
Low-Power Network
Standby in the
Home and Office

White Paper

freescale.com

Ben Eckermann
Digital Networking
Freescale Semiconductor

2

White Paper Low-Power Network Standby in the Home and Office

Abstract

Offices have long been networked, but the home is becoming an increasingly

electronic and networked place. As the public demands (and governments

mandate) an energy-efficient home, and everything from TVs to printers and

refrigerators becomes networked, the energy consumption of these devices

becomes critical. Most of these networked edge devices spend the majority of their

time idle, but still need to remain present on the network. This creates the need for

a new energy conservation technique—minimizing power while network-connected

and idle—but the devices still need to be ready to respond at a moment’s notice.

This paper analyzes the nature of embedded computing systems, reviewing

system-level power optimizations to minimize network standby power. Then, in the

context of low-power embedded systems in the home and office, we investigate

and propose three ways to handle the network traffic at the heart of a low-

power network standby system—packet classification, packet accumulation and

autorespond proxies.

1. Introduction
Growing energy demands from embedded

electronics and increasing evidence

of dramatic global climate change are

generating greater environmental and cultural

pressure for energy-efficient solutions in

embedded computing applications. This,

coupled with continued expectations for

higher performance embedded computing

with each new product generation, despite

environmental concerns, is impacting the

future usage models of embedded

processing systems.

Although traditional offline powered

equipment, such as appliances, HVAC and

lighting systems, dominate electric equipment

energy consumption, embedded electronics

and online equipment, such as printers,

storage, networking infrastructure and data

centers, are increasingly consuming a larger

share of our energy resources. Furthermore,

even equipment that was traditionally offline,

such as TVs, refrigerators and HVAC controls,

are now going online, while containing even

more embedded processing.

To balance the performance required for

powerful new electronic applications with

rising concerns over energy consumption,

environmentally aware “green” movements

and government regulations and programs are

driving manufacturers to develop intelligent

strategies for optimizing performance within

specific energy budgets.

Traditional embedded computing platforms

have been designed for maximum work load

with little regard to the cyclical work profile

across hourly, daily, weekly or extended time

intervals. However, new-generation high-

performance systems are shifting their design

focus from provisioning worst-case maximum

power loads to optimizing for energy efficiency

across varying workloads. Products such

as printers are good examples of a cyclical

workload, as they tend to spend much more

time in a ready-to-print state or performing

low-workload management services than they

do for higher energy consumption printing

states. Other embedded applications such as

home network gateways, industrial processing

plants and telecommunications systems can

employ similar profiling to reduce energy

waste and costs too.

As an example, office printers typically print

cumulatively only one hour out of a 168-

hour work week. Without system power

management techniques, the 167 hours of

idle time power cumulatively can exceed

the active state power. Lowering power

consumption requires advanced energy

management schemes from new product

development engineers. A simple strategy to

design lower power consuming electronics

begins to address the energy-efficient

embedded computing challenge; however,

larger gains will come from creating flexible

systems that can pace workload with energy

consumption in an intelligent and

efficient manner.

Previous work, such as “Skilled in the Art

of Being Idle: Reducing Energy Waste in

Networked Systems,”1 “Long Idle: Making

Idle Networks Quiet for Platform Energy-

Efficiency”2 and “Long Idle: Making Idle

Networks Quiet for Platform Energy-

Efficiency,”3 has concentrated on analyzing

and optimizing energy for PCs. However,

networked embedded devices have a different

set of requirements with more stringent

power limits. Therefore, solutions that require

additional hardware components may save

significant power in a PC, but the same

conclusion cannot necessarily be drawn in an

embedded system where the power of the

additional hardware components may exceed

the power otherwise saved by their use. A

potential example of this is the autorespond

proxy described later in this paper.

Embedded devices also have other differing

characteristics from PCs. Historically, although

the gap is diminishing, processing levels are

not as high for embedded devices as for

PCs. Furthermore, other key features of the

workload may impact the optimal low-power

system solution—an embedded processor is

less likely to have to perform scheduled virus

scans or data backups, and an embedded

processor may require a faster wakeup time

from a sleep mode than a general-purpose

PC. As such, this paper concentrates on

low-power network standby as it relates to

embedded systems in the home and office.

