Important: Building BSP with the default KEY_ROOT will produce signed, but not secure binaries since they
are signed with well-known keys!

NXP provides a set of tools, called CST that helps with generating custom PKI and signing.

The AHAB chain of trust consists of single Certification Authority (CA), four Super Root Keys (SRK) and
(optionally) four subordinate (SGK) keys. When using SGK keys (SRK generated with CA flag set), the firmware
container is signed by the SGK key. Otherwise, the container is signed directly by the SRK key.

Figure 12. AHAB chain of trust

5.4.4.4 i.MX firmware image verification

Even though the ELE (AHAB) is responsible for signature verification, the verification key itself cannot be
burned to eFUSES since there are not enough of them. To circumvent that, only a footprint of the key is written
to the device. The verification key itself is then packed along with the signature to the firmware binary. ELE then
verifies the key against the footprint and then uses the key to verify the signature.

When ELE verifies the signature of the i.MX firmware image, it does the following:

1. Get the SRK table location from the container signature header.
2. Extract the SRK table.
3. Compute SRKH and verify against fuses. Break if invalid.
4. (optional) Verify the SGK certificate by an appropriate SRK from the SRK table. Break if invalid.
5. Verify container signature.

5.5 Secure storage
There is numerous sensitive information in the system that must be stored securely - credentials, cryptographic
keys, and so on. They may be both volatile and non-volatile and must be hidden not only from other applications
IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
29 / 45

https://www.nxp.com/webapp/sps/download/view_license.jsp?colCode=IMX_CST_TOOL

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

running under Windows, but also from other operating systems and peripherals. One example is Authenticated
Variables (AuthVars) functionality, described in the UEFI specification. This mechanism is used for storing
sensitive system data. Only authenticated issuers may read and modify these data. AuthVars are also used for
storing UEFI provisioning data (PK,KEK,db,dbx).

5.5.1 RPMB

This repository uses Replay Protected Memory Block (as defined in JEDEC eMMC specification JESD84-
B51) as a secure storage backend. RPMB is a special partition on eMMC memory where every read or write
operation must be authenticated. RPMB access is replay protected in a way, that every operation contains a
signature (MAC), that contains an incremental write counter. The signature is generated using a symmetric key,
that is burned in the eMMC controller and must be known also by issuer of the command. The process of writing
the key to the eMMC controller is a one-way process and the key is written in plaintext, it therefore must be
done in a secure environment.

RPMB is mandatory for this system to work since it is used as a secure storage backend for OP-TEE (and OP-
TEE is used by UEFI for storing AuthVars). For more information on how OP-TEE uses RPMB, see the following
link

5.5.2 Secure vs. non-secure build

The firmware binary can be built in two setups based on flags passed to the buildme64.sh script:

• Secure build - when building with -t secured_efi or -t secured_uefi
• Non-Secure build - when building without -t secured_efi or -t secured_uefi

Note: The effect of -t secured_efi is identical to -t secured_uefi, both parameters are
interchangeable.

5.5.2.1 Secure build

Secure build provides secure binaries with all Secure Boot dependencies enabled. UEFI firmware is built with
support of Secure Boot and AuthVars and Measured Boot is enabled. All firmware binaries are signed during
the build (U-Boot SPL, DT, OP-TEE, ATF, U-Boot, UEFI) and signature checks in U-Boot SPL are enforced.

Note: Secure firmware binary will not boot on clean device. To boot secure firmware binary, the RPMB key must
be already present in the eMMC controller. Otherwise, the initialization of OP-TEE and all dependencies will fail.
For more information, see Secure provisioning.

5.5.2.2 Non-Secure build

Non-secure build provides an easy way for testing and prototyping. In this setup, firmware binaries are not
signed and SPL signature checks are disabled. The Secure Boot, AuthVars, and Measured Boot are disabled.

This setup boots even without RPMB key provisioned (for example, a new device).

5.6 Secure Boot in UEFI and Windows
UEFI and Windows use their own chain of trust, which is composed of Platform Key (PK), Key Exchange Key
(KEK), forbidden signature database (dbx) and valid signature database (db). Those credentials are stored as
UEFI Secure variables. Those variables must be programmed at OEM site.

Important: Even when building with -t secured_efi, the boot chain is not fully secured until PK is written.
Until then, the UEFI and Windows are in setup mode where signatures are not checked.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
30 / 45

https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

Figure 13. UEFI Security

6 Secure provisioning

To achieve full system security with Secure Boot, perform the following steps in the correct order:

1. Prepare keys for HAB/AHAB.
2. Lock the device (burn SRKH and SEC_CONFIG fuses).
3. Write the RPMB key.
4. Boot the device and load UEFI keys.

There are many ways to generate HAB/AHAB keys. This guide presents a simple way using CST toolset. After
download, see User Guide in <cst_directory>/docs/CST_UG.pdf.

