
Freescale Semiconductor
Application Note

DSP56800WP1
Rev. 1, 7/2005

© Freescale Semiconductor, Inc., 2005. All rights reserved.

PRELIMINARY

Novel Digital Signal
Processing Architecture with
Microcontroller Features
JOSEPH P. GERGEN

DSP Consumer Design Manager
PHIL HOANG

DSP Consumer Section Manager
EPHREM A. CHEMALY Ph.D .

DSP Applications Manager

1. Abstract
Traditional Digital Signal Processors (DSPs) were designed to
execute signal processing algorithms efficiently. This led to some
serious compromises between developing a good DSP
architecture and a good microprocessor architecture. For this, as
well as other reasons, most DSP applications used a DSP and a
microcontroller. This paper presents a new 16-bit DSP
architecture from Freescale that maintains the performance of the
DSP, while adding microcontroller functionality.

2. Introduction
2.1 Overview

DSPs are dedicated processors, designed to execute signal
processing algorithms efficiently. Even though DSPs are
specialized microprocessors, they need to execute many kinds of
DSP algorithms. In addition, these DSPs are often called upon to
execute traditional microcontroller code. To resolve this problem,
designers use a DSP and a microcontroller in their system. This
adds to the material cost of their products. This paper will present
a new architecture, that is well suited for general purpose DSP
algorithms, as well as efficient microcontroller code and compiler
performance.

Contents

1. Abstract .. 1
2. Introduction .. 1

2.1 Overview.. 1
3. Background .. 2

3.1 Overview.. 2
4. Introduction tothe 56F800 Family 2

4.1 DSP56L811 16-bit Chip Architecture.. 3
5. 56800 16-BIT DSC Core Architecture4
6. High Performance DSP Features on a

Low Cost Architecture 6
6.1 DSP56800 Family Parallel Moves 6
6.2 56F800 Family Address Generation

(AGU)... 7
6.3 DSP56800 Family Computation - the

Data ALU Unit 8
6.4 DSP56800 Family Looping Mechanisms

10
7. General Purpose Computing-Ease of

Programming 11
7.1 DSP56800 Programming Model 12
7.2 Instructions That Operate on Registers,

Immediate Data, or Memory 12
7.3 The DSP56800’s MOVE Instruction and

Addressing Modes 13
7.4 Looping on the DSP56800

Architecture .. 14
7.5 DSP56800 Structured Programming and

Software Stack.................................... 14
7.6 Benefits in Program Code Size 16

8. Interrupt Processing 16
9. True Core-Based Design 16
10. Achieving Low Power Designs 16
11. Ease of Development 17
12. Applications 19
13. Results/Summary 19

Background

56F8300 Controller Family, Rev. 1

2 Freescale Semiconductor
Preliminary

3. Background
3.1 Overview

In the early 1980’s general purpose DSPs made their entrance into the merchant market. The first generation
DSPs were expensive, and designers were trying to find applications suited for them. The applications
development process was long and required specialized skills. The developers needed to have both digital
signal processing background, as well as understanding the idiosyncrasies of programming the DSPs. The tools
used for development were primitive, and almost all the code was written in assembly language. By the end of
the ‘80s, DSPs were well established in specific markets and were making inroads into traditional
microcontroller markets. The rules of engagement were changed, and customers were looking for a more
mature product.In response to the needs of the customer, Freescale has developed a new architecture suited not
only for efficient DSP processing, but also for high performance control. This paper will describe the new low
cost processor family-the DSP56800.

4. Introduction tothe 56F800 Family
The DSP56800 family is a group of chips built around the DSP56800 16-bit fixed point DSP microcontroller
Central Processing Unit (CPU) core. This core is designed for both efficient DSP and controller operations. Its
instruction set efficiency as a DSP microprocessor is on par with the best general purpose DSP architectures,
and it also has been designed for efficient, straightforward coding of controller-type tasks. The general purpose
MCU-style instruction set, with its powerful addressing modes and bit manipulation instructions enables a user
to begin writing code immediately without having to worry about the complexities associated with former DSP
microprocessors. A true software stack allows for unlimited interrupt and subroutine nesting, as well as support
for passed parameters and local variables. The experienced DSP programmer sees a powerful DSP instruction
set with many different arithmetic operations and flexible single and dual memory moves that can occur in
parallel with an arithmetic operation. Compilers are efficiently implemented on the DSP56800 architecture due
to the general purpose nature of its instruction set.

