

Freescale SemiconductorFreescale SemiconDocument Number: QORIQPMWP
White Paper Rev. 0, 12/2014

© 2014 Freescale Semiconductor, Inc.

QorIQ Power Management

Convention
This document uses the Courier New font
to identify commands, explicit command
parameters, code examples, expressions, data
types, and directives.

 Contents

1 Power Management (PM) introduction 1
2 QorIQ PM features .. 2

3 Linux PM features ... 5
4 Linux system suspend feature 8
5 CPU idle feature ... 17

6 CPU hotplug feature 18
7 CPU freq feature ... 20
8 How to use PM technologies effectively 22

9 Summary .. 36

QorIQ Power Management, Rev. 0

1 Freescale Semiconductor

1 Power Management (PM) introduction
As embedded processing becomes more pervasive, compute power becomes more complex, and
electronic systems consume more power over time, controlling or reducing these systems’ power
consumption is critical to avert cost and environmental concerns. Power Management technologies will
play a more important role in addressing this issue.

1.1 Power consumption composition
This figure shows a typical diagram of CMOS, which is extensively used in semiconductor products.

Figure 1. CMOS diagram

The CMOS power consumption can normally be grouped into two categories:

• Static Power Consumption
• Dynamic Power Consumption

Below is a formula for calculating the rough power consumption of a CMOS-based semiconductor
product. The left side of the formula is the Dynamic Power Consumption and the right side of the
formula is the Static Power Consumption.

From this formula, we can see that the higher the working frequency (performance), the higher the
dynamic power consumption. The more functions we are supporting, the more transistors are in use,
which means more static and dynamic power is needed. Therefore, as a rule of thumb: power
consumption increases with more performance or functional capacity provided.

Figure 2 shows the base concept for Power Management technologies.

QorIQ Power Management, Rev. 0

2 Freescale Semiconductor

Figure 2. Power consumption and performance/capacity

1.2 Power Management definition
• The state in which the system is not operating in full performance/capacity to save power is called a

low-power state.
• Power management (PM) is a technology used on some electrical appliances that turns off the power

or switches the system to a low-power state when inactive.
• The key to power management is matching the runtime performance/capacity with runtime workload

requirements. Turn off everything else or slow down to what is necessary to reduce the runtime
power consumption.

• Power management can NOT reduce maximum power consumption when the system is fully loaded.
Therefore, the board designer still has to provision a power supply that needs to support the peak
demands of the system according to the hardware specifications.

2 QorIQ PM features

2.1 CPU core low-power states
This table shows the QorIQ hardware low-power states in the CPU core level (thread/core/cluster),
which covers both Power Architecture® and ARM® architecture.

Table 1. QorIQ hardware low-power states in the CPU core level

States PH00 PH10 PW10 PH15 PW15 PH20 PW20 PW30 PCL10* PCL30

Other
names

Run Doze Wait Nap Drowsy Drowsy Stop

ARM
names

Normal WFI/WFE Core
retention

Core
dynamic
retention

Core
shutdown

L2WFI Cluster
shutdown

QorIQ Power Management, Rev. 0

3 Freescale Semiconductor

Instruction
fetch

On Stopped Stopped Stopped Stopped Stopped Stopped Stopped Stopped Stopped

Core clock On On On Off Off Off Off Off Off Off

Core
Voltage

On On On On On Retention Retention Off Retention/On Off

Core L1
Cache
Snoop

On On On Off On Off(PPC)

On(ARM)

Off(PPC)

On(ARM)

Off Off Off

Cluster
Clock

On On On On On On On On Off Off

Cluster L2
Cache
Snoop

On On On On On

On On On Off Off

Available
on

All E500V2

E500MC

E5500

E500V2

E500MC

E5500

E500V2

E500MC

E5500

A7

A9

A53

A57

E6500

E6500

A53

A57

A7

A9

A53

A57

E6500

A7

A53

A57

A7

A53

A57

Other core PM features include:
Table 2. Other PM features

Feature Description Available on

Drowsy Altivec Disable Altivec co-processor when the Altivec
instructions are not being used

E6500

2.2 SOC/system-wide low-power states
This table shows the QorIQ low-power states in the SoC or system-wide.

Table 3. QorIQ low-power states in the SoC or system-wide

SoC state LPM00 LPM20 LPM35

System state Run Sleep Deep Sleep

Core state PH00 PH20 PH30

Core Time base On Stopped Off

On-chip devices On Clock gated Powered off by board

QorIQ Power Management, Rev. 0

4 Freescale Semiconductor

Core Voltage On On Off

DDR controller On On Powered off by board

Exception devices On On On

DDR memory On Self-refresh Self-refresh

On-board devices On Depending on board
implementation,
normally On.

Powered off by board

Available on All All (Except SoC with
StarCore)

LS1021, T1040, P1022,
MPC8536, MPC8313

2.3 Other PM features
Other PM features on the SoC include:

Table 4. Other PM features on the SoC

Feature Description Available on

Dynamic Frequency
Scaling (DFS)

Changing the CPU frequency at runtime. P4080, P5020, P5040, P2041,
P3041, T4240, T2080, T1040,
LS1021

Cascade PM Using only part of the queues in DPAA when the
receiving I/O is not fully loaded. This will help make
part of the cores in the system become idle and
possible to enter low-power states.

SoC with DPAA Qman

Auto Response Automatically respond to certain types of network
traffic in deep sleep in order to stay longer in the low-
power state. Need the Fman microcode update to
support to feature.

SoC with DPAA Fman and requires
AR enabled microcode

Thermal diode Diode for external thermal monitor to measure the
internal temperature of CPU.

All

TMU Internal thermal monitor to directly get the
temperature of CPU.

TBD

There are also PM features/components outside of the SoC on the board level, as listed in the following
table.

QorIQ Power Management, Rev. 0

5 Freescale Semiconductor

Table 5. PM features outside of the SoC

Feature Description Available on

Deep sleep board
control logic

Cooperate with SoC to prepare the whole system for
deep sleep entrance and resuming the whole system
back to normal on wakeup.

P1022DS, T1040QDS, T1042RDB,
LS1021QDS

Power Monitor Monitor chip to measure the power consumption of
certain power rail.

P5020QDS, T4240QDS, T1040QDS,
T2080QDS, and etc.

Thermal Monitor Monitor chip to measure the CPU temperature. P5020QDS, T4240QDS, T1040QDS,
T2080QDS, and etc.

Configurable Voltage
regulator

Voltage regulator that supports changing of voltage. P5020QDS, T4240QDS, T1040QDS,
T2080QDS, and etc.

3 Linux PM features
Linux already provides different frameworks for Power Management to make system software cooperate
with hardware low-power states. We have to follow the existing frameworks to make QorIQ low-power
states work correctly on the Linux operating system. Linux also provides software features that can
make the hardware low-power states work more intelligently and more efficiently.

