
Freescale Semiconductor
Application Note

EEPROMFLASH
Rev. 1, 7/2005

© Freescale Semiconductor, Inc., 2005. All rights reserved.

PRELIMINARY

56F83xx Lends Hybrid
Applications EEPROM
Capability -- FlashEE
John L. Winters

1. Introduction
1.1 Overview

Motorola has introduced a new class of hybrid MCU/DSP
devices addressing the needs associated with automotive,
industrial, consumer, motor control and other system control
applications requiring Flash memory and EEPROM capability.
These devices are the 56F8322, 56F8323, 56F8345, 56F8346,
56F8356, and 56F8357 parts, collectively referred to as the
56F83xx family.

This report presents the architectural advantage offered by the
56F83xx family of devices with respect to using its on-chip Flash
as EEPROM. It also recounts the method used to demonstrate this
capability and displays some of the source code.

Why use on-chip Flash as EEPROM?

A control system may be required to store a variety of
information, including control information, calibration data,
phone numbers, data logs, temperature exteme data, maximum
velocity data, boundry GPS coordinates, and many other types of
data. This data may need to be updated by the control system
autonomously, perhaps in the field of deployment, and may be
required for the system’s self- calibration. The information stored
may need to be retained, even when power is not supplied to the
device. In many applications, an EEPROM is required to store
non-volatile data; it could be eliminated if the 56F83xx’s
on-board Flash could be used to store all of this data. Using Flash
to replace EEPROM has been named “FlashEE” in a previous
Motorola Application Note (please see Reference 1).

Contents
1. Introduction .. 1

1.1 Overview.. 1
1.2 The Keys to FlashEE............................ 2
1.3 How the Keys Open the Way............... 2

2. Using the Keys -- FlashEE on a 56F3xx
Device ... 2

2.1 A Program Illustrates the Concept 2
2.2 The Program Explained 4

3. Conclusion ... 8

4. References .. 8

Using the Keys -- FlashEE on a 56F3xx Device

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

2 Freescale Semiconductor
Preliminary

1.2 The Keys to FlashEE
The keys to unlock FlashEE reside within the Flash memory subsystem of the 56F83xx family:

• A minimum of up to 10K write/erase cycles across temperature range; up to 100K is typical
• A data Flash Memory Page size of only 256 words
• No special voltages are required for Flash programming

1.3 How the Keys Open the Way
The Motorola 56F83xx family includes all three keys. But what if just one of these keys is omitted?

• Omit the first key and it will wear out the Flash before the normal life cycle of the product
• Omit the second key and the number of data words used up each time any parameter must be updated

will soon cycle through all available memory, resulting in a linear decrease of product life
For example, if the page size was 8K and only 256 words needed to be written at once, then most of the
8K words would be wasted and the product life would decrease by a factor of 16, assuming equal
memory sizes.

• Omit the last key and special voltages would be needed just to update data in FlashEE

There’s no need to do without any of these keys, since they are all built into the Flash Memory subsystem of
the Motorola 56F83xx family of devices.

2. Using the Keys -- FlashEE on a 56F3xx Device
2.1 A Program Illustrates the Concept

The tested, working C program at the end of this section has been used to train engineers using FlashEE on a
56F83xx controller. Section 2.2 discusses the operation of this program in detail.

By writing such a simple program, it’s easy to use as a seed for more complex applications requiring FlashEE.
It can be cut/pasted into an application, tested, then scaled up to the data structure to be saved. Integration
would then meld the FlashEE technique into the application. This is a stand-alone example which uses simple
subroutines.

This simple example just writes one 16-bit word to the Data FLASH using the FlashEE technique. When a
page finally fills up, it is not used again until it is erased. This example then shows how to save the value of a
16-bit word in a non-volatile manner using the FlashEE technique.

Why FlashEE 16 bits and not just one bit at a time? Since both the row size and the word size are 16 bits, each
word may be written only once prior to erasing. Thus, if only one bit is be stored, it would have to be stored in
a 16-bit word. Repeated writes to a word without an erase can damage the Flash, since the specifications would
be exceeded.

Code Example 1 is a part of a larger program, which is available with all source code, including subroutines.
See Reference 3.

