IMXGRAPHICUG_9

i.MX Graphics User's Guide
Rev. 9 — 28 June 2024

User guide

Document information

Information Content
Keywords i.MX, Linux, Android, Graphics
Abstract The purpose of this document is to provide information on graphic APIs and driver support.

https://www.nxp.com

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

1 Introduction

The purpose of this document is to provide information on graphic APIs and driver support. Each chapter
describes a specific set of APIs or driver integration as well as specific hardware acceleration customization.
The target audiences for this document are developers writing graphics applications or video drivers.

1.1 i.MX full GPU line

The whole family of GPUs are listed in the following table. On i.MX 6 boards, only 6Quad and 6QuadPlus
support OpenCL. The theoretical number of GFLOPS, the key performance indicator of OpenCL, is also shown
in the table. Some benchmarks such as Clpeak, can be used to verify it.

i.MX 8QuadMax supports OpenVX, which will be introduced in next chapter.

5 . i.MX 8X i.MX 8M Quad, -
e e i.MX8M Nano| 8DualXPlus Dual SL;'M:':
8QuadXPlus QuadLite FLELLE
GC355 (VG) GC355 (VG) High Perf High Perf High Perf

GPU 2D GC400T (20) GC320 = e G328 GC520L GC520L N/A tEe N/A GCS20L e e

GC700 GC7000 GC7000 GC7000 x2
GPU 3D GC400T (3D) GC880 GC2000 GC2000+ NanoUltra NanoUltra31 NanoUltra UltraLite GC7000 Lite GC7000 Lite GC7000 UltraLite GC7000 XSVX G310V2
Shaders (Vecd) 1 1 4 4 1 1 1 2 4 4 2 8+8 1
E::)rcek[(sr\l’/\‘:dzir] 360 [720] 264 [528) 528 [594] 594 [720] 400 [400] 317 [317) 1000 500 [600] 700 (850] 800 [800] 1000[1000] 800 [1000] 1000

. X 1600 + 1600 (dual)
Pixel Rate (Mpix/s) 180 264 1056 1188 200 296 500 500 1400 1600 1000 2200 (bridged) 4000
. 36 81 176 198 40 52 50 83 234 267 166 25Zeg2sl(ual o
(MTri/s) 267 (bridged)
GFLOPS (Theoretical)
Wied/High precision 2.9 (high) 4.2 (high) 19 (high) 46/23 3.2/16 4.8/2.4 16/8 19.2/9.6 55.2/27.6 51.2/25.6 32/16 256/128 120/60
+ + OpenVG 1.1 OpenVG 1.1, + OpenVG 1.1, OpenVG 11, OpenVG1.1, OpenVG 11, + OpenVG 1.1, i
2D API OpenVG 1.1, G2D OpenVG 1.1, G2D s o OpenVG 1.1, G2D s R e Al OpenVG 1.1' o OpenVG 1.1, G2D G2D
3D API OGLES 2.0 OGLES 3.0 OGLES 3.0 OGLES 3.0 OGLES 2.0 CaBa4 OGLES 2.0 CELESas, CELEE, e Cal=a, OGLES 3.2, Vulkan OGL ES 3.2, Vulkan
Vulkan Vulkan Vulkan Vulkan Vulkan
Compute N/A N/A OCL1.2EP ocL1.2FP N/A ocL3.0 N/A ocL3.0 ocL3.0 ocL3.0 ocL3.0 ocL3.0 ocL3.0
2D/3D OpenVX 1.2
Other ek N/A N/A N/A N/A N/A N/A N/A N/A N/A (T OpenVX 1.2 No
Figure 1. GPU Scalability across i.MX processors

Note: 1 OpenVG on 3D GPU with software tessellation.

2 i.MX G2D API

2.1 Overview

The G2D Application Programming Interface (API) is designed to be easy to understand and to use the 2D
Bit blit (BLT) function. It allows the user to implement the customized applications with simple interfaces. It is
hardware and platform independent for i.MX 2D Graphics.

G2D API supports the following features but is not limited to these:

« Simple BLT operation from source to destination

16/32bit RGB(alpha) and YUV color format conversions

Alpha blending for source and destination with Porter-Duff rules
* High-performance memory copy from source to destination

* Up-scaling and down-scaling from source to destination

* 90/180/270 degrees rotation from source to destination

IMXGRAPHICUG_9

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 9 — 28 June 2024

© 2024 NXP B.V. All rights reserved.
Document feedback
2/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

* Horizontal and vertical flip from source to destination

* Enhanced visual quality with dither for pixel precision-loss (*)
* High performance memory clear for destination

 Pixel-level cropping for source surface
* Global alpha blending for source only

* Asynchronous mode and sync
» Contiguous memory allocator
* Support cacheable memory (*)

* Support VG engine (*)
* Multi source blit (*)

Note: The features with (*) are available on specific devices. Applications can query G2D for available features.

The G2D API document includes a detailed interface description and sample code for reference.

The APl is designed with C-Style coding and can be used in both C and C++ applications.

2.2 Enumerations and structures

This chapter describes all enumerations and structure definitions in G2D.

2.2.1 g2d_format enumeration

This enumeration describes the pixel format for source and destination.

Table 1. g2d_format enumeration

Name Numeric Description

G2D_RGB565 0 RGB565 pixel format

G2D_RGBA8888 1 32-bit RGBA pixel format
G2D_RGBX8888 2 32-bit RGBX without alpha blending
G2D_BGRA8888 3 32-bit BGRA pixel format
G2D_BGRX8888 4 32-bit BGRX without alpha blending
G2D_BGR565 5 16-bit BGR565 pixel format
G2D_ARGB8888 6 32-bit ARGB pixel format
G2D_ABGR8888 7 32-bit ABGR pixel format
G2D_XRGB8888 8 32-bit XRGB without alpha
G2D_XBGR8888 9 32-bit XBGR without alpha

G2D_RGB888 10 24-bit RGB

G2D_BGR888 1 24-bit BGR

G2D_NV12 20 Y plane followed by interleaved U/V plane
G2D_1420 21 Y, U, V are within separate planes
G2D_YV12 22 Y, V, U are within separate planes
G2D_NV21 23 Y plane followed by interleaved V/U plane
G2D_YUYV 24 Interleaved Y/U/Y/V plane

G2D_YVYU 25 Interleaved Y/V/Y/U plane

G2D_UYVY 26 Interleaved U/Y/V/Y plane

IMXGRAPHICUG_9 Al information provided in this document is subject to legal disclaimers. ©2024 NXP B.V. Al rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

3/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 1. g2d_format enumeration...continued

Name Numeric Description

G2D_VYUY 27 Interleaved V/Y/U/Y plane

G2D_NV16 28 Y plane followed by interleaved U/V plane
G2D_NV61 29 Y plane followed by interleaved V/U plane

2.2.2 g2d_blend_func enumeration
This enumeration describes the blend factor for source and destination.

Table 2. g2d_blend_func enumeration

Name Numeric Description

G2D_ZERO 0 Blend factor with 0

G2D_ONE 1 Blend factor with 1

G2D_SRC_ALPHA 2 Blend factor with source alpha
G2D_ONE_MINUS_SRC_ALPHA 3 Blend factor with 1 - source alpha
G2D_DST_ALPHA 4 Blend factor with destination alpha
G2D_ONE_MINUS_DST_ALPHA 5 Blend factor with 1 - destination alpha
G2D_PRE_MULTIPLIED_ALPHA 0x10 Extensive blend as pre-multiplied alpha
G2D_DEMULTIPLY_OUT_ALPHA 0x20 Extensive blend as demultiply out alpha

2.2.3 g2d_cap_mode enumeration
This enumeration describes the alternative capability in 2D BLT.

Table 3. g2d_cap_mode enumeration
Name Numeric Description

G2D_BLEND 0 Enable alpha blend in 2D BLT
Enable dither in 2D BLT

—_

G2D_DITHER
G2D_GLOBAL_ALPHA
G2D_BLEND_DIM
G2D_BLUR
G2D_YUY_BT_601
G2D_YUY_BT 709
G2D_YUY_BT_601FR
G2D_YUY_BT_709FR

Enable global alpha in blend
Enable blend dim effect

Enable blur effect

Enable YUV BT.601 mode

Enable YUV BT.709 mode

Enable YUV BT.601 full range mode
Enable YUV BT.709 full range mode

o N oo~ WODN

Note: G2D_GLOBAL_ALPHA is only valid when G2D_BLEND is enabled.

2.2.4 g2d_rotation enumeration

This enumeration describes the rotation mode in 2D BLT.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
4/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 4. g2d_rotation enumeration

i.MX Graphics User's Guide

Name Numeric

Description

G2D_ROTATION_0 0

No rotation

G2D_ROTATION_90

—_

Rotation with 90 degrees

G2D_ROTATION_180 2 Rotation with 180 degrees
G2D_ROTATION_270 3 Rotation with 270 degrees
G2D_FLIP_H 4 Horizontal flip

G2D_FLIP_V 5 Vertical flip

2.2.5 g2d_cache_mode enumeration

This enumeration describes the cache operation mode.

Table 5. g2d_cache_mode enumeration

Name Numeric Description
G2D_CACHE_CLEAN 0 Clean the cacheable buffer
G2D_CACHE_FLUSH 1 Clean and invalidate cacheable buffer
G2D_CACHE_INVALIDATE 2 Invalidate the cacheable buffer

2.2.6 g2d_hardware_type enumeration

This enumeration describes the supported hardware type.

Table 6. g2d_hardware_type enumeration

Name Numeric Description
G2D_HARDWARE_2D 0 2D hardware type by default
G2D_HARDWARE_VG 1 VG hardware type

2.2.7 g2d_surface structure

This structure describes the surface with operation attributes.

Table 7. g2d_surface structure

g2d_surface Members Type Description

format g2d_format Pixel format of surface buffer
planes[3] Int Physical addresses of surface buffer
left Int Left offset in blit rectangle

top Int Top offset in blit rectangle
right Int Right offset in blit rectangle
bottom Int Bottom offset in blit rectangle
stride Int RGBYY stride of surface buffer
width Int Surface width in pixel unit
height Int Surface height in pixel unit
blendfunc g2d_blend_func Alpha blend mode

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
5/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 7. g2d_surface structure...continued

g2d_surface Members Type Description
global_alpha Int Global alpha value 0~255
clrcolor Int Clear color is 32bit RGBA
rot g2d_rotation Rotation mode

Note: RGB and YUV formats conversion, Y(*) means feature available on i.MX 6Quad Plus, i.MX 7ULP and

i.MX 8 family devices.
DST

SRC G2D_RGBs |G2D YV12 |G2D 1420 |G2D_NV12 |G2D_NV21 |G2D YUYV |G2D NV16 |G2D_NV61
G2D_RGBs Y N N N N Y(*) N N
G2D_NV12 Y N N N N Y(#) N N
G2D_1420 Y N N N N Y(*) N N
G2D_Yviz Y N N N N Y(*) N N
G2D_NV21 Y N N N N Y(*) N N
G2D_YUYV Y N N Y(*) Y() ¥(x) Y(x) Y(#)
G2D_YVYU Y N N N N ¥ (#) N N
G2D_UYVY Y N N N N Y(*) N N
G2D_ VYUY Y N N N N Y(#) N N
G2D_NV16 Y N N N N Y(*) N N
G2D_NV61 Y N N N N Y(*) N N

RGB pixel buffer only uses planes [0], buffer address is with 16 bytes alignment on i.MX 6 (except i.MX 6Quad
Plus), 1 pixel alignment on i.MX 6Quad Plus, i.MX 7ULP and i.MX 8 family devices.

NV12:Y in planes [0], UV in planes [1], with 64bytes alignment,
1420: Y in planes [0], U in planes [1], U in planes [2], with 64 bytes alignment
The cropped region in source surface is specified with left, top, right and bottom parameters.

RGB stride alignment is 16 bytes on i.MX 6 (except i.MX 6Quad Plus), 1 pixel alignment on i.MX 6Quad Plus,
i.MX 7ULP and i.MX 8 family devices, both for source and destination surface.

NV12 stride alignment is 8 bytes for source surface, UV stride =Y stride,
1420 stride alignment is 8 bytes for source surface, U stride=V stride = /2 Y stride.

G2D_ROTATION_0/G2D_FLIP_H/G2D_FLIP_V shall be set in source surface, and the clockwise rotation
degree shall be set in destination surface.

Application should calculate the rotated position and set it for destination surface.
The geometry definition of surface structure is described as follows.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback

6/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPHICUG_9

i.MX Graphics User's Guide

siriche _
Planes [-
' i '
tog
-y ol -l
bt
negnl
L
- i -
i

= Wil =
Figure 2. g2d_surface structure
2.2.8 g2d_buf structure
This structure describes the buffer used as G2D interfaces.
Table 8. g2d_buf structure
g2d_buf Members Type Description
buf_handle void * The handle associated with buffer
buf_vaddr void * Virtual address of the buffer
buf_paddr int Physical address of the buffer
buf_size int The actual size of the buffer

2.2.9 g2d_surface_pair structure

This structure binds one source g2d_surface and one destination g2d_surface as a pair. When doing multi-
source blit, they are one-to-one correspondent.

Table 9. g2d_surface_pair structure

g2d_surface_pair Members Type Description
s g2d_surface Source g2d_surface
d g2d_surface Destination g2d_surface

2.2.10 g2d_feature enumeration

This enumeration describes the features in G2D BLT.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
71171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 10. g2d_feature enumeration

Name Numeric Description
G2D_SCALING 0 Scaling
G2D_ROTATION 1 Rotation
G2D_SRC_YUV 2 Source YUV format
G2D_DST_YUV 3 Destination YUV format
G2D_MULTI_SOURCE_BLT 4 Multisource blit
G2D_FAST_CLEAR 5 Support fast clear blit

2.3 G2D function description

2.3.1 g2d_open

Description Open a G2D device and return a handle.
Syntax

int g2d open (void **handle);
Parameters handle: Pointer to receive G2D device handle
Returns Success with 0, fail with -1

2.3.2 g2d_close

Description Close G2D device with the handle.
Syntax

int g2d close (void *handle);
Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.3 g2d_make_current

Description Set the specific hardware type for current context, and the default is
G2D_HARDWARE_2D.
Syntax
int g2d make current (void *handle, enum g2d hardware type
type);
Parameters handle: G2D device handle
Returns Success with 0, fail with -1
2.3.4 g2d_clear
Description Clear a specific area.
Syntax
int g2d clear (void *handle, struct g2d surface *area);
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

8/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Parameters handle: G2D device handle
area: The area to be cleared
Returns Success with 0, fail with -1
2.3.5 g2d_blit
Description G2D blit from source to destination with alternative operation (Blend, Dither, etc.).
Syntax
int g2d blit (void *handle, struct g2d surface *src, struct
g2d_surface *dst);
Parameters handle: G2D device handle
src: source surface
dst: destination surface
Returns Success with 0, fail with -1

2.3.6 g2d_copy

Description G2D copy with specified size.
Syntax
int g2d copy (void *handle, struct g2d buf *d, struct
g2d buf* s, int size);
Parameters handle: G2D device handle
d: destination buffer
s: source buffer
size: copy bytes
Limitations If the destination buffer is cacheable, it must be invalidated before g2d_copy due to
the alignment limitation of G2D driver.
Returns Success with 0, fail with -1

2.3.7 g2d_query_cap

Description Query the alternative capability enablement.
Syntax
int g2d query cap (void *handle, enum g2d cap mode cap, int
*enable) ;

Parameters handle: G2D device handle

cap: G2D capability to query

enable: Pointer to receive G2D capability enablement
Returns Success with 0, fail with -1
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

9/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

2.3.8 g2d_enable

i.MX Graphics User's Guide

Description Enable G2D capability with the specific mode.
Syntax
int g2d enable (void *handle, enum g2d cap mode cap);
Parameters handle: G2D device handle
cap: G2D capability to enable
Returns Success with 0, fail with -1

2.3.9 g2d_disable

Description Disable G2D capability with the specific mode.
Syntax
int g2d disable (void *handle, enum g2d cap mode cap);
Parameters handle: G2D device handle
cap: G2D capability to disable
Returns Success with 0, fail with -1

2.3.10 g2d_cache_op

Description Perform cache operations for the cacheable buffer allocated through the G2D driver.
Syntax
int g2d cache op (struct g2d buf *buf, enum g2d cache mode
op) ;
Parameters buf: the buffer to be handled with cache operations
op: cache operation type
Returns Success with 0, fail with -1

2.3.11 g2d_alloc

Description Allocate a buffer through G2D device
Syntax
struct g2d buf *g2d alloc (int size, int cacheable);

Parameters .

size: allocated bytes

cacheable: 0, non-cacheable; 1, cacheable attribute defined by system
Returns Success with valid G2D buffer pointer, fail with 0
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

10/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

2.3.12 g2d_free

Description Free the buffer through G2D device.
Syntax
int g2d free (struct g2d buf *buf);
Parameters buf: G2D buffer to free
Returns Success with 0, fail with -1

2.3.13 g2d_flush

Description Flush G2D command and return without completing pipeline.
Syntax
int g2d flush (void *handle);
Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.14 g2d_finish

Description Flush G2D command and then return when pipeline is finished.
Syntax
int g2d finish (void *handle);
Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.15 g2d_multi_blit

Description Blit multiple sources to one destination.
Syntax
int g2d multi blit (void *handle, struct g2d surface pair
*spl], int layers);

Parameters handle: G2D device handle

sp: array in which elements point to g2d_surface_pair

layers: number of the source layers that need to be blited
Returns Success with 0, fail with -1
Note:

There are some restrictions for this APl that we should be aware of.

* This API only works on the i.MX 6DualPlus/QuadPlus platform.

» The maximum number of the source layers that can be blited one time is 8.

» Although g2d_surface_pair binds one source g2d_surface and one destination g2d_surface as a pair, it only
supports one destination surface. The relationship between the source and destination is many to one, but
each source surface can be set separately and differently, and its dimension, stride, rotation, and format can
differ with that of the destination surface.

» The rotation of the destination surface is set to 0 degrees by default, and cannot be changed.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

User guide Rev. 9 — 28 June 2024

© 2024 NXP B.V. All rights reserved.
Document feedback
11/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

» The key restriction is that the destination rectangle cannot be set, which means that the destination rectangle
must be the same as the source rectangle. Therefore, if the source rectangle is set to (I, t, r, b), the destination
rectangle should also be set to (I, t, r, b) by hardware. In the chapter on multi source blit (Section 2.5.4), as
it makes no sense to set the destination rectangles, we just set all of them to (0, 0, width, height) for future
extension.

2.3.16 g2d_query_hardware

Description Query whether 2D and VG hardware are available in the current G2D.
Syntax

int g2d query hardware (void *handle, enum g2d hardware type
type, int *available);

Parameters handle: G2D device handle
type: G2D hardware type

available: Pointer to receive G2D hardware type availability

Returns Success with 0, fail with -1

2.3.17 g2d_query_feature

Description Query if the features are available in G2D BLT.
Syntax

int g2d query feature (void *handle, enum g2d feature
feature, int *available);

Parameters handle: G2D device handle
feature: G2D feature in g2d_blit

available: Pointer to receive G2D feature availability

Returns Success with 0, fail with -1

2.4 Support of new operating system in G2D

G2D code is independent on operating system (OS) except of buffer allocation. Allocating the memory for
buffer is made by mechanism that is offered by each OS differently. The code for allocation is located in [G2D
repository copy]/source/os/[OS name]. Therefore, supporting new OS includes the following steps:

1. Create a new folder in [G2D repository copyl/source/os/ with the name of the new OS and update
implementation in the included source code according to the new OS allocation mechanism.

2. When creating new makefiles for the OS, include the files from the new folder.

3. The test named overlay_test contains the OS dependent code. For supporting the new OS in this test,
create new folder in [G2D repository copy]/test/overlay_test/os and update the code according to the
new OS mechanism for display initialization. Also update makefiles to include code from the new folder.

2.5 Sample code for G2D API usage
This chapter provides the brief prototype code with G2D API.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
12/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

2.51

Color space conversion from YUV to RGB

i.MX Graphics User's Guide

g2d_
.planes[0] = buf y;
src.
src. _
.left = crop.left;

Src

Src

src.
src.
.bottom = crop.bottom;

Src

SrcC.

src.
src.
dst.
dst.

.top = 0;
.right =
dst.
dst.

dst
dst

dst.
dst.

open (&handle) ;

planes[1] = buf u;
planes[2] = buf v;

top = crop.top;
right = crop.right;

stride = y stride;
src.width = y width;
src.height = y height;
rot = G2D_ROTATION 0;
format = G2D I420;
planes[0] = buf rgba;
left = 0;

disp width;

bottom = disp height;

stride = disp width;
dst.width = disp width;
dst.height = disp height;

rot = G2D_ROTATION 0;

format = G2D RGBA888S;

g2d blit (handle, &src, &dst);

g2d finish (handle) ;

g2d_close?handle);

2.5.2

Alpha blend in source over mode

g2d_open (&handle) ;

SrcC.
Src.

Src

src.
src. =
.stride = test width;

Src

Src.
src. »
.rot = G2D_ROTATION 0;

Src

src.
src.
dst.
dst.
dst.
dst.
dst.
dst.
dst.
dst.
dst.
dst.)
.blendfunc = G2D ONE MINUS SRC ALPHA;

dst
g2d

planes[0] = src buf;
left = 0;
.top = 0;
right = test width;

bottom = test height;

width = test width;
height = test height;

format = G2D RGBA8888;

blendfunc = G2D ONE;
planes[0] = dst buf;
left = 0;

top = 0;

right = test width;
bottom = test height;

stride test width;
width = test width;
height test height;
format = G2D RGBA8888;
rot = G2D_ROTATION O0;

enable (handle, G2D BLEND) ;

g2d_blit (handle, &src, &dst);

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
13/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

g2d_finish (handle) ;
g2d _disable (handle,G2D BLEND) ;
g2d_close (handle) ;

2.5.3 Source cropping and destination rotation

g2d_open (&handle) ;
src.planes[0] = src buf;
src.left = crop.left;
src.top = crop.left;
src.right = crop.right;
src.bottom = crop.bottom;
src.stride src_stride;
src.width = src width;
src.height src_height;
src.format = G2D RGBA8888;

src.rot = G2D:ROTATION_O;//G2D_FLIP_H or G2D FLIP V
dst.planes[0] = dst buf;
dst.left = 0;

dst.top = 0;

dst.right = dst width;
dst.bottom dst height;
dst.stride = dst width;
dst.width = dst width;
dst.height = dst height;
dst.format = G2D RGBA8888;
dst.rot = G2D_ROTATION 90;
g2d blit (handle, é&src, é&dst);
g2d_finish (handle) ;

g2d_close (handle)

2.5.4 Multi source blit

const int layers = 8;
struct g2d buf *d buf;
struct g2d buf *mul s buf[layers];
struct g2d surface pair *sp[layers];
g2d_open (&handle)
for(n = 0; n < layers; n++) {
sp[n] = (struct g2d surface pair *)malloc(sizeof (struct g2d surface pair));
}
d buf = g2d alloc(test width * test height * 4, 0);
for(n = 0; n < layers; n++) {
mul s buf[n] = g2d alloc(test width * test height * 4, 0);
}

for(n = 0; n < layers; n++) {

spln]->s.left = img info ptr[n]->img left;
spln]->s.top = img info ptr[n]->img top;
spln]->s.right = 1img info ptr([n]->img right;
sp[n]->s.bottom = img info ptr[n]->img bottom;
spln]->s.stride = img info ptr([n]->img width;
spln]->s.width = img info ptr[n]->img width;
spln]->s.height = img:info:ptr[n]—>img:height;
sp[n]->s.rot = img info ptr[n]->img rot;
spln]->s.format = img info ptr[n]->img format;
spln]->s.planes[0] = mul s buf[n]->buf paddr;
}
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

14 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

spl[0]->d.left = 0;
spl[0]->d.top = 0;
sp[0]->d.right = test width;
sp[0]->d.bottom = test height;
sp[0]->d.stride = test width;
sp[0]->d.width = test width;
sp[0]->d.height = test height;
sp[0]->d.format = G2D RGBA8888;
sp[0]->d.rot = G2D_ROTATION O;
spl0]->d.planes[0] = d buf->buf paddr;
for(n = 1; n < layers; n++) {
spln]l->d = spl[0]->d;

g2d multi blit (handle, sp, layers);
g2d_finish (handle);
for(n = 0; n < layers; n++)
g2d _free(mul s buf[n]);
g2d free(d buf);
g2d_close (handle) ;

2.5.5 Sharing Buffers between APIs using G2D Buffers:

The G2D buffers can be used to avoid memory copies between APIs. Create a buffer using g2d_alloc and then

map it as an OpenGL ES texture or as an OpenVX buffer or an OpenCV Mat:

Allocate your buffer with:

struct g2d buf * bufferO;
buffer0 = g2d alloc (WIDTH*HEIGHT*4, O0);

For OpenCV, you map the buffer to the data field of the cv::Mat

cv::Mat bufferOMat;
bufferOMat.create (WIDTH, HEIGHT, CV_8UC4);
bufferOMat.data = (uchar *) ((unsigned long) bufferO->buf vaddr);

For OpenGL ES, you can make use of the DirectVIV extensions:

glGenTextures (1, &textureHandle[0]);
glBindTexture (GL TEXTURE 2D, textureHandle[O0]);
glTexParameteri (GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR);
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MIN FILTER, GL LINEAR);
ngexDirectVIVMap(GL_TEXTURE_ZD, WIDTH, HEIGHT, GL_RGBA,

sbufferO->buf vaddr, (uint *)&bufferO-
>pbuf paddr) ;
glTexDirectInvalidateVIV (GL TEXTURE 2D);
glBindTexture (GL TEXTURE 2D, 0);

For OpenVX you create vxlmages from the buffer ranges:

vx imagepatch addressing t patchO = { (vx uint32)WIDTH, (vx uint32)HEIGHT,

(vx_int32)4, (vx_ int32)HEIGHT*4, VX SCALE UNITY, VX SCALE UNITY, 1, 1 };
void *ptr0 = bufferO->buf vaddr;

vxInputImage = vxCreateImageFromHandle (contextVX,

VX_DF IMAGE RGBX, &patch0, (void **)&ptr0O, VX MEMORY TYPE HOST);

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback

15/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

With this scheme you can create a multi API pipeline, where you can post-process your OpenGL ES render
result with CV or VX without the need of copying data.

2.6 Feature list on multiple platforms

This user guide is for multiple platforms, such as i.MX 6 and i.MX 8, and the hardware for the G2D
implementation are different on those platforms, so some G2D features are also different.

For example, the G2D_YVYU and G2D_VYUY formats are not supported on the i.MX 8, and the g2d_multi_blit
function only works on the i.MX 6DualPlus/QuadPlus. Therefore, we list those differences in the following
feature table.

Table 11. Feature list on multiple platforms

Feature i.MX 6 i.MX 7 i.MX 8
6Solo/6Dual/ 6DualPlus/ 7ULP 8M Mini/ 8M 8QuadMax/8Quad
6Quad 6QuadPlus Plus XPlus
G2D_YVYU Yes Yes Yes Yes No
G2D_VYUY Yes Yes Yes Yes No
G2D_HARDWARE_VG Yes Yes No No No
G2D_MULTI_SOURCE_BLT |No Yes Yes Yes No
g2d_cache_op Yes Yes Yes Yes No

3 Vivante EGL and OGL Extension Support

3.1 Introduction

The following tables list the level of support for EGL and OES extensions available with i.MX hardware and
software. Support levels are current as of the date of the document and subject to change.

Two tables are provided. The first table lists the EGL interface extensions. The second table lists extensions for
OpenGL ES 1.1, OpenGL ES 2.0, and OpenGL ES 3.0.

Key:

* Extension Name and Number: Each listed extension is derived from the relevant khronos.org webpage list
and includes the extension number as well as a hyperlink to the khronos description of the extension.

* Yes: Support is currently available.

* No: Support is not available. (Reasons for lack of support may vary: the extension may be proprietary or
obsolete, or not applicable to the specified OES version.)

* N/A: Support is not provided as the extension is not applicable in this and subsequent versions of the
specification.

3.2 EGL extension support

The following table includes the list of all current EGL Extensions and indicates their support level.

(list from www.khronos.org/registry/egl/ as of 1/24/2020)

Table 12. EGL extension support
EGL Extension Number, Name and hyperlink (2020) Linux Android QNX ‘

1. EGL_KHR_config_attribs

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
16 /171

http://www.khronos.org/registry/egl/
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_config_attribs.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

Table 12. EGL extension support...continued

i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020)

Linux Android QNX

2. EGL_KHR _lock_surface

YES YES YES

3. EGL_KHR_image

YES YES YES

4. EGL_KHR_vg_parent_image

5. EGL_KHR_gl_texture_2D_image

YES YES YES

EGL_KHR_gl_texture_cubemap_image

YES YES YES

EGL_KHR_gl_texture_3D_image

EGL_KHR_gl_renderbuffer_image

YES YES YES

6. EGL_KHR_reusable_sync

YES YES YES

7. EGL_KHR_image_base

YES YES YES

8. EGL_KHR_image_pixmap

YES YES YES

9. EGL_IMG_context_priority

YES YES

10. EGL_NOK texture from_pixmap

11. EGL_KHR_lock_surface2

12. EGL_NV_coverage_sample

13. EGL_NV_depth_nonlinear

14. EGL_NV_sync

15. EGL_KHR_fence_sync

YES YES YES

16. EGL_NOK_ swap_region2

17. EGL_HI_clientpixmap

18. EGL_HI_colorformats

19. EGL_MESA_drm_image

20. EGL_NV_post_sub_buffer

21. EGL_ANGLE_query_surface_pointer

22. EGL_ANGLE_surface_d3d_texture 2d_share_handle

23. EGL_NV_coverage_sample_resolve

24. EGL_NV_system_time

25. EGL_KHR_stream

EGL_KHR_stream_attrib

26. EGL_KHR_stream_consumer_gltexture

27. EGL_KHR_stream_producer_eglsurface

28. EGL_KHR_stream_producer_aldatalocator

29. EGL_KHR_stream_fifo

30. EGL_EXT_create_context_robustness

31. EGL_ANGLE_d3d_share_handle_client_buffer

32. EGL_KHR_create_context

YES YES YES

33. EGL_KHR_surfaceless_context

YES YES YES

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
171171

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_vg_parent_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_reusable_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_pixmap.txt
https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_context_priority.txt
https://www.khronos.org/registry/EGL/extensions/NOK/EGL_NOK_texture_from_pixmap.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface2.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_depth_nonlinear.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/NOK/EGL_NOK_swap_region2.txt
https://www.khronos.org/registry/EGL/extensions/HI/EGL_HI_clientpixmap.txt
https://www.khronos.org/registry/EGL/extensions/HI/EGL_HI_colorformats.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_drm_image.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_post_sub_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_query_surface_pointer.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_surface_d3d_texture_2d_share_handle.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample_resolve.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_system_time.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_producer_eglsurface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_producer_aldatalocator.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_fifo.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_create_context_robustness.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_d3d_share_handle_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_create_context.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_surfaceless_context.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 12. EGL extension support...continued

i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX
34. EGL_KHR_stream_cross_process_fd

35. EGL_EXT_multiview_window

36. EGL_KHR_wait_sync YES YES YES
37. EGL_NV_post_convert_rounding

38. EGL_NV_native_query

39. EGL_NV_3dvision_surface

40. EGL_ANDROID_framebuffer_target YES

41. EGL_ANDROID_blob_cache YES

42. EGL_ANDROID_image_native_buffer YES

43. EGL_ANDROID_native_fence_sync YES

44. EGL_ANDROID_recordable YES

45. EGL_EXT_buffer_age YES YES YES
46. EGL_EXT_image_dma_buf_import YES YES

47. EGL_ARM_pixmap_multisample_discard

48. EGL_EXT_swap_buffers_with_damage YES YES YES
49. EGL_NV_stream_sync

50. EGL_EXT_platform_base YES YES YES
51. EGL_EXT_client_extensions YES YES YES
52. EGL_EXT_platform_x11 YES YES YES
53. EGL_KHR cl_event

54. EGL_KHR_get_all_proc_addresses YES YES YES
EGL_KHR_client_get_all_proc_addresses YES YES YES
55. EGL_MESA_platform_gbm

56. EGL_EXT_platform_wayland YES

57. EGL_KHR _lock_surface3

58. EGL_KHR_cl_event2

59. EGL_KHR_gl_colorspace

60. EGL_EXT_protected_surface YES YES YES
61. EGL_KHR_platform_android YES

62. EGL_KHR_platform_gbm YES YES YES
63. EGL_KHR_platform_wayland YES

64. EGL_KHR_platform_x11 YES

65. EGL_EXT_device_base

66. EGL_EXT_platform_device

67. EGL_NV_device_cuda

68. EGL_NV_cuda_event

IMXGRAPHICUG_9 Al information provided in this document is subject to legal disclaimers. ©2024 NXP B.V. Al rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

18/171

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_cross_process_fd.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_multiview_window.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_wait_sync.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_post_convert_rounding.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_native_query.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_3dvision_surface.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_framebuffer_target.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_blob_cache.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_image_native_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_native_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_recordable.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_buffer_age.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://www.khronos.org/registry/EGL/extensions/ARM/EGL_ARM_pixmap_multisample_discard.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_swap_buffers_with_damage.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_sync.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_client_extensions.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_x11.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_cl_event.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_platform_gbm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_wayland.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface3.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_cl_event2.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_colorspace.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_surface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_android.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_gbm.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_wayland.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_x11.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_device.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_device_cuda.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_cuda_event.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 12. EGL extension support...continued

i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020)

Linux

Android

QNX

69.

EGL_TIZEN_image_native_buffer

70.

EGL_TIZEN_image_native_surface

71.

EGL_EXT_output_base

72.

EGL_EXT_device_drm

EGL_EXT_output_drm

73.

EGL_EXT_device_openwf

EGL_EXT_output_openwf

74.

EGL_EXT_stream_consumer_egloutput

75.

EGL_KHR_partial_update

YES

YES

YES

76.

EGL_KHR_swap_buffers_with_damage

YES

YES

YES

77.

EGL_ANGLE_window_fixed_size

78.

EGL_EXT_yuv_surface

79.

EGL_MESA_image_dma_buf_export

80.

EGL_EXT_device_enumeration

81.

EGL_EXT_device_query

82.

EGL_ANGLE_device_d3d

83.

EGL_KHR_create_context_no_error

84.

EGL_KHR_debug

85.

EGL_NV_stream_metadata

86.

EGL_NV_stream_consumer_gltexture_yuv

87.

EGL_IMG_image_plane_attribs

88.

EGL_KHR_mutable_render_buffer

89.

EGL_EXT_protected_content

90.

EGL_ANDROID_presentation_time

91.

EGL_ANDROID_create_native_client_buffer

92.

EGL_ANDROID_front_buffer_auto_refresh

93.

EGL_KHR_no_config_context

YES

YES

YES

94.

EGL_KHR_context_flush_control

95.

EGL_ARM_implicit_external_sync

96.

EGL_MESA_platform_surfaceless

97.

EGL_EXT_image_dma_buf_import_modifiers

YES

YES

98.

EGL_EXT_pixel_format_float

99.

EGL_EXT_gl_colorspace_bt2020_linear

EGL_EXT_gl_colorspace_bt2020_pqg

100. EGL_EXT_gl_colorspace_scrgb_linear

101. EGL_EXT_surface_ SMPTE2086_metadata

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
19/171

https://www.khronos.org/registry/EGL/extensions/TIZEN/EGL_TIZEN_image_native_buffer.txt
https://www.khronos.org/registry/EGL/extensions/TIZEN/EGL_TIZEN_image_native_surface.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_output_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_stream_consumer_egloutput.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_partial_update.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_swap_buffers_with_damage.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_window_fixed_size.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_yuv_surface.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_image_dma_buf_export.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_enumeration.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_query.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_device_d3d.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_create_context_no_error.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_debug.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_metadata.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_consumer_gltexture_yuv.txt
https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_image_plane_attribs.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_mutable_render_buffer.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_presentation_time.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_create_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_front_buffer_auto_refresh.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_no_config_context.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/EGL/extensions/ARM/EGL_ARM_implicit_external_sync.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_platform_surfaceless.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_pixel_format_float.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_scrgb_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_surface_SMPTE2086_metadata.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 12. EGL extension support...continued

i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020)

Linux Android QNX

102.

EGL_NV_stream_fifo_next

103.

EGL_NV_stream_fifo_synchronous

104.

EGL_NV_stream_reset

105.

EGL_NV_stream_frame_limits

106.

EGL_NV_stream_remote

EGL_NV_stream_cross_object

EGL_NV_stream_cross_display

EGL_NV_stream_cross_process

EGL_NV_stream_cross_partition

EGL_NV_stream_cross_system

107.

EGL_NV_stream_socket

EGL_NV_stream_socket_unix

EGL_NV_stream_socket_inet

108.

EGL_EXT_compositor

109.

EGL_EXT_surface_CTA861_3_ metadata

110.

EGL_EXT_gl_colorspace_display_p3

111.

EGL_EXT_gl_colorspace_display p3_linear

112.

EGL_EXT_gl_colorspace_scrgb (non-linear)

113.

EGL_EXT_image_implicit_sync_control

114.

EGL_EXT_bind_to_front

115.

EGL_ANDROID_get_frame_timestamps

116.

EGL_ANDROID_get_native_client buffer

117.

EGL_NV_context_priority_realtime

118.

EGL_EXT_image_gl_colorspace

119.

EGL_KHR_display_reference

120.

EGL_NV_stream_flush

121

.EGL_EXT_sync_reuse

122.

EGL_EXT_client_sync

123.

EGL_EXT_gl_colorspace_display_p3_passthrough

124.

EGL_MESA_query_driver

125.

EGL_ANDROID_GLES_layers

126.

EGL_NV_n_buffer

127.

EGL_NV_stream_origin

128.

EGL_NV_stream_dma

129.

EGL_WL_bind_wayland_display

YES

130.

EGL_WL_create_wayland_buffer_from_image

YES

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
20/171

https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_fifo_next.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_fifo_synchronous.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_reset.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_frame_limits.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_compositor.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_surface_CTA861_3_metadata.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_scrgb.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_implicit_sync_control.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_bind_to_front.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_frame_timestamps.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_context_priority_realtime.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_gl_colorspace.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_display_reference.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_flush.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_sync_reuse.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_client_sync.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3_passthrough.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_query_driver.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_GLES_layers.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_n_buffer.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_origin.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_dma.txt
https://www.khronos.org/registry/EGL/extensions/WL/EGL_WL_bind_wayland_display.txt
https://www.khronos.org/registry/EGL/extensions/WL/EGL_WL_create_wayland_buffer_from_image.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

3.3 OpenGL ES extension support

i.MX Graphics User's Guide

The following table includes the list of all current OpenGL ES Extensions and indicates their support level.

