IMXWGU

i.MX Windows 10 loT User’s Guide
Rev. 1.4.1 — 31 July 2023

User guide

Document Information

Information Content
Keywords i.MX, Windows 10 loT
Abstract

i.MX Windows 10 IoT User’s Guide describes the process of building and installing Windows 10

loT OS BSP (Board Support Package) for the i.MX platform. It also covers special i.MX features
and how to use them.

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

1 Overview

The User’s Guide describes the process of building and installing Windows 10 loT OS BSP (Board Support
Package) for the i.MX platform. It also covers special i.MX features and how to use them. The guide lists the
steps to run the i.MX platform, including board DIP switch settings (see i.MX Windows 10 loT Quick Start Guide,
IMXWQSG) and instructions on the usage and configuration of the U-Boot bootloader. Features covered in this
guide may be specific to particular boards or SoCs. For the capabilities of a particular board or SoC, see i.MX
Windows 10 loT Release Notes (IMXWNR).

1.1 Audience

This chapter is intended for software, hardware, and system engineers planning to use the product and anyone
who wants to know more about the product.

1.2 Conventions

This chapter uses the following conventions:

» Courier New font: This font is used to identify commands, explicit command parameters, code examples,
expressions, data types, and directives.

1.3 How to start

The i.MX Windows 10 loT BSP is a collection of binary files, source code, and support files you can use to
create a bootable Windows 10 loT image for i.MX development systems.

1.4 Using Prebuilt Binaries to create an image

The Prebuilt Binary package contains prebuilt release-signed binaries of the drivers and firmware required for
Windows 10 loT Enterprise to run on the NXP i.MX development boards. It is the fastest way to get started
running on physical hardware.

If you have downloaded the BSP with the Prebuilt Binaries, see i.MX Windows 10 loT Quick Start Guide. It will
guide you through creating a Windows loT image that includes the BSP binaries and deploying it to an i.MX
development board.

1.5 Using Source Files to create image

The BSP Source Files package contains the source files of the drivers and firmware required for Windows 10
loT Enterprise to run on NXP i.MX development boards. It is intended to be used as a reference for partners
that have created their own hardware designs that use i.MX 8/9 families of SoCs and must customize the
drivers and firmware for their own design.

If you have downloaded an archive with BSP sources, first build Windows drivers and boot firmware from the
source before you can create a Windows loT image and deploy it to your device. Start from Building Windows
10 loT for NXP i.MX Processors that will guide you through the process of building Windows drivers and boot
firmware from the source. Once you have successfully built the driver and firmware binaries, you can go back
to the chapter in i.MX Windows 10 loT Quick Start Guide that describes how to Deploy Windows IoT image to a
development board.

1.6 References

For more information about Windows 10 loT Enterprise, see Microsoft online documentation.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

2/45

http://windowsondevices.com

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

The following quick start guides available on the NXP website contain basic information on the board and
setting it up:

e i.MX 8M Quad Evaluation Kit Quick Start Guide

* i.MX 8M Mini Evaluation Kit Quick Start Guide

* i.MX 8M Nano Evaluation Kit Quick Start Guide

i.MX 8M Plus Evaluation Kit Quick Start Guide

¢ i.MX 8QuadXPlus Multisensory Enablement Kit

* i.MX 93 Evaluation Kit

Documentation is available online at nxp.com

2 Building Windows 10 loT for NXP i.MX Processors

2.1 Building the drivers in the BSP

2.1.1 Required tools

The following tools are required to build the drivers:
* git

* git-Ifs

* software to unpack zip, gzip, and tar archives

¢ Visual Studio 2019
» Windows Kits (ADK/SDK/WDK)

2.1.1.1 Visual Studio 2019

» Make sure that you install Visual Studio 2019 before the WDKso that the WDK can install a required plugin.
* Download Visual Studio 2019.
* During installation, select Desktop development with C++.

» During installation, select the following in the Individual components tab. If these options are not available, try
updating VS2019 to the Latest release:

— MSVC v142 - VS 2019 C++ ARM64 Spectre-mitigated libs (16.11)
— MSVC v142 - VS 2019 C++ ARM64 build tools (16.11)
— Windows 10 SDK (10.0.19041.0)

2.1.1.2 Windows Kits from Windows 10, version 2004 (10.0.19041.685)

Warning: Make sure that any previous versions of the ADK and WDK have been uninstalled!

* Install ADK 2004
— You can also install Windows PE add-on for ADK as it is needed for preparing installation of an SD card
later.
* Install WDK 2004
— Scroll down and select Windows 10, version 2004.
— Make sure that you allow the Visual Studio Extension to install after the WDK install is completed.
* If the WDK installer says it could not find the correct SDK version, install SDK 2004
— Scroll down and select Windows 10 SDK, version 2004 (10.0.19041.0).
* After installing all Windows Kits, restart the computer and check if you have the correct versions installed in
the Control panel.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

3/45

https://www.nxp.com/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-applications-processor:MCIMX8M-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-plus-applications-processor:8MPLUSLPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadxplus-multisensory-enablement-kit-mek:MCIMX8QXP-CPU
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK
http://www.nxp.com/
https://docs.microsoft.com/en-us/windows-hardware/drivers/other-wdk-downloads#step-1-install-visual-studio
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://docs.microsoft.com/en-us/windows-hardware/drivers/other-wdk-downloads
https://developer.microsoft.com/en-us/windows/downloads/sdk-archive/

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

2.1.2 Obtaining sources for building the drivers

For building the drivers, use the NXP i.MX BSP sources package provided as W<os version>-imx-
windows-bsp-<build date>.zip. The package contains sources for both the boot firmware and Windows
drivers.

2.1.2.1 Preparing source for building the drivers

To prepare sources for building drivers, follow these steps:

1. Create an empty directory, further referred as <BSP_DIR>, and extract the downloaded archive there. The
path to this directory must be as short as possible, containing only letters and underscores. Braces and
other special characters can cause build errors.

2. Populate the directory by running Init.bat.

2.1.3 Structure of Windows driver sources

The imx-windows-iot- sources of Windows drivers have the following structure:

BSP Contains boot firmware, driver binaries (generated at build time), and
scripts needed to deploy BSP to the development board.

build . . . L
Contains build scripts and the VS2019 solution file.

components Contains third-party binaries and utility projects.

driver Contains driver sources.

hals

Contains hal extension sources.

2.1.4 One-time environment setup

To generate driver packages on a development machine, install test certificates.

Open an Administrator Command Prompt.

Navigate to your BSP, the folder imx-windows-iot\build\tools.
Launch StartBuildEnv.bat.

Run setupCertificate.bat toinstall the test certificates.

The HAL Extensions must be signed by certificates provided by Microsoft. The required certificates that are
included in WDK have expired. Download the Windows 11, version 22H2 EWDK and use the “Windows
OEM HAL Extension Test Cert 2017 \(TEST ONLY\)” and “Windows OEM Intermediate 2017 \(TEST ONLY
\)” found in the EWDK. iso file or contact Microsoft for help.

aorODN -

Some tools may not work correctly if LongPath is not enabled, therefore run the following command in the
console:

Execute reg add HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /v
LongPathsEnabled /t REG _DWORD /d 1 command.

2.1.5 Building the drivers

1. Openthe solution imx-windows-iot\build\solution\iMXPlatform\iMxPlatform.sln
located in the path where you have extracted BSP archive.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

4/45

https://learn.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

2. Choose the Debug or Release build type.
If the secure boot feature is enabled, it is required to use signed drivers.
4. To build, press Ctrl-Shift-B or choose Build -> Build Solution from the menu. It compiles all driver packages;
then imx-windows-iot\BSP\IoTEntOnNXP\drivers for deployment.
5. The updated drivers could now be injected into the installation image or manually installed to the running
development board.
¢ To manually install drivers, copy them to the development board via USB drive, network share, scp,
remote desktop. The drivers can be installed either by clicking install in right-click menu of the ‘inf’ file
or by the devcon command-line utility.
* To debug, use the .kdfiles of WinDBG.
* To initiate the driver reload, use devcon or reset the board.
* To create an installation SD card, see i.MX Windows 10 IoT Quick Start Guide.

w

2.2 Building ARM64 Firmware

This chapter describes the process of setting up a build environment to build the latest firmware and update the
firmware on the development board.

2.2.1 Required tools

* git

* git-Ifs

* software to unpack zip, gzip, and tar archives

2.2.2 Obtaining sources for building ARM64 Firmware

For building the ARM64 Firmware, you need:

1. The NXP i.MX BSP sources package available at www.nxp.com.. The package contains sources for both
the boot firmware and Windows drivers.

2. The i.MX firmware and NXP Code Signing Tool (CST). Obtaining is described in Preparing sources for
building firmware.

2.2.2.1 Preparing sources for building firmware

1. Create an empty directory, further referred as <BSP_DIR>, and extract the downloaded archive there.

unzip W<os version>-imx-windows-bsp-<build date>.zip -d winlO-iot-bsp

The command creates the win10-iot-bsp directory containing .git repository with the BSP release.
Note: The path to this directory must be as short as possible, containing only letters and underscores.
Braces and other special characters can cause build errors.

2. Populate the directory by running Init. sh.
Note: Script checks out sources from the repository by git reset --hard. The Init.sh shall check
out submodules that are required to build the i.MX boot firmware by git submodule update --init
--recursive. During prerelease testing, the Init . sh executed inside Ubuntu environment has run into
“server certificate verification failed. CAfile: /etc/ssl/certs/ca-certificates.crt CRLfile:
none” error. The problem could be solved by installing apt-transport-https ca-certificates and
certificate update.

sudo apt update ; sudo apt-get install apt-transport-https
ca-certificates -y ; sudo
\update-ca-certificates

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

5/45

https://www.nxp.com/docs/en/quick-reference-guide/IMXWQSG.pdf
http://www.nxp.com/

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

3. Extract the Code Signing Tool inside the bsp repository and rename the newly created folder to cst to get
the <BSP DIR>/cst folder:

tar xf cst-3.1.0.tgz
mv release cst
rm cst-3.1.0.tgz

4. Extract the i.MX firmware from the NXP website and place it in firmware-imx.

chmod +x firmware-imx-8.18.bin
./firmware-imx-8.18.bin

mv firmware-imx-8.18 firmware-imx
rm firmware-imx-8.18.bin

Note: It extracts the tool inside the bsp repository and renames the newly created folder to firmware-imx
to get <BSP DIR>/firmware-imx/firmware/ ddr/ in directory tree.

5. Your directory structure must contain the following folders.

- <BSP_DIR>
|- cst (manually downloaded)

|- firmware-imx (manually downloaded)
| - Documentation

| - MSRSec

|- RIoT

|- imx-atf

|- imx-mkimage

|- imx-optee-os

| - imx-windows-iot

|- mu platform nxp

| - patches

| - uboot-imx

2.2.3 Setting up your build environment

1. Start Linux environment such as:
* Dedicated Linux system
e Linux Virtual Machine
* Windows Subsystem for Linux (WSL setup instructions)
Note: W-imx-windows-bsp-.zip was validated with Ubuntu 20.04 in WSL and also in standalone
Ubuntu.
2. Obtain and prepare the BSP sources by following all steps described in Obtaining BSP sources. Use
Init.sh, not Init.bat to populate the repository and all submodules.
3. Install or update build tools. The shell commands below can be used to do this process on Ubuntu 20.04 or
18.04.

sudo apt-get update
sudo apt-get upgrade

4. If Ubuntu 18.04 and possibly other older distributions are used, the mono package might be outdated
causing the build to fail. For such distributions, add the mono repository to the system as described in
https://www.mono-project.com/download/stable/#download-lin before installing the mono package.

sudo apt install gnupg ca-certificates

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys \
3FAT7E0328081BFF6A14DA29AA6A19R38D3D831EF

Optionally key could be downloaded to a file and added manually by

'apt-key add KEYFILE'. Now that certificate is installed we can

add official mono repository to repository list.

echo "deb https://download.mono-project.com/repo/ubuntu stable-bionic main" \

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

6/45

https://www.nxp.com/webapp/sps/download/license.jsp?colCode=IMX_CST_TOOL
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.18.bin
https://learn.microsoft.com/en-us/windows/wsl/install
https://www.mono-project.com/download/stable/#download-lin

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

| sudo tee /etc/apt/sources.list.d/mono-official-stable.list
sudo apt update

Note: The process is valid for Ubuntu 18.04 in December 2021:
5. Install the required software. Note that the mu_project currently requires python 3.8 and higher.

sudo apt-get install attr build-essential python3.8 python3.8-dev \
python3.8-venv device-tree-compiler bison flex swig iasl uuid-dev \

wget git bc libssl-dev zliblg-dev python3-pip mono-devel gawk libgnutls28-
dev

6. Download the Arm64 cross-compiler.

pushd ~

wget https://releases.linaro.org/components/toolchain/binaries/7.4-2019.02/\
aarché64-linux-gnu/gcc-linaro-7.4.1-2019.02-x86 64 aarch64-linux-gnu.tar.xz
tar xf gcc-linaro-7.4.1-2019.02-x86 64 aarch64-linux-gnu.tar.xz

rm gcc-linaro-7.4.1-2019.02-x86 64 aarch64-linux-gnu.tar.xz

*\# The cross compiler prefix is required to be exported later

\# into AARCH64\ TOOLCHAIN\ PATH variable.

