
UM12110
NXP EasyEVSE EV Charging Station Linux User Manual
Rev. 1.0 — 18 June 2024 User manual

Document information
Information Content

Keywords UM12110, EasyEVSE, EV, charging station, EasyEVSE charging station, electric vehicle

Abstract The NXP EasyEVSE is a simulated electric vehicle supply equipment (EVSE) development
platform based on the Microsoft Azure RTOS and IoT cloud services.

https://www.nxp.com

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

1 Introduction

NXP EasyEVSE is a simulated electric vehicle supply equipment (EVSE) development platform based on the
NXP Linux BSP and Microsoft Azure IoT cloud services.

The platform enables engineers to develop an EVSE with a mutually authenticated connection with the
Microsoft Azure IoT Central and between the EVSE and electric vehicle (EV). Once connected, developers can
exchange telemetry and commands with the cloud. The platform also introduces functionality of ISO 15118 and
SAE 1772 to manage state and signaling with the vehicle.

EasyEVSE vehicle charger hardware consists of six evaluation boards:

• i.MX 93 EVK (smart host controller) including IW612 Wi-Fi
• EVSE-SIG-BRD (HomePlug Green PHY powerline signal board)
• TWR-KM35Z75M (meter)
• OM-SE050ARD (security)
• OM27160B1 (near field communication)
• DY1212W-4856 or MX8-DSI-OLED1A (display)

In addition, EasyEVSE provides an electric vehicle simulator for demonstration consisting of two evaluation
boards:

• i.MX 93 EVK (smart host controller)
• EVSE-SIG-BRD (powerline signal board)

This document describes the functionality and development process of each EasyEVSE building block with
a dedicated chapter. For example, it provides the customers a starting point to develop their full-featured EV
charger by including their own power delivery circuitry.

To facilitate the startup process with this platform, refer to the NXP EasyEVSE EV Charging Station
Development Platform Linux User Guide (document UG10134). The user guide provides detailed instructions to
get the EasyEVSE up and running.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
2 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

2 Preparation

You must see the platform user guide before continuing with the user manual, because the user guide lists the:

• Required hardware
• Steps to set up, program, and assembly the platform
• Steps to create an Azure IoT Central application using a custom template (EasyEVSE Dashboard)
• Steps to connect the application with an Azure IoT Central application using x.509 certificates authentication-

attestation
• Platform boot up process and basic operation

Note: This document assumes that you are already familiar with the platform. Also, you must download and
install the additional software required, as shown in the below section.

Note: The EasyEVSE and platform terms are used interchangeably in this document, and both refer to the
NXP EasyEVSE MPU development platform.

2.1 Get the required hardware
To get details on the required hardware and the instructions on how to assemble it, see the user guide
document.

2.2 Get required software
Table 1 lists the required software to develop with the EasyEVSE platform. You may find software that already
installed or downloaded for the user guide.

Required, recommended,
or optional software

Where to obtain it? Additional information or notes

EasyEVSE MPU – Peripheral
board components

nxp.com/easyevse -

EasyEVSE MPU – Host
processor component

nxp-easyevse-mpu-manifest
meta-nxp-easyevse-mpu
nxp-easyevse-mpu

See the "Building the EasyEVSE service processing
software" section of the NXP EasyEVSE EV Charging
Station Development Platform Linux User Guide
(document UG10134) for instructions on how to build.

EdgeLock SE05x Plug &
Trust Middleware

Edgelock SE05x Plug & Trust
Middleware (04.05.00)

-

MCUXpresso IDE MCUXpresso Integrated
Development Environment (IDE)

See the IDE installation for Windows OS in Section
10.2 of the NXP EasyEVSE EV Charging Station
Development Platform Linux User Guide (document
UG10134).

MCUXpresso SDK for TWR
KM3x

MCUXpresso SDK Builder Download and install the recommended SDK release
version for the TWR-KM3x board variant. See the
Appendix sections 10.3 to 10.4 of the NXP EasyEVSE
EV Charging Station Development Platform Linux
User Guide (document UG10134).

MCUXpresso SDK for EVSE-
SIG-BRD

MCUXpresso SDK Builder See chapter Software development from the EVSE-
SIG-BRD1X User Guide (document UG10109) for
instructions on how to build and program the EV and
EVSE endpoints.

Table 1. Quick software download table

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
3 / 92

https://www.nxp.com/design/design-center/designs/easyevse-ev-charging-station-development-platform-mcu-rtos:CONNECTED-EV-CHARGING-STATION
https://github.com/nxp-imx-support/nxp-easyevse-mpu-manifest
https://github.com/nxp-imx-support/meta-nxp-easyevse-mpu
https://github.com/nxp-imx-support/nxp-easyevse-mpu
https://www.nxp.com/webapp/Download?colCode=SE05x-PLUG-TRUST-MW&appType=license
https://www.nxp.com/webapp/Download?colCode=SE05x-PLUG-TRUST-MW&appType=license
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Required, recommended,
or optional software

Where to obtain it? Additional information or notes

Lumissil firmware binaries
(third-party)

- Provided with an evaluation license, included in the
resulting i.MX image build and used to demonstrate
the capabilities of the development platform.

SEVENSTAX stack library
and application source code
(third-party)

- Provided with an evaluation license, included in the
resulting i.MX image build and used to demonstrate
the capabilities of the development platform.

QT Development software
(third-party)

Embedded Software Development
Tools & Cross Platform IDE | Qt
Creator

Download it to further develop or modify the Easy
EVSE GUI.
For more information, see Section 9.

Table 1. Quick software download table...continued

2.3 EasyEVSE development environment
The EasyEVSE software development environment software is briefly described below.

2.3.1 EasyEVSE software

The EasyEVSE contains specific application software and miscellaneous tools that help to evaluate, run, and
further develop a full-featured EVSE.

The components of the EasyEVSE software relevant for this document are listed below:

• Sample peripheral software
– Meter project (TWRKM3x7x_EasyEVSE_Vx)
– EVSE-SIG-BRD project (EVSE-SIG-BRD-SW-x.y.z)
Note: Ensure that you import and program the corresponding sample project variant for the selected KM3x
board.

• Sample host processor source code
– EasyEVSE Yocto manifest
– EasyEVSE Yocto meta layer containing recipes for building the image
– EasyEVSE Linux userspace applications
Note: The meta-nxp-easyevse-mpu layer references third-party source code/binaries/libraries using
during the build processing, coming from Lumissil and SEVENSTAX. The licensing terms for these can be
found in the PROJECT_LICENSE file, along with the other components used in the build.

2.3.2 MCUXpresso IDE and SDK

The MCUXpresso IDE is an Eclipse-based software IDE. The MCUXpresso SDK unites software enablement,
tools, and middleware from NXP and enabling technology partners.

2.3.3 Lumissil firmware binaries

The Lumissil firmware binaries contain the necessary behavior for the HPGP CG5317 chip onboard the EVSE-
SIG-BRD. The binaries are used for enabling the high-level communication channel between the EVSE and EV
endpoints.

For more information about this subject, consult the associated IS32CG5317 literature.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
4 / 92

https://www.qt.io/product/development-tools
https://www.qt.io/product/development-tools
https://www.qt.io/product/development-tools
https://www.lumissil.com/applications/communication/electric-vehicles-charging/vehicle-charging/is32cg5317
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

2.3.4 SEVENSTAX stack library and application source code

SEVENSTAX implements the ISO15118 and additional V2G stack libraries, alongside with the basic application
source code.

For more information regarding this subject, refer to Section 5.1.2 and the associated SEVENSTAX product
page.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
5 / 92

https://www.sevenstax.de/main/v2g/
https://www.sevenstax.de/main/v2g/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

3 EasyEVSE

EasyEVSE is an electric vehicle charging station development platform with a mutually authenticated
connection to the Microsoft Azure IoT Central. Similarly, the charger authenticates itself to the vehicle
(depending on the communication standard used). This platform is a starting point to develop a customized
EV charging solution, while addressing the current and increasing challenges in this sector. For example,
standardization, security, monetization, user experience, safety, and security. NXP point of view for addressing
electric vehicle charging is discussed in the Addressing Design Challenges for EV Charging Systems white
paper.

Figure 1 shows that an i.MX 93 MPU, designated as host controller, manages the platform. The host controller
manages various boards including the security board, metering board, NFC board, HomePlug Green PHY
powerline communication board. It also supports the communication interfaces with a GUI, serial terminal, and
an AzureIoT central instance. The host controller runs the i.MX Linux OS BSP and offers a comprehensive
environment to develop the further designs and reduce the time to market.

aaa-055969

Metering board

Simulated
current

Metrology
MCU

Segment LCD

POT ADC UART

Display panel

OLED with touch panel

EVSE-SIG-BRD

Service
processing
board

Powerline
MCU

Ethernet
switchHPGP PHY

SD card

LVDS or MIPI-DSI

Wi-Fi

EMMC

NXP technology

Security board

Secure element

SDIO

RGMII

UART

UART

USB

SPI

I2C

SPI

NFC board

NFC
frontend

Host
controller

Ethernet
PHY

Virtual comm
interface

Serial terminal for
log messages

Azure loT
central

Azure loT
DPSTLS

TCP/IP

Azure loT
plug and play

Microsoft
Azure

Figure 1. EasyEVSE block diagram

Security is another important aspect of the platform as it integrates the SE050 secure element to store device
credentials and accelerate security operations. The NFC reader OM27160B1EVK can now read the Unique ID
number or UID from NFC devices like MIFARE product-based cards for local user authentication.

Even though the TWR-KM35Z75M is used as a simulated metering interface of the EasyEVSE, it is not
designed to interface with power mains. It simulates the current and voltage using the Meter library to calculate
the power flow to an electric vehicle as the real application meter interface does. The EasyEVSE application
calculates energy delivered based on the simulated power over time. The billing information is calculated using
the energy delivered and tariff cost set in the cloud interface.

A rotary potentiometer simulates the current level through the meter, representing the instantaneous current
delivered to the EV, although some other restrictions might apply.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
6 / 92

https://www.nxp.com/company/blog/addressing-design-challenges-for-ev-charging-systems:BL-DESIGN-CHALLENGES-FOR-EV-CHARGING
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

3.1 SAE J1772
The SAE J1772 is a standard maintained by the Society of Automotive Engineers (SAE).

According to SAE Electric Vehicle and Plug-in Hybrid Electric Vehicle Conductive Charge Coupler
J1772_201710, the SAE standard covers the general physical, electrical, functional, and performance
requirements to facilitate conductive charging of EV/PHEV vehicles in North America. This document specifies a
standardized conductive charging method for EV/PHEV and supply equipment vehicles. It includes operational
requirements, and functional and dimensional requirements for the vehicle inlet and mating connector.

3.1.1 Charge state machine

A state machine, composed of six different states, controls the charge cycle of the vehicle.

State Pilot High Pilot Low Frequency EV resistance Description

STATE A +12 V N/A DC N/A EV not connected

STATE B +9 V -12 V 1 kHz 2.74 kΩ EV connected and ready

STATE C +6 V -12 V 1 kHz 882 Ω EV charge

STATE D +3 V -12 V 1 kHz 246 Ω EV charge vent requested

STATE E 0 V 0 V N/A Error

STATE F N/A -12 V N/A Error unknown

Table 2. Charging states description

The charging states in Table 2 are general to any EVSE following the SAE J1772. In the EasyEVSE, the
charging state machine is modeled as shown in Figure 2.

aaa-055970

State
A (1)

PWM f. = DC

Reset

EV
Connected
And ready

EV

Transition on
any SW1 press

Charge
Vent cycle

EV
Charge

SW1 press

SW2 press

PWM f. = 1 kHz PWM f. = 1 kHz

PWM f. = 1 kHz

EV not
connected

State
B (2)

State
D (4)

State
C (3)

State
E (5)

State
F (6)

Transition on
any SW2 press

S29

S29

Figure 2. EasyEVSE charging state diagram

Although not shown in Figure 2, it is possible to force the charging state A or 1 by an UART message from the
host controller. This is done if the Terminate Charge Cycle command is issued remotely from the dashboard of
your Azure IoT Central application.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
7 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

ISO15118 and J1772 software on the i.MX 93 platform implement the charge state machine. For details on the
software design, see Section 5.2.

3.1.2 Control pilot

The control pilot signal is required to communicate the EVSE maximum current delivery capability as specified
in IEC 61851-1. This signal is in the form of a PWM and the key parameter indicating the current limit is the duty
cycle described in Table 3.