Figure 4-1. DSP56800 Based DSP Microcontroller Chip

DSP56L811 16-bit Chip Architecture

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 3
Preliminary

Different memory configurations can be built around the DSP56800 core. Likewise, a variety of standard
peripherals can be added around the DSP56800 core, (Figure 1) such as serial ports, general purpose timers,
realtime and watchdog timers, and General Purpose Input/Output (GPIO) ports. Each peripheral interfaces to
the DSP core through a standard Peripheral Interface Bus. This bus allows easy hookup of standard or custom
designed peripherals. On-Chip Emulation (OnCEª) capability is provided through a debug port conforming to
the JTAG standard. This provides realtime embedded system debug with OnCE capability through the 5-pin
JTAG interface, allowing for hardware and software breakpoints, display and modification of registers and
memory locations, and single stepping or step through multiple instructions in an application.

The high performance DSP features, flexible parallel moves, multiple internal buses, an external bus interface,
on-chip program and data memories, standard peripherals, and a JTAG debug port make the DSP56800 family
an excellent solution for realtime embedded control tasks. It becomes an excellent fit for wireless or wireline
DSP applications, digital control, and controller applications in need of more processing power.

4.1 DSP56L811 16-bit Chip Architecture
The first chip available in the DSP56800 family is the DSP56L811. In addition to peripherals useful for signal
processing, it also includes a complement of peripherals, GPIO pins, and timers useful for controlling an
application. Its features include the following:

56800 Features

• 56800 core
• Phase Lock Loop (PLL)
• 1 K ´ 16-bit Program RAM
• Three General 16-bit Timers
• 64 ´ 16-bit bootstrap ROM
• Realtime Timer
• 2 K ´ 16-bit X-data RAM
• Computer Operating Properly (COP) Timer
• External Bus Interface
• Two SPIs for MCU interfacing
• JTAG/OnCE debug port
• Synchronous Serial Interface (SSI) for codecs
• Two external interrupts
• Sixteen dedicated GPIO pins
• Programs can run out of X-memory
• Sixteen additional multiplexed GPIO pins
• Five Low Power modes
• Interrupt available on eight GPIO pins
• 2.7 V to 3.6 V operation
• 100-pin QFP (0.5 mm)

56800 16-BIT DSC Core Architecture

56F8300 Controller Family, Rev. 1

4 Freescale Semiconductor
Preliminary

A block diagram of the DSP56L811 is shown on the following page in Figure 4-2.

Figure 4-2. DSP56L811 Functional Block Diagram

5. 56800 16-BIT DSC Core Architecture
The DSP56800 core is a programmable CMOS 16-bit DSP designed for efficient real-time digital signal
processing and general purpose computing. The DSP56800 core is composed of four functional units that
operate in parallel to increase throughput of the machine. The functional blocks-the program controller,
Address Generation Unit (AGU), Data Arithmetic Logic Unit (Data ALU), and bit manipulation unit-each
contain their own register set and control logic so that they may operate independently and in parallel with the
other three. Each functional unit interfaces with other units, with memory, and with memory-mapped
peripherals over the core’s internal address and data buses. Thus, it is possible for the Program Controller to be
fetching a first instruction, the Address Generation Unit to generate up to two addresses for a second
instruction, and the Data ALU to perform a multiply in a third instruction. Alternatively, it is possible for the
bit manipulation unit to perform an operation in the third instruction described above in place of an operation in
the Data ALU. The architecture is pipelined to take advantage of the parallel units and significantly decrease
the execution time of each instruction.The major components of the DSP56800 core, shown in Figure 5-1, are
the following:

• Data ALU
• Address Generation Unit (AGU)
• Program controller and hardware looping unit
• Bit manipulation unit
• Three internal address buses
• Four internal data buses
• OnCE debug port
• Clock generation circuitry

DSP56L811 16-bit Chip Architecture

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 5
Preliminary

Figure 5-1. DSP56800 16-bit DSP Core Functional Block Diagram

The architecture of the DSP56800 core has been streamlined and tuned for efficient DSP processing, compact
DSP and controller code size, and excellent compiler performance. Several of the high performance signal
processing features are described the next section. The bulleted list on the following page lists the features of
the DSP core.