3

White Paper Low-Power Network Standby in the Home and Office

Art of Being Idle: Reducing Energy Waste in

Networked Systems.”1

Embedded processors need to be able to

wake on any targeted network event. For

example, in a networked system with what

is hereby termed packet classification, an

embedded processor can enter the network

standby mode where the system is dormant,

yet its network controller still operates and

ignores no packets. At the same time, if

desired, DDR can be in self-refresh mode, still

accessible if needed to buffer packets, while

potentially also storing the system state for

fast wakeup.

For true packet classification, the network

controller needs to have some additional

capability—in particular a receive filer to

inspect and classify incoming packets. The

receive filer can be configured to drop packets

that don’t need to be processed. Packets

that need processing, such as ARP packets

destined for the correct address, are written

to DDR, and the network controller wakes

the system from deep sleep for processing.

For flexibility, the receive filer should be

programmed to accept and wake on whatever

packets are interesting for a particular

system usage configuration. An example of

a product performing packet classification is

the Freescale MPC8536E communications

processor7, which implements packet

classification in its deep sleep mode through

the enhanced triple-speed Ethernet controller

(eTSEC).

2. Understanding the
Cyclical States of Embedded
Computing Systems
In most cases, all the work performed in

embedded computing applications is done

in cycles—a combination of active states,

management states and network standby

states that are dynamically administered to

most effectively optimize energy-efficient

performance on demand. This is true for such

applications as high-speed printing, home

routers and WAN managed systems. The

various network functions that the system

performs in each state are outlined in figure 1.

In an embedded networked application, the

system spends much of the time in a low-

power network standby mode and wakes up

in response to an external event. If the system

takes too long to wake up, the window for

acting on the event that caused the wakeup

may have closed.

Further power reductions can potentially

be achieved in non-active states. In wired

networks, 10/100 MB Ethernet interfaces

rather than Gigabit may be sufficient, saving

significant Ethernet PHY power. Even bigger

savings have been available since 2010, when

the IEEE® ratified the Energy Efficient Ethernet

(also known as 802.3az) standard4. This

standard reduces power during periods of low

use, and Ethernet PHYs that support it can

reduce power by up to 70 percent when the

PHY is not receiving or transmitting packets.

3. Packet Classification
Lossless packet operation in a networked

environment is a method for ensuring that

critical packets initiate the wakeup sequence

and that no targeted packets are lost. A

common example is wake-on-ARP (address

resolution protocol6). An ARP packet can

find a host’s hardware address when given

its network layer address. When the system

receives an ARP packet that is destined for

it alone, it triggers a wakeup to respond per

protocol specifications.

Computer networks in the home and office

typically have traffic 24 hours a day, even

when no one is in the home or office, and

even when the building is not occupied.

This “idle” network traffic is analyzed in

papers such as “Skilled in the Art of Being

Idle: Reducing Energy Waste in Networked

Systems,”1 “Long Idle: Making Idle Networks

Quiet for Platform Energy-Efficiency”2. Note

that even though such papers analyze traffic

in the context of PCs, this is still relevant for

embedded networked devices in the home

or office, which generally coexist on networks

shared with PCs and thus are subject to the

same classes of incoming traffic.

“Skilled in the Art of Being Idle: Reducing

Energy Waste in Networked Systems,”1

shows that in the systems they measured,

the primary source of broadcast traffic in both

the office and home is in fact ARP, and that

while office networks may have significant

multi-cast router traffic, such as the Hot

Standby Router Protocol (HSRP) or Protocol

Independent Multicast (PIM), these multicast

packets in general have the potential to be

safely ignored.

Further optimization is possible with the

realization that many packets that arrive on

the network are destined for other devices on

the network, not the embedded processor

in question. They can therefore be safely

ignored, as can router multicast traffic. If the

controlling processor wakes up on every

packet, it will be constantly awake and

have no time to enter a low power mode.