3.1 Linux PM frameworks
Figure 3 demonstrates different PM-related frameworks that are currently (as of kernel 3.12) in the
Linux system. Most of the Linux PM frameworks reside in kernel space and can be categorized into
four groups: Linux device model extension, PM core features, CPU management features and
miscellaneous features. Some of these frameworks interact with other frameworks, as shown by the
blue line arrows in Figure 3. Some frameworks can interact with user space almost all through the
kernel /sysfs interface.

QorIQ Power Management, Rev. 0

6 Freescale Semiconductor

Figure 3. PM frameworks currently in the Linux system

3.2 PM features in Freescale Linux SDK
This section briefly introduces the software PM features included in the Freescale Linux SDK (as of
SDK1.7). We explain some of them in detail in the following sections.

3.2.1 Static features
Static features, listed below, are PM features that trigger low-power states and/or can be woken up
manually by the user or a user application:

• System Suspend (static triggered)
• Freeze all the user space applications and put the system into a system wide low-power state

o Sleep (standby)
o Deep sleep (suspend to RAM)
o Hibernation (suspend to disk)

• Static wakeup mechanism
o Wakeup on LAN (magic packet)
o Wakeup on GPIO, external interrupt, USB, SD, timer

• CPU hotplug
• CPU frequency with performance/powersave/userspace governors

QorIQ Power Management, Rev. 0

7 Freescale Semiconductor

3.2.2 Dynamic features
Dynamic features, listed below, are PM Features that trigger low-power states and/or can be woken up
automatically without intervention of user or user application (by operating system or hardware).

By operating system:
• CPU idle
• CPU frequency with on-demand/conservative governors (available on SDK1.7)

By hardware:
• System suspend with dynamic wakeup mechanisms

o Wakeup on user-defined packets
o Auto response

• Cascaded PM
• Drowsy Altivec

3.2.3 SDK support matrix
This table shows different Linux PM frameworks, which are supported on different platforms, as well as
supported hardware features that are associated with these frameworks.

Table 6. Linux PM frameworks

Linux framework Hardware
feature

P4080 T4240 T1040 LS1021

System suspend Sleep Y Y Y Y

 Deep Sleep NA NA Y Y

 Hibernation Y Y Y Y

 Wake on LAN Y Y Y Y

 Auto response N N Y N

CPU idle PW10 Y Y Y NA

 PW15 NA NA NA Y

 PW20 NA Y NA NA

CPU hotplug PH15 Y N Y NA

 PW15 NA NA NA Y

 PH20 NA Y NA NA

 PCL10 NA Y NA N

CPU freq DFS Y Y Y Y

hwmon On board
monitors

Y Y Y Y

Misc Cascade PM Y Y Y NA

 Drowsy Altivec NA Y NA NA

QorIQ Power Management, Rev. 0

8 Freescale Semiconductor

4 Linux system suspend feature
Linux suspend is a framework for putting the whole system into a suspend state wherein almost nothing
works in order to achieve aggressive power saving. Linux supports three suspend states:

o standby – Using QorIQ sleep hardware low-power state
o mem – Using QorIQ deep sleep hardware low-power state
o disk – Powers off all hardware (suspend to disk/hibernation)

Wakeup from a suspend state can be triggered through various system interrupts and events. The usable
wakeup events on each SoC could be different. The wakeup events include:

o MPIC timer
o Ethernet magic packet
o Ethernet user defined packet
o USB plug/unplug events
o SD card plug/unplug events
o External interrupts
o GPIO events

4.1 Usage
• Kernel build options required:

o CONFIG_SUSPEND (needed by all three suspend states)
o CONFIG_HIBERNATION (only needed by disk state)

• Different suspend states can be triggered through sysfs interface by using different commands
listed below:
#echo standby > /sys/power/state
#echo mem > /sys/power/state
#echo disk > /sys/power/state

4.2 Deep sleep high level process
Figure 4 shows the typical flow of deep sleep entrance and wakeup on recent chips (for example, T1040
and LS1021). The blocks in orange are actions owned by the system software, and blocks in green are
actions owned by hardware (board and SoC).

QorIQ Power Management, Rev. 0

9 Freescale Semiconductor

Figure 4. Deep sleep entrance and wakeup flow (typical)

The following procedure outlines deep sleep entrance:
1. User/application triggers deep sleep.
2. Linux freezes all the on-going tasks.
3. Linux calls suspend callbacks of each device driver to backup device states and stop device

properly.
4. Linux puts all the non-booting CPUs offline.
5. RCPM driver backs up states of booting CPU in DDR, puts DDR into self-refresh, initializes and

trigger the deep sleep state machine.
6. Deep sleep state machine puts the SoC into LPM35 low-power state and triggers board action.
7. Board control logic powers off most power rails of the SoC and shuts down unused devices on

the board.
8. Deep sleep is entered.

Similarly, deep sleep wakeup can be performed with the following procedure:
1. Deep sleep state machine observes wakeup event and triggers board action.
2. Board control logic powers-on the SoC and on-board devices that were powered off.
3. Deep sleep state machine triggers a warm reset, and CPU starts running boot code.
4. Boot loader finds out this is a deep sleep restore, initializes the DDR controller, pulls DDR out of

self-refresh, and jumps to the Linux resume code in DDR.

QorIQ Power Management, Rev. 0

10 Freescale Semiconductor

5. RCPM driver restores backed up core states and cleans up deep sleep state machine.
6. Linux brings all the non-booting CPU online.
7. Linux calls resume callbacks of each device driver to restore device states and kick starts the

device.
8. Linux resumes all the frozen tasks.
9. System is back to normal.

4.3 Deep sleep detailed sequence
This section explains the detailed process that happens during the deep sleep entrance and wakeup.

4.3.1 Deep sleep entrance process
All steps below happen in Linux kernel space:

1. Sync file systems.
2. Suspend prepare:

a. Prepare console.
b. Send PM_SUSPEND_PREPARE notification.
c. Disable user-mode helper.
d. Freeze processes and kernel thread (freezable only, normal kthreads are non-freezable,

freezable kthread need to be specifically configured).
3. Set gfp_allowed_mask to avoid I/O in malloc.
4. Platform specific suspend_ops->begin().
5. Suspend console.
6. Device PM suspend start:

a. Call .prepare() callbacks of device drivers.
b. Call .suspend() callbacks of device drivers with async callbacks scheduled.

7. Platform-specific suspend_ops->prepare().
8. Device PM suspend end:

a. Call .suspend_late() callbacks.
b. Disable all interrupts except ones with IRQF_NO_SUSPEND in IRQ controller.
c. Pause cpuidle framework.
d. Call .suspend_noirq() callbacks of device drivers with interrupt disabled.