\# export AARCH64\ TOOLCHAIN\ PATH=~/gcc-linaro-7.4.1-2019.02\\

\# -x86\ 64\ aarch64-linux-gnu/bin/aarch64-linux-gnu-*

popd

7. Change the directory to the BSP_DIR. The following commands reference the files inside the BSP directory.
That BSP_DIR contains extracted W-imx-windows-bsp-.zip.

cd BSP_DIR

8. Project MU strongly suggests the use of Python Virtual Environment for each workspace. In this case, BSP
revision-separated environments allow workspaces to keep specific Pip module versions without modifying
the global system state when the firmware is compiled.

python3.8 -m venv <path to new environment>
source <path to new environment>/bin/activate
eg.:

python3.8 -m venv ~/venv/win fw build

source ~/venv/win fw build/bin/activate

The virtual environment does not use system packages. Thus, do not use sudo when installing packages
using pip.

9. Install the required python packages.
a. Install or update mu platform Python dependencies using pip.

pushd mu platform nxp
pip3 install -r requirements.txt --upgrade

b. Install the pycryptodome package (successor of pycrypto).

pip3 install pycryptodome

c. Install the pyelftools package.

pip3 install pyelftools

d. Install the cryptography package.

pip3 install cryptography

10. Setup the Mu platform. (This step is optional because buildme64 . sh does these steps automatically.)
a. Setup and update submodules.

python3 NXP/MX8M EVK/PlatformBuild.py --setup

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

7145

https://microsoft.github.io/mu/CodeDevelopment/prerequisites/#all-operating-systems-python-virtual-environment-and-pytools

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

Note: If you return here facing problems during UEFI build, use --force to clean the environment.
Make sure to commit or stash all your changes first. The —-force argument performs git reset —hard.

b. Initialize and update Mu platform dependencies.

python3 NXP/MX8M EVK/PlatformBuild.py --update

Note: If this command fails, try upgrading mono. The best way to do it is to uninstall mono and reinstall
it from its official repository. The process is described at https://www.mono-project.com/download/stable/
#download-lin.

11. Return to BSP root.

popd

2.2.4 Building the firmware

To build the boot firmware:

1. Open cmd prompt inside BSP_DIR.

cd <BSP_ DIR>

2. Activate your python virtual environment (Use the path specified when creating the environment.)

source ~/venv/win fw build/bin/activate

3. Export AARCH64 TOOLCHAIN PATH cross compiler prefix. In this guide, the toolchain has been placed
inside the home (~/) directory.

export AARCH64 TOOLCHAIN PATH=~/gcc-linaro-7.4.1-2019.02-x86 64 aarch64-
linux-gnu/bin/aarch64-1linux-gnu-

4. Optionally, if there is a major update, you may need to step into mu_platform nxp and run python3
NXP/MX8M EVK/PlatformBuild.py with --setup --forceand then --update manually. To get
clean and up-to-date MU build environment, stash or commit your changes. The command performs git
reset —--hard.

5. Build the firmware and create firmware.bin. To build the boot firmware, execute the buildme64.sh -b
<BOARD NAME> -t all [-clean] script provided in BSP_DIR (the root of extracted BSP sources).

./buildme64.sh -b MX8M EVK -t all -c

The buildme64. sh script bundled in BSP also copies flash.binand uefi. fit into <BSP_DIR> /
imx-windows-iot/components/Armé64BootFirmware/<board name>. It allows to rebuild only UEF
or U-boot.
* Use -b Mx8M EVKoOr-b 8M to selecti.MX 8M EVK
* Use -b MX8M MINI EVKor-b 8Mm to selecti.MX 8M Mini EVK
* Use -b MX8M NANO EVKor -b 8Mn to selecti.MX 8M Nano EVK
* Use -b MX8M PLUS EVKoOr-b 8Mp to selecti.MX 8M Plus EVK
* Use -b MX8QXP_MEK or -b 8X to select i.MX 8QXP_MEK
* Use -b Mx93 11xX11 EVKoOr-b 93 to selecti.MX 93 EVK
e Use -t secured efi tobuild signed firmware uuu.bin
Options for builds: a a
* -b|-board specifies the board for which binaries will be built
— all = build all devices,
— 8M, MX8M EVK
— 8Mm, MX8M MINI EVK
— 8Mn, MX8M NANO EVK
— 8Mp, MX8M PLUS EVK

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

81/45

https://www.mono-project.com/download/stable/#download-lin
https://www.mono-project.com/download/stable/#download-lin

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

— 8X, MX8QXP MEK
- 93,Mx93 11x11 EVK
* -t |-target app specifies a target to build
— all = build all components
— u|uboot = build u-boot (by default with UUU tool)
— optee = build optee core
— apps | tee apps = build optee trusted applications
—uimg|uboot image = create bootable image
—tools|uefi tools = build UEFI tools
— uefi = build UEFI
—profile dev = build UEFI with development profile (set by default)
—profile secure = build UEFI with secure profile
—profile frontpage = build UEFI with frontpage profile
— secured_efi|secured uefi = build UEFI in secure mode + sign image(the name of the resulting
firmware is prefixed with signed)
-cap| -capsule] creates capsule
-c|-clean] cleans build files before build
-fw|-fw_bin] requests build of firmware from existing binaries

-nu|-no_uuu] builds uboot without UUU tool (the name of the resulting firmware does not contain
_uuu suffix)

* [-h|-help] prints manual for script usage
* [-bclbuild configuration] specifies build configuration of UEFI (RELEASE is selected as default)
— release Or RELEASE = for Release version of uefi
— debug or DEBUG = for Debug version of uefi
* [-ao|-advance option] Advanced options for experienced users
—rpmb_reset fat = clears RPMB FAT
— rpmb _write key = writes RPMB KEY into RPMB
—no_rpmb_test key = uses Hardware-Unique key (HUK) instead of TEST KEY (TEST KEY is used as
default)
— optee core v =turns on verbose mode of OpTEE core
— optee core vv = turns on the highest verbose mode of OpTEE core
— optee ta v =turns on verbose mode of OpTEE trusted applications
—optee ta vv = turns on the highest verbose mode of OpTEE trusted applications
* [TARGET WINDOWS BSP_ DIR] Specifies path to imx-windows-iot, in which the firmware shall be
updated.
* [KEY ROOT] specifies path to custom PKI root

6. Todeploy firmware uuu.bin to the i.MX development board, follow the process described in i.MX
Windows 10 IoT Quick Start Guide.

[
[
[
[

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

9/45

https://www.nxp.com/docs/en/quick-reference-guide/IMXWQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMXWQSG.pdf

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

2.2.5 Common causes of build errors

1. ImportError: No module named Crypto.PublicKey.

* This error is encountered when the pycryptodome module is missing or in case obsolete pycrypto is
removed.

2. Unable to enter directory. Directory does not exist.

* We have run into this problem in case gitmodules were not downloaded completely (for example,
MSRSec is empty) or cst or firmware directories were missing. Try repeating the Obtaining BSP
sources step by step.

3. The build fails in WSL while the BSP is located somewhere in /mnt /c of the WSL.

* Try setfattr -n system.wsl case sensitive -v 1 <BSP_DIR>. OP-Tee also requires
symbolic links. We have been able to build boot firmware in /mnt/c/ on Windows OS version 1909.
Workaround is to copy the BSP to WSL filesystem, for example, to HOME.

3 Display/GPU driver

This chapter contains several notes related to Windows i.MX GPU driver. The kernel graphic driver consists
among others of the GPU driver galcore. sys and the display controller driver dispctrl.d11. The setup
information file galcore. inf contains several parameters that are written into the Windows registry database
and later used for the driver configuration. To change these parameters, one of following options can be done:

* Update the registry database directly under the HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet
\Control\Class{4d36e968-e325-11ce-bfcl-08002bel0318}\0000 key. Then you can either reboot
the board, or restart the driver using devcon (devcon.exe restart ACPI\VERI700x), or Disable device and
Enable device using Device Manager for Display adapters\i.MX GPU device.

* Update the INF file and uninstall/re-install the GPU driver, and then reboot.

3.1 Display interface selection

The following Registry (INF) parameter is used to select the display interface for a particular display.
Applicability is platform-dependent, see Quick Start Guide, the features list for a particular platform, and
limitations in Release Notes. If a platform supports only one possibility, the parameter is ignored. For specific
hardware configuration, see the platform reference manual.

Display<n>Interface (Where <n>display id = 0,1,2,...) parameter is of REG_DWORD type.
Possible values:

DISP_INTERFACE HDMI = 0x1

DISP_INTERFACE MIPI DSIO = 0x2

DISP _INTERFACE MIPI DSI1 = 0x3
DISP_INTERFACE LVDSO = 0x4
DISP_INTERFACE LVDS1 = 0x5
DISP_INTERFACE LVDS DUALO = 0x6

DISP_INTERFACE PARALLEL LCD = 0x7

3.2 Display resolution and timing parameters

The display resolution is configured differently for individual display interfaces.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

10/45

https://www.nxp.com/docs/en/quick-reference-guide/IMXWQSG.pdf
https://www.nxp.com/docs/en/release-note/IMXWNR.pdf

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

3.2.1 HDMI display interface

The display is configured with native display resolution read from the EDID of the connected display. Typically,
this is 1920x1080@60 Hz for most standard HDMI monitors. It is not possible to change/override the native
resolution.

Currently, the maximum resolution supported by the display driver is 1080p (1920x1080@60 Hz), which is also
set if the native display resolution exceeds this maximum.

3.2.2 LVDS, MIPI-DSI and Parallel display interfaces

The display resolution and timing parameters are obtained from the following registry parameter:
Display<n>EDID (where <n> display id = 0,1,2,...), parameter is of REG_BINARY type.

The parameter contains EDID data encoded according to the EDID structure v1.4 data format (standard
published by VESA). The first data block 128 bytes long is used, that is, only basic EDID structure without

any extensions. Resolution and timing parameters are parsed from Standard timing information - Descriptor

1 (offsets 54 - 71), specifically pixel clock, horizontal active pixels resp. vertical active lines, blanking pixels,
synchronization pulse width, front porch, and VSYNC, HSYNC signals polarity. During EDID loading from the
registry, the EDID header is checked (offsets 0 - 7) and the checksum must match (offset 127). Other EDID data
are irrelevant to the GPU driver. Default EDID data in INF file sets 1280x720@60 Hz mode.

The BSP package contains pre-prepared testing EDID data for several standard modes: see <BSP>\ imx-
windows-iot\driver\display\dispdll\util\include\edidtst.h

3.3 Display specific parameters

3.3.1 LVDS display interface
Registry (INF) parameters related to LVDS interface:

* The Display<n>BusDataWidth (where <n> is display id = 0,1,2,...) parameter of the REG_DWORD type
determines the number of pixels mapped to the output signal. 24 bpp or 18 bpp are supported. The default
value is 24.

* The Display<n>BusMapping (wWhere <n> is display id = 0,1,2,...) parameter of the REG_DWORD
type determines the pixel mapping type in the output signal. DISP_BUS MAPPING SPWG = Ox1 or
DISP_BUS MAPPING JEIDA = 0x2 are supported. The default value is 0x1.

3.3.2 MIPI-DSI display interface
Registry (INF) parameters related to MIPI-DSI interface:

* The Display<n>NumLanes (where <n> is display id = 0,1,2,...) parameter of the REG DWORD type
determines the number of DSI lanes. Possible values are 1-4, the default value is 4.

* The Display<n>ChannelId (where <n>is display id = 0,1,2,...) parameter of the REG_DWORD type
determines the virtual channel ID of the display. The default value is 0.

3.4 Display support in firmware

Display-related peripherals are configured in u-boot for i.MX 8M and i.MX 8QXP and the following paragraphs
are not valid for them. The following description is related to the firmware driver for i.MX 8M Plus, i.MX 8M
Nano, i.MX 8M Mini and i.MX 93.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

11/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

3.4.1 Firmware display interface selection

The firmware display interface can be selected in the giMx8TokenSpaceGuid.PcdDisplayInterfac

e parameter in the platform description file (dsc) located in <BSP>/mu_platform nxp/NXP/<Board>/
<Board>.dsc. Possible values are HDMI = 0, MIPI DSI = 1, LVDSO = 2, LVDSl = 3, LVDS dual
= 4. The available display interfaces are dependent on specific boards (see Release Notes or SoC reference
manual for more information). The parameter is used for interfaces that do not allow automatic detection.

