
MC56F8006DEMO

Introduction

This lab is a guide to creating a CodeWarrior™ project to implement a finite impulse response

filter (FIR) using Processor Expert™ on the MC56F8006 digital signal controller (DSC).

•	 A low pass filter is devised to filter out a 2000 Hertz noise signal

•	 A 1000 Hertz signal is retained

•	 Sampling rate of signal is 8000 samples per second (SPS)

•	 Project runs on the MC56F8006DEMO

•	 Results are graphed by the IDE

Launch CodeWarrior for DSC 8.2.3: Open and Name a New Project

•	 Open a new CodeWarrior project:

•	 Use Processor Expert Stationery and a new project name:

The purpose of this exercise is to get started using the FIR as quickly as possible, using the
included filter QEDesign package to obtain verifiable results using the MC56F8006 target.
We can assign time values to the sample sequences in an arbitrary manner. Data to be filtered
is simply generated by a C program using eight tabled values, and results are viewed using
the debugger.

Lab

MC56F8006DEMO

MC56F8006DEMO

Target MC56F8006_48_LQFP: Select Processor Expert

•	 Select the MC56F8006 as the target device:

•	 Select the Processor Expert tab of the project window:

Fs is the sampling frequency. (We will tell the filter design package it is 8000 SPS)
The input consists of the sum of two sines, of zero phase and frequencies Fs/4 and
Fs/8 (2000 and 1000), and of amplitude .45.

The objective is to design and demonstrate an FIR filter to filter out the higher frequency
(a low pass filter), Fs/4, using the filter design package provided with CodeWarrior and the FIR
bean supplied with PE.

The coefficients generated by the filter design program should be easily importable into
our code, and we should not have to count how many coefficients we are working
with, having told the filter design tool how many taps we want for the FIR filter.

Add the Processor Expert DSP Func DFR Bean

In the project window:

•	 Right click on Beans

•	 Click on Add Bean(s)

•	 Use Categories Tab

•	 In Bean Selector window expand SW, DSP Function and Math Library,

to select DSP Func DFR, then:

MC56F8006DEMO

Allow the DSP_MEM Bean Inclusion

•	 Since dynamic memory is used by default you will see the following window. Click "OK."

•	 This memory management library bean is needed for dynamic memory allocation for the FIR

•	 The FIR bean uses dynamic memory allocation by default

•	 Static memory allocation may be adopted if needed later

•	 The following message pops up now:

•	 Click "OK"

•	 Next: allocate some memory for the dynamic memory allocation’s use

Configure the MEM1:DSP_MEM Bean

•	 In the project window, double click the MEM1 bean to configure it

Observe the MEM1 Bean’s Properties

•	 The internal dynamic memory size is initially zero for this bean

•	 There is no external memory for this part

Conclusion: Some internal memory must be allocated for dynamic use in this bean

Configure MEM1 Bean for Dynamic Memory Allocation 1/2

•	 Click once on the + to add a section for dynamic memory allocations

A fourth memory area, MemoryArea3, will

be generated. This memory area must be

reconfigured. The qualifier must be set to

INTERNAL_DYNAMIC. The size cannot be zero.

68 (hexadecimal) can be used as a starting

size for this project. Finally, we must resolve

the resulting overlap with MemoryArea2. The

resulting bean configuration is shown to the right.

MC56F8006DEMO

Configure MEM1 Bean for Dynamic Memory Allocation 2/2

Name can be whatever user wishes to name it
Since we are using the simulator, we need a source of data to filter. We can easily generate a couple
of sine waves and add them together.

We can do this in fixed point with a very small amount of code and without resorting to the use of
FILE IO, which can later be added to try filtering recorded live audio samples.

Since we are generating samples without respect to real-time, we can just work in terms of the
sampling frequency, Fs. The highest frequency we might try to represent with samples at the rate Fs
would be less than Fs/2.

Picking Fs/4 as one of our frequencies. In this case we have 0,A,0,-A,0,A,0,-A as an easy to generate
sine wave of amplitude A.

We can also easily generate the samples for the frequency Fs/8. In this case, we have the sample
series 0,S,A,S,0,-S,-A,-S (repeat same eight samples add infinitum).