9. Platform specific suspend_ops->prepare_late().
10. Disable all CPUs other than the booting CPU.
11. Arch disable all interrupts (clear EE) – no return for interrupt triggered wakeup.
12. Call suspend() callbacks for system core devices, such as ktime.
13. Last check on pending wakeup events.
14. Call platform-specific suspend_ops->enter() //Using T1040 as example, other silicon

are similar:

QorIQ Power Management, Rev. 0

11 Freescale Semiconductor

a. Mask interrupts in RCPM (POINT of NO RETURN).
b. Backup content of DDR which will be damaged in DDR training.
c. Setup resume pointer to SCFG_SPARECR2 register.
d. Enable warm reset in SCFG_DPSLPCR register.
e. Setup state machine in the EPU.
f. Backup core states into DDR memory.
g. Flush CPC cache.
h. Setup environment for running code without RAM.
i. Load the code into icache and start running the code in cache.
j. Put DDR into self-refresh.
k. Notify board control logic(FPGA/CPLD) to be ready for deep sleep entrance (monitor

shared pins for deep sleep event) through writing board control logic register.
l. Assert MCKE isolation (GPIO1[29]) so that DDR MCKE signal is driven by board

instead of SoC.
m. Trigger EPU state machine to take the SoC into LPM35 state.
n. EPU asserts board isolation (EVT_B[9]) to board control logic, to isolate SoC I/O pins

with board.
o. EPU de-asserts POWER_EN to notify the board control logic (FPGA/CPLD) to shut down

power rails for cores and most I/O.
p. Deep sleep is entered.

Note:
COLOR for common steps in Linux suspend framework

COLOR for platform specific steps

COLOR for board-related steps that need board design collaboration

4.3.2 Deep sleep wakeup process
1. Deep sleep wakeup process before u-boot:

a. EPU detects wakeup event.
b. EPU asserts POWER_EN to notify the board control logic (FPGA/CPLD) to turn on

power rails.
c. EPU waits POWER_OK to be asserted by the board.
d. EPU issues device warm reset.
e. PBL loads RCW and PBI.
f. Secure boot authentication is bypassed.

2. Deep sleep wakeup process in u-boot:
a. Start running u-boot, and u-boot finds out this is deep sleep restore by checking

CRSTSR[WDRFR] .

QorIQ Power Management, Rev. 0

12 Freescale Semiconductor

b. Notify board control logic (FPGA/CPLD) to be out of deep sleep state through
writing board control logic register.

c. Disable MCKE isolation on board.
d. Re-initialize DDR controller with by-pass mode, do the DDR training in specific

address.
e. Bring DDR out of self-refresh.
f. Restore DDR content damaged by DDR training.
g. Get the kernel re-entry point from SCFG_SPARECR2 and jump to it.

3. Deep Sleep wakeup process transfer to Linux kernel space for all steps below:
4. Platform specific setup (leftover for suspend_ops->enter()):

a. Setup non-booting CPUs and MMU.
b. Restore core states from memory.
c. Disable warm reset.
d. Clean up EPU state machine.

5. Call resume() callbacks for system core devices (such as ktime).
6. Arch enable all interrupts (set EE).
7. Enable all CPUs other than the booting CPU.
8. Platform specific suspend_ops->wake().
9. Device PM resume start:

a. Call .resume_noirq() callbacks.
b. Enable interrupts on the IRQ controller.
c. Resume cpuidle framework.
d. Call .resume_early() callbacks.

10. Platform specific suspend_ops->finish().
11. Device PM resume end:

a. Call .resume() callbacks with async callbacks scheduled.
b. Call .complete() callbacks.

12. Resume console.
13. Platform specific suspend_ops->end().
14. Set gfp_allowed_mask to allow I/O in malloc.
15. Suspend finish:

a. Thaw processes.
b. Call PM_POST_SUSPEND notifiers.
c. Restore console.

Note:
COLOR for common steps in Linux suspend framework

COLOR for platform specific steps

COLOR for board-related steps that need board design collaboration

QorIQ Power Management, Rev. 0

13 Freescale Semiconductor

4.4 Timing and order of device callbacks
Each device driver can register different callbacks which will be called at different timings. We can
refer to the detailed sequence introduced above for the exact timing in the whole process. Due to the
dependency of different devices or drivers, maintaining a particular order when invoking callbacks of
different device drivers in a same timing is critical. For the same timing, all the devices will be
traversed for available callback according to the order of an existing dpm_list data structure in Linux.

4.4.1 Order of different timing and traverse order in each timing
• Entrance:

− Prepare() – dpm_list order
− Suspend()– reverse dpm_list order
− Suspend_late()– reverse dpm_list order
− Suspend_noirq ()– reverse dpm_list order

• Wakeup:

− Resume_noirq()– dpm_list order
− Resume_early()– dpm_list order
− Resume()– dpm_list order
− Complete() – reverse dpm_list order

4.4.2 Order of dpm_list
The order of dpm_list is critical for the order of callbacks in the same timing. The dpm_list is created
according to the order of device creation with device_add() routine during the Linux boot up and
runtime hotplug. As a general rule, the bus device or parent device needs to be registered before other
devices on the bus or before any child devices; dependent devices need to be registered before the
device that is having a dependency. Below shows how the code impacts the actual dpm_list at runtime.

• For platform devices, which are added by device tree probe, the order is the same as the device
node defined in the device tree. If a device node is defined multiple times in dts (overriding),
take the order of first definition.

• For bus devices, which are added by bus probe, the order depends on probe timing and the order
of driver in the kernel Makefile:

− Initcall level of the bus probing
− Makefile order in the same level

• Hotplugged devices are registered after devices that are present during boot up.

As a reference, the embedded file below is an example of dpm_list on T1040:

QorIQ Power Management, Rev. 0

14 Freescale Semiconductor

t1040-dpm-list.txt

4.5 Callbacks in different domains
PM callbacks can be defined in multiple domains for a device in the Linux device hierarchy
(pm_domain, type, class, bus, and driver) for each callback timing. Only one of these callbacks is
actually called for a device in each callback timing. The first available callback in the domain list below
is used, while other callbacks in later domains are ignored:

1. dev->pm_domain
2. dev->type->pm
3. dev->class->pm / dev->class->suspend
4. dev->bus->pm / dev->bus->suspend
5. dev->driver->pm

4.6 Suspend debugging
Linux system suspend is a complex process. Any issue in the process can make the suspend fail
completely. Below are a few debugging methods to help find potential issues:

• Enable console output during deep sleep entrance/wakeup process
• Put no_console_suspend in the kernel boot parameter (include in bootargs env setting in

U-Boot).
• CONFIG_PM_DEBUG kernel option
• Enabling this kernel option and recompiling the kernel includes verbose logging into the kernel

that could provide useful information during debugging. You might also need to increase the
Linux console loglevel to make the debugging output visible on console.
echo 7 > /proc/sys/kernel/printk

• ASLEEP LED on board
• Normally there is an ASLEEP LED on the reference boards to reflect the SoC’s ASLEEP signal.

This LED is lit up by the hardware to indicate that sleep/deep sleep is entered on the SoC. If it is
not lit up, the hardware is not in sleep or deep sleep state.