A Program Illustrates the Concept

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

Freescale Semiconductor 3
Preliminary

Code Example 1.
/* Using Flash as EEPROM on 56F836 -- Training Module */

#include "ssd_types.h"
#include "ssd_hfm.h"
#include "ssd_hfm_config.h"
#include "ssd_demo.h"
#include "ssd_hfm_clk.h"
#include "clock.h"
#include <stdio.h>
#include <stdlib.h>

// Flash configuration stucture
FlashConfig flashConfig =
{
 HFM_BASE,
 HFM_CONFIG_BASE,
 FLASH_CLOCK_DIVIDER,
 false
};
UWord16 buffer[SOURCE_DATA_BUFFER_SIZE];
UWord16 main(void)
{
 UWord16 Flash_bits; // as read from flash
 UWord16 i; // Index
 FLASH_TYPE flashType; // The type of flash block
 UWord32 flashBaseAddr, // The base address of flash block
 flashSize; // The size of flash block
 UWord32 eraseBlkStartAddr; // The start address of flash block
 UWord16 number; // Flash page number operation applicable
 UWord32 source; // Source address for program and verify
 UWord32 dest, // Flash start address operation applicable
 size; // Flash size operation applicable
 UWord32 Flash_p ; // Pointer to flash
 // Set the vector base address
 REG_WRITE(INTC_BASE_ADDRESS + INTC_VBA, 0x300);
 // Set the PLL
 SetPLL(PLL_PRESCALER, PLL_POSTSCALER, PLL_MULTIPLIER);
 //=========================== Initialize HFM Module for Data Flash
===========================
 FlashInit((UWord32)(&flashConfig));
 flashType = FLASH_TYPE_D;
 flashBaseAddr = DATA_FLASH_START_ADDR;
 flashSize = DATA_FLASH_SIZE;
 number = DATA_FLASH_SIZE / FLASH_PAGE_SIZE_D;
 // Clear the all protect bits
 FlashSetProtection((UWord32)(&flashConfig), flashType, 0x0000);
 //=========================== Find unused flash word (=1) ===========================
 for (Flash_p = DATA_FLASH_START_ADDR;
 Flash_p < DATA_FLASH_START_ADDR + DATA_FLASH_SIZE;
 Flash_p ++
) // if word is 0xfff it must be errased already:
 if (*(UWord16*)Flash_p == 0xffff) break; // search for an unused word.
 if (Flash_p == DATA_FLASH_START_ADDR + DATA_FLASH_SIZE) // if flash used up, mass erase.
 {
 //============================ Mass Erase Flash (if all bits zero)
===============================
 eraseBlkStartAddr = flashBaseAddr;
 FlashMassErase((UWord32)(&flashConfig), flashType, eraseBlkStartAddr);
 Flash_p = DATA_FLASH_START_ADDR; // flash now empty again!
 }
 // Flash_p now points to first flash location with unused word.. which must exist.
 Flash_bits = 0x1234 ; // change to any value other than 0xffff

Using the Keys -- FlashEE on a 56F3xx Device

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

4 Freescale Semiconductor
Preliminary

 //============================== Program the one word into the Flash
================================
 source =(UWord32) &Flash_bits; // source for write to flash
 dest = Flash_p; // destination for write to flas
 size = 1; // number of 16 bit words to write to flash
 FlashProgram((UWord32)(&flashConfig), flashType, dest, size, source);
 printf ("\n *Flash_p= %x \n", *(UWord16*)Flash_p); // show word in flash
 printf ("\n Flash_p= %x \n",(UWord16)Flash_p); // show flash address

// Solution

 if (Flash_p & 1 // each time program runs, it writes another word.
 // After one run, the program prints odd
 // After two, even. The pattern continues.
 // Power failures do not affect it.
 // After all words are used, they are all cleared and the
 // pattern continues. Since erasure is infrequent, the life
 // of the memory is long.

)
 printf ("\n\n Odd");
 else printf ("\n\n Even");

}

2.2 The Program Explained
Code Example 2 brings in both the header files for low-level Flash subroutines that access the Flash, and
standard header files so that the debugger can output messages.

The Program Explained

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

Freescale Semiconductor 5
Preliminary

Code Example 2.
/* Using Flash as EEPROM on 56F836 -- Training Module */

#include "ssd_types.h"
#include "ssd_hfm.h"
#include "ssd_hfm_config.h"
#include "ssd_demo.h"
#include "ssd_hfm_clk.h"
#include "clock.h"
#include <stdio.h>
#include <stdlib.h>

The FLASH configuration structure in Code Example 3 configures the Flash for operation.

Code Example 3.

// Flash configuration stucture
FlashConfig flashConfig =
{
 HFM_BASE,
 HFM_CONFIG_BASE,
 FLASH_CLOCK_DIVIDER,
 false
};
UWord16 buffer[SOURCE_DATA_BUFFER_SIZE];

Code Example 4 includes the start of the actual code for the main program, the first application-oriented item
to gain control of the processor.

Code Example 4.

UWord16 main(void)
{

Code Example 5 displays data illustrating the technique of FlashEE.

Using the Keys -- FlashEE on a 56F3xx Device

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

6 Freescale Semiconductor
Preliminary

Code Example 5.

UWord16 Flash_bits; // as read from flash
 UWord16 i; // Index
 FLASH_TYPE flashType; // The type of flash block
 UWord32 flashBaseAddr, // The base address of flash block
 flashSize; // The size of flash block
 UWord32 eraseBlkStartAddr; // The start address of flash block
 UWord16 number; // Flash page number operation applicable
 UWord32 source; // Source address for program and verify
 UWord32 dest, // Flash start address operation applicable
 size; // Flash size operation applicable
 UWord32 Flash_p ; // Pointer to flash

Code Example 6 includes initialization code and will vary from application to application. It is the first code
run within this main.c program.