For detailed steps, follow device-specific guides:

Secure provisioning i.MX 8M

Secure provisioning i.MX 8QXP

Secure provisioning i.MX 93

6.1 Secure provisioning i.MX 8M
These steps are only applicable for i.MX 8M family. Use an appropriate guide for your platform, otherwise you
risk bricking your device.

6.1.1 Generate HAB keys

Generate the PKI using the keys/hab4_pki_tree.sh script. Use the following options to generate four p256
ECC SRK and four IMG and CSF keys.

cd <cst_directory>/keys
./hab4_pki_tree.sh
Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, p521: p256

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
31 / 45

https://www.nxp.com/webapp/sps/download/view_license.jsp?colCode=IMX_CST_TOOL

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

Enter PKI tree duration (years): 10
How many Super Root Keys should be generated? 4
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

The script populates the keysand crts folders within the CST root folder with private keys and appropriate
certificates. Set the KEY_ROOT environment variable to absolute path to the CST root folder (the folder
containing keysand crtssubfolders).

export KEY_ROOT=<cst_directory>

Build will automatically fetch keys and certificates from this path to sign firmware binaries.

6.1.1.1 Prepare SRK table

CST provides srktool to prepare the SRK table. SRKH values must be written to fuses.

cd <cst_directory>/crts
../linux64/bin/srktool -h 4 -t SRK_14table.bin -e SRK_fuse.bin -d sha256 -c
./SRK1_sha256_4096_65537_v3_ca_crt.pem,./SRK2_sha256_4096_65537_v3_ca_crt.pem,./
SRK3_sha256_4096_65537_v3_ca_crt.pem,./SRK4_sha256_4096_65537_v3_ca_crt.pem
-f 1

The program prints out a summary with results:

Number of certificates = 4
SRK table binary filename = SRK_14table.bin
SRK Fuse binary filename = SRK_fuse.bin
SRK Fuse binary dump:
SRK HASH[0] = 0x17B73726
SRK HASH[1] = 0x8E5CCC0E
SRK HASH[2] = 0xBC30A7BE
SRK HASH[3] = 0xE9B59C78
SRK HASH[4] = 0x2C682DAE
SRK HASH[5] = 0xDE5FE6C0
SRK HASH[6] = 0x3FF3DC81
SRK HASH[7] = 0x44B5B6FE

The SRK HASH[] array contains the SRKH value divided by four bytes. These are the values that are written to
SRK_HASH eFUSE in the next step.

For more information on how to use srktool, see chapter 3.1.3 Generating HAB4 SRK tables and Efuse Hash
in <cst_directory>/docs/CST_UG.pdf

6.1.2 Building secured binary

With HAB/AHAB keys prepared, you are able to build a signed secure binary. Build the firmware with -t
secured_efi or -t secured_uefi flag enabled, for example:

./buildme64.sh -b 8Mm -t all -t secured_efi -nu

The command above produces win10-iot-bsp/imx-windows-iot/BSP/firmware/MX8M_MINI_EVK/
signed_flash.bin, which is a signed binary image containing all boot components.

6.1.3 Locking the device for i.MX 8M

Warning: Steps described in this section are irreversible. Always make sure you know what you are doing, any
misconfiguration may lead to a bricked device.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
32 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

This guide uses U-Boot's command-line interface as a tool for burning eFUSES.

6.1.4 Burning SRK_HASH

1. Load a stock image to the SD card (non-secure build).
2. Enter U-Boot command-line interface (press escape on prompt during boot).
3. To find proper fuse indexes, see the fuse map for your device.
4. Burn SRK_HASH fuses with values from srktool- see SRK_fuse.bin. Use the output values of srktool or

use the following command: hexdump -e '/4 "0x"' -e '/4 "%X""\n"' < SRK_fuse.bin

Example for i.MX 8M Mini:

fuse prog -y 6 0 0x17B73726
fuse prog -y 6 1 0x8E5CCC0E
fuse prog -y 6 2 0xBC30A7BE
fuse prog -y 6 3 0xE9B59C78
fuse prog -y 7 0 0x2C682DAE
fuse prog -y 7 1 0xDE5FE6C0
fuse prog -y 7 2 0x3FF3DC81
fuse prog -y 7 3 0x44B5B6FE
reset

The device now contains an SRK Hash composed of your PKI keys and is able to verify firmware binary
signatures. Until locked, the device accepts unsigned binaries and binaries with bad signature.

Tip: Before locking the chip, boot a signed image from the step Building secured binary and check HAB events:

1. Prepare an SD card with secured binary.
2. Enter U-Boot command line.
3. Enter the hab_status command.

The command must output the following text, saying that all signatures are valid:

Secure boot enabled
HAB Configuration: 0xcc, HAB State: 0x99
No HAB Events Found!

6.1.5 Burning SEC_CONFIG

1. Load a stock image to the SD card (non-secure build).
2. Enter U-Boot command-line interface (press escape on prompt during boot).
3. To find proper fuse indexes, see the fuse map for your device.
4. Burn the SEC_CONFIG fuse to achieve the "closed" state.

