Freescale Semiconductor
White Paper

Document Number: P408OVRTASTWP

Rev 0, 08/2009

Hardware and Software Assists in

Virtualization

Until recently, embedded systems were often built with
computing blocks containing a single CPU. Each block
included aprocessor, memory controller and I/O bridge. This
model has been along-lived one. As applications demanded
additional performance, Moore's Law delivered ever faster
and more sophisticated processors and bridge silicon. In
return, power dissipation grew as clock-rates and silicon
leakage increased with each generation of silicon
technology.

Recently, an industry-wide consensus has emerged that
physics no longer allows increasing clock rates within
practical power envelopes. To deliver increasing
performance, a similar consensus has arisen on the value of
offering multiple processing cores at limited clock ratesin
place of single cores running at significantly higher clock
rates. A multicore System-on-Chip (SoC) offers theoretical
performance increases within practical power envelopes.

When attempting to capture this theoretical multiprocessor
speedup, the first approach that comesto mind isleveraging
implicit instruction level parallelism. The approach has been
the subject of research and investment for years—with
parallelizing compilers one of the most obvious outcomes.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

SRy
ONPR A ®WN P

Partitions . .

Contents

MulticoreUseModels
Virtualization

Hypervisors

Real Embedded System Implementation
Hardware Assists,
Software ASSIStS . ..ot

Conclusion

freescale"

semiconductor

\
Y

4
A

Partitions

Fine-grained parallelization has achieved limited successin some application spaces. However, it has been
realized that embedded system architectures—particularly those in the telecom, networking and industrial
space - are aready naturally partitioned in at least three ways: data, control and management plane. This
separation has driven strong interest amongst OEMs to map the entire system to a multicore SoC in a
manner that ssimply integrates the previously stand-alone functions onto a single device.

This*consolidation” approach has many practical advantagesincluding minimizing theimpact to software
architecture. Once an entire system solution has been moved to a single multicore device, optimizationsto
leverage course-grained parallelism can be applied gradually over time.

Consolidation of multiple system components into a single multicore SoC was seen first in the PC server
space. With early attention from major PC silicon vendors, multicore devices coupled with compact blade
mechanicals moved large server functionality into high density form factors.

Fully leveraging the potential performance of recent multicore SoCs requires new hardware capabilities
and software components. The most important of these enhancements supports partitioning and
virtualization of various I/0O devicesin the system and improves performance and minimizes redundant
hardware.

1 Partitions

Multicore SoCs in the embedded space typically include awide variety of hardware resources including
processors, memory controllers, application accelerators and external 1/0 interfaces. Partitioning is the
act of grouping these resources together in support of various application requirements as shown in
Figure 1. Hardware is allocated to partitions as a shared or independent resource. Each partition contains
one or more processors. A single software program or Operating System (OS) runs in each partition.
Across partitions, different software environments are often present as previoudy diverse discrete
implementations are aggregated.

Legacy
Linux® RTOS OS
CPU

Multicore System

Memory Memory Memory

Shared Interrupt

Figure 1. Multicore Partitioning

Hardware and Software Assists in Virtualization, Rev 0

2 Freescale Semiconductor

Multicore Use Models

A partition is more than just a group of resources available to applications. It also implies alevel of
separation and protection that ensures software and hardware in one partition cannot interfere with the
operation of others. Each partition operates independently. The platform should also have the ability to
initialize and restart software in one partition while another continues to operate normally.

Consolidation of separate sub-systems into a single robust system depends on hardware-based protection
capabilities to ensure failures are contained as well or better than prior discrete implementations.

With restart and protection capabilities, additional use models are possible, such asthe ability to perform
practical in-service upgrades of individual partitions from a 3rd-party or in-house OS to an open standard
such as Linux®.

Protection allows isolation of non-trusted operating systems and applications (for example, sandboxing
Linux from aproprietary OS). Thisallows, for example, software under test to be operated in acontrolled
fashion without impeding the operation of other partitions.