Automatic detection is implemented for HDMI-based display interfaces that include IMX-MIPI-HDMI (MIPI-DSI
to HDMI converter), IMX-LVDS-HDMI (LVDS to HDMI converter), and native HDMI interface. These interfaces
are probed in the same order of priority and if successfully detected, giMx8TokenSpaceGuid.PcdDisplay
Interface is overridden with the detected display interface.

After changing any of the parameters, the firmware must be recompiled.

3.4.2 Firmware display resolution

The firmware display resolution is stored in the PreferredTiming variable. This variable is initialized in
the LcdDisplayDetect function in theiMxX8LcdHwLib.c or iMX93DisplayHwLib. c file respectively.
These source files contain several pre-defined resolutions and timing parameters. For example, to select
1024x768@60 resolution initialize the PreferredTiming variable: LcedInitPreferredTiming
(¢PreferredTiming 1024x768 60, &PreferredTiming);

For HDMI-based display interfaces (see previous paragraph), the giMx8TokenSpaceGuid.PcdDisplay
ReadEDID parameter (TRUE/FALSE) allows enabling/disabling EDID reading. The resolution and display
parameters are then extracted from the Detailed Timing descriptor of EDID data (native resolution). The gi
MX8TokenSpaceGuid.PcdDisplayForceConverterMaxResolution parameter (TRUE/FALSE) allows
clamping display resolution to the supported maximum, that is, if the EDID Detailed Timing descriptor contains
a resolution higher than the supported maxim, EDID data are discarded, and supported maximum resolution
is used instead. Both these parameters are located in the platform description file (dsc) - see the previous
paragraph.

After changing any of the parameters, the firmware must be recompiled.

Note: Only a limited set of pixel clocks is supported, so for a new resolution with a pixel clock different from pre-
defined in the above source files, the corresponding clock driver must be updated.

4 Power management

Power management consists of the Processor Power Management (PPM) that includes low-power state
transition of processor cores and of the Device Power Management (DPM) that includes power gating and
clock gating of individual devices. An important part of customization of power management is the Power
Engine Plugin (PEP) driver that defines the processor and platform low-power states and can handle power
and clock gating for individual devices. This chapter contains information on the current support of power
management for i.MX 8/9 platforms, relevant tools, and utilities.

4.1 Power management user scenarios

We consider 2 power scenarios that could be of interest for vendors using i.MX 8/9 platforms:

* At runtime: reduce runtime power consumption by putting unused resources to temporary possibly short sleep
states:
devices - to clock gating/power gating or other low-power states, for example, D3/F1, CPUs to CPU-suspend
in Standby or Power Down mode.

* When loT device is idle: platform entering low-power idle states (wait state, power off state) with minimal
power consumption and wake-up capability via selected devices.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

12/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

4.2 Device power management DPM on i.MX 8/9 platforms

There are working samples of power management framework (PoFx) callbacks in 12C and PWM drivers. The
functionality must be enabled by I2C_POWER MANAGEMENT and PWM POWER MANAGEMENT macros.

The Dx states are Devices states (DO=Running, D3=low power)
The Fx states are Components states (FO=Running, F1=low power)

The i.MX 8/9 implementation is based on the Single Component KMDF Power Framework (PoFx) Sample
provided by Microsoft.

The power state transitions from DO/FO to D3/F1 and back are based on the device activity (for example,
running some test traffic). The device power state can be checked in WinDbg using the ! fxdevice command.
The state transition happens based on OS decision (made incl. the SO Idle Timeout), and the driver is notified
using the PO_FX_COMPONENT_IDLE_STATE_CALLBACK. It must change HW status to low-power (if

State > 0) or to running (if State = 0). The functionality is located in the files imxi2cpofx.h/cpp and
imxpwm pofx.h/cpp. The PoFx functionality can be copied to other drivers based on specific vendor
requirements.

The Device driver interacts with Windows PoFx framework using the WdfDeviceAssignSOIldleSettings and Wdf
DeviceWdmAssignPowerFrameworkSettings methods.

When the power management support is implemented in the device driver, the Power Management tab
becomes visible in the device properties in the Device Manager:

i.MX PWM Device Properties *
General Driver Details Events Hesourcel Power Managemert I General Driver Details Events F-!esourcls Power Management
IL& i.MX 12C Controller IL@ i.Mx PWM Device
Allow the computer to tum off this device to save power Allow the computer to tum off this device to save power
Allow this device to wake the computer Allow this device to wake the computer

Figure 1. Power-managed devices 12C PWM

4.3 Processor power management PPM on i.MX 8/9 platforms

The Power Engine Plugin (PEP) driver is visible in the Device Manager -> System devices for all the
supported i.MX 8/9 boards:

ij| Sound, video and game controllers
Gy Storage controllers
w 3 Systemn devices
i@ Composite Bus Enumerator
i3 i.MX GPIO Controller
i3 i.M¥ Hantro VPU Device
i3 i.MX 12C Controller
iz .M 12C Controller
i3 i.MX 12C Controller

¥ .M Power Engine Plugin
i LME PWM Device

Figure 2. PEP in Device Manager

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

13/45

https://learn.microsoft.com/en-us/samples/microsoft/windows-driver-samples/kmdf-power-framework-pofx-sample/
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nc-wdm-po_fx_component_idle_state_callback
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdeviceassigns0idlesettings
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdevicewdmassignpowerframeworksettings
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdfdevice/nf-wdfdevice-wdfdevicewdmassignpowerframeworksettings

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

The PEP handles putting of CPU cores to coordinated low-power (sleep) states as requested by the operating
system. The call sequence that puts the CPU core to sleep looks as follows:

WindowsOS -> PEP::AcceptProcessorNotification -> PEP:: PpmIdleExecute -> WFI
(Wait for
Interrupt instruction)

WindowsOS -> PEP::AcceptProcessorNotification -> PEP:: PpmIdleExecute -> SCM

call
->Imx-Atf PSCI CPU SUSPEND -> HW instructions to CPU sleep

The sleeping CPU core is woken from the sleep state by interrupt, either a Processor to Processor Interrupt
(PPI) for example, IRQ27 or by device interrupt IRQ > 32, for example, a USB device like mouse or keyboard.
See section related to IRQs.

PEP and Imx-Atf: ATF is the Arm Trusted Firmware, integrated with Uefi and Uboot in firmware.bin. The

ATF implements the PowerStateCoordinatedinterface (PSCI industry standard, DENO022E_Power_State
Coordination_Interface.pdf) from ARM specification, incl. the CPU_SUSPEND method used to put CPU cores
into low-power sleep states. The CPU_SUSPEND can specify either standby or Power-down mode. When the
last CPU core goes into the low-power Power-down mode, the whole platform must enter the platform power
down, which includes DDR self-refresh, and setup for wake-up using selected interrupts. In Release Milestone
6, the platform power down is not yet fully integrated with Win10 loT OS so it needs more effort to have this
functional.

The PEP also ensures that before entering the Coordinated low-power state (defined in PEP) all devices are in
the required low-power state. This is defined in PEP: DpmDeviceldleContraints, the constraints are expected to
be extended in future releases.

PEP and WinDbg: the PEP driver is loaded in Windows OS as one of the first drivers during startup. It can
be replaced and debugged with WinDbg as usual. Enable the #define DBG MESSAGE PRINTING in
imxpep_ dbg.h file to get traces in the WinDbg command window.

4.4 Power management tools and debugging

The following tools can be used to analyze the current Power management functionality:

Utility Description

powercfg /a Available sleep states

powercfg /sleepstudy Sleep study HTML report

powercfg /energy Energy efficiency analysis and issues
WinDbg !fxdevice Device power management status

4.4.1 powercfg /a

This command displays the available sleep states.
In i.MX that uses the Modern Standby the only supported state is SO Low Power Idle - Network Connected.

C:\> powercfg /a
The following sleep states are available on this system:
Standby (SO Low Power Idle) Network Connected

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

1445

NXP Semiconductors IMXWGU

i.MX Windows 10 loT User’s Guide

4.4.2 powercfg /sleepstudy

This command generates a detailed HTML report with analysis of Sleep states during last 3 days.

It includes how many % of time was spent in Deepest Runtime Idle Platform State (DRIPS) during each Sleep
period.

DRIPS Histogram

Percent of time spent in DRIPS bucketed by time interval length

100
Qo
80
Filt}
&0
50
40
30
20
10
E=
00us 250us 500us 150us 1ms 2ms 4ms Bms 16ms 32ms &ms 128ms256ms512msis 2 ds &5 s 325 im 2m d4m Bm
Top Offenders
Top 5 offenders, ranked by active time
MAME TYPE % ACTIVE TIME ACTIVE TIME
Low Power Phase PDC Phase L 0200205
I Ao
I T BES 5
t 4 EViIC
- PDLC Phases
PHASE % TIME TIME
Low Power Phase 0.4% 0:00:05
Resiliency Motification Phase 0.0% o000
Resiliency Phase 99.6% 0:20:0%

Figure 3. Sleep study drips

4.4.3 powercfg /energy

This command generates energy consumption analysis and issues report.

4.4.4 WinDbg !fxdevice

The fxdevice command gives detailed status and history of power state transition of each power managed
device.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

15/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

For example 12C2 in DO state when active, in D3 state (power down) when idle, and the PoFx IRP log:

fxdevice ... find the relevant device

Within 30 sec after I2C test run => active DO/F0 state:
fxdevice Oxffffaf8256372010

DevNode: Oxffffaf8251115aa0

UniqueId: "\ SB.I2C2"

InstancePath: "ACPI\NXP0104\2"

Device Power State: PowerDeviceDO

Component Count: 1

Component 0: Current:F0/Deepest:Fl - IDLE (RefCount = 0)

After 30 sec after I2C test run => low power D3/Fl state:
| fxdevice O0xffffaf8256372010
DevNode: Oxffffaf8251115aa0
UniqueId: "\ SB.I2C2"
InstancePath: "ACPI\NXP0104\2"
Device Power State: PowerDeviceD3
Component Count: 1
Component 0: Current:F1l/Deepest:F1 - IDLE (RefCount = 0)

nt!DbgBreakPointWithStatus:
ff£f£f£f803°43c08330 d43e0000 brk #0xF000
0: kd> !fxdevice ffffaf82570e9%aal
!fxdevice Oxffffaf82570e9%aal
DevNode: 0Oxffffaf8251115aa0
UniqueId: "\ SB.I2C2"
InstancePath: "ACPI\NXP0104\2"
Device Power State: PowerDeviceD3
PEP Owner: Default PEP
Acpi Plugin: O
Acpi Handle: 0
Device Status Flags: DevicePowerNotRequired DeviceNotified
DevicePowerNotRequired ReceivedFromPEP
Device Idle Timeout: 0000000000
Device Power On: No Activity
Device Power Off: No Activity
Device Unregister: No Activity
Component Count: 1
Component 0: Current:F1l/Deepest:Fl - IDLE (RefCount = 0)
Pep Component: Oxffffaf8256df24d0
Active: 0 Latency: 0 Residency: 0 Wake: 0 Dx IRP: 0 WW IRP: O
Component Idle State Change: No Activity
Component Activation: No Activity
Component Active: No Activity
Log has 25 entries starting at 0:

IntTime CPU cid Tid
0 000000076660627f 3 4 f0 Device registered with 1 component (s)
1 000000076660627f 3 4 f0 Start power management
2 000000076660627f 3 4 f0 Component 0 latency set to 8000001
3 000000076660627f 3 4 f0 Component 0 residency set to 120000001
4 0000000766609e64 1 4 5c0 Component 0 changed to idle state F1
5 0000000766609e64 1 4 5¢c0 Power not required from default PEP
6 0000000766609e64 1 4 5c0 Power not required to device
7 0000000766609e64 2 4 ec Power IRP requested with status 0
8 0000000766609e64 2 4 ec Power IRP type D3 dispatched to device
stack
IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1.4.1 — 31 July 2023

16 /45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

9 0000000766609e64 3 4 e0 Device power state changed to D3

10 0000000766633bba 1 4 ec Power required from default PEP

11 0000000766633b5a 1 4 ec Power required to device

12 0000000766633b5a 1 4 ec Driver device power required callback
pending

13 0000000766633bba 1 4 ec Power IRP requested with status 0

14 0000000766633b5a 1 4 ec Power IRP type DO dispatched to device
stack

15 0000000766638961 2 4 b78 Device power state changed to DO

16 0000000766638961 2 4 b78 Device powered

17 0000000766638961 2 4 b78 Driver device power required callback
completed

18 0000000766638961 3 4 18 Component 0 changed to idle state FO

19 000000076ddbaz246 0 4 18 Component 0 changed to idle state F1

20 000000076ddbaz46 0 4 18 Power not required from default PEP

21 000000076ddbaz46 0 4 18 Power not required to device

22 000000076ddbaz246 0 4 b78 Power IRP requested with status 0

23 000000076ddbaz46 0 4 b78 Power IRP type D3 dispatched to device
stack

24 000000076ddbaz46 0 4 e0 Device power state changed to D3

5 Secure boot

5.1 Basic concepts

Secure Boot is a feature that prevents loading malicious pieces of software (rootkits) during the system boot.
To perform a secure boot, the feature has to be supported by the whole boot chain, starting at the device ROM
code and ending in Windows. For more information on how to prepare the board for Secure Boot, see Secure

Provisioning.
For more detailed information on each platform, see:
» Secure boot on i.MX 8M

e Secure boot on i.MX 8QXP
e Secure boot on i.MX 93

5.2 Secure boot on i.MX 8M

5.2.1 System boot on i.MX 8M

The boot process starts after device's power-on reset. The hardware logic forces the processor to start
executing internal ROM code. Based on the state of the register BOOT MODE[13:0] together with eFUSEs
and GPIO pins (depends on configuration), the ROM code selects a boot device (Serial NOR Flash via FlexSPI,
NAND flash, SD/MMC, Serial (SPI) NOR). The boot process then continues executing the code from the boot
device. ROM searches Image Vector Table (IVT) on the address, which is based on the selected boot device.
For example, 0x8400 for i.MX 8M Mini SD/eMMC boot. There it finds an entry point for the code jump. For
more details, see i.MX 8M Mini Applications Processor Reference Manual

5.2.2 System boot components

There are many software components involved in the boot process to run some complex operating systems,
including Windows. This project uses U-Boot SPL as the first stage bootloader (also called Secondary Program
Loader, SPL). On i.MX 8M, the processor has very limited access to peripherals when exiting ROM code area,
since most of them are not initialized. Thus, the first stage bootloader must fit system's on-chip RAM (OCRAM).
Its main purpose is to initialize DDR to get access to full system memory and to load a proper second stage

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

17145

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-family-armcortex-a53-cortex-m4-audio-voice-video:i.MX8M

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

bootloader. The first stage boot loader and second stage bootloader are considered SoC/firmware bootloaders,
whereas UEFI provides environment for Microsoft and OEMs.