Example for i.MX 8M Mini:

fuse prog 1 3 0x02000000
reset

The chip is now locked and accepts only firmware signed with appropriate keys.

6.2 Secure provisioning i.MX 8QXP
These steps are only applicable for i.MX 8QXP family. Use an appropriate guide for your platform otherwise you
risk bricking your device.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
33 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

6.2.1 Generate AHAB keys

This section presents a way of generating AHAB keys. They are only applicable for i.MX 8QXP and i.MX 93
SoC.

Start by running the keys/ahab_pki_tree.sh script, use the following options to generate four p384 ECC
SRK with CA flag disabled (SRK used for container signing).

cd <cst_directory>/keys
./ahab_pki_tree.sh
 Do you want to use an existing CA key (y/n)?: n
 Do you want to use Elliptic Curve Cryptography (y/n)?: y
 Enter length for elliptic curve to be used for PKI tree:
 Possible values p256, p384, p521: p384
 Enter the digest algorithm to use: sha384
 Enter PKI tree duration (years): 5
 Do you want the SRK certificates to have the CA flag set? (y/n)?: n

The script populates the keys and crts folders within the CST root folder with private keys and appropriate
certificates. Set the KEY_ROOT environment variable to absolute path to the CST root folder (the folder
containing keys and crts subfolders).

export KEY_ROOT=<cst_directory>

Build automatically fetches keys and certificates from this path to sign firmware binaries.

6.2.1.1 Prepare SRK table

CST provides srktool to prepare the SRK table. SRKH values that must be written to fuses.

cd <cst_directory>/crts
../linux64/bin/srktool -a -s sha384 -t SRKtable.bin -e SRKfuse.bin -f 1 -c
SRK1_sha384_secp384r1_v3_usr_crt.pem,SRK2_sha384_secp384r1_v3_usr_crt.pem,SRK3_sha384_secp384r1_v3_usr_crt.pem,SRK4_sha384_secp384r1_v3_usr_crt.pem

The program prints a summary with results:

Number of certificates = 4
SRK table binary filename = SRKtable.bin
SRK Fuse binary filename = SRKfuse.bin
SRK Fuse binary dump:
SRK HASH[0] = 0x336D1608
SRK HASH[1] = 0xDFCC2D5E
SRK HASH[2] = 0xB582FA14
SRK HASH[3] = 0xDA325A05
SRK HASH[4] = 0xEAB66EDE
SRK HASH[5] = 0xB64F7A87
SRK HASH[6] = 0xC9CAD3BF
SRK HASH[7] = 0x479DC210
SRK HASH[8] = 0x79DA681C
SRK HASH[9] = 0x8C55E093
SRK HASH[10] = 0x3CF9CF19
SRK HASH[11] = 0xC7B6DDF0
SRK HASH[12] = 0xE0C3363E
SRK HASH[13] = 0x73D8A971
SRK HASH[14] = 0x240A0EEE
SRK HASH[15] = 0xE46CE431

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
34 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

The SRK HASH[] array contains the SRKH value divided by four bytes. These are the values that will be written
to SRK_HASH eFUSE in the next step (applicable only for i.MX 8QXP)

For more information on how to use srktool, see chapter 3.2.3 Generating AHAB SRK tables and Efuse Hash
in <cst_directory>/docs/CST_UG.pdf

6.2.2 Building secured binary

With HAB/AHAB keys prepared, you are able to build a signed secure binary. Build the firmware with -t
secured_efi or -t secured_uefi flag enabled, for example:

./buildme64.sh -b 8Mm -t all -t secured_efi -nu

The command above produces win10-iot-bsp/imx-windows-iot/BSP/firmware/MX8M_MINI_EVK/
signed_flash.bin, which is a signed binary image containing all boot components.

6.2.3 Locking the device (i.MX 8QXP)

Warning: CAUTION: Steps described in this section are irreversible. Always make sure you know what you are
doing, any misconfiguration may lead to a bricked device.

The following steps are only applicable for i.MX 8QXP and i.MX 93 SoC. For i.MX 8M, see section Locking the
device (i.MX 8M) above.

This guide uses U-Boot's command-line interface as a tool for burning eFUSES.