4.7 Linux wakeup framework

4.7.1 Userspace interfaces
Enable wakeup rollback

QorIQ Power Management, Rev. 0

15 Freescale Semiconductor

The following command allows the device to enter deep sleep with rollback mechanism enabled, which
will rollback the entrance process when a Linux wakeup event is received from the issuing of the
command until the calling of platform specific deep sleep entrance code in the final stage.
#echo `cat /sys/power/wakeup_count ` > /sys/power/wakeup_count &&
echo mem > /sys/power/state

Device wakeup enable/disable
The following commands enables or disables a specific device as a Linux wakeup source.
#echo enable > /sys/device/.../power/wakeup

#echo disable > /sys/device/.../power/wakeup

4.7.2 Kernel APIs
The following APIs are kernel APIs that should be used by the device drivers to register as a Linux
wakeup source to the system or to trigger a Linux wakeup event.

int device_init_wakeup(struct device *dev, bool val); //Initialize the wakeup
framework for a device

void device_set_wakeup_capable(struct device *dev, bool capable); //Set
device wakeup capability
int device_set_wakeup_enable(struct device *dev, bool enable);
//Enable/disable device wakeup event
void pm_wakeup_event(struct device *dev, unsigned int msec); //Trigger a
device wakeup event for rollback

4.7.3 Avoid losing wakeup event using the wakeup_count mechanism
The wakeup framework introduces a new global sysfs attribute, /sys/power/wakeup_count,
associated with a running counter of wakeup events and a helper function, pm_wakeup_event(),
that may be used by kernel subsystems to increment the wakeup events counter.

/sys/power/wakeup_count may be read from or written to by user space. Reads always succeed
and return the current value of the wakeup events counter. Writes, however, only succeed if the written
number is equal to the current value of the wakeup events counter. If a write is successful, it causes the
kernel to save the current value of the wakeup events counter and to compare the saved number with the
current value of the counter at certain points of the subsequent suspend (or hibernate) sequence. If the
two values don't match, the suspend sequence is aborted just as though a wakeup interrupt happened.
Reading from /sys/power/wakeup_count again turns that mechanism off.

4.8 Deep sleep auto-response
Auto-Response is a Freescale-specific feature that can process and respond to certain types of packets
(for example, ICMP, SNMP, and so on) so that the device appears online to other networked devices but
doesn’t need to be woken up from deep sleep to process these packets.

QorIQ Power Management, Rev. 0

16 Freescale Semiconductor

4.8.1 Auto response enablement flow
This figure shows the flow chart for entering deep sleep with the Auto-Response feature enabled.

Figure 5. Entering deep sleep with Auto-Response enabled

4.8.2 DPAA drivers and callbacks involved
The hardware configuration for auto-response mode is done automatically during deep sleep entrance
and wakeup making use of the device driver callbacks. Listed below are all the DPAA Ethernet related
driver files. Files that are highlighted in bold font are the files that include a PM callback.
drivers/net/ethernet/freescale/xgmac_mdio.c

drivers/net/ethernet/freescale/fsl_pq_mdio.c

drivers/net/ethernet/freescale/fman/src/wrapper/lnxwrp_fm.c :
suspend()

drivers/net/ethernet/freescale/fman/src/wrapper/lnxwrp_fm_port.c

QorIQ Power Management, Rev. 0

17 Freescale Semiconductor

drivers/net/ethernet/freescale/dpa/dpaa_eth_shared.c: suspend()

drivers/net/ethernet/freescale/dpa/offline_port.c: suspend()

drivers/net/ethernet/freescale/dpa/dpaa_eth_generic.c

drivers/net/ethernet/freescale/dpa/dpaa_eth_macless.c

drivers/net/ethernet/freescale/dpa/mac.c

drivers/net/ethernet/freescale/dpa/dpaa_eth_proxy.c: suspend()

drivers/net/ethernet/freescale/dpa/dpaa_eth.c : suspend()

drivers/staging/fsl_qbman/qman_config.c : suspend_noirq()

drivers/staging/fsl_qbman/bman_config.c : suspend_noirq()

drivers/staging/fsl_qbman/qman_high.c : pm_domain->suspend_noirq()

drivers/staging/fsl_qbman/bman_high.c: pm_domain->suspend_noirq()

drivers/staging/fsl_pme2/pme2_ctrl.c: suspend()

5 CPU idle feature
The CPU idle feature dynamically puts a CPU core in low-power states when there is nothing left to be
done on that CPU, and automatically wakes up the core when there is a task to be done. This feature
normally uses light weight low-power states with small latency and can be woken up by timer and IPI
interrupts.

5.1 Usage
• The feature is enabled by default. There is no kernel configure option for it.
• It can be turned off by adding “powersave=off” to kernel bootcmd (bootargs env setting if

U-Boot is used)
• On e6500 cores, CPU idle enters the PW10 state by default. We can configure the system to

enter the PW20 state by using the command:
#echo 1 > /sys/devices/system/cpu/cpuX/pw20_state

• For e500v2 cores, CPU idle enters the DOZE state by default. We can configure the system to
enter the NAP state by using the command:
#echo 1 > /proc/sys/kernel/powersave_nap

5.2 Single state CPU idle implementation
1. There is a never-ending task running on each CPU (swapper).
2. cpu_idle() is invoked when there is nothing else to do.
3. Calls platform power saving routines if available (for example, ppc_md.power_save() for

Power Architecture®).

QorIQ Power Management, Rev. 0

18 Freescale Semiconductor

4. Enters corresponding low-power state depending on the configuration mentioned in the Usage
section above.

5. Exits the low-power state when there is an interrupt pending to the core.

5.3 Multi-state CPU idle support (not supported yet)
There is a new CPU idle framework added to Linux to choose a suitable low-power state to enter when
system is in idle condition.

The CPU idle subsystem uses governors to determine how a low-power state is chosen. Currently there
are two governors for CPU idle:

• ladder – Enters deeper low-power state step by step (used on jiffies based system).
• menu – Calculates and selects a state by considering previous knowledge of the system load and

the following aspects (used on tick-less system):
o Energy breakeven point
o Performance impact
o Latency tolerance

For example, the CPU idle governor can choose from the following low-power states on e6500:
• PW10
• PW20
• PCL10

6 CPU hotplug feature
CPU hotplug is a feature that allows removal and insertion of a CPU statically into the Linux system
during runtime.

6.1 Usage
• Kernel build option required: CONFIG_HOTPLUG_CPU
• Runtime control through sysfs: /sys/devices/system/cpu/*

o To remove a CPU from the system:
#echo 0 > /sys/devices/system/cpu/cpuX/online

o To insert a CPU from the system:
#echo 1 > /sys/devices/system/cpu/cpuX/online

6.2 Detailed removal process
The actual removal process needs to be split into two parts. One part is done on the core issuing the
removal command, which could be on any running core. The other part is running on the core to be
removed.