Gr \erified

ROM Code - load
HAB > (and execution)

Br E‘r Secure Firmware far
world app Other cores
A) —
: MNormal
‘ (HDMI FW)) U-Boot SPL | Binary ELOB world app
|

& = = = =

v

| |
Device Tree Op-TEE ATF U-Boot Full UEFI Firmware

=

bootmgr.efi

Figure 4. Boot flow

5.2.2.1 U-Boot SPL

This project uses U-Boot SPL as the first-stage bootloader. The main purpose of U-Boot SPL is to initialize
external memory that is needed to run proper U-Boot. The U-Boot SPL loads a few more components that
are participate in the configuration and security of the device - Device Tree blob, OP-TEE, and ARM Trusted
firmware.

5.2.2.2 Device Tree Blob

Device Tree Blob (DTB) is a binary representation of Device Tree. Device Tree is a data format for description
of system hardware in a format of tree of device nodes. The format is understood (and required) for example, by
U-Boot proper and Linux kernel. Thanks to Device Tree, a single program binary can support multiple platforms,
just by changing DTB that is used.

5.2.2.3 OP-TEE

Open Portable Trusted Execution Environment (OP-TEE) is an opensource implementation of Trusted
Execution Environment using ARM TrustZone technology. It provides a way of running applications within
secure world. This project uses OP-TEE as runtime environment for fTPM and Authenticated Variables.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

18/45

https://github.com/nxp-imx/uboot-imx
https://elinux.org/Device_Tree_Reference
https://www.op-tee.org/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

5.2.2.4 ATF

ARM Trusted Firmware is an implementation of firmware running with elevated privileges (EL3) and is used
mostly as a proxy between the OS running in non-secure world and OP-TEE running in secure world.

5.2.2.5 U-Boot proper

The U-Boot proper is used in this project to perform early display initialization and load the UEFI bootloader.
When enabled (disabled by default), the U-Boot provides powerful CLI interface and can serve as a tool for
device provisioning and/or debugging.

5.2.2.6 UEFI

The Unified Extensible Firmware Interface (UEFI) is a specification defining a unified interface between the
firmware and the OS. UEFI firmware does the rest of the initialization and hands off the control to Windows Boot
Manager.

For more details, see Boot and UEFI.

5.2.3 Ensuring firmware security

To ensure integrity and to prove genuinity of all boot components, they need to be signed, and the validity of the
digital signature must be verified before passing the control to the next stage of the boot.

5.2.3.1 Security configuration

The reaction of the chip on various security events is massively dependent on its security configuration that may
be affected by several fuses and HAB.

5.2.3.1.1 Open/Closed

The open/closed state determines whether SECO allows execution of unauthenticated program images.
Open chip allows execution of any program image - unauthenticated images and authenticated images
with bad signature. Closed chip allows only execution of authenticated images. The state is defined by the
SEC_CONFIG[1:0] eFUSE:

Fuse value Effect

00 Reserved
01 Open

1x Closed
5.2.3.1.2 SRKH

The Super Root Key Hash (SRKH) is a set of 8 eFUSES that contain a combined hash of hashes of particular
Super Root Keys. They are one of the main components of the HAB chain of trust.

5.2.3.2 Bootloader verification chain

All firmware signatures are generated at build time using private keys from the HAB chain of trust.

1. ROM Code verifies U-Boot SPL
2. U-Boot SPL checks Device Tree Blob, ATF, OP-TEE, U-Boot proper, and UEFI
3. UEFI checks efi modules and Windows Boot Manager

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

19/45

https://github.com/nxp-imx/uboot-imx
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/boot-and-uefi
https://boundarydevices.com/high-assurance-boot-hab-i-mx8m-edition/

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

ROM code cannot be changed and is considered trusted. To verify the signature of SPL, ROM contains a
module called High Assurance Boot.

HAB is a software component responsible for verifying digital signatures. Its API is available to external
applications via ROM vector table (RVT). Before jumping to SPL, ROM verifies the signature of SPL. Only a
valid SPL signature allows booting flow to proceed (see Chip lifecycle).

Once loaded and verified, U-Boot SPL is also considered secure and trusted. U-Boot SPL loads the

container image containing Device Tree Blob, ATF, OP-TEE, U-Boot proper, and UEFI. When building with -
t secured efi, the U-Boot SPL verifies the signature of each component of the FIT image. The U-Boot
SPL will proceed to the proper U-Boot only with the matching signature. The verification is realized by the HAB
module.

5.2.3.3 HAB chain of trust

HAB chain of trust is a set of certificates and keys, forming Public Key Infrastructure (PKI) used for signing and
verification of Secure Boot components handled by HAB. This repository contains a pre-generated PKI. To use
your own PKI, point the environment variable KEY_ROOT to your key root folder.

Important: Building BSP with the default KEY_ROOT produces signed, but insecure binaries since they are
signed with well-known keys!

NXP provides a set of tools, called CST that helps with generating custom PKI and signing.

The HAB chain of trust consists of single Certification Authority (CA), four Super Root Keys (SRK) and
(optionally) four image (IMG) keys and command sequence file (CSF) keys. Depending on HAB version,
firmware images and CSFs can be signed directly by SRK (HABv4) or by IMG and CSF keys that are signed by
appropriate SRK (HABv4.1.2 FastAuth).

HABv4.1.2
HABv4 FastAuth
i e
e - ¢ _-__________'-— . m
SRK1 SRK2 SRKn SRK1 SRK2 SRKR
CSF1 IMG1 CSF2 IMG2 CSFn IMGn

Figure 5. "HAB chain of trust”

5.2.3.4 i.MX firmware image verification

Even though the SECO (AHAB) is responsible for signature verification, the verification key itself cannot be
burned to eFUSES since there are not enough of them. To circumvent that, only a footprint of the key is written
to the device. The verification key itself is then packed along the signature to the firmware binary. HAB then
verifies the key against the footprint and uses the key to verify the signature. This information is stored in the
CSF block, see Figure 5

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

20/ 45

https://www.nxp.com/webapp/sps/download/view_license.jsp?colCode=IMX_CST_TOOL

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

header
| *entry

'.__

| resenved

*ded |

R [*bootdata |

T VT . [::i:> |
| *self

Image header l:> Boot data] *esf |

| | DCD | reserved

[TG, —

Application
| code
i.Mx
e =
Image

Script

Image signature [IMG key]

::> & IMG Cert
CsF
CSF signature [CSF key]

Header

£ CSF Cert
SRK1

SRK Table [::{:>
SRK2
SRK3
SRKH

(Device fuses) SRK4

Figure 6. Firmware image composition

When HAB verifies the signature of i.MX firmware image, the steps as follows:

Get the CSF location from IVT.

Extract the SRK table from CSF.

Compute SRKH and verify against fuses. Break if invalid.

Verify the CSF and IMG certificates by appropriate SRK from the SRK table. Break if invalid.
Verify the CSF signature and the image signature.

aroDdN -~

5.3 Secure boot on i.MX 8QXP

5.3.1 System boot on i.MX 8QXP

Compared to i.MX 8M, where the system boots from ARM Cortex-A cores from ROM memory, i.MX 8QXP starts
its boot in a dedicated security subsystem (SECO) and a system control unit (SCU). They are separate ARM
Cortex-M cores that run their own code, starting in their respective ROMs. During the boot process, there is

a firmware downloaded for each of these cores, where their program flow continues. Then, firmware for other
system cores is loaded. SCU ROM code selects a boot device (SD/MMC, NAND flash, FlexSPI NOR flash,
Serial downloader on USB) based on SCU_BOOT MODE pins and Force Boot From Fuse efuse. The first

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

21/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

stage bootloader for application cores may then be loaded directly to RAM (compared to i.MX 8M, which needs
an SPL, that will fit into OCRAM and set up the DDR first).

For more details, see chapter 5.5 Secure Boot Flow with SCU and SECO in i.MX
DualX/8DualXPlus/8QuadXPlus Applications Processor Reference Manual

5.3.2 i.MX boot containers

Application images that participate in i.MX 8QXP system boot are packed into so-called containers and at least
two of them are needed to boot the board. The first one is provided and signed by NXP and contains SECO
FW. The second one contains SCU FW and application code for other cores. Each container consists of the
container header, the container signature block (may be empty) and one or more images. Each image has its
own header, which defines the load address and entry point. Containers are composed using the imx-mkimage
tool.

Container header

Container signature

Container 1

SECO FW

Container header

Container signature

Container 2

SCUFW

Firmware image -
SPL

| Container header i

1
| Container signature |
e ' J

ATF

Container 3

OP-TEE

U-Boot Proper

UEFI

X vy v | i Al

DN

Figure 7. i.MX boot containers

5.3.3 System boot components

There are many software components involved in the boot process to run some complex operating systems,
including Windows. This project uses U-Boot SPL as the first-stage bootloader (also called Secondary
Program Loader, SPL). The first-stage bootloader and second-stage bootloader are considered SoC/firmware
bootloaders, whereas UEFI provides environment for Microsoft and OEMs.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

22/45

https://www.nxp.com/webapp/Download?colCode=IMX8DQXPRM
https://www.nxp.com/webapp/Download?colCode=IMX8DQXPRM

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

SCuU SECO gf erification
- load
[E —_— load and execution)
Secure MNormal
world app world app
U-Boot SPL - ST Q}J I ;
' | Binary BLOB

| S —

Op-TEE -:{E-EJ
ATF - B_E,

U-Boot Full It EE,

[evioe ree]
UEFI Firmware |- Q! .

i

bootmgr.efi

Figure 8. System boot components

5.3.3.1 U-Boot SPL

This project uses U-Boot SPL as the first-stage bootloader. The main purpose of U-Boot SPL is to initialize
external memory that is needed in order to run proper U-Boot. The U-Boot SPL actually loads a few more
components that are participate on the configuration and security of the device - Device Tree blob, OP-TEE,
and ARM Trusted firmware.

5.3.3.2 Device Tree Blob

Device Tree Blob (DTB) is a binary representation of Device Tree. Device Tree is a data format for description
of system hardware in a format of tree of device nodes. The format is understood (and required) for example, by
U-Boot proper and Linux kernel. Thanks to Device Tree, a single program binary can support multiple platforms,
just by changing DTB that is used.

5.3.3.3 OP-TEE

Open Portable Trusted Execution Environment (OP-TEE) is an opensource implementation of Trusted
Execution Environment using ARM TrustZone technology. It provides a way of running applications within
secure world. This project uses OP-TEE as runtime environment for fTPM and Authenticated Variables.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

23/45

https://github.com/nxp-imx/uboot-imx
https://elinux.org/Device_Tree_Reference
https://www.op-tee.org/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

5.3.3.4 ATF

ARM Trusted Firmware is an implementation of firmware running with elevated privileges (EL3) and is used
mostly as a proxy between the OS running in non-secure world and OP-TEE running in secure world.

5.3.3.5 U-Boot proper

The U-Boot proper is used in this project to perform early display initialization and load the UEFI bootloader.
When enabled (disabled by default), the U-Boot provides powerful CLI interface and can serve as a tool for
device provisioning and/or debugging.