Hardware partitioning is a necessary but not sufficient capability when building a secure platform.
Running trusted code in a separate secure partition where keys, rule definitions, access right control and
other system-level security functions reside increases the degree of trust and protection the system can
offer.

2 Multicore Use Models

When consolidating multiple systems into a multicore device, many possible mappings exist between
software and available processors and 1/0 devices.

Multiprocessor systems with cache-coherent interconnects may operate with a single OS image running
on all available processorsin asymmetric multiprocessing system (SMP). In thismodel, all processorsand
I/O devices are located in asingle logical partition and all caches in the system are coherent with each
other. All applications run together on this single OS. Application threads are alocated by the OS to
available processor cores. While common in PC server applications, this model is less frequent in
embedded systems.

By contrast, embedded systems and applications are often diverse and asymmetric in nature. They tend to
be separate applications and functions all operating cooperatively. This structure leads to an asymmetric
multiprocessing (AMP) model where multiple logical partitions host different OS environments all
operating cooperatively. In thismodel, processors and other hardware resources are assigned to an OS as
needed.

3 Virtualization

Virtualization in a computing context is the process of emulating (or abstracting) computing resources.
Using virtualization, one can define alogical partition to represent a collection of actual or emulated
hardware resources. A single virtual computing machine runs on asingle logical partition. Within each
logical partitionisfound shared or private memory, one or more processorsand acollection of accelerators
and 1/O devices. Each of these resources, including the processors, may be actual dedicated hardware or
may be implemented by partially or completely virtualized hardware.

Hardware and Software Assists in Virtualization, Rev 0

Freescale Semiconductor 3

Hypervisors

A hypervisor is alow-level software program that presents a virtual machine within alogical partition to
aGuest OS. Usually, ahypervisor runs across the entire multicore SoC device. It isresponsiblefor creating
and managing one or more available logical partitions.

Logical partitions allow more partitions to exist than actual hardware would otherwise allow and enable a
variety of useful system mappings between system hardware and logical partitions. At the extreme, a
logical partition may be completely virtualized with no actual dedicated hardware. In this case, the
hypervisor manages sharing of hardware resources across logical partitions and virtualizes hardware that
cannot be otherwise dedicated to a partition.

In the server space, ensuring that expensive and power-hungry processors are fully utilized has motivated
the use of thiskind of virtualization to allow multiple independent OS instances to run on the same core
with associated hardware resources. In this model, each OS runsin its own logical partition and there are
often many more logical partitions than actual hardware resources. Logical partitions are interleaved on
the processor by the hypervisor. Achieving higher aggregate compute throughput depends on the periodic
availability of idle cycles during normal operation of any given OSinstance and the hypervisor efficiently
virtualizing machine resources.

In the embedded space, a single processor without virtualization supports a single partition and OS only.
With virtualization, multiplelogical partitionsallow multiple OSinstancesto run at the sametime. Besides
increasing aggregate performance as described above, virtualization can also add attractive security,
protection and partition management featuresto thissimple system. For exampl e, sandboxing alesstrusted
OS or an externaly visible management interface web-server could substantially improve system
robustness.

Not al applications benefit from multiple logical partitions running on the same processor. Real-time or
other performance constraints can impose additional complications when multiple OS instances are
allowed to run on asingle processor. For example, interruptsin this case must pass through the hypervisor
to be redirected to alogical partition and may remain pending until the partition is again given processor
time.

4 Hypervisors

Hypervisors are the glue between the available hardware and the logical partitions on which operating
systems run. They expose hardware when available and virtualize when necessary.

The balance between the hypervisor hardware and software-based virtualization defines the performance
and efficiency achievable by the system. In general, an entirely software-based virtual machine within a
logical partition ispossible but not generally very fast. Examples range from the extreme of a PC running
agate-level smulation of a processor system which boots an operating system to a software emulation of
ahistorical computer architecture. More conventional examples include products such as VMware®
Server or VirtualBox that can operate without specific hardware support on the host.