Running on the core issuing the command:

QorIQ Power Management, Rev. 0

19 Freescale Semiconductor

1. Send CPU_DOWN_PREPARE notification to all in-kernel interested modules
2. Migrate all processes to other CPU(s)
3. Migrate all interrupts to a new CPU
4. Migrate timers/bottom half/tasklets to a new CPU
5. Call an architecture specific routine __cpu_disable()
6. Send CPU_DEAD notification to all in-kernel modules
7. __cpu_disable() calls platform specific cpu_disable()

a. Clear bit in the online cpu mask
b. Migrate IRQ

Running on the core to be removed:
1. Finish current scheduling time slice.
2. Because all tasks and interrupts have been migrated to other cores, the core will have nothing left

to do and enter cpu_idle().
3. cpu_idle() checks cpu_mask and find out that the current CPU is set to offline.
4. Calls platform specific CPU disable code (for example, ppc_md.cpu_die() =

smp_85xx_mach_cpu_die() for Power Architecture®)
a. Flush and disable L1 cache
b. Actually set the CPU to Low-power state (for example, PH20 state for e6500 and Nap for

earlier cores)

6.3 Compatibility issues
Normal Linux applications and drivers should be correctly running on any online CPU. But sometimes
applications and drivers are designed to perform a specific task on a specific CPU in order to achieve
better performance. These applications and drivers need to take action when CPU hotplug is triggered.

For kernel space drivers: add callbacks to the notification chain by using
register_cpu_notifier() for the following events:

a. CPU_ONLINE
b. CPU_UP_PREPARE
c. CPU_DOWN_PREPARE
d. CPU_DEAD

For user space applications or drivers: Process/thread affinity is automatically be updated by the system
if original affinity setting cannot be met after CPU hotplug operation. Applications can get the
notification of CPU hotplug event by using the Linux uevent interface through udevd utility or
/sbin/hotplug utility.

QorIQ Power Management, Rev. 0

20 Freescale Semiconductor

7 CPU freq feature
CPU freq, also known as Dynamic Frequency Scaling (DFS), enables changes to the working frequency
of CPU/cores at runtime. There are different use cases that require different frequency change strategies.
Linux CPU freq framework defines different governors to represent these use cases. The governors can
also be grouped into static governors and dynamic governors:

• performance (static) – Sets the CPU statically to the highest frequency within the borders of
scaling_min_freq and scaling_max_freq.

• powersave (static) – Sets the CPU statically to the lowest frequency within the borders of
scaling_min_freq and scaling_max_freq.

• userspace (static) – Allows the user, or any userspace program running with UID "root", to set
the CPU to a specific frequency by making a sysfs file "scaling_setspeed" available in the
CPU-device directory.

• ondemand (dynamic) – Sets the CPU frequency depending on the current usage. Increase to the
highest frequency if the load is higher than threshold. Decrease to the lowest frequency if the
load is not there.

• conservative (dynamic) – Also sets the CPU frequency depending on the current usage. It
gracefully increases and decreases the CPU speed rather than jumping to max speed the moment
there is any load on the CPU.

7.1 Usage
The following kernel configuration options should be enabled in order to use the CPU freq feature:

• CONFIG_CPU_FREQ – the option needed for all CPU freq features
• CONFIG_MPC85xx_CPUFREQ – enables the driver for JOG hardware feature, required for

MPC8536 and P1022
• CONFIG_QORIQ_CPUFREQ – enables the driver for QorIQ DFS hardware feature, required

for other QorIQ P, T and LS series chips
• CONFIG_ CPU_FREQ_GOV_* – enables the support for respective governors

There are different commands used for different governors:
• performance (static)

echo performance >
/sys/devices/system/cpu/cpuX/cpufreq/scaling_governor

• powersave (static)
echo powersave >
/sys/devices/system/cpu/cpuX/cpufreq/scaling_governor

• userspace (static)
There are multiple commands needed when using userspace governor.
1. Change the governor to userspace

QorIQ Power Management, Rev. 0

21 Freescale Semiconductor

echo userspace >
/sys/devices/system/cpu/cpuX/cpufreq/scaling_governor

2. Get available frequencies of cpuX

cat
/sys/devices/system/cpu/cpuX/cpufreq/scaling_available_frequencies

 1199999 599999 299999 799999 399999 199999 1066666 533333
266666

3. Change the core frequency to 533 MHz

 # echo 533333 >
/sys/devices/system/cpu/cpuX/cpufreq/scaling_setspeed

4. Verify the frequency setting

cat /sys/devices/system/cpu/cpuX/cpufreq/scaling_cur_freq

 533333
• ondemand (dynamic)

echo ondemand >
/sys/devices/system/cpu/cpuX/cpufreq/scaling_governor

• conservative (dynamic)

echo conservative >
/sys/devices/system/cpu/cpuX/cpufreq/scaling_governor

QorIQ Power Management, Rev. 0

22 Freescale Semiconductor

7.2 DFS hardware feature

Figure 6. DFS hardware feature diagram

The DFS hardware feature depends on the hardware capability to switch the core clock among different
PLLs without introducing clock glitch.

8 How to use PM technologies effectively
Each PM feature has different benefits and different side effects. Some features can naturally be
suitable to certain kind of use cases and not be suitable for other use cases. It is critical to choose the
correct set of PM feature(s) for a specific application in order to achieve optimal power saving without
having unacceptable side effects.

8.1 The pros and cons of PM features

8.1.1 Benefit: power saving
The main purpose of using PM technologies is to save power. However, different static PM features
have different power savings on different hardware platforms. Also, dynamic PM features or
policy/governor have different power savings on different use cases. Knowing the specific set of enabled
PM technologies that work well on certain hardware platforms helps you have a better understanding of
how much power can actually be saved.

QorIQ Power Management, Rev. 0

23 Freescale Semiconductor

8.1.2 Side effect: latency
One of the major side effects of using PM technologies is the additional latency introduced. The
hardware can enter low-power states when all or part of the system is in idle. But when a new request
comes, normally the system needs to be restored to the normal working state before serving the new
request. The restore from low-power states to normal working state requires time from both hardware
and system software. Both aspects contribute to the latency for serving the new request.

There are different definitions of latency from the user’s point of view:

• Response latency – Time between request arrival and system starting to deal with the
request and provide initial response. Critical to UI based use case or RT use case.

• Completion latency – Time between request arrival and completion of the request.
• Speed up latency – Time between request arrival and the time when the performance/capacity

has increased to the point with which the request can be serviced with QoS requirements met.

8.1.3 Side effect: performance
Some static PM features, such as static CPU freq and CPU hotplug reduce the system capability if
enabled and impact peak performance. Some dynamic PM features also introduce overhead on the cores
for doing the load monitoring and might also impact peak performance.

