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Abstract

Offices have long been networked, but the home is becoming an increasingly 

electronic and networked place. As the public demands (and governments 

mandate) an energy-efficient home, and everything from TVs to printers and 

refrigerators becomes networked, the energy consumption of these devices 

becomes critical. Most of these networked edge devices spend the majority of their 

time idle, but still need to remain present on the network. This creates the need for 

a new energy conservation technique—minimizing power while network-connected 

and idle—but the devices still need to be ready to respond at a moment’s notice.

This paper analyzes the nature of embedded computing systems, reviewing 

system-level power optimizations to minimize network standby power. Then, in the 

context of low-power embedded systems in the home and office, we investigate 

and propose three ways to handle the network traffic at the heart of a low-

power network standby system—packet classification, packet accumulation and 

autorespond proxies.

1. Introduction
Growing energy demands from embedded 

electronics and increasing evidence 

of dramatic global climate change are 

generating greater environmental and cultural 

pressure for energy-efficient solutions in 

embedded computing applications. This, 

coupled with continued expectations for 

higher performance embedded computing 

with each new product generation, despite 

environmental concerns, is impacting the 

future usage models of embedded  

processing systems. 

Although traditional offline powered 

equipment, such as appliances, HVAC and 

lighting systems, dominate electric equipment 

energy consumption, embedded electronics 

and online equipment, such as printers, 

storage, networking infrastructure and data 

centers, are increasingly consuming a larger 

share of our energy resources. Furthermore, 

even equipment that was traditionally offline, 

such as TVs, refrigerators and HVAC controls, 

are now going online, while containing even 

more embedded processing.

To balance the performance required for 

powerful new electronic applications with 

rising concerns over energy consumption, 

environmentally aware “green” movements 

and government regulations and programs are 

driving manufacturers to develop intelligent 

strategies for optimizing performance within 

specific energy budgets. 

Traditional embedded computing platforms 

have been designed for maximum work load 

with little regard to the cyclical work profile 

across hourly, daily, weekly or extended time 

intervals. However, new-generation high-

performance systems are shifting their design 

focus from provisioning worst-case maximum 

power loads to optimizing for energy efficiency 

across varying workloads. Products such 

as printers are good examples of a cyclical 

workload, as they tend to spend much more 

time in a ready-to-print state or performing 

low-workload management services than they 

do for higher energy consumption printing 

states. Other embedded applications such as 

home network gateways, industrial processing 

plants and telecommunications systems can 

employ similar profiling to reduce energy 

waste and costs too. 

As an example, office printers typically print 

cumulatively only one hour out of a 168-

hour work week. Without system power 

management techniques, the 167 hours of 

idle time power cumulatively can exceed 

the active state power. Lowering power 

consumption requires advanced energy 

management schemes from new product 

development engineers. A simple strategy to 

design lower power consuming electronics 

begins to address the energy-efficient 

embedded computing challenge; however, 

larger gains will come from creating flexible 

systems that can pace workload with energy 

consumption in an intelligent and  

efficient manner.

Previous work, such as “Skilled in the Art 

of Being Idle: Reducing Energy Waste in 

Networked Systems,”1 “Long Idle: Making 

Idle Networks Quiet for Platform Energy-

Efficiency”2 and “Long Idle: Making Idle 

Networks Quiet for Platform Energy-

Efficiency,”3 has concentrated on analyzing 

and optimizing energy for PCs. However, 

networked embedded devices have a different 

set of requirements with more stringent 

power limits. Therefore, solutions that require 

additional hardware components may save 

significant power in a PC, but the same 

conclusion cannot necessarily be drawn in an 

embedded system where the power of the 

additional hardware components may exceed 

the power otherwise saved by their use. A 

potential example of this is the autorespond 

proxy described later in this paper.