5.3.3.6 UEFI

The Unified Extensible Firmware Interface (UEFI) is a specification defining a unified interface between the
firmware and the OS. UEFI firmware does the rest of the initialization and hands off the control to Windows Boot
Manager.

For more details, see Boot and UEFI.

5.3.4 Ensuring firmware security

To ensure integrity and to prove genuinity of all boot components, they need to be signed, and the validity of the
digital signature must be verified before passing the control to the next stage of the boot.

5.3.4.1 Security configuration

The reaction of the chip on various security events is massively dependent on its security configuration that may
be affected by several fuses and SECO.

5.3.4.1.1 Open/Closed

The open/closed state determines whether SECO allows execution of unauthenticated program images. Open
chip allows execution of any program image - unauthenticated images and authenticated images with bad
signature. Closed chip allows only execution of authenticated images. The state can be controlled, for example,
from U-Boot cli via the "ahab_status’ command. The status can be either "NXP closed™ (open) or 'OEM
closed’ (closed).

Example:

"=> ahab_ status"

"Lifecycle: 0x0020, NXP closed

5.3.4.1.2 SRKH

The Super Root Key Hash (SRKH) is a set of 16 eFUSES (on i.MX 8QXP) that contain a combined hash of
hashes of particular Super Root Keys. They are one of the main components of the Advanced High Assurance
Boot (AHAB) chain of trust.

5.3.4.2 Bootloader verification chain

All firmware signatures are generated at build time using private keys from the AHAB chain of trust.
1. SECO verifies Container 1 (SECO FW) and Container 2 (SCU FW+SPL)

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

2445

https://github.com/nxp-imx/uboot-imx
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/boot-and-uefi

NXP Semiconductors

IMXWGU

i.MX Windows 10 loT User’s Guide

2. SPL checks Container 3 (ATF, OP-TEE, U-Boot proper, and UEFI)
3. UEFI checks efi modules and Windows Boot Manager

SCU and SECO ROM code cannot be changed and is considered trusted. To verify the signature of SPL,
SCU relies on SECO FW that does the signature check via its AHAB module. When the chip is closed, only a
valid SPL signature allows booting flow to proceed (see Chip lifecycle). Once loaded and verified, U-Boot SPL
is also considered secure and trusted. U-Boot SPL loads the container image containing Device Tree Blob,
ATF, OP-TEE, U-Boot proper and UEFI. When building with -t secured efi, the U-Boot SPL verifies the
signature of each component of the FIT image. The U-Boot SPL proceeds to the proper U-Boot only when a
matching signature is present. The SPL requests signature verification from SECO AHAB.

U-Boot proper asks SECO for signature verification of UEFI firmware. The binary was already checked by
SPL since it is a part of the container that is loaded by SPL; however, U-Boot currently does not support partial
signature checking (enabled in SPL, but disabled in U-Boot proper). The U-Boot proper hands off the control to
UEFI.

5.3.4.3 AHAB chain of trust

AHAB chain of trust is a set of certificates and keys, forming Public Key Infrastructure (PKI) used for signing and
verification of Secure Boot components handled by AHAB. This repository contains a pre-generated PKI. To use
your own PKI, point environment variable KEY_ROOQOT to your key root folder.

Important: Building BSP with the default KEY_ROOT will produce signed, but not secure binaries since they
are signed with well-known keys!

NXP provides a set of tools, called CST that helps with generating custom PKI and signing.

The AHAB chain of trust consists of single Certification Authority (CA), four Super Root Keys (SRK) and
(optionally) four subordinate (SGK) keys. When using SGK keys (SRK generated with CA flag set), the firmware
container is signed by the SGK key. Otherwise, the container is signed directly by the SRK key.

AHAB with subordinate SGK keys
Containers are signed by SGK
SRKs have CA flag enabled

CA
— - ¢ a
SRK1 SRK2 SRKn
v v v
SGK1 SGK2 SGKn

Figure 9. AHAB chain of trust

AHAB

Containers are signed by SRK
SRKs have CA flag disabled

CA
— ¢ a
SRK1 SRK2 SRKn

5.3.4.4 i.MX firmware image verification

Even though the SECO (AHAB) is responsible for signature verification, the verification key itself cannot be
burned to eFUSES since there are not enough of them. To circumvent that, only a footprint of the key is written
to the device. The verification key itself is then packed along with the signature to the firmware binary. SECO
then verifies the key against the footprint and then uses the key to verify the signature.

When SECO verifies the signature of the i.MX firmware image, it does the following:

1. Get the SRK table location from the container signature header.

IMXWGU All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

25/45

https://www.nxp.com/webapp/sps/download/view_license.jsp?colCode=IMX_CST_TOOL

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

Extract the SRK table.

. Compute SRKH and verify against fuses. Break if invalid.

. (optional) Verify the SGK certificate by an appropriate SRK from the SRK table. Break if invalid.
. Verify the container signature.

a A wWN

5.4 Secure boot on i.MX 93

5.4.1 System boot on i.MX 93

i.MX 93 boots from on-chip ROM code. Based on various fuse values and boot switches, the ROM selects the
proper boot medium and flow. Secure aspects of the platform boot are handled by EdgelLock secure enclave
ROM (ELE). The boot ROM contains Advanced High Assurance Boot (AHAB) library that enables secure boot
functionality, with ELE as a backend. For more details, see chapter 8.1 Single Boot Flow (Cortex-A55) in i.MX
93 Applications Processor Reference Manual.

5.4.2 i.MX Boot Containers

Application images that participate in i.MX 93 system boot are packed into so-called images and containers. A
boot container may contain one or more boot images (A55 image, M33 image, and ELE FW). Each container
consists of the container header, the container signature block (may be empty), and one or more images. Each
image has its own load address and entry point. Containers are composed using the “imx-mkimage" tool.

T e S - ry
N @ Container
header
[Container

signature

Container

AHAB image

Y

]

header

Container C_nmamer
2 signature

Firmware SPL UBoot
image E

]
o

Container
header

Container
signature

Cc:-ntaainer ATE

UBoot

OpTEE

UEFI

. iy v

Figure 10. i.MX 93 Containers

5.4.3 System boot components

There are many software components involved in the boot process to run some complex operating systems,
including Windows. This project uses U-Boot SPL as the first stage bootloader (also called Secondary Program
Loader, SPL).

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

26/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

The first-stage bootloader and second-stage bootloader are considered SoC/firmware bootloaders, whereas
UEFI provides an environment for Microsoft and OEMs.

Qf === verification
ROM Code ELE —_— load+execution

AHAB AHAB
a

Secure Mormal
=Y world app world app
U-Boot SPL L---ceemsnnnnzs sErEEREss |’) |
| Binary BLOB |

Op-TEE S
ATF B S
U-Boot Full B P H
{ oevier |
-

UEFI Firmware
=N

bootmgr.efi

Figure 11. Boot flow on i.MX 93

5.4.3.1 U-Boot SPL

This project uses U-Boot SPL as the first stage bootloader. Compared to i.MX 8M, the SPL has access to

full system memory. The purpose of SPL on i.MX 93 is to load other firmware components to non-continuous
memory. The SPL understands the i.MX container format and loads the following components that participate
in the configuration and security of the device to their respective load addresses: OP-TEE, ARM Trusted
Firmware, U-Boot proper, and UEFI firmware.

5.4.3.2 Device Tree Blob

Device Tree Blob (DTB) is a binary representation of Device Tree. Device Tree is a data format for description
of system hardware in a format of tree of device nodes. The format is understood (and required) for example, by
U-Boot proper and Linux kernel. Thanks to Device Tree, a single program binary can support multiple platforms,
just by changing DTB that is used.

5.4.3.3 OP-TEE

Open Portable Trusted Execution Environment (OP-TEE) is an opensource implementation of Trusted
Execution Environment using ARM TrustZone technology. It provides a way of running applications within
secure world. This project uses OP-TEE as runtime environment for fTPM and Authenticated Variables.

5.4.3.4 ATF

ARM Trusted Firmware is an implementation of firmware running with elevated privileges (EL3) and is used
mostly as a proxy between the OS running in non-secure world and OP-TEE running in secure world.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

27145

https://elinux.org/Device_Tree_Reference
https://www.op-tee.org/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

5.4.3.5 U-Boot proper

The U-Boot proper is used in this project to perform early display initialization and load the UEFI bootloader.
When enabled (disabled by default), the U-Boot provides powerful CLI interface and can serve as a tool for
device provisioning and/or debugging.

5.4.3.6 UEFI

The Unified Extensible Firmware Interface (UEFI) is a specification defining a unified interface between the
firmware and the OS. UEFI firmware does the rest of the initialization and hands off the control to Windows Boot
Manager.

For more details, see Boot and UEFI.

5.4.4 Ensuring firmware security

To ensure integrity and to prove genuinity of all boot components, they need to be signed, and the validity of the
digital signature must be verified before passing the control to the next stage of the boot.

5.4.4.1 Security configuration

The reaction of the chip on various security events is massively dependent on its security configuration that may
be affected by several fuses and ELE.

5.4.4.1.1 Open/Closed

The open/closed state determines whether AHAB allows execution of unauthenticated program images. Open
chip allows execution of any program image - unauthenticated images and authenticated images with bad
signature. Closed chip allows only execution of authenticated images. The state can be controlled, for example,
from U-Boot cli via the "ahab_status’ command. The status can be either "NXP closed™ (open) or 'OEM
closed’ (closed).

Example:

'=> ahab_ status’

‘Lifecycle: 0x0020, NXP closed

5.4.4.1.2 SRKH

The Super Root Key Hash (SRKH) on i.MX 93 is the SHA256 hash of the SRK table. The SRKH is stored in a
set of 8 32-bit eFUSES that contain the hash of the SRK table, containing Super Root Keys. They are one of the
main components of the Advanced High Assurance Boot (AHAB) chain of trust.

5.4.4.2 Bootloader verification chain

All firmware signatures are generated at build time using private keys from AHAB chain of trust.

1. ELE verifies Container 1 (AHAB) and Container 2 (SPL)
2. SPL checks Container 3 (ATF, OP-TEE, U-Boot proper, and UEFI)
3. UEFI checks efi modules and Windows Boot Manager

ROM code cannot be changed and is considered trusted. To verify the signature of SPL, ROM relies on ELE
that does the signature check via its AHAB module. When the chip is closed, only a valid SPL signature allows

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

28/45

https://github.com/nxp-imx/uboot-imx
https://learn.microsoft.com/en-us/windows-hardware/drivers/bringup/boot-and-uefi

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

booting flow to proceed (see Chip lifecycle). Once loaded and verified, U-Boot SPL is also considered secure
and trusted. U-Boot SPL loads the container image containing Device Tree Blob, ATF, OP-TEE, U-Boot proper
and UEFI. When building with -t secured efi, the U-Boot SPL verifies the signature of each component of
the FIT image. The U-Boot SPL proceeds to the proper U-Boot only when a matching signature is present. The
SPL requests signature verification from ELE/AHAB.

5.4.4.3 AHAB chain of trust

AHAB chain of trust is a set of certificates and keys, forming Public Key Infrastructure (PKI) used for signing and
verification of Secure Boot components handled by AHAB. This repository contains a pre-generated PKI. To use
your own PKI, point environment variable KEY_ROQOT to your key root folder.

Important: Building BSP with the default KEY_ROOT will produce signed, but not secure binaries since they
are signed with well-known keys!

NXP provides a set of tools, called CST that helps with generating custom PKI and signing.

The AHAB chain of trust consists of single Certification Authority (CA), four Super Root Keys (SRK) and
(optionally) four subordinate (SGK) keys. When using SGK keys (SRK generated with CA flag set), the firmware
container is signed by the SGK key. Otherwise, the container is signed directly by the SRK key.

AHAB with subordinate SGK keys AHAB
Containers are signed by SGK Containers are signed by SRK
SRKs have CA flag enabled SRKs have CA flag disabled
CA CA
‘_)_da---)- ¢ \\“ ‘-)_dd___,- ¢ *\\\“
SRK1 SRK2 SREKn SRK1 SRK2 SREKn
SGK1 SGK2 SGKn

Figure 12. AHAB chain of trust

5.4.4.4 i.MX firmware image verification

Even though the ELE (AHAB) is responsible for signature verification, the verification key itself cannot be
burned to eFUSES since there are not enough of them. To circumvent that, only a footprint of the key is written
to the device. The verification key itself is then packed along with the signature to the firmware binary. ELE then
verifies the key against the footprint and then uses the key to verify the signature.

When ELE verifies the signature of the i.MX firmware image, it does the following:

1. Get the SRK table location from the container signature header.

2. Extract the SRK table.

3. Compute SRKH and verify against fuses. Break if invalid.

4. (optional) Verify the SGK certificate by an appropriate SRK from the SRK table. Break if invalid.
5. Verify container signature.