6.2.3.1 Burning SRK_HASH

1. Load a stock image to the SD card.
2. Enter U-Boot command-line interface (press escape on prompt during boot).
3. To find proper fuse indexes, see the fuse map for your device.
4. Burn SRK_HASH fuses with values from srktool - see SRK_fuse.bin. Use the output values of srktool or

use the following command: hexdump -e '/4 "0x"' -e '/4 "%X""\n"' < SRKfuse.bin

For i.MX 8QXP only
Dump SRKH to console
hexdump -e '/4 "0x"' -e '/4 "%X""\n"' < SRKfuse.bin
0x336D1608
0xDFCC2D5E
0xB582FA14
0xDA325A05
0xEAB66EDE
0xB64F7A87
0xC9CAD3BF
0x479DC210
0x79DA681C
0x8C55E093
0x3CF9CF19
0xC7B6DDF0
0xE0C3363E
0x73D8A971
0x240A0EEE
0xE46CE431

For i.MX 8QXP only
Write values to fuses via UBoot CLI
fuse prog 0 730 0x336d1608

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
35 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

fuse prog 0 731 0xdfcc2d5e
fuse prog 0 732 0xb582fa14
fuse prog 0 733 0xda325a05
fuse prog 0 734 0xeab66ede
fuse prog 0 735 0xb64f7a87
fuse prog 0 736 0xc9cad3bf
fuse prog 0 737 0x479dc210
fuse prog 0 738 0x79da681c
fuse prog 0 739 0x8c55e093
fuse prog 0 740 0x3cf9cf19
fuse prog 0 741 0xc7b6ddf0
fuse prog 0 742 0xe0c3363e
fuse prog 0 743 0x73d8a971
fuse prog 0 744 0x240a0eee
fuse prog 0 745 0xe46ce431
reset

The device now contains an SRK Hash composed of your PKI keys and is able to verify firmware binary
signatures. Until locked, the device accepts unsigned binaries and binaries with bad signature.

Tip: Before locking the chip, boot a signed image from the step Building secured binary and check AHAB
events:

1. Prepare the SD card with secured binary.
2. Enter U-Boot command line.
3. Enter the ahab_status command.

The command must output the following text, indicating that all signatures are valid:

=> ahab_status
Lifecycle: 0x0020, NXP closed
No SECO Events Found!

In case of any error, U-Boot prints out and parse SECO events. Example for a missing signature:

=> ahab_status
Lifecycle: 0x0020, NXP closed
SECO Event[0] = 0x0087EE00
 CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
 IND = AHAB_NO_AUTHENTICATION_IND (0xEE)

6.2.3.2 Closing the chip

1. Load a stock image to the SD card (non-secure build).
2. Enter U-Boot command-line interface (press escape on prompt during boot).
3. Close the chip and reboot.

Example:

=> ahab_close
=> reset

The chip is now locked and accepts only firmware signed with appropriate keys. You can check that via the
ahab_status command, the lifecycle must be 0x80 OEM closed.

=> ahab_status

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
36 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

Lifecycle: `0x80, OEM closed`

6.3 Secure provisioning i.MX 93
These steps are only applicable for i.MX 93 family. Use an appropriate guide for your platform otherwise you
risk bricking your device.

6.3.1 Generate AHAB keys

This section presents a way of generating AHAB keys. They are only applicable for i.MX 8QXP and i.MX 93
SoC.

Start by running the keys/ahab_pki_tree.sh script, use the following options to generate four p384 ECC
SRK with CA flag disabled (SRK used for container signing).

cd <cst_directory>/keys
./ahab_pki_tree.sh
 Do you want to use an existing CA key (y/n)?: n
 Do you want to use Elliptic Curve Cryptography (y/n)?: y
 Enter length for elliptic curve to be used for PKI tree:
 Possible values p256, p384, p521: p384
 Enter the digest algorithm to use: sha384
 Enter PKI tree duration (years): 5
 Do you want the SRK certificates to have the CA flag set? (y/n)?: n

The script populates the keys and crts folders within the CST root folder with private keys and appropriate
certificates. Set the KEY_ROOT environment variable to absolute path to the CST root folder (the folder
containing keys and crts subfolders).

export KEY_ROOT=<cst_directory>

Build automatically fetches keys and certificates from this path to sign firmware binaries.

6.3.1.1 Prepare SRK table

CST provides srktool to prepare the SRK table from which SRKH value will be created.

cd <cst_directory>/crts
../linux64/bin/srktool -a -s sha384 -t SRKtable.bin -e SRKfuse.bin -f 1 -c
SRK1_sha384_secp384r1_v3_usr_crt.pem,SRK2_sha384_secp384r1_v3_usr_crt.pem,
SRK3_sha384_secp384r1_v3_usr_crt.pem,SRK4_sha384_secp384r1_v3_usr_crt.pem

The program prints a summary with results:

Number of certificates = 4
SRK table binary filename = SRKtable.bin
SRK Fuse binary filename = SRKfuse.bin
SRK Fuse binary dump:
SRK HASH[0] = 0x336D1608
SRK HASH[1] = 0xDFCC2D5E
SRK HASH[2] = 0xB582FA14
SRK HASH[3] = 0xDA325A05
SRK HASH[4] = 0xEAB66EDE
SRK HASH[5] = 0xB64F7A87
SRK HASH[6] = 0xC9CAD3BF
SRK HASH[7] = 0x479DC210

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
37 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

SRK HASH[8] = 0x79DA681C
SRK HASH[9] = 0x8C55E093
SRK HASH[10] = 0x3CF9CF19
SRK HASH[11] = 0xC7B6DDF0
SRK HASH[12] = 0xE0C3363E
SRK HASH[13] = 0x73D8A971
SRK HASH[14] = 0x240A0EEE
SRK HASH[15] = 0xE46CE431

The SRK HASH[] is SHA-512 hash of the SRK table and is valid only for i.MX 8QXP family (i.MX 93 needs
SHA-256 format). SRKH for i.MX 93 will be prepared later.