Nevertheless, there are times when the

processor needs to wake up to service and

process certain packets. This is similar to

the concept of “proxy_1” in “Skilled in the

System States

Management
Application Requested
• Decrease CPU frequency
• Dynamically disable

non-essential I/Os

Primary Application
Running
• Performance is maximized
• Connectivity is maximized

Request for Primary
Application
• Apply power to down

components
• Restore previous known

state saved in DDR
• Increase CPU frequency

Management
Application
• Apply power to essential

components
• Restore previous known

state saved in DDR

No More Work Need
• Save system state
• Put DDR into self-refresh
• Remove power to non-

essential componentsˆ

No Useful Need
• Performance is zero
• Connectivity is maintained

Network Standby

Active

Management

Figure 1: System States

4

White Paper Low-Power Network Standby in the Home and Office

5. Autorespond Proxy
The shortcoming of packet classification and

accumulation on larger networks, such as

that found in corporations, is the amount of

time spent servicing protocols such as ARP

and SNMP, which are required to maintain

network connectivity. As an example, if it

takes a system 500 ms to go through a

cycle of wakeup, message processing and

return-to-sleep, then even modest message

frequency (<500 ms) could force a system to

stay permanently in a high-power state.

For this reason, techniques recently

introduced into network standards have

added an intelligent proxy to the network

interface to maintain network connectivity. The

ECMA-393 standard11 defines the concept of

“full network connectivity” as the ability of the

computer to maintain network presence while

in sleep and intelligently wake when further

processing is required. Microsoft’s network

driver interface specifications (NDIS)12 and

“Network Power Management for Windows

7”13 provide a framework for protocol offload.

In particular, these standardize the way that

systems running Microsoft Windows 7 can

allow IPv4 address resolution (ARP) and IPv6

network solicitation (NS) to be offloaded to

an external network interface controller (NIC),

rather than the primary Windows host.

The “proxzzzy for sleeping hosts”14 is not tied

to the Windows 7 operating system and is

therefore more suitable to a wide range of

embedded applications. Similar to Microsoft’s

NDIS and power management12, 13, it also has

the requirement for IPv4 ARP and IPv6 NS

proxying. It goes further to provide options of

further proxying of other protocols such as

IGMP, DHCP, IPv4 SIP, IPv6 Teredo tunneling,

SNMP, mDNS and LLMNR.

Fundamentally, however, the concept of

all such proxying is similar—to maintain

Energy Star specifications’11 “full network

connectivity” by using some sort of hardware

that is distinct from the primary processor

in a system that would otherwise maintain

network connectivity. The intent here is for the

proxying hardware to be much lower power

than the primary processor, thereby allowing

the primary processor to be in a low-power

state, or potentially even off, for extended

periods of time.

• The system must be able to help

guarantee that its packet accumulation

buffer does not overflow, regardless of

whether that buffer is in dedicated on-chip

SRAM in an SoC or in external DRAM.

This implies that while performing packet

accumulation, the system maintains a

count of the number or size of received

packets to help ensure that it does not

exceed the available buffer, and that the

system wakes before this occurs.

• The system must be able to respond to

packets within a defined maximum time,

regardless of network traffic. This means

that as the system starts to accumulate

packets, a timer must be started. When

the timer expires, the system needs to

wake up, regardless of how many packets

have been accumulated. This prevents

network protocols from timing out if a

packet is received and accumulated, but

subsequently the network has relatively

little relevant traffic to force the packet

accumulation buffer to fill.

• There may be certain types of packets for

which it is desirable to wake immediately

and process, rather than accumulate

multiple packets to process. For example,

for a networked printer it may be desirable

to respond and accumulate multiple ARP

requests before wake, but if a packet

that looks like the beginning of a print

job arrives, then the system should wake

immediately in order to print as soon as

possible. “Long Idle: Making Idle Networks

Quiet for Platform Energy-Efficiency”2 uses

heuristics to differentiate between packets

that are “idle” (bufferable) and packets

that are “active” (desire fast response), but

relatively simple deep packet inspection is

also a workable solution.