Embedded devices also have other differing 

characteristics from PCs. Historically, although 

the gap is diminishing, processing levels are 

not as high for embedded devices as for 

PCs. Furthermore, other key features of the 

workload may impact the optimal low-power 

system solution—an embedded processor is 

less likely to have to perform scheduled virus 

scans or data backups, and an embedded 

processor may require a faster wakeup time 

from a sleep mode than a general-purpose 

PC. As such, this paper concentrates on 

low-power network standby as it relates to 

embedded systems in the home and office.
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Art of Being Idle: Reducing Energy Waste in 

Networked Systems.”1

Embedded processors need to be able to 

wake on any targeted network event. For 

example, in a networked system with what 

is hereby termed packet classification, an 

embedded processor can enter the network 

standby mode where the system is dormant, 

yet its network controller still operates and 

ignores no packets. At the same time, if 

desired, DDR can be in self-refresh mode, still 

accessible if needed to buffer packets, while 

potentially also storing the system state for 

fast wakeup.

For true packet classification, the network 

controller needs to have some additional 

capability—in particular a receive filer to 

inspect and classify incoming packets. The 

receive filer can be configured to drop packets 

that don’t need to be processed. Packets 

that need processing, such as ARP packets 

destined for the correct address, are written 

to DDR, and the network controller wakes 

the system from deep sleep for processing. 

For flexibility, the receive filer should be 

programmed to accept and wake on whatever 

packets are interesting for a particular 

system usage configuration. An example of 

a product performing packet classification is 

the Freescale MPC8536E communications 

processor7, which implements packet 

classification in its deep sleep mode through 

the enhanced triple-speed Ethernet controller 

(eTSEC).

2. Understanding the  
Cyclical States of Embedded 
Computing Systems
In most cases, all the work performed in 

embedded computing applications is done 

in cycles—a combination of active states, 

management states and network standby 

states that are dynamically administered to 

most effectively optimize energy-efficient 

performance on demand. This is true for such 

applications as high-speed printing, home 

routers and WAN managed systems. The 

various network functions that the system 

performs in each state are outlined in figure 1.

In an embedded networked application, the 

system spends much of the time in a low-

power network standby mode and wakes up 

in response to an external event. If the system 

takes too long to wake up, the window for 

acting on the event that caused the wakeup 

may have closed. 

Further power reductions can potentially 

be achieved in non-active states. In wired 

networks, 10/100 MB Ethernet interfaces 

rather than Gigabit may be sufficient, saving 

significant Ethernet PHY power. Even bigger 

savings have been available since 2010, when 

the IEEE® ratified the Energy Efficient Ethernet 

(also known as 802.3az) standard4. This 

standard reduces power during periods of low 

use, and Ethernet PHYs that support it can 

reduce power by up to 70 percent when the 

PHY is not receiving or transmitting packets.

3. Packet Classification
Lossless packet operation in a networked 

environment is a method for ensuring that 

critical packets initiate the wakeup sequence 

and that no targeted packets are lost. A 

common example is wake-on-ARP (address 

resolution protocol6). An ARP packet can 

find a host’s hardware address when given 

its network layer address. When the system 

receives an ARP packet that is destined for 

it alone, it triggers a wakeup to respond per 

protocol specifications.

Computer networks in the home and office 

typically have traffic 24 hours a day, even 

when no one is in the home or office, and 

even when the building is not occupied. 

This “idle” network traffic is analyzed in 

papers such as “Skilled in the Art of Being 

Idle: Reducing Energy Waste in Networked 

Systems,”1 “Long Idle: Making Idle Networks 

Quiet for Platform Energy-Efficiency”2. Note 

that even though such papers analyze traffic 

in the context of PCs, this is still relevant for 

embedded networked devices in the home 

or office, which generally coexist on networks 

shared with PCs and thus are subject to the 

same classes of incoming traffic.

“Skilled in the Art of Being Idle: Reducing 

Energy Waste in Networked Systems,”1 

shows that in the systems they measured, 

the primary source of broadcast traffic in both 

the office and home is in fact ARP, and that 

while office networks may have significant 

multi-cast router traffic, such as the Hot 

Standby Router Protocol (HSRP) or Protocol 

Independent Multicast (PIM), these multicast 

packets in general have the potential to be 

safely ignored.

Further optimization is possible with the 

realization that many packets that arrive on 

the network are destined for other devices on 

the network, not the embedded processor 

in question. They can therefore be safely 

ignored, as can router multicast traffic. If the 

controlling processor wakes up on every 

packet, it will be constantly awake and 

have no time to enter a low power mode. 