8.1.4 Rule of thumb
There is a rule of thumb to understand the pros and cons of different PM features. If a PM feature
provides more power saving, it normally introduces more latency or more performance impact. An
analysis of the benefits and drawbacks is discussed in the Benchmarking section below.

Figure 7. Power saving and the latency/performance impact

QorIQ Power Management, Rev. 0

24 Freescale Semiconductor

8.2 Benchmarking

8.2.1 Power consumption measurement
We have included the power measurement solution by having power monitoring chip designed in some
of our development boards. This figure shows how we measure the power consumption and gather the
consumption readings.

Figure 8. Measuring power consumption

The on-board power monitor chip is connected to an I2C bus. Reading it with CPU would be the easiest
way, but that introduces additional load to the CPU and impact accuracy of power consumption
measurement. The FPGA available on most Freescale QDS reference boards provides OCM
mechanism, which can read the I2C power monitor periodically and accumulate the readings. The
readings can be exported through OCM console to an external server for further process.

8.2.2 Latency measurement

Hardware latency measurement

We can use an oscilloscope to catch the timing of certain PM-related signals and calculate the latency.
Below is an example of measuring the hardware wakeup latency of P1022 sleep.

For resume process, the hardware part begins before the software part. Usually the system is woken up
by an interrupt. The start point is the IRQ signal. Take P1022DS as an example: the event button is the
wakeup source and is connected to IRQ8. The end point is the ASLEEP signal.

QorIQ Power Management, Rev. 0

25 Freescale Semiconductor

This figure shows the scope snapshot for a resume-from-sleep latency test on P1022DS. The yellow line
is the IRQ8, and the red line is the ASLEEP signal.

Figure 9. Resume-from-sleep latency test on P1022DS

From the snapshot on oscilloscope we can see the hardware latency of resume is about 20 ns.

Software latency measurement

There are several ways of getting the latencies in software:

1. Using standard debugging information to get device suspend/resume latency
Linux kernel provides a standard mechanism using hrtimer for driver-specific suspend/resume
latency measurement.

There are 3 steps for using this mechanism:

1. Enable CONFIG_PM_DEBUG in kernel configure, recompile the kernel, and boot up
using the new kernel

2. Echo 1 to /sys/power/pm_print_times file.
3. Increase the console log level to debug.
4. Use command to trigger system suspend and wakeup the system.

After that, you will find additional information printed during the entrance of system suspend
and wake up from suspend. The information includes not only the overall latency of all devices
in certain stage, but also how long each device used in that stage. Below is an example of the
console output.

QorIQ Power Management, Rev. 0

26 Freescale Semiconductor

PM: Syncing filesystems ... done.

Freezing user space processes ... (elapsed 0.01 seconds)
done.

Freezing remaining freezable tasks ... (elapsed 0.01
seconds) done.

PM: prepare suspend of devices complete after 1.071 msecs

calling 0.0:02+ @ 3210, parent: fffdf0054.mdio-mux-emi1

call 0.0:02+ returned 0 after 1 usecs

calling 0.0:01+ @ 3210, parent: fffdf0054.mdio-mux-emi1

call 0.0:01+ returned 0 after 0 usecs

calling fffdf0054.mdio-mux-emi1+ @ 3210, parent:
fffdf0000.board-control

call fffdf0054.mdio-mux-emi1+ returned 0 after 0 usecs

...

PM: suspend of devices complete after 3547.976 msecs

PM: late suspend of devices complete after 0.876 msecs

calling 0001:01:00.0+ @ 3210, parent: 0001:00:00.0

call 0001:01:00.0+ returned 0 after 79 usecs

calling 0001:00:00.0+ @ 3210, parent: pci0001:00

call 0001:00:00.0+ returned 0 after 30 usecs

calling 0000:00:00.0+ @ 3210, parent: pci0000:00

call 0000:00:00.0+ returned 0 after 33 usecs

PM: noirq suspend of devices complete after 26.721 msecs

Disabling non-boot CPUs ...

Enabling non-boot CPUs ...

CPU1 is up

...

CPU23 is up

calling 0000:00:00.0+ @ 3210, parent: pci0000:00

call 0000:00:00.0+ returned 0 after 51 usecs

calling 0001:00:00.0+ @ 3210, parent: pci0001:00

call 0001:00:00.0+ returned 0 after 36 usecs

calling 0001:01:00.0+ @ 3210, parent: 0001:00:00.0

QorIQ Power Management, Rev. 0

27 Freescale Semiconductor

call 0001:01:00.0+ returned 0 after 79 usecs

PM: noirq resume of devices complete after 26.737 msecs

PM: early resume of devices complete after 0.594 msecs

calling ffe124000.localbus+ @ 3210, parent: none

call ffe124000.localbus+ returned 0 after 1 usecs

...

calling 0.0:01+ @ 3890, parent: fffdf0054.mdio-mux-emi1

call 0.0:01+ returned 0 after 0 usecs

calling 0.0:02+ @ 3890, parent: fffdf0054.mdio-mux-emi1

call 0.0:02+ returned 0 after 0 usecs

PM: resume of devices complete after 8425.230 msecs

PM: complete resume of devices complete after 0.864 msecs

Restarting tasks ... done.

The resolution of the latency is at microsecond level. If the time consumed by the device is very
short it just outputs 0 usecs. For a more accurate latency measurement, please use the Time Base
measurement.

2. Using Cyclictest to measure task wakeup latency (with cer tain PM features enabled)
The document and how-to of the utility can be found at:

• https://rt.wiki.kernel.org/index.php/Cyclictest
• http://people.redhat.com/williams/latency-howto/rt-latency-howto.txt

The tool was designed to measure Linux task wakeup latency. It can also be used to measure the
impact of PM features on the task wakeup latency when tested with PM features enabled.

The working mechanism to measure the latency introduced by the CPU idle feature is demonstrated
in the following figure:

https://rt.wiki.kernel.org/index.php/Cyclictest�
http://people.redhat.com/williams/latency-howto/rt-latency-howto.txt�

QorIQ Power Management, Rev. 0

28 Freescale Semiconductor

Figure 10. Working mechanism to measure latency

3. Measure latency between two customized points

a. Using hr timer API
The Linux hrtimer subsystem in kernel can be used for all software latency measurements.
This subsystem is based on Decrementer interrupt and precision is the same as Time base on
PowerPC.

Use ktime_get() API before and after the measurement points. The difference between
the two readings is the latency. Be advised that the ktime_get() API also introduces
some latency, so if you want to get latency in nanosecond resolution you need to use Time
Base or ATB based measurement.

b. Using Time Base (TB) registers
The Time Base is a hardware counter driven at an implementation-dependent frequency. For
example, on P1022DS the incremental frequency of the time base is CCB frequency divided
by eight and the precision of TB measurement is at the 10 ns level. See the silicon reference
manual to get the detailed frequency of TB.