EVSE amp
limit

Duty cycle EVSE amp limit Duty cycle

6 A 10 % 40 A 66 %

12 A 20 % 48 A 80 %

18 A 30 % 65 A 90 %

24 A 40 % 75 A 94 %

30 A 50 % 80 A 96 %

Table 3. EVSE control pilot signal

The EVSE indicates the EV that it is ready to supply energy by turning on the oscillator and providing the square
wave signal. In each charging state, the EVSE may supply the pilot as a DC signal or as an oscillating signal.

Figure 3. Control pilot signal during state C

The EVSE-SIG-BRD implements the control pilot signal. For details on the software design, see Section 6.2.2.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
8 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

4 Host controller

This chapter introduces the EasyEVSE host controller and describes in detail which application components
run, how they are designed, and communicate to each other.

For the EasyEVSE MPU solution, i.MX 93 EVK is used as host controller for both the EVSE and the EV sides.

4.1 EVSE software structure
Figure 4 outlines the EVSE host controller software structure.

aaa-055971

EasyEVSE application

Sevenstax
ISO 15118 application

Azure
IOT

SPI
or Enet LVDS SPI

EdgeLock secure enclave

DisplayKM3x
meter

OM27160
NFC

SDIO

IW612
WiFi

GPIO

Sigboard

UART

NXP 3rd party Open source

WiFi
config ROS

framework

EdgeLock secure
enclave

Sigboard
driver

Sevenstax
ISO 15118

stack

Lumissil
CG5317

FW

EasyEVSE base EasyEVSE cloud

WiFi

Drivers - CAN-FD, ethernet, GPIO, graphics, I2C, NFC, SPI, UART, WiFi

Linex kernel

i.MX 93 EVK1

1 i.MX 93 is used as a guide here.

Qt

Wayland
LibNFC

EasyEVSE GUI EasyEVSE NFC

Figure 4. Host controller high-level architecture blocks

The EVSE host controller runs five application components and each of them implement specific tasks in a
subscriber-publisher design. These components communicate with each other using the underlying ROS
framework mechanisms, providing an easy way to transmit and notify when new data is available.

The five application components are as follows:

1. EasyEVSE Base – In charge of the communication with the EV side through the EVSE-SIG-BRD and
handling of the charging process based on the information coming in from outside the application
component scope. More information about this can be found in Section 6 and Section 5.1.2.

2. EasyEVSE Cloud – Responsible for establishing a connection and updating the device state in the Azure
IoT Central instance. More information about this can be found in Section 8.

3. EasyEVSE GUI – Provides the local user interface and presents the status of the system through it. More
information about this can be found in Section 9.

4. EasyEVSE NFC – Responsible for operations regarding the NFC peripheral. More information about this
can be found in the Section 10.

5. Business logic client – Used for providing basic charger characteristics of the equipment that does not
qualify for the other components. More information about this can be found in Section 4.3.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
9 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

4.2 ROS framework
ROS is a collection of software libraries and tools used mainly for robotics applications. These releases target
mainly the Ubuntu OS, but support is offered for the Yocto project as well, albeit limited. For more information,
refer to https://www.ros.org/reps/rep-2000.html.

Note: ROS is used in the document – it is referring to the ROS 2 version, not the ROS 1.

The EasyEVSE MPU project is using the OpenEmbedded layer from the ROS repo, with some patches to have
some basic support for running ROS applications. These can be found in the recipes-ros directory from the
meta-nxp-easyevse-mpu layer.

Note: At the moment, the only way to build ROS applications is only on the development machine. Building
directly on the board with a flashed image is not validated.

For more information and an introduction into how the ROS frameworks can be leveraged from a developer’s
perspective, refer to ROS documentation.

4.3 ROS node example: Business logic client
Looking from a high-level perspective, each EasyEVSE application can be split up in two distinct entities – the
ROS part and the peripheral part.

• The ROS part is the first one started, and is in charge of handling the communication between the peripheral
part and the other application components.

• The peripheral part does the useful work of interacting with a certain peripheral, be it Cloud, GUI, NFC, or
Base. This does not contain any ROS adjacent code.

The business logic client is a simple node in charge of a certain set of parameters. Since it is not connected to
any peripheral part, it only features a ROS part.

Note: This is the template for how all the other application components are developed at the ROS part. Later
chapters do not describe how the ROS part works in detail. The chapters only focus on the differences and the
interface provided for communication with the other application components.

The ROS part implementation itself borrows some concepts from the Publisher and Subscriber tutorial.
Therefore, reading the tutorial is highly recommended before proceeding further in this chapter.

Here, the business logic client is the publisher for the instance of the data that is handled by it. Whereas the
other application components interested in that data are the subscribers. Through callbacks, the subscribers
are notified automatically when the publisher changes the values of the data they listen to, and can use that
information later in their peripheral processing code.

Note: A graphical representation of the data flow in this publisher-subscriber model can be found in
Section 12.4.

To have a clear 1:1 association for each data field and its publisher, they have been grouped in one or more
message interfaces per the publisher who is responsible for updating them. These *.msg files can be found in
the src/interfaces/msg/:

• CloudData – Contains data updated by a Cloud client.
• GeneralData – Contains data updated by a business logic client.
• GuiData – Contains data updated by a GUI client.
• MeterData – Contains meter data updated by a base client.
• NfcData – Contains data updated by an NFC client.
• StackData – Contains stack data updated by a base client.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
10 / 92

https://www.ros.org/reps/rep-2000.html
https://github.com/ros/meta-ros/tree/mickledore-next
https://docs.ros.org/en/humble/Concepts.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Nodes.html
https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Cpp-Publisher-And-Subscriber.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Below there is a snippet of the contents of the GeneralData.msg interface file:

string fw_vers
float64 lat
float64 lon
float64 alt
int16 temperature
string evse_id
int16 evse_rating

As it can be seen, the interface file specifies both the type of the value and the name of the value transmitted.
While using the interfaces, whenever any value is updated, the subscriber receives a notification for the whole
group, and has to identify the changed value.

The values themselves are strictly tied to the charger characteristics, adhering to the rule of associating with a
certain client. Their meanings are as follows:

• fw_vers – Represents the release version of the EasyEVSE MPU project.
• lat – Latitude value of the chargers’ position in degrees (simulated).
• lon – Longitude value of the chargers’ position in degrees (simulated).
• alt – Altitude value of the chargers’ position in meters (simulated).
• temperature – Internal temperature of the charger enclosure in degrees Celsius (simulated).
• evse_id – Unique ID of the charger (simulated).
• evse_rating – Maximum current rating of the charger in amps (simulated).

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
11 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

5 ISO 15118

ISO 15118 is a standard defining the V2G communication between EVSE and the vehicle over various physical
connectors across markets. It can be operated with plug & charge (PnC) and EIM to identify vehicles to
charging network with TLS ≥1.2 security. The phase 2 NXP EasyEVSE EV charging station development
platform combines basic J1772 AC charging with ISO 15118-2 AC HLC charging.

5.1 ISO 15118 overview
EasyEVSE uses the CG5317 HomePlug Green PHY transceiver from Lumissil on the EVSE-SIG-BRD
component to manage the control pilot PLC.

The steps to enter ISO 15118 communication begin with the HPGP CP driving a 5 % PWM duty cycle as
described in Section 3.1. The EVSE and EV agree on unique identifiers via SLAC and exchange IP address and
port via the SECC discovery protocol (SDP). ISO 15118 is negotiated via the SupportedAppProtocol. The EVSE
authenticates itself to the EV over TLS and communication begins. The ISO 15118 protocol initiates, monitors,
re-negotiates, and terminates the charging session. ISO 15118 PLC is terminated by stopping the 5 % PWM
signal.

5.1.1 Example charging sequence

Section 5.1.1 illustrates a simplified ISO 15118 AC charging sequence.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
12 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-055972

EV

Communication
setup sequence

Target setting and
charge scheduling

End of
charging

Identification, authentication
and authorization sequence

EVSE

EV EVSE

State A

State B

Close contractors

Open contractors

Charging loop/re-scheduling

Establish IP-based connection via HPGP PLC

Plugin, transition to state B

SupportedAppProtocolRequest

SupportedAppProtocolResponse

SessionSetupRequest

SessionSetupResponse

ServiceDiscoveryRequest

ServiceDiscoveryResponse

PaymentsServiceSelectionRequest

PaymentsServiceSelectionResponse

AuthorizationRequest

[until authorized]

AuthorizationResponse

ChargeParameterDiscoveryRequest

ChargeParameterDiscoveryResponse

PowerDeliveryRequest

Transition to state C

PowerDeliveryResponse

[If signature of metering receipt required]

ChargingStatusRequest

ChargingStatusResponse

MeteringReceiptRequest

PowerDeliveryRequest

Transition to state B

PowerDeliveryResponse

SessionStopRequest

SessionStopResponse

MeteringReceiptResponse

Loop

Loop

Opt

State C

State B

Figure 5. ISO 15118 AC charging sequence

5.1.2 SEVENSTAX

The EasyEVSE ISO 15118 PLC network stack is implemented by SEVENSTAX. For more information, see
https://www.sevenstax.de/. The stack software is provided in the EasyEVSE distribution under an evaluation-
only use license. Recipients can use the SEVENSTAX binary stack library and the SEVENSTAX V2G

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
13 / 92

https://www.sevenstax.de/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

application source code internally, but can not redistribute it in any form. The license can be found at https://
www.nxp.com/LA_OPT_NXP_SW, standard license §2.2 applies. Customers are encouraged to contract
directly with SEVENSTAX for EasyEVSE-compatible, redistributable software licensing.

The SEVENSTAX binary ISO 15118 stack library and V2G application source code are downloaded from NXP
website during the Yocto Project build and available for immediate demonstration and development. For more
information, refer to the recipes-nxp-easyevse/sevenstax files at https://github.com/nxp-imx-support/
meta-nxp-easyevse-mpu/tree/release/easyevse-mpu-2.0. The V2G application Yocto build can be found in the
<Build Directory>/tmp/work/imx93evk_easyevse-poky-linux/sevenstax-v2g/02.00.00-r0/
sevenstax-v2g-02.00.00 directory, including the SEVENSTAX libraries.

5.2 Basic charging to high-level communication charging (HLC-C)
ISO 15118 based charging control extends the IEC 61861-1 signaled charging. For AC charging, ISO 15118
allows to start charging based on IEC 61851-1 (BC) and switch to ISO 15118 based charging control (HLC-C)
later.

This section introduces the transition of BC to HLC-C performed in application code. In the stxV2GAppl_Tick
function, eApplV2G_State is a variable used to track the state transitions for establishing a SLAC protocol
connection, progressing to establishment of ISO 15118 vehicle-to-grid (V2G) communication between the EVSE
and EV. The initial charging mode is BC when charging starts. The bApplV2G_SlacReady function is used
to indicate that the charging mode is BC or HLC-C. If bApplV2G_SlacReady is false that means the current
charging mode is in BC. If bApplV2G_SlacReady is true, that means the current charging mode is in HLC-C.
The AC_DigCom_Req is a digital communication request from EVSE side to EV side.

Note: The application code does not support the transition of HLC-C to BC.

5.2.1 EVSE process for BC to HLC-C

In appl-v2g, the stxV2GAppl_Tick function is executed periodically in the application. The transition of BC
to HLC-C in the EVSE is shown in Figure 6.

After initialization, the eApplV2G_State variable remains in the APPLV2G_STATE_SLAC_START_PRE state
until the transition from BC to HLC occurs.

When the EVSE detects the EV state change from basic signaling (BS) voltage state B (vehicle connected, not
ready to charge) to state C (vehicle ready to charge), the relay is closed and BC starts. The simulation time for
BC is set in the APPLV2G_AC_CHARGING_DIGCOM_REQ_TIME variable. When this time expires, the EVSE
sets the PWM duty cycle to 5 % to initiate a digital communication request (AC_DigCom_Req). At this point, BC
stops and the relay is opened.