(list from www.khronos.org/registry/gles/ as of 6/14/2020)

Table 13. OpenGL ES extension support

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
1. GL_OES_blend_equation_separate YES

2. GL_OES_blend_func_separate YES

3. GL_OES_blend_subtract YES

4. GL_OES_byte_coordinates YES

5. GL_OES_compressed_ETC1_RGB8_texture YES YES
6. GL_OES_compressed_paletted_texture YES YES
7. GL_OES_draw_texture YES

8. GL_OES_extended_matrix_palette YES

9. GL_OES_fixed_point YES

10. GL_OES_framebuffer_object YES

11. GL_OES_matrix_get YES

12. GL_OES_matrix_palette YES

13. GL_OES_point_size_array YES

14. GL_OES_point_sprite YES

15. GL_OES_query_matrix YES

16. GL_OES read_format YES

17. GL_OES_single_precision YES

18. GL_OES_stencil_wrap YES

19. GL_OES_texture_cube_map YES

20. GL_OES_texture_env_crossbar

21. GL_OES_texture_mirrored_repeat YES

22. GL_OES_EGL_image YES YES
23. GL_OES_depth24 YES YES
24. GL_OES_depth32 YES
25. GL_OES_element_index_uint YES YES
26. GL_OES_fbo_render_mipmap YES YES
27. GL_OES_fragment_precision_high YES
28. GL_OES_mapbuffer YES YES
29. GL_OES_rgb8_rgba8 YES YES
30. GL_OES_stencil1

31. GL_OES_stencil4

32. GL_OES_stencil8 YES

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
217171

http://www.khronos.org/registry/gles/
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_equation_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_func_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_subtract.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_byte_coordinates.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_compressed_paletted_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_extended_matrix_palette.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fixed_point.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_framebuffer_object.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_matrix_get.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_matrix_palette.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_point_size_array.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_point_sprite.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_query_matrix.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_read_format.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_single_precision.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil_wrap.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_cube_map.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_env_crossbar.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_mirrored_repeat.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth24.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth32.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_element_index_uint.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fbo_render_mipmap.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fragment_precision_high.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_mapbuffer.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_rgb8_rgba8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil1.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil4.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil8.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 13. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
33. GL_OES_texture_3D

34. GL_OES_texture float_linear

GL_OES_texture_half float_linear CORE
35. GL_OES _texture_float CORE
GL_OES_texture_half float CORE
36. GL_OES_texture_npot YES YES
37. GL_OES_vertex_half_float YES YES
38. GL_AMD_compressed_3DC_texture

39. GL_AMD_compressed_ATC_texture

40. GL_EXT _texture_filter_anisotropic CORE CORE
41. GL_EXT_texture_type_2_10_10_10_REV CORE
42. GL_OES_depth_texture YES
43. GL_OES_packed_depth_stencil YES YES
44. GL_OES_standard_derivatives YES
45. GL_OES_vertex_type_10_10_10_2 CORE
46. GL_OES_get_program_binary YES
47. GL_AMD_program_binary_Z400

48. GL_EXT _texture_compression_dxt1 YES
49. GL_AMD_performance_monitor

50. GL_EXT_texture_format BGRA8888 YES YES
51. GL_NV_fence

52. GL_IMG_read_format

53. GL_IMG_texture_compression_pvrtc

54. GL_QCOM_driver_control

55. GL_QCOM_performance_monitor_global_mode

56. GL_IMG_user_clip_plane

57. GL_IMG_texture_env_enhanced_fixed function

58. GL_APPLE_texture 2D _limited npot

59. GL_EXT_texture_lod_bias YES

60. GL_QCOM_writeonly_rendering

61. GL_QCOM_extended_get

62. GL_QCOM_extended_get2

63. GL_EXT_discard_framebuffer YES
64. GL_EXT_blend_minmax YES YES
65. GL_EXT_read_format_bgra YES YES
66. GL_IMG_program_binary

IMXGRAPHICUG_9 Al information provided in this document is subject to legal disclaimers. ©2024 NXP B.V. Al rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

22 /171

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_3D.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_npot.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_half_float.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_compressed_3DC_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_compressed_ATC_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_filter_anisotropic.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_type_2_10_10_10_REV.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_packed_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_standard_derivatives.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_type_10_10_10_2.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_get_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_program_binary_Z400.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_dxt1.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_performance_monitor.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_format_BGRA8888.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fence.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_read_format.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_driver_control.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_performance_monitor_global_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_user_clip_plane.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_env_enhanced_fixed_function.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_2D_limited_npot.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_lod_bias.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_writeonly_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_extended_get.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_extended_get2.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_discard_framebuffer.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_blend_minmax.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_read_format_bgra.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_program_binary.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

Table 13. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

67. GL_IMG_shader_binary

68. GL_EXT_multi_draw_arrays

YES

YES

GL_SUN_multi_draw_arrays

NO

69. GL_QCOM _tiled_rendering

70. GL_OES_vertex_array_object

YES

71. GL_NV_coverage_sample

72. GL_NV_depth_nonlinear

73. GL_IMG_multisampled_render_to_texture

74. GL_OES_EGL_sync

YES

YES

75. GL_APPLE_rgb_422

76. GL_EXT_shader_texture lod

77. GL_APPLE_framebuffer_multisample

78. GL_APPLE_texture format BGRA8888

79. GL_APPLE_texture_max_level

80. GL_ARM_mali_shader_binary

81. GL_ARM_rgba8

82. GL_ANGLE_framebuffer_blit

83. GL_ANGLE_framebuffer_multisample

84. GL_VIV_shader_binary

85. GL_EXT_frag_depth

YES

86. GL_OES_EGL_image_external

YES

YES

87. GL_DMP_shader_binary

88. GL_QCOM _alpha_test

89. GL_EXT_unpack_subimage

90. GL_NV_draw_buffers

91. GL_NV_fbo_color_attachments

92. GL_NV_read_buffer

93. GL_NV_read_depth_stencil

94. GL_NV_texture_compression_s3tc_update

95. GL_NV_texture_npot_2D_mipmap

96. GL_EXT_color_buffer_half float

CORE

97. GL_EXT_debug_label

98. GL_EXT_debug_marker

99. GL_EXT_occlusion_query_boolean

100. GL_EXT_separate_shader_objects

101. GL_EXT_shadow_samplers

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
23/171

https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_tiled_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_array_object.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_depth_nonlinear.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_multisampled_render_to_texture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_rgb_422.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_texture_lod.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_format_BGRA8888.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_max_level.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_mali_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_rgba8.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_framebuffer_blit.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/VIV/VIV_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_frag_depth.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external.txt
https://www.khronos.org/registry/OpenGL/extensions/DMP/DMP_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_alpha_test.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_unpack_subimage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fbo_color_attachments.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_read_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_read_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_s3tc_update.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_npot_2D_mipmap.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_color_buffer_half_float.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_debug_label.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_debug_marker.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_occlusion_query_boolean.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_separate_shader_objects.gles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shadow_samplers.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Table 13. OpenGL ES extension support...continued

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

102. GL_EXT_texture_rg

YES

103. GL_NV_EGL_stream_consumer_external

104. GL_EXT_sRGB

YES

105. GL_EXT_multisampled_render_to_texture

YES

106. GL_EXT_robustness

YES

107. GL_EXT_texture_storage

108. GL_ANGLE_instanced_arrays

109. GL_ANGLE_pack_reverse_row_order

110. GL_ANGLE_texture_compression_dxt3

GL_ANGLE _texture_compression_dxt1

GL_ANGLE _texture_compression_dxt5

111. GL_ANGLE _texture_usage

112. GL_ANGLE_translated_shader_source

113. GL_FJ_shader_binary_GCCSO

114. GL_OES_required_internalformat

YES

115. GL_OES_surfaceless_context

YES

116. GL_KHR_texture_compression_astc_hdr

GL_KHR_texture_compression_astc_Idr

YES

117. GL_KHR_debug

YES

118. GL_QCOM_binning_control

119. GL_ARM_mali_program_binary

120. GL_EXT_map_buffer_range

121. GL_EXT_shader_framebuffer_fetch

CORE

GL_EXT_shader_framebuffer_fetch_non_coherent

122. GL_APPLE_copy_texture_levels

123. GL_APPLE_sync

124. GL_EXT_multiview_draw_buffers

125. GL_NV_draw_texture

126. GL_NV_packed_float

127. GL_NV_texture_compression_s3tc

128. GL_NV_3dvision_settings

129. GL_NV_texture_compression_latc

130. GL_NV_platform_binary

131. GL_NV_pack_subimage

132. GL_NV_texture_array

133. GL_NV_pixel_buffer_object

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
24 /171

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_rg.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_EGL_stream_consumer_external.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_robustness.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_pack_reverse_row_order.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_usage.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_translated_shader_source.txt
https://www.khronos.org/registry/OpenGL/extensions/FJ/FJ_shader_binary_GCCSO.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_required_internalformat.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_surfaceless_context.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_debug.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_binning_control.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_mali_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_map_buffer_range.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_copy_texture_levels.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multiview_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_s3tc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_3dvision_settings.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_latc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_platform_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_pack_subimage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_array.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_pixel_buffer_object.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

Table 13. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

134. GL_NV_bgr

135. GL_OES_depth_texture_cube_map

YES

136. GL_EXT_color_buffer_float

CORE

137. GL_ANGLE_depth_texture

138. GL_ANGLE_program_binary

139. GL_IMG_texture_compression_pvrtc2

140. GL_NV_draw_instanced

141. GL_NV_framebuffer_blit

142. GL_NV_framebuffer_multisample

143. GL_NV_generate_mipmap_sRGB

144. GL_NV_instanced_arrays

145. GL_NV_shadow_samplers_array

146. GL_NV_shadow_samplers_cube

147. GL_NV_sRGB_formats

148. GL_NV_texture_border_clamp

149. GL_EXT_disjoint_timer_query

150. GL_EXT_draw_buffers

151. GL_EXT_texture_sRGB_decode

YES

152. GL_EXT_sRGB_write_control

153. GL_EXT_texture_compression_s3tc

YES

154. GL_EXT_pvrtc_sRGB

155. GL_EXT _instanced_arrays

156. GL_EXT_draw_instanced

157. GL_NV_copy_buffer

158. GL_NV_explicit_attrib_location

159. GL_NV_non_square_matrices

160. GL_EXT_shader_integer_mix

161. GL_OES_texture_compression_astc

162. GL_NV_blend_equation_advanced

GL_NV_blend_equation_advanced_coherent

163. GL_INTEL_performance_query

164. GL_ARM_shader_framebuffer_fetch

165. GL_ARM_shader_framebuffer_fetch_depth_stencil

166. GL_EXT_shader_pixel_local_storage

167. GL_KHR_blend_equation_advanced

CORE

GL_KHR_blend_equation_advanced_coherent

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
25/171

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bgr.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth_texture_cube_map.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_color_buffer_float.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_depth_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_instanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_blit.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_generate_mipmap_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shadow_samplers_array.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shadow_samplers_cube.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sRGB_formats.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_decode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sRGB_write_control.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_pvrtc_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_instanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_copy_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_explicit_attrib_location.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_non_square_matrices.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_integer_mix.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_compression_astc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_performance_query.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_shader_framebuffer_fetch_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 13. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
168. GL_OES_sample_shading CORE
169. GL_OES_sample_variables CORE
170. GL_OES_shader_image_atomic CORE
171. GL_OES_shader_multisample_interpolation CORE
172. GL_OES_texture_stencil8 CORE
173. GL_OES_texture_storage_multisample_2d_array CORE
174. GL_EXT_copy_image CORE
175. GL_EXT_draw_buffers_indexed CORE
176. GL_EXT_geometry_shader CORE
GL_EXT_geometry_point_size CORE
177. GL_EXT_gpu_shader5 CORE
178. GL_EXT_shader_implicit_conversions CORE
179. GL_EXT_shader_io_blocks CORE
180. GL_EXT_tessellation_shader CORE
GL_EXT_tessellation_point_size CORE
181. GL_EXT_texture_border_clamp CORE
182. GL_EXT_texture_buffer CORE
183. GL_EXT_texture_cube_map_array CORE
184. GL_EXT_texture_view

185. GL_EXT_primitive_bounding_box CORE
186. GL_ANDROID_extension_pack_es31a CORE
187. GL_EXT_compressed_ETC1_RGB8_sub_texture

188. GL_KHR_robust_buffer_access_behavior YES
189. GL_KHR_robustness YES
190. GL_KHR_context_flush_control

GLX_ARB_context_flush_control

WGL_ARB_context_flush_control

191. GL_DMP_program_binary

192. GL_APPLE_clip_distance

193. GL_APPLE_color_buffer_packed_float

194. GL_APPLE_texture packed_float

195. GL_NV _internalformat_sample_query

196. GL_NV_bindless_texture

197. GL_NV_conditional_render

198. GL_NV_path_rendering

199. GL_NV_image_formats

IMXGRAPHICUG_9 Al information provided in this document is subject to legal disclaimers. ©2024 NXP B.V. Al rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

26 /171

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_sample_shading.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_sample_variables.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_image_atomic.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_multisample_interpolation.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_stencil8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_storage_multisample_2d_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_copy_image.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_buffers_indexed.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_implicit_conversions.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_io_blocks.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_cube_map_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_view.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_primitive_bounding_box.txt
https://www.khronos.org/registry/OpenGL/extensions/ANDROID/ANDROID_extension_pack_es31a.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_compressed_ETC1_RGB8_sub_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_robust_buffer_access_behavior.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_robustness.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/DMP/DMP_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_clip_distance.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_color_buffer_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_internalformat_sample_query.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bindless_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conditional_render.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_path_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_image_formats.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

Table 13. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

200. GL_NV_shader_noperspective_interpolation

201. GL_NV_viewport_array

202. GL_EXT_base_instance

203. GL_EXT_draw_elements_base_vertex CORE
204. GL_EXT_multi_draw_indirect CORE
205. GL_EXT_render_snorm

206. GL_EXT_texture_norm16

207. GL_OES copy_image CORE
208. GL_OES draw_buffers_indexed CORE
209. GL_OES_geometry_shader CORE
210. GL_OES_gpu_shader5 CORE
211. GL_OES_primitive_bounding_box CORE
212. GL_OES_shader_io_blocks CORE
213. GL_OES tessellation_shader CORE
GL_OES_tessellation_point_size CORE
214. GL_OES _texture_border_clamp CORE
215. GL_OES _texture_buffer CORE
216. GL_OES _texture_cube_map_array CORE
217. GL_OES _texture view CORE
218. GL_OES draw_elements_base_vertex CORE
219. GL_OES_EGL_image_external_esslI3 CORE

220. GL_EXT_texture_sRGB_R8

221. GL_EXT_YUV._target

222. GL_EXT_texture_ sRGB_RG8

223. GL_EXT_float_blend

224. GL_EXT_post_depth_coverage

225. GL_EXT_raster_multisample

226. GL_EXT_texture_filter_minmax

227. GL_NV_conservative_raster

228. GL_NV_fragment_coverage to_color

229. GL_NV_fragment_shader_interlock

230. GL_NV_framebuffer_mixed_samples

231. GL_NV _fill_rectangle

232. GL_NV_geometry_shader_passthrough

233. GL_NV_path_rendering_shared_edge

234. GL_NV_sample_locations

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
271171

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_noperspective_interpolation.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_base_instance.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_elements_base_vertex.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_indirect.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_render_snorm.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_norm16.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_copy_image.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_buffers_indexed.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_primitive_bounding_box.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_io_blocks.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_cube_map_array.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_view.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_elements_base_vertex.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external_essl3.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_R8.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_YUV_target.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_RG8.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_float_blend.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_post_depth_coverage.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_raster_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_filter_minmax.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conservative_raster.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fragment_coverage_to_color.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fragment_shader_interlock.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_mixed_samples.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fill_rectangle.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_geometry_shader_passthrough.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_path_rendering_shared_edge.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sample_locations.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 13. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

235.

GL_NV_sample_mask_override_coverage

236.

GL_NV_viewport_array2

237.

GL_NV_polygon_mode

238.

GL_EXT_buffer_storage

239.

GL_EXT_sparse_texture

240.

GL_OVR_multiview

241.

GL_OVR_multiview2

242.

GL_KHR_no_error

243.

GL_INTEL_framebuffer CMAA

244.

GL_EXT_blend_func_extended

245.

GL_EXT_multisample_compatibility

246.

GL_KHR_texture_compression_astc_sliced_3d

247.

GL_OVR_multiview_multisampled_render_to_texture

248.

GL_IMG_texture_filter_cubic

249.

GL_EXT_polygon_offset_clamp

250.

GL_EXT_shader_pixel_local_storage2

251.

GL_EXT_shader_group_vote

252.

GL_IMG_framebuffer_downsample

253.

GL_EXT_protected_textures

254.

GL_EXT_clip_cull_distance

255.

GL_NV_viewport_swizzle

256.

GL_EXT_sparse_texture2

257.

GL_NV_gpu_shader5

258.

GL_NV_shader_atomic_fp16_vector

259.

GL_NV_conservative_raster_pre_snap_triangles

260.

GL_EXT_window_rectangles

261.

GL_EXT_shader_non_constant_global_initializers

262.

GL_INTEL_conservative_rasterization

263.

GL_NVX_blend_equation_advanced_multi_draw_buffers

264.

GL_OES_viewport_array

265. GL_EXT_conservative_depth
3.4 Extension GL_VIV_direct_texture
Name VIV _direct_texture
Name strings GL_VIV_direct_texture
IPStatus Contact NXP Semiconductor regarding any intellectual property questions
associated with this extension.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

28 /171

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sample_mask_override_coverage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_array2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_polygon_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_buffer_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sparse_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview2.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_no_error.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_framebuffer_CMAA.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_blend_func_extended.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisample_compatibility.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_sliced_3d.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_filter_cubic.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_polygon_offset_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage2.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_group_vote.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_framebuffer_downsample.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_protected_textures.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_clip_cull_distance.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_swizzle.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sparse_texture2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_fp16_vector.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conservative_raster_pre_snap_triangles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_window_rectangles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_non_constant_global_initializers.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_conservative_rasterization.txt
https://www.khronos.org/registry/OpenGL/extensions/NVX/NVX_blend_equation_advanced_multi_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_viewport_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_conservative_depth.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Status Implemented: July, 2011
Version Last modified: 29 July, 2011
Revision: 2
Number Unassigned
Dependencies OpenGL ES 1.1 is required. OpenGL ES 2.0/3.x support is available.
Overview Create a texture with direct access support. This is useful when an application

desires to use the same texture over and over while frequently updating its content.
It could also be used for mapping live video to a texture. A video decoder could write
its result directly to the texture and then the texture could be directly rendered onto
a 3D shape. glTexDirectVIVMap is similar to glTexDirectVIV. The only difference is
that it has two inputs, “Logical” and “Physical,” which support mapping a user space
memory or a physical address into the texture surface.

3.4.1 New Procedures and Functions

glTexDirectVIV
Syntax:

GL API void GL APIENTRY
glTexDirectVIV (

GLenum Target,

GLsizei Width,

GLsizeil Height,

GLenum Format,

GLvoid ** Pixels

) 7

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width Size of LOD 0. Width must be 16 pixel aligned. The width and height of LOD 0 of the texture is
Height specified by the Width and Height parameters. The driver may auto-generate the rest of LODs if
the hardware supports high quality scaling (for non-power of 2 textures) and LOD generation. If the
hardware does not support high quality scaling and LOD generation, the texture remains a single-
LOD texture.

Format Choose the format of the pixel data from the following formats: GL_VIV_YV12, GL_VIV_NV12, GL_

VIV_NV21, GL_VIV_YUY2, GL_VIV_UYVY, GL_RGBA, and GL_BGRA_EXT.

* If the format is GL_VIV_YV12, glTexDirectVIV creates a planar YV12 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, Vplane, Uplane.

* |f the format is GL_VIV_NV12, glTexDirectVIV creates a planar NV12 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, UVplane.

* If the format is GL_VIV_NV21, glTexDirectVIV creates a planar NV21 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, VUplane.

¢ If the formatis GL_VIV_YUY2 or GL_VIV_UYVY, glTexDirectVIV creates a packed 4:2:2 texture
and the Pixels array contains only one pointer to the packed YUV texture.

 If Format is GL_RGBA, glTexDirectVIV creates a pixel array with four GL_UNSIGNED_BYTE
components: the first byte for red pixels, the second byte for green pixels, the third byte for blue,
and the fourth byte for alpha.

e If Format is GL_BGRA_EXT, glTexDirectVIV creates a pixel array with four GL_UNSIGNED_BYTE
components: the first byte for blue pixels, the second byte for green pixels, the third byte for red,
and the fourth byte for alpha.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
29 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Pixels Stores the memory pointer created by the driver. ‘

Output

If the function succeeds, it returns a pointer, or, for some YUV formats, it returns a set of pointers that directly
point to the texture. The pointer(s) are returned in the user-allocated array pointed to by the Pixels parameter.

GITexDirectVIVMap
Syntax:

GL API void GL APIENTRY
glTexDirectVIVMap (
GLenum Target,

GLsizei Width,

GLsizei Height,

GLenum Format,

GLvoid ** Logical,
const GLuint * Physical

)7

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width Size of LOD 0. Width must be 16 pixel aligned. See glTexDirectVIV.

Height

Format Same as glTexDirectVIV Format.

Logical Pointer to the logical address of the application-defined texture buffer. Logical address must be 64 bit
(8 byte) aligned.

Physical Pointer to the physical address of the application-defined buffer to the texture, or ~0 if no physical
address has been provided.

GITexDirectinvalidateVIV
Syntax:

GL API void GL APIENTRY
glTexDirectInvalidateVIV (
GLenum Target

) ;

Parameters
Target Target texture. Must be GL_TEXTURE_2D.
New Tokens
GL_VIV_YV12 0X8FCO
GL_VIV_NV12 0x8FC1
GL_VIV_YUY2 0x8FC2
GL_VIV_UYVY O0X8FC3
GL_VIV_NV21 0x8FC4
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

30/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Error codes

GL_INVALID_ENUM Target is not GL_TEXTURE_2D, or format is not a valid format.
GL_INVALID_VALUE Width or Height parameter is less than 1.
GL_OUT_OF_MEMORY A memory allocation error occurred.
GL_INVALID_OPERATION Specified format is not supported by the hardware, or

no texture is bound to the active texture unit, or

some other error occurs during the call.

Example 1.
First, call g1 TexDirectVIV to get a pointer.
Second, copy the texture data to this memory address.

Then, call glTexDirectInvalidateVIV to apply the texture before drawing something with that texture.

glTexDirectVIV (GL TEXUTURE 2D, 512, 512, GL VIV YV12, &texels);

GLTexDirectInvalidateVIV (GL TEXTURE 2D);

glDrawArrays (..) ;

Example 2.
First, call glTexDirectVIVMap to map Logical and Physical address to the texture.
Second, modify Logical and Physical data.

Then, call glTexDirectInvalidateVIV to apply the texture before drawing something with that texture.

char *Logical = (char*) malloc (sizeof (char)*size);

GLuint physical = ~0U;

glTexDirectVIVMap (GL TEXUTURE 2D, 512, 512, GL VIV YV12, (void**)é&Logical,
&physical) ;

GLTexDirectInvalidateVIV (GL TEXTURE 2D);

glDrawArrays (..) ;

Issues

None

3.5 Extension GL_VIV_texture_border_clamp

Name
VIV_texture border_clamp
Name Strings

GL_VIV_texture border_clamp

Status
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

31/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Implemented September 2012.

Version

Last modified: 27 September 2012

Vivante revision: 1

Number

Unassigned

Dependencies

This extension is implemented for use with OpenGL ES 1.1 and OpenGL ES 2.0.

This extension is based on OpenGL ARB Extension #13: GL_ARB_texture_border_clamp: www.opengl.org/
registry/specs/ARB/texture_border_clamp.txt. See also vendor extension GL_SGIS_texture_border_clamp:
www.opengl.org/registry/specs/SGIS/texture _border_clamp.txt.

Overview

This extension was adapted from the OpenGL extension for use with OpenGL ES implementations. The
OpenGL ARB Extension 13 description applies here as well:

“The base OpenGL provides clamping such that the texture coordinates are limited to exactly the range [0,1].
When a texture coordinate is clamped using this algorithm, the texture sampling filter straddles the edge of the
texture image, taking 1/2 its sample values from within the texture image, and the other 1/2 from the texture
border. It is sometimes desirable for a texture to be clamped to the border color, rather than to an average of the
border and edge colors.

This extension defines an additional texture clamping algorithm. CLAMP_TO_BORDER_[VIV] clamps texture
coordinates at all mipmap levels such that NEAREST and LINEAR filters return only the color of the border
texels.”

The color returned is derived only from border texels and cannot be configured.
Issues

None

New Tokens

Accepted by the <param> parameter of TexParameteri and TexParameterf, and by the <params>
parameter of TexParameteriv and TexParameterfv, when their <pname> parameter is TEXTURE_WRAP_S,
TEXTURE_WRAP_T, or TEXTURE_WRAP_R:

CLAMP_TO_BORDER_VIV 0x812D

Errors

None.

New State

Only the type information changes for these parameters.

See OES 2.0 Specification Section 3.7.4, page 75-76, Table 3.10, “Texture parameters and their values.”

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
32/171

http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
https://www.opengl.org/registry/specs/SGIS/texture_border_clamp.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

4 Vivante Framebuffer API

4.1 Overview

The graphics software includes i.MX Framebuffer (FB) API which enables users to easily create and port

their graphics applications by using a framebuffer device without the need to expend additional effort handling
platform-related tasks. i.MX Framebuffer API focuses on providing mechanisms for controlling display, window,
and pixmap render surfaces.

The EGL Native Platform Graphics Interface provides mechanisms for creating rendering surfaces onto which
client APIs can draw, creating graphics contexts for client APIs, and synchronizing drawing by client APIs as
well as native platform rendering APIs. This enables seamless rendering using Khronos APIs such as OpenGL
ES and OpenVG for high-performance, accelerated, mixed-mode 2D, and 3D rendering. For further information
on EGL, see www.khronos.org/registry/egl. The API described in this document is compatible with EGL version
1.4 of the specification.

The following platforms are supported:

* Linux OS/X11

* Android platform

e Windows Embedded Compact OS
* QNX

Note:

i.MX 8 on Linux OS supports Direct Rendering Manager (DRM) where the Linux framebuffer support is limited,
recommended to Graphics Buffer Manager (GBM).

4.2 API data types and environment variables

4.2.1 Data types

The GPU software provides platform independent member definitions for the following EGL types:

typedef struct FBDisplay * EGLNativeDisplayType;
typedef struct FBWindow * EGLNativeWindowType;
typedef struct FBPixmap * EGLNativePixmapType;

r Types [2.1.1] The following types differ based on platform.)|
Windows platform:
unsigned int EGLBoolean HDC EGLNativeDisplayType
unsigned int EGLenum HBITMAP EGLNativePixmapType
void *EGLConf HWND EGLNativeWindowType
g Linux/X11 platform:
void *EGLContext Display *EGLNativeDisplayType
void *EGLDisplay Pixmap EGLNativePixmapType
2 Window EGLNativeWindowType
void *EGLSurface 5
- . - Android platform:
L void EGLClientBuffer | ANativeWindow* EGLNativeWindowType |
> |

Figure 3. Types as listed on EGL 1.4 APl Quick Reference Card

(from www.khronos.org/files/egl-1-4-quick-reference-card.pdf)

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
33/171

http://www.khronos.org/registry/egl
http://www.khronos.org/files/egl-1-4-quick-reference-card.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

4.2.2 Environment variables

Table 14. i.MX FB API environment variables
Environment Variables Description

FB_MULTI BUFFER To use multiple-buffer rendering, set the environment variable FB_ MULTI BUFFER
to an unsigned integer value, which indicates the number of buffers required. The
maximum is 8.

Recommended values: 4.

The FB_ MULTI BUFFER variable can be set to any positive integer value.

* If set to 1, the multiple-buffer function is not enabled, and the VSYNC is also
disabled, so there may be tearing on screen, but it is good for benchmark test.

e Ifsetto 2 or 3, VSYNC is enabled and there are double or triple frame buffer.
Because of the hardware limitation of current IPU, there may be tearing on screen.

* If set to 4 or more, VSYNC is enabled and no screen tearing appears.

 |f set to a value more than 8, the driver uses 8 as the buffer count.

FB_FRAMEBUFFER 0, To open a specified framebuffer device, set the environment variable FB_
FB FRAMEBUFFER 1, FRAMEBUFFER n to a proper value (for example, FB_ FRAMEBUFFER 0 = /dev/
FB_FRAMEBUFFER 2, £b0).

Allowed values for n: any positive integer.

Note: If there are no environment variables set, the driver tries to use the default
framebuffer devices (fb0 for index 0, fb1 for index 1, fb2 for index 2, fb3 for index 3,
and so on).

FB FRAMEBUFFER n

FB_IGNORE DISPLAY SIZE When set to a positive integer and a window’s initial size request is greater than the

display size, the window size is not reduced to fit within the display. Global.

Allowed values: any positive integer.

Note: The drivers read the value from this environment variable as a Boolean to check

if the user wants to ignore the display size when creating a window.

* If the variable is set to value 0, or this environment variable is not set, when creating
window, the driver uses display size to cut down the size of the window to ensure
that the entire window area is inside the display screen.

* If the user sets this variable to 1, or any positive integer value, then the window
area can be partly or entirely outside of the display screen area (see the image
below in which the ignore display size is equal to 1).

GPU_VIV DISABLE CLEAR FB |lt turns off zero fill memory, so the content of FBDEV buffer is not cleared.

FB_LEGACY If the board supports drm-fb, the GPU will render though DRM by default. If the user
wants to render to framebuffer directly instead of through DRM, set this variable to 1.

Below are some usage syntax examples for environment variables:

To create a window with its size different from the display size, use the environment variable
FB_IGNORE DISPLAY SIZE.Example usage syntax:

export FB IGNORE DISPLAY SIZE=1

To let the driver use multiple buffers to do swap work, use the environment variable FB_ MULTI BUFFER.
Example usage syntax:

export FB MULTI BUFFER=2

To specify the display device, use the environment variable FB. FRAMEBUFFER n, where n = any positive
integer. Example usage syntax:

export FB FRAMEBUFFER 0=/dev/fb0
export FB FRAMEBUFFER 1=/dev/fbl
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
34 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

export FB FRAMEBUFFER 2=/dev/fb2

export FB FRAMEBUFFER 3=/dev/fb3

4.3 API description and syntax

fbGetDisplay:
Description This function is used to get the default display of the framebuffer device.
To open the framebuffer device, set an environment variable FB_ FRAMEBUFFER n to the
framebuffer location.
Syntax
EGLNativeDisplayType
fbGetDisplay (
void * context
)
context: Pointer to the native display instance.
Parameters
Return Values The function returns a pointer to the EGL native display instance if successful; otherwise, it
returns a NULL pointer.

fbGetDisplayBylndex:

Description

This function is used to get a specified display within a multiple framebuffer environment by
providing an index number.

To use multiple buffers when rendering, set the environment variable FB_ MULTI BUFFER
to an unsigned integer value, which indicates the number of buffers. Maximum is 3.

To open a specific Framebuffer device, set environment variables to their proper values
(e.g., set FB_ FRAMEBUFFER 0 = /dev/£b0). If there are no environment variables set,
the driver tries to use the default fb devices (fb0 for index 0, fb1 for index 1, fb2 for index 2,
fb3 for index 3, and so on).

Syntax

EGLNativeDisplayType
fbGetDisplayByIndex (

int DisplayIndex
) ;

Parameters

DisplayIndex:

An integer value where the integer is associated with one of the following environment
variables for framebuffer devices:

FB_FRAMEBUFFER 0
FB FRAMEBUFFER 1
FB FRAMEBUFFER 2
FB FRAMEBUFFER n

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024 Document feedback
357171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Return Value The function returns a pointer to the EGL native display instance if successful; otherwise, it
returns a NULL pointer.

fbGetDisplayGeometry:

Description This function is used to get display width and height information.
Syntax void
fbGetDisplayGeometry (
EGLNativeDisplayType Display,
int * Width,
int * Height
) i
Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.
width: [out] Pointer that receives the width of the display.
Height: [out] Pointer that receives the height of the display.

fbGetDisplayinfo:

Description This function is used to get display information.
Syntax
void
fbGetDisplayInfo (
EGLNativeDisplayType Display,
int * Width,
int * Height,
unsigned long * Physical,
int * Stride,
int * BitsPerPixel
) ;
Parameters Display: [in] A pointer to the EGL native display instance created by fbGetDisplay.

Width: [out] A pointer to the location that contains the width of the display.
Height: [out] A pointer to the location that contains the height of the display.

Physical: [out] A pointer to the location that contains the physical start address of the
display.

Stride: [out] A pointer to the location that contains the stride of the display.

BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the display.

fbDestroyDisplay:

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
36/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Description This function is used to destroy a display.
Syntax
void
fbDestroyDisplay (
EGLNativeDisplayType Display
) ;
Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.
fbCreateWindow:
Description This function is used to create a window for the framebuffer platform with the specified
position and size. If width/height is 0, it uses the display width/height as its value.
Note: When either window X + width or the Y + height is larger than the display’s width or
height respectively, the API reduces the window size to force the whole window inside the
display screen limits. To avoid reducing the window size in this scenario, users can set a
value of “1” to the environment variable FB_ IGNORE DISPLAY SIZE.
Syntax
EGLNativeWindowType
fbCreateWindow (
EGLNativeDisplayType Display,
int X,
int Y,
int Width,
int Height
)
Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.
X: [in] Specifies the initial horizontal position of the window.
Y: [in] Specifies the initial vertical position of the window.
Width: [in] Specifies the width of the window.
Height: [in] Specifies the height of the window in device units.
Return Value The function returns a pointer to the EGL native window instance if successful; otherwise,
it returns a NULL pointer.
fbGetWindowGeometry:
Description This function is used to get window position and size information.
Syntax
void
fbGetWindowGeometry (
EGLNativeWindowType Window,
int B XI
iI’lt B YI
int * Width,
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

371171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semicond

uctors IMXGRAPHICUG_9

i.MX Graphics User's Guide

int * Height
)

Parameters

Window: [in] Pointer to EGL native window instance created by fbCreateWindow.
X: [out] Pointer that receives the horizontal position value of the window.

v: [out] Pointer that receives the vertical position value of the window.

Width: [out] Pointer that receives the width value of the window.

Height: [out] Pointer that receives the height value of the window.

fbGetWindowlnfo:

Description This function is used to get window position and size and address information.
Syntax
void
fbGetWindowInfo (
EGLNativeWindowType Window,
int * XI
int * YI
int * Width,
int * Height
e w BitsPerPixel,
unsigned int * Offset
)
Parameters Window: [in] A pointer to the EGL native window instance created by fbCreateWindow.
X: [out] A pointer to the location that contains the horizontal position value of the window.
Y: [out] A pointer to the location that contains the vertical position value of the window.
Width: [out] A pointer to the location that contains the width of the window.
Height: [out] A pointer to the location that contains the height of the window.
BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the window.
Of fset: [out] A pointer to the location that contains the offset of the window.
fbDestroyWindow:
Description This function is used to destroy a window.
Syntax
void
fbDestroyWindow (
EGLNativeWindowType Window
)
Parameters Window: [in] Pointer to EGL native window instance created by fbCreateWindow.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

38/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

fbCreatePixmap:
Description This function is used to create a pixmap of a specific size on the specified framebuffer
device. If either the width or height is 0, the function fails to create a pixmap and return
NULL.
Syntax
EGLNativePixmapType
fbCreatePixmap (
EGLNativeDisplayType Display,
int Width,
int Height
) ;
Parameters Display: [in] Pointer to the EGL native display instance created by fbGetDisplay.
width: [in] Specifies the width of the pixmap.
Height: [in] Specifies the height of the pixmap.
Return Value The function returns a pointer to the EGL native pixmap instance if successful; otherwise,
it returns a NULL pointer.

fbCreatePixmapWithBpp:

Description

This function is used to create a pixmap of a specific size and bit depth on the specified
framebuffer device. If either the width or height is 0, the function fails to create a pixmap
and return NULL.

Syntax
EGLNativePixmapType
fbCreatePixmapWithBpp (
EGLNativeDisplayType Display,
int Width,
int Height
int BitsPerPixel
) ;
Parameters Display: [in]A pointer to the EGL native display instance created by fbGetDisplay.

Width: [in] Specifies the width of the pixmap.
Height: [in] Specifies the height of the pixmap.

BitsPerPixel: [in] Specifies the bit depth of the pixmap.

Return Value

The function returns a pointer to the EGL native pixmap instance if successful; otherwise,
it returns a NULL pointer.

fbGetPixmapGeometry:

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024 Document feedback
39/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Description This function is used to get pixmap size information.
Syntax
void
fbGetPixmapGeometry (
EGLNativePixmapType Pixmap,
int * Width,
int * Height
) ;
Parameters Pixmap: [in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.
Width: [out] Pointer that receives a width value for pixmap.
Height: [out] Pointer that receives a height value for pixmap.

fbGetPixmaplinfo:

Description This function is used to get pixmap size and depth information.
Syntax
void
fbGetPixmapInfo (
EGLNativePixmapType Pixmap,
int * Width,
int * Height
int * BitsPerPixel
int * Stride,
void ** Bits
)
Parameters Pixmap: [in] A pointer to the EGL native pixmap instance created by fbCreatePixmap.
width: [out] A pointer to the location that contains a width value for pixmap.
Height: [out] A pointer to the location that contains a height value for pixmap.
BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the pixmap.
Stride: [out] A pointer to the location that contains the stride of the pixmap.
Bits: [out] A pointer to the location that contains the bit address of the pixmap.
fbDestroyPixmap:
Description This function is used to destroy a pixmap.
Syntax
void
fbDestroyPixmap (
EGLNativePixmapType Pixmap
)
Parameters Pixmap: [in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

40/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

5 OpenCL

5.1 Overview

5.1.1 General description

Open Computing Language (OpenCL) is an open industry standard application programming interface (API)
used to program multiple devices including GPUs, CPUs, as well as other devices organized as part of a single
computational platform. The OpenCL standard targets a wide range of devices from mobile phones, tablets,
PCs, and consumer electronic (CE) devices, all the way to embedded applications such as automotive and
image processing functions. The API takes advantage of all resources in a platform to fully utilize all compute
capability and to efficiently process the growing complexity of incoming data streams from multiple 1/0 (input/
output) sources. I/O streams can be camera inputs, images, scientific or mathematical data, and any other form
of complex data that can make use of data or task parallelism.

OpenCL uses parallel execution SIMD (single instruction, multiple data) engines found in GPUs to enhance
data computational density by performing massively parallel data processing on multiple data items, across
multiple compute engines. Each compute unit has its own arithmetic logic units (ALUs), including pipelined
floating point (FP), integer (INT) units and a special function unit (SFU) that can perform computations as
well as transcendental operations. The parallel computations and associated series of operations are called a
kernel, and the GPU cores can execute a kernel on thousands of work-items in parallel at any given time.

At a high level, OpenCL provides both a programming language and a framework to enable parallel
programming. OpenCL includes APls, libraries and a runtime system to assist and support software
development. With OpenCL, it is possible to write general purpose programs that can execute directly on
GPUs, without needing to know graphics architecture details or using 3D graphics APIs like OpenGL or DirectX.
OpenCL also provides a low-level Hardware Abstraction Layer (HAL) as well as a framework that exposes
many details of the underlying hardware layer and thus allows the programmer to take full advantage of the
hardware.

For more details on all the capabilities of OpenCL, see the following specifications from the Khronos Group:
* OpenCL 3.0 Specification
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf

* OpenCL 3 C Language Specification
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf

5.1.2 OpenCL framework

The OpenCL framework has two principal parts, similar to OpenGL, the host C API and the device C-based
language runtime. The host in OpenCL terminology corresponds to the client in OpenGL and the device
corresponds to the server. Device programs are called kernels. Execution of an OpenCL program is preceded
by a series of API calls that configure the system and Vivante OCL-compatible IP for execution.

OpenCL abstracts today's heterogeneous architectures using a hierarchical platform model. A host coordinates
the execution and data transfers on, to and from one or several compute devices. Compute devices are
comprised of compute units and each such unit contains an array of processing elements.

5.1.2.1 OpenCL execution model: kernels and work elements

The OpenCL execution model is defined by how the kernels are executed. When a kernel is submitted for
execution by the host, an index space is defined. An instance of the kernel executes for each point in this index
space. This kernel instance is called a work-item. Work-items are identified by their position in the index space

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
417171

https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

that provides the global ID for the work-item. Each work-item executes the same code but the specific pathway
through the code and the data operated upon varies by work-item.

Work-items are organized into work-groups. Work-groups provide a broader decomposition of the index space.
Work-groups are each assigned a unique work-group ID with the same dimensionality as the index space used
for the work-items. Work-items are assigned a unique local ID within a work-group so that a single work-item
can be uniquely identified by its global ID or by a combination of its local ID and work-group ID. The work-items
in a given work-group execute concurrently on the same compute device.

The index space supported in OpenCL is called an NDRange. An NDRange is an N-dimensional index space,
where N is one (1), two (2) or three (3). An NDRange is defined by an integer array of length N specifying the
extent of the index space in each dimension starting at an offset index F (zero by default). Each work-item’s
global ID and local ID are N-dimensional tuples. The global ID components are values in the range from F, to F
plus the number of elements in that dimension minus one.

Work-groups are assigned IDs using a similar approach to that used for work-item global IDs. An array of length
N defines the number of work-groups in each dimension. Work-items are assigned to a work-group and given

a local ID with components in the range from zero to the size of the work-group in that dimension minus one.
Hence, the combination of a work-group ID and the local-ID within a work-group uniquely defines a work-item.
Each work-item is identifiable in two ways; in terms of a global index, unique through the whole kernel index
space, and in terms of a local index, unique within a work group.

5.1.2.2 OpenCL command queues

OpenCL provides both task and data parallelism. Data movements are coordinated via command queues,
which provide a general means of specifying inter-task relationships and task execution orders that obey

the dependencies in the computation. OpenCL may execute several tasks in parallel, if they are not order
dependent. Tasks are composed of data-parallel kernels which, similarly to shaders, apply a single function to
a range of elements in parallel. Only restricted synchronization and communication is allowed during kernel
execution.

OpenCL kernels execute over a 1, 2 or 3 dimensional index space. All work-items execute the same program
(kernel) but their execution may diverge, with branching dependent on the data or their index. For details
regarding how many work groups are allowed within an index space see “Using clEnqueueNDRangeKernel”.

A kernel or a memory operation is first enqueued onto a command queue. Kernels are executed
asynchronously and the host application execution may proceed right after the enqueue operation. The
application may opt to wait for an operation to complete and an operation (kernel or memory) may be marked
with a list of events that must occur before it executes.

Events are kernel completion and memory operations. OpenCL traverses the dependence graph between the
kernels and memory transfers in a queue and ensures the correct execution order. Multiple command queues
may be constructed, further enhancing parallelism control across platforms and multiple compute devices.

» Command-queue barriers are used to control the commands within the command queue. The command-
queue barrier indicates which commands must be finished before proceeding. This allows for out-of-order
command processing. The command queue barrier ensures that all previously enqueued commands finish
execution before any following commands begin execution.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
42 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

COMMAND QUEUE

COMMAND

S Engueue command sequence may be
im-order or out of order

COMMAND

Command Queue Bamrier
Command Queue ¢ preventes following commands from

Barrier executing before previously enqueued
i commands finish execution
COMMAND
Following commands begin execution
only after previously engueue commands
finish
COMMAND

Figure 4. Command queue barrier

The work-group barrier built-in function provides control of the work-item flow within work-groups. All work-items
must execute the barrier construct before any can continue execution beyond the barrier.

5.1.2.3 OpenCL memory model

The OpenCL memory model is divided into four different types of memory domains. These are:

* Global Memory: Each compute device has global memory space which can reside off-chip in system memory
(DRAM) or inside the chip at the L1 or temporary register level. Global memory is accessible to all work-items
executing in a context, as well as to the host (read, write, and map commands).

» Constant Memory: is also global memory, but it is read-only. Constant memory can be placed in any level of
memory that the application programmer decides, making it an implementation dependent decision. This is the
region for host-allocated and host-initialized objects that are not changed during kernel execution.

* Local Memory: Each compute unit has local memory which resides very near the processing elements.
Access to local memory is very fast and the size of local memory is much smaller than global memory, making
it a scarce resource that needs to be controlled for optimal communication of work-items inside a work-group.
Local memory is specific to a work-group, and is accessible only by work-items belonging to that work group.

* Private Memory: Each processing element has another level of memory called private memory, which is only
accessible to a single work-item. Private memory is specific to a work-item and is not visible to other work-
items.

During run-time, each processing element is assigned a set of on-chip registers that are used for data storage
of intermediate data. Data that cannot be stored in registers spills over to global memory which can be very
costly in terms of performance and constant data movement to/from temporary registers. Software may emulate
local and private memory using global memory. System Memory is often loaded to L1 cache, Temporary or

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
43 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Local Storage Registers and the GPGPU reads from those locations. At every level of the application program,
the programmer must be aware of the size and hierarchy of storage elements.

Table 15. Vivante memory structures mapped to Khronos OpenCL memory types

Khronos OpenCL Vivante GPGPU OpenCL Definition
Memory Model Name Memory Structures Utilized
Private Memory Registers, System Memory Accessible only to an individual work-item; not
visible to any other work-items
Local Memory Local Storage Registers, System | Accessible to all work-items within a specific work-
Memory group; accessible only by work-items belonging to
that work-group
Global Memory System Memory Accessible to all-work-items executing in a context,
as well as to the host (read, write, and map
commands).
Constant Memory Constant Registers, System Read only global memory region for host-allocated
Memory and initialized objects that are not changed during
kernel execution
Host (CPU) Memory Host Memory Region for a kernel application’s program data and
structures

The OpenCL concurrent-read /concurrent-write (CRCW) memory model has so-called relaxed consistency
which means that different work-items may see a different view of global memory as the computation proceeds.
Within individual work-items reads and writes to all memory spaces are ordered. Synchronization between
work-items in a work-group is necessary to ensure consistency. No mechanism for synchronization between
work-groups is provided. Such a model assures parallel scalability by requiring explicit synchronization and
communication.

For the highest throughput and computational speed, kernels should use high-speed on-chip memories and
registers as much as possible. Instruction control flow and memory operations, including data gathering /
scattering and direct memory access (DMA) should be automatically reorganized / re-ordered depending on
data dependencies detected by the optimized compiler. The Vivante OpenCL compiler automatically maps
dependencies and re-orders instructions for the best performance.

5.1.2.4 Host to Vivante compute device data transfers

The application running on the host uses the OpenCL API to create memory objects in global memory, and to
enqueue memory commands that operate on these memory objects. The host and OpenCL device memory
models are, for the most part, independent of each other. This is by necessity as the host is defined outside of
OpenCL. They do, however, at times need to interact. This interaction occurs in one of two ways: by explicitly
copying data from the host to the GPU compute device memory, or implicitly, by mapping and unmapping
regions of a memory object.

» Explicit using clEnqueueReadBuffer and clEnqueueWriteBuffer (clIEnqueueReadlmage,
clEnqueueWritelmage.)

To copy data explicitly, the host enqueues commands to transfer data between the memory object and host
memory. These memory transfer commands may be blocking or non-blocking. The OpenCL function call for
a blocking memory transfer returns once the associated memory resources on the host can be safely reused.
For a non-blocking memory transfer, the OpenCL function call returns as soon as the command is enqueued
regardless of whether host memory is safe to use.

* Implicit using clEnqueueMapBuffer and clEnqueueUnMapMemObiject.

The mapping/unmapping method of interaction between the host and OpenCL memory objects allows the host
to map a region from the memory object into its address space. The memory map command may be blocking
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
44 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

or non-blocking. Once a region from the memory object has been mapped, the host can read or write to this
region. The host unmaps the region when accesses (reads and/or writes) to this mapped region by the host are
complete.

The OpenCL specification does not explicitly state where each memory space will be mapped to on individual
implementations. This provides great freedom for vendors on the one hand and some uncertainty for
programmers on the other. Fortunately, kernels may be compiled just-in-time and possible differences may be
tackled during run-time.

When using these interfaces, it is important to consider the amount of copying involved to/from system memory
and the various levels within the compute device(s). There is a two-copy process: between host and AXI (or
SoC internal bus), and between AXI (or SoC internal bus) and the Vivante GPGPU compute device. Double
copying lowers overall system memory bandwidth and lowers performance. Because of variations in system
architecture (both internal and external/memory), there is sometimes a large performance delta between

the system or calculated GFLOPS and the kernel or GPGPU GFLOPS. GPGPU GFLOPS are based on the
theoretical computational capability of the ALUs within the GPGPU, assuming the system architecture can
deliver full data to the GPGPU. OpenCL APIs for buffers and images aid in avoiding double copy by allowing
the mapping of host memory to device memory. With proper memory transfer management and the use of host/
CPU memory remapped to the GPGPU memory space, copying between host memory and GPGPU memory
can be skipped so data transfer becomes a one-copy process. The trade-off is that the programmer needs to be
mindful of page boundaries and memory alignment issues.

5.1.3 OpenCL profiles

In addition to Full Profile, the OpenCL specification also includes an Embedded Profile, which relaxes the
OpenCL compliance requirements for mobile and embedded devices. The main commons and differences
between OpenCL 1.1/1.2 EP (Embedded Profile) and FP (Full Profile) come down to:

Commons:

* Both EP and FP significantly offload the CPU of parallel, multi-threaded tasks.
* For both EP and FP double precision and half-precision floating point are optional.

Difference:

* Full Profile is for highly complex, accurate, and real time computations, while Embedded Profile is a small
subset targeting smaller devices (handheld, mobile, embedded) that perform GPGPU/OpenCL processing
with relaxed data type and precision requirements (image processing, augmented reality, gesture recognition,
and more).

* 64-bit integers are required for FP and optional for EP.

» EP requires either RTZ or RTE. FP requires both.

» Computational precision (units in the last place; i.e., ULP) requirements in EP are relaxed.

* Atomic instruction support is not required in EP.

» 3D Image support is not required in EP.

* Minimum requirements for constant buffer size, object allocation size, constant argument counts and local
memory sizes are scaled down in EP.

* And more (in general EP is a scaled down version of FP).

* Die size and power increase with FP because of the higher requirements, features and memory sizes.