Code Example 6.

// Set the vector base address
 REG_WRITE(INTC_BASE_ADDRESS + INTC_VBA, 0x300);
 // Set the PLL
 SetPLL(PLL_PRESCALER, PLL_POSTSCALER, PLL_MULTIPLIER);
 //=========================== Initialize HFM Module for Data Flash
===========================
 FlashInit((UWord32)(&flashConfig));
 flashType = FLASH_TYPE_D;
 flashBaseAddr = DATA_FLASH_START_ADDR;
 flashSize = DATA_FLASH_SIZE;
 number = DATA_FLASH_SIZE / FLASH_PAGE_SIZE_D;
 // Clear the all protect bits
 FlashSetProtection((UWord32)(&flashConfig), flashType, 0x0000);

Code Example 7 makes use of the row size of 16 bits. It searches for a word equal to 0xffff, or all 16 bits equal
to one when viewed as a binary number: 1111111111111111. This is the value the word takes on when it is
erased.

The Program Explained

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

Freescale Semiconductor 7
Preliminary

Code Example 7.

//=========================== Find unused flash word (=1) ===========================
 for (Flash_p = DATA_FLASH_START_ADDR;
 Flash_p < DATA_FLASH_START_ADDR + DATA_FLASH_SIZE;
 Flash_p ++
) // if word is 0xfff it must be errased already:
 if (*(UWord16*)Flash_p == 0xffff) break; // search for an unused word.
 if (Flash_p == DATA_FLASH_START_ADDR + DATA_FLASH_SIZE) // if flash used up, mass erase.
 {

As shown in Code Example 8, if the code “falls through” to this point, it means that all Flash is used and a
mass erase will take place.

Code Example 8.

//=================== Mass Erase Flash (if all bits zero) ======================
 eraseBlkStartAddr = flashBaseAddr;
 FlashMassErase((UWord32)(&flashConfig), flashType, eraseBlkStartAddr);
 Flash_p = DATA_FLASH_START_ADDR; // flash now empty again!
 }

In Code Example 9, the meaning of the token 0xffff is erased, so we can store any other number using this
technique.

This will keep track of how much memory has been “used” so that it’s not necessary to use even more memory
(and time) to track this data.

Code Example 9.

// Flash_p now points to first flash location with unused word.. which must exist.
 Flash_bits = 0x1234 ; // change to any value other than 0xffff

The simple toggle function calculates odd or even numbers of program runs; each run uses one word. See Code
Example 10.

Conclusion

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

8 Freescale Semiconductor
Preliminary

Code Example 10.

//============================== Program the one word into the Flash
================================
 source =(UWord32) &Flash_bits; // source for write to flash
dest = Flash_p; // destination for write to flas
 size = 1; // number of 16 bit words to write to flash
 FlashProgram((UWord32)(&flashConfig), flashType, dest, size, source);
 printf ("\n *Flash_p= %x \n", *(UWord16*)Flash_p); // show word in flash
 printf ("\n Flash_p= %x \n",(UWord16)Flash_p); // show flash address

// Solution

 if (Flash_p & 1 // each time program runs, it writes another word.
 // After one run, the program prints odd
 // After two, even. The pattern continues.
 // Power failures do not affect it.
 // After all words are used, they are all cleared and the
 // pattern continues. Since erasure is infrequent, the life
 // of the memory is long.

)
 printf ("\n\n Odd");
 else printf ("\n\n Even");

}

3. Conclusion
A real application can store real data in these words. Since only one word is written at a time, and the Flash is
page erasable, making a useful FlashEE application is simple. The specifications of the Flash make it
well-suited for use as EEPROM when the total updates are in the tens to hundreds of thousands. The design of
the Motorola 56F83xx Flash unit makes this practical.

4. References
1) Using FLASH as EEPROM on the MC68HC908CP32, AN2183

2) Motorola 56F8300 Digital Signal ControllerFamily

3) Using FLASH as EEPROM Training Exercise

The Program Explained

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

Freescale Semiconductor 9
Preliminary

References

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

10 Freescale Semiconductor
Preliminary

The Program Explained

56F83xx Lends Hybrid Applications EEPROM Capability -- FlashEE, Rev. 1

Freescale Semiconductor 11
Preliminary

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners.
This product incorporates SuperFlash® technology licensed from SST.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

EEPROMFLASH
Rev. 1
7/2005

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

	1. Introduction
	1.1 Overview
	1.2 The Keys to FlashEE
	1.3 How the Keys Open the Way

	2. Using the Keys -- FlashEE on a 56F3xx Device
	2.1 A Program Illustrates the Concept
	2.2 The Program Explained

	3. Conclusion
	4. References