The EVSE eApplV2G_State transitions to APPLV2G_STATE_SLAC_START and begins the SLAC setup
protocol exchange with the EV. If a SLAC connection is established, the charging mode becomes HLC-C.
However, if the SLAC connection cannot be established within a timeout, the charging mode returns to BC.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
14 / 92

https://www.nxp.com/LA_OPT_NXP_SW
https://www.nxp.com/LA_OPT_NXP_SW
https://github.com/nxp-imx-support/meta-nxp-easyevse-mpu/tree/release/easyevse-mpu-2.0
https://github.com/nxp-imx-support/meta-nxp-easyevse-mpu/tree/release/easyevse-mpu-2.0
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056008

EVSE: eApplV2G_State

APPLV2G_STATE_INIT
APPLV2G_STATE_INITIALIZED

APPLV2G_STATE_DETECT_MODE

stxV2GAppl_EvseTickSimulation

bApplV2G_SlacReady

AC_DigCom_Req

No
No

False

Yes

Set PWM duty cycle to 5 %
AC_DigCom_Req: True

Basic charging stop

SUCCESS ?

APPLV2G_STATE_SLAC_START
APPLV2G_STATE_WAIT_SLAC

APPLV2G_STATE_WAIT_CONNECTED
APPLV2G_STATE_SLAC_MATCHING
APPLV2G_STATE_SLAC_RUNNING

APPLV2G_STATE_V2G_START

APPLV2G_STATE_SLAC_START_PRE
Basic charging

Basic charging
timeout ?

No

False

True

True

Set PWM duty cycle to 8 % ~ 96 %

APPLV2G_STATE_V2G_RUNNING

Yes

Yes

AC_DigCom req
timeout ?

High level communication charging

Figure 6. EVSE process for BC to HLC-C

5.2.2 EV process for BC to HLC-C

The process of BC to HLC-C at the EV side is shown in Figure 7.

After initialization, the eApplV2G_State variable remains in the APPLV2G_STATE_SLAC_START_PRE state
until the duty cycle approaches 5 %. In BC mode, the EVSE sets the PWM duty cycle. If the PWM duty cycle is
between 8 % to 96 %, the EV calculates the maximum current the EVSE can provide, then pulls down the CP
voltage to 6 V (state C).

When the EVSE detects the CP state transitions to C, the relay is closed, and BC starts. When the EV detects
the PWM duty cycle changes to 5 %, the EV recognizes digital communication is being requested and BC
stops.

When the digital communication request is detected, the EV eApplV2G_State variable transitions to
APPLV2G_STATE_SLAC_START and begins the SLAC setup protocol exchange with the EVSE. If a SLAC
connection is established, the charging mode becomes HLC-C. However, if the SLAC connection cannot be
established within a timeout, the charging mode returns to BC.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
15 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-055973

EV: eAppIV2G_State

APPLV2G_STATE_INIT
APPLV2G_STATE_INITIALIZED

APPLV2G_STATE_DETECT_MODE

APPLV2G_STATE_SLAC_START
APPLV2G_STATE_WAIT_SLAC

APPLV2G_STATE_WAIT_CONNECTED
APPLV2G_STATE_SLAC_MATCHING
APPLV2G_STATE_SLAC_RUNNING

APPLV2G_STATE_V2G_START

APPLV2G_STATE_SLAC_START_PRE

No

Yes

PWM duty
cycle == 5 % ?

Basic charging

Get PWM duty cycle

APPLV2G_STATE_V2G_RUNNING

PWM
 8 % < = dutycycle < = 96 % ?

No

No

Yes

Yes

SUCCESS ?

stxV2GAppl_EVTickSimulation

True

False

bAppIV2G_SlacReady

High level communication charging

Change battery level

Set CP state to C Set CP state to B

Figure 7. EV process for BC to HLC-C

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
16 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

6 EVSE-SIG-BRD

The EVSE-SIG-BRD is an add-on development board that supports EVSE or EV platform development when
the main host of the system is on a separate processor development board, such as the NXP i.MX 93-EVK.

6.1 Introduction
EVSE-SIG-BRD is primarily designed to host a HomePlug Green PHY(HPGP) for ISO 15118-2/20
communication line, and J1772 PWM signaling for control pilot feature. It also supports proximity pilot, GFCI,
and relay drive features. To support these hardware features, the circuit is built with power supply, MCUs,
ASICs, HPGP, QSPI flash, and Ethernet switches interconnected to related hardware components of the board.
The main host controller boards can be connected to EVSE-SIG-BRD through the host connector options.

6.2 Functional description
EVSE-SIG-BRD takes an LPC5536 as MCU controller to support the required local controller functions of the
board. It can support the below list of features for EVSE or EV simulations of the EVSE-SIG-BRD:

• Generate pilot control PWM by using eFlexPWM and measure level by using ADC in the EVSE simulation
mode of the EVSE-SIG-BRD.

• Measure the frequency and duty cycle of the control pilot signal in the EV simulation of the EVSE-SIG-BRD
using a CTIMER module.

• Measure proximity pilot level by using ADC.
• GFCI fault detection driven by interrupt or GPIO level.
• Control relay ON/OFF GPIO function.
• Provide UART communication port between host controller and the EVSE-SIG-BRD MCU. EVSE-SIG-BRD

performs the commands or requests from the host controller board. For example, in EVSE simulation mode,
the MCU can set the control pilot state (high, low, or PWM) based on the UART request of the host controller.
UART is the default communication channel for EVSE simulation of the board.

6.2.1 Proximity pilot

The proximity detection scheme is shown in Figure 8.

Coupler + inlet

Detection
logic

EVSE-SIG-BRD (EVSE side)

Cable

Charging station
ground

Chassis ground
of EV

Detection
logic

aaa-055974

5V_SYS

SW

150 Ω R52
330 Ω

R57
2.7 kΩ

330 Ω

EVSE-SIG-BRD (EV side)

Figure 8. Proximity pilot detection logic

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
17 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

The voltage of the detection logic is used to distinguish the status of the proximity pilot. When the vehicle
coupler connector is not connected to the vehicle inlet, the voltage of the detection logic keeps a fixed value at
the EV side.

When the coupler is connected to the inlet and the latch release actuator switch is closed, the voltage at the
point of detection logic drops to a lower one. When the latch SW is open, the detection voltage is changed
again.

The proximity pilot circuit includes level sensing of the connector signal to trigger a wake-up to the EVSE or EV.
The level of the proximity pilot signal is measured to determine the current state of proximity detection.

aaa-055975

LPC5536

Wake up
threshold
detector Resistor

divider and
buffer

Proximity pilot

GPIO

ADC

Figure 9. Proximity detection and wake-up

6.2.2 Control pilot

Control pilot of the EVSE-SIG-BRD includes generation of the J1772 PWM (IEC 61851) signal, amplification
to +/-12 V, and detection of its changes of level due to connection of the charging cable to the EV. The control
pilot also detects signals from the internal switching of charging states. An equivalent circuit is available at the
EV side to measure the PWM ON time and to change switching levels to request the start/stop of charging
sequence to the EVSE.

The 1 kHz PWM signal provides basic signaling between the EVSE and EV to indicate EV connect states,
charging current capacity, and the charge start/stop requests. The PWM ON period can vary from 10 % to 96 %
for basic signaling. PWM ON period of 3 % to 7 % is reserved to indicate high-level signaling using HPGP.

Buffer and
resistor
divider

FlexPWM

ADC

LPC5536

+12 V

-12 V

aaa-055976

LPF Control pilot PWM

Figure 10. EVSE control pilot PWM

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
18 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Resistor
dividerCTIMER

LPC5536

+3.3 V

GND

GND aaa-055977

SPDT

LPF Control pilot PWM

Figure 11. EV control pilot PWM

The HPGP transceiver provides high-level signaling over the same control pilot signal of the charging cable, that
is, is super imposed onto the 5% J1772 PWM, and supports:

• Signal level attenuation characterization (SLAC)
• SECC discovery protocol (SDP)
• TCP/IP setup
• ISO 15118 communication sequences using orthogonal frequency division multiplexing (OFDM) with a carrier

frequency of 2 MHz to 30 MHz
• A data rate of up to 10 Mbps can be achieved using the communication link between the EVSE and EV.

6.2.3 J1772 PWM

The control pilot circuit in EVSE-SIG-BRD has both the generation (EVSE side) and sense (EVSE and EV
sides). The implementation is done to support both EVSE and vehicle interfaces. Figure 12 shows the PWM
generation and sense scheme in the EVSE and EV sides.

EVSE
connector

EVSE

Voltage measurement

Control pilot PWM logic

-12 V

+12 V

+/-12 V
PWM
1 KHz

SW1 PWM
measurement

aaa-055978

270 Ω 1.3 kΩ

SW2 SW3

2.7 kΩ

1.0 kΩ

Electric vehicle side

Vehicle
inlet

Figure 12. Control pilot PWM generation and sense

To simulate an electric vehicle side of the EVSE-SIG-BRD board, a pair of these boards are connected by using
a suitable charging cable Control pilot wire.

A basic communication sequence between the EVSE and the EV is as follows:

Initially, if the EVSE can supply charge to the EV, it generates a +12 V at the CP pin. It waits for a vehicle to get
connected by the charging cable. This state is termed as state 'A'.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
19 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

When an EV is connected, the voltage level of the CP pin is nearly +9 V. This is measured both at the EVSE
and the vehicle side. Individually, their detection logic can decide that these are connected. This state is termed
as state 'B'.

Next, the vehicle can connect the internal resistance to further reduce the CP voltage level to about +6 V. This
change in voltage level is again detected by EVSE and decides that the EV is ready for EVSE to start charging.
Closing switch SW2 means that a vehicle indicates that it can charge in an un-ventilated area in the station.
This state is termed as state 'C'.

The vehicle can otherwise connect to the internal switch SW3 to reduce the CP voltage level to about +3 V.
EVSE detects this change in voltage level and decides that the EV is ready for EVSE to start charging. Closing
switch SW3 means that the vehicle indicates that it can charge in a ventilated area in the station. This state is
termed as state 'E'.

Note: Instead of a recommended 270 Ω value, this resistance combination has been chosen for easy
availability of components for reference design purposes only. Actual design must be done with 270 Ω value.

After this, the EVSE can start the PWM signal with the duty cycle ranging from typically 5 % to 97 %. 5 % duty
cycle has a special meaning that the EVSE wants to indicate to the EV that it can also support high-level-
signaling using the HPGP CG5317. Other higher values of duty cycle indicate the basic-level-signaling only to
indicate the charge current rating of the EVSE. The electric vehicle side of the EVSE-SIG-BRD measures this
PWM frequency and duty cycle.

Note: For details of the charge current encoded with PWM duty cycles, refer J1772.

At the end of the charging, the EV can open SW2 and SW3. As a result, the CP voltage level comes back to +9
V, that is, state 'B'. The EVSE-SIG-BRD at the EVSE side continuously monitors this voltage level and changing
to +9 V indicates that the PWM can be stopped, and the charging process can be stopped from the EVSE side.

If the charging cable is disconnected, then the voltage level of the CP pin must automatically come back to +12
V level, that is, state 'A'.

6.2.4 GFCI detection circuit

The ground-fault circuit interrupter (GFCI) is a fast-operating charging circuit breaker. There is a risk of electric
shock due to leakage to the Earth in wet outdoor environments where the charging stations can be installed.
In such cases, there is a difference between the phase versus the neutral currents through the conductors of
the AC supply. It therefore becomes a mandatory requirement for the changing station to be equipped with the
GFCI circuit. It is designed to trigger the generation circuit, which is sent to the relay drive circuit and also to the
PIO/interrupt of the LPC5536 MCU. The trigger to the relay driver circuit enables the real-time response of the
EVSE to disconnect the AC supply for user safety.

The block schematic in Figure 13 depicts an external GFCI sensor coil that is connected to the GFCI detection
circuit on board. The coil interacts with the relay driver circuit and the LPC5536 MCU.

aaa-055979

GPIO

LPC5536Amplifier
and

threshold

AC

GFCI coil
(external)

Relay driver

Figure 13. GFCI detection circuit

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
20 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

An external GFCI coil or current transformer (CT) is used as a sensor for ground fault. All the phase and
neutral conductors of the AC are passed through the GFCI coil. The AC conductors act as a primary side of the
transformer while the coil output acts as the secondary side. When there is no shock or leakage condition, the
current passing through the phase and neutral conductors cancels each-other's induction. Therefore, there is
no induced current at the GFCI coil ends. But when there is a shock condition, some amount of current is flown
to the Earth surface and there is less current through the neutral return path conductor. This results in a little
induced current between the GFCI coil ends.

The GFCI fault detection circuit output is fed to the relay driving circuit, which quickly disconnects the AC supply
to prevent shock and damage.