For more information on how to use srktool, see chapter 3.2.3 Generating AHAB SRK tables and Efuse Hash
in <cst_directory>/docs/CST_UG.pdf

6.3.2 Building secured binary

With HAB/AHAB keys prepared, you are able to build a signed secure binary. Build the firmware with -t
secured_efi or -t secured_uefi flag enabled, for example:

./buildme64.sh -b 8Mm -t all -t secured_efi -nu

The command above produces win10-iot-bsp/imx-windows-iot/BSP/firmware/MX8M_MINI_EVK/
signed_flash.bin, which is a signed binary image containing all boot components.

6.3.3 Locking the device

Warning: CAUTION: Steps described in this section are irreversible. Always make sure you know what you are
doing, any misconfiguration may lead to a bricked device.

The following steps are only applicable for i.MX 8QXP and i.MX 93 SoC. For i.MX 8M, see section Locking the
device (i.MX 8M) above.

Note: The CST tool currently does not support i.MX 93 SRKH format. It is therefore necessary to create the
hash manually, follow Preparing SRKH (i.MX 93).

This guide uses U-Boot's command-line interface as a tool for burning eFUSES.

6.3.3.1 Preparing SRKH

1. Enter the folder containing your SRKtable.bin
2. Generate SRKH using the following command: openssl dgst -sha256 -binary SRKtable.bin >

SRKfuse93.bin
3. Print contents of SRKH in the format used for writing to fuses: hexdump -e '/4 "0x"' -e '/4

"%X""\n"' < SRKfuse93.bin

6.3.3.2 Burning SRK_HASH

1. Load a stock image to the SD card.
2. Enter U-Boot command-line interface (press escape on prompt during boot).
3. To find proper fuse indexes, see the fuse map for your device.
4. i.MX 8QXP: Burn SRK_HASH fuses with values from srktool - see SRK_fuse.bin. Use the output

values of srktool or use the following command: hexdump -e '/4 "0x"' -e '/4 "%X""\n"' <
SRKfuse.bin

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
38 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

5. i.MX 93: Burn SRK_HASH fuses with values from step 4 of "Preparing SRKH (imx93 only)" above.

For i.MX93 only
Dump SRKH to console
hexdump -e '/4 "0x"' -e '/4 "%X""\n"' < SRKfuse93.bin
0xA3B1A4B0
0x2AAEEEC5
0xCFC0D333
0xCC440EFC
0x73F4D517
0xC8D3F8A0
0xF8893889
0x42CF6504

For i.MX93 only
Write values to fuses via UBoot CLI
fuse prog -y 16 0 0xA3B1A4B0
fuse prog -y 16 1 0x2AAEEEC5
fuse prog -y 16 2 0xCFC0D333
fuse prog -y 16 3 0xCC440EFC
fuse prog -y 16 4 0x73F4D517
fuse prog -y 16 5 0xC8D3F8A0
fuse prog -y 16 6 0xF8893889
fuse prog -y 16 7 0x42CF6504
reset

The device now contains an SRK Hash composed of your PKI keys and is able to verify firmware binary
signatures. Until locked, the device accepts unsigned binaries and binaries with bad signature.

Tip: Before locking the chip, boot a signed image from the step Building secured binary and check AHAB
events:

1. Prepare the SD card with secured binary.
2. Enter U-Boot command line.
3. Enter the ahab_status command.

The command must output the following text, indicating that all signatures are valid:

=> ahab_status
Lifecycle: 0x0020, NXP closed

No SECO Events Found!

In case of any error, U-Boot prints and parses SECO events. Example for a missing signature:

=> ahab_status
Lifecycle: 0x0020, NXP closed

SECO Event[0] = 0x0087EE00
 CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
 IND = AHAB_NO_AUTHENTICATION_IND (0xEE)

6.3.3.3 Closing the chip

1. Load a stock image to the SD card (non-secure build).
2. Enter U-Boot command-line interface (press escape on prompt during boot).
3. Close the chip and reboot.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
39 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

Example:

=> ahab_close
=> reset

The chip is now locked and accepts only firmware signed with appropriate keys. You can check that via the
ahab_status command, the lifecycle must be 0x80 OEM closed.

=> ahab_status
Lifecycle: `0x80, OEM closed`

6.4 RPMB, UEFI

6.4.1 RPMB

The following steps for loading RPMB key are only applicable with a device in the "closed" state.