An example of a product performing both

packet classification and packet accumulation

with deep packet inspection is the Freescale

QorIQ P1022 communications processor10.

It can both classify packets with its eTSEC

controller, and also accumulate packets as

needed, storing them in external DRAM, while

maintaining counters in its eTSEC and timers

in its interrupt controller to guarantee packet

response within predefined maximum times.

The goal is to achieve the best of both

worlds—operating at ultra low power the vast

majority of the time, yet with no penalty of

reduced functionality from protocol timeouts

due to dropped packets—because the

system can wake and respond as needed.

4. Packet Accumulation
Packet classification, as described earlier

in this paper, ensures that the system only

processes what it needs to process, and

therefore goes a long way to minimizing

power consumption in networked devices.

However, further optimization is not only

possible but desirable in real-life systems.

Real-world applications can contain an

extensive software footprint, and the time to

boot is non-trivial. In systems where clock

cycles are measured in nanoseconds, the

time for software to boot may be measured

in seconds.

“Somniloquy: Augmenting Network Interfaces

to Reduce PC Energy Usage”3 lists a

10-second boot as the shortest achievable

today for a PC, although per Microsoft

itself8, Microsoft® Vista requires resumption

from its S3 sleep state in two seconds.

Even lower boot times are achievable in

embedded applications; for example, Lineo9

lists an optimized boot of 1.07 seconds for

X-Windows on the Armadillo 500-FX

platform, and 1.9 seconds for Android on the

same platform.

Even with packet classification, the arrival rate

of packets that require further processing may

approach the time it takes for the system to

wake to process a packet. In such a scenario,

the system will be continually waking and

sleeping, without ever being able to spend

any significant time in the lowest power

dormant state.

This situation can be improved through

packet accumulation. With the benefits of

packet accumulation, multiple packets can be

buffered until such time as the system is ready

to wake to process them. This minimizes the

overhead of waking and sleeping, allowing

the system to efficiently process a group of

packets in bulk.

There are several caveats to be aware of

when using packet accumulation:

5

White Paper Low-Power Network Standby in the Home and Office

• 300 mW SoC power dissipation when

in network standby mode, at room

temperature (25° C junction temperature).

• 5 W SoC power dissipation when active

and running typical code, 65° C junction

temperature.

• In an otherwise idle network, packets,

regardless of whether they require

response or not, are assumed to arrive

every 80 ms. This is equal to 12.5 packets

per second, per Gobriel, et al2.

• Packets that require response arrive on

average every 3 seconds, but only require

response every 60 seconds (these values

are protocol and network dependent, but

represent realistic assumptions).

• Packets that cannot be responded to

by an autorespond proxy arrive relatively

rarely, less often than once every 60

seconds, and in the context of an

autorespond proxy, such distinction can

be ignored from an average system power

consumption perspective.

In a legacy system not implementing either

packet classification or packet accumulation,

the system would never be able to spend any

meaningful time in a deep sleep mode. This

is because the time to wake (1.8 seconds)

is significantly longer than the time between

arrival of packets (80 ms). On average, each

time entering deep sleep, it would only be in

deep sleep for 40 ms (half the average packet

arrival rate), and it would be awake for at least

1.8 seconds. Therefore the average power

required to maintain network standby would,

for all intents and purposes, be equal to the

max power, namely 5 W.

In a system implementing packet classification

but not packet accumulation (such as the

MPC8536E PowerQUICC IIITM integrated

processor7), the system would wake on

every interesting packet (on average every 3

seconds), and be awake for the time to boot,

plus the time to process one packet. This is a

period of (1.8 s + 1 ms) every 3 seconds.

being online but having its main purpose

idle most of the time—would see similar

power reduction benefits by implementing an

autorespond proxy.