Nevertheless, there are times when the 

processor needs to wake up to service and 

process certain packets. This is similar to 

the concept of “proxy_1” in “Skilled in the 

System States

Management 
Application Requested
•  Decrease CPU frequency
•  Dynamically disable 

non-essential I/Os

Primary Application 
Running
•  Performance is maximized
•  Connectivity is maximized

Request for Primary 
Application
•  Apply power to down 

components
•  Restore previous known 

state saved in DDR
•  Increase CPU frequency

Management 
Application
•  Apply power to essential 

components
•  Restore previous known 

state saved in DDR

No More Work Need
•  Save system state
•  Put DDR into self-refresh
•  Remove power to non-

essential componentsˆ

No Useful Need
•  Performance is zero
•  Connectivity is maintained

Network Standby

Active

Management

Figure 1: System States
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5. Autorespond Proxy
The shortcoming of packet classification and 

accumulation on larger networks, such as 

that found in corporations, is the amount of 

time spent servicing protocols such as ARP 

and SNMP, which are required to maintain 

network connectivity. As an example, if it 

takes a system 500 ms to go through a 

cycle of wakeup, message processing and 

return-to-sleep, then even modest message 

frequency (<500 ms) could force a system to 

stay permanently in a high-power state.   

For this reason, techniques recently 

introduced into network standards have 

added an intelligent proxy to the network 

interface to maintain network connectivity. The 

ECMA-393 standard11 defines the concept of 

“full network connectivity” as the ability of the 

computer to maintain network presence while 

in sleep and intelligently wake when further 

processing is required. Microsoft’s network 

driver interface specifications (NDIS)12 and 

“Network Power Management for Windows 

7”13 provide a framework for protocol offload. 

In particular, these standardize the way that 

systems running Microsoft Windows 7 can 

allow IPv4 address resolution (ARP) and IPv6 

network solicitation (NS) to be offloaded to 

an external network interface controller (NIC), 

rather than the primary Windows host.

The “proxzzzy for sleeping hosts”14 is not tied 

to the Windows 7 operating system and is 

therefore more suitable to a wide range of 

embedded applications. Similar to Microsoft’s 

NDIS and power management12, 13, it also has 

the requirement for IPv4 ARP and IPv6 NS 

proxying. It goes further to provide options of 

further proxying of other protocols such as 

IGMP, DHCP, IPv4 SIP, IPv6 Teredo tunneling, 

SNMP, mDNS and LLMNR.

Fundamentally, however, the concept of 

all such proxying is similar—to maintain 

Energy Star specifications’11 “full network 

connectivity” by using some sort of hardware 

that is distinct from the primary processor 

in a system that would otherwise maintain 

network connectivity. The intent here is for the 

proxying hardware to be much lower power 

than the primary processor, thereby allowing 

the primary processor to be in a low-power 

state, or potentially even off, for extended 

periods of time. 

• The system must be able to help 

guarantee that its packet accumulation 

buffer does not overflow, regardless of 

whether that buffer is in dedicated on-chip 

SRAM in an SoC or in external DRAM. 

This implies that while performing packet 

accumulation, the system maintains a 

count of the number or size of received 

packets to help ensure that it does not 

exceed the available buffer, and that the 

system wakes before this occurs.

• The system must be able to respond to 

packets within a defined maximum time, 

regardless of network traffic. This means 

that as the system starts to accumulate 

packets, a timer must be started. When 

the timer expires, the system needs to 

wake up, regardless of how many packets 

have been accumulated. This prevents 

network protocols from timing out if a 

packet is received and accumulated, but 

subsequently the network has relatively 

little relevant traffic to force the packet 

accumulation buffer to fill.

• There may be certain types of packets for 

which it is desirable to wake immediately 

and process, rather than accumulate 

multiple packets to process. For example, 

for a networked printer it may be desirable 

to respond and accumulate multiple ARP 

requests before wake, but if a packet 

that looks like the beginning of a print 

job arrives, then the system should wake 

immediately in order to print as soon as 

possible. “Long Idle: Making Idle Networks 

Quiet for Platform Energy-Efficiency”2 uses 

heuristics to differentiate between packets 

that are “idle” (bufferable) and packets 

that are “active” (desire fast response), but 

relatively simple deep packet inspection is 

also a workable solution.