Opposite in extreme to a software-only virtual machine would be a system built with an unlimited
transistor and power budget. Here each processor in the device would have its own dedicated set of
accelerators and 1/0O devices.

Actua implementations choose a point between the two extremes, sometimes applying clever solutions
that allow the majority of aresource to be shared without replicating it multiple times.

Hardware and Software Assists in Virtualization, Rev 0

4 Freescale Semiconductor

Real Embedded System Implementation

Hypervisors generally manage processor Memory Management Units (MMU), 1/0 MMUs and
system-wide memory and I/O map configuration and management. These mechanisms are the basis of
defining logical partitions within a system and enforcing their boundaries.

A key performance point between hardware and Guest OS instances are exceptions together with
interrupts from internal and external sources. The hypervisor must ensure interrupts are routed to the
appropriate destination. Sometimes they are taken by the hypervisor in its role of virtualizing a resource
and at other times they are redirected to aGuest OSin alogical partition. For highest performance,
interrupts should be directly routed to a logical partition.

Hypervisors often virtualize certain low-performance peripherals that are not commonly replicated in
hardware. These include timers and serial ports for debug.

There aretwo classes of hypervisors depending on the nature of the virtualization done: “Full” and “Para”
virtualization.

A hypervisor that provides full virtualization presents to a Guest OS a logical partition identical to the
actual hardware. In this case, the Guest OSis completely unawareit is running in a virtualized partition
managed by a hypervisor. Most services are provided by hardware but some may still be provided by
software. The mix as usual dictates performance. The key value proposition is that OS and applications
require no changes to run in this environment.

A hypervisor that provides para-virtualization presentsto aGuest OS alogical partition that isnot identical
to the actual hardware. In this case, the OSisawareit isrunning on a hypervisor and explicitly calsit for
services. Obvioudly, this approach requires modifications to the operating system to run with the

hypervisor. By calling the hypervisor directly, services such asinterrupts and trand ation lookas de buffer
(TLB) management can potentially be provided at much higher performance since emulation is avoided.

Hypervisors must follow Guest OS memory management requests over each logical partition in the
system. More specifically manipulation of al TLBs must be followed to ensure that the memory pagesare
allowed to be mapped for the partition in which the processors reside. There are many possible
implementations of this capability in a hypervisor driven by performance expected by applications and
available hardware assistance.

Note that a system implementation can be imagined where partitioning and available hardware is such that
there is no need for hypervisor virtualization of hardware resources. In this situation, hypervisors remain
important in that they still enforce strong logical partitioning.

5 Real Embedded System Implementation

Discussing hardware and software virtualization assists requires the context of areal implementation.
Figure 2 shows ablock diagram of the Freescale Qorl Q P4080 multicore SoC device. Thisdevice delivers
amultitude of partitionable hardware resources such as eight 1.5 GHz processors, dual DDR memory
controller and a wide variety of hardware acceleration and /O capabilities. In addition, Freescaleis
making available to customers an Embedded Hypervisor that represents one implementation of
virtualization technology discussed here.

Hardware and Software Assists in Virtualization, Rev 0

Freescale Semiconductor 5

3
4

4
A

Real Embedded System Implementation

The remainder of this paper discusses a variety of hardware and software assist features available on the
P4080 using the Freescale Embedded Hypervisor.

Freescale
™ 1024KB 64-bit
Qor1Q™ P4080 Power Architecture® Frontside ~ —> DDR(-:ZI :
MULTICORE 128KB e500-mc Core L3 Cache mory Controller
PROCESSOR Backside T
L2 Cache 32KB 32KB 1eFat 5 DDR-2/3
D-Cache l-Cache iontslde
L3 Cache Memory Controller
OpenPIC < ¢
copen CoreNet™
RrelBootiloacell«— Coherency Fabric
Security Monitor -<—] - - :::g‘:;;mt unit
Internal BootROM <€— ¢ Q
Power Mgmt < Frame Manager Frame M Real Time Debug
RapidlO
SD/MMC ~— Message 2x DMA
SPI - Unit (RMU),
4x12¢C -~ PCle||SRIO
2x USB 2.0/ULPI <
Clocks/Reset <]
GPIO €
-