• 30 Million Instructions Per Second (MIPS) with a 60 MHz clock at4.57 V-5.5 V
• 20 Million Instructions Per Second (MIPS) with a 40 MHz clock at 2.7 V-3.6V
• Parallel instruction set with useful DSP addressing modes
• Single-cycle 16 ´ 16-bit parallel Multiplier-Accumulator (MAC)
• 2 ´ 36-bit accumulators, including extension bits
• Single-cycle 16-bit barrel shifter
• Hardware DO and REP loops
• Three 16-bit internal core data buses and three 16-bit internal address buses
• One 16-bit Peripheral Interface Data Bus
• Instruction set supports both DSP and controller functions
• Controller style addressing modes and instructions for smaller code size
• Efficient ‘C’ Compiler and local variable support
• Hooks on core for 1 Mbyte program address space
• Software subroutine and interrupt stack with unlimited depth

High Performance DSP Features on a Low Cost Architecture

56F8300 Controller Family, Rev. 1

6 Freescale Semiconductor
Preliminary

6. High Performance DSP Features on a Low Cost Architecture
There are four key attributes of a powerful digital signal processing engine:

• High bandwidth parallel memory transfer capability
• An AGU that adequately supports the parallel memory transfers and provides DSP addressing modes
• Powerful computation unit with an adequate register set for fast algorithm calculation
• Hardware looping mechanisms for looping with no penalty in performance

The DSP56800 architecture is strong in all four key attributes. Each is presented below.

6.1 DSP56800 Family Parallel Moves
For any high performance computation engine, such as a Digital Signal Processor, it is critical that data is fed
to and from the computation unit at a high bandwidth so that the computation unit is kept busy and the data
transfers in and out of the unit are not a bottleneck. This processing bottleneck can be avoided with a flexible
set of parallel move instructions’ instructions that allow memory accesses to occur in parallel with operations
in the computation unit. Two types of parallel moves are permitted’ the single parallel move and the dual
parallel read. Both of these are extremely powerful for DSP algorithms and numeric computation. All
DSP56800 instructions with parallel moves execute in one instruction cycle and occupy one word of program
memory.The single parallel move allows an arithmetic operation and one memory move (read or write) to be
completed with one instruction in one instruction cycle. For example, it is possible to execute in one instruction
an addition of two numbers while writing a value from a Data ALU register to memory:

Note that an address calculation is also simultaneously performed in the Address Generation Unit. Below are
some examples of single parallel move instructions.

; Examples of instructions with single parallel moves (1 program word, 1 instruction cycle):

MPYR A1,Y0,BX:(R0)+,X0 ; Multiply w/ Rounding & read from memory
MAC -Y0,Y1,AY0,X:(R1)+ ; Mult-Acc w/ Inversion of product & write to memory
ADD A,B X:(R2)+N,X0 ; Add & read from memory, post updating by register N
TFR Y1,A A,X:(R3)+ ; Move into A while writing previous contents to memory
INCW B X:(R0)+,A1 ; Increment accumulator and read from memory
ASL A X:(R1)+,B ; Shift accumulator and read from memory

The dual parallel read allows an arithmetic operation to occur and two values to be read from X-data memory
with one instruction in one instruction cycle. For example, it is possible to execute in one instruction a
multiplication of two numbers and accumulation with a third with rounding of the result while reading two
values from X-data memory to two of the Data ALU registers:

56F800 Family Address Generation (AGU)

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 7
Preliminary

Note that two address calculations are simultaneously performed in the Address Generation Unit. Below are
some examples of dual parallel read instructions.

; Examples of instructions with dual parallel reads (1 program word, 1 instruction cycle):
MPYR X0,Y1,A X:(R0)+,Y0 X:(R3)+,X0 ; MPY w/ Rounding w/ dual reads
MAC Y0,Y1,A X:(R1)+,Y1 X:(R3)-,X0 ; Mult-Acc w/ dual reads
ADD X0,B X:(R0)+,Y0 X:(R3)+,X0 ; Add w/ dual reads
SUB Y1,A X:(R0)+,Y1 X:(R3)-,X0 ; Subtract w/ dual reads
MOVE X:(R1)+,Y0 X:(R3)+,X0 ; Read two values from memory

The parallel move capability of the DSP56800 architecture is good at providing the memory bandwidth
required for the Data ALU because it allows up to two memory accesses in parallel with a single cycle
computation. Its use is not restricted to single instruction loops, as found on other low cost architectures.
Instead, any of the parallel moves can be used in hardware DO loops, hardware REP loops, and even outside of
loops, if desired. This is because the DSP56800 architecture is capable of three memory accesses in a single
cycle-one to fetch an instruction from program memory and two to access data memory.