5.1.4 Vivante OpenCL embedded compatible IP

As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Embedded Profile
version 1.1. The following table lists the hardware capability deltas.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
45/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 16. Vivante OpenCL embedded profile hardware

i.MX Graphics User's Guide

Hardware and revision GC2000
Feature 5.1.0.rc8a
Compute Devices (GPGPU cores) 1
Compute Units per device (Shader cores) 4
Processing Elements per compute unit 4
Profile Embedded
Preferred work-group/thread group size 16
Max count global work-items each dim 64K
Max count of work-items each dim per work-group 1K
Local Storage Registers On-chip 64
Instruction Memory 512
Texture Samplers 8PS +4VS
Texture Samplers available to OCL (HW, unlimited via SW) 4
L1 Cache Size 4 KB
L1 Cache Banks 1
L1 Cache Sets/Bank 4
L1 Cache Ways/Set 16
L1 Cache Line Size 64B
L1 Cache MC ports 1

5.1.5 Vivante OpenCL full profile hardware model

As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Full Profile versions
1.1, 1.2, and 3.0. Hardware capability deltas are subject to change and includes:

Table 17. Vivante OpenCL full profile hardware

Hardware and revision GC2000+ GC7000XSVX GC7000L GC7000UL
. i.MX 6QuadPlus, . i.MX 8M Quad, |i.MX 8M Nano
i.MX SoC i.MX 6DualPlus i.MX 8 QuadMax i.MX 8QuadXPlus | i.MX 8M Plus
Compute Devices (GPGPU cores) 1 1 1 1
Compute Units per device (for sub- 1 1 1 1
device)
Processing Elements per device 16 32 16 8
Profile Full-Lite* Full Full Full
Rreferred work-group/ thread group 16 32 16 8
size
Max count global work-items each 4G
dim
4 4 K 4 4 K 4
(if 3D only 1 dim can be up to 4G, c/e c/e G
the others 64K)
Max count of work-items each dim 1K 1K 1K 1K
per work-group

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
46 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 17. Vivante OpenCL full profile hardware...continued

i.MX Graphics User's Guide

Local Storage Registers On-chip 0 2048 (32 K) 16 (KB)

Instruction Memory 1$:512/1 M 8K 8K 8K
Texture Samplers 32 undefined 32 undefined 32 32
Texture Samplers available to OCL 32 32 32 32
L1 Cache Size 4 KB 64 KB 16KB 8 KB
L1 Cache Banks 2 4 2 1
L1 Cache Sets/Bank 2 N/A 8
L1 Cache Ways/Set 16 8 8

L1 Cache Line Size 64 B 64 B 64 B 64 B
L1 Cache MC ports per GPGPU 5 5 2 1
core

5.2 Vivante OpenCL implementation

5.2.1 OpenCL pipeline

Primative SH
Assembly OpenCL
Compute

Unit

Pixel
Engine T

' Texture Unit

4

Figure 5. Vivante OpenCL data pipeline for an OpenCL compute device

| Memory Controller I

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
471171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Instruction
RAM (PS)

Flow
Control
Unit

—

Floating
Point
Execution

Integer
Execution

_— Constant
Memory RAM

Private Memory

Unit

Unit

|L

L
Cache

Figure 6. Vivante OpenCL compute device showing memory scheme

(Temp Registers)

Global Memory

| —

5.2.2 Front end

The front end passes the instructions and constant data as State Loads to the OpenCL Compute Unit
(Shader) block. State Loads program instructions and constant data and work groups initiate execution on the

instructions and the constants loaded.

5.2.3 OpenCL compute unit

All OpenCL executions occur in this block and all work-groups in a compute unit should belong to the same
kernel. Threads from a work-group are grouped into internal “Thread-groups”. All the threads in a thread-group
execute in parallel. Barrier instruction is supported to enforce synchronization within a work-group.

The compute unit contains Local Memory and the L1 Cache and is where the Load/Store instruction to access
global memory originates. The compute unit can accommodate multiple work-groups (based on the temporary
register and local memory usage) simultaneously.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
48 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

5.2.4 Memory hierarchy

Private Private Private Private
Memory. Memory Memory

Local Memory: Local Memaory.

Workgroup Workgroup

Private Private Private Private
Memory Memory Memory Memory

Local Memory: Local Memory.

Workgroup Workgroup

| Global/Constant Memory |

Computer Device

Host Memory

Figure 7. OpenCL memory hierarchy

5.2.5 CL Extension support

5.2.5.1 CL_DEVICE_EXTENSION support

The following table provides a list of CL_DEVICE_EXTENSIONSs referenced in the OpenCL 1.2 specification
(pp. 46-47). The support level for these device specific extensions is also indicated.

List from OpenCL 1.2 Specification https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf (version 1.2,
document revision 19, revision date 11/14/12)

Table 18. Support level for these device specific extensions (1)

CL_DEVICE_EXTENSIONS
— . . q SW 6.2.x/6.4.x

OpenCL C 1.2 Extensions which must be returned (p. 47)

cl khr byte addressable store YES

cl khr fp64 (for backward compatibility if double precision is

supported)

cl khr global int32 base atomics CORE
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

49 /171

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 18. Support level for these device specific extensions (1)...continued

i.MX Graphics User's Guide

CL_DEVICE_EXTENSIONS
OpenCL C 1.2 Extensions which must be returned (p. 47)

SW 6.2.x/6.4.x

cl khr global int32 extended atomics

CORE

cl khr local int32 base atomics

CORE

cl khr local int32 extended atomics

CORE

Table 19. Support level for these device specific extensions (2)

CL_DEVICE_EXTENSIONS
Device specific support for Khronos approved extension names (p.46)

A number after the extension name indicates the extension is also listed in the
numbered extensions on the Khronos website.

SW 6.2.x/6.4.x

cl khr 3d image writes

cl khr context abort

cl khr d3d10_sharing (#6)

cl khr d3dll sharing

cl _khr depth images

cl _khr dx9 media sharing

cl khr fplé

cl _khr gl depth images

cl_khr gl event

cl khr gl msaa sharing

cl khr gl sharing (#1)

YES

cl khr image2d from buffer

cl khr initialize memory

cl khr int64 base atomics

cl khr int64 extended atomics

cl _khr spir

5.2.5.2 Vivante OpenCL extension support

The following table provides a list of all current OpenCL Extensions and indicates their support level in Vivante

software.

Table 20. CL extensions supported by Vivante with 6.2.x SW

OpenCL Extension Number, Name and hyperlink SW 6.2.x

cl khr byte addressable store YES

cl khr external memory dma buf YES (from 6.4.11)

cl khr command buffer YES (from 6.4.11)

cl khr gl sharing YES
cl khr icd YES
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

50/171

https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_gl_sharing.txt
https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_icd.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 20. CL extensions supported by Vivante with 6.2.x SW...continued

OpenCL Extension Number, Name and hyperlink SW 6.2.x

VIV bitfield extension YES (from 6.2.2, revised in 6.2.3)
VIV cmplx extension YES (from 6.2.3)

VIV _uncached host mem YES (from 6.2.2)
VIV_vx_extension YES, for VX/VIP hw (from 6.2.2)
cl _khr fplé6 YES (from 6.4.7)

cl khr il program YES (from 6.4.8)

5.3 Optimization for OpenCL embedded profile

OpenCL EP (Embedded Profile) is basically a scaled down version of OpenCL FP(Full Profile) and thus may
require extra optimization. The guidelines below help with the optimization of Vivante OpenCL Embedded
Profile GPGPU cores.

When optimizing code on Vivante hardware, it is important to remember a few key points to get the best
performance from the hardware:

* Take advantage of algorithm and data parallelism
» Choose the correct execution configuration (more details below)

» Overlap memory transfer from different levels of the OpenCL memory hierarchy with simultaneous thread
execution

» Maximize memory bandwidth and minimize data transfers (large transfers are more beneficial than many
smaller transfers because of the impact of latency)

» Maximize instruction throughput and minimize instruction count

5.3.1 Using preferred multiple of work-group size

The work-group size should be a multiple of the thread group size. Otherwise, some threads remain idle and
the application does not fully utilize all the compute resources. For example, if the work-group size is 8 and

the Vivante core supports 16, only half the compute resources are used. For example, in some early Vivante
GPGPU revisions, the work-group size limit is 192 and the thread group size is 16. See the Overview section on
OpenCL Compatible IP for IP-specific capabilities.

5.3.2 Using multiple work-groups of reduced size

Multiple work groups need to be set to reduce synchronization penalties. To prevent stalls at barriers, it is
recommended to have at least four (4) work-groups to keep the cores busy or as long as the number of work-
groups is greater than or equal to two (2). One work-group is very inefficient; four or more is preferred and helps
avoid latency.

5.3.3 Packing work-item data

It is important to pack data to extract the optimal performance from the SIMD ALU hardware and align the data
into a format supported by the hardware. Efficient use of the Vivante GPGPU core requires that the kernel
contains enough parallelism to fill all four vector units. Work-items in the same thread group have the same
program counter and execute the same instruction for each cycle. Whenever possible, pack together work-
items that follow the same direction (e.g., on branches) since the granularity is very close and there may be

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
51/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

less divergence and higher performance. If each work-item handles less than or equal to 8 bytes, it is better to
combine two or more work-items into one to improve utilization of the SIMD ALU.

5.3.4 Improving locality

If the input data is an array-of-structs, and each work-item needs to access only a small part of the struct
across many array elements at different stages, it may be better to convert and use a struct-of-arrays or several
different arrays as input to improve data locality and avoid cache thrashing.

If each work-item needs to process a row of data without sharing any data with other work-items, it is better
to check if the algorithm can be converted to make each work-item process a column of data so that data
accessed by adjacent work-items can share the same cache lines.

5.3.5 Minimizing use of 1 KB local memory

The OpenCL Embedded Profile specification defines the minimum requirement for local memory to be

1KB to pass conformance testing. Based on algorithm analysis and profiling different image and computer
vision algorithms, we found that a 1KB local memory size was too small to benefit those algorithms. In most
instances, those algorithms actually slowed down when using 1KB local memory. To increase performance,
we recommend not using local memory since it is more efficient to transfer larger chunks of data from system
memory to keep the OpenCL pipeline full.

Note: If local memory type is CL_GLOBAL, the local memory is emulated using global memory, and the
performance is the same as global memory. There is extra overhead on data copy from global to local, which
slows down the performance.

5.3.6 Using 16 byte memory Read/Write size

When accessing memory, it is important to minimize the read/write count and to ensure L1 cache utilization is
high to reduce outstanding read/write requests. Since the internal GPGPU read-write-request queue has a limit,
if the queue and L1 cache are filled, then the GPGPU remains idle.

5.3.7 Using _RTZ rounding mode

Wherever possible, use _RTZ (round to zero) since it is natively supported in hardware with one instruction.
Support for _RTE (round to nearest even) is optional in OpenCL EP and is only supported in Vivante GPGPU
EP hardware from 2013. This function is handled in software for EP cores if necessary.

5.3.8 Using float4 for better performance on i.MX 8M Quad and i.MX 8QuadXPlus

Since both the i.MX 8M Quad and i.MX 8QuadXPlus boards have new RTL 6214, the CL kernel
compiler generates GPU instructions using more registers on RTL6214. Float4 is recommended for real
applications for better performance.

5.3.9 Using native functions

5.3.9.1 Using native_function() for increased performance

There are two types of runtime math libraries available to developers. Native_function() and regular function().
* Function(): slower, computationally expensive, higher instruction count, and greater accuracy

* Native_function(): faster, computationally inexpensive, lower instruction count (sometimes reduced to one
instruction), and lower accuracy.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
52 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

« If accuracy is not important but speed/performance is, use native math functions that map directly to the
Vivante GPGPU hardware.

For image processing computations that do not require high accuracy, use native instructions to significantly
lower the instruction count and speed up performance. Based on actual analysis and performance profiling
with the Vivante GPGPU, we found that using native_function() instructions such as sin, cos, etc., reduces
the instruction count from many instructions to one or two instructions. Use of native functions also sped
performance by 3x-10x.

5.3.9.2 Using native_divide and native_reciprocal for faster floating point calculations

There are two use cases for floating point division which a user can select:

» Normal use of the division operator (/) in OpenCL has high precision and covers all corner use cases. This
operator generates more instructions and runs slower.

* Native Divide: this use case uses the built-in function native_divide or native_reciprocal, which uses what the
hardware supports. The Vivante OpenCL compiler generates one or two instructions for each native_divide or
native_reciprocal instruction. If there are no corner use cases in applications, such as NaN, INF, or (2*27) /
(2M27), it is better to use native_divide since it is faster.

5.3.9.3 Using compile option for native functions

Both the function() and native_function() methods are supported in the Vivante GPGPUs, so it is up to the
developer to use whichever method makes sense for their application. If the OpenCL program uses the
standard division operator and a developer wants to use native_divide or native_reciprocal without modifying
their program, the Vivante OpenCL compiler has a simple option “-cl-fast-relaxed-math” that uses native built-in
functions during compilation.

5.3.10 Using buffers instead of images

For the following image functions, it is better to use buffers instead of images.
* read_image{f/i/ui/h}
» write_image{f/i/ui/h}

Write_image* functions are implemented by software; it is better to use buffers to reduce the additional
overhead involved in checking for size, format, etc. Since a few formats are not supported by Vivante GPGPU
hardware, some built-in read_image() functions are implemented in software. The software implementation
uses more instructions with many steps of “condition” checking. To improve performance, we recommend using
buffers since it reduces instruction count.

5.4 OpenCL Debug messages

When writing OpenCL applications, it is important to check the code returned by the API. Since the return codes
specified in the OpenCL specification may not be descriptive enough to isolate where the problem is located,
the Vivante OpenCL driver provides an environment variable, VIV_DEBUG, to help debug problems. When
VIV_DEBUG is set to -MSG_LEVEL:ERROR, the Vivante OpenCL driver prints onscreen error messages and
returns the error code to the caller.

The following error code descriptions and suggested workarounds are provided.

5.4.1 OCL-007005: (clCreateKernel) cannot link kernel

One of the following “Not Enough” messages usually precedes this message. Issuer indicates the real reason
for the problem which may be:
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
53 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

* Not Enough Register Memory (constant or temp)
* Not Enough Instruction Memory

5.4.2 Not enough register memory

Local variables, including arrays, are implemented using temp registers. If an array is larger than the number of
available temp registers, a link-time failure occurs.

Workarounds:

1. If the array size is more than 64, use an array address to force the compiler to use private memory instead of
temp registers.

2. If there are many variables, use variable addresses to force the compiler to use private memory to reduce
register usage.

Note that there is performance degradation when using private memory instead of registers. It is better to
change the algorithm to use a smaller array or less variables.

5.4.3 Not enough instruction memory

Workarounds:

1. Replace sin/cos/tan/divide/powr/exp/exp2/expl0/log/log2/logl0/sqrt/rsqrt/recip with
native sin/native divide, etc.

2. Convert unrolled-loops back to loops.
3. Use buffer instead of image for write, and for reads which are not linear-filtered.

4. If the program is too long, it should be split into two or more programs with intermediate data saved from one
program to next.

5.4.4 GlobalWorkSize over hardware limit

WORKAROUND:

1. Split one clEnqueueNDRangeKernel into several instances. Change the kernel source to compute real
global/local/group ID using offset as a parameter.

2. Convert one dimension to two dimensions, or two dimensions to three. For example, one dimension of
1M work-items can be converted to a GlobalWorkSize of 64K x16 work-items. The kernel function needs
modification to reflect the change of dimension.

5.5 Zero copy

A buffer object can be created with clCreateBuffer(cl_context context, cl_mem_flags flags, size_t size, void*
host_ptr, cl_int* error_code_ret). If memory flags contain CL_MEM_USE_HOST_PTR, GPU will map the
memory pointed by host ptr for GPU to use to avoid copying data between CPU and GPU.

To make sure the results are correct, the size of buffer, the third parameter of clCreateBuffer(), needs to be
aligned with 64-byte since Arm data cache operations are performed line by line, the unaligned bits will be
cleared with cache line mask. A53, A57, A72 and A73 all have 64-byte cacheline size. If the size of the buffer
doesn’t meet this, GPU will use copy method instead.

Besides, the host_ptr should be aligned with 64-bit to meet the ARM cacheline mechanism.

At last, need to call clEnqueueReadBuffer() to make sure the data has been read back to CPU.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
54 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

5.6 Instruction cache availability for i.MX graphics

This section describes the instruction cache (iCache) available in the Vivante graphics IP included in the
selected i.MX products.

There is hardware support for iCache available for i.MX 6QuadPlus and all later IP including that used in i.MX 8
products. There is no SH (Shader) instruction limit for these newer chips beyond the ISA limitation of 2*20.

Only the older chips have a SH instruction limit.

Table 21. i.MX products with graphics IP with iCache

i.MX Product GPU IP & rev Instruction Limit Description

i.MX 8 Series and later \(/;(r)i;ursev 5450) none HW supports iCache
i.MX 6QuadPlus SaSZFOFOFOFZL;?O none HW supports iCache
S32V234 232322 none HW supports iCache

The SH limitation for i.MX products is listed in the following table.

Table 22. i.MX products with instruction limited graphics IP

i.MX Product GPU IP & rev Instruction Limit Description

i.MX 6SoloX GC400 256 for VS, Separate Instruction buffers for Vertex Shader
rev 4645 256 for PS and for Pixel Shader

i.MX 7ULP GCNanoUltra 256 for VS, Separate Instruction buffers for Vertex Shader
rev 4653a 256 for PS and for Pixel Shader

i.MX 6DualLite GC880 512 Instruction buffer shared by Vertex and Pixel
rev 5106 Shaders

i.MX 6Quad GC2000 512 Instruction buffer shared by Vertex and Pixel
rev 5108 Shaders

6 OpenVX Introduction

6.1 Overview

OpenVX is a low-level programming framework domain to enable software developers to efficiently access
computer vision hardware acceleration with both functional and performance portability. OpenVX has been
designed to support modern hardware architectures, such as mobile and embedded SoCs as well as desktop
systems. Many of these systems are parallel and heterogeneous: containing multiple processor types
including multi-core CPUs, DSP subsystems, GPUs, dedicated vision computing fabrics as well as hardwired
functionality. Additionally, vision system memory hierarchies can often be complex, distributed, and not fully
coherent. OpenVX is designed to maximize functional and performance portability across these diverse
hardware platforms, providing a computer vision framework that efficiently addresses current and future
hardware architectures with minimal impact on applications.

OpenVX defines a C Application Programming Interface (API) for building, verifying, and coordinating graph
execution, as well as for accessing memory objects. The graph abstraction enables OpenVX implementers to
optimize the execution of the graph for the underlying acceleration architecture.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
55/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

OpenVX also defines the vxu utility library, which exposes each OpenVX predefined function as a directly
callable C function, without the need for first creating a graph. Applications built using the vxu library do not
benefit from the optimizations enabled by graphs; however, the vxu library can be useful as the simplest way to
use OpenVX and as first step in porting existing vision applications.

For more details of programming with OpenVX, see the following specification from Khronos Group,

OpenVX specification (https://www.khronos.org/registry/vx).

6.2 OpenVX extension implementation

VeriSilicon’s VX Extensions for Vision Imaging provide additional functionality for Vision Image processing
beyond the functions provided through the Khronos Group OpenVX API. These enhancements take
advantage of the enhanced Vision capabilities available in VeriSilicon’s Vision-capable hardware. VeriSilicon
software provides a set of extensions which interface with OpenCL 1.2 and support higher level C language
programming of VeriSilicon’s custom EVIS (Enhanced Vision Instruction Set).

The VeriSilicon VX extension and enhancements includes three major components:

* An API level interface to the EVIS (Enhanced Vision Instruction Set)
» Extended C language features for Vision Processing
» Supported for a subset of Vision-compatible OpenCL built-in functions

6.2.1 Hardware requirements

Vision Imaging hardware capabilities are required to support full OpenVX. The following configurations are
supported:

* GC7000XSVX (i.MX 8QuadMax)
* VIP800ONanoSI (i.MX 8M Plus)

6.2.2 EVIS instruction interface

Vivante’s Vision Imaging capable IP have an Enhanced Vision Instruction Set (EVIS), which enhances the
ability of the GPU or VIP (Vision Image Processor) to process complex vision operations. A single EVIS
instruction can do a task which may require tens or even hundreds of normal ISA instructions to finish.

The following table shows the instructions supported as Intrinsic calls.

6.2.3 Extended language features

Vivante’s OpenVX C programming Language corresponds closely to the OpenCL C programming language.

* Vivante’s C language extensions for OpenVX C share many language facilities with OpenCL C 1.2. However,
it can be considered a subset of OpenCL C 1.2, as it does not include OCL features which are useless for
OpenVX and other Vision Imaging applications.

* Vivante’s OpenVX C includes specific language facilities like Vision built-ins and data types specific for
OpenVX.

Table 23. OPCODE EVIS instructions supported as intrinsic calls

EVIS OP_CODE Description s\‘;m‘:::?,;y
ABS_DIFF Absolute difference between two values Y
IADD Adds two or three integer values Y
IACC_SQ Squares a value and adds it to an accumulator Y
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

56 /171

https://www.khronos.org/registry/vx
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 23. OPCODE EVIS instructions supported as intrinsic calls...continued

EVIS OP_CODE Description S\l;m?::(\jn?y
LERP Linear interpolation between two values Y
FILTER Performs a filter on a 3x3 block Y
MAG_PHASE Computes magnitude and phase of 2 packed data values Y
MUL_SHIFT Multiplies two 8-or 16-bit integers and shifts Y
DP16X1 1 Dot Product from 2 16 component values Y
DP8X2 2 Dot Products from 2 8 component values Y
DP4X4 4 Dot Products from 2 4 component values Y
DP2X8 8 Dot Products from 2 2 component values Y
CLAMP Clamps up to 16 values to a max or min value Y
BI_LINEAR Computes a bilinear interpolation of 4 pixel values Y
SELECT_ADD Adds a pixel value or increments a counter inside bins Y
ATOMIC_ADD Adds a valid atomically to an address Y
BIT_EXTRACT Extracts up to 8 bitfields from a packed stream Y
BIT_REPLACE Replaces up to 8 bitfields from a packed stream Y
DP32X1 1 Dot Product from 2 32 component values Y
DP16X2 2 Dot Products from 2 16 component values Y
DP8X4 4 Dot Products from 2 8 component values Y
DP4X8 8 Dot Products from 2 4 component values Y
DP2X16 16 Dot Products from 2 2 component values Y

6.2.4 Packed types

Vivante’s OpenCL compiler implements OpenCL C signed and unsigned char and short types in an unpacked
format, such that a normal char4 occupies 128 bits (4 32-bit registers). This is undesirable for Vision
applications, where packed data is the “natural” layout for almost all operations. To fully utilize the computing
power of EVIS instructions, Vivante VX includes additional packed types, which can be identified by their vxc_
prefix.

/* packed char2/4/8/16 */

typedef viv char2 packed vxc char2;
typedef viv char4 packed vxc char4;
typedef viv char8 packed vxc char8;
typedef viv charl6 packed vxc charlé6;
/* packed uchar2/4/8/16 */

typedef viv uchar2 packed vxc uchar2;
typedef viv uchar4 packed vxc ucharé;
typedef viv uchar8 packed vxc uchar8;
typedef viv ucharlé packed vxc ucharlé6;
/* packed short2/4/8 */

typedef viv short2 packed vxc short2;
typedef viv short4 packed vxc short4;
typedef viv short8 packed vxc short8;
/* packed ushort2/4/8 */

typedef viv ushort2 packed vxc ushort2;

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
571171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

typedef viv ushort4 packed vxc ushort4;
typedef viv ushort8 packed vxc ushort8;

6.2.5 Initializing constants on load

Constant data in OpenCL requires compile-time initialization. There is also a need to initialize the data when
the kernel is loaded/run, so that the application can control the behavior of a program by changing its constants
at load-time. The VeriSilicon VX extended keyword _viv_uniform can be used to define load-time initialization
constant data,

_viv uniform vxc 512bits ub12;

An application using VeriSilicon VX needs to set the proper values for _viv_uniform before the kernel program is
run.

6.2.6 Inline assembly

A packed type cannot be used as an unpacked type in expressions or built-in functions. The programmer
needs to convert packed type data to unpacked type data in order to perform these operations. The conversion
negatively impacts performance in terms of both instruction count and register usage, so it is desirable to
perform operations directly on packed data whenever possible. The Vivante Vision compiler accepts inline
assembly for a wide range of operations to speed up packed data calculations.

For example, to add two packed char16 data, the programmer can use following inline assembly:

vxc_ucharl6 a, b, c;
vxc_ short8 b;
_viv uniform vxc 512bits ubl2;

_viv_asm(ADD, ¢, a, b); /* ¢ =a + b; */
where the syntax of inline assembly is:
_viv_asm(

OP_CODE,

dest,

source0,

sourcel

) ;

The following table lists the standard shader instructions that operate on packed data and are supported
through inline assembly, keyword _viv_asm.

Table 24. OPCODES IR instructions supported by inline assembly

IR OP_CODE Instruction Description Supported by Vivante VX

ABS Absolute value Y

ADD Add Y

ADD_SAT Integer add with saturation Y

AND_BITWISE Bitwise AND Y

BIT_REVERSAL Integer bit-wise reversal ES31

BITEXTRACT Extract Bits from src to dest ES31

BITINSERT Bit replacement ES31

BITSEL Bitwise Select Y
BYTE_REVERSAL Integer byte-wise reversal ES31

IMXGRAPHICUG_9 Allinformation provided in this document is subject to legal disclaimers. ©2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

58 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Table 24. OPCODES IR instructions supported by inline assembly...continued

IR OP_CODE Instruction Description Supported by Vivante VX
CLAMPOMAX clampOmax dest, value, max Y
CMP Compare each component Y
CONV Convert Y
DIV Divide Y
FINDLSB Find least significant bit ES31
FINDMSB Find most significant bit ES31
LEADZERO Detect Leading Zero Y
LSHIFT Left Shifter Y
MADSAT Integer multiple and add with saturation Y
MOD Modulus Y
MOV Move Y
MUL Multiply Y
MULHI Integer only Y
MULSAT Integer multiply with saturation Y
NEG neg(a) is similar to (0 - (a)) Y
NOT_BITWISE Bitwise NOT Y
OR_BITWISE Bitwise OR Y
POPCOUNT Population Count ES31/0CL1.2
ROTATE Rotate Y
RSHIFT Right Shifter Y
SuB Substract Y
SUBSAT Integer subtraction with saturation Y
XOR_BITWISE Bitwise XOR Y

Note: *ES31 = Supported by VivanteVX, but may not be needed for Vision processing

6.3 OpenCL functions compatible with Vivante vision

Vivante’s VX extensions for Vision Image processing support most of the OpenCL 1.2 built-in functions for
normal OCL data types. Packed types are not supported in these built-in functions.

For image read/write functions, only sample-less 1D/1D array/2D image read/write functions are supported.

6.3.1 Read_Imagef,i,ui

/* OCL image builtins can be used in VX kernel */
float4 read imagef (image2d t image, int2 coord);
int4 read imagei (image2d t image, int2 coord);
uint4 read imageui (image2d t image, int2 coord);
float4 read imagef (imageld t image, int coord);
int4 read imagei (imageld t image, int coord);
uint4 read imageui (imageld t image, int coord);

float4 reaa_imagef (imageld array t image, int2 coord);

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
59 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

int4 read imagei (imageld array t image, int2 coord);
uint4 read imageui (imageld array t image, int2 coord);

6.3.2 Write_Imagef,i,ui

void write imagef (image2d t image, int2 coord, float4 color);

void write imagei (image2d t image, int2 coord, int4 color);

void write imageui (image2d t image, int2 coord, uint4 color);

void write imagef (imageld t image, int coord, floatd4 color);

void write imagei (imageld t image, int coord, int4 color);

void write imageui (imageld t image, int coord, uint4 color);

void write imagef (imageld array t image, int2 coord, float4 color);
void write imagei (imageld array t image, int2 coord, int4 color);
void write imageui (imageld array t image, int2 coord, uint4 color)

6.3.3 Query Image Dimensions

int2 get image dim (image2d t image);

size t get image array size(imageld array t image);
/* Built-in Image Query Functions */

int get image width (imageld t image);

int get image width (image2d t image);

int get image width (imageld array t image);

int get image height (image2d t image);

6.3.4 Channel Data Types Supported

/* Return the channel data type. Valid values are:
CLK_ SNORM INT8
CLK_SNORM INT16

CLK UNORM INTS8

CLK UNORM INT16

CLK UNORM SHORT 565
CLK UNORM SHORT 555
CLK_UNORM SHORT 101010
CLK_SIGNED_ INT8
CLK_SIGNED INT16
CLK_SIGNED INT32

CLK UNSIGNED INTS8

CLK UNSIGNED INT16
CLK UNSIGNED INT32
CLK HALF FLOAT
CLK_FLOAT

X% o ok X X oF X % ok X X ok X

*

=y

int get image channel data type (imageld t image);

int get image channel data _type (image2d t image);

int get_lmage_channel_data_type (imageld array t image);

6.3.5 Image Channel Orders Supported

/* Return the image channel order. Valid values are:
* CLK_A
* CLK_R
* CLK_Rx

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
60/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

CLK_RG
CLK_RGx
CLK_RA
CLK_RGB
CLK_RGBx
CLK_RGBA
CLK_ARGB

CLK BGRA

CLK INTENSITY
CLK_LUMINANCE

X ok X X % X X X X

*

*/

int get image channel order (imageld t image);

int get image channel order (image2d t image);

int get image channel order (imageld array t image);

7 Vulkan

7.1 Overview

Vulkan is a new generation graphics and compute API that provides high-efficiency, cross-platform access
to modern GPUs used in a wide variety of devices from PCs and consoles to mobile phones and embedded
platforms.

Vulkan defines as an API (Application Programming Interface) for graphics and compute hardware. The

API consists of many commands that allow a programmer to specify shader programs, compute kernels,
objects, and operations involved in producing high-quality graphical images, specifically color images of three-
dimensional objects.

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or shaders,
kernels, data used by kernels or shaders, and state controlling aspects of Vulkan outside the scope of shaders.
Typically, the data represents geometry in two or three dimensions and texture images, while the shaders

and kernels control the processing of the data, rasterization of the geometry, and the lighting and shading of
fragments generated by rasterization, resulting in the rendering of geometry into the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise prepare a display
device onto which the program will draw. Then, calls are made to open queues to which command buffers

are submitted. The command buffers contain lists of commands which will be executed by the underlying
hardware. The application can also allocate device memory, associate resources with memory and refer to
these resources from within command buffers. Drawing commands cause application-defined shader programs
to be invoked, which can then consume the data in the resources and use them to produce graphical images.
To display the resulting images, further platform-specific commands are made to transfer the resulting image to
a display device or window.

For more details of programming with Vulkan, refer to the following specification from Khronos Group.

https://www.khronos.org/registry/vulkan/

7.2 Vivante Extension Support for Vulkan

The following table includes a list of all current Vulkan extensions and indicates their support level in Vivante
software.

(list from https.//www.khronos.org/registry/vulkan/ as of 6/1/2020)

Note: This list does not include unsupported vendor specific extensions.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
61/171

https://www.khronos.org/registry/vulkan/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 25. Vulkan extension

Supported Vulkan 1.1 Extension Names SW 6.4.x for Vulkan 1.1
VK_KHR_16bit_storage YES
VK_KHR_bind_memory2 YES
VK_KHR_descriptor_update_template YES
VK_KHR_device_group YES
VK_KHR_external_memory YES
VK_KHR_get_memory_requirements2 YES
VK_KHR_maintenance1 YES
VK_KHR_maintenance2 YES
VK_KHR_maintenance3 YES
VK_KHR _variable_pointers YES
VK_KHR_dedicated_allocation YES
VK_EXT_queue_family_foreign YES
VK_KHR_external_semaphore_fd YES
VK_KHR_external_fence_fd YES
VK_KHR_external_semaphore_win32 YES
VK_KHR_external_fence_win32 YES
VK_ANDROID_native_buffer YES
VK_ANDROID_external_memory_android_hardware_buffer YES
VK_KHR_swapchain YES
VK_EXT_debug_report YES
VK_KHR_device_group_creation YES
VK_KHR_external_memory_capabilities YES
VK_KHR_external_semaphore_capabilities YES
VK_KHR_external_fence_capabilities YES
VK_KHR_get_physical_device_properties2 YES
VK_KHR_win32_surface YES
VK_KHR_android_surface YES
VK_KHR_wayland_surface YES
VK_KHR_surface YES
VK_KHR_display YES

7.3 Vulkan Validation Layers

Vulkan is an explicit API, enabling direct control over how GPUs actually work. By design, minimal error
checking is done inside a Vulkan driver. Applications have full control and responsibility for correct operation.
Any errors in how Vulkan is used can result in a crash. Vulkan validation layers that can be enabled to assist
development by enabling developers to verify their applications correct use of the Vulkan API.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
62 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

7.4 Window System Integration

Vulkan relies on a new mechanism to interact with the native Windowing System and present the rendered
results to the user. This mechanism is called the Window System Integration and is provided via extensions
outside of the core API.

In the i.MX BSPs where Vulkan is enabled, the default window manager is Weston, a Wayland compositor
reference implementation.

When compiling a Vulkan application for Wayland make sure to define the
VK_USE_PLATFORM_WAYLAND_KHR symbol, so all the proper includes and code paths are enabled.

GLFW and SDL can manage the surface creation and proper extension initializations, but when an application
is newly developed without using any frameworks, require to enable the following instance extensions:

VK_KHR SURFACE_EXTENSION NAME
VK_KHR WAYLAND SURFACE EXTENSION NAME

Once there is a display connection to the Wayland server and a surface created, then start to use the wl_display
and wl_surface pointers to populate the info structure required by vkCreateWaylandSurfaceKHR.

A word of advice, when querying the Physical Device Surface capabilities with vkGetPhysicalDeviceSurface
CapabilitiesKHR before having created the Swapchain, the current extent width and height will return a value of
OxFFFFFFFF, make sure to add checks for this in the code, when this happens, set the swapchain extent to the
actual size of the surface want to render to, or a fallback extent size.

8 Vivante Multiple GPUs and Virtualization

8.1 Overview

Vivante multi-GPU implementations provide a variety of capabilities which can be managed through hardware
and software controls. This chapter intends to summarize the software controls used for Vivante multi-GPU IP
implementations.

Multi-GPU feature can be enabled with dual GC7000XSVX on i.MX 8QuadMax and the derived devices.

8.2 Multi-GPU configurations

Vivante Multi-GPU IP may be configured into one of the following behavior model through software:

* Combined Mode where two (or more) GPU cores in the multi-GPU design behave in concert. Driver presents
multi-GPU to SW application as a single logical GPU. The multiple GPUs work in the same virtual address
space and share the same MMU page table. The multiple GPUs fetch and execute a shared Command
Buffer.

* Independent Mode where each GPU in the multi-GPU design performs independently. The multiple GPUs
work in different virtual address spaces but share the same MMU page table. Each GPU core fetches and
executes its own Command Buffer. This enables different SW applications to run simultaneously on different
GPU cores.

* OpenCL API allows application to handle the multi-GPU Independent Mode directly, as each GPU core in a
multi-GPU design represents an independent OpenCL Compute Device.

8.3 GPU affinity configuration

In the multi-GPU Independent Mode, application can specify to run on a specific GPU among the multiple GPUs
through an environment variable VIV_MGPU_AFFINITY. Once an application’s GPU affinity is specified, the
application will only run on the specified GPU and will not migrate to other GPUs even if those GPUs are idle.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
63 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

VIV_MGPU_AFFINITY is the environment variable to control the application GPU affinity on multi-GPU platform.
The client drivers will assume they are using a standalone GPU through a gcoHARDWARE object no matter
how this variable is set. The possible values for the environment variable VIV_MGPU_AFFINITY include:

* Not defined or

* Defined as "0" gcoHARDWARE objects work in gcvMULTI_GPU_COMBINED mode (default)
—"1:0" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPUQ is used
—"1:1" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPU1 is used

On a single GPU device, setting VIV_MGPU_AFFINITY to 0 or 1 does not make any difference as all
application processes/threads are bound to GPUOQ. But the application will fail the GPU context initialization if
VIV_MGPU_AFFINITY is set to "1:1" (driver reports error).

8.4 OpenCL on multi-GPU device

OpenCL driver works in bridged mode as single logical compute device. In this configuration, multiple GPUs in
the device operate as individual OpenCL Compute Devices. The OpenCL application is responsible to assign
and dispatch the compute tasks to each GPU (Compute Device).

The following OpenCL APIs return the list of compute devices available on a platform, and the device
information.

cl int clGetDeviceIDs (cl platform id platform, cl device type device type,
cl uint num entries,
cl device id *devices, cl uint *num devices)
cl int clGetDeviceInfo (cl device id device, cl device info param name, size t
param value size,
void *param value, size t *param value size ret)

8.5 GPU virtualization configuration

Multi-GPU also can be used on different OS systems as independent mode separately, this can be configured
by overriding the irq availability n DTS entry for different OS implementation, in arch/arm64 /boot/dts/
freescale/fsl-imx8gmxxx.dts

Guest OS 1 (GPUO only)

&gpu_3dl {
status = "disable";

i

Guest OS 2 (GPU1 only)

&gpu_3d0 {
status = "disable";

)7

9 GBM - Generic Buffer Management

The GBM (Graphic Buffer Management) APl is a thin layer over DRM KMS (Linux Direct Rendering Manager
- Kernel ModeSetting API) that provides a mechanism for allocating buffers for graphics rendering. GBM is
intended to be used as a native platform for EGL on DRM. The handle it creates can be used to initialize EGL
and to create render target buffers. This can be resumed as a modern OpenGL ES FBDEV, because it permits
full usage of the DRM KMS API with OpenGL ES acceleration.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
64 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Starting from i.MX 8, the DRM is supported and recommended to use GBM. GBM provides options of allocating
modifier-abiding surfaces too, for Wayland compositors and the X11 server to render to.

9.1 Introduction to DRM Format Modifiers

A DRM format modifier is a 64-bit, vendor-prefixed, semi-opaque unsigned integer. Most modifiers represent a
concrete, vendor-specific tiling format for images. Some exceptions are DRM_FORMAT_MOD_LINEAR (which
is not vendor-specific); DRM_FORMAT_MOD_NONE (which is an alias of DRM_FORMAT_MOD_LINEAR
due to historical accident); and DRM_FORMAT_MOD_INVALID (which does not represent a tiling format).

The modifier’s vendor prefix consists of the 8 most significant bits. The canonical list of modifiers and vendor
prefixes is found in drm_fourcc.h in the Linux kernel source.

One goal of modifiers in the Linux ecosystem is to enumerate for each vendor a reasonably sized set of
tiling formats that are appropriate for images shared across processes, APls, and/or devices, where each
participating component may possibly be from different vendors. A non-goal is to enumerate all tiling formats
supported by all vendors. Some tiling formats used internally by vendors are inappropriate for sharing; no
modifiers should be assigned to such tiling formats.

Modifier values typically do not describe memory layouts. More precisely, a modifier's lower 56 bits usually
have no structure. Instead, modifiers name memory layouts; they name a small set of vendor-preferred layouts
for image sharing. As a consequence, in each vendor namespace the modifier values are often sequentially
allocated starting at 1.

Each modifier is usually supported by a single vendor and its name matches the pattern
{VENDOR}_FORMAT_MOD_* or DRM_FORMAT_MOD_{VENDOR}_*. Examples are
DRM_FORMAT_MOD_VIVANTE_TILED and DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED. An
exception is DRM_FORMAT_MOD_LINEAR, which is supported by most vendors.

Many APls in Linux use modifiers to negotiate and specify the memory layout of shared images. For

example, a Wayland compositor and Wayland client may, by relaying modifiers over the Wayland

protocol zwp_linux_dmabuf_v1, negotiate a vendor-specific tiling format for a shared wl_buffer. The

client may allocate the underlying memory for the wl_buffer with GBM, providing the chosen modifier to
gbm_bo_create_with_modifiers. The client may then import the wl_buffer into Vulkan for producing image
content, providing the resource’s dma_buf to VkimportMemoryFdinfoKHR and its modifier to VkimageDrm
FormatModifierExplicitCreateInfoEXT. The compositor may then import the wi_buffer into OpenGL for sampling,
providing the resource’s dma_buf and modifier to eglCreatelmage. The compositor may also bypass OpenGL
and submit the wl_buffer directly to the kernel’s display API, providing the dma_buf and modifier through
drm_mode_fb_cmd2.

10 Wayland and Weston

10.1 Overview

Wayland is a protocol for a compositor to talk to its clients as well as a C library implementation of that protocol.
Wayland is intended as a simpler replacement for X, easier to develop and maintain. The compositor can be

a standalone display server running on Linux kernel mode setting and evdev input devices, an X application,

or a Wayland client itself. The clients can be traditional applications, X servers (rootless or full screen) or other
display servers.

10.2 Wayland EGL

Wayland-EGL is the client side implementation of the Wayland that binds the EGL stack and buffer sharing
mechanism to the generic Wayland API. Frontend of the wayland-egl is now part of the wayland and i.MX
graphics driver supports the implementation of buffer sharing mechanism.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
65/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

10.3 Weston Compositor

Weston is reference implementation of a Wayland compositor. The Weston compositor is minimal and
lightweight and is suitable for many embedded and mobile use cases. Weston support multiple renderers and
backends which need to be chosen appropriately based on the processor configurations. This is usually preset
in the i.MX image.

10.3.1 Weston Backends

Weston have implementation to support different display APIs, which is called backend. i.MX 8 support KMS/
DRM hence uses DRM backend while the i.MX 6/7 uses FBDEV backend. i.MX graphics continues to support
graphics acceleration with FBDEV backends.

10.3.2 Weston Renderer

10.3.2.1 GL Renderer

GL (GLES) renderer implementation is the default with Weston implementation. GL renderer takes the buffer
passed from clone and maps as a texture. After the initial setup, the client only needs to tell the compositor
which buffer to use and when and where it has rendered new content into it.

10.3.2.2 G2D Renderer

G2D is the 2D API refer to Chapter 2 for full details of G2D APIs. G2D renderer provides mechanism to
accelerate Weston with 2D GPU. The 2D Graphics Engine reduces the burden on 3D GPU and saves power as
well as integrates nicely with the video capabilities of the SoC. G2D compositor can increase system bandwidth
utilization, so the performance will be better than GL compositor in the complex usecase environment.

To enable the G2D compositor, open the file: /etc/xdg/weston/weston. ini in the Linux image.

use-g2d=1

10.3.3 Weston Shells

Weston supports multiple shells, each of these shells have its own public protocol interface for clients. This
means that a client must be specifically written for a shell protocol. Otherwise, it will not work. Below are the
currently supported shell.

Note: Weston 10 marked w1 shell as deprecated and has been removed by community since Weston 11,
recommending to covert to xdg-shell for Wayland application developing.

10.3.3.1 Desktop shell

Desktop shell is like a typical X desktop environment, concentrating on traditional keyboard and mouse user
interfaces and the familiar desktop-like window management. Desktop shell consists of the shell plugin desktop-
shell.so and the special client weston-desktop-shell which provides the wallpaper, panel, and screen locking
dialog.

10.3.3.2 Fullscreen shell

Fullscreen shell is intended for a client that needs to take over whole outputs, often all outputs. This is primarily
intended for running another compositor on Weston. The other compositor does not need to handle any
platform-specifics like DRM/KMS or evdev/libinput. The shell consists only of the shell plugin fullscreen-shell.so.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
66 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

10.3.3.3 IVI-shell

In-vehicle infotainment shell is a special purpose shell that exposes a GENIVI Layer Manager compatible API
to controller modules, and a very simple shell protocol towards clients. IVI-shell starts with loading ivi-shell.so,
and then a controller module which may launch helper clients. This shell provides option of setting windowing
position, which need to be programmed from the client application.

11 X Windowing Acceleration

X11 is accelerated on i.MX 8 through Xwayland. Support on i.MX 6 deprecated.

12 Advanced GPU Configuration

12.1 GPU Scaling Governor

i.MX 8QuadMax GPU design supports different running modes: overdrive, nominal, and underdrive. Nominal is
the default, the overdrive is supposed to be performance/benchmark mode, and underdrive mode is expected
as energy saving mode.

Switch among the 3 modes using command line without needing to recompile the GPU driver.