Where S = A * 1 / sqrt 2

If we add these two series, we have the sum of two sine waves of two different frequencies:
0,A+S,A,S-A,0,A-S,-A,-(A+S) (repeat the same 8 samples add infinitum).

If A = .45 then the desired input sample series is the following repeated:

•	 0.0,

.45 + 0.31819805153394638598037996294718 = 0.76819805153394638598037996294718,

•	 .45,

-0.131801948466053614019620037053,

•	 0.0,

0.131801948466053614019620037053,

•	 -.45,

-0.76819805153394638598037996294718

MC56F8006DEMO

Generate the Code Using Processor Expert

•	 Generate code ‘FirGeneration.mcp’

•	 Once this is done, select the Files tab of the project window to edit FirGeneration.c

•	 This is the file we will add our code to filter out high-frequency noise with an FIR

•	 Hint: Expand User Modules to find FirGeneration.c, then double-click it.

Do not build the project because the filter is not yet included

Generate Canned Input Signal Plus Noise

•	 The black signal of interest is at Fs/8 or 1000 Hertz

•	 The pink noise is a 2000 Hertz signal

•	 The yellow resultant sum, our input, needs filtering

•	 A low pass filter can filter out the 2000 Hertz signal

Signal and Noise in Frequency Domain

MC56F8006DEMO

Add Global Variables in FirGenerate.c

•	 FirCoefs.h is generated by the QEDesign tool

•	 GeneratedSamples is the sum of two sines, 1000 and 2000 Hertz, zero phase, amplitude .45

•	 FirOutput is the filtered version of the GeneratedSamples input to the FIR

The following are samples from the yellow input signal:

Fs nominally 8000 SPS

Use the following to copy text for pasting. Not required to enter all the digits.

GeneratedSamples are added to the program. Only eight values are needed to be stored in the table,
since the series repeats after eight samples.

// use const to output coefficients to the data section to be placed in data memory.

const

#include "FirCoefs.h"

// Data samples represent sum of two sine waves with zero phase.

// Fs/4, and Fs/8 are the frequencies of the two. They are of

// equal amplitude, 0.45.

// Sample zero is phase zero for both sine's.

const Frac16 GeneratedSamples[] = {

FRAC16(0.0),

FRAC16(0.76819805153394638598037996294718),

FRAC16(0.45),

FRAC16(-0.131801948466053614019620037053),

FRAC16(0.0),

FRAC16(0.131801948466053614019620037053),

FRAC16(-.45),

FRAC16(-0.76819805153394638598037996294718)

};

Frac16 FirOutput[8] ;

MC56F8006DEMO

Copy and Paste Text Prior to Main()
// use const to output coefficients to the data section to be placed in data memory.
 const
 #include "FirCoefs.h"
// Data samples represent sum of two sine waves with zero phase.
// Fs/4, and Fs/8 are the frequencies of the two. They are of
// equal amplitude, 0.45.
// Sample zero is phase zero for both sine's.
const Frac16 GeneratedSamples[] = {
	 FRAC16(0.0),
	 FRAC16(0.76819805153394638598037996294718),
	 FRAC16(0.45),
	 FRAC16(-0.131801948466053614019620037053),
	 FRAC16(0.0),
	 FRAC16(0.131801948466053614019620037053),
	 FRAC16(-.45),
	 FRAC16(-0.76819805153394638598037996294718)
};
Frac16 FirOutput[8] ;

Drag’n’drop the FIR Methods into Main()

•	 Select Processor Expert tab in FirGeneration

project window

•	 Expand the DFR1:DSP_Func_DFR bean

•	 DFR1_dfr16FIR(dfr16_tFirStruct *pFIR,Frac16

*pX,Frac16 *pZ,UInt16 n);

•	 EXPORT dfr16_tFirStruct * DFR1_

dfr16FIRCreate(Frac16 *pC,UInt16 n)

•	 This example was created by using the

Drag’n’drop method declaration

•	 To enable it, configure Processor Expert Environment Options

•	 The prototypical variable names were used in our program

•	 The definitions were created by copying and pasting from these lines

Finish Writing Main() Function for FirGenerate

•	 Right click to add eventponts for audio and visual

•	 Use next page to copy text for pasting

•	 Make sure to set the visual break point as shown

•	 Set an audio breakpoint as shown

Note the V for Visual, and the speaker icon for audio. The visualization is updated when the V
breakpoint is reached. The audio breakpoint will play a sound and delay the visual updates so
that each can be noticed.