Used OP-TEE implementation allows the use of Hardware-Unique key (HUK) that is accessible only from
software running in secure world and therefore unreachable from normal OS. This principle provides enhanced
security since the key does not need to be stored in memory, it is generated on demand.

OP-TEE itself is able to burn the key, when built with CFG_RPMB_WRITE_KEY=y. The following steps guide you
on how to prepare a "provisioning" build which contains OP-TEE with RPMB key provisioning enabled. OP-TEE
uses HUK as RPMB key by default.

1. Rebuild the firmware using ./buildme64.sh -b <board-type> -t all -t secured_efi -ao
rpmb_write_key -ao no_rpmb_test_key and store the signed_firmware.bin separately. This
firmware must be used only for RPMB provisioning (at secured place).

2. Burn the provisioning signed_firmware.bin to the SD card and boot it.

OP-TEE automatically burns the RPMB key to eMMC controller during first boot. The RPMB is now fully
provisioned and the boot process should now be unblocked and proceed to UEFI and Windows. You can now
use your production signed_firmware.bin. The boot chain is now secured up to UEFI firmware.

6.4.2 UEFI

Even with Secure Boot settings enabled, the UEFI firmware and Windows still reside in setup mode, where
signatures are not checked. The UEFI automatically transfers to user mode with Secure Boot enabled when PK
is written and the OS is restarted. For more details, see Windows Secure Boot Key Creation and Management
Guidance.

6.5 Troubleshooting

6.5.1 Firmware built as secure fails to boot or hangs in UEFI

There may be a problem with RPMB, either the RPMB key was not written yet, or a different key is used.

Figure 14. RPMB key missing

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
40 / 45

https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance?view=windows-11
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance?view=windows-11

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

6.5.2 Resolution

Rebuild OP-TEE with debug prints enabled:

make PLATFORM=imx PLATFORM_FLAVOR=$optee_plat \
 CFG_TEE_CORE_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=4 \
 CFG_RPMB_FS=y CFG_REE_FS=n \
 CFG_CORE_HEAP_SIZE=131072

Boot the device with new OP-TEE, review boot messages. Following messages are signalizing that there is a
missing RPMB key:

Figure 15. RMPB no key log

Follow RPMB secure provisioning chapter.

7 Revision history

Revision number Date Substantive changes

W0.9.0 1/2022 Private preview release for i.MX8M
platform.

W0.9.1 3/2022 Public preview release for i.MX8M
platform.

W1.0.0 4/2022 Public release for i.MX8M and i.MX8M
Mini platforms.

W1.1.0 6/2022 Public release for i.MX8M Nano and
i.MX8M Plus platforms.

W1.2.0 9/2022 Section 1.7 is removed.

W1.2.1 10/2022 Updated for version 1.2.1

W1.3.0 12/2022 Updated for version 1.3.0

W1.4.0 3/2023 Updated for version 1.4.0

W1.4.1 7/2023 Minor technical changes.

8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
41 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
42 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

9 Legal information

9.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

9.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

9.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
43 / 45

mailto:PSIRT@nxp.com

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

Contents
1 Overview .. 2
1.1 Audience ..2
1.2 Conventions ... 2
1.3 How to start ... 2
1.4 Using Prebuilt Binaries to create an image2
1.5 Using Source Files to create image2
1.6 References ...2
2 Building Windows 10 IoT for NXP i.MX

Processors ...3
2.1 Building the drivers in the BSP3
2.1.1 Required tools ... 3
2.1.1.1 Visual Studio 2019 .. 3
2.1.1.2 Windows Kits from Windows 10, version

2004 (10.0.19041.685) 3
2.1.2 Obtaining sources for building the drivers4
2.1.2.1 Preparing source for building the drivers 4
2.1.3 Structure of Windows driver sources 4
2.1.4 One-time environment setup 4
2.1.5 Building the drivers ..4
2.2 Building ARM64 Firmware5
2.2.1 Required tools ... 5
2.2.2 Obtaining sources for building ARM64

Firmware ..5
2.2.2.1 Preparing sources for building firmware 5
2.2.3 Setting up your build environment 6
2.2.4 Building the firmware ...8
2.2.5 Common causes of build errors10
3 Display/GPU driver ..10
3.1 Display interface selection10
3.2 Display resolution and timing parameters10
3.2.1 HDMI display interface 11
3.2.2 LVDS, MIPI-DSI and Parallel display

interfaces ... 11
3.3 Display specific parameters11
3.3.1 LVDS display interface 11
3.3.2 MIPI-DSI display interface 11
3.4 Display support in firmware 11
3.4.1 Firmware display interface selection12
3.4.2 Firmware display resolution12
4 Power management .. 12
4.1 Power management user scenarios 12
4.2 Device power management DPM on i.MX