$ echo "overdrive" > /sys/bus/platform/drivers/galcore/gpu govern
$ echo "nominal" > /sys/bus/platform/drivers/galcore/gpu_govern
$ echo "underdrive" > /sys/bus/platform/drivers/galcore/gpu _govern

To check the mode that is currently running, use the command line as follows:

$ cat /sys/bus/platform/drivers/galcore/gpu_govern

12.2 GPU Device Cooling

i.MX 6/7/8 devices support the thermal driver, which could signal the overheat event to the GPU driver. When
the GPU driver receives the event, it can enable the GPU DFS feature to reduce the GPU frequency as N/64 of
the original designated clock.

The default N factor is 1 in the original BSP release. The end-user can reconfigure it through the following
command:

echo N >/sys/bus/platform/drivers/galcore/gpu3DMinClock

The user also can check the existing configuration as follows:

cat /sys/bus/platform/drivers/galcore/gpu3DMinClock

13 Vivante IDE

13.1 VivantelDE overview

The VivantelDE provides a single interface to a set of applications designed to be used by graphics, compute,
vision and neural network application developers to rapidly develop and port applications either stand alone or
as part of an IDE. Vivante IDE is built on the top of Eclipse, CDT

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
67 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

VivantelDE capabilities include the following key features.

* Project Management
The Project Manager supports individual compile options for each file. In addition, workspace options define
project dependencies, removing the need for manual management of file builds.

* Source code smart editing and analysis
The VivantelDE Editor provides timesaving editing features such as type ahead for structures, word
completion and automatic code indentation for a readable, formatted code view.

» Automatic code generation
Kernel development wizard can automatically generate the kernel code basing on simple inputs.

* Performance and bandwidth profiling
The Profile tabbed window provides profiler information. Every time the profiler is suspected accumulated
statistical information is updated. For OGL applications the VPD Analyzer is provided.

* Post-mortem performance analysis

VPD Analyzer visualized the hardware data recorded at GPU application runtime.

Texture browse and conversion

Texture browser and converter support texture file preview and format conversion.

Command line tools for OGL, OCL and OVX compile.

Command line tools for Vulkan application development.

Command line tools for Texture compression/decompression and tile/de-tiling.

13.1.1 VivantelDE component overview

VivantelDE provides both command line tools and GUI “Perspective” views for performing different activities.
Some functionality is available through both GUI and command line, while tools such as vCompiler and
vcCompiler are available only using command line syntax.

Table 26. VivantelDE tool overview

Perspective/Tool Key Functionality GUI Command Line
Debug Debug projects Yes

Profile Configure projects Yes

vCompiler Offline OGL compiler No Yes, vCompiler
vcCompiler Offline OCL compiler No Yes, vcCompiler
VPD Analyzer Performance analysis Yes No

vTexture, Texture manipulations and viewing; Yes Yes

vTextureTools

Compress, Decompress, Tile, De-Tile

Texture Viewer
Texture Browser

vTextureTools

SPIR-V Disassembly

Debug Vulkan apps

Yes

No

Shader Assistant

Shader programming

Yes

No

13.2 VivantelDE Requirements

13.2.1 Operating system compatibility

VivantelDE is available for both Linux and Windows environments. VivantelDE has been verified to work in
Windows 7, Windows 10, Ubuntu 18.04, and Ubuntu 16.04. It might work in other Windows or Linux systems
but has not been verified for alternate environments.

© 2024 NXP B.V. All rights reserved.
Document feedback
68 /171

IMXGRAPHICUG_9

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 9 — 28 June 2024

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Table 27. Operating System Tool Compatibility Summary

Components Linux Windows
VivantelDE GUI and command GUI and command
Tools

vCompiler, veCompiler

command

command

vProfiler Built part of i.MX Built part of i.MX
unified driver (target) unified in driver(target)

VPD Analyzer GUI GUI

Shader Assistant GUI GUI

Texture Viewer GUI GUI

Texture Browser GUI GUI

vTextureTools

GUI and command

GUI and command

13.2.2 Hardware requirements

VivantelDE can be used in either a simulation environment or on i.MX processors supporting OpenGL ES,
OpenCL, OpenVX, and Neural Networks capabilities in the tools assume compatible hardware capability in the
running environment, which must be correctly profiled in the tool for accurate results.

13.2.3 VivantelDE license

i.MX supported VivantelDE release package contains with preloaded license and restricted only to use with
NXP processors. For more information, read NXP EULA.

13.3 VivantelDE installation

13.3.1 VivantelDE package

Each release of VivantelDE will be compatible with its companion driver version. Forward and backward
compatibility is not tested and use of VivantelDE with any different driver version other than its companion

version is NOT RECOMMENDED.

The package is delivered as a compressed file from nxp.com as
Verisilicon Tool 1IDE <version>.tgz.

Table 28. VivantelDE package contents

Top level Directory and exe file

Description

VivanteIDE-<version>-Linux-x86
64-**-Tnstall

Installation wizard for Linux 64-bit.

VivanteIDE-<version>-Windows—**-
Setup.exe

Installation wizard for Windows 64-bit/32-bit

README

README with basic installation notes

After installation the following directories will be created in the installation directory

Table 29. VivantelDE tools directory

Files and Directories Description

ide/ Directory containing IDE executables and plugins
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

69 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 29. VivantelDE tools directory...continued

Files and Directories Description

examples/ Directory containing examples (just for Windows)

cmdtools/ Directory containing Vivante command line tools: vCompiler, vcCompiler, v
TextureTools

doc/ Directory containing documents

license/ Directory containing license tools and license files

jre/ Directory containing JRE binaries

mingw32/ Directory containing MinGW (just for Windows)

uninstall.exe Uninstaller of VivantelDE

13.3.2 Installation

Install the package to run both the GUI and command line tools. You must install the package even if you are
only going to use the command line tools.

13.3.2.1 Linux GUI

Run Vivante-<version>-Linux-x86 64-**-Install to launch the installation wizard. Follow the
installation steps guided by the installation wizard to finish the installation.

13.3.2.2 Windows GUI

Run vVivante-<version>-Windows-**-Setup.exe to launch the installation wizard. Follow the installation
steps guided by the installation wizard to finish the installation.

13.3.2.3 Installation from command line

The VivantelDE installer can also be launched from the command line. Options can be specified as follows:

installer [optionl] [option2] [option3]

Example Usage for Windows:

installer /mode silent /prefix destination location /license license file path

Example Usage for Linux:

installer --mode silent --prefix destination location --license
license file path

Table 30. Command line installer options

Option for Windows Option for Linux Description

/mode silent --mode silent Silent mode (without GUI, without prompting)

llicense license_file_path --license license_file_path Specify a license file to be installed

/prefix destination_location --prefix destination_location Specify the folder where VivantelDE will be installed
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

70 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

13.3.3 VivantelDE launch

13.3.3.1 Linux launch of GUI tool
To launch the GUI tool,

* Double-click the desktop shortcut VivantelDE<version>.
* Run installation dir/ide/vivanteide<version>ina BASH.

13.3.3.2 Windows launch of GUI tool
To launch the GUI tool:

* Click Start Menu->VeriSilicon->VivantelDE <version>->VivantelDE <version>.
* Double-click the desktop shortcut VivantelDE <version>.
* Run installation dir/ide/vivanteide<version>.bat.

13.3.3.3 Command line tool launch

To launch the command line tools, use the following paths. For Linux OS, launch in a BASH.
Run installation dir/cmdtools/vCompiler, vcCompiler, vTextureTools.
13.3.3.4 Basic launch path summary

Table 31. Basic launch instruction summary

Tool Linux Basic Launch Instruction Windows Basic Launch Instruction

VivanteIDE GUI |Run installation dir/ide/ Run installation dir/ide/
vivanteide<version> vivanteide<version>.bat
in a BASH.

vcCompiler Run installation dir/cmdtools/bin/vc |Runinstallation dir/cmdtools/bin/vc
Compiler in a BASH. Compiler.exe

vCompiler Run installation dir/cmdtools/bin/ Run installation dir/cmdtools/bin/v
vcompiler in a BASH. Compiler.exe

vTextureTools |Run installation dir/cmdtools/bin/ Run installation dir/cmdtools/bin/v
vtexturetools in a BASH. TextureTools.exe

13.4 VivantelDE GUI

The desktop development environment for VivantelDE is referred to as the Workbench. The Workbench
contains panes that may change depending on the current activity. Some key panes are indicated in the figure
below.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
717171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

= G/C++ - vx_tuterial/sre/vx_tutorialc - VivantelDE
File Edit Source Refactor Navigate Search Run Project Window Help

Few

vl wt

~ v “Commahd 1&gris™ * 7O 7%=

[%5 Debug IEE_(;cm

\ wionalsc | (€} wctutoriale i3 St(Eo u\©@m| =0)
- = BR o %"
3 15 vi_tutorial) # "% inchude directives
s Includes - e main{void) : int
) -‘: wix_tutorial.c
5 5 v tuterials a C, Ansi-style Debug pane
Editor pane
PrOJeCt finclude <atdic.h>
#include <stdlib.h>
Explorer o
int main(void) {
pane “__:;" =); /* prints
[* Problems 4_, TM!’DCon;ole) .ﬁ.ﬁopﬂliu- - 2l @8 | Qi = D‘
bx_tutorials Debug [C/C+ » Application] vx_tutorials.exe |
Console pane e
&u LJ \ '_‘]J

Writable Semart Insert Pzl

/Pane tabs possible:

Figure 8. VivantelDE Workbench Key Panes

\

Project Explorer:
* Project

* Navigator
Editor:

* C/C++Editor
* Qutline
Console:

* Problems

* Tasks

* Console

* Profile

* Properties

* Variables

= Memory

* Expressions

* Breakpoints
* Registers

* Search

* Bookmarks

* Include Browser
Debug

* (Call Hierarchy
* Debug

* Make
Disassembly

J

The following examples provide users with basic simple steps to get started using VivanteIDE. The GUI is
similar but not identical for each tool GUI: VPD Analyzer, Shader Assistant, Texture Browser, Texture Viewer.

13.4.1 Selecting a workspace

When VivantelDE is opened, the Workspace Launcher - Select a workspace dialog box pops up by default.

Click the OK button.

If the workspace is a new empty workspace, the Welcome dialog box is displayed.

If the workspace is not a new empty workspace, the workbench is displayed.

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
72171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

* Workspace Launcher E I

Select a workspace

VivanteIDE stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: I ChVeriSilicom\VivanteIDELO.0hexampl E'5| j Browse...

[T Use this as the default and do not ask again

oK Cancel

Figure 9. Figure 21. Workspace Launcher

13.4.2 Switching perspective

Click the pull-down menu items or click directly on the visible perspective name to switch perspective views.

Switch to the C/C++ perspective to manage projects and write source code. VivantelDE will switch to the Debug
perspective by default after a program is launched successfully in Debug mode.

[| %5 Debug HgjC/C++
T o D@EocHs a

Other...

Figure 10. Switching perspective

13.4.3 Creating a new project

This section describes how to create an OpenVX project as an example.
New project creation is available from the main menu. Choose File-->New-->Project...

In the New Project - Select a wizard dialog box, open the C/C++ folder in the Wizards list box and select
OpenVX C Project.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
737171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

New

Alt+Shift+MN

3 [} OpenVX C++ Project

* C/C++ - velfvx_examplel.c - VivantelDE

File Edit Source Refactor MNavigate Search Project Run Window Help

Open File... [} OpenVX C Project

Closa I [ci] OpenCL C++ Project

Cloca Al Cirl+ Shafts W [ci] OpenCL C Project

[cl| OpenGL C++ Project

Save Ctrl+% [i] OpenGL C Project
[5] Save As... [Native C++ Project

Sawe Al Ctrl+5hift+5 [Native C Project

Rewvert Makefile Project with Existing Code

Rensarne... Convert to a C/C++ Project
| Refresh F5 2" Source Folder

Convert Line Delimiters To ¥ [Folder
& Print.- Cirl+P |¢] Source File

Switch Workspace
Restart

|/ Header File
| * File from Template
(& Class

£y Import...

=/ Bwnmrt

Figure 11. Creating a new project

[Other...

Cirl+N I

13.4.4 Creating an OpenVX kernel wizard

1. To create an OpenVX C(C++) project, in the OpenVX C(C++) Project dialog box, enter the Project name,
select OpenVX Kernel Project(1.1) under Static Library or Shared Library.

& New Project (=[O b
Select a wizard —
Create a new OpenVX C project
Wizards:
type filter text
4 (= CfC++ -

Malkefile Project with Existing Code
[i&] Native C Project

[i&] Native C++ Project

[E] OpenCL C Project

[E] OpenCL C++ Project

[E] OpenGL C Project

[6] OpenGL C++ Project

[Open¥X C Project

[Open¥X C++ Project

mn

@

= Back

Cancel

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
741171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

B CpenVX C Project

Open¥X C Project

Project name must be specified

(e ms moms
Use default location
e
default

Project type: Toalchains:

» [= OpenVX Examples o

4 (= Shared Library

@ Empty Project

@ OpenVX Kernel Project(1.01)

@ OpenVX Kernel Project(1.1)
4 = Static Library

@ Empty Project

@ OpenVX Kernel Project(1.1)
> G Makefile project

OpenVX GCC(Win32)

m

Show project types and toolchains only if they are supported on the platform

Cancel

Figure 12. Creating a new project (1)

i.MX Graphics User's Guide

2. Press Next to input Author and Copyright notice, Kernel ENUM offset and Kernel Name prefix

information in the following dialogs, and then add arguments for the kernel.

Bl OpenVX C Project (= .
Basic Settings —
Basic properties of a project
Author
Copyright notice Your copyright notice
Bl OpenVX C Project [
| Definition Settings — |
Definition properties of a project
|
| Kemel ENUM offset 1
Kemnel Name prefix com.vivantecorp.extension.
|
|
|
|
| @ Newt > Cancel
L

Figure 13. Creating a new project (2)

3. Click the Finish button, and the new kernel project will be created.
Refer to the VivanteIDE User Guide for detailed information.

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
751171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

B OpenVX C Project =] =
Arguments Settings f—
@ Please add at least one kernel argument |
Kernel arguments list:

No. Type B Set parameter info =
Type: |im -
Name: [image2d 1 char) >
- |image2d tiunsigned short) [
Direct; - »ge2d_t(signed short)
©Inplimage2d_t(unsigned int)
image2d_t(signed int) -
B Openv C Project =
Arquments Settings —
Setting Arguments for VIP Kernel
Kernel arguments list:
Ne. Type Name Direction
[] image2d tisigned short) in Input
1 global flost *(foat) cut Cutput
|Append]
Up
Diown
Edit
Remave
® o T Cor

Figure 14. Creating a new project (3)

13.4.5 Source code smart editing for OpenVX and OpenCL

When a user edits a source file in VivantelDE, the OpenVX/OpenCL keywords and predefined structure will be
automatically highlighted. The Editor also supports keyword completion using keyboard combination "alt"+"/".

In addition, the Outline view tab will provide structured information and quick navigation for the source file

currently being edited.

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
76 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

alexnet.export.data ﬂ@ *mainc = 0| g= outline 2 ¢ laz L=} Qs o ¥ ¥ 7C
- 2 sys/ioctlh]
voidx [TTTNTS N PRIESY (char *name, vx enum dat B sysfimeh
£ M linuxib.h
FILE * dataFile; Iy istd.h
size_t faize; L"?‘St ’
vx_uintd* data: lj W windows.h
= ./.f.fcommon/sga_utils.h
dataFile = fopen(name, "rb"): # NN_TENSOR_MAX_DIMENSION_NUMBER
Iseek (dataFile, 0L, SEEK END); # NN_TENSOR_DATA_FORMAT
fsize = ftell(dataFile); # NN_FIXED_POINT POS i
fseek (dataFile, 0L, SEEK_SET); - - -
data = (vx_uinti+®) malloc(fsize); # _CHECK OBJ
fread(data, 1, f=zize, dataFile): # _CHECE_STATUS
return data; ef wcGetTypeSize(vx_enum) : vx_uint32 g
} o 7 FplBtoFp32(const vx_int16) : v float32
void* preparePureDatalnput (char *name, vE_uint32 wi | @ preparePureDataOutput(char®, vx_enum) : void"l
{ S .
vx_uints *data;] prelpalrePureDalalll'lpul(char L wx_uint32, vx_uint32, vx_
FILE * dataFile; - @ main(int, char*[]} : int 4
< m + <] | +

Figure 15. Source code smart editing for OpenVX and OpenCL (1)

float maxErrorRatio = 0.0:
int maxErrorHum = 0;
vx float32 maxErrorltem = 0.0;
M maxErrorGolden = 0.0;
int =
R T vx_action e
int |:|
int] | W wL_array
int| | T wx_bitfield
T wx_bool
dat
- Y@ vx_border_t
inp
gol T vx_char
4 T vx_context E
& Problems| | ® vx_convolution
C-Build [add | T vx_coordinates2d_t
T vx_coordinates3d t
T vx_delay
Tlhw Aslta ractanale i
Press 'Alt+/" to show Template Proposals

r,

Figure 16. Source code smart editing for OpenVX and OpenCL (2)

13.4.6 Creating a Neural Network Inference Project from a model file

New project creation is available from the main menu.

1. Choose File-->New-->Project...

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
771171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

- CfC++ - vl fvx_examplel.c - VivanteIlDE
[m Edit Source Refactor Mavigate Search Run Project Window Help
MNew Alt+Shift+N » Malkefile Project with Existing Code
Open File... % Project...
Close Ctrl+W Convert to a C/C++ Project
Close All Cirl+Shift+W | 8% Source Folder
Save Ctrl+5 C5 Folder
B Save As.. I£<|> Source File
Save Al Cirl+shiftes |] | Header File
Revert [File from Template
& Class
Move...
Rename.. £% Other... Ctrl+MN
Figure 17. Creating a Neural Network Inference Project from a model file (1)

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
78 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

- A
Bl OpenVX C Project L@ﬂ

OpenvX C Project —

Create OpenVX C project of selected type

Project name: nnexample

Use default location

Location: | D¥wipws\nnexample Browse...

Choose file system: |default

Project type: Toolchains:

= Executable OpenVX GCCWin32)
@ Empty Project
& OVX NN Inference C Project
= OpenVX Examples

= Shared Library

(= Static Library

= Makefile project

Show project types and toolchains only if they are supported on the platform

@ <Back || Next> || inish

Figure 18. Creating a Neural Network Inference Project from a model file (2)

"

2. In the New Project - Select a wizard dialog box, open the C/C++ folder in the Wizards list box and select
OpenVX C Project.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
79 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

Figure 19. Creating a Neural Network Inference Project from a model file (3)

Bl New Project I. (=] iﬁj

Select a wizard —

Create a new OpenVX C project

Wizards:
type filter text

4 [= CfC++ &
Malkefile Project with Existing Code
[fit] Native C Project
[i¢] Native C++ Project
[Gi] OpenCL C Project
[Gi] OpenCL C++ Project
[&] OpenGL C Project
[Gl] OpenGL C++ Project
(W] OpenVX C Project
[W] OpenVX C++ Project

m

[

3. Click Next to continue.

4. In the OpenVX C Project dialog box, enter the Project name. Check the Use default location checkbox.
This will cause our new directory to be created in our workspace. The directory path is displayed.

5. Select the Project type: Executable -> OVX NN Inference C Project.

6. Once the project name is entered, click Next to continue. The OpenVX C Project - Basic Settings dialog
box is displayed.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback

80/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

"Bl OpenvX C Project D =T)
|

Basic Settings —

Basic properties of a project

Madel File Chtmphalexnet_intB_conv \alexnet_int8.ex
| Data File Chtmphalexnet_int8_conv_\alexnet_int8.ex

[Author
Copyright notice Your copyright notice

Source src

|
| @:‘ I = Back Mext = Finish l I Cancel

ke

Figure 20. Figure 31. Creating a Neural Network Inference Project from a model file (4)

7. Browse or input the information to select a Model file and a Data file.

8. Click Next to continue. The OpenVX C Project - Conversion Settings dialog box is displayed. Make sure
the Add reference main.c checkbox is checked.
Note:
If Add reference main.c is checked, a main.c would be created by this wizard. If it is unchecked, main.c
would not be created.
Function main () locates in main. c, which is just an application for testing the model.
Usually the NN model is a part of an OpenVX application, so writing function main to use the NN model is
still necessary to execute the project if Add reference main.c is not checked.

9. Click Next to continue. The OpenVX C Project - Select Configurations dialog box is now displayed.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
81/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

. h
Bl OpenVX C Project L@ﬂ

Select Confiqurations

_‘\4.-"

Select platforms and configurations you wish to deploy on

Project type: Executable
Toolchains: OpenVX GCCWin32)

Configurations:

3 Debug I

Select all
B Release

I Deselect all

Ihdvanced settings...

Use "Advanced settings" button to edit project's properties.

Additional configurations can be added after project creation.
Use "Manage configurations” buttons either on toolbar or on property pages.

@ = Back Mext = Einish] I Cancel

e

Figure 21. Creating a Neural Network Inference Project from a model file (5)

10. Click the Finish button. The new project is now created. The new Project is viewable in the Project
Explorer pane.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
82/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

Ele Edit Source Refactor Mavigate Search Run Project Window Help
| W < | jgveivdv@~ &8 [H~0 Q- &y [JE D [cre++
J |§| v G' MR A4

[t Project Explorer §3 = 0| [c] main.c (@ wxc_cnn_network.c £3 = O 5= out 2 ~_@ Makw
0® ¥ #include <stdlib.h> | B R e
=S nn #include "vxc cnn priv.h" J <tdlib.h
: #include "vxc cnn.h" .
-l Includes - vxc_cnn_priv.h
-8 sre static void* node info[15]: vxe_cnn.h
- dirent_win.h /* Neural Network Construction */ node_info : void*
- [n] jeonfig.h vx_status vxcCreateNeuralNetwork(vx graph graph, char® data fil vxcCreateMeurall
- [h| jmorecfg.h { wxcReleaseMeural
[]...@ jpeglib.h vE_status status;
- [€ main.c
[]___@ xe_cnn_network vxcNetworkInit (data_ file name);
- [€] vxc_cnn_node.c e ConvolutionRelu (nl2) —-——- .
[]"'@ ve_cnn_priv.h node info[l] = vxcAllocHodeInfo (sizeof (convolution relu poao
- (A vxc_cnnh if (;ode_info[l] == NULL) B B
----- |Z| bwvlc_alexnet.export {
- =] bvlc.data goto error;

({convolution relu pooling info t *)node_info[l])->graph =

((convolution relu pooling info t *)node_info[l])->input =

((convolution relu pooling info t *)node_info[l])->kernel x

({convolution relu pooling info t *)node_info[l])->kernel y

((convolution relu pooling info t *)node_info[l])-»ofm = 96

((convolution relu pooling info t *)node_info[l]) —>weig'nt;d|;|
»

l | 4 |

[g_\ Problems é_'_?,Tasks El console &3 = Properiies} L4 <'===D| '—E Eﬁ |_-'||| el = I A i 4
C-Build [nn]
##%* Compiling the model file /nn/src/bvlc_alexnet.export ****¥

Figure 22. Creating a Neural Network Inference Project from a model file (6)

13.4.7 Building a sample project
1. On the Project tab, select Properties to open the Properties Setting dialog to modify the build settings.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
83/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPHICUG_9

i.MX Graphics User's Guide

= C/CH -
File Edit Sowrce Refactor Navigate Sewch Run Froject Window

ve_tutorial3fve_tuteriald. ¢ = VivanteIDE
J.'.' st];Q-n.--c'-

([Brejact E3 % % Hevigate | O|[[8 we_tatorials. e 5
Nt B

Open in New Tindew

Copy CtrltC
¥ Delete Delete
Renase. .. F2
paglaport. ..
i Export. ..

Build Froject
Clean Froject

2 |Refresh Fs
Close Project

Baild Configarations L4
Muke Targets L3

Index L3

Shew in Ramots Systess view

Corvert Te...

Run Az L3
Debug As »
Profile Az 13
Tass L
Cospare ¥ith L4
b Restore from Local Mistery. ..

| o® | Configure »

Figure 23. Building a sample project (1)

2. There are build tools available that can be set for C or C++ projects.

= Properties for va_tutoriald

¥ et text Satings
% Resource
Builders

= C/C= Build Configuration: [Debug [Active]
Build Vasiables
Discovery Options
Environment) Tool Settings | 5 Build Steps | Build Artfact | 1y Binary Parsers| G Eror Parsers |
Logging

x| Manage configurations..

Settings Command: [qcc

Tool Chain Editor
3 C/C++ General

Allopticns: |00 -g3 -wall -¢ -fmessage-length=0

Froject References
Run/Debug Settngs

5 Includes

{2 Optimization)
Expert settings:
Command

e pattem:

{5 Librasies

8 Miscellaneous

{5 Shared Librasy Settings
= % VIP VC Compiler

5 Includes
{53 Maeres
S VIP VC Linker

| S1COMMAND) ${FLAGS) $IOUTPUT_FLAGIS{CUTPUT_PREFIS{OUTRUT) $INPUTS)

mmn«msl Apphy
o] me=r|

Figure 24. Building a sample project (2)

3. The sample project 'vx_tutorial3' is ready to build after the build settings are saved.
You can build the 'vx_tutorial3' project by using one of following two methods, with the target project

selected in the left pane:
¢ Choose from the main menu Project->Build Project.
* Right-click the target project and select Build Project.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024

Document feedback
84 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

® CJC++ - wn_tutorial3/vx_tutorial2.c - VivanteIDE

File Edit Source Refactor Mavigate Search Run Proje

J - | ! Jiiﬁ‘v as - Jf v & v J ¢

J = J LENE A A B B b

Tﬁ_‘, Project I3 = EW [€] wvx_tutorial3.c 23 €] vx_tutoris
= <}~==f> = int main(int argc, char

E-1== w_tutorial { crm— . .
H c S5 W variaplegs wf
- O A

Go Into

Open in New Window

Ctrl+C
[0 o g
Delete

= Copy
Paste

¥ Delete
lewve...

F2

Rename...

g Import...
i Export...

Build Project

Clean Project
| Refresh
Close Project

L= =T

[

Close Unrelated Projects

Figure 25. Building a sample project (3)

4. The build results are displayed on the Console and Problems tabs of the lower right pane of the

application.
K\E, Tasks | Bl Console &3 == F"ru:rpertieﬂ =0 T‘L Problems 3
C-Build [vx_tutcrial3] I 4 <}~==E>| LH u'_E |_'-'||| = Bl - % 0 items
Description -

-

*#%% Tnternal Builder is used for build
goo —IC:\VeriSilicon\VivanteIDEl.0D.0\vemdtoolshine -00 -g3 -Wall
—-¢ —fmeszage-length=0 -ovzx tutorial3.o ..\vx_tutnrialﬂ.c

goe —LC:\VeriSilicon\VivanteIDEl.OD.0\vemdtoolsilib
-ovx_tutorial3.exe v tutorial3.o -lopenvi -lopenviu

Euild complete for project vz tutoriall

Time consumed: 358 m=.

Al
[

K1

Figure 26. Building a sample project (4)

5. If No error occurs. build was successful, the executable file is displayed in the Project Explorer pane.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

85/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Tﬁ_‘, Project Explorer &3 = B
=R

F-=5 v_tutorial
ETEC vi_tutorial3
é--q:f Binaries
ﬁs: wx_tutorial3.exe - [x86/1€]
|ﬂ] Includes
|_—‘_|[E, Debug
ﬁ:}: wx_tutorial3.exe - [x86/1€]
wx_tutorial3.o - [xB6/1e]
2= include
7= lib
- [€] v tutorial3.c
----- |*] lena_gray.bmp

| R e B |

..... |=| ve_tutorial3.profile

Figure 27. Building a sample project (5)

6. Use the Build Steps tab on the Properties > C/C++ Build > Settings dialog to customize the selected
build configuration allowing for the specification of user defined build command steps, as well to enable
displaying of descriptive messages in the build output, immediately before and after, normal build
processing.

13.4.8 Debugging and profiling a project

1. To open the Debug Configurations dialog box, select Run->Debug Configurations... from the main
menu.

2. Set the dialog options, and then click Debug to debug your project.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
86 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

- B x|
Craate, manage, and run configurations @t_
x[6®- . . I Remete Debug
i 1 . Semres
=[] OpeaV Application
[E] v tuteriall Debug Suwrch Projuct. . | Brovas.
al 2 Debug
= prowte...
T
Veriabins...
Torking divactiery:
F n
 Use dafaslt
Tiktar matchd 19 oF 19 hane Using GDB (ISF) Create Process Louncher = Salect sther g Q
? |
Name: [vx tutorial3 Debug I Remote Debug B [r_tutoriald Debug ™ Remote Debug
. Wain [P Emirorment | 5+ Debugger | Vdbebugger - - Source| L Main |75 Enviremment |37 Debugger % Véblebugger |1 Seurce
VdbOebugger Options ¥ Stop on startug at: fum
Target reocour Bebsgeer Ogtions
Instruction set: [ewsz - Uain | shered Librarioz |
Main |p,e,-,|e| GOE debugger: [ean M
GIB ecommund fila: [gdbinit Browze
R eoges [+do BIOVES: Warning Soas cotmuads in this £l aay interfre vith the startsp sparation of the debucenr,
o wxeaple
VDB Debug port pair: [£000 [6001
I Mix Debug Mode
Neural Network Layer Dump | rore B
Figure 28. Debugging and profiling a project

13.5 VivantelDE - Debug and Profiling

13.5.1 Fundamentals of performance optimization

Whenever an application runs on a computer, it makes use of one or more of the available resources. These
compute resources include the CPU, the graphics processor, caches and memory, hard disks, and possibly
even the network. Viewed simplistically, it is always true that one of these resources is the limiting factor in how
quickly the application can finish its tasks. This limiting resource is the performance bottleneck. Remove this
bottleneck, and application performance should be improved. Note, however, that removing one limiting factor
always promotes something else to become the new performance bottleneck.

The goal of optimizing, or tuning application performance is to balance the use of resources so that none of
them holds back the application more than any of the others. In practice, there is no single, simple way to
tune an application. The whole system needs to be considered, including the size and speed of individual
components as well as interactions and dependencies among components.

vProfiler collects information on GPU usage and on calls to Vivante functions within the graphics pipeline. It
provides an excellent view into what is happening on the GCCORE graphics processor at any point in time,
down to the individual frame. When the application performance is GPU-bound, vProfiler and VPD Analyser are
the right tools to help determine why.

Note that the initial determination regarding which component of the computer system is the performance
bottleneck — CPU, GPU, memory, and so on, which is the domain of system performance analyzers and is
outside the scope of the GPU tools. A list of such performance analysis tools can be found at Wikipedia:

en.wikipedia.org/wiki/List_of performance_analysis_tools

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
87 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

13.5.2 VPD Analyzer for Analyzing Performance Data

vProfiler is a run-time environment for collecting performance statistics of an application and the graphics
pipeline. The VPD Analyzer perspective view is provided to facilitate graphically displaying the data gathered
by vProfiler and aiding in visual analysis of graphics performance. Used together, these tools assist software
developers in optimizing application performance on Vivante enabled platforms.

13.5.3 vProfiler

When building Vivante Graphics Drivers, the driver is built with vProfiler capability. vProfiler gathers data from
these counters during runtime and can track data for a range of frames or a single frame from any graphics,
compute application. vProfiler outputs performance data to binary files with a . vpd extension. These files
can be using the VivanteIDE VPD Analyzer both in text lists and as line graphs. VPD Analyzer gives the user
several ways to inspect any frame in a captured animation sequence.

13.5.4 Enabling vProfiler on Linux OS

When building Vivante Graphics Drivers in a Linux OS environment, the driver is built with vProfiler capability.

* vProfiler functionality can be enabled by export VIV PROFILE=1.
* To enable OpenVX profile, use export VIV VX PROFILE=1.
* To enable OpenCL profile, use export VIV CL PROFILE=1.

Kernel module driver arguments are no longer needed.

13.5.4.1 Setting vProfiler property options for OpenGL ES

vProfiler property options are set using environment variables on Linux. The following table summarizes the
environment variables that vProfiler supports.

Table 32. vProfiler property options

Environment Variable Description
[0] Disable vProfiler (default), [1] Enable vProfiler, [2] Control via application call, [3]
VIV_PROFILE - o)
- Allows control over which frames to profile with vProfiler
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)
VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.
VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.
VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

Enable [1] or disable [0] the use of gIFinish()/gIFlush() APIs as the frame delimiter
in addition to eglSwapBuffers() (default 0). This variable enables application thread
which does not use eglSwapBuffers() to generate useful GPU profiling data for
analysis.

VP_USE_GLFINISH

Enable [1] or disable [0] (default). When enabled, vProfiler will collect a counter for
each draw call.

VP_DISABLE_PROBE Disables PROBE mode and makes vProfiler to use AHB counters for profiling.

VP_PERDRAW_MODE

VP_ENABLE_PRINT Enable vProfiler to print out the counter information to the console.

13.5.5 Setting vProfiler property options for Vision, OpenVX Profiling

vProfiler for OpenVX Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that
fewer environment variables and fewer supported values for those variables are available.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
88/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 33. vProfiler property options

Environment Variable Description
VIV_VX_PROFILE [0] Disable vProfiler for OpenVX(default), [1] Enable vProfiler for OpenVX
VIV_CL_PROFILE [0] Disable vProfiler for OpenCL(default), [1] Enable vProfiler for OpenCL
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

13.5.6 Enabling vProfiler Option for Android OS

i.MX Android release GPU drivers are built with vProfiler capability. To enable the vProfiler feature, boot the
Android image, and then stop U-Boot by pressing a key on the serial terminal.

setenv append bootargs galcore.powerManagement=0 galcore.gpuProfiler=1
boota

Perform the following steps to capture the VPD file using vProfiler on Android OS.
Note: For Android versions earlier than 11.0.0 2.x.y, remove the "vendor." prefix from the property name.

1. Set application name to be profiled, for example, nenamark2 application.

setprop vendor.VP PROCESS NAME se.nena.nenamark?2

2. Set the profile output file path, for example, nenamark2 application.

setprop vendor.VP OUTPUT /data/data/se.nena.nenamark2/

For Android Automotive, a path to the current user storage has to be used (default user ID is 10): /data/
user/<user_ id>/se.nena.nenamark2/.
3. Start profiling.

setprop vendor.VIV PROFILE 1

4. Run application and check if the * . vpd file is generated in the path indicated by vendor.VvP_OUTPUT, for
example, nenamark2 application.

1ls -1 /data/data/se.nena.nenamark2/*.vpd

5. Stop profiling.

setprop vendor.VIV PROFILE 0

13.5.7 Setting vProfiler property options for OpenGL ES Profiling with Android

The following table summarizes the property options that vProfiler supports through running the command adb
shell setprop [OPTIONS]. These options are similar to the environment variables available for Linux.

Table 34. vProfiler property options

adb shell setprop OPTIONS Description
setprop vendor.VIV PROFILE 0 Run this command in adb shell to disable vProfiler in the drivers
setprop vendor.VIV PROFILE 1 Run this command in adb shell to enable vProfiler in the drivers

Run this command in adb shell to have vProfiler enable/disable controlled
setprop vendor.VIV_ PROFILE 2 in the application by glEnable (GL PROFILE VIV) and glDisable (GL
PROFILE VIV) calls.

Run these commands in adb shell to have vProfiler start-stop at frames

setprop vendor.VIV_PROFILE 3 specified in vendor.VP_FRAME START and vendor.VP_FRAME END.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

89 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Table 34. vProfiler property options...continued

adb shell setprop OPTIONS Description

setprop vendor.VIV_ FRAME START

XXX

setprop vendor.VP FRAME END xxxX
Run this command in adb shell to specify the application you need to profile.
Change the app name as needed to profile another application.

setprop vendor.VP_PROCESS_NAME Note: There may be different sub-case names used by an app. Be sure

appname to accurately specify a case name to match the name that you saw on the
command line when using ps command. This option is only available for
Android, not available for Linux.
Run this command in adb shell to specify a new location for vProfiler output.
By default, the vpd file will created under /sdcard/. If an application has no
access to the SD card, you can specify another path where the application

setprop vendor.VP OUTPUT does have write permission.

newpath Note: For applications which initialize during Android system boot startup,
such as launcher, you need to kill the process after you change to a new path.
When the application automatically restarts, then your vpd will be accessible
where you want it.
Run this command in adb shell to limit the number of frames to analyze. For
example, to make vProfiler dump performance data for the first 100 frames:
setprop vendor.VP FRAME NUM 100.

setprop vendor.VP_FRAME NUM xxx |Note: Only use when vendor.VIV_ PROFILER s set to 1. When this option
is not used, the profile file generated when running an application for a
long time can be very large. This takes up a large amount of disk space
and also makes it hard to view the data in vAnalyzer.

setprop vendor.VP USE GLFINISH Run this command in adb sh(?ll Fo epable 'o.r disable use of g1Finish () /

0 - - glFlush () as the frame delimiter in addition to eglSwapBuffers ()
(default 0). By default, eglSwapBuffers () is used as the frame delimiter.

setprop vendor.VP USE_GLFINISH I1his command will make application thread which does not use eg1Swap

1 Buffers () to generate useful GPU profiling data for analysis.

setprop vendor.VP PERDRAW MODE

0 Run this command in adb shell to enable or disable per draw mode. When

setprop vendor.VP PERDRAW MODE |enabled, vProfiler will collect a counter for each draw call.

1

setprop vendor.VP DISABLE PROBE |Run this command in adb shell to disable PROBE mode and make vProfiler

1 use AHB counters for profiling.

setprop vendor.VP ENABLE PRINT |Run this command in adb shell to enable vProfiler to print out the counter

1 information to the console.

13.5.8 vProfiler Set Property Options for Vision/OVX Profiling with Android

vProfiler for Vision Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that fewer
property options and fewer supported values are available.

Table 35. vProfiler Set Property Options

adb shell setprop

OPTIONS for VIP/VX/OVX

Description

0

setprop vendor.VIV VX PROFILE

Run this command in adb shell to disable vProfiler in the drivers

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Document feedback
90/171

Rev. 9 — 28 June 2024

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 35. vProfiler Set Property Options...continued

adb shell setprop
OPTIONS for VIP/VX/OVX

Description

setprop vendor.VIV VX PROFILE
1

Run this command in adb shell to enable vProfiler in the drivers

Run this command in adb shell to specify the application you need to profile.
Change the app name as needed to profile another application.

setprop vendor.VP_PROCESS _NAME |Note: There may be different sub-case names used by an app. Be sure
appname to accurately specify a case name to match the name that you saw on the
command line when using ps command. This option is only available for
Android, not available for Linux.

Run this command in adb shell to specify a new location for vProfiler output.

By default, the vpd file will be created under /sdcard/. If an application has
no access to the SD card, you can specify another path where the application
setprop vendor.VP OUTPUT does have write permission.

newpath Note: For applications that initialize during Android system boot startup, such
as launcher, you need to kill the process after you change to a new path. When
the application automatically restarts, then your vpd will be accessible where
you want it.

13.5.9 Enabling vProfiler Option for QNX

When building the Vivante Graphics Drivers for QNX environment, build the driver with the vProfiler capability.

The graphics.conf file contains the configuration information for Screen and is found under the following
directory:

SCREEN-DIR/usr/lib/graphics/TARGET-SPECIFIC
To activate the vProfiler functionality, add the gpu-gpuProfiler=1 option into the khronos section of the

corresponding graphics.conf file:

begin khronos
Bééin wfd device 1
éﬁﬁ—gpuProfiler=l
ééa wfd device

end khronos

13.5.9.1 Setting vProfiler Environment Variables for OGL/OES Profiling
The following table summarizes the environment variables that vProfiler supports.

Table 36. vProfiler Environment Variables

Environment Variable Description
[0] Disable vProfiler (default), [1] Enable vProfiler, [2] Control via application call, [3]
VIV_PROFILE -) .)
Allows control over which frames to profile with vProfiler
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)
VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.
VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

91 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 36. vProfiler Environment Variables...continued

Environment Variable Description
VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

Enable [1] or disable [0] the use of gIFinish()/gIFlush() APIs as the frame delimiter
in addition to eglSwapBuffers() (default 0). This variable enables application thread
which does not use eglSwapBuffers() to generate useful GPU profiling data for
analysis.

VP_USE_GLFINISH

Enable [1] or disable [0] (default). When enabled, vProfiler will collect a counter for

VP_PERDRAW_MODE
- - each draw call.

VP_DISABLE_PROBE Disables PROBE mode and makes vProfiler to use AHB counters for profiling.

VP_ENABLE_PRINT Enable vProfiler to print out the counter information to the console.

13.5.9.2 Setting vProfiler Environment Variables for Vision, OpenVX Profiling

vProfiler for OpenVX Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that
fewer environment variables and fewer supported values for those variables are available.

Table 37. vProfiler Environment Variables

Environment Variable Description
VIV_VX_PROFILE [0] Disable vProfiler for OpenVX(default), [1] Enable vProfiler for OpenVX
VIV_CL_PROFILE [0] Disable vProfiler for OpenCL(default), [1] Enable vProfiler for OpenCL
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

13.5.10 Environment Variable Details

13.5.10.1 VIV_PROFILE

The environment variable VIV_PROFILE can be used to control enable/disable and set profiling modes for
vProfiler.

* VIV_PROFILE=0
By default, vProfiler is disabled in the driver. If vProfiler has been enabled and you wish to disable it, set
VIV_PROFILE to 0:

export VIV _PROFILE=0

* VIV_PROFILE=1
To enable vProfiler, set VIV_PROFILE to 1:

export VIV PROFILE=1

To limit the number of frames to analyze, use the environment variable VP_FRAME_NUM. (This option is
available only when VIV_PROFILE=1.) For example, this setting will make vProfiler dump performance data
for the first 100 frames.

export VP_FRAME NUM=100

* VIV_PROFILE=2
Mode VIV_PROFILE=2 provides support for glEnable(GL_PROFILE_VIV) and gIDisable(GL_PROFILE_VIV),
which are used to choose which frames are to be profiled. In this mode, vProfiler is disabled by default.
It begins to do profiling only after a glEnable(GL_PROFILE_VIV) call from the application. And it will stop

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
92 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

profiling when gIDisable (GL_PROFILE_VIV) is called. Note that the flag is only checked at every frame end,
i.e., in eglSwapBuffers(). To use this mode, set VIV_PROFILE to 2:

export VIV _PROFILE=2

* VIV_PROFILE=3
Setting VIV_PROFILE to 3 provides support for two environment variables VP_FRAME_START and
VP_FRAME_END, which are used to choose which frames are to be profiled. In this mode, vProfiler is
disabled by default. It begins to do profiling starting at the frame number specified by VP_FRAME_START,
and it ends the profiling after the frame number specified by VP_FRAME_END. For example to use this mode,
set VIV_PROFILE to 3:

export VIV PROFILE=3 export VP FRAME START=10 export VP FRAME END=90

Note:

To get precise profiling data, the IP's Power Management (PM) functions need to be disabled. When kernel
module galcore is inserted with gpuProfiler=1, the PM functions in the driver are not disabled. The PM
functions are disabled when VIV_PROFILE is set to 1, 2, or 3, and the application starts. The PM functions
are enabled when VIV_PROFILE is set to 0, and the application starts again.

13.5.10.2 VP_OUTPUT

The output file of vProfiler is vprofiler.vpd by default. To specify an alternate filename use the environment
variable vP_OUTPUT. For example,

export VP _OUTPUT=sample.vpd

13.5.10.3 VP_USE_GLFINISH

glFinish()/glFlush() will be treated as the frame delimiter in addition to eglSwapBuffers(). By default, vProfiler
only uses eglSwapBuffers() as the delimiter to check hardware counters. The command below will enable
vProfiler to use glFinish()/glFlush() as additional delimiters so an application thread which does not use
eglSwapBuffers() can generate useful profiling data for analysis.

export VP_USE GLFINISH=1

13.5.10.4 VP_DISABLE_PROBE

This variable only applies to IP with the PROBE feature support. It disables PROBE mode and makes vProfiler
use AHB counters for profiling. This variable has no affect on hardware that only supports the AHB counter. The
default value is off.

13.5.10.5 VP_ENABLE_PRINT

This variable provides a convenient way to check some critical profiling information without using the off-line
vAnalyzer to open a VPD file. Once it is enabled, vProfiler prints out the counter information to the console. For
the OpenVX and OpenCL drivers, the default value is on; for GLES and GL drivers, the default value is off.

13.6 VPD Analyzer

VPD Analyzer provides graphic displays of the data gathered by vProfiler and aids in the visual analysis of
graphics, compute and vision performance. vProfiler outputs performance data to binary files with a . vpd
extension. These files can be opened using the VivantelDE VPD Analyzer both in text lists and as line graphs.
VPD Analyzer gives the user several ways to inspect any frame in a captured animation sequence.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
93 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

13.6.1 Loading a VPD File

To open the VPD Analyzer perspective based on a VPD file, click the icon #" from the toolbar or select Tools-
>VPD Analyzer->Load VPD File ...