GFCI software implementation is based on the NXP MCUXpresso SDK.

6.2.5 Relay driver

The relay driver circuit in EVSE-SIG-BRD mode can drive two DC coil relays to turn on or off single-phase to
three-phase AC supplies to the EV through the charging cable. The external relays are hosted in the EVSE
system and EVSE-SIG-BRD can drive them by a host controller command or when triggered by the GFCI
circuit. An additional emergency stop push button is also supported.

aaa-055980

GPIO

GPIO

Emergency
stop push button

GFCI detection o/p

LPC5536

Relay driver
logic

Load (EV)

Relay

AC

+3.3 V

GND

+12 V

Figure 14. Relay driver circuit

The relay driver software implementation is based on the NXP MCUXpresso SDK.

6.2.6 UART bridge

The host UART serial interface can receive commands from the host controller to read and write parameters to
the EVSE-SIG-BRD. There is a pre-defined set of commands supported at the UART interface. After receiving
the commands from the interface, the LPC5536/LPC55S36 MCU on the board responds to the supported
commands, as explained in Figure 15. The LPC5536/LPC55S36 MCU sends UNACK for the unsupported
commands.

aaa-055981

Response code =
command code (1 Byte)Response data (M Bytes)

Optional parameter (N Bytes) 0x0D (1 Byte)

0x5D0x5B 0x0D
(1 Byte)

Command code
(1 Byte)

Figure 15. UART command response format

As shown in Figure 15, each command has a command code, an optional parameter, and a command end
delimiter.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
21 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

The host controller must wait until it gets the response of the last sent command, as the UART interface
implementation of the EVSE-SIG-BRD1X software does not support a command queue. However, you can
change the implementation to add support for a command queue.

Table 4 lists supported commands and their responses. Some of the commands are only applicable for the
EVSE side of the software and the others are for the EV side of the software.

Type/
Side

Command
code

Command
parameter

Response
data

Resp.
code

Description Example

Read/
EVSE,
EV

0x62
(alphabet
'b')

No parameter, 0
byte

PP state, 1
byte

'b' Read proximity
pilot state

Command = "b\r"
Response = "0[b]\r"

Read/
EVSE

0x63
(alphabet 'c')

No parameter, 0
byte

CP state, 1
byte

'c' Read control
pilot state

Command = "c\r"
Response = "0[c]\r"

Read/
EVSE

0x64
(alphabet
'd')

No parameter, 0
byte

GFCI state,
1 byte

'd' Read GFCI
state

Command = "d\r"
Response = "0[d]\r"

Read/
EVSE

0x65
(alphabet
'e')

No parameter, 0
byte

ADC value,
5 characters

'e' Read ADC
value of control
pilot

Command = "e\r"
Response = "59354[e]\r"
Note: "59354" is the ADC value in
character string format.

Read/
EVSE

0x66
(alphabet 'f')

No parameter, 0
byte

ADC value,
5 characters

'f' Read ADC
value of
proximity pilot

Command = "f\r"
Response = "12345[f]\r"
Note: "12345" is the ADC value in
character string format.

Read/
EV

0x67
(alphabet
'g')

No parameter, 0
byte

PWM duty
cycle value, 4
characters

'g' Read PWM duty
cycle in per mille
(0-1000)

Command = "g\r"
Response = "0500[g]\r"
Note: "0500" is the PWM ‰ value in
character string format.

Read/
EV

0x68
(alphabet
'h')

0 = Read
resistor 270 Ω
1 = Read
resistor 1.3 KΩ,
1 byte

Control pilot
switch resistor
values
0 = resistor
not set
1 = resistor set

'h' Read control
pilot switch
resistor values

Command = "h1\r"
Response = "1[h]\r"
Note: Command byte 2 = '1'
indicates CP resistor 1.3 kΩ state
request. Response byte 1 = '1'
means that this resistor is in ON
state.

Write/
EVSE

0x69
(alphabet 'i')

5 character
string

None 'i' Set PWM duty
cycle in ‰

Command = "p00500\r"
Response = "[i]\r"
Note: Command parameter "00500"
to set a 50 % duty cycle.

Write/
EVSE

0x6A
(alphabet 'j')

No parameter, 0
byte

None 'j' Close relay Command = "j\r"
Response = "[j]\r"

Write/
EVSE

0x6B
(alphabet 'k')

No parameter, 0
byte

None 'k' Open relay Command = "k\r"
Response = "[k]\r"

Write/
EV

0x73
(alphabet 's')

Byte1:
'0' = Open 270
Ω resistor
'1' = Close 270
Ω resistor

None 's' Set control pilot
switch resistors

Command = "s01\r"
Response = "[s]\r"
Note: Command bytes 1, 2 are
ASCII coded numbers.

Table 4. Supported commands

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
22 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Type/
Side

Command
code

Command
parameter

Response
data

Resp.
code

Description Example

Byte2:
'0' = Open 1.3K
Ω resistor
'1' = Close 1.3K
Ω resistor,
2 bytes

Note: Command byte 2 = '0' means
that 270 Ω resistor to be turned off.
Note: Command byte 3 = '1' means
that 1.3 KΩ resistor to be turned on.

Table 4. Supported commands...continued

aaa-055982

V2G stack
J1772 software
meter reading

Init_SigBrd_uart

nblk_write_uart

nblk_read_uart

Parce reply

No

Message buffer

Yes

Results

Commands

PP_STATE
CP_STATE
CFCI_STATE
ADC_CP_VALUE
ADC_PP_VALUE
GET_PWM_DUTY
CP_RESISTOR_VALUE
PWM_DUTY_PER_MILLI
CLOSE_RELAY
OPEN_RELAY
SET_CP
METER_ALL
METER_CURRENT
METER_VOLTAGE
METER_POWER

reply_code
== command

Figure 16. UART Bridge driver

The main flow of the UART Bridge driver is shown in Figure 16. V2G stack, J1772 software, and meter reading
operation share one UART bridge bus. Based on the charging process, the host controller sent one certain
command through non-block write, and get a response through non-block read. If the reply code of the message
buffer is not equal to the command code sent, the driver continues monitoring another response until the
expected reply code is got. The time-out value of non-block write and read in the driver is 20 ms by default.

When the host controller reads the meter, the EVSE-SIG-BRD transparently transmits the commands to the
meter, and also transmits the reply value of the meter.

6.3 HomePlug Green PHY
The HomePlug Green PHY interface has been implemented using an ISSI CG5317 HPGP transceiver. It is
HomePlug Green PHY compliant, HomePlug AV, and IEEE1901 ready supporting frequency band 2 MHz to 30
MHz. It has an internal AFE for the medium/line interface and SPI target and MII/RMII interfaces to an external
host processor. The HomePlug Green PHY interface contains an internal processor. The HPGP can boot from
either the external host processor or flash memory located on the EVSE-SIG-BRD. Figure 17 shows the design
scheme with CG5317.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
23 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-055983

Host CG5317

Flash
(optional)

Filter mediumHPGP

S
PI

SPI

MII/RMII

Figure 17. Design with CG5317

The on-board HPGP in the EVSE-SIG-BRD is accessible to the host processor by either SPI or Ethernet
interfaces. These interfaces allow the host to:

• Boot
• Communicate
• Run control and management services with the HPGP

Note: Customers are suggested to obtain the detailed and most up-to-date information from Lumissil directly
through their website: https://www.lumissil.com/home.

The host interface supports two interfaces that could be used in parallel – SPI and MII/RMII.

6.3.1 SPI slave interface

The SPI slave interface of CG5317 and an additional interrupt line be connected to an expansion connector on
EVSE-SIG-BRD. The connectivity of the SPI interface is shown in Figure 18.

aaa-055984

Host CG5317

SPI_MOSI
Arduino
connectors/
i.MX EXP CN
connectors/
S32G2-VNP-RDB3
MFP connectors

SPI_MISO

SPI_CSN
SPI_CLK
SPI_IRQ

SPI_MOSI

EVSE-SIG-BRD1X

SPI_MISO

SPI_CSN
SPI_CLK
SPI_IRQ

Figure 18. SPI connectivity between the CG5317 and the host

The SPI of CG5317 only supports mode 1 or mode 3, which can be selected by boot strap on EVSE-SIG-BRD.
SPI mode 3 configurations in the device tree are decribed below:

spidev0: spi@0 {
 compatible = "lwn,bk4";
 reg = <0x0>;
 spi-cpha;
 spi-max-frequency = <8000000>;
 spi-cpol;
};

6.3.2 MII PHY interface

The CG5317 supports standard MII PHY and RMII PHY interfaces that cannot operate simultaneously. On
EVSE-SIG-BRD, the MII PHY of CG5317 is connected to the SJA1110 switch. The RJ45 port of SJA1110 is

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
24 / 92

https://www.lumissil.com/home
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

used to communicate with i.MX 93 EVK by default. The MII PHY interface is connected to the host controller, as
shown in Figure 19.

aaa-055985

Host board Host board

RXCLK

RXD0
RXD1

RXD2
RXD3

RXDV
RJ45RJ45

100 base-T1 100 base-T1

TXCLK

TXD0

TXD1

TXD2

TXD3
TXEN

MDC
MDIO

RXCLK

RXD0
RXD1

RXD2
RXD3

RXDV

TXCLK

TXD0

TXD1

TXD2

TXD3
TXEN

MDC
MDIO

SJA1110
switch

CG5317

Figure 19. MII host interface of CG5317

6.3.3 Boot strapping CG5317

The CG5317 boot strap can be configured on EVSE-SIG-BRD. Table 5 lists the default configuration of the
CG5317 boot strap.

Boot strap STRAP 5 STRAP 4 STRAP 3 STRAP 2 STRAP 1 STRAP 0

Value 1 1 0 0 1 0

Description PHY ADDRESS [0-2] SPI MODE 3 Boot from host Disable debugging

Table 5. CG5317 boot strap on EVSE-SIG-BRD

For boot strapping configuration, refer to EVSE-SIG-BRD1X User Manual (document UM12013).

Boot Strap name Board Jumper positions Description

STRAP[3-5]
PHY ADDRESS[2-0]

J21 – Pins 1,2 short
J19 – Pins 1,2 short
J17 – Pins 1,2 short
Default value "011"

This set of 3 pins defines the 3 LSBs of
the PHY address, assigned for the MII
port of CG5317

STRAP2
SPI_CLK_MODE

J18 – Pins 2,3 short
Default value "0"

Controls the timing mode of the SPI bus
based on the SPI_CLK polarity:
Low – SPI mode 3, data is samples on
clock falling edge
High – SPI mode 1, data is sampled on
the clock rising edge

STRAP1
BOOT_SRC

J20 – Pins 2,3 short Controls the firmware load mode of
CG5317
Low – Boot from Flash
High – Boot from Host

STRAP0
UART DISABLE

J22 – Pins 1,2 short Low – Enable debugging messages to
UART

Table 6. CG5317 boot strap configuration jumpers

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
25 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Boot Strap name Board Jumper positions Description
High – Disable debugging messages to
UART

Table 6. CG5317 boot strap configuration jumpers...continued

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
26 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

7 Security

The current cyber-threat landscape requires IoT devices to be properly provisioned and secured prior to
deployment. Ensuring that hardware equipment is uniquely identified and managed throughout its lifecycle is
mandatory for the protection of customers and industry verticals worldwide.

ISO 15118-2 mandates the use of TLS 1.2 for secure communication in V2G plug & charge. This ensures the
confidentiality, integrity, and authenticity of data exchanged between electric vehicles and charging stations
during the charging process.

Here is a breakdown of the main algorithms and their roles:

• Elliptic curve diffie-hellman ephemeral (ECDHE) is recommended for the key exchange process. ECDHE
allows both parties to generate a shared secret key securely, which is used for encryption, without transmitting
the key itself over the network.

• Elliptic curve digital signature algorithm (ECDSA) is used for the digital signing of messages. This ensures the
authenticity and integrity of the messages exchanged between the EV and the charging station.

• ISO 15118-2 specifies the use of the AES for encrypting communication. Specifically, AES-128 in CBC mode
or GCM for AES-128-GCM are mentioned. These algorithms are used to encrypt the data being exchanged to
ensure confidentiality.

• Hash-based message authentication code (HMAC) combined with a secure hash algorithm (typically SHA-256
in the context of TLS 1.2) is used for message authentication and integrity checks. This ensures that the
messages have not been altered in transit and are authentic.