By reading TB registers before and after the test process, we can get the latency result using
this formula:

(TB_after – TB_before) / TB frequency

This is not a standard time measuring mechanism in Linux kernel and is only available on
Power Architecture®.

c. Using Alternate Time Base (ATB) registers

QorIQ Power Management, Rev. 0

29 Freescale Semiconductor

The most precise latency tests count CPU cycles. The ATB registers record the number of
CPU cycles since system startup. By reading this register before and after the measurement
points, we can get an accurate latency result. For example, the overhead of reading ATB
registers is 8 cycles on P1022DS. The real latency could be calculated using this formula:

(ATB_after – ATB_before – 8) / core frequency

Then we can get the real latency time according to the CPU working frequency.

The hardware limitation of this method is that ATB counting could be affected by low-power
states or frequency changing. As in the e6500 core, ATB does not increment when it’s in
low-power states PW20, PH20, or PH30. In PH30, the value of the ATB resets to 0 when the
core is reset to exit PH30. Also, if CPU frequency scaling feature is using dynamic
governors, such as ondemand and conservative, this method should be avoided.

Another limitation of this method is that ATB counting is not synchronized among different
processors. An ATB reading should only be done on the same processor for both start and
end points.

This is also not a standard time measuring mechanism in Linux kernel and is only available
on Power architecture.

8.2.3 Performance measurement
The peak performance impact of these features can be measured by running system benchmarking tools,
such as CoreMark, lmbench, Dhystone, and so on.

8.2.4 Sample benchmark for T4240QDS
The chart below shows the benchmark result we got for T4240 in our test environment. Note that the
consumption measured on another system could be different from the results below, as the environment
temperature impacts power consumption and even each individual chip of the same model has its own
power characteristics. You need to check the silicon data sheet for the guaranteed power consumption
when designing your power supply and cooling system. The power benchmark here is useful to
understand the approximate percentage of power savings when a specific PM feature is used.

QorIQ Power Management, Rev. 0

30 Freescale Semiconductor

Figure 11. T4240 benchmark results

Hardware configurations of the benchmark:
• T4240 rev1, 6GB DDR@800MHz, CCB@667MHz, CPU@1.67GHz.
• T4240 rev2, 6GB DDR@933MHz, CCB@733MHz, CPU@1.67GHz.

Notes about the measurement done:
• Latency: The latency of freq and hotplug cases is the speed up latency while latency of other

cases is the response latency.
• Peak Performance: The highest CoreMark score we can get when certain PM features are

enabled. The power consumption of idle cases is measured without this CoreMark running.

The naming of cases in the chart is very simple; further explanation of the cases can be found below:
• Fully loaded: The system is fully utilized with the Coremark tool
• Idle: There is no application running on the system
• No PM features: No PM feature is enabled on the system, which means the Linux system is

actually running an idle loop without entering any low-power states.
• PW10/PW20: CPU idle Linux PM feature is enabled, and it is configured to enter PW10 and

PW20, respectively.
• Freq: All the cores have used the CPU freq Linux PM feature to reduce to the half frequency.
• Hotplug: Half of the cores are removed using the CPU hotplug Linux feature.
• Sleep: System has entered sleep low-power state using the Linux suspend PM feature.

Fully
loaded

Idle
No PM
feature

Idle
PW10

Idle
PW20

Idle
PW20,

freq

Idle
PW20,

hotplug
Sleep

T4240 Rev1 55001 49257 31978 15153 11985 15164 9906
T4240 Rev2 34438 31926 15004 11477 10101 11488 5788
Latency 6.2 6.1 7.1 538 6634 811274
Peak Performance 166891 166681 166787 166891 83006 83587

1

10

100

1000

10000

100000

1000000

0

10000

20000

30000

40000

50000

60000

La
te

nc
y

(u
s)

Po
w

er
 co

ns
um

pt
io

n
(m

W
)

* *

QorIQ Power Management, Rev. 0

31 Freescale Semiconductor

8.3 Understand your use case
The PM features try to match the load with hardware capability. It is critical to understand the
characteristics of the system workload for your specific use case or application. Optimal power saving
without impact on the Quality of Service is achieved only when the most suitable PM feature set for
your use case is determined.

8.3.1 Load triggering mechanism
First, understand the trigger of workload in your use case. This helps determine if the workload is
predictable or not from the user or system point of view. Listed below are a few common categories for
the trigger of workload:

• System Application
− Autonomous application running on the system
− Characteristic: Load predictable to System
− Example products: Monitoring(NVR), automatic control, consumer electronics

• Direct User Input
− Human through Human-machine interface
− Example trigger: Buttons/switches, Graphic UI, Plug/unplug, Console
− Characteristic: Load predictable to User or System maintainer
− Example products: PC, consumer electronics, printing & imaging

• Incoming load from Network
− Remote peer connected through network
− Example trigger: New packets, New transactions
− Characteristic: Load Unpredictable to System or System maintainer
− Example products: server, networking equipment

8.3.2 Load profile a certain time
The workload at a certain point of time in a system can be defined into the following states:

• Performance wise
− Fully loaded
− Partially loaded
− Completely idle

• Function wise when loaded
− Partial feature used
− Full feature used

8.3.3 Load profile within a period of time
The workload can also be characterized within a period of time. Listed below are a few load profiles in
a real system:

• Sustained Load: Load that maintains a moderate level of utilization and persists for some time

QorIQ Power Management, Rev. 0

32 Freescale Semiconductor

Figure 12. Sustained load

• Burst load: Load requires high utilization when running but completely idle when not running

Figure 13. Burst load

• Mixed load: Mixture of burst load and sustained load in a system

Figure 14. Mixed load

8.3.4 Load Type in Linux System
Workload can also be split into different categories in Linux system according to its running context and
task property:

• Kernel space
System calls – This is in process context and normally associates with I/O generated
by application.

− Kernel threads – This is normally for maintenance work or deferred work in kernel.
− Interrupts – This is in IRQ context and normally associates with incoming I/O.

• User space
− Real-time tasks – Processes with real-time scheduling attributes
− Normal tasks – Processes without real-time scheduling attributes

QorIQ Power Management, Rev. 0

33 Freescale Semiconductor

8.3.5 Quality of Service (QoS) requirements
There are normally expectations on quality of service depending on use case or application. These
expectations should be considered when choosing PM technologies. The common QoS expectation
could include the following:

• Latency requirement
− Low latency (RT)
− Medium latency (Networking)
− High latency (Human interactive)

• Throughput requirement
• Performance requirement

8.4 Match PM features with use case
Now we will try to use decision trees and a matrix to help choose the correct PM technologies based on
the understanding of your use case.

8.4.1 Dynamic PM vs. static PM
First, we need to consider if we want to use static PM features or dynamic PM features.

Figure 15. Use cases: static vs. dynamic PM features

Non-predictable load can only benefit from dynamic PM features. If the load can be predicted, normally
static PM features are more efficient than the counterpart in dynamic PM features. However, dynamic
PM provides more convenience by requiring no change or very little change to the software to take the
benefit of power saving.