* ¥PD Analyrer — ¥ivanteIDE

File Edit Navigate Search FProject Eun DSF Examples Tools

|~ = S s

@ Syztem 23 r[\jProjecJL?ad a VIT Filehhart (:: Function C
Hardware Info——— Function Name

{spu Core: [vivente oorr :ll;:i:;;:::?

Tools Windew Help

VED Analyzer

Convert Texture ...

] ~'Load a VED File
[IClose VED File
& Export Current Frame Data

I % o oo Export #11 Frames Data

i 4 =

State Change
The Load a VPD file dialog box appears. Select a VPD (.vpd) file, and click Open.

* Load a VPD file [%]

@(j)v | . v tmp - vpd hd m‘ I Search vpd [_0]
Organize v Mew folder §= E;l u@.
W Favorites £ MName - | Date modified | Type
B Desktop B sample.vpd 8/1/2018 6:58 PM VPD File

4 Downloads
| Recent Places

- Libraries
3 Documents
rJ‘- Music
| Pictures

B videos

1M Computer
&, svstem(c:)

= [T | i
2| fed =
gpen |

File name: Isample.vpd

Cancel |
4

Or, in the Project Explorer view, right-click on a VPD file and select Load VPD.

IMXGRAPHICUG_9

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 9 — 28 June 2024

© 2024 NXP B.V. All rights reserved.
Document feedback
94 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

L Froject Explorer &3 = d
=

E:%- opengl
|ﬂ-| Includes

@ glfll. frag Open
- = glvl. vertfg Open With

tutoriall e

= tntorialT_e=s20. wpd =|Copy Cirl+C

Faste Ctrl+1

3 Delete Deleta
Mowe. ..
Rename. . . Fz

fegImport. ..

ey Export. ..

|Refresh FS
Make Targets 4

Fun k=
Debug A=
Frofile A=

Team

Clean Selected Filae(s)
Build Selected File (=)

Compare With
Replace With

T ¥ ¥ v v v

Cam

Froperties

Alt+Enter

13.6.2 VPD Analyzer Perspective

i.MX Graphics User's Guide

Once the VPD file is loaded, the VivantelDE workbench switches to the VPD Analyzer perspective view, and
analyze data from the selected VPD file will be displayed on a series of tabs in chart or text format.

Available tabs (left to right) are:

Table 38. Available tabs

VPD Analyzer Tab

Description

System Info

Shows hardware and software version information and Average Frame Rate

Project Explorer

Shows project files

Chart

Shows customizable graph views of various counters

Function Call selected call.

Three panes shows a table of functions called, a graph of Top 5 calls and properties of the

Analysis Summary

Shows data for the current frame

Analysis Detail

Shows analysis detail for the current frame

Program

Shows program counters and their value

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
95/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

® ¥PD Analyzer — VivanteIDE

File Edit Havigate Search Project Eun DSF Exanples lools RFimdow Help

i.MX Graphics User's Guide

=10l

= | & [&) (= = R R A I [| WA VED Analyzer %5 Debug & Shader Assi...
(@ Systen 52 f(‘:,rn.jm] = O & Function canfmm.m B B R - ¥ 205 e 32 N_= Anaﬂ :-Pn.ﬂ =0
71233
Hardware Info S —
GEU Core [Vivents GCTC
60000 -
Driver Utilzation. [20% ﬂl
Driver Info—— 50000 - GEU Utilzation 0% detail
GEU Driver [OpentL E5 3.
40000 | Shader Utilzation, [OR ﬂl
Driver Config [Formal
I | o " | Prinitive Utilzation: |L 123 datail
aoopo - 1T ’ i{ B ' ' o
Frofiler Infe Vertex Rate 7,369 | detail
[Prafxler Versien 1.3 20000 - Finel Rate [{WET | detail
TR T [,] Lo T |
10000 LJJrh”Mw'w v il ;ﬂww'lﬁtm ¥ ek Texture Rate T tex detail
Dats Summary——————————————— so65 |
t t f f f t f T T 1 AT Bandiidth 7,500 detail
Tetal Frans Funber: JS00 0 50 100 150 200 25 300 350 400 450 489
hverags Frame Rats: [30.238 Frar
Screen Size 256 x 256 ‘ Flapse time [microsec) Trriver time (nicrosec)
0000 -
To000 -
60000 -
50000 B Critical (1‘3 Slow Fra 4 =0
40000 - Frane [Elapse time (microsec)
[71,233
30000 244 43,225
41z 31,615
20000 - 7 31,137
Dbt 0 0L e ik ke m I 1 il | BS 37,058
el bt bbb ottt bty {12 e
528 T T T - T ‘\ T T T T 1 3 38, 127
50 100 IS0 z0 251 300 350 400 450 498 ||| 1e9 35, T61
145 35,638
| Triangle count Triver time (nicresec) 13 38,831
B & o0 0 P = = = ™ e
[| | | A | | | || '
'y

[

13.6.3 System Info View

The left most System Info tab shows the system information related to the VPD data under analysis, such as
hardware, driver and vProfiler versions. The Average Frame Rate is also reported on this tab.

-
(i) System Info 52

I._|'>_‘| Froject Expl-:-rerw

EE-\

rHardware Infa

GFU Core:

IGCEEIEIEI core revizion="5. 1. 0_reod”

lriver Info

Average Frame BRate:

Sereen Size:

GFU Driwer: |OpenGL ES 2.0
Driver Config: IH-:-rmal
rProfiler Infa

Frofiler Version: |1.3
rData Summary

Total Frame Humber: [1108

|108. 790 Frames/Sec

|10z = TBS

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
96 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

13.6.4 Program Counters View

The rightmost tab in the rightmost pane is the Program tab which shows program counter information, such as
Instruction counts and attribute counts.

E Analysis Summa (é hnalysis Detai (t" FProgram @3 = E\
Counter Hama I valua I -
[=- Frame Humber TOO
E| Frogram
N T ;- bction count 51
AL instruction count 51
- Texture instruction count a
3 —
2
u}
Instruction count 1
ALU Instruction count 1
Texture instruction count i]
iohttributes 1
o Ui forms i]
.. Funetions u}

I?I Program
Instruction count

KN Kl

13.6.5 Closing the VPD File

Click the icon I from the toolbar or select Tools->VPD Analyzer->Close VPD File to close the current VPD
file. The analysis data associated with the closed file will be cleared from all views.

= ¥YPI Analyzer — VivanteIDE

File Edit Hawigate Search PFProject Bun DSF Examples Tools Winc

|53~ @ afe] Q-]
G}System &3 %Projectw

Close VFD Filef | &= Function Call &

Function Hame
glTexFarameteri
glAttachShader

"Hardware Infa

GPU Core: I‘.l'iva.nte GLCTC

13.7 SPIR-V Disassembler

A SPIR-V Disassembler tool is provided as an aid in debugging Vulkan applications. If a SPIR_V file is already
located in a project, simply double click on it to disassemble. Otherwise use the main menu File -> Open File...
to locate the SPIR-V. Options can be set via the Window->Preferences dialog box.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
97 1171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

i
[spir SPIR-V S i
| Graphics Tocls General szebtings for SPIR-V
SFIE-V dizazsenbly optioms
T -—re—indent
™ =~no~headsr
T ——rev-id
¥ ——offzets
Figure 29. SPIR-V Disassembler

13.7.1 Shader Assistant

Shader Assistant perspective is provided for Shader program development for OpenGL, OpenCL and Vulkan
projects. Shader Assistant provides an environment for editing, previewing, analyzing, and optimizing shader
programs. Shader Assistant includes samples of shader programs, a number of standard meshes (sphere,
cube, tea pot, pyramid, etc.) and a text editor. These extra features will help programmers get a quick start on
creating their shader programs.

There are two ways to switch to the Shader Assistant perspective view. From the main menu, choose Window -
> Open Perspective -> Shader Assistant, or in the C/C++ Project Explorer pane, right click and select Develop
Shader. Using the table in the left pane Preview Settings tab, select items in the Setting column and configure
project as well as header, shaders, attributes, etc.

[Projuct Explorer | % Breview Sattings £3 z =8
Setting | Hame |
project sinple
H header
fizadStates {Dapth={enabla=trus, write mask=true, clear_waln ..
mesh Flare
-] zhaders=
Vertex simple wert
Fr agment simple fraz
El sttribates
aFosition {Wame=aFogzition, Type=floatd, Stresn=FOSITION}
aluCoord {Mame=aTlaxCoord, Type=float?, Sireen=TEXCOORD}
+] textures
Figure 30. Shader Assistant

13.7.2 vTexture

Texture manipulation and viewing is available in four different areas of VivantelDE:

» Texture Editor dialog boxes accessible from the Shader Assistant Preview Settings tab provides for texture
customization, g.v. preceding Section 13.7.1 for launching Shader Assistant.

» vTexture Browser and Viewer panes are available from the main menu Window -> Open Perspective ->
VTexture. It provides thumbnail and detail view of textures as well as the basic properties of the textures,
such as image size and color depth.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
98 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

Figure 31. vTexture (1)

» Convert Texture provides a GUI for texture compression/decompression and tiling/de-tiling. It is accessible
by clicking on the main menu Tools->Convert Texture. Note that vTextureTools is the command line tool
version of this tool. Refer to Section 13.8.4 for details.

* C/C++ - vx1/vx_examplel.c - VivanteIDE

File Edit Source Refactor Navigate Search Run Project DSFExamples | Tools Window Help

| i & | Lo |1 @656 G - gDy)
| @& % |GGl o

Figure 32. vTexture (2)

x

Image Format Transform

Command : ¢ COMPRESS {~ DECOMPRESS ¢ TILE % DE-TILE

- Opticns
[” Enable supertile format
[T Tile/De-tile in multi-format

[~ LayouT Ili] Legacy supertile mode (default) j

I~ RAW type |BGRA333S (default) []

Qutput directary: | E:\waorkspace Browse... |

vtexturetools.exe -dt -t -src SRC -dest DEST

(?) ok | canca |

Figure 33. vTexture (3)

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
99 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

13.8 VivantelDE command line tools

For easy reference, the syntax for the VivanteIDE command line tools are provided on the following pages. You
can also refer to the VivantelDE User Guide or inline -h (help) for syntax for these command line tools.

13.8.1 Preparing the environment

Before running command line tools, prepare the environment as in the examples below.
For Linux OS

* Launch a BASH
* $ source installation dir/ide/setenv-vivanteide<version> # initialize the environment

For Windows OS

e Launch a Command Shell
* > installation dir/ide/setenv-vivanteide<version>.bat # initialize the environment

13.8.2 vCompiler Command Line Syntax for OGL and OGLES

Open a Command prompt. Navigate to the folder, which contains the vTextureTools files (for example,
installation dir/cmdtools/vCompiler, and launch the vCompiler application executable using the
command line syntax described below.

Make sure the configuration file is customized for your target environment.

13.8.2.1 Syntax

Windows and Linux command line syntax is the same.

Optional inputs are indicated by brackets. A fixed order for options in the command is not required.

vCompiler [-f <gpuConfigurationFile>] <shaderInputFileName>
[shaderInputFileName 2]
[—c 1 [-h] [-1] [-o <outputFileName>] [-On] [-v] [-x <shaderType>]

13.8.2.2 Input parameters (required)

shaderlnoutFileName shader input file name, which must contain one of the following file

extensions:

* vert: vertex shader source file

« frag: fragment shader source file

* vgcSL: previously compiled vertex shader input/output file
* pgcSL: previously compiled pixel shader input/output file

13.8.2.3 Input parameters (optional)

shaderinputFileName_2 Up to two shader files can be specified. The second shader file is optional
but must have one of the file extensions described above for shader
InputFileName. If the first shader is a vertex shader, this second shader
should be a fragment shader; conversely if the first shader is a fragment
shader, the second should be a vertex shader.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
100/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Note: Pre-compiled and compiled shaders may be mixed, as long as one is
a vertex shader and the other a fragment shader.

Compile each vertex .vert file into a vgeSL file and/or fragment shader .frag
file into a pgeSL only, with no merged result file of type .gcPGM.

If the —c option is not specified:

* When only one shader is specified, that shader will be compiled into a .
[v/plgcsLfile.

* When two shaders are specified, one is assumed to be a vertex shader
and the other a fragment shader. Each shader can be either a previously
compiled .vgcSL or .pgcSL. file or a .vert or .frag still to be compiled. The
two will be merged into a .gcPGM file after successful compilation.

-f <gpuConfigurationFile>

Specifies a configuration file (from VTK 1.6.2). If —f is not specified, the
file viv_gpu.config in the vCompiler working directory will be used as the
default configuration file. Example syntax:

vCompiler —-f viv gpu 880.config foo.vert bar.frag

Note: vCompiler will not work correctly if the GPU configuration file cannot
be found or contains incorrect content.

Shows a help message on all the command options.

Create a log file. The log file name is created by taking the first input file
name, then replacing its file extension with “.log”. If the input file name does
not have a file extension, .log is appended, e.g.,

myvert.vert => myvert.log
inputfrag => inputfrag.log

-0 <outputFileName>

Specify the output file name. If the path is other than the current directory, it
must also be specified. Any extension can be specified. If the extension is
not specified, the outputFileName supported default types are as follows:

* vgcSL: compiled vertex shader output file, usually compiled from a .vert
input source file (default result for single file compile)

* pgcSL: compiled pixel shader output file, usually compiled from a .frag
source input file.

* gcPGM: compiled file merging vertex shader and fragment/pixel shader
into a single output file

-O<n> Optimization level. Default is —02:
* -00: Disable optimizations
* -O1: Some optimizations are enabled.
» -02 All optimization levels are on (default).
-v Verbose; prints compiler version and diagnostic messages to STDOUT.

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024 Document feedback
101 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

-x<shaderType> Explicitly specifies the type of shader instead of relying on the file extension.
This option applies to all following input files until the next -x option.

ShaderType: supported values for Shader type include:

* vert: vertex shader source file

* frag: fragment shader source file

* vgcSL: compiled vertex shader input/output file
* pgcSL: compiled pixel shader input/output file

-X hone Revert back to recognizing shader type according to the file name extension.

13.8.2.4 vCompilerOutput

Output files are placed in the current directory, unless another directory is specified with the -o option. The files
can be of the three types described above under outputFileName value of the -o option.

13.8.2.5 vCompiler Syntax examples

vCompiler foo.vert produces foo. vgcSL.

vCompiler bar.frag produces bar.pgcSL.

vCompiler foo.vert bar.frag produces foo.gcPGM.

vCompiler -v -1 -01 foo.ver tbar.frag produces foo.gcPGM and foo.log.

vCompiler -v -1 -0l -o foo bar foo.vert bar.frag produces foo bar.gcPGMand
foo bar.log.
13.8.3 vcCompiler Command Line Syntax for OCL

Open a Command prompt. Navigate to the folder which contains the vTextureTools files (for example,
installation dir/cmdtools/vCompiler, and launch the vCompiler application executable using the
command line syntax described below.

Make sure the configuration file is customized for your target environment.

13.8.3.1 Syntax

Windows and Linux command line syntax is the same.

Optional inputs are indicated by brackets. A fixed order for options in the command is not required.

vcCompiler [-f <gpuConfigurationFile>] [-v] [-1] [-00] [-D <MacroDefinition>] [-
I <IncludeDirectory>]

[-K <KernelName>] [-M] [-B] <OpenCLOrOpenVXFileName>

<OpenCLOrOpenVXFileName 2> . . . [-allkernel]

13.8.3.2 Input parameters (required)

OpenCLOrOpenVXFileName Input file name, which must contain one of the following file

extensions:
* cl: OpenCL source file
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
102 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

« vx: OpenVX Vision source file
If an input file extension is not specified, vcCompiler will report a
“wrong file extension” error.

13.8.3.3 Input parameters (optional)

OpenCLOrOpenVXFileName_2, n Multiple input files can be specified. The second and additional
files are optional but must have the appropriate file extension as
described above. All files must be of the same type (.cl or .vx).

-allkernel Allows VX applications to create all kernels in one program and
save them into one package.

-B Support source level intrinsic built-in functions.
-D <MacroDefinition> Predefined inline macro, as referenced in the input file.
-f <gpuConfigurationFile> Specifies a configuration file. If —f is not specified, the file

viv_gpu.config in the vcCompiler working directory will be used as
the default configuration file. Syntax example:

vcCompiler —-f viv _gpu gc7000.config foo.cl

Note: vcCompiler will not work correctly if the GPU configuration
file cannot be found or contains incorrect content.

-h Shows a help message on all the command options.
-l <IncludeDirectory> Specify the directory path for include files.
-K <KernelName> Link with kernel name. Default is main.

-l Create a log file. The log file name is created by taking the input
file name, then replacing its file extension with “.log”. If there are
multiple input files, the filename of the first input file will be used,

inputcl.cl => inputcl.log
myvxl.vx myvx2.vx => myvxl.log

-M Merge all compiled output from each file into one file. The
combined output will have the name of the last input file combined
with the output extension .gcPGM.

Optimization level. Default is —02:

-0O<n>

* -00: Disable optimizations

* -O1: Some optimizations are enabled.

» -02 All optimization levels are on (default).
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

103 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

-V Verbose; prints compiler version and diagnostic messages to
STDOUT

13.8.3.4 vcCompiler Output

Output files are placed in the current directory. When compiled successfully, the supported output file extensions
for veCompiler are:

* .clgcsL: compiled CL output file, compiled from a . c1 input source file.
* .vxgcSL: compiled VX output file, compiled from a . vx input source file.

13.8.3.5 vcCompiler Syntax Examples

vcCompiler [-f <gpuConfigurationFile>] [-v] [-1] [-00] [-D <MacroDefinition>] [-

I <IncludeDirectory>]

[-K <KernelName>] [-M] [-B] <OpenCLOrOpenVXFileName> <OpenCLOrOpenVXFileName 2>
[-allkernel]

vcCompiler -v -01 foo.cl:produces foo.clgcSL.

vcCompiler -v -1 foo.vx:produces foo.vxgcSL and foo.log.

13.8.4 vTextureTools command line tool

Open a Command prompt. Navigate to the folder which contains the vTextureTools files, for example,
installation dir/cmdtools/vTextureTools, and launch the vTextureTools application executable
using the command line syntax described below.

13.8.4.1 Syntax

The usage of the command line tool is as follows for compression/decompression:

vTextureTools -c TYPE [-s SPEED] -src FILE [-dest FILE]

or

vTextureTools -d TYPE -src FILE [-dest FILE]

The usage of the command line tool is as follows for tiling/de-tiling:

vTextureTools -t|-st [-2] [-r|--raw=FORMAT] [-m LAYOUT] -src FILE [-dest FILE]

or

vTextureTools -dt -t|-st [-2] [-r|-—-raw=FORMAT] [-m LAYOUT] -src FILE [-dest
FILE]

13.8.4.2 General parameters

General parameters:

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
104 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

* -h show help
* —src [FILE] source file - input image path and filename. vTexture will use the file extension type as image
type.
— For option —c compress, the application expects an input filename with a .TGA extension.
— For —d decompression, the application expects .DDS, .KTX or .PKM.
— For -t tile, the application expects .BMP or .TGA.
— For —dt detile, the application expects .BMP or .TGA.
* —dest [FILE] destination file - image path and filename.
— The application expects a filename with a .TGA, .DDS, .KTX or .PKM extension for compress/uncompress
or .BMP or .RAW for tile/detile.

— If the —dest parameter is not set, vTexture will auto generate a name for the newly generated file, using the
source file name as the prefix appending critical parameters and file type information.

13.8.4.3 Compression/Decompression parameters

These parameters are used for compression and decompression:

* -¢c compress a source image of format uncompressed TGA

* [TYPE] specify the target output compression format:

* -DXT1 compress image to DXT1 format (default format).

» -DXT3 compress image to DXT3 format.

* -DXT5 compress image to DXT5 format.

* -ETC1 compress image to ETC1 format

* -ETC2 compress image to ETC2 format

» -d decompress a source image of format specified by the value [TYPE].

The resulting file type will be uncompressed TGA.
This option decompresses DXT1, DXT3, DXT5, ECT1 or ETC2 format image to TGA format.

» -s compression [SPEED] mode for ETCn images:
- slow
— medium
— fast (default)

13.8.4.4 Tile/De-Tile parameters
The parameters listed in the following table are used for tiling and de-tiling between linear and tiled formats.

Table 39. Tile/De-Tile parameters

-t Convert linear data to tiled texture output.
-st Enable supertile format. This option is an alternate to -t. If -st and -t are used together, -st will be
set.
-dt De-tile: Convert tiled texture to linear texture output.
-2 Tile/de-tile in multi-format. Tile format is multi-tiled (when used with -t) or multi-supertiled (with -st).
-m [LAYOUT] : layout mode for supertiled or multi-supertiled textures:
* 0: Legacy supertile mode (default).
e 1: Supertile mode when hardware has HZ.
e 2: Supertile mode when hardware has NEW_HZ or FAST_MSAA.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
105/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 39. Tile/De-Tile parameters...continued

i.MX Graphics User's Guide

-r

Specify output data as raw pixel output instead of BMP. Use --raw=rgb565 to specify raw pixel
[FORMAT] . Supported raw formats (8) are:

rgba8888,

bgra8888,

rgb888,

bgr888,

rgb565, bgr565,

argbl555,

yuy2

13.8.4.5 vTexture Syntax Examples

COMPRESS:

vTextureTools -c dxtl -src d:\myfile.png -dest c:\compress.dds
vTextureTools -c dxtl -src d:\myfile.tga -dest c:\compress.dds
vTextureTools -c etcl -s slow -src d:\myfile.png -dest c:\compress.pkm
vTextureTools -c etcl -s slow -src d:\myfile.tga -dest c:\compress.pkm
vTextureTools -c etc2 -s slow -src d:\myfile.bmp -dest c:\compress.ktx
vTextureTools -c etc2 -s slow -src d:\myfile.tga —-dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.bmp -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.pkm
DECOMPRESS:

vTextureTools -d etcl —-src c:/vtexin/myfile2.pkm —-dest c:/vtextout/myfile2.tga
vTextureTools -d —-src c:/vtexin/myfile3.dds -dest c:/vtextout/myfile3.tga

(assumes DXT1)

vTextureTools -d tga -src d:\myfile.dds -dest c:\decompress.tga
vTextureTools -d tga -src d:\myfile.ktx —-dest c:\decompress.tga

TILE: LINEAR TO TILE CONVERSION:

« Tile linear texture to standard tile texturev

TextureTools.exe -t -src 123.bmp

Tile linear texture to multi-tiled texture

vTextureTools.exe -t -2 -src 123.bmp

« Tile linear texture to supertiled texture

vTextureTools.exe —-st -src 123.bmp

* Tile linear texture to multi-supertiled texture

vTextureTools.exe -2 —-st -src 123.bmp

Tile linear texture to multi-supertiled texture and output rgh565

vTextureTools.exe -2 --raw=rgb565 -src 123.bmp

* Tile linear texture to multi-supertiled texture with layout mode 2

vTextureTools.exe -st -2 -m 2 -src 123.bmp

DE-TILE: TILED TO LINEAR CONVERSION:

¢ De-tile tiled texture to linear texture

vTextureTools.exe —-dt -t -src 123-tiled.bmp

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
106 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

* De-tile supertiled texture to linear texture

vTextureTools.exe —-dt -st -src 123-supertiled.bmp

* De-tile multi-supertiled texture to linear texture

vTextureTools.exe —-dt -t -2 -src 123-tiled-multi-tiled.bmp

* De-tile multi-Super-tiled texture with layout mode 2 to linear texture

vTextureTools.exe —-dt -st -2 -m 2 -src 123-multi-supertiled-2.bmp

14 GPU Tools

Note: All SoCs support this tool if not specified.
14.1 gpuinfo tool

14.1.1 Introduction

gpuinfo is a script to gather GPU runtime status through debugfs interface. It exports the following information:

* GPU hardware information.

* GPU total memory usage.

* GPU memory usage of certain process or all processes (user space only).
* GPU idle percentage.

14.1.2 Usage

The script is located at Yocto rootfs /unit tests/. There are three ways to run it.

* Normal run to get all GPU-related processes information:

>/unit tests/GPU/gpuinfo.sh

* Get GPU information for certain process by clarifying the process id.
The process ID (pid) can be found using commands ps or top. Take the process 1035 as an example.

>/unit tests/GPU/gpuinfo.sh 1035

* Get the GPU information for certain process by clarifying part of process name.
Take the process sample test fbo as an example.

>/unit tests/GPU/gpuinfo.sh sample test fbo

or

>/unit tests/GPU/gpuinfo.sh sample

or

>/unit tests/GPU/gpuinfo.sh test

14.1.3 Sample log information

14.1.3.1 GPU hardware information

This section shows all GPU cores model name and revision information with index in the SoC.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
107 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

The sample information:

i.MX Graphics User's Guide

GPU Info

gpu : 0
model : 2000
revision : 5108
gpu H
model : 320
revision : 5007
gpu : 2
model : 355

14.1.3.2 Total memory information
This part shows total GPU memory information.

Table 40. Total memory information

gcvPOOL_SYSTEM: GPU reserved system memory.

gcvPOOL_CONTIGUOUS: contiguous memory allocated from CMA pool, low memory zone and high
memory zone.

gcvPOOL_VIRTUAL: non-contigous memory allocated from low memory zone and high memory
zone.

NON PAGED MEMORY: Allocated from CMA pool(mainly for command buffer)

The sample information:

VIDEO MEMORY :
gcvPOOL SYSTEM:

Free : 124170474 B
Used : 10047254 B
Total : 134217728 B

gcvPOOL CONTIGUOUS:

Used : 0 B
gchOOL_VIRTUAL :
Used : 0B
NON PAGED MEMORY:
Used : 0B

Paged memory Info
low: 892928 bytes
high: 0 bytes

CMA memory info
cma: 0 bytes

14.1.3.3 Process user space GPU memory usage information
This part shows detail user space GPU memory usage per process.

Table 41. User space GPU memory usage

Index memory for index buffer.

Vertex memory for vertex data buffer.

Texture memory for texture buffer.

RT memory for render target buffer.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

108 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Table 41. User space GPU memory usage...continued

Depth memory for depth buffer.

Bitmap memory for bitmap buffer.

TS memory for tile status buffer.

Image memory for vg image buffer.

Mask memory for vg mask buffer.

Scissor memory for vg scissor buffer.

HZDepth memory for hierarchical Z depth buffer.

The sample information:

VidMem Usage (Proce

Counter:

All
Mask
Current
0
Maximum
0
Total
0

Counter:

Current

Maximum

Total

Counter:

Current
Maximum
Total

Counter:

Current
Maximum
Total

Counter:

Current
Maximum
Total

Counter:

Current
Maximum
Total

I

Scissor

0

0

0

8

0

0

0

vidMem (fo
ndex Ve

10047254

0 24
10047254

0 24
10047254

ss 1106) :
r each surface type)
rtex Texture RT Depth Bitmap

HZDepth

489362 1213248 435200 3866624 3727360
5760
489362 1213248 435200 3866624 3727360
5760
489362 1213248 435200 3866624 3727360

0 245760
vidMem (for each pool) All 1 2 3 4

9

10047254
0

10047254
0

10047254
0

nonPaged
All
0
0
0
contiguous
All
0
0
0

0 0 0 0

0 0 0 0

mapUserMemory

All

0

0

0

mapMemory

All
134217728
134217728
134217728

TS

Image
36352
36352
36352
6 7
10047254 0
10047254 0

10047254 0

14.1.3.4 GPU idle percentage

This part shows GPU idle percentage in past 1s.

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
109 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

The sample information:

SSSSSSSSSSSSSSSOSSSOSSSSS5SS55S5S555555555555555555555555>>
Idle percentage:0.00%
SSSSSSSSOSSSSOS555555SSS555S5555555555555555555555555555>

14.2 gputop tool

gputop -- Monitor GPU clients memory, hardware counters, occupancy state load on DMA engines, video
memory and and DDR memory bandwidth (only under Linux).

» The gputop tool is developed to trace the overall memory utilization in classification of memory pools.

* The available memory size is reported for the reserved pool.

* GPU idle time is reported from the last capture.

14.2.1 Synopsis
gputop [options]

gputop -m [mode] -- Where mode can be: mem, counter_1, counter_2, occupancy, dma, vidmem and ddr (under
Linux/Android). Use this option to start gputop directly in a mode that you're interested on. For counter_1 and
counter_2 a context will be needed. See NOTES section why this is necessary.

gputop -c ctx_no -- specify a context to attach when display context-aware hardware counters.

gputop -b -- display in batch mode. For other modes than memory, this will only take an instantaneous sample.
See -f

gputop -f -- Use this when using gputop from a script.
gputop -x -- useful to display contexts when used with **-b"
gputop -i -- ignore warnings about kernel mismatch

gputop -h -- display usage and help

14.2.2 Interactive mode

Normally, when starting up, gputop, starts in interactive mode. The following are a list of useful commands:

* 'h' -- display help page

* '0-6'/Left-Right arrows -- switch between viewing pages

» 'X' -- display application contexts

* 'SPACE' -- select a context that you want to track. Useful for reading counter_1 and counter_2 values.

 'r' -- useful for hardware-counter pages to display different viewing modes (switches between different modes
of aggregation: MIN/MAX/AVERAGE/TIME)

* 'q'/ESC -- exits gputop.

» 'p' -- stops reading counter values and displays only current values. Useful to get a instantaneous values of
the counters.

14.2.3 Description

gputop can be used to determine the memory usage your application is using, or to read the hardware counters
exposed by the GPU in real-time. Additionally, DMA engines and Occupancy states are displayed. gputop
has multiple viewing pages: a memory usage page, two hardware counter pages, a DMA engine page and an

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
110 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Occupancy page. When normally started, gputop will be in interactive mode. Type 'h' to get a list of the current
keybindings.

14.2.4 Requirements

14.2.4.1 Linux OS

gputop requires access to debugfs sub-system on Linux to display memory usage, used by clients submitting
commands to the GPU. gputop will try to mount the debugfs pseudo-filesystem if it is not already mounted. In
order to read hardware counters the profiler must be activated in the driver. Usually this can be set by setting
the environment variable export VIV_PROFILE=1.

14.2.4.2 QNX

Just like in Linux OS, to read the hardware counter values, gpu-gpuProfiler has to be set to 1 in
graphics.conf file under SGRAPHICS ROOT directory. Other views like occupancy and DMA will require gpu-
powerManagement to be set to 0 (disabled).

14.2.5 Notes

14.2.5.1 Sampling hardware-counters

GPUTop samples the driver for hardware counter values. Internally the driver updates the values of the counters
whenever the application submits a special type of command to the GPU. Depending on how fast that happens,
GPUTop cannot foresee/adjust the values of the counters. Therefore, tweaking the amount of sample taken or
the delay time does not really help. For dealing with situations where the application submits either too fast or
too low commands to the GPU, several modes of viewing counters have been added. Cycle between them to
understand or get a bird-eye view of the counter values. Empirically MAX/AVERAGE displays the closest values
to the truth.

14.2.5.2 Context-aware counters

counter_1 and counter_2 are context-aware counters (i.e.: tied to an application).

Internally the driver assigns various context IDs to the application submitting commands to the GPU. These
contexts IDs are currently required to read those hardware counter values. Either use -x on the command line
(together with -b option and choosing -m mem viewing mode), or for interactive mode use 'x' and then 'SPACE'
to show and select a context ID.

In case you are getting zero'ed out values for counter_1 and/or counter_2 values, cycle through the available
counter IDs.

Due to the way the driver is built, single-GPU core applications will have two context-ids. Empirically the largest
integer values holds the real context-id.

14.2.5.3 Unsupported GPUs

For GCV600 (i.MX 7ULP and i.MX 8M Mini), the IDLE/LOAD register is not available, so gputop will display
incorrect (inversed) values.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
111/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

14.2.6 Pages

14.2.6.1 Client attached page

When viewing client attached page, the following head columns are displayed:
PID RES (KB) CONT (KB) VIRT (KB) Non-PGD (KB) Total (KB) CMD

* PID -- process ID

* RES -- reserved memory

* CONT -- contiguous memory

VIRT -- virtual memory

* Non-PGD -- Non-paged memory

* Total -- the sum of all above

* CMD -- the name of the application (trimmed)

These memory items correspond to memory pools in the driver.

14.2.6.2 Vidmem page

When viewing vidmem page, the following head columns are displayed for each process.
PIDIN VE TERTDEBM TS IMMA SCHZ IC TD FE TFB

e IN -- index

* VE -- vertex

e TE -- texture

* RT -- render target
* DE -- depth

* BM -- bitmap

e TS -- tile status

* IM -- image

¢ MA -- mask

* SC -- scissor
e HZ -- hz

e |IC --i_cache
* TD -- tx_desc
* FE -- fence

e TFB -- tfb header

14.2.7 Examples

When using -b option, gputop will start in interactive mode and execute just once its main loop. This is useful
for various reason, either to get an instantaneous view of a different viewing page, or scripting.

* Get a list of processes attached to the GPU.

$ gputop -m mem -b

» Get a list of processes attached to the GPU, but also display the contexts IDs.

S gputop -m mem -bx

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
112 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

* Display counters (counter_1) using context_id.

$ gputop -m counter 1 -b -c <context id>

* Display counters (counter_2) using context_id.

$ gputop -m counter 2 -b -c <context id>

* Get IDLE/USAGE

$ gputop -m occupancy -b | grep IDLE

14.2.8 See Also

* Under QNX, see graphics.conf for disabling powerManagement and enabling gpuProfiler.
e Under Linux, see /sys/module/galcore/parameters/powerManagement

14.3 GPU clock information and debugging

GPU driver supports dynamic frequency scaling. Users can perform the following steps to query and update the
GPU clock information, which is useful for GPU debugging.

1. Get the GPU clock. This is affected by the system RTC timer. Sometimes it varies between different boards.

root@imx8mpevk:
only if there
root@imx8mpevk:
clock:
clock:
clock:
clock:
clock:

gpu0
gpu0
gpul
gpul
gpu8

mc
sh
mc
sh
mc

/# mount -t debugfs none /sys/kernel/debug (optional, exec it
is no gc dir)

/# cat /sys/kernel/debug/gc/clk

1000018036 HZ.

1000021374 HZ.

1000002214 HZ.

999986723 HZ.

499991523 HZ.

2. Change the GPU clock.
Read the gpu3DClockScale as the denominator using the following command:

root@imx8mpevk:/# cat /sys/bus/platform/drivers/galcore/gpu3DClockScale

64

The GPU frequency can be changed to numerator/gpu3DClockScale * clock for different GPU
instances. For example, the gpu0's mc and sh clock can be change to 1/2 and 1/4 of the original frequency.

root@imx8mpevk:
[2625.977856]
[2625.982610]
root@imx8mpevk:
clock:
clock:
clock:
clock:
clock:

gpu0
gpu0
gpul
gpul
gpu8

mc
sh
mc
sh
mc

/# echo 0 32 16 > /sys/kernel/debug/gc/clk

Change core:0 MC scale:32 SH scale:16

Warning: Power management status will be changed forever!
/# cat /sys/kernel/debug/gc/clk

499997481 HZ.

249997541 HZ.

999995540 HZ.

999992141 HZ.

499998453 HZ.

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024 Document feedback
113 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

14.4 Apitrace user guide

14.4.1 Introduction

Apitrace is a set of tools enhanced from open source project apitrace, supported by i.MX 6, i.MX 7, and i.MX 8
with Vivante GPU IP. This tool can dump OpenGL/GLES1.1/GLES2.0/GLES3.0 API calls and replay on a wide
range of other devices.

For more information, see apitrace.github.io/.

14.4.2 Install

14.4.2.1 Yocto

Apitrace source code release is part of the i.MX Yocto Project Linux BSP release. The source code have more
patches added on top of official Apitrace release. The Yocto Project recipes pull the Apitrace source package
and install as needed for supported backend.

14.4.2.2 PC

Apitrace have set of PC tools. Prebuilt binary packages can be directly downloaded from the Apitrace website.
Currently supports Ubuntu 14.04 LTS, 64-bit.

sudo apt-get install libglesl-mesa libgles2-mesa libgt4d-dev

14.4.3 Usage

14.4.3.1 Trace OpenGL ES1.1/2.0/3.0 application

apitrace trace --api=egl <app name and arguments>

€.g., apitrace trace --api=egl es2gears xl1

It generates trace file (.trace) under the current directory. To specify a new path, use —-
output=<path name>

14.4.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java application on the Android platform

On the Android platform, a GLES application can be native (e.g., frameworks/native/opengl/angeles). This type
of application can be traced as normal Linux application. Some other applications involving the Java virtual
machine cannot run in this way. A script apitrace dalvik.sh is provided to run this type of application. This
is an example to trace com.android.settings:

sh /data/apitrace/bin/apitrace dalvik.sh com.android.settings start

To stop tracing, run:

sh /data/apitrace/bin/apitrace dalvik.sh com.android.settings stop

Because there is no “current” directory for a Java application, the trace file is stored under /sdcard/.

If Apitrace is installed in a different directory, update apitrace dalvik.sh manually.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
114 /171

https://apitrace.github.io/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

14.4.3.3 Trace OpenGL application

apitrace trace --api=glx <app name and arguments>

Only the X11 backend supports this feature.

14.4.3.4 Replay

This utility is also called retrace. It reads in the trace file and executes OpenGL (ES) APIs one by one. Each
OpenGL (ES) API call is processed by a callback function. In that callback function, a hook can be inserted for
debug or analysis purposes.

& 40)

Figure 34. Replay

OpenGL ES 1.1/2.0/3.0 applications can be replayed with eglretrace; OpenGL applications can be replayed with
glretrace:

eglretrace <trace file>
glretrace <trace file>

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
115/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

14.4.3.4.1 Analysis

gapitrace provides a detailed look at the trace file. It can only run on a PC. It was verified on Ubuntu 14.04 LTS
64-bit. The command is:

gapitrace <trace file name>

QApiTrace - vimware-vmx.trace

Current State B =
Events 2
glUniform4fvARB(0, 4, [2.00764, -0.114628, -0.0389087, 0.29284 ...6]) [[Parameters |Ishaders]fisirtacasjiunitomms
gluniformafvARB(4, 1,[0,0,0,1]) b
glBindBufferARB(GL_ARRAY_BUFFER, 41)) =
glVertexAttribPointerARB(0, 3, GL_FLOAT, GL_FALSE, 16, NULL) e
SiDisablavertexAtiribArrayARB(1) Varieble =|Vokn ‘
glDisableVerte: ribArray:
glBindBuFFerARB(GL_ARRAY_BUFFER, 0) GL_BLEND_SRC_RGB GL_OMNE_MINUS_DST_COLOR
|BindBufferARB(GL_ELEMENT ARRAY BUFFER, 42 gt-é';‘;-;'lfmn T ;’0 0.0,1]
glBindBuFferARB(GL_ELEMENT ARRAY_BUFFER, 0) GL_COLOR_WRITEMASK [GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE]
glUniformdFvARB(0, 4, [2.00764, -0.114628, -0.0389087, -0.1211 ...6]) GL_CULL_FACE GL_TRUE
glUniform4fvARB(4, 1, [0, 0, 0, 1]) GL_CURRENT_PROGRAM 49
glBindBufferARB(GL_ARRAY_BUFFER, 43) GL_DEBUG_LOGGED_ME... 128
SerteAIOMSOTAB] R R e
glBindBufferARB(GL_ARRAY_BUFFER, 0) L EUNC LLAEDLA
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 44) A DE LIRS LBl
glDrawElementsinstanced ARB{GL_TRIANGLES, 8220, GL_UNSIGNED_SHORT, NULL, 1) GL_DITHER GL_FALSE
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0) GL_DOUBLEBUFFER GL_FALSE
glUniformafvARB(0, 4, [2.00764, -0.114628, -0.0389087, 0.01414 ...5]) GL_DRAW_BUFFER GL_ZERO
gluniformafvARB(4, 1, [0, 0,0, 1]) GL_DRAW_BUFFERO GL_ZERO
glBindBufferARB(GL_ARRAY_BUFFER, 45) » GL_DRAW_FRAMEBUFFER
glVertexAttribPointerARB(0, 3, GL_FLOAT, GL_FALSE, 16, NULL) GL_DRAW_FRAMEBUFFE... 5
glVertexAttribDivisorARB(0, 0) GL_ELEMENT_ARRAY B... 42

IBindBufferARB(GL_ARRAY_BUFFER, 0)
ngIndBufferARB(GL_ELEMENT_ARRAY_BUFFER, 46) GL_FRAMEBUFFER_SRG... GL_FALSE

glDrawElementsinstanced ARB{GL_TRIANGLES, 2784, GL_UNSIGNED_SHORT, NULL, 1) GL_GPU_MEMORY_INFO... 7928
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0) GL_GPU_MEMORY_INFQ... 28126 S
qlBindBufferARB(GL ARRAY BUFFER, 47) < TR e ——

Jetails View. Frame 100, Call 1112334 2@

1112334) giDrawElementsInstanced ARB(mode = GL_TRIANGLES, count = 30045, type = GL_UNSIGNED_SHORT, indices = NULL, primcount =1)

Figure 35. Checking state of every API call

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
116 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

File Edit ‘e Trare

QApiTrace - Surface at glDrawRangeElementsEXT (895384)

Events

glDrav
glPopl
glPush
glMult
glscalq
glcolo
glProg
glProg
glProg
glDrav
glPopl
glPush
glMult
glscall
glcolo
glProg
© glo
glPopl
glBind
glBind
glDisal
glDisal
glDisal
glPush
glmMule
glscal(
gleind
glBind
glEnak

Details view. |

895384) gl

Lower | 0.00 Upper | 1.00

Flip

urrent State

Parameters Shaders Surfaces = Uniforms

Thumbnail

» Textures
¥ Framebuffers

Description

GL_BACK, GL_RGB, 1024 x 768

GL_DEPTH_COMPONENT,
GL_DEPTH_COMPOMNENT,
1024 x 768
GL_STENCIL_INDEX,
GL_STENCIL_INDEX, 1024 x
768

B@

. UNSIGNED_SHORT, indices = NULL)

Opaque Alpha

Figure 36. Checking Framebuffer

File Edit

Viev

Events

glDrawRan¢
glPopMatrii
glPushMatr
glMultMatr
glScalef(0.2
glColoraf(0
glProgramg
glProgramEg
glProgramE
glDrawRan{
glPopMatri;
glPushMatr
glMuleMatr
glscalef(0.2
glcoloraf(o
glProgramEg
© glDrawR
glPopMatrii
glBindBuFf¢
glBindBuff¢
glDisablecl
glDisablecl
glDisablecl
glPushMatr
glMultMatr
glScalef(0.2
glBindBuff¢
glBindBuFf¢
glEnablecli

retails View. Frame

895384) glDray

Lower | 0.00 Upper | 1.00

Flip

QApiTrace - Surface at glDrawRangeElementsEXT (895384)

urrent State @@

Parameters Shaders Surfaces Uniforms

Thumbnail
¥ Textures

Description

GL_TEXTUREQ, GL_TEXTURE_2D, level
=0, GL_RGB, 256 x 256

GL_TEXTURED, GL_TEXTURE_2D, level
=1, GL_RGB, 128 128

GL_TEXTUREQ, GL_TEXTURE_2D, level
=2,GL_RGB, 64 x 64

GL_TEXTUREQ, GL_TEXTURE_2D, level
=3,GL_RGB, 32x 32

GL_TEXTUREO, GL_TEXTURE_2D, level
=4,GL_RGB, 16X 16

GL_TEXTUREQ, GL_TEXTURE_2D, level
=5,GL_RGB,8x 8

EE]

»L._UNSIGNED_SHORT, indices = NULL)

Opaque Alpha

-

Figure 37. Checking Texture

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024 Document feedback

1171171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Profile Results -

Timeline | Histegram

Frame

544

4
|55

CPU

178
187
151
190
175
277
91
184

Program

178
187
151
190
175

277

Calls
98,085

58,375
42,153
24,533
20,116

1,567

Total GPU Time =
7.115s

5.685s
3.006 s
1.9625
1.868 s

1.685

CPU Duration: 6.8

GPU Duration: 1.
Pixels Drawn: 4,4

Total CPU Time
286.667 ms

200.241 ms
218.013 ms
95.706 ms
74.07 ms

8.259 ms

Total Pixels Drawn

1,777,394,032
2,036,329,330
347,420,906
247,806,449
859,602,183

1,372,895,590

Avg GPU Time

72.543 s
97.379 s
71.302 s
79.973 ps
92.857 ps

1.072 ms

Avg CPU Time
2.922 ps

3.43 s
5.171 s
3.901 ps
3.682 ps

5.27 us

Avg Pixels Drawn
18,120

34,883

8,241
10,100
42,732

B76,129 |~

Figure 38. Checking performance

14.4.4 Reference

1. Apitrace introduction: apitrace.qgithub.io/

2. More uses: github.com/apitrace/apitrace/blob/master/README.markdown

14.5 Renderdoc

Renderdoc is a frame-capture based graphics debugger, generally support for Vulkan, D3D11, D3D12,
OpenGL, and OpenGL ES development. On i.MX, support is available only for Vulkan. RenderDoc provides
tools for deep analysis and graphics inspection, as well as detailed examination of APl usage - allowing
developers to locate bugs and problems in their programs.