• Random number generators (RNGs) are used for generating the unique random values used in the
handshake process for secure session key establishment and for creating nonces.

In a V2G environment, particularly within the context of a CPO, the PKI tree is a hierarchical structure used to
manage digital certificates and public-key encryption.

The PKI tree ensures secure communication between EVs, charging stations, and the backend systems of the
CPO.

• Root certificate authority (Top level): At the top of the PKI tree is the root certificate authority (CA). This entity
is trusted by all parties in the V2G ecosystem. It generates a root certificate used to sign the public keys of
intermediate CAs. The Root CA’s primary role is to establish trust within the network.

• Intermediate certificate authorities (Trust delegation): Below the root CA are one or two intermediate CAs.
These CAs are certified by the root CA, and their role is to issue certificates to entities further down the tree.
Intermediate CAs helps limit the exposure of the root CA and facilitates better management and revocation
capabilities. ISO 15118 specifies that one or two sub-CAs are required to establish a chain of trust between a
trust anchor (root) and the corresponding end-entity (leaf) certificate.

• CPO and charging station certificates (Operational level): At this level, certificates are issued to charge point
operators and individual charging stations. These certificates enable secure communication between the
charging stations and the vehicles, as well as between the charging stations and the CPO’s backend systems.
The CPO can have its own CA capabilities or use certificates issued by an intermediate CA.

• SECC certificate (End entity/leaf in the PKI tree): SECC certificates are used to authenticate the charging
station (or the communication controller within it) to EVs during the V2G communication process. They
ensure that the vehicle is connecting to a legitimate and secure charging station and enable encrypted
communication between the EV and the charging station.

• Cloud certificate: End entity/leaf in the PKI tree: Cloud certificate is used for authenticating the device to the
IoT hub. For more details, see https://learn.microsoft.com/en-us/azure/iot-hub/authenticate-authorize-x509.

Securing the private key and certificate of the SECC is crucial to maintaining V2G communication integrity and
confidentiality, as outlined in ISO 15118. The security of these elements ensures that EV charging sessions are
protected against unauthorized access, manipulation, and various cyber threats.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
27 / 92

https://learn.microsoft.com/en-us/azure/iot-hub/authenticate-authorize-x509
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Similarly, securing IoT hub authentication credentials is crucial for data confidentiality and integrity between the
device and Azure IoT Central application.

Secure elements such as SE050 are used to store and use SECC and CLOUD private keys and certificates.
They provide a highly secure environment that prevents unauthorized access and use of the private key. SEs
can perform cryptographic operations within the module, ensuring that the private key never leaves the device
in plaintext.

SE050E supports the following cryptographic algorithms:

• ECC cryptographic support of extended set of ECC curves, including NIST (up to 521 bits key length),
brainpool, twisted edwards, and montgomery

• RSA up to 4096 bits
• AES and 3DES encryption and decryption
• AES modes: CBC, CTR, ECB, CCM, GCM
• HMAC, CMAC, GMAC, SHA-1, SHA-224/256/384/512 operations
• HKDF, MIFARE KDF, PRF (TLS-PSK)
• TRNG compliant to NIST SP800-90B
• DRBG compliant to NIST SP800-90A
• Support of main TPM functionalities
• Support PKCS#11 specifications

EdgeLock SE050 supports a broad range of IoT security use cases:

• TLS connection
• Cloud onboarding
• Device-to-device authentication
• Device integrity protection
• Attestation
• Sensor data protection
• Wi-Fi credential protection
• Secure access to IoT services
• IoT device commissioning and personalization

aaa-055986

TLS 1.2 (over TCP)

Mutual authentication Azure IoT central application

EdgeLock SE050
(with EAL 6+)

Local security
in software

Cloud security

Local security
in hardware

Zero touch on-boarding

Secure key storage

Certificate storage

TLS over TCP

SCP03 (over I2C)

Provision

Azure IoT SDK library (azure-iot-sdk-c)

Figure 20. Security layers

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
28 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

For more information, see EdgeLock SE050: Plug and Trust Secure Element Family – Enhanced IoT security
with high flexibility.

7.1 Credentials provisioning
This section presents two methods of provisioning the device:

• EdgeLock 2Go
• Manual

The EdgeLock 2Go provisioning method has the advantage of creating the credentials once and assigning them
to multiple devices by using a device group. It also offers to set up the CN of the leaf certificates as a prefix,
enabling users to have a unique CN per certificate. This is important when connecting to the Azure IoT Central
application because it is a requirement from the cloud provider to have the IOTCENTRAL_DEVICE_ID from ~/
cloud.conf file the same as the CN of the X.509 certificate used when connecting.

7.1.1 EdgeLock 2Go provisioning

The provisioning process through EdgeLock 2GO is a one-time operation and must be executed using a single,
common company account. For more details on creating a device group, secure objects, and provisioning the
device with the credentials from the EdgeLock 2Go, see EVSE-SIG-BRD1X User Guide (document UG10109).

For more details on EdgeLock 2Go, see NXP website.

7.1.2 Manual provisioning

To provision the SECC credentials, run the provisioning.sh script that performs both online and offline
provisioning.

# cd ~/res/se05x/
# ./provision.sh

For provisioning the cloud credentials, first run the script to create the credentials and then run the script for
provisioning the SE050. For more details, refer to the Plug & Trust MW Documentation (document AN13030)
that comes with the Plug&Trust MW package (se05x_mw_v04.05.00.zip).

Note: If downloaded from nxp.com, the Plug & Trust MW Documentation may refer to an MW version newer
than the one we are using (v04.05.00).

The following commands are typed on the console of the i.MX 93 host processor used as the EVSE:

1. Generate the credentials.

2. Inject the key and the certificate generated in the previous step into SE050.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
29 / 92

https://www.nxp.com/products/security-and-authentication/authentication/edgelock-se050-plug-and-trust-secure-element-family-enhanced-iot-security-with-high-flexibility:SE050
https://www.nxp.com/products/security-and-authentication/authentication/edgelock-se050-plug-and-trust-secure-element-family-enhanced-iot-security-with-high-flexibility:SE050
https://www.nxp.com/products/security-and-authentication/secure-service-2go-platform/edgelock-2go:EDGELOCK-2GO
https://nxp.com/doc/AN13030
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

By default, the reset option is commented. For resetting the SE050, uncomment the following line from
Provision/ResetAndUpdate_AZURE.py.

7.1.3 Verify credentials

The following Linux commands are typed on the console of the i.MX 93 host processor used as the EVSE:

1. Confirm that V2G keys and certificates are properly provisioned into the SE050 device.

pkcs11-tool --module /usr/lib/libsss_pkcs11.so \
--list-objects2>/dev/null|grep"sss:80E0E0E" -A1 -B2
CertificateObject;type= X.509 cert
label: sss:80E0E0E3
subject: DN: C=FR, O=NXP, CN=V2GRootCA, DC=SCE/
emailAddress=marouene.boubakri@nxp.com
--
CertificateObject;type= X.509 cert
label: sss:80E0E0E2
subject: DN: C=FR, O=NXP, CN=V2GSubCA1, DC=SCE/
emailAddress=marouene.boubakri@nxp.com
--
CertificateObject;type= X.509 cert
label: sss:80E0E0E1
subject: DN: C=FR, O=NXP, CN=SECCCert, DC=SCE/
emailAddress=marouene.boubakri@nxp.com
--
PrivateKey Object; EC
label: sss:80E0E0E0
ID: e0e0e080

2. Ensure that the Azure cloud key and certificate have been correctly provisioned into the SE050 device.

pkcs11-tool --module /usr/lib/libsss_pkcs11.so \
--list-objects 2>/dev/null | grep "sss:830000" -A1 -B2
CertificateObject; type = X.509cert

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
30 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

label: sss:83000002
subject: DN: CN=easyevsempu-0000000000b3be39-0001
--
PrivateKey Object; EC
label: sss:83000001
ID:01000083
--
EC_POINT: 044104f3c7fbc48f6094b346d22e408686b2528de40287247ec9710522ac7165
f6b0344b139239291e7579339ce6775161b0d8daa5cebc51e987e320997dbe3f3c8b65
EC_PARAMS: 06082a8648ce3d030107
label: sss:83000001
ID:01000083

In ~/cloud.conf, the IOTCENTRAL_DEVICE_ID field is the CN from the output of the
CLOUD certificate provisioned into the SE050 (in this example, from the output above
:CN=easyevsempu-0000000000b3be39-0001). For more information, see EVSE-SIG-BRD1X User Guide
(document UG10109).

7.1.4 Upload root CA to Azure IoT Central application

Section 8.1 presents how to select an enrollment and authentication-attestation method. In this document, we
exemplify group enrollment using an x.509 certificate stored into SE.

A root certificate authority certificate is used as the basis of trust and therefore added to Azure IoT Central. The
device certificates can then be used to connect via the enrollment group.

For EdgeLock 2Go provisioning method, the intermediate CA has to be downloaded from https://
edgelock2go.com and uploaded to the Azure IoT Central as presented in the user guide.

For a manual provisioning method, the Root CA generated in the previous section can be found in the ~/.
nxp-easyevse/cloud-manual-provisioning/provision/azure directory and has to be uploaded to
the Azure IoT Central. For more details on how to upload the certificate, see EVSE-SIG-BRD1X User Guide
(document UG10109) and Generate root and device certificates.

7.2 Transport layer security (TLS)
TLS is an industry standard designed to provide identification, authentication, confidentiality, and integrity of
the communication between two endpoints. Every TLS connection begins with a TLS handshake protocol that
manages the cipher suite negotiation, the client, and server authentication, and the session key exchange. It
consists of:

• The hello phase, where both parties negotiate the protocol version and cipher suite.
• The client and server key exchange phase.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
31 / 92

https://edgelock2go.com
https://edgelock2go.com
https://learn.microsoft.com/en-us/azure/iot-central/core/how-to-connect-devices-x509?pivots=programming-language-csharp#create-a-group-enrollment
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056102

IoT device
certificate

IoT device
private key

Server
certificate

IoT device OEM cloud
TLS connection

Note: OEM CA used to sign IoT device certificate Note: OEM CA used to sign server certificate

TLS handshake

Secure data exchange Server
private key

OEM's CA
certificate

OEM's CA
certificate

SE050 Host
MCU

`Hello' phase

Key exchange phase

Secret key calculation phase

Figure 21. TLS handshake
• The session secret key calculation phase, where a pre-master secret and exchanged random values are used

to calculate a session key for securing communication.

7.2.1 Hello phase

The TLS handshake begins by sending a client_hello message. The IoT device sends the client_hello message
and includes its supported cipher suites. It comprises three distinct algorithms:

• The key exchange and authentication algorithm used during the handshake. For example, TLS_ECDH_
ECDSA_WITH_AES_128_CBC_SHA256.

• The encryption algorithm is used to encipher data. For example, TLS_ECDH_ECDSA_WITH_AES_128_CBC_
SHA256.

• The MAC algorithm is used to generate the message digest. For example, TLS_ECDH_ECDSA_WITH_AES_
128_CBC_SHA256.

In addition, the client_hello message also includes a random number. This random number must be requested
to the EdgeLock SE05x security IC. The server responds with a server_hello message, which contains the
cipher suite chosen, the session ID, and another random number.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
32 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056103

IoT device
certificate

IoT device
private key

Server
certificate

OEM cloudIoT device

Server
private key

OEM's CA
certificate

Calculate
random number

OEM's CA
certificate

SE050 Host
MCU

Request random number

Send client_hello message (incl. random number)

Send server_hello (incl. random number)

Send random number

Figure 22. TLS handshake hello phase

7.2.2 Server key exchange phase

For the key exchange from the server side, the server sends:

• A server_certificate message, capable of carrying the whole server certificate chain (leaf certificate and CA
certificate).

• A serverKeyExchange message, containing the ephemeral ECDH public key and a specification of the
corresponding curve. These parameters are signed with ECDSA using the private key corresponding to the
public key in the server certificate.

• A client_certificate_request message, which makes client authentication mandatory. This option is
recommended to avoid unauthorized devices connecting to the IoT network.

The IoT device verifies the validity of the server certificate chain. It then uses the public key in the server
certificate to verify the ECDSA signature of the parameters received in the serverKeyExchange message.
EdgeLock SE05x is leveraged for verifying the ECDSA signature.