CCSR

Figure 2. P4080 Multicore SoC

5.1 Hardware Assists

Moving from singleto multicore devicesimposes new architectural constraintson designers. For example,
ahigh incentive exists to optimize CPU cores for area since multiple of them are integrated at once. This
incentive competes with the need to add hardware support for partitioning, virtualization and hypervisor
functions. One advantage of virtualization techniques is that there are mechanismsto allow features over
time to move between actual hardware implementation and emulation by a hypervisor. The P4080 SoC
platform, e500-mc processor core and virtualization feature set were carefully optimized to run target
embedded application applications well.

Another example of the practical issuesimposed by multicore isthe need to enable efficient scaling when
integrating additional cores. Earlier shared-bus architectures must transition to non-block switch fabricsto
appropriately scale. The P4080 introduces the CoreNet™ switch fabric which allows concurrency across
the fabric. In addition, it supports flexible partitioning to meet the needs of avariety of customer system
architectures. Partitioning in this context means not just supporting the various chip-wide address
protection mechanisms but also the ability to define subsets of cores that operate with cache-coherency.

5.1.1 New Modes and States

To enable virtualization in genera and hypervisors specifically, one important processor enhancement is
with regard to processor modes and states. Many processor architectures define auser and supervisor state.
The OS kernel often runs in supervisor mode giving it access to privileged instructions and states, such as
the MMU, while applications run in user mode. The hardware efficiently implements transitions between

Hardware and Software Assists in Virtualization, Rev 0

6 Freescale Semiconductor

Real Embedded System Implementation

applications and kernel in support of avariety of services such as1/O device drivers, virtual memory
management and other system calls provided by the kernel.

To support hypervisors, athird modeisfrequently introduced “ above” supervisor to run the hypervisor. In
amanner analogous to the user-kernel transitions, hardware supports transitions between user or
supervisor and “hypervisor” state. Hypervisor mode gives universal access to the hardware state of the
device—including instructions and states unavailable to code running in the underlying supervisor or user
mode.

In the case of the P4080, the new e500-mc core is enhanced to support afour state mechanism by
introducing anew “guest” mode bit in addition to the existing “privileged” state bit. Together they define
the mode and state in which code is running. When guest mode is enabled, the system can exist in either
supervisor or user state thus allowing both OS and applications to run entirely in this guest mode. When
not in guest mode, the processor isin “hypervisor” or “bare-metal” mode and can again be in either
supervisor or user state. With two states in the hypervisor mode, the processor allows operating systems
running directly on the hardwareto operate in hypervisor state (hence theterm “ bare-metal” mode). When
ahypervisor ispresent, it operatesin the privileged state in hypervisor mode and thus runs directly on the
hardware.

There are anumber of additions madein support of embedded hypervisors. Many of them manage routing
of interrupts. Proper management depends on the mode and state of the processor at the time of the
interrupt.

A new set of frequently referenced registers have been defined while executing in Guest mode. Some
examplesinclude:

* Guest Save/Restore registers (GSRR0/1)

» Guest Interrupt Vector Prefix Register (GIVPR)

* Guest Interrupt Vector Registers (GI'VORnN)

* Guest Data Exception Address Register (GDEAR)

* Guest Exception Syndrome Register (GESR)

» Guest Specia Purpose Registers (GSPRGO..3)

* Guest Externa Proxy (GEPR)

» Guest Processor ID Register (GPIR)
Most of these registers provide states important to servici n(% exceptions and interrupts and duplicate those
available in hypervisor mode (or prior Power Architecture™ implementations without guest mode). These

registers have different offsets from the originals. To ensure legacy operating systems can run unchanged
while in guest mode, referencesto the original non-guest versions are mapped to the guest versions above.