6.2 56F800 Family Address Generation (AGU)
The Address Generation Unit (AGU) of the DSP56800 is the block where all address calculations are
performed. It contains two arithmetic units and its own register set so that up to two addresses can be provided
to data memory with two address updates in a single cycle. In the cases where the AGU generates two
addresses to access X data memory, the program controller generates a third address used to concurrently fetch
the next instruction.When an arithmetic operation is performed in the AGU, it can be performed using either
linear or modulo arithmetic. Linear arithmetic is important for general purpose address computation, and
modulo arithmetic allows the creation of data structures in memory such as FIFOs (queues), delay lines,
circular buffers, and stacks’ data is manipulated by updating address registers (pointers) rather than moving
large blocks of data.Linear arithmetic is the case where address arithmetic is performed using normal 16-bit
two’s complement linear arithmetic. Modulo arithmetic is used when it is necessary to set up and step through
a circular buffer in memory. Modulo arithmetic is similar to linear arithmetic, but if the result of an effective
address calculation would be larger than the last address in a buffer, then an automatic wraparound is
performed in the calculation. Similarly for the case where the result of an effective address calculation
calculates an address that would be smaller than the first address in a buffer again, automatic wraparound is
performed in the address calculation. An example of the modulo arithmetic capability of the DSP56800 family
is shown in Figure 4 below. Note that the DSP56800 correctly wraps the address calculation even if the
calculation does not land right on the upper or lower boundary of the circular buffer.

High Performance DSP Features on a Low Cost Architecture

56F8300 Controller Family, Rev. 1

8 Freescale Semiconductor
Preliminary

Figure 6-1. Figure 4 DSP56800 Modulo Arithmetic Example

The DSP56800 AGU provides the capabilities needed for high performance signal processing calculations by
providing up to two data memory addresses per cycle in parallel with a third program memory address
generated by the program controller, and by providing the types of addressing, such as modulo arithmetic
needed for signal processing.

6.3 DSP56800 Family Computation - the Data ALU Unit
When examining the computation unit of a processor, it is important to examine two different aspects-the
manner in which operands are accessed and stored by the unit, and the computation capabilities of the
unit.Previous DSP architectures are accumulator based. This means that operands are provided from one or
two different sources, but the results of an operation are always stored in an accumulator. Operations are
performed so that one operand must always be an accumulator, except in the case of multiplication, where an
accumulator is not allowed as one of the multiplier inputs. Some low cost DSP architectures provide a single
accumulator, others provide two.

The DSP56800’s Data ALU unit, on the other hand, provides more registers and is organized in a more
orthogonal nature. This permits the results of arithmetic operations to be written back to any of the Data
ALUÕs five registers. In addition, the Data ALU input allows for immediate value operands. This significantly
increases the power of the register set, because the orthogonal nature now allows the storage of frequently
accessed variables in an algorithm to reside directly in registers, while still providing other registers for
arithmetic computations. Accumulators may be used as inputs to the multiplier, in addition to being used for
accumulation. Memory accesses are also reduced using this technique because intermediate results do not need
to be temporarily stored to memory.

DSP56800 Family Computation - the Data ALU Unit

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 9
Preliminary

Figure 6-2. Comparison of Different DSP Computation Unit Structures

A comparison of the two techniques is shown in Figure 5 . The conventional technique, for example, can only
increment one or two accumulators, whereas the technique allowed on the DSP56800 allows increments on
any register. Note that it is also possible to increment and decrement memory locations directly on the
DSP56800 architecture.In addition to its powerful register set, the Data ALU is very powerful for algorithm
calculation because it can perform so many single cycle operations. The Data ALU can be used to perform
fractional and integer arithmetic, as well as signed, unsigned, and multiprecision arithmetic. Multiple buses are
located in the Data ALU so that complex arithmetic operations such as a multiply-accumulate can be
performed in parallel with up to two memory transfers.

The Data ALU can perform any of the following operations in a single instruction cycle:

• Multiplication (with or without rounding)
• Multiplication with inverted product (with or without rounding)
• Multiplication and accumulation (with or without rounding)
• Multiplication and accumulation with inverted product (with or without rounding)
• Addition and subtraction
• AND, OR, and Exclusive-OR
• Compares
• Arithmetic and logical shifts
• Increments and decrements
• 16-bit barrel shifting

High Performance DSP Features on a Low Cost Architecture

56F8300 Controller Family, Rev. 1

10 Freescale Semiconductor
Preliminary

• Arithmetic shifts
• Rotates
• Two’s complement (negation)
• One’s complement
• Rounding
• Conditional register moves (T cc)
• Absolute value
• Saturation (limiting)
• Division iteration
• Normalization iteration

The Multiplier-Accumulator of the DSP56800 is not pipelined, so that a result of a multiplication or
multiply-accumulate is available after one instruction cycle instead of two, as found on DSP architectures with
pipelined MAC units. Note that any of the above multiplications or multiply-accumulates can be performed on
two operands, or can be used to ‘square’ the value of a single operand.