8/9 platforms ..13
4.3 Processor power management PPM on

i.MX 8/9 platforms ... 13
4.4 Power management tools and debugging 14
4.4.1 powercfg /a .. 14
4.4.2 powercfg /sleepstudy 15
4.4.3 powercfg /energy ... 15
4.4.4 WinDbg !fxdevice ... 15
5 Secure boot ... 17
5.1 Basic concepts .. 17
5.2 Secure boot on i.MX 8M17
5.2.1 System boot on i.MX 8M 17
5.2.2 System boot components 17
5.2.2.1 U-Boot SPL ..18

5.2.2.2 Device Tree Blob ...18
5.2.2.3 OP-TEE ..18
5.2.2.4 ATF .. 19
5.2.2.5 U-Boot proper .. 19
5.2.2.6 UEFI ...19
5.2.3 Ensuring firmware security 19
5.2.3.1 Security configuration 19
5.2.3.2 Bootloader verification chain19
5.2.3.3 HAB chain of trust ... 20
5.2.3.4 i.MX firmware image verification20
5.3 Secure boot on i.MX 8QXP 21
5.3.1 System boot on i.MX 8QXP21
5.3.2 i.MX boot containers ..22
5.3.3 System boot components 22
5.3.3.1 U-Boot SPL ..23
5.3.3.2 Device Tree Blob ...23
5.3.3.3 OP-TEE ..23
5.3.3.4 ATF .. 24
5.3.3.5 U-Boot proper .. 24
5.3.3.6 UEFI ...24
5.3.4 Ensuring firmware security 24
5.3.4.1 Security configuration 24
5.3.4.2 Bootloader verification chain24
5.3.4.3 AHAB chain of trust ...25
5.3.4.4 i.MX firmware image verification25
5.4 Secure boot on i.MX 9326
5.4.1 System boot on i.MX 93 26
5.4.2 i.MX Boot Containers26
5.4.3 System boot components 26
5.4.3.1 U-Boot SPL ..27
5.4.3.2 Device Tree Blob ...27
5.4.3.3 OP-TEE ..27
5.4.3.4 ATF .. 27
5.4.3.5 U-Boot proper .. 28
5.4.3.6 UEFI ...28
5.4.4 Ensuring firmware security 28
5.4.4.1 Security configuration 28
5.4.4.2 Bootloader verification chain28
5.4.4.3 AHAB chain of trust ...29
5.4.4.4 i.MX firmware image verification29
5.5 Secure storage .. 29
5.5.1 RPMB ...30
5.5.2 Secure vs. non-secure build30
5.5.2.1 Secure build ...30
5.5.2.2 Non-Secure build ...30
5.6 Secure Boot in UEFI and Windows 30
6 Secure provisioning ..31
6.1 Secure provisioning i.MX 8M31
6.1.1 Generate HAB keys ...31
6.1.1.1 Prepare SRK table .. 32
6.1.2 Building secured binary 32
6.1.3 Locking the device for i.MX 8M 32
6.1.4 Burning SRK_HASH .. 33
6.1.5 Burning SEC_CONFIG 33
6.2 Secure provisioning i.MX 8QXP 33
6.2.1 Generate AHAB keys 34

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023
44 / 45

NXP Semiconductors IMXWGU
i.MX Windows 10 IoT User’s Guide

6.2.1.1 Prepare SRK table .. 34
6.2.2 Building secured binary 35
6.2.3 Locking the device (i.MX 8QXP)35
6.2.3.1 Burning SRK_HASH .. 35
6.2.3.2 Closing the chip ...36
6.3 Secure provisioning i.MX 9337
6.3.1 Generate AHAB keys 37
6.3.1.1 Prepare SRK table .. 37
6.3.2 Building secured binary 38
6.3.3 Locking the device ...38
6.3.3.1 Preparing SRKH .. 38
6.3.3.2 Burning SRK_HASH .. 38
6.3.3.3 Closing the chip ...39
6.4 RPMB, UEFI .. 40
6.4.1 RPMB ...40
6.4.2 UEFI ...40
6.5 Troubleshooting ... 40
6.5.1 Firmware built as secure fails to boot or

hangs in UEFI ..40
6.5.2 Resolution ..41
7 Revision history .. 41
8 Note about the source code in the

document ... 41
9 Legal information ..43

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 31 July 2023
Document identifier: IMXWGU

	1 Overview
	1.1 Audience
	1.2 Conventions
	1.3 How to start
	1.4 Using Prebuilt Binaries to create an image
	1.5 Using Source Files to create image
	1.6 References

	2 Building Windows 10 IoT for NXP i.MX Processors
	2.1 Building the drivers in the BSP
	2.1.1 Required tools
	2.1.1.1 Visual Studio 2019
	2.1.1.2 Windows Kits from Windows 10, version 2004 (10.0.19041.685)

	2.1.2 Obtaining sources for building the drivers
	2.1.2.1 Preparing source for building the drivers

	2.1.3 Structure of Windows driver sources
	2.1.4 One-time environment setup
	2.1.5 Building the drivers

	2.2 Building ARM64 Firmware
	2.2.1 Required tools
	2.2.2 Obtaining sources for building ARM64 Firmware
	2.2.2.1 Preparing sources for building firmware