14.5.1 Renderdoc components

Renderdoc source code release is part of the i.MX Yocto Project Linux BSP release. The source code has more
patches added on top of the official Renderdoc release. The Yocto Project recipes pull the renderdoccmd tool
source package and install it as needed for the supported backend. The version of renderdoccmd currently
available for the useris 1.7.

© 2024 NXP B.V. All rights reserved.
Document feedback
118 /171

IMXGRAPHICUG_9
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 9 — 28 June 2024

http://apitrace.github.io/
https://github.com/apitrace/apitrace/blob/master/README.markdown
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Renderdoc has a set of PC tools. Prebuilt binary packages can be directly downloaded from Renderdoc
website.

The renderdoccmd tool will be available on the i.MX board for capturing frames and replaying locally, as for
debugging purposes grenderdoc needs to be used remotely on a host machine.

14.5.2 Running renderdoccmd on i.MX

renderdoccmd capture <options> <app name> <arguments>

Renderdoccmd usage example:

* For capturing a frame from a graphics application available in the SDK, run

renderdoccmd capture /opt/imx-gpu-sdk/Vulkan/Some example/Some example Wayland

* Press F12 to capture frames:

Frames will be written in /tmp/Renderdoc/ (run renderdoccmd capture to see all the options)

* For replaying a capture run

renderdoccmd replay /path/to/capture/file

(Run renderdoccmd replay for more options).

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
119 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Vulkan Example - Instanced mesh rendering
49.580ms (20 fps)
Verisilicon

Rendering 1624 instances

* Press F for full screen. Press F again to come back to the default window dimensions. Press ESC to quit
replaying.

14.5.3 Capturing and replaying remotely
Usage:

Download a Renderdoc build from the website on your Windows/Linux host machine.
Set up a connection between the host and the board.

On the i.MX board, run renderdoccmd remoteserver.

On your machine, run grenderdoc. Go to File -> Attach to running instance.

In the Remote Host Manager Window, add the target's IP address. Then grenderdoc on your local
machine should establish a connection with the renderdoccmd server instance.

6. In the left down corner of the screen, select Replay Context and change it from Local to the target’s IP
address.

7. Select File -> Launch Application. On Executable Path, insert the path of your Vulkan example from the
target: /opt/imx-gpu-sdk/Vulkan/Some_example/Some_example_Wayland.

8. Press Launch and then capture. A new capture preview should appear.

9. You can save it by right clicking Save on the preview.

aorODN -

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
120 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

IEJ RenderDoc Unstabe release (1.5 - 5429100299321 36cbST35 26441 acOeTe228) - a x
Eile_Window Jooks Help

Timebne. x
eo: |

Eventronasr X [resmrevens: X |EJpoerese |Elwevener % | poiatan % |E nogrestetog X | EY 192 15010 - ConputePnces Woyin_ X |
7 ¥
ot | Stonn Toos
) [rame. A
Towet 152158165 - CompuieParkes Werlend D853 | | [copere 1 Franet]
s [copreromimeions]
61 valkan (Active) ekl e
Cooueriwnr |

Eemimes) s

Coptres olecies

Computefartiies Wayland (Remote)

[

Castad:
T o Frevew Open v Swe Dekle

 Replay Content 102168168 Remote seve ready

10. If you close the Vulkan application from the board, grenderdoc will open the capture file.
11. To debug the capture, check the documentation available on the Renderdoc site.

12. To replay remotely, just use renderdoccmd on your local machine. Run renderdoccmd replay --
remote-host <target ip> <capture file on you local machine> and you should see exactly
the same thing as when running on the target locally.

Notes for Android:

» Before starting the remote server and Vukan application, Android HWUI renderer must be set to Vulkan
renderer. In Android console: setprop debug.hwui.renderer skiavk.

* Remote server on the Android platform is started from qrenderdoc application. Connect the board to PC
through the USB-C port. In grenderdoc, go to Tools -> Manages Remote Servers, and select the connected
board. For example, “nxp MEK-MX8Q”, and press the Run Server button.

* On the Android platform, add permission "Allow access to manage all files" to RenderDocCmd when it is
launched for the first time.

* Launch an application from qrenderdoc. Be sure the correct Replay Context is selected in the left bottom
corner. Select a Vulkan application in the Executable path field from the Launch Application tab. Click the
Launch button.

* Capture frame from grenderdoc.
» Capture is replayed automatically on the Android platform when the Vulkan application is closed.

14.5.4 Reference

https://renderdoc.org/
https://github.com/baldurk/renderdoc/blob/v1.x README.md

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
121 /171

https://github.com/baldurk/renderdoc/blob/v1.x/README.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

15 GPU Memory Introduction

15.1 GPU memory overview

* OpenGL-ES
— Texture buffer
— Vertex buffer
— Index buffer
— PBuffer surface
— Color buffer
— Z/Stencil buffer
— HZ depth buffer
— Tiled status buffer
— 3D Command buffer
— 3D Context buffer
e OpenVG
— Image buffer
— Tessellation buffer
— VG command buffer
— VG context buffer
e 2D buffers
— 2D command buffer
— 2D temporary buffer

15.2 GPU memory pools

* Reserved memory
In the Linux 6.6.y kernel, the memory is reserved from CMA implemented in the GPU kernel driver, the size
can be changed through U-Boot args with galcore.contiguousSize =xxx.
The memory allocation and lock very fast, but cannot support cacheable attribute.
» Contiguous memory
The contiguous memory is from CMA or Normal or Highmem with alloc _pages_exact.
The GPU driver tries the CMA allocator for non-cacheable request first. If CMA memory is used up, it goes to
system allocator.
The CMA allocator does not support the cacheable attribute, the system allocator supports cacheable
attribute, but the memory performance is slow with the additional cache flush operations.
* Virtual memory pool
The virtual memory is from Normal or Highmem with multiple page alloc.
The memory support cacheable attribute, but slow with GPU MMU and cache flush.
The GPU virtual command buffer is allocated from virtual memory pool directly.
* Nonpaged memory pool
In the 5.x GPU driver, this pool is not used any more.

15.3 GPU memory allocators

Two kinds of allocators are implemented in i.MX GPU kernel driver, see drivers/mxc/gpu-viv/.

* The video memory allocator implementation is very complicated. The memory is from the reserved pool,
system contiguous pool (supports CMA), or system virtual pool (enables GPU MMU).

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
122 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

* The CMA allocator supports non-cacheable contiguous memory. It is implemented as a part of contiguous
pool. When the system requests contiguous memory, the allocator tries CMA first. If CMA is used up, it goes
to allocate the system contiguous pages.

* GPU memory-killer is implemented for special requirement of force contiguous GPU memory.

' |
OK when success,
QOM when fail

Y

Y
Texture,
vertex, 3 N) N
index. »| Reserved Pool > UCCess? » Contiguous Pool > »
atc
[gpumem-killer)=

Fig.1 Gpu video memory allocator

orce

contiguous » Virtual Pool

20/3D command buf) OFK when success,
Virtual Pool =5ET when fail

h A
 J

Fig.2 Gpu virtual command allocator

Figure 39. GPU memory allocators

15.4 GPU reserved memory

» The reserved memory is managed by two dual linked lists, one is free list, and another is node list.

* When allocate the reserved memory, the free list is scanned from head to tail until a available node is
selected, it is very fast but makes more memory fragments, under test, 10~20M of 128M is not available to
use after a lot of allocate/free operations.

* When the available node is selected, it is removed from the free list, but it always keeps the dual linked nodes
to merge the conjoint available memory when freed.

* The reserved memory is mapped once when application process is attached, during 3D application running,
the memory map/un-map operations are very fast, the virtual address is just calculated with logical base and
offset.

15.5 GPU memory base address

* GPU support contiguous physical memory within (0-2G) address directly:
— GPU address = CPU Physical address — GPU BaseAddress
* GPU MMU is enabled for two kinds of memory type as below:
— Separated page memory from Virtual memory pool
— Contiguous page memory with address out of (0-2G)
» BaseAddress should be set to RAM start address to achieve the better performance by reducing GPU MMU
mapping.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
123 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

GPU Address CPU Physical Memory Address
N
0 - 0
~
reserved memory ~
\
~
~
~
nonpaged memory ~ -
~
~
] BaseAddress™
contiguous memory
reserved memory
2G
~
N ~ nonpaged memory
~
~
\
~ ~ contiguous memory
~
N
~
BaseAddress+2G-
virtual memory
4G virtual memory
2G+

Figure 40. GPU memory base address

16 Mali Valhall GPU

i.MX 95 integrates the Mali Vale V2 GPU, a significant change in the graphics from previous i.MX. It performs 32
FP32 FMAs, reads four bilinear filtered texture samples, blends two fragments, and writes two pixels per clock.
For more details about Mali Vale shader core, see https://developer.arm.com/documentation/102203/0100/?

lang=en.
The Vale GPU has a module named Command Stream Front (CSF), which replaces the job management in the

Midgard and Bifrost architecture, and offloads some operation from CPU to GPU, so that the CPU can focus on
general operations to increase the rendering FPS. It is more friendly to the newer graphics API vulkan.

16.1 Features

* Tile-Based Deferred Rendering (TBDR)
* OpenGLES 1.1/2.0/3.0/3.1/3.2

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
124 /171

https://developer.arm.com/documentation/102203/0100/?lang=en
https://developer.arm.com/documentation/102203/0100/?lang=en
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

e Vulkan 1.3
* OpenCL 3.0
 AFBC/AFRC

16.2 Mali Shader offline Compiler

malisc is a Mali offline shader compiler to compile the vertex shader and fragment shader. It is only for syntax
checking when you are developping the shader. Its output is not ELF binaries. It is a specific Mali version called
Mali Binaries Specification version2 (MBS2).

#version 320 es

//test.vert to show malisc usage
in vec4 position;

out vec4 color;

void main (void)
{

gl Position = position;

color = vecd4(1.0f, 0.0f, 0.0f, 1.0f);
}

You can modify the shader source above to learn the Malisc usage.

Usage: malisc --util [options] <a.vert> [<a.frag> <b.vert> ...]
local@imx95-19x19-1pddr5-evk:~# malisc test.vert --core=Mali-G310 --
revision=r0p0

More options can be found when the following command is executed:

local@imx95-19x19-1pddr5-evk:~# malisc —--help

16.3 Mali OpenCL Offline Compiler

mali clcc is Mali OpenCL C offline compiler. It can be used for syntax checking, and its output program
binary can be used with c1CreateProgramWithBinary ().

//test.cl
__kernel void vector add(_ global float* a, _ global float* b, _ global float*
c)
{
//get the global ID
const int i = get global id(0);

//run the vector add
c[i] = ali] + b[i];

}

The kernel source file above can be compiled with the following command:

local@imx95-19x19-1pddrS5-evk:~# mali clcc test.cl -o test.bin

More options can be found when the following command is executed:

local@imx95-19x19-1pddr5-evk:~# mali clcc -help

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
125/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

16.4 References and Useful links

* Tile-Based Rendering: https://developer.arm.com/documentation/102662/0100/?lang=en
* The Valhall shader core: https://developer.arm.com/documentation/102203/0100/?lang=en
* Arm Mali Offline Compiler User Guide: https://developer.arm.com/documentation/101863/0803/?lang=en

17 Application Programming Recommendations

The recommendations listed below take a holistic approach centered on overall system level optimizations that
balance graphics and system resources.

17.1 Understanding the system configuration and target application

Knowing details about the application and use case allows developers to correctly utilize the hardware
resources in an ideal access pattern. For example, an implementation for a 2D or 3D GUI could be rendered in
a single pass instead of multiple passes if the draw call sequence is correctly ordered. In addition, knowing the
most common graphics function calls allow developers to parallelize rendering to maximize performance.

Using Vivante and vendor-specific SoC profiling tools, you can determine bottlenecks in the GPU and CPU and
make changes as needed. For example, in a 3D game, most CPU cycles may be spent on audio processing, Al,
and physics and less on rendering or scene setup for the GPU. In this instance, the application is CPU-bound
and configurations dealing with non-graphics tasks need to be reviewed and modified. If the system is GPU-
bound, the profiler can point out where the GPU programming code bottlenecks are located and which sections
to optimize to remove restrictions.

17.2 Optimizing off-chip data transfer such as accessing off-chip DDR memory/mobile
DDR memory

Any data transfer off-chip takes bandwidth and resources from other functional blocks in the SoC, increases
power, and causes additional cycles of latency and delay as the GPU pipeline needs to wait for data to

return from memory. Using on-chip cache and writing the application to better take advantage of cache

locality and coherency increase performance. In addition, accessing the GPU frame buffer from the CPU (not
recommended) cause the driver to flush all queued render commands in the command buffer, slowing down
performance as the GPU has to wait since the command queue is partially empty (inefficient use of resources)
and CPU-GPU synchronization is not parallelized.

17.3 Avoiding W-clipping issue in the application program

The w-clipping overflow issue typically occurs with these three factors:

* Objects with very large primitives.
In a 3D scene, this is usually the sky, the outer world or a long road that expands far behind the camera and
far in front of the camera. At the same time, the object may also expand far in either the x or y direction.

* Near-plane with a very small value
Usually this value is very close to zero. An example would be 1074,

* Large screen resolution

These three factors can cause the final window coordinate to overflow the 24-bit mantissa precision in IEEE
single precision floating point format.

The following are suggested ways to modify an application to avoid overflow:

1. For draw calls with very large primitives such as sky or world, set the near-plane to 0.99 as an initial value.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
126 /171

https://developer.arm.com/documentation/102662/0100/?lang=en
https://developer.arm.com/documentation/102203/0100/?lang=en
https://developer.arm.com/documentation/101863/0803/?lang=en
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

2. If this removes the rendering error and the entire scene is rendered correctly, the issue can be considered
resolved.

3. If the rendering error is still there and no desired objects are being culled (or there are no missing objects),
increase the near-plane value until the rendering error disappears.

4. If the near-plane value is large (>10.0) already, the issue persists and some desired objects are being
culled, reduce the near-plane value until the desired objects appear again then go to the next step.

5. Tessellate the large objects into smaller primitives until the rendering error disappears.

Please note that the suggested near plane adjustment can be done on a per draw call basis, and only needs to
be modified for objects with very large primitives. Some applications scale the object by reducing the w value in
vertex shader, as changing w value will finally affect the near plane, which is not recommended. A better way to
scale the object is scale the x, y, z coordinate, not w.

17.4 Avoiding GPU hanging and data corruption when using occlusion query

Description:

On i.MX 6Dual/Quad GPU IP, both Hierarchical Depth (Hz) write and Occlusion Query (OQ) write share the
same port. If HZ Fast Clear (FC) is enabled, and OQ uses the HZ port to perform a write, the HZ FC data may
become corrupted, even leading to GPU hanging unexpectedly.

Software Workaround:

A software workaround is recommended for this issue and is available from L4.9 bsp release. Because the
issue occurs very infrequently, a per-application work around is most efficient. Software will disable HZ with a
per-app detection and also provide a new environment variable control (VIV_DISABLE_HZ).

17.5 Avoiding random cache or memory access

Cache thrashing, misses, and the need to access data in external memory causes performance hits. An
example would be random texture cache access since it is expensive when performing per-pixel texture reads if
the texture units need to access the cache randomly and go off-chip if there is a cache miss.

17.6 Optimizing your use of system memory

Memory is a valuable resource that needs to be shared between the GPU (frame buffer), CPU, system, and
other applications. If you allocate too much memory for your OpenGL ES application, less memory is available
for the rest of the system, which may impact system performance. Claim enough memory as needed for your
application then deallocate it as soon as your application no longer needs it. For example, you can allocate a
depth buffer only when needed or if your application only needs partial resources, load the necessary items
initially and load the rest later.

17.7 Targeting a fixed frame rate that is visibly smooth

Smooth frame rate is achieved from a combination of a constant FPS and the lowest FPS (frames per second)
that is visually acceptable. There is a trade-off between power and frame rates since the graphics engine
loading increases with higher FPS. If the application is smooth at 30 FPS and no visual differences for the
application are perceived at 50 FPS, then the developer should cap the FPS at 30 since the extra 20 FPS do
not make a visual difference. The FPS limit also guarantees an achievable frame rate at all times. The savings
in FPS help lower GPU and system power consumption.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
127 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

17.8 Minimizing GL state changes

Setting up state values between draw calls adds significant overhead to application performance so they must
be minimized. Most of these call setups are redundant since you are saving / restoring states prior to drawing.
Try to avoid setting up multiple state calls between draw calls or setting the same values for multiple calls.
Sometimes when a specific texture is used, it is better to sort draw calls around that texture to avoid texture
thrashing which inhibits performance. Application developers should also try to group state changes.

17.9 Batch primitives to minimize the number of draw calls

When your application submits primitives to be processed by OpenGL ES, the CPU spends time preparing
commands for the GPU hardware to execute. If you batch your draw calls into fewer calls, you reduce the
CPU overhead and increase draw call efficiency. Batch processing allows a group of draw calls to be quickly
executed without any intervention from the CPU (driver or application) in a fire-and-forget method.

Some examples of batching primitives are:

» Branching in shaders may allow better batching since each branch can be grouped together for execution.

* For primitives like triangle strips, the developer can combine multiple strips that share the same state to save
successive draw calls (and state changes) into a single batch call that uses the same state (single setup) for
many triangles.

» Developers can also consolidate primitives that are drawn in close proximity to take advantage of spatial
relationships. If the batched primitives are too far apart, it is more difficult for the application to effectively cull if
they are not visible in the frame.

17.10 Performing calculations per vertex instead of per fragment/pixel

Since the number of vertices is usually much less than the number of fragments/pixels, it is cheaper to do per
vertex calculations to save processing power.

17.11 Enabling early-Z, hierarchical-Z, and back face culling

Hardware support of depth testing to determine if objects are in the user’s field of view are used to save
workload and processing on vertex and pixel processing. If the object is in view, then the vertices are sent
down the pipeline for processing. If the object is hidden or not viewable, the triangles are culled and not sent to
the pipeline. This improves graphics performance since computations are only spent on visible objects. If the
application already knows details about the contents and relative position of objects in the scene or screen, the
developer can use that information to automatically bound areas that never need to be touched (for example
an automotive application that has multiple layers of dials where parts of the underlying dials are occluded can
have the application avoid occluded areas from the beginning). Another optimization is to perform basic culling
on the CPU since the CPU has first-hand information about the scene details and object positions so it knows
what scene data to send to the GPU.

17.12 Using branching carefully

Static branches perform well since states are known but they tend to use many general purpose registers. An
example is a long shader that combines multiple shaders into a single, large shader that reduces state changes
and batch draw calls. Dynamic branching has non-constant overhead since it processes multiple pixels as one
and everything executes whether a branch is taken or not. In other words, dynamic branching goes through
different permutations/branches in parallel to reach the correct results. If all pixels take the same path, then
performance is good. The more pixels processed translates to higher overhead and lower performance. For
dynamic branching, smaller pixel sizes/groups are optimal for throughput. Developers need to be aware of
branching in their code to make sure excessive calculations and branches are efficient. Profiling tools can help
determine if certain parts of code are optimized or not.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
128 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

17.13 Using VBOs instead of static or stack data as vertex data

A vertex buffer object (VBO) is a buffer object that provides the benefits of vertex array and display list

and allows a substantial performance gain for uploading data (vertex position, color, normals, and texture
coordinates) to the GPU. VBOs create buffer objects in memory and allow the GPU to directly access memory
without CPU intervention (DMA). The memory manager can optimize buffer placement using feedback from the
application. VBOs can also handle static and dynamic data sets and are managed by the Vivante driver. The
benefits of each are:

* A vertex array reduces the number of function calls and allows redundant data to be shared between related
vertices, instead of re-sending all the data each time. Access to data can be referenced by the array index.

* The display list allows commands to be stored for later execution and can be used repeatedly over multiple
frames without re-transmitting data, thus minimizing CPU cycles to transfer data. The display list can also be
shared by multiple OpenGL / OpenGL ES clients so they can access the same buffer with the corresponding
identifier. If you put computationally expensive operations (ex. lighting or material calculations) inside display
lists, then these computations are processed once when the list is created and the final result can be re-used
multiple times without needing to re-calculate again.

If you combine the benefits of both by using VBO, the performance is enhanced over static or stack data sets.

17.14 Using dynamic VBO when the data is changing frame by frame

Locking a static vertex buffer while the GPU is using it can create a performance penalty since the GPU needs
to finish reading the vertex data from the buffer before it can return to the calling application. Locking and
rendering from a static buffer many times per frame also prevents the GPU buffering render commands since it
must finish commands before returning the lock pointer. Without buffered commands the GPU remains idle until
the application finishes filling the vertex buffer and issues the draw commands.

If the scene data never changes from frame to frame then a static buffer may be sufficient. With newer
applications (ex. games, maps) that have dynamic viewports where vertex data changes multiple times per
frame or frame-to-frame, then a dynamic VBO is required to ensure performance is still met. If the current buffer
is being used by the GPU when a lock is called, a pointer to a new buffer location is returned to the application
to ensure updated data is written to the new buffer. The GPU can still access the old data (current buffer)

while the application puts updated data into the new buffer. The Vivante memory management unit and driver
automatically take care of allocating, re-allocating, or destroying buffers.

You can implement dynamic VBO depending on your preference, but one recommendation is to allocate a 1 MB
dynamic VBO block and upload data to using different offsets for each dynamic buffer. If the buffer overflows
you can loop back and use location offset 0 again.

17.15 Tessellating your data to make Hierarchical Z (HZ) work

We can break this into how OpenGL and OpenGL ES handle this use case.

OpenGL only renders simple convex polygons (edges only intersect at vertices with no duplicate vertices and
only two edges meet at any vertex), in addition to points, lines, and triangles. If the application requires concave
polygons (polygons with holes or intersecting edges), those polygons need to be subdivided into simple convex
polygons, which is called tessellation (subdividing a polygon mesh into a bunch of smaller meshes). Once you
have all the meshes in place our HZ hardware can automatically cull hidden polygons to efficiently process the
frame, effectively breaking the frame into smaller chunks that can be processed very fast.

OpenGL ES only renders triangles, lines, and points. The same concepts apply as in OpenGL, which is to
avoid very large polygons by breaking them down into smaller polygons where our internal GPU scheduler can
distribute them into multiple threads to fully parallelize the process and remove hidden polygons.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
129 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

17.16 Using dynamic textures as a texture cache (texture atlas)

The main reason for using dynamic textures as a cache is the application developer can create one larger
texture that is subdivided into different regions (texture atlas). The application can upload data into each region
and use an application side texture atlas to access the data. Each dynamic texture and sub-region can be
locked, written to, and unlocked each frame, as needed. This method of allocating once is more efficient than
using multiple smaller textures that need to be allocated, generated, and then destroyed each time.

17.17 Stiching small triangle strips together

It is better to combine several small, spatially related triangle strips together into a larger triangle stip to
minimize overhead and increase performance. For each triangle strip, there are overhead and start up costs
that are required by the CPU and GPU, including state loads. If there are too many small triangle strips that
need to be loaded, this impacts performance. An application developer can combine multiple triangle strips
by adding a degenerate triangle to join the strips together. The overhead to restart multiple new strips is much
higher than adding the degenerate triangle.

17.18 Specifying EGL configuration attributes precisely

To obtain a 16 bit/pixel window buffer for rendering, the EGL config attributes need to be specified precisely
according to the EGL spec. Specifying inaccurate EGL attributes may result in getting a 32-bit bit/pixel window
buffer which doubles the bandwidth requirement for rendering which in turn leads to lower performance.

17.19 Using aligned texture/render buffers

The GPUs work on buffers with hardware-specific width/height alignment for better efficiency. Use the available
API to query the GPU buffer alignment and allocate the texture / render buffers to satisfy these requirements, to
avoid the cost of copies to aligned shadow memory.

17.20 Disabling MSAA rendering unless high quality is needed

Although MSAA rendering can achieve higher image quality with smoother lines and triangle edges, it requires
much higher (4x, 8x) bandwidth because it has to render a single pixel 4x/8x times. So, if high rendering quality
is not required, MSAA should be disabled.

17.21 Avoiding partial clears

Most GPUs have special hardware logic to do a fast clear of an entire buffer. So it is better to utilize the fast
clear function to clear the entire buffer then render graphics again, instead of doing a partial clear to preserve a
graphics region. If a partial clear is required by the application, make sure the clear area is aligned according to
the GPU-specific requirements. Unaligned partial clears are expensive and should be avoided.

17.22 Avoiding mask operations

Do not use mask unless the mask is 0 (other than when you need a specific render quality). Clearing a surface
with mask (color/depth stencil mask) could have a performance penalty.Pixel mask operations are normally
pretty expensive on some GPUs as the mask operation has to be done on every single pixel.

17.23 Using MIPMAP textures

MIPMAP textures enable the application to sample a lower resolution texture image (1/2, 1/4, 1/8, 1/16, ...
size of the original texture image) when the triangle is rendering further away from the view point. Thus, the
bandwidth required to read the texture image is reduced which leads to better performance.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
130/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

17.24 Using compressed textures if constricted by RAM/ROM budget

Compressed textures are normally only a fraction (up to 1/8) of the original texture size. Using compressed
textures reduces the storage requirements in memory and can also reduce the required texture upload
bandwidth, when using a format that is supported natively by the hardware.

Compressed textures should not be chosen, if only for the purposes of reducing the memory bandwidth required
for sampling of the texture during rendering. This is because due to a fixed read request size from the GPU, the
memory controller load is the same as for an uncompressed texture.

17.25 Drawing objects from near to far if possible

Drawing objects from near to far normally has better performance because the objects in the near foreground
can block entire or partial objects in the background. Most GPUs have early Z rejection logic to reject the pixels
that fail a Z compare. The GPU can skip fragment shader computations on these rejected pixels.

17.26 Avoiding indexed triangle strips

Index triangle strips can usually maximize the vertex cache utilization as each set of vertex data can be used in

two triangles. There is however an errata in the GC2000 and GC880 GPUs which requires a SW conversion of

indexed triangle strips to triangle lists in the driver. For small strips the conversion overhead is negligible, but for
large geometries a different primitive type should be used.

17.27 Limiting vertex attribute stride within 256 bytes

Most Vivante GPUs provide native support for a 256 byte vertex attribute stride. If the vertex attribute stride is
larger than 256 bytes, then the driver has to copy the vertex data around. Hardware versions v55 and higher
(such as the GC7000L v55) support a 2048 byte vertex attribute stride as required in the OES3.1 spec.

17.28 Avoiding binding buffers to mixed index/vertex array

Most of Vivante GPUs do not natively support mixed index/vertex arrays. So the Vivante driver must copy the
index and vertex data around to form separate vertex data streams for the GPU. Avoid mixing index and vertex
data so the driver does not have to incur a performance hit while performing this task.

17.29 Avoiding using CPU to update texture/buffer contexts during render

Do not use the CPU to update texture/buffer contexts in the middle of rendering. Using the CPU to update
texture/buffer causes the rendering pipeline to flush and stall, so that CPU can safely update the buffer
contents. The pipeline flush/stall/resume causes significant performance impact.

17.30 Avoiding frequent context switching

Context switch is an inherently expensive operation as many GPU states need to be reset to start a new
rendering context. Thus, frequent context switching has a negative impact on application performance.

17.31 Optimizing resources within a shader

Most GPUs have optimal support for a limited amount of resources (uniforms, varying, etc.). Using resources
beyond the optimal working set causes the GPU to fetch/store resources from a lower performance memory
pool and shader performance is negatively impacted.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
131 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

17.32 Avoiding using glScissor Clear for small regions

glScissor Clear for small regions (less than 16x8 aligned window) fall back to CPU so the performance is not
optimal.

17.33 Using PRE to accelerate data transfer

PRE is an optimized hardware that can transform tiled format image to linear framebuffer. With PRE, GPU can
only output tiled render target and has no need to resolve it. To enable the PRE feature, set the environment
GPU_VIV_EXT_RESOLVE variable to 1; otherwise, set it to 0. Its default value on the FB backend is 1, which
means PRE is enabled by default on FB.

Warning:

VG use cases can only output the linear format image. It is impossible to render linear and tiled format target

to the same framebuffer at the same time. Therefore, when running 3D use cases with PRE and VG use cases
together, there is garbage on the display. Besides, when running 3D use cases with PRE, the framebuffer
format is changed from linear to tiled. It is the user’s responsibility to convert the format back after the use cases
end, or the display is abnormal when showing the FB console.

17.34 i.MX 8QuadMax dual-GPU performance

For some legacy applications with small texture/rendering size and less shader complex, dual-GPU
performance may become worse than single GPU mode, because the driver needs to take more CPU effort for
dual-GPU programming, and the driver overhead is more significant than GPU load in the hardware pipeline.

For such kind of legacy case, the users can single-GPU to achieve better performance on the i.MX 8QuadMax.

18 Demo Framework

18.1 Overview

This document describes the NXP Demo Framework, targeted at platform agnostic development of graphical
demos. It covers the goals, architecture and instructions of how to use it across platforms, examples and best
practices.

18.1.1 Executive summary

* Write a demo application once.

* Run it on Android, Yocto Linux, Ubuntu and MS Windows.

» Easily portable to additional platforms.

» Supports: OpenGL ES2, OpenGL ES3, OpenVG and experimental G2D support.

18.1.2 Technical overview

» Written in a limited subset of C++11 and uses RAIl to manage resources.
* Uses a limited subset of STL to make it easier to port.
* No copyleft restrictions from GPL / L-GPL licenses.”

1 We don’t use GPL or LGPL.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
132/171

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Allows for direct access to the expected API's (EGL, ES2, ES3, VG).
* Provides optional helper classes for commonly used tasks.
— Matrix, Vector3, GLShader, GLTexture, etc.
* Services:
— Keyboard and mouse.
— Persistent data manager.
— Assets management (models, textures).
» Defines a standard way for handling.
— Initialization, shutdown, and window resize.
— Program input arguments.
— Input events like keyboard, mouse and touch.
— Fixed time-step and variable time-step demo implementations.
— Logging functionality.

18.2 Introduction

The Demo Framework is a multi-platform framework that enables demos to run on various platforms without any
changes. The framework abstracts away all the boilerplate & OS specific code of allocating surfaces, creating
the context, model loading, texture loading, shader compilation, render loop, animation ticks, benchmarking
graph overlays etc. This allows the demo/benchmark developer to focus on writing rendering code. It also
enables them to develop demos on PC or Android where the tool chain and debug facilities allows for faster
turnaround time and then take the working code and deploy without code changes to the supported platforms.
The platforms we currently support are Windows (for development via emulated backends), Android NDK and
Linux with various windowing systems. The framework allows us to provide ‘real’ comparative benchmarks
between the different OS and windowing systems we support, since we can run the exact same demo/
benchmark code on them all.

The long term plans for the framework include extending it with support for other relevant API’s.

18.3 Design overview

. . . 2
The framework is written in C++ and uses RAII” to manage resources. The resource management code focuses
on ‘ease of use’ over raw performance, since it's mainly run on construction and destruction of the demo.

To allow the demo framework to be easily portable to new platforms, its functionality is split into two parts: ‘core’
and ‘services’. The core framework depends on a limited subset of STL to make it easier to port. Framework

services come with their own set of library requirements. The model importer Assimp3 requires boost to be
available on the platform.

Besides the demo framework core and demo framework services, there is a set of helper classes for commonly
used functionality, which makes it easier to write demo’s for the API's we support. The helper classes do not
depend on the demo framework and can be used in any program for the given API. For example, for OpenGL
ES, there is a GLShader and GLProgram class that hides away the complexities of compiling the shader object
and linking the program object and since they are RAIl objects, they also clean up after themselves once you
are done with them.

Since our primarily supported BSPs are based on Linux OS, we decided to use an input argument framework
that is compatible with the standard Unix parameter format, like the one exposed by getopt4.

2 http://en.wikipedia.org/wiki/Resource_Acquisition_lIs_Initialization
3 http://www.assimp.org/
4 We do however not utilize getopt to remain GPL free across platforms.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
133 /171

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://www.assimp.org/
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXGRAPHICU G_9

i.MX Graphics User's Guide

Demofpp
Demo Framewor k Core Dema Framewor k Services
UL Arguments RenderLoop
it Shutdown Model Loader Texture Loader
Helper classes
GLProgram GLShader MaiveWindow
BaseLib
4 HighPerformance -
Math -) 0
mner
Figure 41. Demo framework

18.4 High level overview

The framework consists of three high level domains.

18.4.1 DemoMain
All the code that binds everything together and it is platform independent.

* |t gets the current demo setup:
— Which demo host to utilize for the demo.
— Which demo application that needs to be run.
* |t parses the input arguments.
* It launches the demo host.
* It logs any errors that might occur.

DemoM ain DemoHost DemoApp

Figure 42. DemoMain

18.4.2 DemoHost

The demo-host is responsible for init & shutdown of the host environment and running the main loop.
The main loop utilizes the DemoAppManager to control the life of the DemoApp.

In other words, the DemoHost is the graphics API specific code needed to initialize and shutdown a given API
and some code to run a render loop. All the APl and platform independent code of the render loop resides
inside the DemoAppManager class.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
134 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

The exact capabilities of a DemoHost are also platform dependent. For example, some EGL implementations
support running OpenVG and OpenGL ES, allowing a demo app to utilize both API's at once. This is not
something that is supported by most windows emulation layers.

18.4.3 DemoApp

A demo application written for one or more specific APls, which are supported by a specific DemoHost. The
demo is usually platform independent. The exception to the rule is if it depends on specific features that only
exist on certain platforms.

18.5 Demo application details

The following description of the demo application details uses a GLES2 demo named ‘S01_SimpleTriangle’
as example. It lists the default methods that a demo should implement, the way it can provide customized
parameters to the windowing system and how asset management is made platform agnostic.

18.5.1 Demo method overview

This is a list of the methods that every Demo App is most likely to override®.

// Init

S01 SimpleTriangle (const DemoAppConfigé& configq)

// Shutdown

~501 SimpleTriangle ()

// OPTIONAL: Custom resize logic (if the app requested it). The default logic is
to

// restart the app.

vold Resized(const Point2& size)

// OPTIONAL: Fixed time step update method that will be called the set number of
times

// per second. The fixed time step update is often used for physics.

void FixedUpdate (const DemoTime& demoTime)

// OPTIONAL: Variable time step update method.

void Update (const DemoTime& demoTime)

// Put the rendering calls here

void Draw (const DemoTime& demoTime)

When the constructor is invoked, the Demo Host API will already be setup and ready for use, the demo
framework will use EGL to configure things as requested by your EGL config and API version.

It is recommended that you do all your setup in the constructor.

This also means that you should never try to shutdown EGL in the destructor since the framework will do it at
the appropriate time. The destructor should only worry about resources that your demo app actually allocated
by itself.

18.5.1.1 Resized

The resized method will be called if the screen resolution changes (if your app never changes resolution this will
never be called)s.

5 See DemoFramework\FsIDemoApp\include\FsIDemoApp\ADemoApp.hpp for a complete list.
6 This version of the framework always restart the app, so this will never be called.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
135/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.5.1.2 FixedUpdate

Is a fixed time-step update method that will be called the set number of times per second. The fixed time step

update is often used for physics7.

18.5.1.3 Update

Will be called once before every draw call and you will normally update your animation using delta time.
For example, if you need to move your object 10 units horizontally per second, you would do as follows:

m positionX += 10 * demoTime.DeltaTime;

18.5.1.4 Draw

Should be used to render graphics.

18.5.2 Fixed or variable timestep update

Depending on what your demo is doing, you might use one or the other - or both. It's actually a very complex
topic once you start to dig into it, but in general anything that needs precision and predictable/repeatable
calculations, like for example physics, often benefits from using fixed time steps. It really depends on your
algorithm and it's recommended to do a couple of google searches on fixed vs variable, since there are lots of

arguments for both. It's also worth noting that game engines like Unity3D8 support both methods.

18.5.3 Execution order of methods during a frame

The methods will be called in this order

* Events (if any occurred)9

« Resized'®

FixedUpdate (0-N calls. The first frame will always have a FixedUpdate call)
* Update

* Draw

After the draw call, a swap will occur.

18.5.4 Exit

The demo application can request an exit to occur, or it can be terminated through an external request.
In both cases, one of the following things occurs.

* |If the application has been constructed and has received a FixedUpdate, it will finish its FixedUpdate, Update,
Draw, swap sequence before its shutdown.

* If the application requests a shutdown during construction, the application will be destroyed before calling any
other method on the object (and no swap will occur).

The application can request an exit to occur by calling:

GetDemoAppControl () ->RequestExit (1) ;

7 This version uses a fixed update frequency of 60 ticks per second. This will be configurable in the future.
8 https://unity.com/
9 For an example of event handling see the “DemoApps\GLES2\InputEvents” sample.
10 In this version of the framework this is never called as the app will be recreated on screen size changes (future versions will allow
demo apps to handle resize events if they so desire)

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
136 /171

https://unity.com/
https://unity.com/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.5.5 Dealing with screen resolution changes

By default, the application is destroyed and recreated when a resolution change occurs. Future versions will
allow demo apps to handle resize events if they so desire.

Itis left up to the DemoApp to save and restore demo specific state.

18.5.6 Content loading

The framework supports loading files from the Content folder on all platforms.

Given a content folder like this:

Content/Texturel.bmp

Content/Stuff/Readme. txt

You can load the files via the IContentManager service that can be accessed by calling
std::shared ptr<IContentManager> contentManager = GetContentManager();
You can then load files like this:

Binary file:

std::vector<uint8 t> content;

contentManager->ReadAllBytes (content, "MyData.bin");

Text file:

const std::string content = contentManager->ReadAllText ("Stuff/Readme.txt");
Bitmap file™:

Bitmap bitmap;

contentManager->Read (bitmap, "Texturel.bmp", PixelFormat::R8G8B8 UINT);
If you prefer to control the loading yourself, you can retrieve the path to the files like this:
I0::Path contentPath = contentManager->GetContentPath();

I0::Path myData = IO::Path::Combine (contentPath, "MyData.bin");
I0::Path readmePath = IO::Path::Combine (contentPath, "Stuff/Readme.txt");
I0::Path texturelPath = IO0::Path::Combine (contentPath, "Texturel.bmp"):;
You can then open the files with any method you prefer.

Both methods work for all supported platforms.

For detailed information about how the content is handled on each platform, see the build guide appendixes.

18.5.7 Demo registration

This is done inthe S01_SimpleTriangle Register.cpp file

namespace Fsl

{

namespace

11 The current framework only png, bmp and jpeg images on all platforms but a few platforms has access to all formats supported by the

DevlL library.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
137 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

// Custom EGL config (these will per default overwrite the custom settings.
// However, an exact EGL config can be used)
static const EGLint g eglConfigAttribs[] =
{
EGL_SAMPLES, O,
EGL_RED SIZE, 8,
EGL GREEN SIZE, 8,
EGL BLUE SIZE, 8,
EGL ALPHA SIZE, 0, // buffers with the smallest alpha component size are
preferred
EGL _DEPTH SIZE, 24,
EGL_SURFACE TYPE, EGL WINDOW BIT,
EGL_NONE,
}i
}
// Configure the demo environment to run this demo app in a OpenGLES2 host
environment
void ConfigureDemoAppEnvironment (HostDemoAppSetup& rSetup)
{
DemoAppHostConfigEGL config(g eglConfigAttribs);
DemoAppRegister: :GLES2: :Register<s0l SimpleTriangle> (rSetup,
"GLES2.501 SimpleTriangle", config);
}
}

Since the demo framework is controlling the main method, you need to register your application with the Demo
Host specific registration call (in this case the OpenGL ES2 host), for the framework to register your demo
class.

18.5.7.1 OpenGLES 3.X registration
To register a demo for OpenGLES 3.X you would use the GLES3 register method:

DemoAppRegister: :GLES3: :Register<s0l SimpleTriangle> (rSetup,
"GLES3.501 SimpleTriangle", config);

18.6 Demo playback

18.6.1 Command line arguments
All demos support various command line arguments.

Table 42. Command line arguments

Key Function

-h Show the command line argument help.

--Stats Show a performance graph.

--LogStats Log various stats to the console.

--ScreenshotFrequency Create a screenshot at the given frame frequency.

--ExitAfterFrame Exit after the given number of frames has been rendered

--ContentMonitor Monitor the Content directory for changes and restart the app on changes.
WARNING: Might not work on all platforms and it might impact app performance
(experimental).

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
138 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Use —h on a demo for a complete list.

18.6.2 Demo single stepping/pause

In Windows OS, all samples support time stepping, which can be useful for debugging. It might also be
available on under platforms that support the given keys.

Table 43. Demo single stepping/pause

Key Function

Pause Pause the sample.

PageDown Move forward one timestep.

Delete Toggle between normal and Slow 2x playback
End Toggle between normal and Slow 4x playback
Insert Toggle between normal and fast 2x playback.
Home Toggle between normal and fast 4x playback.

18.7 Helper class overview

18.7.1 FsiBase

Provides basic functionality missing from C++ standard libraries.

18.7.1.1 Bits

BitsUtil Utility methods for working with bits.

ByteArrayUtil Utility methods for reading and writing values from byte arrays in a specific endian format. This
functionality is useful when working on platform independent load and save methods.

18.7.1.2 10

Platform independent 10.

Table 44. 10
Directory Helper methods for working on directories.
* GetCurrentWorkingDirectory.
File Helper methods for working with files
* Checking if file exists.
* File length.
* Read all content from a file.
Path A UTF8 path class and helper methods for working on it.
* Combing paths.
 Extracting directory or filename.
» Getting the full path from a relative path.
18.7.1.3 Log

Platform independent logging.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
139/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Instead of using printf or std::cout to log information, it is better to utilize the provided logging macro’s since they
work across all supported platforms.

Table 45. Log

Log Various logging macros

* FSLLOG

* FSLLOG_IF

e FSLLOG_WARNING

* FSLLOG_WARNING_IF
* FSLLOG_ERROR

* FSLLOG_ERROR_IF

18.7.1.4 Math

Mainly focused on math functionality useful for working with graphics. It focuses on ease of use instead of raw
performance.

Table 46. Math

MathHelper Various commonly used helper methods and constants like
* PI

¢ Clamping

e Lerp

» Conversions between radians and angles

* PowerOfTwo

Matrix Matrix helper methods like
¢ Perspective

* Rotate

* Translate

e Scale

e Multiply

Point2 A 2D integer point.

Rectangle A integer based rectangle with helper methods like
* Union
* Intersection

Vector2 A 2d float point with helper methods like
* Dot

* Length

* Lerp

¢ Min, max

* Normalize

* Reflect

Vector3 A 3d float point with helper methods like
* Cross

* Dot

* Length

* Lerp

¢ Min, max

* Normalize

* Reflect

e Transform by matrix

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
140 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 46. Math...continued

i.MX Graphics User's Guide

Vector4

A 4d float point with helper methods like
* Dot

* Length

* Lerp

¢ Min, max

* Normalize

* Reflect

e Transform by matrix

Quaternion

Basic Quaternion operations.

18.7.1.5 String

Table 47. Various string functionality

StringParseUtil

Various utility method for converting a string to a number.

UTF8String

A UTF8 string representation.

18.7.1.6 System

Table 48. System

HighResolutionTimer

A platform independent high resolution timer.

18.7.2 FslGraphics

Table 49. FslGraphics

Bitmap A RAIl class to manage bitmap data.
BitmapUtil Contains various helper methods that work on the bitmap class.
¢ Horizontal flip
* Pixel format conversion
Color RGBA color utility class.
PixelFormat Various standardized pixel formats supported by the bitmap classes.
RawBitmap Read only bitmap information.
RawBitmapEx Writeable access to bitmap information
RawBitmapUtil Low level helper methods that work on RawBitmap’s
¢ Horizontal flip
* Padding clear
e Swizzle
18.7.2.1 Font

Table 50. Font

BasicFontKerning

Contains basic kerning information for a font.

BinaryFontBasicKerningLoader

Load basic kerning information from “fbk” files.

FontDesc A very basic font description.