5.5 Secure storage

There is numerous sensitive information in the system that must be stored securely - credentials, cryptographic
keys, and so on. They may be both volatile and non-volatile and must be hidden not only from other applications

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

29/45

https://www.nxp.com/webapp/sps/download/view_license.jsp?colCode=IMX_CST_TOOL

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

running under Windows, but also from other operating systems and peripherals. One example is Authenticated
Variables (AuthVars) functionality, described in the UEFI specification. This mechanism is used for storing
sensitive system data. Only authenticated issuers may read and modify these data. AuthVars are also used for
storing UEFI provisioning data (PK,KEK,db,dbx).

5.5.1 RPMB

This repository uses Replay Protected Memory Block (as defined in JEDEC eMMC specification JESD84-

B51) as a secure storage backend. RPMB is a special partition on eMMC memory where every read or write
operation must be authenticated. RPMB access is replay protected in a way, that every operation contains a
signature (MAC), that contains an incremental write counter. The signature is generated using a symmetric key,
that is burned in the eMMC controller and must be known also by issuer of the command. The process of writing
the key to the eMMC controller is a one-way process and the key is written in plaintext, it therefore must be
done in a secure environment.

RPMB is mandatory for this system to work since it is used as a secure storage backend for OP-TEE (and OP-
TEE is used by UEFI for storing AuthVars). For more information on how OP-TEE uses RPMB, see the following
link

5.5.2 Secure vs. non-secure build

The firmware binary can be built in two setups based on flags passed to the buildme64. sh script:

* Secure build - when building with -t secured efi or -t secured uefi
* Non-Secure build - when building without -t secured efior-t secured uefi

Note: The effect of -t secured efi isidentical to -t secured uefi, both parameters are
interchangeable.

5.5.2.1 Secure build

Secure build provides secure binaries with all Secure Boot dependencies enabled. UEFI firmware is built with
support of Secure Boot and AuthVars and Measured Boot is enabled. All firmware binaries are signed during
the build (U-Boot SPL, DT, OP-TEE, ATF, U-Boot, UEFI) and signature checks in U-Boot SPL are enforced.

Note: Secure firmware binary will not boot on clean device. To boot secure firmware binary, the RPMB key must
be already present in the eMMC controller. Otherwise, the initialization of OP-TEE and all dependencies will fail.
For more information, see Secure provisioning.

5.5.2.2 Non-Secure build

Non-secure build provides an easy way for testing and prototyping. In this setup, firmware binaries are not
signed and SPL signature checks are disabled. The Secure Boot, AuthVars, and Measured Boot are disabled.

This setup boots even without RPMB key provisioned (for example, a new device).

5.6 Secure Boot in UEFI and Windows

UEFI and Windows use their own chain of trust, which is composed of Platform Key (PK), Key Exchange Key
(KEK), forbidden signature database (dbx) and valid signature database (db). Those credentials are stored as
UEFI Secure variables. Those variables must be programmed at OEM site.

Important: Even when building with -t secured efi, the boot chain is not fully secured until PK is written.
Until then, the UEFI and Windows are in setup mode where signatures are not checked.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

30/45

https://optee.readthedocs.io/en/latest/architecture/secure_storage.html
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

UEFI Authentication

PK
KEK
UEFI
Secure Boot
AuthVars
db
dbx

Figure 13. UEFI Security

6 Secure provisioning

To achieve full system security with Secure Boot, perform the following steps in the correct order:

1. Prepare keys for HAB/AHAB.

2. Lock the device (burn SRKH and SEC_CONFIG fuses).
3. Write the RPMB key.

4. Boot the device and load UEFI keys.

There are many ways to generate HAB/AHAB keys. This guide presents a simple way using CST toolset. After
download, see User Guide in <cst directory>/docs/CST UG.pdf.

For detailed steps, follow device-specific guides:

Secure provisioning i.MX 8M

Secure provisioning i.MX 8QXP

Secure provisioning i.MX 93

6.1 Secure provisioning i.MX 8M

These steps are only applicable for i.MX 8M family. Use an appropriate guide for your platform, otherwise you
risk bricking your device.

6.1.1 Generate HAB keys

Generate the PKI using the keys/hab4 pki tree. sh script. Use the following options to generate four p256
ECC SRK and four IMG and CSF keys.

cd <cst directory>/keys

./hab4 pki tree.sh

Do you want to use an existing CA key (y/n)?: n

Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, pb2l: p256

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

31/45

https://www.nxp.com/webapp/sps/download/view_license.jsp?colCode=IMX_CST_TOOL

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

Enter PKI tree duration (years): 10
How many Super Root Keys should be generated? 4
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

The script populates the keysand crts folders within the CST root folder with private keys and appropriate
certificates. Set the KEY ROOT environment variable to absolute path to the CST root folder (the folder
containing keysand crtssubfolders).

export KEY ROOT=<cst directory>

Build will automatically fetch keys and certificates from this path to sign firmware binaries.

6.1.1.1 Prepare SRK table

CST provides srktool to prepare the SRK table. SRKH values must be written to fuses.

cd <cst directory>/crts

../linux64/bin/srktool -h 4 -t SRK l4table.bin -e SRK fuse.bin -d sha256 -c
./SRK1 sha256 4096 65537 v3 ca crt.pem,./SRK2 sha256 4096 65537 v3 ca crt.pem, ./
SRK3 sha256 4096 65537 v3 ca crt.pem,./SRK4 sha256 4096 65537 v3 ca crt.pem

-f1

The program prints out a summary with results:

Number of certificates 4

SRK table binary filename = SRK l4table.bin
SRK Fuse binary filename SRK fuse.bin
SRK Fuse binary dump:

SRK HASH[O] = 0x17B73726
SRK HASH[1] = Ox8E5CCCOE
SRK HASH[2] = O0xBC30A7BE
SRK HASH[3] = O0xE9B59C78
SRK HASH[4] = 0x2C682DAE
SRK HASH[5] = OxDESFE6CO
SRK HASH[6] = Ox3FF3DC81
SRK HASH[7] = 0x44B5B6FE

The SRK HASH[] array contains the SRKH value divided by four bytes. These are the values that are written to
SRK_HASH eFUSE in the next step.

For more information on how to use srktool, see chapter 3.1.3 Generating HAB4 SRK tables and Efuse Hash
in <cst_directory>/docs/CST _UG.pdf

6.1.2 Building secured binary

With HAB/AHAB keys prepared, you are able to build a signed secure binary. Build the firmware with -t
secured_efior -t secured uefi flag enabled, for example:

./buildme64.sh -b 8Mm -t all -t secured efi -nu

The command above produces winlO-iot-bsp/imx-windows-iot/BSP/firmware/MX8M MINI EVK/
signed flash.bin, which is a signed binary image containing all boot components.

6.1.3 Locking the device for i.MX 8M

Warning: Steps described in this section are irreversible. Always make sure you know what you are doing, any
misconfiguration may lead to a bricked device.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

32/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

This guide uses U-Boot's command-line interface as a tool for burning eFUSES.

6.1.4 Burning SRK_HASH

Load a stock image to the SD card (non-secure build).
Enter U-Boot command-line interface (press escape on prompt during boot).
To find proper fuse indexes, see the fuse map for your device.

Burn SRK_HASH fuses with values from srktool-see SRK fuse.bin. Use the output values of srktool or
use the following command: hexdump -e '/4 "0x"' -e '/4 "$X""\n"' < SRK fuse.bin

Example for i.MX 8M Mini:

Ponp-=

fuse prog -y 6 0 0x17B73726
fuse prog -y 6 1 0x8ES5CCCOE
fuse prog -y 6 2 0xBC30A7BE
fuse prog -y 6 3 0xE9B59C78
fuse prog -y 7 0 0x2C682DAE
fuse prog -y 7 1 OxDESFE6CO
fuse prog -y 7 2 Ox3FF3DC81
fuse prog -y 7 3 0x44B5B6FE

reset

The device now contains an SRK Hash composed of your PKI keys and is able to verify firmware binary
signatures. Until locked, the device accepts unsigned binaries and binaries with bad signature.

Tip: Before locking the chip, boot a signed image from the step Building secured binary and check HAB events:

1. Prepare an SD card with secured binary.
2. Enter U-Boot command line.
3. Enterthe hab_status command.

The command must output the following text, saying that all signatures are valid:

Secure boot enabled
HAB Configuration: Oxcc, HAB State: 0x99
No HAB Events Found!

6.1.5 Burning SEC_CONFIG

Load a stock image to the SD card (non-secure build).

Enter U-Boot command-line interface (press escape on prompt during boot).
To find proper fuse indexes, see the fuse map for your device.

Burn the SEC_CONFIG fuse to achieve the "closed" state.

Example for i.MX 8M Mini:

i N

fuse prog 1 3 0x02000000
reset

The chip is now locked and accepts only firmware signed with appropriate keys.

6.2 Secure provisioning i.MX 8QXP

These steps are only applicable for i.MX 8QXP family. Use an appropriate guide for your platform otherwise you
risk bricking your device.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

33/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

6.2.1 Generate AHAB keys

This section presents a way of generating AHAB keys. They are only applicable for i.MX 8QXP and i.MX 93
SoC.

Start by running the keys/ahab pki tree.sh script, use the following options to generate four p384 ECC
SRK with CA flag disabled (SRK used for container signing).

cd <cst directory>/keys
./ahab _pki tree.sh
Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, p521: p384
Enter the digest algorithm to use: sha384
Enter PKI tree duration (years): 5
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

The script populates the keys and crts folders within the CST root folder with private keys and appropriate
certificates. Set the KEY ROOT environment variable to absolute path to the CST root folder (the folder
containing keys and crts subfolders).

export KEY ROOT=<cst directory>

Build automatically fetches keys and certificates from this path to sign firmware binaries.

6.2.1.1 Prepare SRK table

CST provides srktool to prepare the SRK table. SRKH values that must be written to fuses.

cd <cst directory>/crts
../linux64/bin/srktool -a -s sha384 -t SRKtable.bin -e SRKfuse.bin -f 1 -c
SRK1 sha384 secp384rl v3 usr crt.pem,SRKZ sha384 secp384rl v3 usr crt.pem,SRK3 sha384 secp

The program prints a summary with results:

Number of certificates =4

SRK table binary filename = SRKtable.bin
SRK Fuse binary filename = SRKfuse.bin
SRK Fuse binary dump:

SRK HASH[0] = 0x336D1608

SRK HASH[1l] = OxDFCC2D5E

SRK HASH[2] = 0xB582FAl4

SRK HASH[3] = 0xDA325A05

SRK HASH[4] = OxEAB66GEDE

SRK HASH[5] = O0xB64F7A87

SRK HASH[6] = O0xC9CAD3BF

SRK HASH[7] = 0x479DC210

SRK HASH[8] = 0x79DA681C

SRK HASH[9] = 0x8C55E093

SRK HASH[10] = Ox3CF9CF19

SRK HASH[11] = 0xC7B6DDFO

SRK HASH[12] = OxEOC3363E

SRK HASH[13] = 0x73D8A971

SRK HASH[14] = 0x240A0EEE

SRK HASH[15] = O0xE46CE431
IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1.4.1 — 31 July 2023

34/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

The SRK HASH[] array contains the SRKH value divided by four bytes. These are the values that will be written
to SRK_HASH eFUSE in the next step (applicable only for i.MX 8QXP)

For more information on how to use srktool, see chapter 3.2.3 Generating AHAB SRK tables and Efuse Hash
in <cst directory>/docs/CST UG.pdf

6.2.2 Building secured binary

With HAB/AHAB keys prepared, you are able to build a signed secure binary. Build the firmware with -t
secured efior -t secured uefi flag enabled, for example:

./buildme64.sh -b 8Mm -t all -t secured efi -nu

The command above produces winlO-iot-bsp/imx-windows-iot/BSP/firmware/MX8M MINI EVK/
signed flash.bin, which is a signed binary image containing all boot components.

6.2.3 Locking the device (i.MX 8QXP)

Warning: CAUTION: Steps described in this section are irreversible. Always make sure you know what you are
doing, any misconfiguration may lead to a bricked device.

The following steps are only applicable for i.MX 8QXP and i.MX 93 SoC. For i.MX 8M, see section Locking the
device (i.MX 8M) above.

This guide uses U-Boot's command-line interface as a tool for burning eFUSES.

6.2.3.1 Burning SRK_HASH

Load a stock image to the SD card.
Enter U-Boot command-line interface (press escape on prompt during boot).
To find proper fuse indexes, see the fuse map for your device.