	2.2.3 Setting up your build environment
	2.2.4 Building the firmware
	2.2.5 Common causes of build errors

	3 Display/GPU driver
	3.1 Display interface selection
	3.2 Display resolution and timing parameters
	3.2.1 HDMI display interface
	3.2.2 LVDS, MIPI-DSI and Parallel display interfaces

	3.3 Display specific parameters
	3.3.1 LVDS display interface
	3.3.2 MIPI-DSI display interface

	3.4 Display support in firmware
	3.4.1 Firmware display interface selection
	3.4.2 Firmware display resolution

	4 Power management
	4.1 Power management user scenarios
	4.2 Device power management DPM on i.MX 8/9 platforms
	4.3 Processor power management PPM on i.MX 8/9 platforms
	4.4 Power management tools and debugging
	4.4.1 powercfg /a
	4.4.2 powercfg /sleepstudy
	4.4.3 powercfg /energy
	4.4.4 WinDbg !fxdevice

	5 Secure boot
	5.1 Basic concepts
	5.2 Secure boot on i.MX 8M
	5.2.1 System boot on i.MX 8M
	5.2.2 System boot components
	5.2.2.1 U-Boot SPL
	5.2.2.2 Device Tree Blob
	5.2.2.3 OP-TEE
	5.2.2.4 ATF
	5.2.2.5 U-Boot proper
	5.2.2.6 UEFI

	5.2.3 Ensuring firmware security
	5.2.3.1 Security configuration
	5.2.3.1.1 Open/Closed
	5.2.3.1.2 SRKH

	5.2.3.2 Bootloader verification chain
	5.2.3.3 HAB chain of trust
	5.2.3.4 i.MX firmware image verification

	5.3 Secure boot on i.MX 8QXP
	5.3.1 System boot on i.MX 8QXP
	5.3.2 i.MX boot containers
	5.3.3 System boot components
	5.3.3.1 U-Boot SPL
	5.3.3.2 Device Tree Blob
	5.3.3.3 OP-TEE
	5.3.3.4 ATF
	5.3.3.5 U-Boot proper
	5.3.3.6 UEFI

	5.3.4 Ensuring firmware security
	5.3.4.1 Security configuration
	5.3.4.1.1 Open/Closed
	5.3.4.1.2 SRKH

	5.3.4.2 Bootloader verification chain
	5.3.4.3 AHAB chain of trust
	5.3.4.4 i.MX firmware image verification

	5.4 Secure boot on i.MX 93
	5.4.1 System boot on i.MX 93
	5.4.2 i.MX Boot Containers
	5.4.3 System boot components
	5.4.3.1 U-Boot SPL
	5.4.3.2 Device Tree Blob
	5.4.3.3 OP-TEE
	5.4.3.4 ATF
	5.4.3.5 U-Boot proper
	5.4.3.6 UEFI

	5.4.4 Ensuring firmware security
	5.4.4.1 Security configuration
	5.4.4.1.1 Open/Closed
	5.4.4.1.2 SRKH

	5.4.4.2 Bootloader verification chain
	5.4.4.3 AHAB chain of trust
	5.4.4.4 i.MX firmware image verification

	5.5 Secure storage
	5.5.1 RPMB
	5.5.2 Secure vs. non-secure build
	5.5.2.1 Secure build
	5.5.2.2 Non-Secure build

	5.6 Secure Boot in UEFI and Windows

	6 Secure provisioning
	6.1 Secure provisioning i.MX 8M
	6.1.1 Generate HAB keys
	6.1.1.1 Prepare SRK table

	6.1.2 Building secured binary
	6.1.3 Locking the device for i.MX 8M
	6.1.4 Burning SRK_HASH
	6.1.5 Burning SEC_CONFIG

	6.2 Secure provisioning i.MX 8QXP
	6.2.1 Generate AHAB keys
	6.2.1.1 Prepare SRK table

	6.2.2 Building secured binary
	6.2.3 Locking the device (i.MX 8QXP)
	6.2.3.1 Burning SRK_HASH
	6.2.3.2 Closing the chip

	6.3 Secure provisioning i.MX 93
	6.3.1 Generate AHAB keys
	6.3.1.1 Prepare SRK table

	6.3.2 Building secured binary
	6.3.3 Locking the device
	6.3.3.1 Preparing SRKH
	6.3.3.2 Burning SRK_HASH
	6.3.3.3 Closing the chip

	6.4 RPMB, UEFI
	6.4.1 RPMB
	6.4.2 UEFI

	6.5 Troubleshooting
	6.5.1 Firmware built as secure fails to boot or hangs in UEFI
	6.5.2 Resolution

	7 Revision history
	8 Note about the source code in the document
	9 Legal information
	Contents