6.4 DSP56800 Family Looping Mechanisms
Programs for DSP or numeric computation are often such that much of the processor execution is spent in
small, numerically intensive computation loops with a lot of memory traffic. For this reason, it becomes
apparent why it is necessary to have a powerful computation unit supported by a powerful register set and
flexible set of parallel moves.

In addition, it is also critical that the execution time due to looping itself is minimized. The optimal solution for
a DSP architecture is to have a hardware looping mechanism that automatically performs the looping without
adding any extra computation time, referred to as ‘no overhead looping’.

Traditional low cost DSP architectures have provided no overhead looping on a single instruction, referred to
as a ‘REPEAT’ loop. This is useful for the simplest DSP algorithms, such as an FIR filter algorithm, but is not
well suited to more complex algorithms, such as speech coders, or digital filters, such adaptive filters, IIR
filters, or PID controllers. In addition, these are more difficult to use because they are not interruptible,
significantly increasing interrupt latency. Other DSP architectures have provided hardware ‘DO’ loops, which
provide looping on up to 15 instructions, but again are non-interruptible. For this type of loop, instructions may
take additional cycles to execute the first time through the loop or if executed outside of a hardware loop.

The DSP56800 architecture provides the most flexible hardware looping mechanism by providing a hardware
‘DO’ looping mechanism, which can loop on any number of instructions without adding any execution time,
and is interruptible. An immediate value or register value can be used to specify the loop count. In addition, the
DSP56800 also provides a REPEAT loop capability, which can be efficiently nested within the DO loop
mechanism. The DSP56800’s looping mechanism provides the fastest interrupt latency, and instructions do not
take additional cycles on the first pass through a loop or if executed outside of the loop.

An example of the DSP56800 code for a cascaded set of IIR filters is shown on the following page. This
example demonstrates the parallel move and hardware looping capabilities of the DSP56800. It uses twelve
words of program memory, and executes in 6N + 7 instructions, where N is the number of cascaded filters.

DSP56800 Family Looping Mechanisms

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 11
Preliminary

7. General Purpose Computing-Ease of Programming
The DSP56800 architecture is significantly easier to program than any other previous DSP architecture. This is
because it was designed from the ground up not only as an efficient signal processing engine, but also as an
efficient, easy to program controller. The general purpose features that make it easy to program in assembly
code will also allow for a very efficient DSP56800 compiler with excellent code density.

Several factors contribute to the programming ease and efficiently of the DSP56800:

• A programming model with a generous and flexible set of registers
• An instruction set with immediate data, memory, and register-oriented instructions
• A complete and orthogonal set of MOVE instructions with a full set of addressing modes, many of which

have never been available on a DSP architecture
• Efficient hardware and software looping techniques
• A software stack with a true stack pointer
• Efficient support of structured programming techniques

General Purpose Computing-Ease of Programming

56F8300 Controller Family, Rev. 1

12 Freescale Semiconductor
Preliminary

7.1 DSP56800 Programming Model
The programming model for the DSP56800 core, shown in Figure 6 , is separated into three different sets of
registers corresponding to the three functional units within the DSP core. Each functional unit has a full set of
registers for performing its tasks.

Figure 7-1. Figure 6 DSP56800 Core Programming Model

7.2 Instructions That Operate on Registers, Immediate Data, or Memory
In addition to a complete register set, the DSP56800 architecture is further enhanced by an instruction set that
is not only register oriented, but can also operate directly with immediate data or on memory. The use of
immediate data, for example, helps to decrease register usage because arithmetic operations can be performed
directly with immediate data, allowing the registers to store important variables and intermediate results
instead. The following code shows all the different addition instructions available on the DSP56800
architecture.

The DSP56800’s MOVE Instruction and Addressing Modes

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 13
Preliminary

ADD <register>,<register> ; Register Oriented
ADD #xx,<register> ; Short Immediate Data
ADD #xxxx,<register> ; Long Immediate Data
ADD X:<aa>,<register> ; Direct Addressed Memory Location
ADD X:xxxx,<register> ; Absolute Addressed Memory Location
ADD X:(SP-xx),<register> ; Location addressed on the stack

The DSP56800 provides a full set of logical and arithmetic instructions, complemented by a 16-bit barrel
shifter and unsigned arithmetic support. All instructions are directly accessible-there is no need to set any mode
bits to modify the operation of an instruction.