A valid signature proves the server identity.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
33 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056104

Generate server ECDHE
key pair

IoT device
certificate

IoT device
private key

Server
certificate

OEM cloud

Server
private key

OEM's CA
certificate

IoT device

Verify ECDSA
signature

OEM's CA
certificate

SE050 Host
MCU

Verified!

Verify ServerKeyExchange
parameters signature

Verify Server
certificate chain

Send server certificate chain
Send ServerKeyExchange (incl, ECDHE public key)
Send client_certificate_request

Figure 23. Server key exchange phase

7.2.3 Client key exchange phase

For the key exchange from the client side, the IoT device sends:

• A client_certificate message, capable of carrying the whole client certificate chain (leaf certificate and CA
certificate).

• A proof of possession message, including a signature used to prove that the private key possesses the IoT
device. The signature is performed in the EdgeLock SE05x using the IoT device-private key.

• A client_key_exchange message, including an ECDH key public generated on the same curve as the server
ephemeral ECDH key. The ECDHE ephemeral keys are generated in the IoT device MCU.

The server verifies the IoT device certificate chain and uses the IoT device public key in the client certificate to
verify the proof of possession.

By performing this operation, the server verifies that the private key possesses the IoT device corresponding to
the public key in the client certificate.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
34 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056105

IoT device
certificate

IoT device
private key

Server
certificate

OEM cloud

Server
private key

OEM's CA
certificate

IoT device

Perform ECDSA
signature

OEM's CA
certificate

SE050 Host
MCU

Verify client certificate chain
Verify proof of possession

Signed proof of possession

Sign proof of possession

Create ECDHE key pair

Send client certificate chain
Send proof of possession
Send ClientKeyExchange (incl. ECDHE public key)

Figure 24. Client key exchange phase

7.2.4 Secret key calculation phase

Both client and server perform an ECDH operation. The result is used as an input to compute the pre-master
secret. The EdgeLock SE05x is in charge of calculating both the pre-master and master secrets. The master
secret is calculated using:

• The pre-master secret
• The client and server-random numbers
• An identifier label

Here, the shared secret key possesses both the IoT device and the cloud, and can start secure exchange of
data using a symmetric cryptographic algorithm.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
35 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056106

IoT device
certificate

IoT device
private key

Server
certificate

OEM cloud

Server
private key

OEM's CA
certificate

Generate
premaster secret

OEM's CA
certificate

SE050 Host
MCU

Generate
master secret

Generate premaster
secret

Generate master
secret

Send master secret

Create premaster secret

Change to encrypted connection

Encrypted
connection

Change to encrypted connection

Create master secret

Figure 25. Secret key calculation phase

7.3 Architecture Overview
In the application, cryptographic operations may leverage two different PKCS11 tokens and/or slots because
SE050 does not serve as cryptographic accelerators. It can only process a limited amount of data < ~1 kb.
SE050 is primarily used for TLS authentication with long-life credentials stored within. To accommodate
operations that exceed the SE's data handling capabilities or require faster processing, these tasks are
offloaded to either a software (SW) PKCS11 provider or a more capable hardware (HW) token. Accordingly, two
PKCS#11 slots are configured using p11-kit-proxy:

• SLOT1: Configured to execute ECDSA signing on the SE050 using the SECC private key.
• SLOT0: Configured to execute the remaining operations on the TEE.

If a single token can efficiently handle all operations required by the application, it is also possible to align both
constants to the same token/slot.

Also, for instances requiring enhanced processing speed over security, the slot index can be configured to point
to SoftHSMv2 at SLOT2.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
36 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-055987

V2G app

TLS library

PKCS11 wrapper

prng Blockcipher Hash Hmac key_
derivation

key_
exchange

SECC
key and certificate

x509 Signature

SE050TEESoftHSMv2

Slot 2 Slot 0 Slot 1

RSA

ECDSA

ECDH

DH

PBKDF1

HKDF

SHA3

SHA

CKDFMD5

CBC

AES

hmac_drbg

Entropy

encrypt_nxp

p11-kit-proxy

Figure 26. Architecture overview

7.4 EV/EVSE TLS handshake
In the context of replacing the SW crypto implementation with an HW token, make sure what security
parameters must reside in an HW token and what can be visible to SW (the ISO15118-2 stack).

Step Security parameters Location

The client sends a "Client
Hello" message, which includes
the TLS version. It supports a list
of supported cipher suites and
a random byte string.

TLS version, cipher suites, random byte
string

SW can manage the random byte
string, but, we can prefer an HW token
for secure RNG. SLOT 0.

The server responds with a "Server
Hello" message, selecting the TLS
version and cipher suite, and sends its
own random byte string.

TLS version, cipher suites, random byte
string

Can be in SW but we can prefer an HW
token for secure RNG.
SLOT 0.

The server sends its certificate to the
client (if it is a TLS server).

Digital certificate (includes the server's
public key)

Digital certificates are
public information. Can be managed
by SW, stored in filesystem, can be also
stored in HW token.

The server can send a "ServerKey
Exchange" message, which contains
cryptographic parameters necessary
for the client to establish a pre-
master secret.

Cryptographic parameters, for
example, Ephemeral keypair for ECDH

Private key must be securely stored in a
token. SW can manage the public key.

The server sends a "ServerHelloDone"
message indicating that it is finished
with handshake negotiation.

None None

Table 7. EV/EVSE TLS handshake

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
37 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Step Security parameters Location

The client responds with a "ClientKey
Exchange" message, which includes
the pre-master secret encrypted with
the server's public key.

The pre-master secret is
highly sensitive as it's used to
generate encryption keys.

Must be securely stored in a token.

The client can send its certificate if
mutual authentication is required (for
ISO15118-20).

Client’s private key Must be securely stored in a token.

Both the client and server send
a "ChangeCipherSpec" message
to signal that subsequent messages are
encrypted.

None None

Both client and server
exchange "Finished" messages,
verifying that the key exchange
and authentication processes
were successful.

Session keys derived from the pre-
master secret.

Must be securely stored in a token.

Table 7. EV/EVSE TLS handshake...continued

7.5 Cloud TLS connection
When using DPS, two TLS connections are negotiated. Section 7.5 shows both connections. The "Client Hello"
message is sent to the DPS endpoint and then to the Azure IoT Central application endpoint.

aaa-055988

Connection to
the Azure loT
central DPS
endpoint

Connection to
the Azure loT
central endpoint

Figure 27. Wireshark output

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
38 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

8 IoT and connectivity

This chapter briefly explains the connection setup between EasyEVSE and the Azure IoT Central application.
As a prerequisite, you must first deploy your Azure IoT Central application using either the "EasyEVSE
Dashboard shareable link" template (which is included with the project) or your own version derived from
EasyEVSE’s device template (included as well in JSON format).

Note: Auxiliary services are covered in the User Guide (Event hub, telemetry, optional cloud storage, cloud
shell)

Note: Most security features can be independently tested, having no hard requirement on peripherals.

Details about creating an Azure IoT Central application can be found in EVSE-SIG-BRD1X User Guide
(document UG10109). Figure 28 describes the components necessary for successfully connecting the device to
the Azure IoT Central application.

aaa-055989

Azure loT
DPS

Azure loT
SDK

Ingestion and
provisioningDevices

Azure
digital
twins

Device
provisioning

service
Azure loT

Linux

SE050

i.MX SoC

Figure 28. Simplified EasyEVSE reference architecture

Note: Throughout this document, multiple pointers related to the cloud setup are directed toward the cloud
service provider, or CSP (Microsoft Azure in this case).

8.1 Connection setup
Azure IoT Central needs to enroll EasyEVSE as a device for telemetry, commands, and property updates. To
achieve this, connect the device to your IoT Central application, as described in the user guide.

This section lists the steps to provision the EasyEVSE device and exchange data with the Azure DPS service.

8.1.1 Select enrollment and authentication-attestation method

Select an individual or a group enrollment. The EasyEVSE device supports both enrollment types. This
configuration can only be made in the Azure IoT Central application.

• Group enrollment: It represents a group of devices that share a specific attestation mechanism. Group
enrollments are recommended to enroll multiple devices with the same set of credentials. NXP recommends
using an enrollment group for many devices, which share a desired initial configuration, or for devices going to
the same tenant.

• Individual Enrollments: It represents an entry for a single device that may register with the DPS. Individual
enrollments may use either X.509 certificates or SAS tokens (in a real or virtual TPM) as attestation

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
39 / 92

https://learn.microsoft.com/en-us/azure/iot-dps/about-iot-dps
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

mechanisms. They are ideal to enroll a single device with its own credentials. NXP recommends using
individual enrollments for devices that require unique initial configurations and for devices that can only use
SAS tokens via TPM or virtual TPM as the attestation mechanism.

In this document, we exemplify group enrollment using the X.509 certificate stored into SE050.

Note: X.509 certificate chain generation (including root, intermediate, device) via OpenSSL is comprehensively
covered by Microsoft. For more details, see Tutorial: Provision multiple X.509 devices using enrollment groups.
For more details about the enrollment options, see Manage device enrollments in the Azure portal.

Figure 29. X.509 certificate upload

Figure 30. IoT hub target

Note: Multiple IoT hubs can be linked to a single DPS service. For more details, see How to link and manage
IoT hubs.

Note: If the device has not been enrolled before, DPS helps to enroll the device into your Azure IoT Central
application. Once the operation is successful, the device can communicate with the Azure IoT Central
application without relying on DPS.

Note: Note your unique scope ID, as it is necessary when connecting the device to the Azure IoT Central
application. For more details, see IoT Hub Device Provisioning Service terminology.

The X.509 certificate authentication-attestation method is the recommended method for production devices.
It can be provisioned into the secure element SE050, providing increased security and ensuring mutual
authentication.

Figure 31. X.509 certificate authentication attestation

Note: Detailed configuration steps for creating a group enrollment are available in the user guide.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
40 / 92

https://learn.microsoft.com/en-us/azure/iot-dps/tutorial-custom-hsm-enrollment-group-x509?tabs=windows&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/iot-dps/how-to-manage-enrollments?tabs=tpm
https://learn.microsoft.com/en-us/azure/iot-dps/how-to-manage-linked-iot-hubs
https://learn.microsoft.com/en-us/azure/iot-dps/how-to-manage-linked-iot-hubs
https://learn.microsoft.com/en-us/azure/iot-dps/concepts-service
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

8.1.2 DPS onboarding

DPS is an automatic provisioning system for new devices. It eliminates human intervention, namely zero-
touch provisioning. A complete description of the DPS, its benefits and use case scenarios can be found in the
following article What it is azure IoT Hub Device Provisioning Service? at the Azure documentation.

Figure 32 outlines the role of X.509 certificates as part of the attestation and authentication inputs for the DPS.

aaa-055990

Attestation Authentication

Provisioning
(DPS srvice)

Specifies the method chosen
for confirm identity:
X.509 attestation

How the device
identifies itself, proving
its identity.

Device tries to enroll
in the application

Figure 32. DPS inputs

By default, the EasyEVSE uses the Global device provisioning endpoint: global.azure-devices-
provisioning.net.

Many devices and external entities foreign to the EasyEVSE that also require the DPS service can use the
endpoint. To prevent the provisioning secrets from leaving the original endpoint, you can specify private
endpoints. This is necessary because the Azure IoT hub conducts traffic load balancing when using the global
DPS endpoint. For details, see the note in When to use Device Provisioning Service.

Figure 33 outlines the general DPS onboarding followed by devices when attempting to enroll into the Azure IoT
Central application.

aaa-055991

Initial device
provisioning

(enrollment list)

Azure lot central
application endpoint

Device: EasyEVSE
hardware

DPS endpoint

3

5 4

6

7

A

8

B

2

1

Figure 33. DPS onboarding

The following list explains Figure 33:

1. The device manufacturer adds the device registration information to the enrollment list in the Azure portal.
2. The device contacts the DPS endpoint. The device passes the identifying information to DPS to prove its

identity.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
41 / 92

https://learn.microsoft.com/en-us/azure/iot-dps/about-iot-dps
https://learn.microsoft.com/en-us/azure/iot-dps/virtual-network-support
https://learn.microsoft.com/en-us/azure/iot-dps/about-iot-dps
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

3. DPS validates the identity of the device by validating the registration ID and key against the enrollment list
entry using standard X.509 verification (X.509).

4. DPS registers the device with an IoT hub and populates the desired twin state of the device. For details on
twin state, see Understand and use device twins in IoT Hub.