5.1.2 Exceptions and Interrupts

Key to high performancein virtualized systemsis the manner in which interrupts are handled in the
system. There are several choices in how to manage these events:

» Direct al exceptions and interrupts to the hypervisor which directs them to the appropriate
Guest OS

Hardware and Software Assists in Virtualization, Rev 0

Freescale Semiconductor 7

|
y

'
A

Real Embedded System Implementation

» Direct most interrupts to the hypervisor but route performance critical interruptsto the appropriate
Guest OS

» Keep interrupts that occur during execution within the same logical partition and mode in which
they occur

In general, most interrupts and exceptions are directed to the hypervisor. The task of the hypervisor isto
promptly re-direct or “reflect” the interrupt or exception to the appropriate logical partition and related
processor(s). The overhead and latency imposed in this process must be carefully weighed with system
level concerns.

The e500-mc processors and P4080 allow significant flexibility in how interrupts are reflected and where
they are serviced. One example is the ability of the programmable interrupt controller (PIC) to route an
external interrupt directly to aphysical processor within aselected logical partition without having to pass
through the hypervisor. Thisisintended for performance critical interrupts usually associated with
hardware dedicated to that partition. An example might be the direct routing of PCI Expras® interface
interrupts to a partition tasked to manage that interface. Directly routing an externa interrupt to the
resource servicing it can substantially reduce latency since it avoids the redirection.

When an external interrupt isdirected to a Guest OS and theinterrupt occurs while executing in hypervisor
mode, the interrupt remains pending until the processor transitions back to Guest mode. Acknowledgment
of these interrupts occurs automatically by the processor hardware.

The e500-mc processor introduces some additional exceptions and interrupts to support the Embedded
Hypervisor. To allow a para-virtualized OS to call the hypervisor, aspecia system call existsto cause the
transition between guest and hypervisor mode. It uses the existing System Call instruction but with a
different operand.

When aGuest OStriesto access ahypervisor privileged resource such as TL B or other protected resources
within the processor, the exception always transitions execution to hypervisor mode and allows the
hypervisor to check protections and virtualize it when necessary. In the case of cache access, normal cache
load/store references proceed normally. For direct cache operations, a mode exists to allow Gueststo
perform some operations such as locking the cache if desired.

A new interrupt has been introduced for processor-to-processor doorbell interrupts. Besides being a
general “shoulder-tap” mechanism for the system, these interrupts may be used by the hypervisor to reflect
asynchronous interrupts to a Guest OS. The complication of reflecting an asynchronous interrupt to a
Guest isthat it cannot be reflected until the Guest is ready to accept it (i.e. it has been enabled). When an
asynchronous interrupt occurs, the hypervisor uses the msgsnd instruction to send a Doorbell interrupt to
the appropriate Guest. These exceptions remain pending until the Guest has set the appropriate enable bit.
Once this exception occurs, it isimmediately directed to the hypervisor which can now reflect the original
interrupt knowing the interrupt has not been enabled.

5.1.3 Memory Management Assists

One important role of hypervisorsin virtualization is managing and protecting logical partitions. It must
ensure that alogical partition only has accessto its allocated resources and must block unauthorized
accesses.

Hardware and Software Assists in Virtualization, Rev 0

8 Freescale Semiconductor

Real Embedded System Implementation

To perform this service, the hypervisor directly manages the MMU of all processors and in many
implementations also manages a similar hardware resource called the /O MMU for all 1/0 devices which
master transactions within the SoC.

In the case of the MMU, there are several possible approaches to management depending on whether the
hypervisor is hosting afully or para-virtualized OS.

5.1.3.1 Fully Virtualized Guest OS

In this case, the hypervisor has several choices. It can choose to reflect all memory management interrupts
to the Guest OS and then capture and emulate all TLB manipulation instructions from the Guest.