7.3 The DSP56800’s MOVE Instruction and Addressing Modes
A powerful set of MOVE instructions is found on the DSP56800 core, the most general set of MOVE
instructions and addressing modes found on any DSP architecture. This not only eases the task of programming
the DSP, but also decreases the program code size and improves the efficiency. The MOVE instructions
available on the DSP chip include:

MOVE <any_DSPcore_register>,<any_DSPcore_register>

MOVE <any_DSPcore_register>,<X_Data_Memory>
MOVE <any_DSPcore_register>,<On_chip_peripheral_register>
MOVE <X_Data_Memory>,<any_DSPcore_register>
MOVE <On_chip_peripheral_register>,<any_DSPcore_register>

MOVE <immediate_value>,<any_DSPcore_register>
MOVE<immediate_value>,<X_Data_Memory>
MOVE <immediate_value>,<On_chip_peripheral_register>

The DSP56800 has a complete set of addressing modes never before found on DSP architectures. For any
MOVE instruction accessing X data memory or an on-chip memory mapped peripheral register, eight different
addressing modes are supported. Additional addressing modes are available on a subset of frequently accessed
DSP core registers, including the registers in the Data ALU, and all the pointers in the Address Generation
Unit. The addressing modes include:

Table 7-1. Addressing Modes

• Indirect-No Update • Immediate Data (16 bits)

• Indirect-Post Increment • Short Immediate Data (7 bits)

• Indirect-Post Decrement • Absolute Addressing (16 bits, Extended)

• Indirect-Post updated by a register • Absolute Short Addressing (6 bits, Direct)

• Indirect-Indexed by 16-bit offset • Peripheral Short (6 bits, Direct)

• Indirect-Indexed by 6-bit offset • Register direct

• Indirect-Indexed by a register • Inherent

General Purpose Computing-Ease of Programming

56F8300 Controller Family, Rev. 1

14 Freescale Semiconductor
Preliminary

7.4 Looping on the DSP56800 Architecture
In addition to the DSP56800 hardware DO looping capability previously discussed, which is not only
interruptible, but also allows a nested REPEAT loop, software looping is also efficiently supported on the
DSP56800 architecture.Previous DSP architectures have supported software looping using registers, which are
often in short supply for an entire application. This was necessary because of the lack of a powerful hardware
looping mechanism. The DSP56800 can implement software loops using registers in either the AGU or Data
ALU for the loop counter. More useful, however, is the ability of the DSP56800 to implement loops using a
memory location for the loop count. This is perhaps the most useful setup because the full register set is then
available for algorithm computation. An example of a software loop using a memory location is shown below.

; Software Looping - Memory Location (one of first 64 XRAM locations) Used for Loop Count
MOVE #3,X:$7 ; Load loop count to execute the loop 3 times

LABEL ; Enters loop at least once
•
•
•

DECW X:$7
BGT LABEL ; Back to Top-of-Loop if positive and not zero

7.5 DSP56800 Structured Programming and Software Stack
Instead of the hardware stack found on most DSP architectures, the DSP56800 implements its stack using a
true stack pointer in memory. Not only does this allow for unlimited nesting of subroutines and interrupts, but
this also supports structured programming techniques typically found only on high end controllers, such as
parameter passing to subroutines and local variables. The software stack, a dedicated stack pointer, and the
new addressing modes of the DSP56800 allow for an efficient implementation. These techniques can be used
for both assembly language programming, as well as high level language compilers.

Parameters can be passed to a subroutine by placing these variables on the software stack immediately before
performing a JSR to the subroutine. Placing these variables on the stack is referred to as building a “stack
frame.” These passed parameters are then accessed in the called subroutines using the stack addressing modes
available on the DSP56800. This is demonstrated in the code example, which builds the stack frame shown in
Figure 7 on page 22.

In a similar manner, it is also possible to allocate space and to access variables that are locally used by a
subroutine, referred to as local variables. This is done by reserving stack locations above the location that
stores the return address stacked by the JSR instruction. These locations are then accessed using the
DSP56800’s stack addressing modes, as demonstrated on the previous page. For the case of local variables, the
value of the stack pointer is updated to accommodate the local variables. For example, if five local variables
are to be allocated, then the stack pointer is increased by the value of five to allocate space on the stack for
these local variables. When a large numbers of variables are allocated on the stack, it is often more efficient to
use the (SP) + N addressing mode.

It is possible to support passed parameters and local variables for a subroutine at the same time. In this case, the
program first pushes all passed parameters onto the stack. The JSR instruction is then executed, which pushes
the return address and the status register onto the stack. Upon entering the subroutine, the first thing the
subroutine does is to allocate space for local variables by updating the SP, ensuring that any writes to the SP
register are always with even values. Then, both passed parameters and local variables can be accessed with
the stack addressing modes.