An autorespond proxy can be implemented

either externally in a “smart” NIC or

embedded in an equivalent integrated function

on an SoC. The Freescale QorIQ T1042

communications processor20 is an example

of a device which implements an integrated

autorespond proxy function. Firmware running

on its frame manager can handle or terminate

ECMA-393 protocols, while the majority of

the device is in a low-power idle state. This

capability enables systems to achieve less

than ½ W while maintaining full network

connectivity, as measured from the AC

wall plug.

6. Saving Energy with
an Implementation of
Network Standby
To demonstrate how low-power network

standby and advanced power management

features can reduce overall system energy

consumption, consider the following real-

world example. In this example, only the

power of the embedded processor including

I/O is considered, rather than overall system

power. The power when in network standby

is of interest—not the power when performing

other primary embedded functionality, such

as a printer printing, a DVR recording a

TV program, or so on, which is likely to be

significantly higher.

The system under consideration has the

following properties, based on using an

instance of a product, such as the Freescale

P1013/P102210:

• 1.8 seconds to wake to full operation,

including voltage ramp-up and software

boot. This assumption is a mid-range

combination of the 1.07 s X-Windows and

1.9 s Android wake times per Lineo9 and

the Windows 8 wake from S3 state of 2.0

seconds per Microsoft8.

• 1 ms per packet to process a packet

(based on the assumption of a host with

a maximum processing rate of up to 1

million packets per second).

Nedevschi, et al.,1 also implement several

types of autorespond proxy in their “proxy_2”

through “proxy_4” definitions, although

there is no concept of packet accumulation.

Their paper analyzes in detail the types of

incoming packets and provides information

as to which may be the best “low-hanging

fruit” protocols to proxy. This data shows

that the best protocol to proxy is ARP, as

it is the highest percentage of incoming

broadcast traffic, and packets destined

for the host cannot be ignored. However,

other packets which the paper classifies

as both “don’t wake” (because they may

occur frequently) and “mechanical response”

(for which a proxy autoresponse may be

possible) includes the protocols SSDP,

IGMP, ICMP and NBDGM, as well as ARP.

All of these and potentially other protocols

may be considered as candidates for an

autorespond proxy, although a definitive list is

highly network dependent and an optimized

proxy should be tuned to specific use cases.

Where the classification and accumulation of

packets can be handled in more cases by an

intelligent Ethernet controller with scratch pad

memory, an autoreponding proxy typically

requires an additional processing element

capable of running a networking stack. In a

quiet network, the power saving between

classification and accumulation methods and

autorespond proxy are similar. However, for

real networks the cumulative power saving

can be an order of magnitude greater if

the packet classification and accumulation

techniques fail to keep the system in an idle

state most of the time.

Another key consideration when implementing

an autorespond proxy is that the system

must behave similarly on a network as a

fully powered version of itself. In the printer

example, the PC sending a print job must not

see noticeable differences in communication

interactions with the printer, or else it could

break driver compatibility across diverse

OSs and platforms. The printer with an

autorespond proxy can’t make assumptions

that the devices it communicates with have

ability to deal with its special “low power

modes.” Many devices such as network

attached storage (NAS) and set-top boxes—

which have similar workload profiles of

6

White Paper Low-Power Network Standby in the Home and Office

In a system that utilized an autorespond

proxy, for the workload stated here, the

system can remain in the network standby

state the entire time. In other words, the

system need never enter the active state for

any typical network packet processing. For

the QorIQ AMP series T1042 communications

processors20, the power consumed with the

autorespond proxy active when in the network

standby state is typically 150 mW. Thus, this

is also the average power consumption of a

system with an autorespond proxy.

7. When to Use Each Technique
The system described above was only an

example system, and it is not necessarily the

case that the same conclusion will be reached

in all systems regarding the relative merits of

packet classification, packet accumulation

and autorespond proxies. As such, there are

some generic recommendations that can be

made as to when to use each technique.

First of all, given that there is no mode in

which the power of a legacy system is less

than the power of a system with packet

classification, it follows that it can be generally

recommended to always perform packet

classification. Waking only on interesting

packets rather than all incoming packets is a

relatively small amount of additional hardware

complexity, and thus is recommended.