Burn SRK_HASH fuses with values from srktool - see SRK_fuse.bin. Use the output values of srktool or
use the following command: hexdump -e '/4 "0x"' -e '/4 "%X""\n"' < SRKfuse.bin

Ponp-=

For 1.MX 8QXP only
Dump SRKH to console
hexdump -e '/4 "0x"' -e '/4 "$X""\n"' < SRKfuse.bin
0x336D1608

OxDFCC2D5E

0xB582FA14

0xDA325A05

O0xEAB6GEDE

0xB64F7A87

0xC9CAD3BF

0x479DC210

0x79DA681C

0x8C55E093

0x3CF9CF19

0xC7B6DDFO

O0xEOC3363E

0x73D8A971

0x240A0EEE

0xE46CE431

For 1.MX 8QXP only
Write values to fuses via UBoot CLI
fuse prog 0 730 0x336d1608

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

35/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

731 Oxdfcc2d5e
732 0xb582fald
733 0xda325a05
734 Oxeabb66ede
735 0xbo64f7a87
736 0xc9cad3bf
737 0x479dc210
738 0x79da681lc
739 0x8c55e093
740 0x3cf9cfl9
741 0xc7b6ddf0
742 0xe0c3363e
743 0x73d8a971
744 0x240aleee
745 0Oxedoced3l

fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
fuse prog
reset

[cloloNolNoloNoloNololNoloNoNoNe]

The device now contains an SRK Hash composed of your PKI keys and is able to verify firmware binary
signatures. Until locked, the device accepts unsigned binaries and binaries with bad signature.

Tip: Before locking the chip, boot a signed image from the step Building secured binary and check AHAB
events:

1. Prepare the SD card with secured binary.
2. Enter U-Boot command line.
3. Enterthe ahab_status command.

The command must output the following text, indicating that all signatures are valid:

=> ahab status
Lifecycle: 0x0020, NXP closed
No SECO Events Found!

In case of any error, U-Boot prints out and parse SECO events. Example for a missing signature:

=> ahab status

Lifecycle: 0x0020, NXP closed

SECO Event[0] = 0x0087EEQ0
CMD = AHAB AUTH CONTAINER REQ (0x87)
IND = AHAB NO AUTHENTICATION IND (OxEE)

6.2.3.2 Closing the chip

1. Load a stock image to the SD card (non-secure build).
2. Enter U-Boot command-line interface (press escape on prompt during boot).
3. Close the chip and reboot.

Example:

=> ahab close
=> reset

The chip is now locked and accepts only firmware signed with appropriate keys. You can check that via the
ahab status command, the lifecycle must be 0x80 OEM closed.

=> ahab status

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

36/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

Lifecycle: "0x80, OEM closed"

6.3 Secure provisioning i.MX 93

These steps are only applicable for i.MX 93 family. Use an appropriate guide for your platform otherwise you
risk bricking your device.

6.3.1 Generate AHAB keys

This section presents a way of generating AHAB keys. They are only applicable for i.MX 8QXP and i.MX 93
SoC.

Start by running the keys/ahab pki tree.sh script, use the following options to generate four p384 ECC
SRK with CA flag disabled (SRK used for container signing).

cd <cst directory>/keys
./ahab _pki tree.sh
Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, pb2l: p384
Enter the digest algorithm to use: sha384
Enter PKI tree duration (years): 5
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

The script populates the keys and crts folders within the CST root folder with private keys and appropriate
certificates. Set the KEY ROOT environment variable to absolute path to the CST root folder (the folder
containing keys and crts subfolders).

export KEY ROOT=<cst directory>

Build automatically fetches keys and certificates from this path to sign firmware binaries.

6.3.1.1 Prepare SRK table

CST provides srktool to prepare the SRK table from which SRKH value will be created.

cd <cst directory>/crts

../linux64/bin/srktool -a -s sha384 -t SRKtable.bin -e SRKfuse.bin -f 1 -c
SRK1 sha384 secp384rl v3 usr crt.pem,SRK2 sha384 secp384rl v3 usr crt.pem,
SRK3 sha384 secp384rl v3 usr crt.pem,SRK4 sha384 secp384rl v3 usr crt.pem

The program prints a summary with results:

Number of certificates =4

SRK table binary filename = SRKtable.bin

SRK Fuse binary filename = SRKfuse.bin

SRK Fuse binary dump:

SRK HASH[O0] = 0x336D1608

SRK HASH[1l] = OxDFCC2D5E

SRK HASH[2] = 0xB582FAl4

SRK HASH[3] = 0xDA325A05

SRK HASH[4] = OxXEAB6GEDE

SRK HASH[5] = O0xB64F7A87

SRK HASH[6] = 0OxC9CAD3BF

SRK HASH[7] = 0x479DC210
IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 1.4.1 — 31 July 2023

37145

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

SRK HASH[8] = 0x79DA681C

SRK HASH[9] = 0x8C55E093

SRK HASH[10] = 0x3CF9CF19
SRK HASH[11] = 0xC7B6DDFO
SRK HASH[12] = O0xEOC3363E
SRK HASH[13] = 0x73D8A971
SRK HASH[14] = 0x240A0EEE
SRK HASH[15] = 0xE46CE431

The SRK HASH[] is SHA-512 hash of the SRK table and is valid only for i.MX 8QXP family (i.MX 93 needs
SHA-256 format). SRKH for i.MX 93 will be prepared later.

For more information on how to use srktool, see chapter 3.2.3 Generating AHAB SRK tables and Efuse Hash
in <cst directory>/docs/CST UG.pdf

6.3.2 Building secured binary

With HAB/AHAB keys prepared, you are able to build a signed secure binary. Build the firmware with -t
secured efior -t secured uefi flag enabled, for example:

./buildme64.sh -b 8Mm -t all -t secured efi -nu

The command above produces winlO-iot-bsp/imx-windows-iot/BSP/firmware/MX8M MINI EVK/
signed flash.bin, which is a signed binary image containing all boot components.

6.3.3 Locking the device

Warning: CAUTION: Steps described in this section are irreversible. Always make sure you know what you are
doing, any misconfiguration may lead to a bricked device.

The following steps are only applicable for i.MX 8QXP and i.MX 93 SoC. For i.MX 8M, see section Locking the
device (i.MX 8M) above.

Note: The CST tool currently does not support i.MX 93 SRKH format. It is therefore necessary to create the
hash manually, follow Preparing SRKH (i.MX 93).

This guide uses U-Boot's command-line interface as a tool for burning eFUSES.

6.3.3.1 Preparing SRKH

1. Enter the folder containing your SRKtable.bin

2. Generate SRKH using the following command: openssl dgst -sha256 -binary SRKtable.bin >
SRKfuse93.bin

3. Print contents of SRKH in the format used for writing to fuses: hexdump -e '/4 "0x"' -e '/4
"$X""\n"' < SRKfuse93.bin

6.3.3.2 Burning SRK_HASH

Load a stock image to the SD card.
Enter U-Boot command-line interface (press escape on prompt during boot).
To find proper fuse indexes, see the fuse map for your device.

i.MX 8QXP: Burn SRK_HASH fuses with values from srktool - see SRK_fuse.bin. Use the output
values of srktool or use the following command: hexdump -e '/4 "0x"' -e '/4 "$X""\n"' <
SRKfuse.bin

Pobp-=

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

38/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

5. i.MX 93: Burn SRK_HASH fuses with values from step 4 of "Preparing SRKH (imx93 only)" above.

For i.MX93 only

Dump SRKH to console
hexdump -e '/4 "0x"' -e '/4 "$X""\n"' < SRKfuse93.bin
0xA3B1A4BO

0x2AAEEECS

0xCFC0D333

0xCC440EFC

0x73F4D517

0xC8D3F8AD

0xF8893889

0x42CF6504

For 1.MX93 only
Write values to fuses via UBoot CLI

fuse prog -y 16 0 0xA3B1A4BO
fuse prog -y 16 1 O0x2AAEEECS
fuse prog -y 16 2 0xCFCOD333
fuse prog -y 16 3 0xCC440EFC
fuse prog -y 16 4 0x73F4D517
fuse prog -y 16 5 0xC8D3F8A0
fuse prog -y 16 6 0xF8893889
fuse prog -y 16 7 0x42CF6504

reset

The device now contains an SRK Hash composed of your PKI keys and is able to verify firmware binary
signatures. Until locked, the device accepts unsigned binaries and binaries with bad signature.

Tip: Before locking the chip, boot a signed image from the step Building secured binary and check AHAB
events:

1. Prepare the SD card with secured binary.
2. Enter U-Boot command line.
3. Enter the ahab status command.

The command must output the following text, indicating that all signatures are valid:

=> ahab status
Lifecycle: 0x0020, NXP closed

No SECO Events Found!

In case of any error, U-Boot prints and parses SECO events. Example for a missing signature:

=> ahab status
Lifecycle: 0x0020, NXP closed

SECO Event[0] = 0x0087EEQ00
CMD AHAB_AUTH_CONTAINER_REQ (0x87)
IND = AHAB_NO_AUTHENTICATION_IND (OXEE)

6.3.3.3 Closing the chip

1. Load a stock image to the SD card (non-secure build).
2. Enter U-Boot command-line interface (press escape on prompt during boot).
3. Close the chip and reboot.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

39/45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

Example:

=> ahab close
=> reset

The chip is now locked and accepts only firmware signed with appropriate keys. You can check that via the
ahab status command, the lifecycle must be 0x80 OEM closed.

=> ahab status
Lifecycle: ~0x80, OEM closed®

6.4 RPMB, UEFI

6.4.1 RPMB

The following steps for loading RPMB key are only applicable with a device in the "closed" state.

Used OP-TEE implementation allows the use of Hardware-Unique key (HUK) that is accessible only from
software running in secure world and therefore unreachable from normal OS. This principle provides enhanced
security since the key does not need to be stored in memory, it is generated on demand.

OP-TEE itself is able to burn the key, when built with CFG_ RPMB WRITE KEY=y. The following steps guide you
on how to prepare a "provisioning" build which contains OP-TEE with RPMB key provisioning enabled. OP-TEE
uses HUK as RPMB key by default.

1. Rebuild the firmware using . /buildme64.sh -b <board-type> -t all -t secured efi -ao
rpmb_write key -ao no rpmb test key and store the signed firmware.bin separately. This
firmware must be used only for RPMB provisioning (at secured place).

2. Burn the provisioning signed firmware.bin to the SD card and boot it.

OP-TEE automatically burns the RPMB key to eMMC controller during first boot. The RPMB is now fully
provisioned and the boot process should now be unblocked and proceed to UEFI and Windows. You can now
use your production signed firmware.bin. The boot chain is now secured up to UEFI firmware.

6.4.2 UEFI

Even with Secure Boot settings enabled, the UEFI firmware and Windows still reside in setup mode, where
signatures are not checked. The UEFI automatically transfers to user mode with Secure Boot enabled when PK
is written and the OS is restarted. For more details, see Windows Secure Boot Key Creation and Management
Guidance.

6.5 Troubleshooting

6.5.1 Firmware built as secure fails to boot or hangs in UEFI

There may be a problem with RPMB, either the RPMB key was not written yet, or a different key is used.

Figure 14. RPMB key missing

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

40/ 45

https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance?view=windows-11
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance?view=windows-11

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

6.5.2 Resolution
Rebuild OP-TEE with debug prints enabled:

make PLATFORM=imx PLATFORM FLAVOR=$optee plat \
CFG_TEE_CORE_DEBUG=y CFG_TEE CORE_LOG_LEVEL=4 \
CFG_RPMB FS=y CFG_REE FS=n \
CFG_CORE_HEAP SIZE=131072

Boot the device with new OP-TEE, review boot messages. Following messages are signalizing that there is a
missing RPMB key:

) init:11
) init:11
nit:1

Figure 15. RMPB no key log

Follow RPMB secure provisioning chapter.

7 Revision history

Revision number Date Substantive changes

W0.9.0 1/2022 Private preview release for i.MX8M
platform.

W0.9.1 3/2022 Public preview release for i.MX8M
platform.

W1.0.0 4/2022 Public release for i.MX8M and i.MX8M
Mini platforms.

W1.1.0 6/2022 Public release for i.MX8M Nano and
i.MX8M Plus platforms.

W1.2.0 9/2022 Section 1.7 is removed.

W1.21 10/2022 Updated for version 1.2.1

W1.3.0 12/2022 Updated for version 1.3.0

W1.4.0 3/2023 Updated for version 1.4.0

W1.4.1 712023 Minor technical changes.