FontGlyphBasicKerning Basic kerning for one glyph.

FontGlyphPosition Position information for one glyph

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

141 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 50. Font...continued

i.MX Graphics User's Guide

FontGlyphRange

Font glyph range information.

IFontBasicKerning

Interface for extracting basic font kerning information.

TextureAtlasBitmapFont

Describes a bitmap font stored in a texture atlas.

TextureAtlasGlyphinfo

Texture atlas glyph information.

18.7.2.2 10
Table 51. 10
BMPULil A simple helper class for loading and saving BMP images.

It's not recommended to utilize it directly. Instead utilize the framework for
loading imagesm.

[11 A future version will also add saving to the ContentManager.

18.7.2.3 Render

Table 52. Render

AtlasFont An atlas based bitmap font using an API independent texture.
AtlasTexture2D An atlas based API independent texture.

BlendState APl independent blend states.

GenericBatch2D An API independent 2D quad batcher.

Texture2D An API independent texture representation.

18.7.2.4 TextureAtlas

Table 53. TextureAtlas

AtlasTexturelnfo

Represents information about one texture that is stored in a texture atlas.

BasicTextureAtlas

A simple manager for looking up AtlasTexturelnfo.

BinaryTextureAtlasLoader

A “BTA” basic texture atlas loader.

|TextureAtlas

Simple interface for accessing texture information.

NamedAtlasTexture

A named atlas texture.

TextureAtlasHelper

A simple way to extract AtlasTexturelnfo from a texture atlas.

TextureAtlasMap

A more performance efficient way to extract AtlasTexturelnfo from a texture
atlas.

18.7.2.5 Vertices

APl independent vertex helper classes.

Table 54. Vertices

IndexConverter Simple utility class to convert between index formats. It might not be efficient
but it gets the job done.
VertexConverter Simple utility class to convert between vertex formats. It might not be efficient
but it gets the job done.
VertexDeclaration Defines how a vertex is constructed in an APl independent way.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

142 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Table 54. Vertices...continued

i.MX Graphics User's Guide

VertexElementEx

Defines a vertex element

VertexPositionColor

A vertex comprised of
¢ position
* color.

VertexPositionColorNormalTexture

A vertex comprised of
¢ position

e color

* normal

¢ texture coordinates

VertexPositionColorTexture

A vertex comprised of
¢ position

* color

¢ texture coordinates

VertexPositionNormalTexture

A vertex comprised of
¢ position
* normal
¢ texture coordinates

VertexPositionTexture

A vertex comprised of
¢ position
* texture coordinates

18.7.2.6 Window

Table 55. Window

INativeWindow

An abstract from native windows.

18.7.3 FslUtil.OpenGLES2

RAII based helper classes for common GLES2 operations.

Table 56. FslUtil.OpenGLES2

GLBatch2D

A specialization of GenericBatch2D GLES2.

GLBatch2DQuadRenderer

The GenericBatch2D backend for rendering quads.

GLCheck

Various helper macro’s for checking and transforming OpenGL ES errors to
exception.

GLFrameBuffer

A RAIl based frame buffer encapsulation.

GLIndexBuffer

A RAIl based index buffer.
e uint8_t & uint16_t based index buffers.
» Easy creation and update.

GlindexBufferArray

A RAIl based index buffer array.
» Improved efficiency when allocating many index buffers of the same format.

GLProgram A RAIl based GL program encapsulation.
* Vertex and fragment shader combination.
GLRenderBuffer A RAIl based GL render buffer encapsulation.
GLShader A RAIl based GL shader encapsulation.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

143 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 56. FslUtil.OpenGLES2...continued

» Compilation and logging.

GLTexture A RAIl based GL texture encapsulation.

¢ Can be created from either FsIGraphics RawBitmap’s or Bitmaps.
» Easy content update.

» Supports both normal and cubemap textures.

GLUtil Contains various utility methods for OpenGL ES2
e Capture screenshots
GLVertexBuffer A RAIl based vertex buffer.

» Easy creation and updating from Custom or FslGraphics.Vertices.
» Helper methods for quickly enabling/disabling Attribs

GLVertexBufferArray A RAIl based vertex buffer array.
* Improved efficiency when allocating many vertex buffers of the same vertex
format.
NativeBatch2D Extends GenericBatch2D with direct support for GLES2 native textures.
NativeTexture2D Implements the INativeTexture2D for GLES2. This is used by the Batch2D
system.

18.7.4 FslUtil.OpenGLES3
RAIl based helper classes for common GLES3 operations.
GLES3 has the exact same helper classes as GLES2 and the following additions:

Table 57. FslUtil.OpenGLES3

GLVertexArray A RAIl based vertex array.
» Easy creation

18.7.5 FslUtil.OpenGLES3v1
RAII based helper classes for common GLES3.1 operation’s.

Table 58. FslUtil.OpenGLES3v1
GLProgramPipeline A RAIl based program pipeline encapsulation.

GLShaderProgram A RAIl based shader program encapsulation.

18.7.6 FslUtil.OpenVG
RAII based helper classes for common OpenVG operations.

Table 59. FslUtil.OpenVG
VGPathBuffer A RAIl based path buffer
* Easy creation

VGULIl Contains various utility methods for OpenVG
¢ Capture screenshots
VGCheck Various helper macro’s for checking and transforming OpenVG errors to
exception.
IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

144 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.7.7 FslGraphics3D

API independent descriptions of common 3D classes. This library is in development.

See the ModelLoaderBasics and ModelViewer samples for examples of how to use it.

Table 60. FslGraphics3D

Mesh A basic mesh
Scene A basic scene
SceneNode A basic node in the scene

18.7.8 FslAssimp

The demo framework’s Assimp integration provides various helper classes that make it easier to work with
assimp in the framework.

Table 61. FslAssimp

MeshHelper Helps to extract information from some assimp structures.
Meshlmporter Helps convert Assimp mesh structures to the FslGraphics3D ones.
SceneHelper Extract basic information from a assimp scene.

Scenelmporter Helps convert Assimp scene structures to the FslGraphics3D ones.

18.7.9 FslGraphics3D.SceneFormat
Code to load and save a very basic portable scene format.

Table 62. FslGraphics3D.SceneFormat
BasicSceneFormat Load/save scene functionality.

18.7.10 FsISimpleUl

A new experimental Ul framework that makes it easy to get a basic Ul up and running. The main code is API
independent. It is not a show case of how to render a Ul fast but only intended to allow you to quickly get a Ul
ready that is good enough for a demo.

You can look at:

* DFSimpleUI100
* DFSimpleUI101
* TessellationSample

To see how it's used.
The next release of the framework should make it even easier to work with.

When working with the Ul system its recommended to store all or at least the most used bitmaps in the same
texture atlas. One commercially available texture packer is Texture Packer which can output a json file that we
can convert to a binary format that can be loaded by the demo framework.

If you look at the DFSimpleUI100 sample, there is “OriginalContent/TextureAtlas” directory which contain

a “MainAtlas.tps” file that can be loaded into texture packer. Pressing publish in texture packer produces a
“MainAtlas.png” and “MainAtlas.json” file based on the files under “Main”. The “MainAtlas.png” can be copied
directly to the samples “Content” directory but the json file needs to be converted to a binary file. For this we
included the TPConvert python script that can be run like this:

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
145/171

https://www.codeandweb.com/texturepacker
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

TPConvert MainAtlas.json -f btal

This will then produce a “MainAtlas.bta” file that can be copied to the “Content” directory which contains all the
needed atlas meta data.

Please beware that the default atlas is required to contain the default font as well. The documentation for
creating the “MainAtlas.fbk” file has not been completed yet. The fbk file contains some basic font kerning
information.

18.8 FslIBuild scripts

To read a text version of this document, look in the demo framework “Doc/FsIBuild_toolchain_readme.md”,
which contains more detailed information.

18.8.1 FsIBuildGen.py

Is a cross-platform build-file generator. Its main purpose is to keep all build files consistent, in synchronized and
up to date. See Fs1BuildGen.docx for details.

18.8.2 FsIBuild.py

Extends the technology behind FsIBuildGen with additional knowledge about how to execute the build system
for a given platform.

So basically, FsIBuild works like this

1. Invoke the build-file generator that updates all build files if necessary.
2. Filter the builds request based on the provided feature list.
3. Build all necessary build files in the correct order.

18.8.2.1 Useful arguments
FslBuild comes with a few useful arguments

Table 63. Useful arguments

--ListFeatures List all features required by the build

--UseFeatures Allows you to limit what’s build based on a provided feature list. For example [EGL,OpenGLES2].
This parameter defaults to all features.

-t 'sdk’ Build all demo framework projects

-V Set verbosity level

- All arguments written after they are send directly to the native build system.

18.8.2.2 Important notes

* Do not modify the auto-generated files.
The FsIBuild scripts are responsible for creating all the build files for a platform and verifying dependencies.
Since all build files are auto generated you can never modify them directly as the next build will overwrite your
changes.
Instead add your changes to the Fs1. gen files as they control the build file generation!

* The Fs1.gen file is the real build file.

 All include and source files in the respective folders are automatically added to the build files.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
146 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.8.3 Build system per platform

Android gradle

Qnx Make

Ubuntu Make

Windows Visual studio (IDE or nmake)
Yocto make

18.9 Android SDK+NDK on Windows build guide

For an easy-to-read text version of this document, see the demo framework “Doc/Setup_guide_android.md”,
which contains more detailed information.

18.9.1 Prerequisites

* Read Section 18.8 to know about the custom build system.
¢ IMPORTANT: The way Gradle currently handles CMake builds on windows place some serious limits on the
path length, so its recommended to either place the DemoFramework folder close to the root of the drive or
to set the environment variable FSL__GRAPHICS_SDK_ANDROID_PROJECT_DIR to a directory close to the
root of the drive.
» JDK (64 bit)
IMPORTANT: Make sure to configure JAVA_HOME to point to the JDK directory.
Android SDK
Once it is installed, run SDK Manager.exe and make sure everything is up to date.
IMPORTANT: Android studio must be at least 3.1.
IMPORTANT: Get the Android studio full package and enable the default packages.
Configure the SDK manager
— "SDK Platforms" added if necessary
— Android 7.0 (Nougat)
- "SDK Tools" added if necessary
— CMake, LLDB, NDK, Android Support Repository
IMPORTANT: Make sure to configure ANDROID_HOME to point to the android sdk directory
IMPORTANT: Make sure to configure ANDROID_NDK to point to the android ndk directory
IMPORTANT: Make sure you have at least android-ndk-r16b
* Python 3.4.x or better. We highly recommend at least 3.5+
— For 64-bit Windows

18.9.2 Environment setup

Android projects are generated to the path specified in the environment variable FSI._ GRAPHICS SDK
ANDROID PROJECT DIR. Ifitis not defined the 'prepare’ script, sets it to a default location.

1. Start a Windows console (cmd. exe) in the Demo Framework's root folder.

2. Run the prepare.bat file located in the root of the framework folder to configure the necessary
environment variables and paths. Please beware that the prepare.bat file requires the current working
directory to be the root of your demoframework folder to function (which is also the folder it resides in).

18.9.3 To Compile and run an existing sample application

In this example, we use the GLES2 S06 Texturing application.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
147 /171

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://developer.android.com/studio/index.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

1. Make sure that you performed the environment setup.
2. Change directory to the sample directory:
cd DemoApps\GLES2\S06 Texturing
3. Build an application for Android using gradle + CMake:
FslBuild.py -p android

If you just want to regenerate the CMake build files then you can just run:

FslBuildGen.py -p android
If you want to save a bit of compilation time you can build for the ANDROID ABI you need by adding:

FslBuildGen.py -p android --Variants [ANDROID ABI=arm6t4-v8a]

or
FslBuild.py -p android --Variants [ANDROID ABI=arm6t4-v8a]

18.9.4 To create a new GLES2 demo project named '‘CoolNewDemo'

1. Make sure that you performed the environment setup.

2. Change directory to the GLES2 sample directory:
cd DemoApps/GLES2

3. Create the project template using the FsIBuildNew.py script
FslBuildNew.py GLES2 CoolNewDemo

4. Change directory to the newly created project folder 'CoolNewDemo'
cd CoolNewDemo

5. Build a app for Android using gradle + cmake

FslBuild.py -p android

If you just want to regenerate the cmake build files then you can just run

FslBuildGen.py -p android
If you want to save a bit of compilation time you can build for the ANDROID ABI you need by adding

FslBuildGen.py --Variants [ANDROID ABI=armeabi-v7a]

or

FslBuild.py --Variants [ANDROID ABI=armeabi-v7al]

18.9.5 Using Android studio

1. Follow the instructions for "creating a new project" or "building an existing project".

2. As projects are generated to the path specified by the FSL_GRAPHICS _SDK_ANDROID_PROJECT _
DIR environment variable you can locate the project there and open it with android studio. Be sure to open
Android studio in a correctly configured environment. Here it could be a good idea to create a script for
launching android studio with the right environment.

18.9.6 Linux notes

* Install for private user and unzip android studio like this:

sudo unzip android-studio-ide FILENAME.zip -d ~/sdk
cd ~/sdk/android-studio/bin
./studio.sh

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Rev. 9 — 28 June 2024 Document feedback
148 /1 171

User guide

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

* In the ui make sure to install the sdk in a directory you have access to for example :

~/sdk/android-sdk-linux

18.9.7 Notes

18.9.7.1 Command line app building via Ant

http://developer.android.com/tools/building/building-cmdline.html

18.10 Ubuntu build guide

To read the text version of this document, look in the demo framework Doc/Setup guide ubuntulé6.04.md,
which contains more detailed information.

18.10.1 Prerequisites

* Read Section 18.8 to know about the custom build system.
* Ubuntu 16.04 64 bit
* Build tools and xrand
sudo apt-get install build-essential libxrandr-dewv
* Python 3.4+
It should be part of the default Ubuntu16.04 install.
* An OpenGL ES 2+ emulator
— Mesa OpenGL ES 2
sudo apt-get install libgles2-mesa-dev
— Arm Mali OpenGL ES 3.0 Emulator V3.0.2 (64 bit)
wget https://armkeil.blob.core.windows.net/developer/Files/downloads/open—-gl-
es-emulator/3.0.2/Mali OpenGL ES Emulator-v3.0.2.g694a9-Linux-64bit.deb
sudo dpkg -1i Mali_OpenEL_ES_EHulgtor—VB.0.2.g694a9—Linux—64bit.deb
e DevIL
— Developer's Image Library (DeviL)
sudo apt-get install libdevil-dev
e Assimp
Is now downloaded and built from source when needed. So it is no longer necessary to run sudo apt-get
install libassimp-dev.

18.10.2 Environment setup

1. Start a terminal (ctrl+alt t) in the DemoFramework folder

2. Run the prepare. sh file located in the root of the framework folder to configure the necessary
environment variables and paths. Please beware that the prepare. sh file requires the current working
directory to be the root of your demoframework folder to function (which is also the folder it resides in).
source prepare. sh

18.10.3 Compiling all samples

1. Make sure that you have performed the environment setup
2. Compile Fs1Build.py -t sdk --BuildThreads 2.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
149 /171

http://developer.android.com/tools/building/building-cmdline.html
https://developer.arm.com/products/software-development-tools/graphics-development-tools/opengl-es-emulator/downloads
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.10.4 Compiling and running an existing sample application

In this example, we use the GLES2 S06_Texturing application.

1. Make sure that you have performed the environment setup.

2. Change directory to the sample directory: cd DemoApps/GLES2/S06 Texturing.

3. Compile the project (a good rule of thumb for "--BuildThreads N' is number of cpu cores * 2).
If you run Fs1Build without the --BuildThreads argument, it will be set to 'auto’, which uses your CPU
core count.
FslBuild.py --BuildThreads 2

18.10.5 Creating a new GLES2 demo project named '‘CoolNewDemo'

Make sure that you performed the environment setup.

Change the directory to the GLES2 sample directory: cd DemoApps/GLES2.

Create the project template using the FsIBuildNew.py.py script: Fs1BuildNew.py GLES2 CoolNewDemo.
Change the directory to the newly created project folder 'CoolNewDemo': cd CoolNewDemo.

Compile the project: Fs1Build.py .

Note:

aoprODN -

Once a build has been done, you can just invoke the make file directly. However, this requires that you didn't
change any dependencies or add files.

To do this, run make -3j 2.

If you add source files to a project or change the Fs1.gen file, run the Fs1BuildGen. py Script in the project
root folder to regenerate the various build files or just make sure you always use the Fs1Build.py Script as it
automatically adds files and regenerate build files as needed.

18.10.6 Notes

18.10.6.1 Manual environment setup

1. Configure your FSL_GRAPHICS_SDK to point to the downloaded SDK without the ending backslash:

export FSL GRAPHICS SDK=~/fsl/YourDemoFrameworkFolder

2. For easy access to the python scripts (not required for building):

PATH=$PATH:$FSL GRAPHICS SDK/.Config

18.10.6.2 Override platform auto-detection

To override the platform auto detection code set the following variable:

export FSL PLATFORM NAME=Ubuntu

18.10.6.3 Executable location

The final executable will be placed in the root of the demo application folder.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
150 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.11 Windows build guide

To read text version of this document, see the demo framework Doc\Setup guide windows.md for more
detailed information.

18.11.1 Prerequisites

* Read Section 18.8 to know about the custom build system.
* Visual Studio 2017 (community edition or better)
* Python 3.5.x or newer
— For 64-bit Windows OS
* An OpenGL ES 2+ emulator
— Arm Mali OpenGL ES Emulator 3.0.2.9g694a9 (64 bit)
— Use the exact version (64 bit) and use the installer to install it to the default location!
— Vivante OpenGL ES Emulator

To get started its recommended to utilize the Arm Mali OpenGL ES 3.0.2 emulator (64 bit) which this guide will
assume you are using.

18.11.2 Environment setup

1. Start a Windows console (cmd.exe) in the DemoFramework folder.

2. Run the visual studio *“vcvarsall.bat x64™"" to prepare your command line compiler environment for x64
compilation.
For VS2017, it is often located here:

"C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary
\Build\vcvarsall.bat" x64

3. Run the prepare.bat file located in the root of the framework folder to configure the necessary
environment variables and paths. Please beware that the prepare.bat file requires the current working
directory to be the root of your demoframework folder to function (which is also the folder it resides in).

18.11.3 Compiling and running an existing sample application

In this example, we use the GLES2 S06_Texturing application.

1. Make sure that you have performed the environment setup.

2. Change directory to the sample directory: cd DemoApps\GLES2\S06 Texturing
3. Generate the build files: Fs1BuildGen.py.

4. Launch visual studio using the Arm Mali Emulator: .StartProject.bat arm.

5. Compile and run the project (The default is to press F5).

To use a different emulator, the . StartProject.bat file can be launched with the following arguments

arm Arm mali emulator

powervr Powervr emulator

qualcomm Qualcomm andreno adreno emulator (expects its installed in "c:\\AdrenoSDK”)
vivante Vivante emulator

If it is launched without an argument, it defaults to the Arm emulator.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
151 /171

https://developer.arm.com/products/software-development-tools/graphics-development-tools/opengl-es-emulator/downloads
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.11.4 Creating a new GLES2 demo project named 'CoolNewDemo'

Make sure that you have performed the environment setup.

Change directory to the GLES2 sample directory: cd DemoApps/GLES2.

Create the project template using the Fs1BuildNew.py script: Fs1BuildNew.py GLES2 CoolNewDemo.
Change directory to the newly created project folder 'CoolNewDemo': cd CoolNewDemo.

Generate build files for Android, Ubuntu, and Yocto (this step will be simplified soon): Fs1BuildGen.py.
Launch visual studio using the Arm Mali Emulator: .StartProject.bat arm.

7. Compile and run the project (the default is to press F5) or start creating your new demo.

ok w2

If you add source files to a project or change the Fs1.gen file, run the Fs1BuildGen.py scriptin the project
root folder to regenerate the various build files.

18.11.5 Notes

18.11.5.1 Switching between emulators

The visual studio projects have been configured so that emulator builds can co-exist without interfering with
each other. Furthermore, the only the emulator dependent parts are rebuilt when changing emulator.

Therefore, it is very fast to switch between emulators.

18.11.5.2 Executable location

The executable location is based on the build type release/debug and which emulator you are using. Therefore,
the executable for a demo called S06_Texturing build as debug and using the Arm emulator will be located
under

bin\S06 Texturing\Debug ARM\

The content folder is located at:
Content

To move them, make sure that both the S06_Texturing.exe and Content folder is moved to the same
location like this:

S06_Texturing.exe
Content

18.12 Yocto build guide

First you need to decide how you are going to be building for Yocto.

* Building using a prebuild Yocto SDK
* Building using a full Yocto build

To read text version of this document, see the demo framework Doc/Setup guide yocto.md for more
detailed information.

18.12.1 Building using a prebuild Yocto SDK
Building using a prebuild Yocto SDK and a prebuild SD card image.

This is the fastest way to get started.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
152 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.12.1.1 Prerequisites

* Read Appendix 2 to know about the custom build system.

Ubuntu 16.04

Python 3.5 (this is standard in Ubuntu 16.04)

A prebuild SDK for your board typically called something like toolchain. sh.

* A prebuild sd-card image for your board typically called BoardName.rootfs.sdcard.bz2.
 Git: sudo apt-get install git

For this guide we will assume you are using a FB image.
* Download the DemoFramework source using git.

Read the introduction to the FsIBuild toolchain in Doc/Fs1Build toolchain readme.md.

18.12.1.2 Preparing a Yocto SDK build

1. Start a terminal (Ctrl+Alt t).
2. Install the SDK:

./fsl-imx-internal-xwayland-glibc-x86 64-fsl-image-gui-aarché64-toolchain-4.9.51-
mx8-beta.sh

Chose where to install it, you can use the default location or a location of your choice.
For this example, we use ~/sdk/4.9.51-mx8-beta.
When the setup is complete it will list the configuration script you need to run to configure the sdk environment.

Something like this

$. ~/sdk/4.9.51-mx8-beta/environment-setup-aarch64-poky-1linux

Each time you wish to use the SDK in a new shell session, you need to source the environment setup script.

3. Your SDK is now installed.

18.12.1.3 Yocto SDK environment setup

1. Start a terminal (Ctrl+Alt t).

2. Prepare the yocto build environment by running the configuration command you got during the SDK
installation.

~/sdk/4.9.51-mx8-beta/environment-setup-aarch64-poky-linux

3. You should now be ready to build using the demo framework. However, if you experience issues with the
prepare. sh script you can help it out by defining the platform name and the location of the root fs.

export FSL PLATFORM NAME=Yocto
export ROOTFS=~/sdk/4.9.51-mx8-beta/sysroots/aarch64-poky-1linux

Another possible error you can encounter is that the Fs1Build. py scripts fail to include the 'typing' library.
This can happen because the SDK comes with a too old Python3 version or an incomplete Python3.5 version.

As a workaround for that you could delete the Python3 binaries from the SDK which will cause it to use the
system Python3 version instead.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
163 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.12.1.4 Ready to build

You are now ready to start building Yocto applications using the demo framework.

Continue the guide at “Using the demo framework”.

18.12.2 Building using a full Yocto build

Building using a full manually Yocto build.

This process provides the most flexible solution, but it also takes significantly longer to build the initial Yocto SD
card and toolchain.

18.12.2.1 Prerequisites

* Read Section 18.8 to know about the custom build system.
* The Ubuntu version required by the BSP release.
* Python 3.4 or newer
It should be part of the default Ubuntu install.
If you use 3.4 you need to install the 'typing' library manually so we highly recommended using 3.5 or newer.
To install the typing library in Python **3.4** run:
sudo apt-get install python3-pip
sudo pip3 install typing
* A working yocto build
For example, follow one of these:
— https://github.com/nxp-imx/imx-manifest
— https://community.nxp.com/docs/DOC-94866

For this guide we will assume you are using a FB image.

* Download the DemoFramework source using git.
* Read the introduction to the FsIBuild toolchain at Doc/Fs1Build toolchain readme.md.

18.12.2.2 Preparing a Yocto build

Before you build one of these yocto images you need to do the following:

1. Run the yocto build setup (X11 example).

MACHINE=imx6gpsabresd source fsl-setup-release.sh -b build-x11 -e x11

2. Bake.

bitbake fsl-image-gui
bitbake meta-toolchain
bitbake meta-ide-support

You can now build one of the images below (or a custom one).

* x11 yocto image
Example:

MACHINE=imx6gpsabresd source fsl-setup-release.sh -b build-x11 -e x11
bitbake fsl-image-gui

bitbake meta-toolchain

bbitbake meta-ide-support

Extracted rootfs

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
154 /171

https://github.com/nxp-imx/imx-manifest
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

We assume your yocto build dir is located at ~/fs1-release-bsp/build-x11 and that the rootfs
will be unpacked to ~/unpacked-rootfs/build-x11 and the image is called fs1-image-gui-
imx6gpsabresd.rootfs.tar.bz2 (you will need to locate your image name).

rungemu-extract-sdk
~/fsl-release-bsp/build-x11/tmp/deploy/images/imx6gpsabresd/fsl-image—-gui-
imx6gpsabresd.rootfs.tar.bz2

~/unpacked-rootfs/build-x11

* FB yocto image
Example:

MACHINE=imx6gpsabresd source fsl-setup-release.sh -b build-fb -e fb
bitbake fsl-image-gui

bitbake meta-toolchain

bitbake meta-ide-support

Extracted rootfs

We assume your yocto build dir is located at ~/fs1-release-bsp/build-fb and that the rootfs
will be unpacked to ~/unpacked-rootfs/build-fb and the image is called fs1-image-gui-
imx6gpsabresd.rootfs.tar.bz2 (you will need to locate your image name).

rungemu-extract-sdk
~/fsl-release-bsp/build-fb/tmp/deploy/images/imx6gpsabresd/fsl-image-gui-
imx6gpsabresd.rootfs.tar.bz2

~/unpacked-rootfs/build-fb

* Wayland yocto image
Example:

MACHINE=imx6gpsabresd source fsl-setup-release.sh -b build-wayland -e wayland
bitbake fsl-image-gui

bitbake meta-toolchain

bitbake meta-ide-support

Extracted rootfs

We assume your yocto build dir is located at ~/fs1-release-bsp/build-wayland and that the rootfs
will be unpacked to ~/unpacked-rootfs/build-wayland and the image is called fs1-image-gui-
imx6gpsabresd.rootfs.tar.bz2 (you will need to locate your image name).

rungemu-extract-sdk
~/fsl-release-bsp/build-wayland/tmp/deploy/images/imx6gpsabresd/fsl-image-gui-
imx6gpsabresd.rootfs.tar.bz2

~/unpacked-rootfs/build-wayland

For this guide we will assume you are using an FB image.

18.12.2.3 Yocto environment setup

Prepare the yocto build environment:

pushd ~/fsl-release-bsp/build-fb/tmp

source environment-setup-cortexa9hf-neon-poky-linux-gnueabi
export ROOTFS=~/unpacked-rootfs/build-fb

export FSL PLATFORM NAME=Yocto

popd

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
155/171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.12.2.4 Ready to build

You are now ready to start building Yocto applications using the demo framework.

Continue the guide at “Using the demo framework”.

18.12.3 Using the demo framework

1. Make sure that you have performed the Yocto environment setup for your chosen Yocto environment.
* SDK build (Yocto SDK environment setup)
* Custom build (Yocto environment setup)

2. cd to the demoframework folder.

3. Run the prepare. sh file located in the root of the framework folder to configure the necessary
environment variables and paths. Beware that the prepare. sh file requires the current working directory
to be the root of your demoframework folder to function (which is also the folder it resides in) source
prepare.sh.

Verify that the script detects that you are doing a Yocto build by outputting Plat formName: Yocto
Otherwise, override the platform auto detection by setting the environment variable export
FSL PLATFORM NAME=Yocto before running the prepare. sh script.

18.12.4 Compiling all samples

1. Make sure that you have performed the demo framework environment setup.
2. Compile everything Fs1Build.py --Variants [WindowSystem=FB] -t sdk.
WindowSystem can be set to either: FB, Wayland, or X11

18.12.5 Compiling and running an existing sample application

In this example, we use the GLES2 S06_Texturing application.

1. Make sure that you have performed the demo framework environment setup.

2. Change directory to the sample directory: cd DemoApps/GLES2/S06 Texturing

3. Compile the project: Fs1Build.py --Variants [WindowSystem=FB].
WindowSystem can be set to either: FB, Wayland, or X11.

18.12.6 Creating a new GLES2 demo project named ‘CoolNewDemo'

Make sure that you have performed the demo framework environment setup.

Change directory to the GLES2 sample directory: cd DemoApps/GLES2.

Create the project template using the Fs1BuildNew.py script: Fs1BuildNew.py GLES2 CoolNewDemo.
Change the directory to the newly created project folder 'CoolNewDemo': cd CoolNewDemo.

Compile the project: Fs1Build.py --Variants [WindowSystem=FB].

WindowSystem can be set to either: FB, Wayland, or X11.

Note:

a koD~

Once a build has been done, you can just invoke the make file directly. However, this requires that you
didn't change any dependencies or add files. To do this, run make -f GNUmakefile Yocto -j 2
WindowSystem=FB.

If you add source files to a project or change the Fs1.gen file, run the Fs1BuildGen. py Script in the project
root folder to regenerate the various build files or just make sure you always use the Fs1Build.py Script as it
automatically adds files and regenerate build files as needed.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
156 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.12.7 Notes

18.12.7.1 Manual environment setup

1. Configure your FSL_GRAPHICS_SDK to point to the downloaded SDK without the ending backslash:

export FSL GRAPHICS SDK=~/fsl/YourDemoFrameworkFolder

2. For easy access to the python scripts:

PATH=$PATH:$FSL_GRAPHICS SDK/.Config

18.12.7.2 Override platform auto-detection

To override the platform auto detection code set the following variable:

export FSL PLATFORM NAME=Yocto

18.12.7.3 Building for multiple backends

The makefiles have been configured so that the builds for all backends can co-exist without interfering with each
other. In addition, the only backend dependent parts will be rebuilt when changing backend. Therefore, it should
be very fast to switch between backends.

The demo application executables will be post fixed with the backend it builds for to ensure no conflict occurs.

18.12.7.4 Executable location

The final executable will be placed in the root of the demo application folder.

The executables follows this naming scheme:

<DemoAppName> <BackendName>[<TargetPostFix>]

So a debug build of S06_Texturing for the FB backend will be called

S06_Texturing FB d

A release build of S06_Texturing for the X11 backend will be called

S06_ Texturing X11

18.13 FsiContentSync.py notes

» Does not copy files that start with a "." in its file or directory name.

* Does not allow files to contain ".." in its name.

* Do not utilize file names that only differ by casing like this:
— Shader.txt
— shader.txt

* Due to the android asset packer it's not recommended to use Unicode file names as they are unsupported by
the android tool at the moment.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
157 1171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.14 Known limitations

18.14.1 General

* Android, Ubuntu, and Windows OpenVG support is considered experimental for this release.

* G2D support is experimental and it's not recommended to use it yet.

18.14.2 Android OS

Android OS does not handle Unicode file names inside the 'content' folder. So do not utilize Unicode for
filenames stored in Content. The culprit is the android assets folder which we utilize for content files.
18.14.3 Ubuntu

* OpenGLESS is currently unsupported on Ubuntu, as we rely on the Mesa 3D graphics library for OpenGLES
emulation.
* OpenVG is emulated via the Mesa 3D graphics library and it might contain unsupported features.

18.14.4 Windows

* OpenVG is emulated via the Mesa 3D graphics library and it might contain unsupported features.

18.15 Upgrading samples from earlier SDKs

To convert a sample to the latest SDK, start at the SDK version you are using and upgrade the application one
step at a time. So a 2.0 application needs to be updated to 2.1 before it can be updated to 2.2.

18.15.1 From 2.0 to 2.1

Since version 2.1 contains minor incompatibilities with 2.0, any existing application will have to be upgraded.
The easiest way to upgrade a sample is to rename the old directory, then run

* FslNewDemoProject.py all -t <type> <name>
* cd <name>
* FslBuildGen.py

Then do a two way merge of the old source directory and the new one. If any dependencies were manually
added to Fsl.gen in the sample, they will have to be re-added to the new one.

Then run

* FslBuildGen.py

The project should now be converted.
18.15.2 From 2.1 to 2.2

V2.1 can easily be upgraded to 2.2. Just run Fs1BuildGen.py to update it.

18.15.3 From 2.2 to 2.3

V2.2 can easily be upgraded to 2.3. Just run Fs1BuildGen.py to update it.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
158 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

18.16 What’s new

Version 5.1

* All ThirdParty code is now downloaded as needed instead of being included in the repo.
* Windows builds now default to Visual Studio 2017 instead of 2015.

* Basic support for changing the color-space via EGL.

» Examples of how to setup SRGB and HDR framebuffers.

* HDR to LDR display rendering examples with various basic tone-mapping algorithms.
* Vulkan enabled for the Yocto Wayland backend.

* Assimp upgraded to 4.1 on most platforms.

* GLESS3.Colorspacelnfo

* GLES3.EquirectangularToCubemap

* GLES3.GammaCorrection demo.

* GLES3.HDRO01_BasicToneMapping

* GLES3.HDRO02_FBBasicToneMapping

* GLES3.HDRO03_SkyboxTonemapping

* GLES3.HDRO04_ HDRFramebuffer

¢ GLES3.MultipleViewportsFractalShader demo.

* GLESS3.Scissor101

* GLES3.Skybox

* GLES3.SRGBFramebuffer

* GLES3.TextureCompression demo.

Vulkan.Vulkaninfo demo.

* Android build now requires Android Studio 3.1 and the Android NDK16b or newer.

Version 5.0.1

* OpenVX.SoftISP demo.
* OpenCL.SoftISP demo.

Version 5.0

* Tools now require Python 3.4+ instead of python 2.7
* FsIBuildNew script that can help you create a new project fast.
* Vulkan support is much closer to its final state.

» The application registration method has been changed so it's more future proof and allow for greater
customization.

* Prebuild binaries have been removed.
— FslimageConvert.exe was removed as we now support saving screenshots directly in jpg.
— Prebuild windows libraries removed as we now download and build them on demand instead.
* The directory structure was updated to make it simpler.
* Some tags in Fsl.gen xml files were deprecated.
* Gamepad support.
* New libraries
— Stb, xinput, perfcounters.

Version 4.0

* First public release on github.
» Early access support for Vulkan, OpenCL, OpenCV and OpenVX.
— Vulkan samples.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
159 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

— OpenVX samples.

— OpenCL samples.

— OpenCV samples.

New libraries

- GLI0.8.10, GLM 0.9.7.6

* PixelFormats are now compatible with the vulkan pixel formats.

FsIBuild.py script introduced as a simple unified way to build on all platforms if so desired. It’s still possible to
build using the native platform method.

FsIBuild scripts now support limited feature based filtering.

* Introduced a content pipeline to help build vulkan shaders.

Windows builds

— Visual Studio 2015 is now the default environment instead of 2013

— We now use the OpenVG reference implementation to emulate OpenVG.

Version 2.3

* OpenGLES 3.1 support.

* A new ContentMonitor can reload your sample when it detects changes to the content folder (this does not
work on Android). This allows for rapid prototyping on most platforms.

* New samples:
— DFSimpleUI101, ModelLoaderBasics, ModelLoaderViewer, Tessellation101, TessellationSample.

* New libraries:
— FslAssimp, FslGraphics3D, FslSceneFormat, FsISimpleUl, FslGraphicsGLES3v1

* New experimental Ul framework intended to quickly create a Ul for your sample app.

* Assimp support on most platforms. It is not supported on Android here we recommend using the
FslSceneFormat instead. In general, it will be much more efficient to preprocess your model on a fast platform
like a PC and save it in the FslSceneFormat instead of doing it on relatively slow target platform.

» Experimental support for generating Visual Studio 2015 projects (see the FsIBuildgen documentation for
details).

» Content loader for Binary texture and basic font kerning information.
* Windows PowerVR OpenGLES emulation support.

Version 2.2

* Demo content can now be stored in bmp, png and jpeg format on all platforms.
— Some platforms support extra formats via the DeviL image library.
* Onscreen performance graph support that can be augmented with custom data.
* Pause and single stepping during demo playback.
* Added infrastructure that allows samples to share a library. See DemoApps/Shared for example libraries.
* Lots of new samples.

— The Blur, FractalShader, FurShellRendering and DirectMultiSamplingVideoYUV are functional but
experimental.

» Experimental G2D support.

» Experimental NativeBatch2D support under 3D api’s. See the DFNativeBatch2D samples for an example of
how it works.

» Experimental -mmdc parameter for Yocto builds. If it shows the incorrect information then run mmdc2 before
running the sample as it will reset things correctly.

Version 2.1
* OpenVG support.
* OpenVG examples.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
160 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

e Examples: T3DstressTest for GLES2 + GLES3.
* Most samples were upgraded to use the Content system to load their shaders and graphics.
* All samples now support the following arguments:

— —LogStats = Log basic rendering stats

— —ScreenshotFrequency <frequency> = Create a screenshot at the given frame frequency (Not supported for
OpenVG).

19 Environment Variables Summary

The table below lists the environment variables (ENV) available in the GPU drivers.

The use of most environment variables remains static from driver version to driver version, but sometimes these
variables need refinements to meet new, advanced conditions not present with the ENV initially introduced.

19.1 Environment variable for drivers and HAL

Table 64. Environment variables for drivers and HAL

ENV name Backends supported Note

FB_IGNORE_DISPLAY _ FB/WLD 0: Clip window to device display size. 1: Do not clip window

SIZE to the device limits for width and height.

FB_MULTI_BUFFER FB/WLD Number of backend buffers of the framebuffer device. For
WLD, define the multibuffer number of Weston.

FB_FRAMEBUFFER_N FB/WLD Define the Nth framebuffer device.

FB_LEGACY FB If board doesn’t support drm-fb, ignore this variable.

0: GPU render through drm
1: GPU directly render to framebulffer.

VG_APITIME FB/WLD/X11 Enable VG API function execution time print.

VIV_MGPU_AFFINITY FB/WLD/X11 Control the multiple GPUs affinity configuration.
Possible value:

¢ Not defined or defined as "0" GPUs work in GPU_
COMBINED mode.

¢ 1:0 GPUs work in GPU_INDEPEDNENT mode, GPUOQ is
used.

¢ 1:1 GPUs work in GPU_INDEPEDNENT mode, GPU1 is
used.

VIV_DEBUG FB/WLD/X11 Define the user debug message level
(-MSG_LEVEL: ERROR/WARNING).

VIV_FBO_PREFER_MEM FB/WLD/X11 Renderbuffer is not freed after colorbuffer detaches from
FBO (GL ES 2.0)

VIV_DISABLE_HZzZ FB/WLD/X11 This variable can be specifically enabled for i.mx6d/q to
avoid gpu hang with occlusion query in ES30, because of
gpu hardware problem HBN1246

GPU_VIV_EXT_RESOLVE |FB/WLD/X11 Enable the external resolve mode (1 by default for FB).
GPU_VIV_DISABLE_ FB/WLD/X11 Disable supertiled texture (64x64 tiled texture is not used).
SUPERTILED_TEXTURE

GPU_VIV_DISABLE_ FB/WLD/X11 Enable clear buffer when a new Window surface is created.
CLEAR_FB

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback

161 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Table 64. Environment variables for drivers and HAL...continued

ENV name Backends supported Note

GPU_VIV_WL_MULTI_ WLD Define the client multibuffer number.

BUFFER

WL_EGL_SYNC_SWAP WLD 0: Use asynchronous swap for better performance by
default.
1: Enable synchronous swap with some performance
impact.

DRI_IGNORE_DISPLAY _ X1 0: Clip window to device display size. 1: Do not clip window

SIZE/ to the device limits for width and height.

X_IGNORE_DISPLAY_SIZE

__GL_DEV_FB X11 Set the path for framebuffer device like /dev/fb0.

LIBGL_ALWAYS_INDIRECT |X11 Make OGL go into indirect mode. All rendering is done by
XserverSet.

LIBGL_DEBUG X11 Print error messages to stderr if LIBGL_DEBUG env var is

set. Print information messages to stderr if LIBGL_DEBUG
env var is set to “verbose”.

VIV_PROFILE vProfiler Enable profiler. Different level results generate different
results.

VP_COUNTER_FILTER vProfiler Used to control profile different system resource like
memory/CPU time usage.

VP_FRAME_END vProfiler When VIV_PROFILE=3, specify the frame to end profiling
with vProfiler.

VP_FRAME_NUM vProfiler When VIV_PROFILE=1, used to specify the number of
frames dumped by vProfiler.

VP_FRAME_START vProfiler When VIV_PROFILE=3, specify the frame to start profiling
with vProfiler.

VP_OUTPUT vProfiler Specify the output file name of vProfiler (default is
vprofiler.vpd).

VP_PROCESS_NAME vProfiler Choose profiler enable process (This option is only available
for Android platform, not available for Linux OS).

VP_SYNC_MODE vProfiler Enable [1] or disable [0] the synchronous mode of vProfiler
(default is synchronous enabled).

VP_USE_GLFINISH vProfiler Use glFinish as the frameEnd.

VIV_TRACE vTracer Enable tracer. Different levels could generate different logs.

19.2 Environment variable for compiler

Table 65. Environment variables for compiler

ENV NAME Compiler |Note
VC_DUMP_SHADER_SOURCE |GLSLC/ Enable dumping the shader source code.
VSC

20 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
User guide Rev. 9 — 28 June 2024 Document feedback
162 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

21 Revision History

Revision history

Document ID Release date Description

IMXGRAPHICUG_9 28 June 2024 Updated the Document ID according to the new convention.

IMXGRAPHICUG v.9 29 March 2024 Added Section "Mali Valhall GPU" and updated some
section titles from "i.MX" to "Vivante".

IMXGRAPHICUG v.8.6 15 December 2023 |Updated Figure 1 "GPU Scalability across i.MX processors".

IMXGRAPHICUG v.8.5.1 06/2023 Minor updates for the LF6.1.22_2.0.0 release.

IMXGRAPHICUG v.8.5 03/2023 Updated the OpenCL and Vivante IDE information.

IMXGRAPHICUG v.8.4.1 12/2022 Updated the VivantelDE package name in Section 13.3.1.

IMXGRAPHICUG v.8.4 10/2022 Some minor updates for the android-12.1.0_1.0.0 release.

IMXGRAPHICUG v.8.3 09/2022 Updated Figure 1 and published the document in the new
template.

IMXGRAPHICUG v.8.2 03/2022 Updated the back page (Legal information).

IMXGRAPHICUG v.8.2 10/2021 Added the i.MX 8ULP information to Section 1.1.

IMXGRAPHICUG v.8.1 09/2021 Removed the Section "Designing framework of OpenVX",
and made minor updates for the Linux LF5.10.52_2.1.0
release.

IMXGRAPHICUG v.8 06/2021 Updated for the Linux LF5.10.35_2.0.0 and android-11.0.0_
1.2.1 releases.

IMXGRAPHICUG v.7.1 03/2021 Updated Section 13.5.4 “Enabling vProfiler on Linux” as v
Profiler no longer requires kernel module parameter, and
made abundant changes to context description.

IMXGRAPHICUG v.7 12/2020 Updated for the Linux L5.4.70_2.3.0, android-11.0.0_1.0.0,
and later release.

IMXGRAPHICUG v.6 06/2020 Updated for the Linux L5.4.24-2.1.0 and later release.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback

163 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

Revision history...continued

Document ID Release date Description

IMXGRAPHICUG v.5 04/2020 Updated for the Linux L5.4.3_2.0.0 and android-10.0.0_2.1.
0 releases.

IMXGRAPHICUG v.4 11/2019 Updated the Vivante IDE information.

IMXGRAPHICUG v.3 08/2019 Added the i.MX 8M Nano information.

IMXGRAPHICUG v.2 06/2019 Made some grammatical updates.

IMXGRAPHICUG v.1 11/2018 Updated Chapter "OpenCL" with more precise information
and also covered latest i.MX products.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
164 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

Legal information

i.MX Graphics User's Guide

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
165/171

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors IMXG RAPH'CUG_Q

i.MX Graphics User's Guide

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, i.MX — is a trademark of NXP B.V.
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle,

Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,

Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-

PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered

trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or

elsewhere. The related technology may be protected by any or all of patents,

copyrights, designs and trade secrets. All rights reserved.