Similarly, the incremental hardware and

software complexity to support packet

accumulation as well as packet classification

can likewise also be recommended in general.

Separate studies may be done in the future

on the optimal number of packets or sizes of

buffers to support for packet accumulation,

but in its simplest and most minimal form,

packet accumulation utilizes memory that

exists in a system with packet classification

for other purposes. This memory may exist,

for example, to store the system context for

Therefore, the average power required

to maintain network standby with packet

classification would be:

Pave = tactive/ttotal*Pactive + (ttotal – tactive)/ttotal * Pns (1)

Where:

Pave = average power in a given time period

ttotal

Pactive = power consumption when in active

mode

Pns = power consumption when in network

standby mode

tactive = time during total when in active mode

(not in network standby), or in the process

of waking into this mode

ttotal = total length of the time period under

consideration

Using (1), the power dissipated in a system

with packet classification but not packet

accumulation is:

(1.8 s + 1 ms)/3 s * 5 W + (3 s – 1.8 s – 1

ms)/3 s * 300 mW

= 60% * 5 W + 40% * 300 mW

= 3.12 W

This is summarized in table 1, below.

In a system implementing both packet

classification and packet accumulation (such

as the Freescale P1013/P102210), the system

would wake every 60 seconds in order to

respond to packets before the worst-case

60-second timeout. On average, 20 packets

requiring response would have arrived in that

time. In this system, tactive then reduces to 1.8

s + 20 * 1 ms, which is the time to wake up,

plus the time when in active.

Therefore, using (1) once again, the average

power required to maintain network standby

with both packet classification and packet

accumulation would be:

(1.8 s + 20 * 1 ms)/60 s * 5 W + (60 s–1.8

s–20 * 1 ms)/60 s * 300 mW

= 3% * 5 W + 97% * 300 mW

= 0.44 W

waking from the network standby mode, or it

may simply be the size of memories required

to receive a maximum-sized Ethernet jumbo

frame of the order of 9000 bytes. As such,

the incremental power to support packet

accumulation rather than simply packet

classification may be negligible, and thus,

packet classification with packet accumulation

can be broadly recommended.

For applications on small networks where the

network connectivity messages are expected

to be infrequent, the simpler approach of

packet classification combined with packet

accumulation may be optimal as it can lead

to slightly lower system cost and power.

However, in most cases the power and

cost issues are minimally impacted when

implementing autorespond proxy capabilities.

Even in the cases where packet classification

and accumulation are acceptable, over time

most commercially available NICs and SoCs

will likely adopt the autorespond proxy due to

its more general-purpose nature. Hence, an

autorespond proxy is the best general-purpose

solution, particularly when the power saving

over the life of the product is considered.

8. Conclusion
Embedded and networked computing

applications are all around us, everywhere we

go, but particularly in the home and office.

Designers are severely challenged to continue

feeding the industry with increased product

performance while adhering to constantly

shrinking energy budgets.

Within the cyclical states of the embedded

networked application, there are three

techniques for low-power network standby

that were evaluated. Packet classification

saves power by allowing systems to parse

and drop packets that do not need to

be responded to. Packet accumulation

extends the time the system can remain

in the network standby state by buffering

packets for response at a later point in time.

An autorespond proxy provides separate

hardware to respond to common packet

types without waking the system.

Going forward, the increasingly stringent

government regulations and public desires

will require network standby to ultimately

approach 0 W. The challenge will be to further

innovate and reduce network standby power.

Table 1: Average Power Consumption for Various Network
Standby Techniques

System Average Power Consumption

Legacy System 5.00 W

Packet Classification but Not Packet Accumulation 3.12 W

Packet Classification and Packet Accumulation 0.44 W

Autorespond Proxy 0.15 W

For more information, visit freescale.com/QorIQ
Freescale, the Freescale logo and QorIQ are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
All other product or service names are the property of their respective owners. © 2013 Freescale Semiconductor, Inc.