An example of a product performing both 

packet classification and packet accumulation 

with deep packet inspection is the Freescale 

QorIQ P1022 communications processor10. 

It can both classify packets with its eTSEC 

controller, and also accumulate packets as 

needed, storing them in external DRAM, while 

maintaining counters in its eTSEC and timers 

in its interrupt controller to guarantee packet 

response within predefined maximum times.

The goal is to achieve the best of both 

worlds—operating at ultra low power the vast 

majority of the time, yet with no penalty of 

reduced functionality from protocol timeouts 

due to dropped packets—because the 

system can wake and respond as needed.

4. Packet Accumulation
Packet classification, as described earlier 

in this paper, ensures that the system only 

processes what it needs to process, and 

therefore goes a long way to minimizing 

power consumption in networked devices. 

However, further optimization is not only 

possible but desirable in real-life systems.

Real-world applications can contain an 

extensive software footprint, and the time to 

boot is non-trivial. In systems where clock 

cycles are measured in nanoseconds, the  

time for software to boot may be measured  

in seconds.

“Somniloquy: Augmenting Network Interfaces 

to Reduce PC Energy Usage”3 lists a 

10-second boot as the shortest achievable 

today for a PC, although per Microsoft 

itself8, Microsoft® Vista requires resumption 

from its S3 sleep state in two seconds. 

Even lower boot times are achievable in 

embedded applications; for example, Lineo9 

lists an optimized boot of 1.07 seconds for 

X-Windows on the Armadillo 500-FX  

platform, and 1.9 seconds for Android on the 

same platform.

Even with packet classification, the arrival rate 

of packets that require further processing may 

approach the time it takes for the system to 

wake to process a packet. In such a scenario, 

the system will be continually waking and 

sleeping, without ever being able to spend 

any significant time in the lowest power 

dormant state.

This situation can be improved through 

packet accumulation. With the benefits of 

packet accumulation, multiple packets can be 

buffered until such time as the system is ready 

to wake to process them. This minimizes the 

overhead of waking and sleeping, allowing 

the system to efficiently process a group of 

packets in bulk.

There are several caveats to be aware of 

when using packet accumulation:
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• 300 mW SoC power dissipation when 

in network standby mode, at room 

temperature (25° C junction temperature).

• 5 W SoC power dissipation when active 

and running typical code, 65° C junction 

temperature.

• In an otherwise idle network, packets, 

regardless of whether they require 

response or not, are assumed to arrive 

every 80 ms. This is equal to 12.5 packets 

per second, per Gobriel, et al2.

• Packets that require response arrive on 

average every 3 seconds, but only require 

response every 60 seconds (these values 

are protocol and network dependent, but 

represent realistic assumptions).

• Packets that cannot be responded to 

by an autorespond proxy arrive relatively 

rarely, less often than once every 60 

seconds, and in the context of an 

autorespond proxy, such distinction can 

be ignored from an average system power 

consumption perspective.

In a legacy system not implementing either 

packet classification or packet accumulation, 

the system would never be able to spend any 

meaningful time in a deep sleep mode. This 

is because the time to wake (1.8 seconds) 

is significantly longer than the time between 

arrival of packets (80 ms). On average, each 

time entering deep sleep, it would only be in 

deep sleep for 40 ms (half the average packet 

arrival rate), and it would be awake for at least 

1.8 seconds. Therefore the average power 

required to maintain network standby would, 

for all intents and purposes, be equal to the 

max power, namely 5 W.

In a system implementing packet classification 

but not packet accumulation (such as the 

MPC8536E PowerQUICC IIITM integrated 

processor7), the system would wake on 

every interesting packet (on average every 3 

seconds), and be awake for the time to boot, 

plus the time to process one packet. This is a 

period of (1.8 s + 1 ms) every 3 seconds. 

being online but having its main purpose 

idle most of the time—would see similar 

power reduction benefits by implementing an 

autorespond proxy.