5. Azure IoT Central returns device ID information to DPS.
6. DPS returns the IoT Central connection information to the device. The device can now start sending data

directly to the IoT Central application endpoint.
7. The device connects to the IoT Central application.
8. The device gets the desired state from its device twin in IoT Central.
9. Once it has been registered, The device directly connects to the IoT Central application.

10. The device gets the desired state from its device twin in IoT Central.

In Figure 33, steps A and B correspond to the case when the device does not need to contact the DPS anymore
as it is already enrolled. Therefore, the connection scheme is simpler because the device cannot directly
connect to the Azure IoT application host name endpoint also referred to as host name.

8.1.3 Connect state machine

Getting the EasyEVSE connected to the cloud takes several steps, as shown in Figure 34.

aaa-055992

Start

Init IoT and DPS

Connect

Connected

Connecting

Connect fail

Connecting fail

Process events

No

No

No

Yes

Yes

Connection lost

Figure 34. Connect state machine flowchart

If the device is set to enroll to the Azure IoT Central application (IOTCENTRAL_DEVICE_SECURITY_TYPE is
set to DPS in ~/cloud.conf), the IoT connection settings are initialized as well as the DPS.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
42 / 92

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

After the initialization is complete and successful, the actual connection of the EasyEVSE to the Azure IoT
Central application begins. A robust state machine is implemented to manage device connection to your Azure
IoT Central application or to the DPS service when enrolling the device.

After the initialization completes and the state machine sets into the connected state, the device can exchange
bidirectional communication with the Azure IoT Central application. This involves IoT functions such as
telemetry send, direct method, device twin, and so on.

8.1.4 Connected state

Reaching the connected state means that the EasyEVSE is connected to the Azure IoT Central application. The
EasyEVSE remains connected unless a disconnect event is set.

Note: The connected state is the most important state of the state machine as it manages bi-directional
communication between the EasyEVSE and the Azure Iot Central application.

The following is a list of the functions performed in the connected state.

• Direct method
• Device twin

– Request device twin properties (already request properties when executing this state)
– Receive/get device twin properties
– Receive/get desired device twin properties
– Report/send device twin properties

• Telemetry sent
For better comprehension, you can associate the direct method, device twin, and telemetry functions to the
options in the EasyEVSE dashboard.
– Direct method is associated with any command sent to the EasyEVSE. See the Commands tab:

– Terminate charge
– Device twin is associated with any property that is updated to the EasyEVSE. See the Properties tab:

– Grid Power Limit
– Tariff Cost
– Tariff Rate

– Telemetry send is associated with the EasyEVSE data sent to the dashboard. See the View tab:
– All the variables sent are shown in the telemetry send section of the EasyEVSE dashboard under the

View tab.

8.2 Implementation details
The device cloud app functions as a C socket client that operates on the MPU side. It receives telemetry data
from the server and forwards it to the cloud application in Azure IoT Central. The app also receives parameters
and commands from the cloud application to pass on to the server, allowing the device to be remotely controlled
and configured. It uses the Azure IoT C SDK and Libraries to establish communication with the Azure IoT
Central application.

The device cloud app expects that a file named ~/cloud.conf exists and that it is populated with the following
information:

IOTCENTRAL_DEVICE_SECURITY_TYPE=DPS

IOTCENTRAL_DEVICE_ID=<DEVICE_ID is the CN of the CLOUD certificate stored in SE050E>

IOTCENTRAL_SCOPE_ID=<SCOPE_ID assigned to the device provisioning service>

IOTCENTRAL_CERT_ID=<CERT ID of the cloud certificate stored in the SE050E>

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
43 / 92

https://github.com/Azure/azure-iot-sdk-c
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

IOTCENTRAL_KEY_ID=<KEY ID of the cloud key stored in the SE050>

IOTCENTRAL_MODEL_ID=<DTMI of the device template created in Azure IoT Central>

The ID scope can be found in the Azure IoT Central application as presented in Figure 35.

Figure 35. ID scope

The "IOTCENTRAL_DEVICE_ID" is the CN of the certificate provisioned into the SE050. More details can be
found in the user guide.

The "IOTCENTRAL_MODEL_ID" corresponds to the IoT application dashboard and can be found in the Azure
IoT Central application. For more details, see device templates.

The application can be separated into four main parts, as can be seen in Figure 36. The first part gets the
information from ~/cloud.conf to provision the device and to generate a connection string if it is the first
execution. After that, it uses the generated connection string for the next connections. After this authentication
step, the app initializes the library, retrieves the device twin from the cloud and configures callbacks for future
properties updates and for the command handle. The device twin is an individual JSON file for one device that
keeps some information from it, including the desired properties configured in the dashboard by the user. The
second part initializes the client socket. The third part is the main loop responsible for pushing and receiving
data from and to the cloud. The fourth part is the "parallel" and non-deterministic: the callbacks that can be
triggered at any moment.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
44 / 92

https://easyevsev2.azureiotcentral.com/devices
https://learn.microsoft.com/en-us/azure/iot-central/core/concepts-device-templates
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-055993

Cloud init Main loop

Load prov. type from cloud
conf file and init IoTHub lib

Init and sync properties
through device twin req and

setup DT callback

Initialize device client from CS

Setup commands callback

Check prov.
type

Wait server
Msg

Send
telemetry

Get cloud
data

Command
callback

Device
twin

callback

Generate CS Load CS

Push

Get
Yes

Yes
No

CSDPS

Initialize
client socket

Socket init

Send server
its identity

Figure 36. Cloud communication flow

The following snippet shows the code from the main routine where the three main parts are highlighted.

int main(int argc, char *argv[])
{
struct tm dt;
int retCode;

// setup signal handling
HandleSignal(SIGUSR1, CloudDeinit);

// prepare the logging file structure based on evse.conf file parsed by server
if (argc == 2)
{
logLevel = atoi(argv[1]);
if (logLevel > NONE)
{
PrepareLoggingEnv(identity);
}
}

printf("[CLOUD] Starting Cloud Client\n");

retCode = InitCloud();
if (retCode == -1)
{

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
45 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

CloudDeinit(RUNTIME_ISSUE);
return retCode;
}

endpointFd = InitSocket(identity);
if (endpointFd == -1)
{
CloudDeinit(RUNTIME_ISSUE);
return endpointFd;
}

retCode = SendIdentity(endpointFd, identity);
if (retCode == -1)
{
CloudDeinit(RUNTIME_ISSUE);
return retCode;
}

UpdateCycle(endpointFd, identity);

CloudDeinit(RUNTIME_ISSUE);

return 0;
}

The following snippet shows the process of retrieving the variable from ~/cloud.conf to define if it generates the
CS using DPS or uses the previously generated one. In this part, IoTHub_Init() is also called to initialize the
IoT hub device library and IoTHubDeviceClient_CreateFromConnectionString() specifying the CS
and the communication protocol (MQTT).

int InitCloud()
{

 // Initializes the IoT Hub Client System.
 char errorBuffer[ERRNO_MAX_SIZE];
 int ret;
 protocol = MQTT_Protocol;
 char *reported_properties_message = NULL;

 // Load the type of provisioning
 LoadVariable(g_securityTypeEnvironmentVariable,
 credentials.provisioningType, sizeof(credentials.provisioningType));
 printf("[CLOUD] [PROV TYPE] %s\n", credentials.provisioningType);

 ret = IoTHub_Init();
 if (ret != 0)
 (…)
 if (strcmp(credentials.provisioningType, "DPS") == 0)
 {
 prov_transport = Prov_Device_MQTT_Protocol;
 ret = InitDPS();
 if (ret == -1)
 {
 return ret;
 }
 GenerateCS();
 }
 else if (strcmp(credentials.provisioningType, "connectionString") == 0)
 {

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
46 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

 // Load the CS
 LoadVariable(g_deviceCSEnvironmentVariable,
 credentials.connectionString, sizeof(credentials.connectionString));
 printf("[CLOUD] [cs] %ld %s\n", strlen(credentials.connectionString),
 credentials.connectionString);
 }
 else
 {
 (…)
 return -1;
 }
 device_handle =
 IoTHubDeviceClient_CreateFromConnectionString(credentials.connectionString,
 protocol);

Following the connection, a callback is configured report connection events. If a connection is established
successfully or not and a callback for receiving and handling remote method invocation from the cloud, aka,
commands from the cloud.

 // Setting connection status callback to get indication of connection to
 iothub
 ret = IoTHubDeviceClient_SetConnectionStatusCallback(device_handle,
 connection_status_callback, NULL);
 if (ret != IOTHUB_CLIENT_OK)
 {
 (..)
 }

 // Set method invocation callback
 ret = IoTHubDeviceClient_SetDeviceMethodCallback(device_handle,
 deviceMethodCallback, NULL);
 if (ret != IOTHUB_CLIENT_OK)
 {
 (..)
 }

Details about starting the EVSE Server application can be found in the user guide.

Figure 37 shows the output of the cloud application upon successful connection.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
47 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 37. Successful connection output

When the connection is successful, the ~/cloud.conf file gets automatically updated. The
IOTCENTRAL_DEVICE_SECURITY_TYPE is set to connectionString instead of DPS and the
IOTCENTRAL_DEVICE_HUB_URI is updated with the connection string received.

Figure 38. Cloud configuration file after successfully connecting

Properties are used for configuring devices remotely by defining a set-point. In the EVSE solution, there are
three properties: Grid Power Limit, Tariff Cost and Tariff Rate that are configurable in the dashboard by the
user. The user can configure it before the device is provisioned or after it is connected. The device is updated
irrespective of the time. In the following code snippet, two structs are initialized. One is intended to store the
desired properties (the values that come from the cloud). The other one stores the reported properties (the
values that were updated in the device due to a desired property change in the cloud). The latter one is used to
report the changes in the cloud, so the user can ensure that the changes were propagated.

For retrieving the current desired properties already set on the client, or to check if they are set,
IoTHubDeviceClient_GetTwinAsync is called. This function has an "asyns" behavior, in the sense that it
answers immediately, and it only has the purpose to issue a get twin requisition and register a callback to wait
for it. Therefore, there is a polling while waiting for the device twin to be checked.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
48 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

After this polling is released, UpdateSerializeReportedMessage is called to assign the new values to the
reported properties and to wrap it in a JSON format, which is sent back to the cloud through IoTHubDevice
Client_SendReportedState. Finally, IoTHubDeviceClient_SetDeviceTwinCallback sets a callback
that handles future properties updates.

 // Init desired and reported properties equally
 desired_properties.grid_pwr_lim = 0;
 desired_properties.tariff_cost = 0;
 desired_properties.tariff_rate = 0;

 reported_properties.grid_pwr_lim = 0;
 reported_properties.tariff_cost = 0;
 reported_properties.tariff_rate = 0;

 // Retrieve the device twin and have the values for properties
 (void)IoTHubDeviceClient_GetTwinAsync(device_handle,
 getCompleteDeviceTwinOnDemandCallback, NULL);
 (..)
 // Wait until the twin is received and the desired properties updated
 successfully
 while (!twin_updated);

 reported_properties_message = UpdateSerializeReportedMessage();
 (..)
 printf("[CLOUD] Reporting: %s\n", reported_properties_message);
 // Send reported properties
 ret = IoTHubDeviceClient_SendReportedState(device_handle, (const unsigned
 char *)reported_properties_message, strlen(reported_properties_message),
 reportedStateCallback, NULL);
 (..)
 // Subscribe to desired properties update notifications
 ret = IoTHubDeviceClient_SetDeviceTwinCallback(device_handle,
 deviceTwinCallback, NULL);
 (..)

The next routines are calls to InitSocket() and SendIdentity(), which purpose to initialize the client
socket and to inform the server socket about its identity. This code is common for all socket clients and is not
addressed here.

The following snippet is the main cycle implementation where the code waits on server communication. It starts
initializing an int vector "flags" that is sent by the server. The first position is intended to ask the client for getting
cloud data and send to server and the second position flag is to ask the client to send telemetry data. First,
the client waits on ReadMessage() until the server sends it a message. Once it receives a message, it calls
ParseJSONMessage (also a common function) to parse the message and to populate the flags.

Before moving to the next part, one thing is important to be understood regarding the server vs client vs cloud
communication. The server has full control of when it wants to push and to get data. That means that when a
command or property is received from the cloud, it is not propagated immediately to server. It is propagated only
when the server asks for reading the updates. In addition, it is also important to understand that the cloud only
has the power of stopping the charge, while the device is responsible for starting it. Therefore, the cloud sets
chg_stop, while the server cleans chg_stop.