8 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

41/ 45

NXP Semiconductors |MXWG U

i.MX Windows 10 loT User’s Guide

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1.4.1 — 31 July 2023

4245

NXP Semiconductors

IMXWGU

9 Legal information

i.MX Windows 10 loT User’s Guide

9.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

9.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

IMXWGU

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

9.3 Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 1.4.1 — 31 July 2023

4345

mailto:PSIRT@nxp.com

NXP Semiconductors

IMXWGU

i.MX Windows 10 loT User’s Guide

Contents
1 OVEIVIEW ...oceeriieeriisie s s 5222 Device Tree BIODccccovevciiiiiiiiiie 18
1.1 AUdIENCE ... 5223 OP-TEE ..cciiiii e 18
1.2 Conventions 5224 ATF o 19
1.3 How to start 5225 U-BOOt Properccccveeeeeeeiiiicicceeeeeeee e, 19
14 Using Prebuilt Binaries to create an image 2 5226 UEFI o 19
1.5 Using Source Files to create image 2 5.23 Ensuring firmware securityccccccoiiieee. 19
1.6 References ..o 2 5.2.3.1 Security configurationc.cccccoiiiiiiiins 19
2 Building Windows 10 loT for NXP i.MX 5.2.3.2 Bootloader verification chainc....cccee... 19
Processors ... 3 5.2.3.3 HAB chain of trust ... 20
21 Building the drivers in the BSPcccccceeiiie 3 5.2.34 i.MX firmware image verification 20
2.1.1 Required to0ISccccciiiiiiiiiiiceeeee e 3 5.3 Secure boot on i.MX 8QXPcccceiiiiiiiis 21
2111 Visual Studio 2019 ..o 3 5.3.1 System boot on i.MX 8QXPccceviiririiiennnn 21
2.1.1.2 Windows Kits from Windows 10, version 5.3.2 i.MX boot containersccceeeeeeeiieieieeiieeeeeee 22
2004 (10.0.19041.685)eveeeiuiiiiaaeaiiiea e 3 5.3.3 System boot componentsccccciiiiie. 22
21.2 Obtaining sources for building the drivers 4 5.3.3.1 U-Boot SPL ... 23
2.1.2.1 Preparing source for building the drivers 4 5.3.3.2 Device Tree Blobccccooiiiiiiiii, 23
213 Structure of Windows driver sources 4 5.83.3.3 OP-TEE ...oiiiiiei e 23
214 One-time environment setupccccccvvvvveeeenen.n. 4 5.3.3.4 ATF e 24
215 Building the driverscccooiiiiiiiiiee 4 5.3.3.5 U-BoOt Propercccceeeeeeiiiiiiiceeeeeee e, 24
2.2 Building ARM64 Firmwarecccocovvnieeennenn. 5 5.3.3.6 UEFI (o 24
221 Required toolsccooiiiiiiiieee e 5 534 Ensuring firmware securityccccccoiiiiieen. 24
222 Obtaining sources for building ARM64 5.3.4.1 Security configurationccccoceiiiiiiiini. 24
FIrmwareoocoeiiiii e 5 5.3.4.2 Bootloader verification chainc.ccocoeenee. 24
2.2.21 Preparing sources for building firmware 5 5.3.4.3 AHAB chain of trustccccoiiiiiiiie 25
223 Setting up your build environment 6 5.3.4.4 i.MX firmware image verification 25
224 Building the firmwareccccccoiiiiiiiiiiee 8 5.4 Secure boot on i.MX 93 ... 26
225 Common causes of build errorsc........... 10 541 System boot on iMX 93 ... 26
3 Display/GPU driverccccooomriiccirerecccmeeeenne 10 54.2 i.MX Boot Containersccccceeeriiieieeenineenn. 26
3.1 Display interface selectioncccccceeiineee. 10 543 System boot componentsccccciiiiiie.. 26
3.2 Display resolution and timing parameters 10 5431 U-Boot SPL ... 27
3.2.1 HDMI display interfaceccccooceiiiiiiennnne 11 5.4.3.2 Device Tree Blobccccooiiiiiiiiiiie 27
3.2.2 LVDS, MIPI-DSI and Parallel display 5433 OP-TEE ..coiiiiiieee e 27
iNterfaces ... 11 5.4.3.4 ATF o 27
3.3 Display specific parameterscccccceeeninee 11 54.3.5 U-BOOt Properccccceeeeeeiiiiiiiccieeeeeeeeeeee, 28
3.3.1 LVDS display interfacecccceeevinieiiiiinnns 11 5.4.3.6 UEFI (oo 28
3.3.2 MIPI-DSI display interfacecccccoccooeeennnne 11 544 Ensuring firmware securitycccccoiiiieeen. 28
3.4 Display support in firmwareccccccceeeenne. 11 5.4.4.1 Security configurationccccocoiiiiiiinns 28
3.4.1 Firmware display interface selection 12 5.4.4.2 Bootloader verification chaincoc... 28
3.4.2 Firmware display resolutionccceccee. 12 5.4.4.3 AHAB chain of trustcccoiiiiiiiie 29
4 Power managementccooiiiiiiieennnnceeeens 12 5.4.4.4 iMX firmware image verification 29
41 Power management user scenarios 12 55 Secure storagecoeiiiieii i 29
4.2 Device power management DPM on i.MX 5.5.1 RPMB ... 30
8/9 platforms ..., 13 55.2 Secure vs. non-secure buildcceeeee. 30
4.3 Processor power management PPM on 5521 Secure buildccooiiiii 30
i.MX 8/9 platformscccccoviiiiiiiiiiieee, 13 5.5.2.2 Non-Secure buildcccevveeeeiiieiieiiiiiiies 30
4.4 Power management tools and debugging 14 5.6 Secure Boot in UEFI and Windows 30
441 POWEICTg /@ oo 14 6 Secure Provisioningcccceecceeeriiresseee s 31
442 powercfg /sleepstudyccoociiiiiiiiiiniien. 15 6.1 Secure provisioning i.MX 8M ... 31
443 powercfg /energycccooecieiieiiiee e 15 6.1.1 Generate HAB KeysSccooiiiiiiiiiiiieeeeiiee 31
444 WinDbg fxdeviceccccooiiiiiiiiiieeee, 15 6.1.1.1 Prepare SRK tablecccccoiiiiiiiiiiis 32
5 Secure boot ... 17 6.1.2 Building secured binarycccccoiiiiiieiininnen. 32
51 Basic conceptsccccoiiiiiiiii i 17 6.1.3 Locking the device for i.MX 8M 32
5.2 Secure boot on i.MX 8M ... 17 6.1.4 Burning SRK_HASH ..., 33
5.2.1 System boot on iMX 8M ... 17 6.1.5 Burning SEC_CONFIGccccooiiiiiiiieeee 33
5.2.2 System boot componentscccceeiiiiieenn. 17 6.2 Secure provisioning i.MX 8QXPcccceenuee. 33
5221 U-BoOot SPL ... 18 6.2.1 Generate AHAB Keysooocieiiiiiiiiieieeiee. 34
IMXWGU All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 1.4.1 — 31 July 2023

44145

NXP Semiconductors

IMXWGU

6.2.1.1
6.2.2
6.2.3
6.2.3.1
6.2.3.2
6.3
6.3.1
6.3.1.1
6.3.2
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.4
6.4.1
6.4.2
6.5
6.5.1

6.5.2

Prepare SRK tablecccooiiiiiiiiis 34
Building secured binaryccccccooveeniiiennen. 35
Locking the device (i.MX 8QXP)ccccvvvrnenne 35
Burning SRK_HASHcoccoiiiiiiiiiiecee 35
Closing the chipcccooiiiiii e, 36
Secure provisioning i.MX 93ccciiiiinien. 37
Generate AHAB KeyScoccvviiieeeiieeeiiee e 37
Prepare SRK tablecccooiiiiiie 37
Building secured binaryccccccooiieiniiiennnn. 38
Locking the deviceccccooviiiiiiniiiiiiece, 38
Preparing SRKH ... 38
Burning SRK_HASH ... 38
Closing the chip ..o, 39
RPMB, UEFI ..ot 40
RPMB ... 40
UEFT e s 40
Troubleshootingccccooveeiiiiiiicee 40
Firmware built as secure fails to boot or
hangs in UEF] ... 40
ReSOIULION ...ooiiiiiiiei e 41
Revision historyccccoviiniininienineennenins 41
Note about the source code in the
document ..o ———— 41
Legal informationcccccemiiiiriniinncienieees 43

i.MX Windows 10 loT User’s Guide

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.

For more information, please visit: http://www.nxp.com

Date of release: 31 July 2023
Document identifier: IMXWGU

	1 Overview
	1.1 Audience
	1.2 Conventions
	1.3 How to start
	1.4 Using Prebuilt Binaries to create an image
	1.5 Using Source Files to create image
	1.6 References

	2 Building Windows 10 IoT for NXP i.MX Processors
	2.1 Building the drivers in the BSP
	2.1.1 Required tools
	2.1.1.1 Visual Studio 2019
	2.1.1.2 Windows Kits from Windows 10, version 2004 (10.0.19041.685)

	2.1.2 Obtaining sources for building the drivers
	2.1.2.1 Preparing source for building the drivers

	2.1.3 Structure of Windows driver sources
	2.1.4 One-time environment setup
	2.1.5 Building the drivers

	2.2 Building ARM64 Firmware
	2.2.1 Required tools
	2.2.2 Obtaining sources for building ARM64 Firmware
	2.2.2.1 Preparing sources for building firmware

	2.2.3 Setting up your build environment
	2.2.4 Building the firmware
	2.2.5 Common causes of build errors

	3 Display/GPU driver
	3.1 Display interface selection
	3.2 Display resolution and timing parameters
	3.2.1 HDMI display interface
	3.2.2 LVDS, MIPI-DSI and Parallel display interfaces

	3.3 Display specific parameters
	3.3.1 LVDS display interface
	3.3.2 MIPI-DSI display interface

	3.4 Display support in firmware
	3.4.1 Firmware display interface selection
	3.4.2 Firmware display resolution

	4 Power management
	4.1 Power management user scenarios
	4.2 Device power management DPM on i.MX 8/9 platforms
	4.3 Processor power management PPM on i.MX 8/9 platforms
	4.4 Power management tools and debugging
	4.4.1 powercfg /a
	4.4.2 powercfg /sleepstudy
	4.4.3 powercfg /energy
	4.4.4 WinDbg !fxdevice

	5 Secure boot
	5.1 Basic concepts
	5.2 Secure boot on i.MX 8M
	5.2.1 System boot on i.MX 8M
	5.2.2 System boot components
	5.2.2.1 U-Boot SPL
	5.2.2.2 Device Tree Blob
	5.2.2.3 OP-TEE
	5.2.2.4 ATF
	5.2.2.5 U-Boot proper
	5.2.2.6 UEFI

	5.2.3 Ensuring firmware security
	5.2.3.1 Security configuration
	5.2.3.1.1 Open/Closed
	5.2.3.1.2 SRKH

	5.2.3.2 Bootloader verification chain
	5.2.3.3 HAB chain of trust
	5.2.3.4 i.MX firmware image verification

	5.3 Secure boot on i.MX 8QXP
	5.3.1 System boot on i.MX 8QXP
	5.3.2 i.MX boot containers
	5.3.3 System boot components
	5.3.3.1 U-Boot SPL
	5.3.3.2 Device Tree Blob
	5.3.3.3 OP-TEE
	5.3.3.4 ATF
	5.3.3.5 U-Boot proper
	5.3.3.6 UEFI

	5.3.4 Ensuring firmware security
	5.3.4.1 Security configuration
	5.3.4.1.1 Open/Closed
	5.3.4.1.2 SRKH

	5.3.4.2 Bootloader verification chain
	5.3.4.3 AHAB chain of trust
	5.3.4.4 i.MX firmware image verification

	5.4 Secure boot on i.MX 93
	5.4.1 System boot on i.MX 93
	5.4.2 i.MX Boot Containers
	5.4.3 System boot components
	5.4.3.1 U-Boot SPL
	5.4.3.2 Device Tree Blob
	5.4.3.3 OP-TEE
	5.4.3.4 ATF
	5.4.3.5 U-Boot proper
	5.4.3.6 UEFI

	5.4.4 Ensuring firmware security
	5.4.4.1 Security configuration
	5.4.4.1.1 Open/Closed
	5.4.4.1.2 SRKH

	5.4.4.2 Bootloader verification chain
	5.4.4.3 AHAB chain of trust
	5.4.4.4 i.MX firmware image verification

	5.5 Secure storage
	5.5.1 RPMB
	5.5.2 Secure vs. non-secure build
	5.5.2.1 Secure build
	5.5.2.2 Non-Secure build

	5.6 Secure Boot in UEFI and Windows

	6 Secure provisioning
	6.1 Secure provisioning i.MX 8M
	6.1.1 Generate HAB keys
	6.1.1.1 Prepare SRK table

	6.1.2 Building secured binary
	6.1.3 Locking the device for i.MX 8M
	6.1.4 Burning SRK_HASH
	6.1.5 Burning SEC_CONFIG

	6.2 Secure provisioning i.MX 8QXP
	6.2.1 Generate AHAB keys
	6.2.1.1 Prepare SRK table

	6.2.2 Building secured binary
	6.2.3 Locking the device (i.MX 8QXP)
	6.2.3.1 Burning SRK_HASH
	6.2.3.2 Closing the chip

	6.3 Secure provisioning i.MX 93
	6.3.1 Generate AHAB keys
	6.3.1.1 Prepare SRK table

	6.3.2 Building secured binary
	6.3.3 Locking the device
	6.3.3.1 Preparing SRKH
	6.3.3.2 Burning SRK_HASH
	6.3.3.3 Closing the chip

	6.4 RPMB, UEFI
	6.4.1 RPMB
	6.4.2 UEFI

	6.5 Troubleshooting
	6.5.1 Firmware built as secure fails to boot or hangs in UEFI
	6.5.2 Resolution

	7 Revision history
	8 Note about the source code in the document
	9 Legal information
	Contents