An autorespond proxy can be implemented 

either externally in a “smart” NIC or 

embedded in an equivalent integrated function 

on an SoC. The Freescale QorIQ T1042 

communications processor20 is an example 

of a device which implements an integrated 

autorespond proxy function. Firmware running 

on its frame manager can handle or terminate 

ECMA-393 protocols, while the majority of 

the device is in a low-power idle state. This 

capability enables systems to achieve less 

than ½ W while maintaining full network 

connectivity, as measured from the AC  

wall plug.

6. Saving Energy with  
an Implementation of  
Network Standby
To demonstrate how low-power network 

standby and advanced power management 

features can reduce overall system energy 

consumption, consider the following real-

world example. In this example, only the 

power of the embedded processor including 

I/O is considered, rather than overall system 

power. The power when in network standby 

is of interest—not the power when performing 

other primary embedded functionality, such 

as a printer printing, a DVR recording a 

TV program, or so on, which is likely to be 

significantly higher.

The system under consideration has the 

following properties, based on using an 

instance of a product, such as the Freescale 

P1013/P102210:

• 1.8 seconds to wake to full operation, 

including voltage ramp-up and software 

boot. This assumption is a mid-range 

combination of the 1.07 s X-Windows and 

1.9 s Android wake times per Lineo9 and 

the Windows 8 wake from S3 state of 2.0 

seconds per Microsoft8.

• 1 ms per packet to process a packet 

(based on the assumption of a host with 

a maximum processing rate of up to 1 

million packets per second).

Nedevschi, et al.,1 also implement several 

types of autorespond proxy in their “proxy_2” 

through “proxy_4” definitions, although 

there is no concept of packet accumulation. 

Their paper analyzes in detail the types of 

incoming packets and provides information 

as to which may be the best “low-hanging 

fruit” protocols to proxy. This data shows 

that the best protocol to proxy is ARP, as 

it is the highest percentage of incoming 

broadcast traffic, and packets destined 

for the host cannot be ignored. However, 

other packets which the paper classifies 

as both “don’t wake” (because they may 

occur frequently) and “mechanical response” 

(for which a proxy autoresponse may be 

possible) includes the protocols SSDP, 

IGMP, ICMP and NBDGM, as well as ARP. 

All of these and potentially other protocols 

may be considered as candidates for an 

autorespond proxy, although a definitive list is 

highly network dependent and an optimized 

proxy should be tuned to specific use cases. 

Where the classification and accumulation of 

packets can be handled in more cases by an 

intelligent Ethernet controller with scratch pad 

memory, an autoreponding proxy typically 

requires an additional processing element 

capable of running a networking stack. In a 

quiet network, the power saving between 

classification and accumulation methods and 

autorespond proxy are similar.  However, for 

real networks the cumulative power saving 

can be an order of magnitude greater if 

the packet classification and accumulation 

techniques fail to keep the system in an idle 

state most of the time.

Another key consideration when implementing 

an autorespond proxy is that the system 

must behave similarly on a network as a 

fully powered version of itself. In the printer 

example, the PC sending a print job must not 

see noticeable differences in communication 

interactions with the printer, or else it could 

break driver compatibility across diverse 

OSs and platforms. The printer with an 

autorespond proxy can’t make assumptions 

that the devices it communicates with have 

ability to deal with its special “low power 

modes.” Many devices such as network 

attached storage (NAS) and set-top boxes—

which have similar workload profiles of 
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In a system that utilized an autorespond 

proxy, for the workload stated here, the 

system can remain in the network standby 

state the entire time. In other words, the 

system need never enter the active state for 

any typical network packet processing. For 

the QorIQ AMP series T1042 communications 

processors20, the power consumed with the 

autorespond proxy active when in the network 

standby state is typically 150 mW. Thus, this 

is also the average power consumption of a 

system with an autorespond proxy.

7. When to Use Each Technique
The system described above was only an 

example system, and it is not necessarily the 

case that the same conclusion will be reached 

in all systems regarding the relative merits of 

packet classification, packet accumulation 

and autorespond proxies. As such, there are 

some generic recommendations that can be 

made as to when to use each technique.