IMXGRAPHICUG_9 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9 — 28 June 2024 Document feedback
166 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

i.MX Graphics User's Guide

Contents
1 Introduction ..., 2 5 OpenCL
1.1 LMX full GPU lineoooiiiiiiiiee e 2 51 Overview
2 i.MX G2D API ... 2 5.1.1 General descriptionccccceveeeeeiiiiiiiiiciiiees 41
2.1 OVEIVIEW ...t 2 51.2 OpenCL frameworkcccceveeeeeeeiiiieiiciiinieees 41
2.2 Enumerations and structuresccccuune 3 5.1.21 OpenCL execution model: kernels and work
221 g2d_format enumerationccccoeiiiiiiennne 3 elements ... 41
2.2.2 g2d_blend_func enumerationcccccceeee. 4 5.1.2.2 OpenCL command QUEUEScccvrrrrveeeennnn. 42
2.2.3 g2d_cap_mode enumerationccccccoeeeeennn. 4 5.1.2.3 OpenCL memory modelc.ccoccoeveeiiiiinnann. 43
224 g2d_rotation enumerationcccceiiiiiiienn. 4 5.1.2.4 Host to Vivante compute device data
2.2.5 g2d_cache_mode enumeration 5 transfers ... 44
2.2.6 g2d_hardware_type enumeration 5 51.3 OpenCL profilescoevveeeeeeiiiiiiiiiieeeeee, 45
2.2.7 g2d_surface structureccocceeiiiiiienie. 5 514 Vivante OpenCL embedded compatible IP 45
2.2.8 g2d_buf structureccccoeiiiiiiii 7 515 Vivante OpenCL full profile hardware model46
2.2.9 g2d_surface_pair structureccocceeeeiiieeenn. 7 52 Vivante OpenCL implementation 47
2.2.10 g2d_feature enumerationccccoeiiiieeiennne. 7 521 OpenCL pipelingccccvveeieieieieieeeeeeeeeeciie 47
2.3 G2D function descriptionccccccoeeiiiiiiiiinnn, 8 522 Frontend ..., 48
2.3.1 G2d_OPEN ..ot 8 5.2.3 OpenCL compute unitccccceeeeeiiiiiiiiiiiiiienes 48
23.2 02d_ClOSE .. 8 524 Memory hierarchycccooiiiiiiiiiiiee. 49
2.3.3 g2d_make_currentcccooiiiiiiii i 8 525 CL Extension supportccccceeeeeeeeeeeeeeeieieinn, 49
2.34 02d_ClEAN .. 8 5.2.5.1 CL_DEVICE_EXTENSION support 49
2.35 92d_Dblit oo 9 5.2.5.2 Vivante OpenCL extension support 50
2.3.6 [o 12do I o] o)V RS 9 5.3 Optimization for OpenCL embedded profile 51
2.3.7 02d_QUEIY_CaAP weeeeeiieieaeeaiiiiee e eeieee e e 9 5.3.1 Using preferred multiple of work-group size51
2.3.8 g2d_enable ... 10 53.2 Using multiple work-groups of reduced size 51
239 g2d_disable ... 10 5.3.3 Packing work-item dataccccoccoiin 51
2.3.10 g2d_cache_0p ...cccceeiiiiiiie e 10 534 Improving localitycccooociiiiiieeee 52
2.3.11 92d_alloC .. 10 5.3.5 Minimizing use of 1 KB local memory 52
2.3.12 02d_free e 11 5.3.6 Using 16 byte memory Read/Write size 52
2.3.13 92d_flushoooii 11 5.3.7 Using _RTZ rounding modeccccoceeeennnne 52
2.3.14 92d_finisSh ..o 11 5.3.8 Using float4 for better performance on i.MX
2.3.15 g2d_multi_blit ...ceeeeiie e 11 8M Quad and i.MX 8QuadXPlus 52
2.3.16 g2d_query_hardwareccoociiiiiiiiieeeee, 12 5.3.9 Using native functionsc.ccccooiiiiiiiinnns 52
2.3.17 g2d_query_featurecccociiiiiiiiiiiiiee 12 5.3.9.1 Using native_function() for increased
2.4 Support of new operating system in G2D 12 Performanceccccccvvvieiiieieieee e 52
2.5 Sample code for G2D APl usage 12 5.3.9.2 Using native_divide and native_reciprocal
2.5.1 Color space conversion from YUV to RGB 13 for faster floating point calculations 53
252 Alpha blend in source over mode 13 5.3.9.3 Using compile option for native functions 53
253 Source cropping and destination rotation 14 5.3.10 Using buffers instead of images
254 Multi source blit ..o 14 5.4 OpenCL Debug messagescccccueeeeeennnnen.
255 Sharing Buffers between APIs using G2D 541 OCL-007005: (clCreateKernel) cannot link
BUFfers: ... 15 Kernel ..o 53
2.6 Feature list on multiple platforms 16 54.2 Not enough register memorycccoccoeee. 54
3 Vivante EGL and OGL Extension 543 Not enough instruction memory 54
ST 070 oo] o SRR 16 544 GlobalWorkSize over hardware limit 54
3.1 Introduction ..o 16 55 ZEIO COPY ceeieieeieeeeaieiieaeeaeeeeaeaaneeeeaeeaneneeaaaas 54
3.2 EGL extension supportccccceeeeeeeeeeeeeeennnn. 16 5.6 Instruction cache availability for i.MX
3.3 OpenGL ES extension supportccccuvvnnnee 21 GraphiCs i 55
34 Extension GL_VIV_direct_texture 28 6 OpenVX Introductionccccceeveriiiiiicccccccnnees 55
3.4.1 New Procedures and Functions 29 6.1 OVEIVIEW ...ttt 55
3.5 Extension GL_VIV_texture_border_clamp 31 6.2 OpenVX extension implementation 56
4 Vivante Framebuffer APIccccccceeeennn... 33 6.2.1 Hardware requirementscccooccvininnenens 56
41 OVEIVIEW ...eeiiiiiiiie e 33 6.2.2 EVIS instruction interfaceccccccceiiiie. 56
4.2 API data types and environment variables 33 6.2.3 Extended language featuresccccceeeeiie 56
421 Data typesooeeiiiiiiiee e 33 6.2.4 Packed typesooocoiiiiiiiiie e 57
422 Environment variablesccccocoii. 34 6.2.5 Initializing constants on loadc..ccccceeee 58
4.3 API description and syntaxcccccoccoieeen. 35 6.2.6 Inline assemblyccccoiiiiiiiiii e 58

IMXGRAPHICUG_9

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
167 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

7

71

7.2

7.3

7.4

8

8.1

8.2

8.3

8.4

8.5

9

9.1

10

10.1
10.2
10.3
10.3.1
10.3.2
10.3.2.1
10.3.2.2
10.3.3
10.3.3.1
10.3.3.2
10.3.3.3
1"

12

12.1
12.2

13

13.1
13.11
13.2
13.21
13.2.2
13.2.3
13.3
13.31
13.3.2
13.3.21
13.3.2.2
13.3.2.3
13.3.3
13.3.3.1
13.3.3.2
13.3.3.3
13.3.34
134
13.41
13.4.2
13.4.3
13.4.4

IMXGRAPHICUG_9

OpenCL functions compatible with Vivante

VISION 1ottt 59
Read_Imagef,iuiccocoieiiiiiiiienee 59
Write_Imagef,i,uiccocceiiiiiiiie 60
Query Image Dimensionsccccccocveeieenieene 60
Channel Data Types Supportedcccceeen. 60
Image Channel Orders Supported 60
BT T o 61
OVEIVIEW ..ot 61
Vivante Extension Support for Vulkan 61
Vulkan Validation Layerscccccccooeeeninnennne.

Window System Integration
Vivante Multiple GPUs and Virtualization 63

OVEIVIEW ..ottt 63
Multi-GPU configurationsccccovveeiiieennne. 63
GPU affinity configurationcccocvevinnenn 63
OpenCL on multi-GPU devicecccccceeeuneee. 64
GPU virtualization configuration 64
GBM - Generic Buffer Management 64
Introduction to DRM Format Modifiers 65
Wayland and Westonccccccviinincennnianenn. 65
OVEIVIEW ...eiiiiieiiiiee et 65
Wayland EGLccocoiviiiiiiiieee e 65
Weston Compositorcccviieiiiiiiiiieeiiieee 66
Weston Backendsccocevivieiiniiiiiienienn 66
Weston Renderercccocoveviiiniiiiiee e 66
GL RENAEIEr ...ooeiiiiiiee it 66
G2D ReNdererccooociiieeiiiiiie e 66
Weston Shells ..o, 66
Desktop Shellcccooiviiiiiiiii e 66
Fullscreen shellcccoooiiiiiiii e 66
IVI-Shell ..o 67
X Windowing Accelerationccccceviiuennnne 67
Advanced GPU Configurationc.c.c..... 67
GPU Scaling Governorccceeeviieeeneeenne. 67
GPU Device CoOliNGccccveviiiiieriiieiiieeiiieenae 67
Vivante IDE ... 67
VivantelDE overviewcccccociveiiiiiiiinneens 67
VivanteIDE component overview 68
VivanteIDE Requirementsccocoveriieenneen. 68
Operating system compatibility 68
Hardware requirementscccccevieeerineenane 69
VivantelDE licensecccccceviiiiiiiiiniiceiieen, 69
VivantelDE installationcccccoiiiiiinnnnen. 69
VivantelDE packagecccccviieiiiiiniicenneen, 69
Installationcccoeiiiiiii e 70
LinUX GUI .ooiiieiieeee e 70
Windows GUIoviiiiiiieeee e 70
Installation from command line 70
VivantelDE launchcccooooiiiiiiiiiee. 71
Linux launch of GUI toolccocoveiiiieeiiieenns 71
Windows launch of GUI toolccccceeeviineennee 71
Command line tool launchcccooieinieens 71
Basic launch path summaryccccooeeinee. 71
VivantelDE GUIcccoeoeiiiiiiieeeeeeen 71
Selecting a workspaceccccoceeeiiieeencienenee 72
Switching perspectiveccccooeiiiiiniiienen, 73
Creating a new projectccccoceeeviieininnenne 73
Creating an OpenVX kernel wizard 74

13.4.5

13.4.6

13.4.7
13.4.8
13.5

13.5.1
13.5.2

13.5.3
13.5.4
13.5.4.1

13.5.5

13.5.6
13.5.7

13.5.8

13.5.9
13.5.9.1

13.5.9.2

13.5.10
13.5.10.1
13.5.10.2
13.5.10.3
13.5.10.4
13.5.10.5
13.6
13.6.1
13.6.2
13.6.3
13.6.4
13.6.5
13.7
13.7.1
13.7.2
13.8
13.8.1
13.8.2

13.8.2.1
13.8.2.2
13.8.2.3
13.8.24
13.8.2.5
13.8.3

13.8.3.1
13.8.3.2
13.8.3.3
13.8.34
13.8.3.5
13.8.4

13.8.4.1
13.8.4.2

All information provided in this document is subject to legal disclaimers.

i.MX Graphics User's Guide

Source code smart editing for OpenVX and

OPENCL .. 76
Creating a Neural Network Inference

Project from a model fileccocceiriiiinnnnn. 77
Building a sample projectcccccoviierinienne 83
Debugging and profiling a project 86
VivantelDE — Debug and Profiling 87
Fundamentals of performance optimization87
VPD Analyzer for Analyzing Performance

Data ..ooooeeeiii 88
VPIOfIleroooiiiii 88
Enabling vProfiler on Linux OScc.cc..... 88
Setting vProfiler property options for

OpenGL ES ..o 88
Setting vProfiler property options for Vision,
OpenVX Profilingccccoeriieiiiiiiicec e 88
Enabling vProfiler Option for Android OS 89
Setting vProfiler property options for

OpenGL ES Profiling with Android 89
vProfiler Set Property Options for Vision/

OVX Profiling with Androidcccovveeinneen. 90
Enabling vProfiler Option for QNX 91
Setting vProfiler Environment Variables for
OGL/OES Profilingcooceeviiiiieieeniiieeeee 91
Setting vProfiler Environment Variables for
Vision, OpenVX Profilingcccocveviieriiinennns 92
Environment Variable Detailscccccceonee. 92
VIV_PROFILEcoiiiiiiiie e 92
VP_OUTPUT ..o 93
VP_USE_GLFINISHcccoiiiiiiieieeee e, 93
VP_DISABLE_PROBEccccecoiiiiiiiieiene 93
VP_ENABLE_PRINT ...ccoiiiiiiiiiieneecieeiee e, 93
VPD ANAIYZET ...coovviiiiiiiiieeeiee e 93
Loading @ VPD Fileccccoviiiiiiiiiieceiece 94
VPD Analyzer Perspectiveccccceevvneennen. 95
System INfo VIEWoooiiiiiiiiiiiicce, 96
Program Counters Viewcccocceineeinieenne 97
Closing the VPD Fileccccccoiiiiiiiiiiiecce, 97
SPIR-V Disassemblerccccooeviniiiinieennn. 97
Shader Assistantcccoociiiiiiie 98
VTEXEUIE .o 98
VivanteIDE command line tools 100
Preparing the environmentccccoccveee. 100
vCompiler Command Line Syntax for OGL

and OGLES ... 100
SYNEAX i 100
Input parameters (required)ccceveueeenen. 100
Input parameters (optional)cc.ccceevveennne. 100
vCompilerOutputcccovceeeiiiiiiicceee e 102
vCompiler Syntax examplescccceevueeennee 102
vcCompiler Command Line Syntax for OCL .. 102
SYNEAX i 102
Input parameters (required)cccoeveerenen. 102
Input parameters (optional)ccccceeevveennnee. 103
vcCompiler Outputooociiiiiiiieee 104
vcCompiler Syntax Examplesccccceenee. 104
vTextureTools command line tool 104
SYNEAX i 104
General parameterscccccovevinieeiniee e, 104

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
168 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

13.8.4.3
13.8.4.4
13.8.4.5
14

14.1
14.11
14.1.2
14.1.3
14.1.31
14.1.3.2
14.1.3.3

14.1.3.4
14.2
14.21
14.2.2
14.2.3
14.2.4
14.2.41
14.24.2
14.2.5
14.2.51
14.2.5.2
14.2.5.3
14.2.6
14.2.6.1
14.2.6.2
14.2.7
14.2.8
14.3
14.4
14.41
14.4.2
14.4.21
14.4.2.2
14.4.3
14.4.31
14.43.2

14.4.3.3
14434
14.4.4
14.5
14.51
14.5.2
14.5.3
14.5.4
15

15.1
15.2
15.3
15.4
15.5

16

16.1
16.2
16.3
16.4

IMXGRAPHICUG_9

Compression/Decompression parameters 105
Tile/De-Tile parametersc.cccceveveevieeennen. 105
vTexture Syntax Examplesc.cccoeeviinens 106
(€724 U I e Yo £ 107
gpuinfo 100leviiiiii e 107
Introductioncccoooiiiiiiii 107
USBQE .ttt 107
Sample log informationcccocoiiiiiininen. 107
GPU hardware informationc.ccoccceevneen. 107
Total memory informationcccoceeineeen. 108
Process user space GPU memory usage
information ... 108
GPU idle percentageccocoeeeviiereniecennenn. 109
GPULOP t0O0] ...oviiiiiiiieie 110
SYNOPSIS .oiniieeiiiieeiete et 110
Interactive modeccocceiiiiiiiiin 110
DesCriptionccciviieiiiiie e 110
Requirementscccoiiiiiiii 111
LINUX OS ..o 111
QINX e 111
NOLES o 111
Sampling hardware-counters 111
Context-aware counterscccccoveeeeineenne 111
Unsupported GPUSccooceiiriiiiiieenee e 111
Pages ..ooiiiiiiiii 112
Client attached pagecccccvvviiiiniecinieenne 112
Vidmem pageoccccvvvieveiiiiiieeeee e 112
EXamPIesccoooiiiiiiii e 112
SE€ AlSO ... 113
GPU clock information and debugging 113
Apitrace user guidecccoceiviiiniiiiniiees 114
Introductioncccooeiiiiiiii 114
INStall oo 114
YOCIO oo 114
P 114
USBQE .ttt 114
Trace OpenGL ES1.1/2.0/3.0 application 114
Trace OpenGL ES 1.1/2.0/3.0 Java

application on the Android platform 114
Trace OpenGL applicationccccceevvveerneen. 115
REPIAY ..eeiiiiiii e 115
Referenceccccovecviieiiii e 118
Renderdoccooceiiiiiiiiieee e 118
Renderdoc componentsccccoeveeeieeennnen. 118
Running renderdoccmd on i.MX 119
Capturing and replaying remotely 120
Referencecccoovvcviiiiiiii e 121
GPU Memory Introductionccccceriueenne 122
GPU memory OVEIrVIEWccceceeerveeeriieeenns 122
GPU memory pooISccocceverieeeiieeeniee e 122
GPU memory allocatorscccevveeenieennnnn. 122
GPU reserved memoryc.ccceevvvererieeenneenns 123
GPU memory base addressccccceeeenne 123
Mali Valhall GPU ..o 124
Featurescccoovviiiiii e 124
Mali Shader offline Compilercccccoveeene 125
Mali OpenCL Offline Compilercccccueenee. 125
References and Useful linkscccceevneen. 126

17

17.1

17.2

17.3
17.4
17.5
17.6
17.7

17.8
17.9

17.10

17.11

17.12
17.13

17.14

17.15

17.16

17.17
17.18

17.19
17.20

17.21
17.22
17.23
17.24

17.25
17.26
17.27

17.28

17.29

17.30
17.31
17.32

17.33
17.34
18
18.1
18.1.1

All information provided in this document is subject to legal disclaimers.

i.MX Graphics User's Guide

Application Programming

Recommendationsccccccecemrriccceerisncnnees 126
Understanding the system configuration
and target applicationcccccceiiiiriiennnnn. 126

Optimizing off-chip data transfer such as
accessing off-chip DDR memory/mobile

DDR MEMOTY oo 126
Avoiding W-clipping issue in the application
PrOGramoeeeeiiirieiee et et 126
Avoiding GPU hanging and data corruption

when using occlusion querycccccovcueeens 127
Avoiding random cache or memory access ... 127
Optimizing your use of system memory 127
Targeting a fixed frame rate that is visibly

SMOOh ..ot 127
Minimizing GL state changescc.c....... 128
Batch primitives to minimize the number of

draw Callsccoeiiiiiiiiiie e 128
Performing calculations per vertex instead

of per fragment/pixelccccooriiiiiiniiinnns 128
Enabling early-Z, hierarchical-Z, and back

face cullingcccoovveviiiiii 128
Using branching carefullycccocevinnnne 128
Using VBOs instead of static or stack data

as vertex data ..o 129
Using dynamic VBO when the data is

changing frame by framecccccooeeiiiinn 129
Tessellating your data to make Hierarchical

Z (HZ) WOTK .eoeeeeiieiiieee e 129
Using dynamic textures as a texture cache
(texture atlas)ccceevvieeiiiiiie 130
Stiching small triangle strips together 130
Specifying EGL configuration attributes

PreCiSElYooviiiiiiiee e 130
Using aligned texture/render buffers 130
Disabling MSAA rendering unless high

quality is neededccooiiiiiiiii 130
Avoiding partial clearsccccoeceiiiieiiiiees 130
Avoiding mask operationsccccceeierennen. 130
Using MIPMAP texturesccccocvvevieeennenn. 130
Using compressed textures if constricted by
RAM/ROM budgetcccceeveeiiiiiieiieiieeiene 131
Drawing objects from near to far if possible ... 131
Avoiding indexed triangle stripscccc..... 131
Limiting vertex attribute stride within 256

DYIES i 131
Avoiding binding buffers to mixed index/

VEIEX @rTAY ..eeveiieiiiiee et 131
Avoiding using CPU to update texture/

buffer contexts during rendercccccoeee. 131
Avoiding frequent context switching 131
Optimizing resources within a shader 131
Avoiding using glScissor Clear for small

FEJIONS .iiieiiieie it e ettt 132
Using PRE to accelerate data transfer 132
i.MX 8QuadMax dual-GPU performance 132
Demo Frameworkcccccocmviieniieenniiennnnns 132
OVEIVIEW ..ot 132
Executive summaryccccciiiiiiiiiinene 132

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
169 /171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

18.1.2
18.2
18.3
18.4
18.4.1
18.4.2
18.4.3
18.5
18.5.1
18.5.1.1
18.5.1.2
18.5.1.3
18.5.1.4
18.5.2
18.5.3
18.5.4
18.5.5
18.5.6
18.5.7
18.5.7.1
18.6
18.6.1
18.6.2
18.7
18.7.1
18.7.1.1
18.7.1.2
18.7.1.3
18.7.1.4
18.7.1.5
18.7.1.6
18.7.2
18.7.2.1
18.7.2.2
18.7.2.3
18.7.2.4
18.7.2.5
18.7.2.6
18.7.3
18.7.4
18.7.5
18.7.6
18.7.7
18.7.8
18.7.9
18.7.10
18.8
18.8.1
18.8.2
18.8.2.1
18.8.2.2
18.8.3
18.9
18.9.1
18.9.2
18.9.3

18.9.4

IMXGRAPHICUG_9

Technical OVerviewc.cccccooeeeieinieceiien. 132
Introductionccoeciiiii 133
Design OVErVIEWccceveiiiieriieeiiieeeiee e 133
High level overview ..o, 134
DemoMain ... 134
DemoHost

DemoApp

Demo application detailscccccoveeernneen. 135
Demo method overviewcccccccevveevinnennne 135
ReSIZEd ...ooiiiiii 135
FixedUpdateocoeeeiiiiiiiiiceee 136
UPdate ...ooovviiiiiiieee 136
DIaW oot 136
Fixed or variable timestep update 136
Execution order of methods during a frame ... 136
EXIt oo 136
Dealing with screen resolution changes 137
Content 10adingcccoviviiiiniiieiieeece 137
Demo registrationcccoceceiiiiiiniiiineeee 137
OpenGLES 3.X registrationccccecueee 138
Demo playbackcccoeeiiiiiiiiiieeeieee 138
Command line argumentsccccceeveveeennen. 138
Demo single stepping/pauseccocceeennnee. 139
Helper class overviewccccceviiiicnnnens 139
FSIBASE ...ooviiiiiiiiiieeecee e 139
BitS .ooeie e 139
[0 s 139
LOQG it 139
Math ..o 140
SHNG v 141
SYStEM i 141
FSIGraphicscccocveiiiiiiiieeiiec e 141
FONt 141
[0 s 142
RENAEr . 142
TextureAtlasccocoevviiiiii e 142
VErtICES ...veiiiiiiiiie e 142
WINAOW ..o 143
FslIUti.OpenGLES2ccccceviiiienienieeene 143
FslUti.OpenGLESScccceiiiiienieiieeiene 144
FslUti.OpenGLES3VTcccoooeiiiiiiiecieeieeee, 144
FsIUtILOPENVGoooveeiiiiiiieeee e 144
FSIGraphics3Dcccccoviieiiiiiiiiieeeeeee 145
FSIASSIMP oo 145
FsIGraphics3D.SceneFormatccccceevunee. 145
FSISImpleUl ..o 145
FsIBUIld SCrIPtSveveiiiieiieecieeee e 146
FSIBUIIAGEN.PY ..ooiiiiiiiiieeeiee e 146
FSIBUIA.PY .eoveeeieiieeeee e 146
Useful argumentsccccceeviiiniiicniieeiiees 146
Important NOtesccceviiiiiiiiiiicee 146
Build system per platformccocoeeviinene 147
Android SDK+NDK on Windows build guide ..147
Prerequisites ... 147
Environment setupccoooviiiini, 147
To Compile and run an existing sample
applicationccccoeiiiiiii 147
To create a new GLES2 demo project

named 'CoolNewDemo'ccccevvvievinieenns 148

18.9.5
18.9.6
18.9.7
18.9.7.1
18.10
18.10.1
18.10.2
18.10.3
18.10.4

18.10.5

18.10.6
18.10.6.1
18.10.6.2
18.10.6.3
18.11
18.11.1
18.11.2
18.11.3

18.11.4

18.11.5
18.11.5.1
18.11.5.2
18.12
18.12.1
18.12.1.1
18.12.1.2
18.12.1.3
18.12.1.4
18.12.2
18.12.2.1
18.12.2.2
18.12.2.3
18.12.2.4
18.12.3
18.12.4
18.12.5

18.12.6

18.12.7
18.12.7.1
18.12.7.2
18.12.7.3
18.12.7.4
18.13
18.14
18.14.1
18.14.2
18.14.3
18.14.4
18.15
18.15.1
18.15.2
18.15.3
18.16

All information provided in this document is subject to legal disclaimers.

i.MX Graphics User's Guide

Using Android studioccocceeiiieininncnnen. 148
LiNUX NOtES ...ooviiiiiiiii e 148
NOES ..o 149
Command line app building via Ant 149
Ubuntu build guideccccoeviiiiiiiiiiecce, 149
Prerequisitesoccceviiiiii 149
Environment setupccoooiiiiiiiie 149
Compiling all samplescccevviiiiiieiinieenns 149
Compiling and running an existing sample
application ... 150
Creating a new GLES2 demo project

named 'CoolNewDemo'cccceevvieeninrennne 150
NOES ..o 150
Manual environment setupccccevveennen. 150
Override platform auto-detection 150
Executable locationcccocoviiiiniiiiinnns 150
Windows build guideccccooieeiiiiiiiecee 151
Prerequisitesoccceviiiniiii 151
Environment setupccocoiiiiiiiiiie 151
Compiling and running an existing sample
application ..o 151
Creating a new GLES2 demo project

named 'CoolNewDemo'cccceevvvveninrennne 152
NOES ..o 152
Switching between emulators 152
Executable locationcccocvviiiiiiiiinnns 152
Yocto build guidecccociiiiiiiiiiiieeee 152
Building using a prebuild Yocto SDK 152
Prerequisitesoccceviiiiii e 153
Preparing a Yocto SDK buildcccecnee. 153
Yocto SDK environment setupccccceeeuee. 153
Ready to buildcccceeiiiiiiieee 154
Building using a full Yocto build 154
Prerequisitesoccceviiiiii e 154
Preparing a Yocto buildccccoieiiiininnn. 154
Yocto environment setupccceevieeiiienenen 155
Ready to buildccooiieiiiiii 156
Using the demo frameworkcccccevveeens 156
Compiling all samplesccceevviiiieiinneenns 156
Compiling and running an existing sample
application ... 156
Creating a new GLES2 demo project

named 'CoolNewDemo'ccceevviveninrenane 156
NOES .. 157
Manual environment setupccccevveennen. 157
Override platform auto-detection 157
Building for multiple backends 157
Executable locationcccccvviiiiniiiiiinnns 157
FslContentSync.py notescccceveeeiienene 157
Known limitationscccccceiviiiiiiiiiiiciee 158
General ... 158
ANdroid OS ..o 158
UBUNTU Lo 158
WINAOWS ..o 158
Upgrading samples from earlier SDKs 158
From 2.0 t0 2.1 oo 158
From 2.1 10 2.2 oo 158
From 2.2 10 2.3 oo 158
What's NeWcoccviiiiiiiiiiee e 159

© 2024 NXP B.V. All rights reserved.

User guide

Rev. 9 — 28 June 2024

Document feedback
170/ 171

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors

IMXGRAPHICUG_9

19
19.1
19.2
20

21

Environment Variables Summary 161
Environment variable for drivers and HAL 161
Environment variable for compiler 162
Note About the Source Code in the

Document ..o 162
Revision History163
Legal informationccccccoiciiiiiinnniinnnnnns 165

i.MX Graphics User's Guide

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com Document feedback

Date of release: 28 June 2024
Document identifier: IMXGRAPHICUG_9

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

	1 Introduction
	1.1 i.MX full GPU line

	2 i.MX G2D API
	2.1 Overview
	2.2 Enumerations and structures
	2.2.1 g2d_format enumeration
	2.2.2 g2d_blend_func enumeration
	2.2.3 g2d_cap_mode enumeration
	2.2.4 g2d_rotation enumeration
	2.2.5 g2d_cache_mode enumeration
	2.2.6 g2d_hardware_type enumeration
	2.2.7 g2d_surface structure
	2.2.8 g2d_buf structure
	2.2.9 g2d_surface_pair structure
	2.2.10 g2d_feature enumeration

	2.3 G2D function description
	2.3.1 g2d_open
	2.3.2 g2d_close
	2.3.3 g2d_make_current
	2.3.4 g2d_clear
	2.3.5 g2d_blit
	2.3.6 g2d_copy
	2.3.7 g2d_query_cap
	2.3.8 g2d_enable
	2.3.9 g2d_disable
	2.3.10 g2d_cache_op
	2.3.11 g2d_alloc
	2.3.12 g2d_free
	2.3.13 g2d_flush
	2.3.14 g2d_finish
	2.3.15 g2d_multi_blit
	2.3.16 g2d_query_hardware
	2.3.17 g2d_query_feature

	2.4 Support of new operating system in G2D
	2.5 Sample code for G2D API usage
	2.5.1 Color space conversion from YUV to RGB
	2.5.2 Alpha blend in source over mode
	2.5.3 Source cropping and destination rotation
	2.5.4 Multi source blit
	2.5.5 Sharing Buffers between APIs using G2D Buffers:

	2.6 Feature list on multiple platforms

	3 Vivante EGL and OGL Extension Support
	3.1 Introduction
	3.2 EGL extension support
	3.3 OpenGL ES extension support
	3.4 Extension GL_VIV_direct_texture
	3.4.1 New Procedures and Functions

	3.5 Extension GL_VIV_texture_border_clamp

	4 Vivante Framebuffer API
	4.1 Overview
	4.2 API data types and environment variables
	4.2.1 Data types
	4.2.2 Environment variables

	4.3 API description and syntax

	5 OpenCL
	5.1 Overview
	5.1.1 General description
	5.1.2 OpenCL framework
	5.1.2.1 OpenCL execution model: kernels and work elements
	5.1.2.2 OpenCL command queues
	5.1.2.3 OpenCL memory model
	5.1.2.4 Host to Vivante compute device data transfers

	5.1.3 OpenCL profiles
	5.1.4 Vivante OpenCL embedded compatible IP
	5.1.5 Vivante OpenCL full profile hardware model

	5.2 Vivante OpenCL implementation
	5.2.1 OpenCL pipeline
	5.2.2 Front end
	5.2.3 OpenCL compute unit
	5.2.4 Memory hierarchy
	5.2.5 CL Extension support
	5.2.5.1 CL_DEVICE_EXTENSION support
	5.2.5.2 Vivante OpenCL extension support

	5.3 Optimization for OpenCL embedded profile
	5.3.1 Using preferred multiple of work-group size
	5.3.2 Using multiple work-groups of reduced size
	5.3.3 Packing work-item data
	5.3.4 Improving locality
	5.3.5 Minimizing use of 1 KB local memory
	5.3.6 Using 16 byte memory Read/Write size
	5.3.7 Using _RTZ rounding mode
	5.3.8 Using float4 for better performance on i.MX 8M Quad and i.MX 8QuadXPlus
	5.3.9 Using native functions
	5.3.9.1 Using native_function() for increased performance
	5.3.9.2 Using native_divide and native_reciprocal for faster floating point calculations
	5.3.9.3 Using compile option for native functions

	5.3.10 Using buffers instead of images

	5.4 OpenCL Debug messages
	5.4.1 OCL-007005: (clCreateKernel) cannot link kernel
	5.4.2 Not enough register memory
	5.4.3 Not enough instruction memory
	5.4.4 GlobalWorkSize over hardware limit

	5.5 Zero copy
	5.6 Instruction cache availability for i.MX graphics

	6 OpenVX Introduction
	6.1 Overview
	6.2 OpenVX extension implementation
	6.2.1 Hardware requirements
	6.2.2 EVIS instruction interface
	6.2.3 Extended language features
	6.2.4 Packed types
	6.2.5 Initializing constants on load
	6.2.6 Inline assembly

	6.3 OpenCL functions compatible with Vivante vision
	6.3.1 Read_Imagef,i,ui
	6.3.2 Write_Imagef,i,ui
	6.3.3 Query Image Dimensions
	6.3.4 Channel Data Types Supported
	6.3.5 Image Channel Orders Supported

	7 Vulkan
	7.1 Overview
	7.2 Vivante Extension Support for Vulkan
	7.3 Vulkan Validation Layers
	7.4 Window System Integration

	8 Vivante Multiple GPUs and Virtualization
	8.1 Overview
	8.2 Multi-GPU configurations
	8.3 GPU affinity configuration
	8.4 OpenCL on multi-GPU device
	8.5 GPU virtualization configuration

	9 GBM - Generic Buffer Management
	9.1 Introduction to DRM Format Modifiers

	10 Wayland and Weston
	10.1 Overview
	10.2 Wayland EGL
	10.3 Weston Compositor
	10.3.1 Weston Backends
	10.3.2 Weston Renderer
	10.3.2.1 GL Renderer
	10.3.2.2 G2D Renderer

	10.3.3 Weston Shells
	10.3.3.1 Desktop shell
	10.3.3.2 Fullscreen shell
	10.3.3.3 IVI-shell

	11 X Windowing Acceleration
	12 Advanced GPU Configuration
	12.1 GPU Scaling Governor
	12.2 GPU Device Cooling

	13 Vivante IDE
	13.1 VivanteIDE overview
	13.1.1 VivanteIDE component overview

	13.2 VivanteIDE Requirements
	13.2.1 Operating system compatibility
	13.2.2 Hardware requirements
	13.2.3 VivanteIDE license

	13.3 VivanteIDE installation
	13.3.1 VivanteIDE package
	13.3.2 Installation
	13.3.2.1 Linux GUI
	13.3.2.2 Windows GUI
	13.3.2.3 Installation from command line

	13.3.3 VivanteIDE launch
	13.3.3.1 Linux launch of GUI tool
	13.3.3.2 Windows launch of GUI tool
	13.3.3.3 Command line tool launch
	13.3.3.4 Basic launch path summary

	13.4 VivanteIDE GUI
	13.4.1 Selecting a workspace
	13.4.2 Switching perspective
	13.4.3 Creating a new project
	13.4.4 Creating an OpenVX kernel wizard
	13.4.5 Source code smart editing for OpenVX and OpenCL
	13.4.6 Creating a Neural Network Inference Project from a model file
	13.4.7 Building a sample project
	13.4.8 Debugging and profiling a project

	13.5 VivanteIDE – Debug and Profiling
	13.5.1 Fundamentals of performance optimization
	13.5.2 VPD Analyzer for Analyzing Performance Data
	13.5.3 vProfiler
	13.5.4 Enabling vProfiler on Linux OS
	13.5.4.1 Setting vProfiler property options for OpenGL ES

	13.5.5 Setting vProfiler property options for Vision, OpenVX Profiling
	13.5.6 Enabling vProfiler Option for Android OS
	13.5.7 Setting vProfiler property options for OpenGL ES Profiling with Android
	13.5.8 vProfiler Set Property Options for Vision/OVX Profiling with Android
	13.5.9 Enabling vProfiler Option for QNX
	13.5.9.1 Setting vProfiler Environment Variables for OGL/OES Profiling
	13.5.9.2 Setting vProfiler Environment Variables for Vision, OpenVX Profiling

	13.5.10 Environment Variable Details
	13.5.10.1 VIV_PROFILE
	13.5.10.2 VP_OUTPUT
	13.5.10.3 VP_USE_GLFINISH
	13.5.10.4 VP_DISABLE_PROBE
	13.5.10.5 VP_ENABLE_PRINT

	13.6 VPD Analyzer
	13.6.1 Loading a VPD File
	13.6.2 VPD Analyzer Perspective
	13.6.3 System Info View
	13.6.4 Program Counters View
	13.6.5 Closing the VPD File

	13.7 SPIR-V Disassembler
	13.7.1 Shader Assistant
	13.7.2 vTexture

	13.8 VivanteIDE command line tools
	13.8.1 Preparing the environment
	13.8.2 vCompiler Command Line Syntax for OGL and OGLES
	13.8.2.1 Syntax
	13.8.2.2 Input parameters (required)
	13.8.2.3 Input parameters (optional)
	13.8.2.4 vCompilerOutput
	13.8.2.5 vCompiler Syntax examples

	13.8.3 vcCompiler Command Line Syntax for OCL
	13.8.3.1 Syntax
	13.8.3.2 Input parameters (required)
	13.8.3.3 Input parameters (optional)
	13.8.3.4 vcCompiler Output
	13.8.3.5 vcCompiler Syntax Examples

	13.8.4 vTextureTools command line tool
	13.8.4.1 Syntax
	13.8.4.2 General parameters
	13.8.4.3 Compression/Decompression parameters
	13.8.4.4 Tile/De-Tile parameters
	13.8.4.5 vTexture Syntax Examples

	14 GPU Tools
	14.1 gpuinfo tool
	14.1.1 Introduction
	14.1.2 Usage
	14.1.3 Sample log information
	14.1.3.1 GPU hardware information
	14.1.3.2 Total memory information
	14.1.3.3 Process user space GPU memory usage information
	14.1.3.4 GPU idle percentage

	14.2 gputop tool
	14.2.1 Synopsis
	14.2.2 Interactive mode
	14.2.3 Description
	14.2.4 Requirements
	14.2.4.1 Linux OS
	14.2.4.2 QNX

	14.2.5 Notes
	14.2.5.1 Sampling hardware-counters
	14.2.5.2 Context-aware counters
	14.2.5.3 Unsupported GPUs

	14.2.6 Pages
	14.2.6.1 Client attached page
	14.2.6.2 Vidmem page

	14.2.7 Examples
	14.2.8 See Also

	14.3 GPU clock information and debugging
	14.4 Apitrace user guide
	14.4.1 Introduction
	14.4.2 Install
	14.4.2.1 Yocto
	14.4.2.2 PC

	14.4.3 Usage
	14.4.3.1 Trace OpenGL ES1.1/2.0/3.0 application
	14.4.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java application on the Android platform
	14.4.3.3 Trace OpenGL application
	14.4.3.4 Replay
	14.4.3.4.1 Analysis

	14.4.4 Reference

	14.5 Renderdoc
	14.5.1 Renderdoc components
	14.5.2 Running renderdoccmd on i.MX
	14.5.3 Capturing and replaying remotely
	14.5.4 Reference

	15 GPU Memory Introduction
	15.1 GPU memory overview
	15.2 GPU memory pools
	15.3 GPU memory allocators
	15.4 GPU reserved memory
	15.5 GPU memory base address

	16 Mali Valhall GPU
	16.1 Features
	16.2 Mali Shader offline Compiler
	16.3 Mali OpenCL Offline Compiler
	16.4 References and Useful links

	17 Application Programming Recommendations
	17.1 Understanding the system configuration and target application
	17.2 Optimizing off-chip data transfer such as accessing off-chip DDR memory/mobile DDR memory
	17.3 Avoiding W-clipping issue in the application program
	17.4 Avoiding GPU hanging and data corruption when using occlusion query
	17.5 Avoiding random cache or memory access
	17.6 Optimizing your use of system memory
	17.7 Targeting a fixed frame rate that is visibly smooth
	17.8 Minimizing GL state changes
	17.9 Batch primitives to minimize the number of draw calls
	17.10 Performing calculations per vertex instead of per fragment/pixel
	17.11 Enabling early-Z, hierarchical-Z, and back face culling
	17.12 Using branching carefully
	17.13 Using VBOs instead of static or stack data as vertex data
	17.14 Using dynamic VBO when the data is changing frame by frame
	17.15 Tessellating your data to make Hierarchical Z (HZ) work
	17.16 Using dynamic textures as a texture cache (texture atlas)
	17.17 Stiching small triangle strips together
	17.18 Specifying EGL configuration attributes precisely
	17.19 Using aligned texture/render buffers
	17.20 Disabling MSAA rendering unless high quality is needed
	17.21 Avoiding partial clears
	17.22 Avoiding mask operations
	17.23 Using MIPMAP textures
	17.24 Using compressed textures if constricted by RAM/ROM budget
	17.25 Drawing objects from near to far if possible
	17.26 Avoiding indexed triangle strips
	17.27 Limiting vertex attribute stride within 256 bytes
	17.28 Avoiding binding buffers to mixed index/vertex array
	17.29 Avoiding using CPU to update texture/buffer contexts during render
	17.30 Avoiding frequent context switching
	17.31 Optimizing resources within a shader
	17.32 Avoiding using glScissor Clear for small regions
	17.33 Using PRE to accelerate data transfer
	17.34 i.MX 8QuadMax dual-GPU performance

	18 Demo Framework
	18.1 Overview
	18.1.1 Executive summary
	18.1.2 Technical overview

	18.2 Introduction
	18.3 Design overview
	18.4 High level overview
	18.4.1 DemoMain
	18.4.2 DemoHost
	18.4.3 DemoApp

	18.5 Demo application details
	18.5.1 Demo method overview
	18.5.1.1 Resized
	18.5.1.2 FixedUpdate
	18.5.1.3 Update
	18.5.1.4 Draw

	18.5.2 Fixed or variable timestep update
	18.5.3 Execution order of methods during a frame
	18.5.4 Exit
	18.5.5 Dealing with screen resolution changes
	18.5.6 Content loading
	18.5.7 Demo registration
	18.5.7.1 OpenGLES 3.X registration

	18.6 Demo playback
	18.6.1 Command line arguments
	18.6.2 Demo single stepping/pause

	18.7 Helper class overview
	18.7.1 FslBase
	18.7.1.1 Bits
	18.7.1.2 IO
	18.7.1.3 Log
	18.7.1.4 Math
	18.7.1.5 String
	18.7.1.6 System

	18.7.2 FslGraphics
	18.7.2.1 Font
	18.7.2.2 IO
	18.7.2.3 Render
	18.7.2.4 TextureAtlas
	18.7.2.5 Vertices
	18.7.2.6 Window

	18.7.3 FslUtil.OpenGLES2
	18.7.4 FslUtil.OpenGLES3
	18.7.5 FslUtil.OpenGLES3v1
	18.7.6 FslUtil.OpenVG
	18.7.7 FslGraphics3D
	18.7.8 FslAssimp
	18.7.9 FslGraphics3D.SceneFormat
	18.7.10 FslSimpleUI

	18.8 FslBuild scripts
	18.8.1 FslBuildGen.py
	18.8.2 FslBuild.py
	18.8.2.1 Useful arguments
	18.8.2.2 Important notes

	18.8.3 Build system per platform

	18.9 Android SDK+NDK on Windows build guide
	18.9.1 Prerequisites
	18.9.2 Environment setup
	18.9.3 To Compile and run an existing sample application
	18.9.4 To create a new GLES2 demo project named 'CoolNewDemo'
	18.9.5 Using Android studio
	18.9.6 Linux notes
	18.9.7 Notes
	18.9.7.1 Command line app building via Ant

	18.10 Ubuntu build guide
	18.10.1 Prerequisites
	18.10.2 Environment setup
	18.10.3 Compiling all samples
	18.10.4 Compiling and running an existing sample application
	18.10.5 Creating a new GLES2 demo project named 'CoolNewDemo'
	18.10.6 Notes
	18.10.6.1 Manual environment setup
	18.10.6.2 Override platform auto-detection
	18.10.6.3 Executable location

	18.11 Windows build guide
	18.11.1 Prerequisites
	18.11.2 Environment setup
	18.11.3 Compiling and running an existing sample application
	18.11.4 Creating a new GLES2 demo project named 'CoolNewDemo'
	18.11.5 Notes
	18.11.5.1 Switching between emulators
	18.11.5.2 Executable location

	18.12 Yocto build guide
	18.12.1 Building using a prebuild Yocto SDK
	18.12.1.1 Prerequisites
	18.12.1.2 Preparing a Yocto SDK build
	18.12.1.3 Yocto SDK environment setup
	18.12.1.4 Ready to build

	18.12.2 Building using a full Yocto build
	18.12.2.1 Prerequisites
	18.12.2.2 Preparing a Yocto build
	18.12.2.3 Yocto environment setup
	18.12.2.4 Ready to build

	18.12.3 Using the demo framework
	18.12.4 Compiling all samples
	18.12.5 Compiling and running an existing sample application
	18.12.6 Creating a new GLES2 demo project named 'CoolNewDemo'
	18.12.7 Notes
	18.12.7.1 Manual environment setup
	18.12.7.2 Override platform auto-detection
	18.12.7.3 Building for multiple backends
	18.12.7.4 Executable location

	18.13 FslContentSync.py notes
	18.14 Known limitations
	18.14.1 General
	18.14.2 Android OS
	18.14.3 Ubuntu
	18.14.4 Windows

	18.15 Upgrading samples from earlier SDKs
	18.15.1 From 2.0 to 2.1
	18.15.2 From 2.1 to 2.2
	18.15.3 From 2.2 to 2.3

	18.16 What’s new

	19 Environment Variables Summary
	19.1 Environment variable for drivers and HAL
	19.2 Environment variable for compiler

	20 Note About the Source Code in the Document
	21 Revision History
	Legal information
	Contents