In another possible approach, the hypervisor captures al TLB manipulations by the Guest in order to
emulate them. Meanwhile, it builds a shadow page table. When a TLB Error or Miss occurs, it references
its shadow page table in search of arelevant entry. If oneisfound, it manipulatesthe TLB directly and
returns from the TLB miss exception without causing an exception to the Guest. If no translation is
available, it reflects the missto the Guest, emulatesthe TL B operations and updates its shadow pagetable.
Whenever the information is in the shadow page table, this scheme eliminates the need for the hypervisor
to emulate the miss-related TLB instructions on behalf of the Guest.

In both approaches, the Guest OS is unaware that the hypervisor is emulating the instructions. The key to
thisworking is the need for TLB manipulation instructions to cause traps to hypervisor mode where
emulation can occur. In the case of the €500-mc, thisisindeed the truth.

5.1.3.2 Para-virtualized Guest OS

When modifications to the Guest OS can occur, it is possible for the OSto directly call the hypervisor for
memory management services. In this approach, page tables could be given to the hypervisor, memory
management exceptions are taken by the hypervisor and necessary TL B updates are performed by the
hypervisor. This approach may offer the best performance since emulation of TLB instructionsis not
required.

5.1.3.3 Virtual and Real Addresses

To allow the TLB to simultaneously carry entries for more than one logical partition, the virtual address
within the TLB must be extended with afield designating the logical partition. Furthermore, to allow the
hypervisor itself to have entriesin the TLB, abit of virtual address differentiating entries for guest and
hypervisor mode is also required.

On the e500-mc, the TLB virtual addressis extended by an LPID value that is a unique identifier for a
logical partition. The addressisfurther extended with the GS bit that designates whether the entry isvalid
for when in Guest or hypervisor mode.

Because all e500-mc TLB instructions that expose physical mappings to the Guest OS are hypervisor
privileged and hence emulated, it becomes possible for the hypervisor to shield the actual physical address
of the TLB from the Guest. This allowsthe hypervisor to remap Guest OS “logical” physical addressesto
anew “real” physical address. This may be useful, for example, when the hypervisor must alow multiple
logical partitionsto al believe their physical address starts at O.

Hardware and Software Assists in Virtualization, Rev 0

Freescale Semiconductor 9

Real Embedded System Implementation

5.1.3.4 /0 MMU

One important hardware assist in support of secure logical partitionsis the existence of 1/0 MMUSs that
control access by peripherals capable of initiating transactions to memory-mapped resources. Examples of
such peripherals might be any devicewithaDMA engineor 1/O interfaces that accept externally mastered
transactions.

Simply put, an 1/O MMU examines all address-based transactions originating from mastering devices and
authorizes the transactions to proceed. It does so by keeping internal state that rel ates the originator of the
transaction with authorized address regions and associated actions.

The P4080 implements its PAMU (1/0 MMU) as a distributed entity throughout the SoC wherever
transaction initiators exist. In addition to the role of controlling access by 1/0 devices, the PAMU also
selectively allows transactions within certain address ranges to be written directly into the cache.

The hypervisor initializes and managesthe /O MMU to define and protect logical partitionsin the system.

5.14 Hardware Resource Allocation and Sharing

How hardware resources on amulticore SoC are allocated and possibly shared across logical partitionsis
one of the most important performance attributes of the system. Dedication of aresourceto asingle
partition may simplify software. However, in most systems this limits parallelism and sharing. For
example, by dedicating an Ethernet controller to a single partition, no other partitions can share the
processing of inbound packets or |everage unused outbound bandwidth unless software explicitly manages
ownership—often using software semaphores.

A wide variety of internal accelerators and I/O devices can exist in amulticore SoC. Many devices are
optimized for particular applications by implementing application specific functions. The P4080
implements encryption and pattern matching engines that support avariety of networking functions. The
ability of multiple partitions to share these resources without explicitly passing ownership isan important
feature of the P4080. Sharing is facilitated by a hardware resource that provides multiple dedicated
hardware portal s used to manage buffers and submit and retrieve work via queues. By dedicating a portal
toalogical partition, the partition interacts with the encryption and pattern matching engine asif it wasthe
only device using it.