First of all, given that there is no mode in 

which the power of a legacy system is less 

than the power of a system with packet 

classification, it follows that it can be generally 

recommended to always perform packet 

classification. Waking only on interesting 

packets rather than all incoming packets is a 

relatively small amount of additional hardware 

complexity, and thus is recommended.

Similarly, the incremental hardware and 

software complexity to support packet 

accumulation as well as packet classification 

can likewise also be recommended in general. 

Separate studies may be done in the future 

on the optimal number of packets or sizes of 

buffers to support for packet accumulation, 

but in its simplest and most minimal form, 

packet accumulation utilizes memory that 

exists in a system with packet classification 

for other purposes. This memory may exist, 

for example, to store the system context for 

Therefore, the average power required 

to maintain network standby with packet 

classification would be:

Pave = tactive/ttotal*Pactive + (ttotal – tactive)/ttotal * Pns (1)

Where:

Pave = average power in a given time period 

ttotal

Pactive = power consumption when in active 

mode

Pns = power consumption when in network 

standby mode

tactive = time during total when in active mode 

(not in network standby), or in the process 

of waking into this mode

ttotal = total length of the time period under 

consideration

Using (1), the power dissipated in a system 

with packet classification but not packet 

accumulation is:

(1.8 s + 1 ms)/3 s * 5 W + (3 s – 1.8 s – 1 

ms)/3 s * 300 mW

= 60% * 5 W + 40% * 300 mW

= 3.12 W

This is summarized in table 1, below.

In a system implementing both packet 

classification and packet accumulation (such 

as the Freescale P1013/P102210), the system 

would wake every 60 seconds in order to 

respond to packets before the worst-case 

60-second timeout. On average, 20 packets 

requiring response would have arrived in that 

time. In this system, tactive then reduces to 1.8 

s + 20 * 1 ms, which is the time to wake up, 

plus the time when in active.

Therefore, using (1) once again, the average 

power required to maintain network standby 

with both packet classification and packet 

accumulation would be:

(1.8 s + 20 * 1 ms)/60 s * 5 W + (60 s–1.8 

s–20 * 1 ms)/60 s * 300 mW

= 3% * 5 W + 97% * 300 mW

= 0.44 W

waking from the network standby mode, or it 

may simply be the size of memories required 

to receive a maximum-sized Ethernet jumbo 

frame of the order of 9000 bytes. As such, 

the incremental power to support packet 

accumulation rather than simply packet 

classification may be negligible, and thus, 

packet classification with packet accumulation 

can be broadly recommended.

For applications on small networks where the 

network connectivity messages are expected 

to be infrequent, the simpler approach of 

packet classification combined with packet 

accumulation may be optimal as it can lead 

to slightly lower system cost and power. 

However, in most cases the power and 

cost issues are minimally impacted when 

implementing autorespond proxy capabilities. 

Even in the cases where packet classification 

and accumulation are acceptable, over time 

most commercially available NICs and SoCs 

will likely adopt the autorespond proxy due to 

its more general-purpose nature. Hence, an 

autorespond proxy is the best general-purpose 

solution, particularly when the power saving 

over the life of the product is considered.

8. Conclusion
Embedded and networked computing 

applications are all around us, everywhere we 

go, but particularly in the home and office. 

Designers are severely challenged to continue 

feeding the industry with increased product 

performance while adhering to constantly 

shrinking energy budgets. 

Within the cyclical states of the embedded 

networked application, there are three 

techniques for low-power network standby 

that were evaluated. Packet classification 

saves power by allowing systems to parse 

and drop packets that do not need to 

be responded to. Packet accumulation 

extends the time the system can remain 

in the network standby state by buffering 

packets for response at a later point in time. 

An autorespond proxy provides separate 

hardware to respond to common packet 

types without waking the system. 

Going forward, the increasingly stringent 

government regulations and public desires 

will require network standby to ultimately 

approach 0 W. The challenge will be to further 

innovate and reduce network standby power.

Table 1: Average Power Consumption for Various Network  
Standby Techniques

System Average Power Consumption

Legacy System 5.00 W

Packet Classification but Not Packet Accumulation 3.12 W

Packet Classification and Packet Accumulation 0.44 W

Autorespond Proxy 0.15 W
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