MC56F8006DEMO

Copy and Paste Text to be Main() Function
void main(void)
{
 Frac16 * pC;
 dfr16_tFirStruct * pFIR;
 Frac16 * pX;
 Frac16 * pZ;

 /* Write your local variable definition here */

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /* Write your code here */
 pC = (Frac16 *) FirCoefs ;
 pFIR = DFR1_dfr16FIRCreate(pC, 31);
 pX = (Frac16 *) GeneratedSamples ;
 pZ = FirOutput ;

 for(;;) {
 DFR1_dfr16FIR(pFIR, pX, pZ, 8);
 }
}

Alternative Fast Response Implementation
Changing to process one sample per call can allow for faster response in tight control loop
applications such as found in motor control. Hint: All changes in red.

Frac16 FirOutput[1] ; // was 8

void main(void)
{
 Frac16 * pC;
 dfr16_tFirStruct * pFIR;
 Frac16 * pX;
 Frac16 * pZ;
 int i ;

 /* Write your local variable definition here */

 /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /* Write your code here */
 pC = (Frac16 *) FirCoefs ;
 pFIR = DFR1_dfr16FIRCreate(pC, 31);
 pX = (Frac16 *) GeneratedSamples ;
 pZ = FirOutput ;

 for(;;)
 {
 	 for (i=0 ; i<8 ; i++)
 	 {
 	 pX = (Frac16 *) andGeneratedSamples[i];
 	 DFR1_dfr16FIR(pFIR, pX, pZ, 1); // was 8
 	 }
 }
}

MC56F8006DEMO

Design a Filter: Free Filter Design Tool

•	 Launch QED Filter Design Package

•	 Select Equiripple

FIR Design

•	 Lowpass

•	 Input filter

parameters, select Next, get 31 taps,

select Next

•	 Only need 31 taps because of only 60

dB stopband ripple

•Use the output of the filter design

package, QEDesign Lite for 56800/E.

Run the program from the same menu

you selected the CodeWarrior compiler from. Hit the EQ button. This is for equiripple FIR.

Then, select lowpass. Use Fs of 8000, band pass of 1250, band stop of 1750. This will give a

500 Hertz transition band. Use 1 dB pass band ripple, and 60 dB of stop band ripple. Use the

suggested number of taps, only 31 in this case. You can experiment with smaller passband

ripples to increase the number of taps.

MC56F8006DEMO

Equiripple (Parks McClellan) FIRs

•	 Clearly the most popular approach to FIRs

	 Supports arbitrary band shape

	 Filters have equiripple in each passband or stopband

•	 Parks McClellan is the most popular way of designing general purpose FIR filters

•	 Besides passbands and stopbands, you specify the amount of ripple you can tolerate in the

passbands and the stopbands. (Ripple in the stopbands is equivalent to attenuation.) It is called

“equiripple” because there are equal numbers of plus ripples as negative ripples. (In this case

two of each in both the passband and stopband.)

Filter Design: Graphic Results
Here’s what you should see:

•	 We can save the coefficients (taps) generated into a file format that can be used by a

CodeWarrior/Processor Expert project

MC56F8006DEMO

Filter Design: Save the Coefficients

•	 Save the coefficients in the CODE directory

File Name: FirCoefs.h

•	 We generate the coefficients header file and then rebuild the project to include these new

coefficients

•	 We download the new project onto the demo board, run it, and use SweepGen to generate

a 200–2000 Hz FM chirp. We can turn the filter on and off and see its effect on the FFT bin

LEDs.

Run Program: It Breaks at Main for Debugging

•	 At breakpoint

•	 Select Variables, Next, short(8) FirOutput, ->, Next

• After hitting the break at main, run again, then see the results on the next page

MC56F8006DEMO

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other
countries. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009

Document Number: MC56F8006DEMOLAB / REV 1

Visual Output Showing 1000 Hertz Only

The FIR in this case is set up to process eight samples at a time. Above is transient response.

Steady state response. 1000 Hertz lowpass filter is filtering out the 2000 Hertz signal, keeping the

1000. Thanks to the breakpoints, the visual data is presented at a pace where each frame can be

observed.