DSP56800 Structured Programming and Software Stack

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 15
Preliminary

;
; Example of Subroutine Call With Passed Parameters
;

MOVE X:$35,N ; pointer variable to be passed to subroutine
LEA (SP)+ ; pre-increment stack pointer
MOVE N,X:(SP)+ ; push variables onto stack
MOVE X:$21,N ; 1st data variable to be passed to subroutine
MOVE N,X:(SP)+ ; push onto stack
MOVE X:$47,N ; 2nd data variable to be passed to subroutine
MOVE N,X:(SP) ; push onto stack
JSR ROUTINE1
POP ;remove the three passed parameters from stack when done
POP
POP

ROUTINE1

MOVE #5,N ; allocate room for Local Variables
LEA (SP)+N

•
•
•

MOVE X:(SP-9),R0 ; get pointer variable
MOVE X:(SP-7),B ; get 2nd data variable
MOVE X:(R0),X0 ; get data pointed to by pointer variable
ADD X0,B
MOVE B,X:(SP-8) ; store sum in 1st data variable

•
•
•

MOVE #-5,N
LEA (SP)+N
RTS

The software stack is also useful for providing a temporary variable, such as when swapping two registers, for
saves and restores of registers before entering critical loops, in addition to the structured programming
techniques and unlimited nesting previously described.

Figure 7-2. Example of a DSP56800 Stack Frame

Interrupt Processing

56F8300 Controller Family, Rev. 1

16 Freescale Semiconductor
Preliminary

7.6 Benefits in Program Code Size
Many features of the DSP56800 architecture contribute to a significant decrease in overall code size, not just
for DSP programs, but for controller code as well. The ability for instructions to work directly on memory
locations, as found with the bit manipulation instructions, the efficient looping mechanisms, the orthogonal set
of move instructions and complete set of addressing modes, and the ability to load immediate values directly
into memory locations, all contribute to reductions in program code size for general purpose computing. Code
size is reduced for DSP algorithms due to the efficient set of parallel move instructions, the complete register
sets of the DSP, and the ability to write results back to any of the Data ALU registers. Likewise, the ability to
perform arithmetic operations directly with immediate data or memory locations also improves the code
density.

8. Interrupt Processing
The interrupt unit on the DSP56800 uses a vectored interrupt scheme, which allows for fast servicing of
interrupts, and is expandable to support future DSP56800 core-based designs. It currently supports thirteen
different interrupt sources-seven interrupt channels for seven different on-chip peripherals, two external
interrupts, and four interrupt sources from the DSP core. From these interrupt sources, execution can be
vectored to any of up to sixty-four different interrupt vectors. Interrupt servicing automatically stacks and
unstacks the Program Counter and Status Register, and nested interrupts can be supported. Each maskable
interrupt source can be individually masked, or all maskable interrupts can be masked in the status register.

9. True Core-Based Design
The DSP56800 has been designed from its inception as a true CPU core from which many derivatives can be
created. Its internal architecture incorporates many features necessary for efficient core-based design. As
previously discussed, the DSP56800’s interrupt machine has been designed to support multiple on-chip
peripherals on seven general purpose interrupt channels, in addition to the two external interrupts and the DSP
core interrupts. Each peripheral may have more than one vectored interrupt. A DSP chip may have up to 128
on-chip peripheral registers. Each peripheral interfaces to the DSP56800 core on a standard Peripheral
Interface Bus, which not only has a standard bus interface, but also a standard interrupt interface.The
DSP56800 has been designed with industry standard design tools to enable users to later develop their own
peripherals for connection to the DSP56800 core.

10. Achieving Low Power Designs
The DSP56800 core has been designed from its inception for low power consumption. Both architectural and
circuit techniques are used to provide intelligent power management as the DSP is operating. The power
management scheme automatically turns off unused blocks of the DSP.When considering power consumption,
it is also important to remember that much of the processing actually occurs in tight numeric processing loops.
The actual calculations required for the algorithms are where most of the execution time occurs, and as a result,
where most of the power is consumed. From this observation, it becomes obvious that an architecture that is
efficient at processing at numeric algorithms will burn considerably less power because significantly fewer
instructions will be executed to complete a task. Lowest power consumption for an application not only
requires an architecture designed for low power consumption, but also an architecture that is very efficient at
performing DSP calculations. The high performance features on the DSP56800 architecture and its low power
consumption give the DSP56800 excellent low power performance.The clocking on the DSP56800-based
chips has also been carefully designed to reduce power consumption. It is possible to dynamically change the

Benefits in Program Code Size

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 17
Preliminary

DSP core’s clocking frequency with a Phase Lock Loop. An output clock pin can optionally be turned off if
desired. The DSP also supports multiple low power Stop and Wait modes for significant reductions in power
consumption while waiting for an event to occur. The five low power modes on the DSP56L811 chip include:

• All internal clocks gated off
• Oscillator is running, but PLL and DSP core and all peripherals are off
• Oscillator and timers are running, but all remaining circuitry is off
• Oscillator and PLL are running, but DSP core and peripherals are off
• Wait mode, where DSP core is off, but all peripherals continue functioning

11. Ease of Development
Development is straightforward with DSP56800-based chips. The external bus supports execution and debug
of applications programs from external memory. It is possible to locate both data and programs externally-the
chip simply inserts an additional cycle if an external program and external data access occur simultaneously.
Programmable wait states may be individually programmed for external program and data memory to support
the operation of slower memories.The assembly language for the DSP56800 is straightforward and very easy
to support due to its general purpose nature. Likewise, the efficiency of the C Compiler now enables a user to
develop significant portions of an application in C, while still leaving the numerically intensive computation
routines in assembly language. Initial results show reductions of a third to a half in program code size
compared to compilers for existing DSP architectures.

Figure 11-1. Example of Code Development with Visibility on All Memory Accesses

An on-chip debug port gives emulation capability on the chip even in a user’s target system through a 5-pin
JTAG interface. Through this port, it is possible to set breakpoints, examine and modify register and memory
locations, and perform other actions useful for debugging real systems. Freescale offers a full line of software
and hardware Digital Signal Processor (DSP) development tools for rapid development and debugging of user
applications and algorithms on the DSP56800 family. The development tools include the following:

• Relocatable Macro Cross Assembler
• Linker and Librarian
• C/C++ Cross Compiler

Ease of Development

56F8300 Controller Family, Rev. 1

18 Freescale Semiconductor
Preliminary

• Clock-by-Clock Multiple Chip Instruction Simulator
• Hardware Development using the Application Development System (ADS)
• Graphical User Interface (GUI) and Symbolic Debugger

These tools can be ordered to operate on: ISA-BUSTM IBM PCsTM, SBUSTM SUN-4 WorkstationsTM, or HP 7xx
Computers, except the Compiler, which is not available for the HP platform. Freescale’s DSP development
tools can be obtained through a local Freescale Semiconductor Sales Office or authorized distributor.

Figure 11-2. Development Flow

The software development environment provides the programmer with a flexible, modular programming
environment, giving full utilization to the DSP chips, a variety of data storage definitions, relocatability of
generated code, symbolic debugging, and flexible linkages of object files. A library facility is included for
creating archives of the final applications code.

Benefits in Program Code Size

56F8300 Controller Family, Rev. 1

Freescale Semiconductor 19
Preliminary

12. Applications
The DSP56800 is targeted for cost sensitive applications. This DSP is well suited for consumer type
applications that require low cost with moderate performance. This includes:

• Wireline and wireless modem
• Digital wireless messaging
• Digital answering machine/feature phones
• Servo and AC motor control
• Digital cameras

13. Results/Summary
The DSP56800 is a new DSP core architecture that provides not only efficient DSP processing, but is
also powerful for controller applications. Its high performance DSP features and general purpose
instruction set make this architecture a leader in the areas of low cost DSP performance, low power
consumption, program code density that further reduces system costs by decreasing the amount of
on-chip program memory required, and Compiler code density and performance.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,
Inc. All other product or service names are the property of their respective owners.
This product incorporates SuperFlash® technology licensed from SST.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

DSP56800WP1

Rev. 1
7/2005

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

	1. Abstract
	2. Introduction
	2.1 Overview

	3. Background
	3.1 Overview

	4. Introduction tothe 56F800 Family
	4.1 DSP56L811 16-bit Chip Architecture

	5. 56800 16-BIT DSC Core Architecture
	6. High Performance DSP Features on a Low Cost Architecture
	6.1 DSP56800 Family Parallel Moves
	6.2 56F800 Family Address Generation (AGU)
	6.3 DSP56800 Family Computation - the Data ALU Unit
	6.4 DSP56800 Family Looping Mechanisms

	7. General Purpose Computing-Ease of Programming
	7.1 DSP56800 Programming Model
	7.2 Instructions That Operate on Registers, Immediate Data, or Memory
	7.3 The DSP56800’s MOVE Instruction and Addressing Modes
	7.4 Looping on the DSP56800 Architecture
	7.5 DSP56800 Structured Programming and Software Stack
	7.6 Benefits in Program Code Size

	8. Interrupt Processing
	9. True Core-Based Design
	10. Achieving Low Power Designs
	11. Ease of Development
	12. Applications
	13. Results/Summary