Document Number: LPOENETSTBYHOWP REV 0

[11] ENERGY STAR specification, “ENERGY STAR
Program Requirements for Computers,”
Version 5.0, energystar.gov/ia/partners/prod_
development/revisions/downloads/computer/
Version5.0_Computer_Spec.pdf.

[12] Microsoft, “Network Driver Interface
Specifications (NDIS),” Version 6.20.

[13] B. Combs, “Network Power Management
for Windows 7,” Microsoft Windows Driver
Developer Conference, 2008.

[14] ECMA standard, “Proxzzzy for Sleeping Hosts,”
ECMA-393, February 2010,
ecma-international.org/publications/files/
ECMA-ST/ECMA-393.pdf.

[15] K. Sabhanatarajan, A. Gorden-Ross, M. Oden,
M. Navada, and A. George, “Smart-NICs: Power
Proxying for Reduced Power Consumption in
Network Edge Devices,” IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2008.

[16] M. Gupta and S. Singh, “Greening of the
Internet,” ACM SIGCOMM, Karlsruhe, Germany.
August 2003.

[17] S. Nedevschi, L. Popa, G. Iannaccone, S.
Ratnasamy, and D. Wetherall, “Reducing
Network Energy Consumption via Sleeping
and Rate Adaptation,” USENIX Symposium on
Networked Systems Design & Implementation
(NSDI), 2008.

[18] W. Heinzelman, A. Chandrakasan, and H.
Balakrishnan, “Energy-Efficient Communication
Protocol forWireless Microsensor Networks,”
Proc. 33rd Hawaii Int. Conf. System Sciences
(HICSS), Maui, HI, Jan. 2000.

[19] J. Shafer and S. Rixner, “A Reconfigurable
and Programmable Gigabit Ethernet Network
Interface Card,” Technical report TREE0611,
Department of Electrical and Computer
Engineering, Rice University, December 2006.

[20] QorIQ T Series T1020/22 and T1040/42
Processors Fact Sheet,” Freescale,
T1FAMILYFS REV 0.

9. References
[1] S. Nedevschi, J. Chandrashekar, J. Liu, B.

Nordman, S. Ratnasamy, and N. Taft, “Skilled in
the Art of Being Idle: Reducing Energy Waste in
Networked Systems,” USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), 2009.

[2] S Gobriel, C Maciocco, T. C. Tai, “Long Idle:
Making Idle Networks Quiet for Platform Energy-
Efficiency,” International Conference on Systems
and Networks Communications (ICSNC), 2010.

[3] Y. Agarwal, S. Hodges, J. Scott, R. Chandra, P.
Bahl, and R. Gupta, “Somniloquy: Augmenting
Network Interfaces to Reduce PC Energy
Usage,” USENIX Symposium on Networked
Systems Design & Implementation (NSDI), 2009.

[4] IEEE, “IEEE Standard 802 Part 3, Amendment
5: Media Access Control Parameters, Physical
Layers, and Management Parameters for
Energy-Efficient Ethernet,” IEEE Standard
802.3az, 2010.

[5] Frequency dependence on Leakage: K. Roy et
al., “Leakage Current Mechanisms and Leakage
Reduction Techniques in Deep-Submicrometer
CMOS Circuits,” Proc. IEEE, vol. 91, no. 2, pp.
305–327, February 2003.

[6] D. Plummer, “An Ethernet Address Resolution
Protocol,” IETF RFC-826, November 1982.

[7] “MPC8536E PowerQUICC III™ Integrated
Processor Reference Manual,” Freescale
Semiconductor, MPC8536ERM Rev1, 2009.

[8] Windows Hardware Certification
Requirements for Client and Server Systems.
msdn.microsoft.com/en-US/library/
windows/hardware/jj128256

[9] Lineo Warp Website, “Products and Services –
Warp,” lineo.co.jp/modules/products/warp2.
html.

[10] “P1013/P1022 Fact Sheet,” Freescale,
QP1022FS Rev1, 2011.