External interfaces can a so be shared through these hardware-based mechanisms. In the P4080, the
Ethernet network interfaces participatein this same hardware queue and buffer management facility. It can
classify inbound packets to a queue associated with a specific logical partition. Hardware then places the
packet in aqueue owned by that partition and accessed through its dedicated portal. The processissimilar
for egress where each logical partition can submit packets for transmission outbound using its private
portal.

Besides hardware portal s, another way to share hardware isto use the hypervisor to virtualize the resource.
In the P4080, the Guest OS driver could use register emulation or a hypercall to the hypervisor’s global
driver which would then manage sharing amongst all logical partitions. Some examples of virtualized 1/0
provided by the PA080 Embedded Hypervisor includethe PIC, 1°Cinterface, General Purposel/O pinsand
Byte Channels as described below.

Some external interfaces can be challenging to share. Thisisespecially true for address-mapped interfaces
such as PCI Express. In this case, the lack of a standard channelized logical layer makesit difficult to

Hardware and Software Assists in Virtualization, Rev 0

10 Freescale Semiconductor

Real Embedded System Implementation

decide how to direct inbound transactions to a particular logical partition. Asaresult, these interfaces are
typically dedicated to one logical partition and all other partitions that wish to use the interface must do so
through the dedicated partition.

NOTE

The PCISIG has completed work on the PC Server-focused 1/0
Virtuaization (I0V) for PCI Express. This optional extension defines a
mechanism for multiple logical partitionsto share a PCl Express controller
by creating associations between logical partitionsand external PCI Express
endpoints so traffic can be properly routed. While of interest to the PC
Server market, these extensions are unlikely to be extensively supported in
the near term by embedded silicon vendors.

The P4080 provides three PCI Express controllers, each of which the hypervisor alowsto be dedicated to
different logical partitionsif desired.

5.1.5 Secure Boot and Platform Assurance

Modern embedded systems face new threats to their robustness from physical and remote hacking.
Unauthorized exposure of internal device secrets such as sensitive software code or encryption keys can
be catastrophic for customers and OEMs alike.

Multicore SoCswith robust partitioning support in hardware can leverage this capability as managed by a
hypervisor to ensure the system is securely booted with trusted code and that the platform remains robust
and secure during normal operation.

The P4080 implements such afacility. A trusted hypervisor together with MMU and 1/O0 MMU facilities
provide a strong foundation upon which these capabilities can be built. Additional hardware support
during boot time assures that boot and runtime code istrusted before execution and prevents unauthorized
debug access to secure state. For the P4080, virtualization provides key hooks leading to secure boot and
platform assurance features. Once protected logical partitions are established, system designers can
sandbox software applications and environments that are not trusted by leveraging all the mechanisms
built to virtualize the hardware.

5.2 Software Assists

A widearray of capabilities can beimplemented as software assistsfor virtualization. The assists provided
by Freescale’'s Embedded Hypervisor are used as an example of some of the capabilitiestailored
specifically for embedded systems. Figure 3 shows graphically the services and capabilities of this
hypervisor. Obviously, this example does not address all possible assists but should suffice asaprimer on
what is possible.

The Embedded Hypervisor for the P4080 is designed to be a light-weight hypervisor and is based on the
Power Architecture asdocumented in the Powerl SA 2.06. To keep the scale manageable, theinitial version
focuses on static partitioning fixed at boot time or until areconfigure and reboot is performed. In addition,
the hypervisor does not initially support multiple logical partitions running on a single processor.

Hardware and Software Assists in Virtualization, Rev 0

Freescale Semiconductor 11

\
Y

y
A

Real Embedded System Implementation

The hypervisor uses acombination of full and para-virtualization to enable high performance and minimal
changesto the Guest OS. The hypervisor emulates privileged instructions such as TLB operations,
provides avariety of hypercall-based services and uses adevice tree structure at initialization for resource
management.