Predictable load to the application can choose application controlled static PM features and predictable
load to the user can choose user controlled static PM features.

QorIQ Power Management, Rev. 0

34 Freescale Semiconductor

8.4.2 Choose static PM features
If we decided to use static PM features, according to the profile of load, the user or application can
choose to trigger PM features based on the state machine below.

Figure 16. State machine for static PM features

When the system is completely idle, we can choose to enter system-wide low-power states, such as sleep
and deep sleep, in which most parts of the system stop working. When the system is partially idle, we
can use CPU freq and CPU hotplug features, in which the system is still functioning but with lower peak
performance. When the system is only using part of the functionalities provided by the hardware, we
can choose to disable the blocks that are not in use.

8.4.3 Choose dynamic PM features
If we decided to use dynamic PM features, the matrix below can help determine the list of features for
different load trigger and different load profile.

Table 7. Load trigger and load profile features

Network Triggered Application Triggered Mixed

Burst Load Autosleep + WoL

Autosleep + AR

CPUidle

CPUfreq (on-demand)

CPUidle

CPUfreq (on-demand)

Autosleep + WoL

Autosleep + AR

CPUidle

CPUfreq (on-demand)

QorIQ Power Management, Rev. 0

35 Freescale Semiconductor

Sustained Load Cascade PM + CPUidle

CPUfreq (conservative)

Power Aware scheduler

CPUfreq (conservative)

Cascade PM + CPUidle

Power Aware scheduler

CPUfreq (conservative)

Mixed Cascade PM + CPUidle

CPUfreq (on-demand)

CPUfreq (conservative)

CPUidle

CPUfreq (on-demand)

CPUfreq (conservative)

Cascade PM + CPUidle

CPUfreq (on-demand)

CPUfreq (conservative)

8.4.4 Filtering with latency requirement
You might get more than one option for PM features. The last step is to match the latency requirement
with the latency of the PM features matching your load profile. The benchmark result of different PM
features might come with the SDK. Below are the approximate levels of latencies on T4240 as an
example:

• Response latency
Table 8. Response latency

PM features T4240 Latency (us)

No PM(CPU idle disabled) 6.200

CPU idle PW10 6.106

CPU idle PW20 7.098

sleep 811,274 1

hibernation 12,601,000 2

1. Standard setting, variable with different devices enabled
2. Standard setting, variable with different hard disk and memory size

• Speed up latency

Table 9. Speed up latency

PM features T4240 Latency (us)

Static CPUfreq 17 ~ 98

CPU hotplug 6,634

Dynamic CPUfreq ondemand 9,531 ~ 19,911 1

Dynamic CPUfreq conservative 9,531 ~ 209,911 1

QorIQ Power Management, Rev. 0

36 Freescale Semiconductor

1. These are measured with the default setting of the governors. There are tunable parameters for each governor,
which impacts the latency.

9 Summary
Increasing power consumption is a big challenge for the entire IT industry. Power management
technologies are very helpful in reducing the overall power consumption of electronic devices by
matching the runtime capability with runtime workload. Freescale QorIQ networking products provide
plenty of hardware low-power states and hardware Power Management (PM) features. These hardware
PM capabilities can be utilized in Linux by various standard Linux PM frameworks to achieve both
static and dynamic power saving in the system.

Different Linux PM features, different configurations, and different combinations result in different
power saving characteristics and side effects on latency and performance. It is critical to match the PM
features with your specific use case to achieve the best power saving without unacceptable impact on
latency and performance. By benchmarking the PM features available and analyzing the characteristics
of system work load, we can get a better match using the principles discussed in this white paper.

10 Revision history
This table provides a revision history for this white paper.

 Table 10. Revision history

Rev.
Number

Date Description

0 12/2014 Initial public release

QorIQ Power Management, Rev. 0

37 Freescale Semiconductor

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system
and software implementers to use Freescale products. There are
no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further
notice to any products herein. Freescale makes no warranty,
representation, or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale assume
any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer
application by customer’s technical experts. Freescale does not
convey any license under its patent rights nor the rights of others.
Freescale sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, QorIQ, and StarCore are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. &
Tm. Off. CoreNet and Layerscape are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the
property of their respective owners. ARM, ARM Powered, Cortex,
and TrustZone are registered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its
affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.
© 2014 Freescale Semiconductor, Inc.

Document Number: QORIQPMWP
Rev. 0

12/2014

	1 Power Management (PM) introduction
	1.1 Power consumption composition
	1.2 Power Management definition

	2 QorIQ PM features
	2.1 CPU core low-power states
	2.2 SOC/system-wide low-power states
	2.3 Other PM features

	3 Linux PM features
	3.1 Linux PM frameworks
	3.2 PM features in Freescale Linux SDK
	3.2.1 Static features
	3.2.2 Dynamic features
	3.2.3 SDK support matrix

	4 Linux system suspend feature
	4.1 Usage
	4.2 Deep sleep high level process
	4.3 Deep sleep detailed sequence
	4.3.1 Deep sleep entrance process
	4.3.2 Deep sleep wakeup process

	4.4 Timing and order of device callbacks
	4.4.1 Order of different timing and traverse order in each timing
	4.4.2 Order of dpm_list

	4.5 Callbacks in different domains
	4.6 Suspend debugging
	4.7 Linux wakeup framework
	4.7.1 Userspace interfaces
	4.7.2 Kernel APIs
	4.7.3 Avoid losing wakeup event using the wakeup_count mechanism

	4.8 Deep sleep auto-response
	4.8.1 Auto response enablement flow
	4.8.2 DPAA drivers and callbacks involved

	5 CPU idle feature
	5.1 Usage
	5.2 Single state CPU idle implementation
	1.1
	1.1
	5.3 Multi-state CPU idle support (not supported yet)

	6 CPU hotplug feature
	6.1 Usage
	6.2 Detailed removal process
	6.3 Compatibility issues

	7 CPU freq feature
	7.1 Usage
	7.2 DFS hardware feature

	8 How to use PM technologies effectively
	8.1 The pros and cons of PM features
	8.1.1 Benefit: power saving
	8.1.2 Side effect: latency
	8.1.3 Side effect: performance
	8.1.4 Rule of thumb

	8.2 Benchmarking
	8.2.1 Power consumption measurement
	8.2.2 Latency measurement
	Hardware latency measurement
	Software latency measurement

	8.2.3 Performance measurement
	8.2.4 Sample benchmark for T4240QDS

	8.3 Understand your use case
	8.3.1 Load triggering mechanism
	8.3.2 Load profile a certain time
	8.3.3 Load profile within a period of time
	8.3.4 Load Type in Linux System
	8.3.5 Quality of Service (QoS) requirements

	8.4 Match PM features with use case
	8.4.1 Dynamic PM vs. static PM
	8.4.2 Choose static PM features
	8.4.3 Choose dynamic PM features
	8.4.4 Filtering with latency requirement

	9 Summary