Guest Operating System

a

Emulation ;
. . . Hypercalls Device Tree
(privileged instructions) P
(ePAPR)
Direct
/10

Hypervisor

l

Device Tree

Figure 3. Freescale Embedded Hypervisor

It presentsto the Guest OS avirtual processor that isvery similar to the e€500-mc processor but without the
hypervisor extensions. Some differencesinclude fewer MM U entries (to reserve somefor the Hypervisor)
and subtle differences in the watchdog timer and timebase (guest writes to the timebase registers are
ignored). At the virtual machine level, there are PIC driver changes as emulated by the hypervisor.

A variety of hypercall services are also provided:

Interrupt controller (MPIC)

Byte-channels

Inter-partition signaling

Partition management including

— Start/stop and image load initially and create/destroy later

— Partition management interrupts

Power management for processor cores to change clock frequency and power state
Partitioning of GPIO pins

I/0 MMU management

— Create/destroy mappings

Hardware and Software Assists in Virtualization, Rev 0

12

Freescale Semiconductor

Conclusion

Byte channels are a character 1/0 channel that flexibly connect partitions and the physical UART on the
PA080. It includes support for a hypervisor console, byte-channel multiplexors and debug stubs. Through
the use of an external byte-channel mux server on aPC, individual character 1/0O streams can be created to
each logical partition in the system.

Using the same mechanism by which external interrupts are reflected to an appropriate Guest OS, agenera
inter-partition signaling facility is supported by the Embedded Hypervisor. One OS can signal othersin a
unicast or multi-cast fashion. The facility isintended to be a lightweight “shoulder tap” facility which
passes a very limited amount of state.

Partition management services allow a partition to copy datato and from another partition—useful when
loading OSimages. It also supportsthe ability to start other partitions and stop or reboot them. Notification
of events are aso supported including events such as a watchdog timer expiration and Guest OS
commanded reboots and errors.

Many of these boot facilities are standardized by the Power.org Embedded Power Architecture Platform
Requirements specification (ePAPR). In addition, ePAPR defines adevice tree that is adata structure that
represents alogical partition’s hardware and virtual hardware resources.

6 Conclusion

Multicore SoCs such as the P4080 are driving new levels of virtualization capabilities into embedded
systems. Aggregating formally separate standal one computing resources into a single multicore device
presents great opportunities and some challenges. Hardware and software virtualization support is crucial
to fully utilizing the capabilities of these complex devices.

Because the embedded world has always differed substantially in requirements from the PC Server space,
itis clear that hardware and software trade-offs need to be very different thus resulting in features and
performance better aligned to this market space.

Hardware and Software Assists in Virtualization, Rev 0

Freescale Semiconductor 13

Conclusion

THIS PAGE INTENTIONALLY LEFT BLANK

Hardware and Software Assists in Virtualization, Rev 0

14 Freescale Semiconductor

Conclusion

THIS PAGE INTENTIONALLY LEFT BLANK

Hardware and Software Assists in Virtualization, Rev 0

Freescale Semiconductor 15

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284

1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Document Number: P4080OVRTASTWP

Rev 0
08/2009

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. The
Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks
licensed by Power.org. Linux® is the registered trademark of Linus Torvalds
in the U.S. and other countries. VMware is a registered trademark of
VMware, Inc.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

BUILTON |

freescale"

semiconductor

	Hardware and Software Assists in Virtualization
	1 Partitions
	2 Multicore Use Models
	3 Virtualization
	4 Hypervisors
	5 Real Embedded System Implementation
	5.1 Hardware Assists
	5.1.1 New Modes and States
	5.1.2 Exceptions and Interrupts
	5.1.3 Memory Management Assists
	5.1.3.1 Fully Virtualized Guest OS
	5.1.3.2 Para-virtualized Guest OS
	5.1.3.3 Virtual and Real Addresses
	5.1.3.4 I/O MMU

	5.1.4 Hardware Resource Allocation and Sharing
	5.1.5 Secure Boot and Platform Assurance

	5.2 Software Assists

	6 Conclusion