Because of this architecture, there is a risk that the cloud issues a command to set chg_stop to '1' and the
client socket receives a server message setting it to '0' before the server reads the updates. In this case,
we cannot have the cloud command propagated in this specific scenario and the consistency cannot be
guaranteed.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
49 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

So, if it is for pushing data to cloud, first UpdateChargeStatus() parses the message and checks the value
of chg_stop from the server payload. If chg_stop is '0', it first checks if the previous state of chg_stop is
'1' to update the variable that is sent as chg_stop to the server when it requests a read. Otherwise, if the
previous state is '0' and the variable that is sent as chg_stop to the server is '1', it means that the server
still did not issue a read message and it is not updated yet. The whole logic is not implemented only on
UpdateChargeStatus(), it is also partially implemented on the method callback.

After this trick part, FilterTelemetry() is used to filter the package that comes from the server and to select
only what needs to be sent.

If it is the first connection, then the following telemetry data is sent:

• EVSE ID, FW version, lon, lat, alt, EVSE limit, battery level, and charging status

From the second connection on:

• Vehicle ID, vehicle auth, battery capacity, current, power, voltage, temperature, charge rate, time remaining
and charge cost, battery level, and charging status.

Then FilterTelemetry() returns a string in JSON format that is used to create a
message by IoTHubMessage_CreateFromString(). Finally, the message is sent
using IoTHubDeviceClient_SendEventAsync(), which is an async function in which
send_confirm_callback() is registered to confirm the transfer event. Then, the telemetry message is
deallocated and the push flag is cleaned.

The next and last part of the main loop consists of sending data to the server.

First, SerializeCloudData() is called to create a JSON format string storing:

• The three properties: Grid power limit, tariff cost, and tariff rate.
• The chg_stop value, which is the value changed by the remote command.
• The client identity, so the server knows who is sending the message.

Then, the message is sent using the common function SendMessage().

void UpdateCycle(int serv_fd, EndPoint_t clientType)
{
 char messageBuffer[CLOUD_MESSAGE_BUFFER_SIZE];
 int flags[] = {0, 0}; // first - read flag, second - modify flag
 int retCode;
 IOTHUB_MESSAGE_HANDLE message_handle;

 while (1)
 {
 // clear messageBuffer before read
 memset(messageBuffer, 0, sizeof(messageBuffer));

 // read the message from server
 retCode = ReadMessage(serv_fd, messageBuffer, sizeof(messageBuffer),
 clientType);

 // if read failed, return from UpdateCyle
 if (retCode == -1)
 {
 return;
 }

 // Retrieve the flags value
 ParseJSONMessage(messageBuffer, flags, identity);

 if (flags[PUSH_DATA])

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
50 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

 {
 // Update charging status
 printf("[CLOUD] Send data to cloud\n");
 printf("[CLOUD] %s\n", messageBuffer);
 UpdateChargeStatus(messageBuffer);
 char *telemetry = FilterTelemetry(messageBuffer);
 printf("[CLOUD] %s\n", telemetry);
 message_handle = IoTHubMessage_CreateFromString(telemetry);
 IoTHubDeviceClient_SendEventAsync(device_handle, message_handle,
 send_confirm_callback, NULL);
 free(telemetry);
 flags[PUSH_DATA] = 0;
 }

 if (flags[GET_DATA])
 {

 char *message = SerializeCloudData();
 retCode = SendMessage(serv_fd, message, strlen(message),
 clientType);
 free(message);
 if (retCode == -1)
 {

 return;
 }
 flags[GET_DATA] = 0;
 }
 }
}

8.3 EasyEVSE dashboard
The following are the menu options in the EasyEVSE dashboard. For details on how to operate the EVSE
dashboard, see the user guide.

• Manage device tab: This tab is used to update the following options:
– Grid Power Limit
– Tariff Cost
– Tariff Rate

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
51 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 39. Manage Device
• Command tab: This tab is used to send the Terminate Charge Cycle command.

Note: If a board is connected, the terminate command also sets the meter board to State A.

Figure 40. Terminate charge cycle
• 1.EVSE Info tab: This tab is used to open the main dashboard view.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
52 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 41. EVSE Info
• 2.AC Charging tab: Shows AC charging session details such as vehicle, protocol, cost, and energy.

Figure 42. AC Charging
• 3.DC Charging tab: Shows DC charging details.

Note: EasyEVSE v2.0 does not implement DC charging.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
53 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 43. DC Charging

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
54 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

9 GUI

A simple GUI is implemented to read data from cloud, SEVENSTAX, meter, and NFC through the ROS2 library.
Figure 44 shows all the user menus of the EasyEVSE GUI. The GUI is developed using the Qt6 framework and
Qt creator as IDE.

Note: The goal of this chapter is to describe only the information presented by the GUI. Therefore, the chapter
does not focus on the designing of the GUI from scratch.

aaa-055994

Read NFC card UID

Monitor metrology

Simulate car battery

Monitor EVSE status

EVSE main menu

Figure 44. GUI menus

9.1 GUI design overview
The application was developed starting with generating a new Qt widget application. The mainwindow.ui is
the UI file containing the implementation of the graphical elements. The main window is a QWidget object. To
create multiple pages, one for each screen, a QStackedWidget is used.

9.2 Project structure
The files in the GUI demo are as below:

• mainwindow.ui: The UI file in XML format that is used to create the window-based application layout and
functionalities.

• mainwindow.cpp: The file containing the main window class with the logic of the application and all the
events.

• mainwindow.h: The header file of the application.
• guiNode.cpp: New file similar to the default main.cpp file in the Qt project with functions of ROS2 to

communicate with general/cloud/stack/meter/nfc modules through publisher/subscription.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
55 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

In addition, other files are further added:

• images: The directory where all the images used in the application are stored.
• resource.qrc: An XML-based file format that lists files used in the application. For details regarding the

resource system mechanism, see https://doc.qt.io/qt-6/resources.html.

Note: Because the released EasyEVSE GUI demo is not a standard Qt project with *.pro file, the user can
develop their GUI in the Qt creator and then port to a proper path of the EasyEVSE GUI demo.

9.3 Functionalities
The demo application is based on a publisher-subscription communication over ROS2. This chapter focuses
on the content and operation of the GUI client side. It also presents the logic of the application, how the
communication is initiated, and other functionalities such as data exchange and data manipulation.

9.4 Data sending
First, the guiNode.cpp creates. It initializes the data structure and all the data that are published through the
publisher for other nodes reading.

interfaces::msg::CloudData cloud_data;
publisher_ = this->create_publisher<interfaces::msg::GuiData>("gui_data", 10);
void init_gui_data()
{
gui_data.user_stop_req = false;
cloud_data.grid_pwr_lim = 32.0;
cloud_data.tariff_cost = 0.0;
cloud_data.tariff_rate = 0.0;
cloud_data.grid_stop_req = false;
general_data.fw_vers = "0";
general_data.lat = 0.0;
general_data.lon = 0.0;
general_data.alt = 0.0;
general_data.temperature = 40;
general_data.evse_id = "0";
general_data.evse_rating = 0;
stack_data.evcc_id = "0";
stack_data.vehicle_auth = "fail";
stack_data.energy_requested = 0;
stack_data.chg_rate = 0;
stack_data.chg_cost = 0;
stack_data.chg_elapsed_time = "00H:00M:00S";
stack_data.chg_remaining_time = "N/A";
stack_data.chg_state = "A";
stack_data.energy_delivered = 0.0;
stack_data.protocol = "none";
stack_data.charging = false;
meter_data.current = 1.1;
meter_data.voltage = 2.2;
meter_data.power = 3.3;
nfc_data.nfc_id = "0";
}
publisher_->publish(gui_data);

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
56 / 92

https://doc.qt.io/qt-6/resources.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

9.5 Data reading
Assuming all the related nodes are already created, the GUI node continuously updates data from the other
nodes.

interfaces::msg::GeneralData general_data;
interfaces::msg::MeterData meter_data;
interfaces::msg::NfcData nfc_data;
interfaces::msg::StackData stack_data;
cloud_data_subscription_ = this-
>create_subscription<interfaces::msg::CloudData>(
"cloud_data", 10, std::bind(&GUINode::cloud_data_callback, this, _1));
general_data_subscription_ = this-
>create_subscription<interfaces::msg::GeneralData>(
"general_data", 10, std::bind(&GUINode::general_data_callback, this, _1));
stack_data_subscription_ = this-
>create_subscription<interfaces::msg::StackData>(
"stack_data", 10, std::bind(&GUINode::stack_data_callback, this, _1));
meter_data_subscription_ = this-
>create_subscription<interfaces::msg::MeterData>(
"meter_data", 10, std::bind(&GUINode::meter_data_callback, this, _1));
nfc_data_subscription_ = this->create_subscription<interfaces::msg::NfcData>(
"nfc_data", 10, std::bind(&GUINode::nfc_data_callback, this, _1));

Above subscriptions are the interfaces that are used by the GUI demo. If new data is published, the callback
function is called and the guiNode reads the messages and update them into both the data structure and the
GUI itself.

9.6 Logging
To debug with logs, call the below function with the proper format. Take printing NFC ID as an example:

RCLCPP_INFO(this->get_logger(), "NFC ID: '%s'", msg->nfc_id.c_str());

9.7 Transition between pages
For this application, a stack of five widgets was used, each of them representing a page in the application. The
main page is displayed when the application starts and it contains four buttons, one for each of the following
menus: NFC menu, EVSE menu, Vehicle Settings menu, and Meter menu. The user can push one of them and
the associated page is displayed. From the selected menu, the user can return to the main menu by pushing the
arrow from the upper right-hand corner. Table 8 describes the map.

Icons Page names

Car EVSE Status

Lightning Meter Menu

Battery Vehicle Settings

Certificate NFC Card

Table 8. The map between icons and page names

For example, from the EasyEVSE Menu, the user can select Lightning Button and that displays the Meter Menu.
To return, the user can select the Back arrow button and the Main Menu is displayed.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
57 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

To create this flow, when pushing a button, the clicked() signal is emitted and the expected widget becomes
visible. Below is an example to show how pushing the back button makes the main menu visible (index 0 is
associated with the Main Menu).

void MainWindow::on_button_back_1_clicked()
{
ui->stackedWidget->setCurrentIndex(0);
}

9.8 GUI design
The GUI is designed in the Qt creator but need to port the necessary code files to nxp-easyevse-mpu/src/
easyevse/src/gui directory. All the files except guiNode.cpp are copied from the Qt creator project.
Also, guiNode.cpp shares some code with main.cpp of the Qt creator project in the main functions.

9.9 Main menu page
This section describes how the main menu is made and the purpose of it.

The main menu is displayed when the application starts. It contains four buttons with intuitive images. By
selecting one button at a time, the user can access the other menus.

Figure 45. Main menu with the four buttons

To select the menu, in the Qt creator open the mainwindow.ui and the Qt designer displays the proper page.

Figure 46. Qt designer widget description

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
58 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

9.10 NFC Card page
This section describes how the NFC Card page is made and the purpose of it.

This page displays the NFC ID in the designated field once an NFC card is read.

Figure 47. NFC Card page

The NFC node sends the data through the publisher and then the GUI node updates data through the
subscription. Finally, the card ID in the GUI is set as below (see file src/gui/guiNode.cpp):

w->ui->lineEdit_Card_UID->setText(QString("%2").arg(msg->nfc_id.c_str()));

Each time another NFC card is used, the field instantly display the new ID.

9.11 EVSE Status page
This section describes how the EVSE Status page is made and the purpose of it.

Using this page, the user can find details related to the EV charge state, the ID of the EVSE, time, charging
cost, temperature, and so on. All the information is received from the multiple subscriptions, then parsed and
displayed.

Figure 48. EVSE Status page

Component name Source node Comment

Charge_State SEVENSTAX stack_data.charging

EVSE_ID BUSINESS_LOGIC general_data.evse_id = "NXP@EASYEVSE";

Power_Rate BUSINESS_LOGIC general_data.evse_rating = MAX_EVSE_CURRENT;

Grid_Limit CLOUD cloud_data.grid_pwr_lim = reported_properties->grid_
pwr_lim;

Auth_State SEVENSTAX stack_data.vehicle_auth

Temperature BUSINESS_LOGIC general_data.temperature

Table 9. Data Source of EVSE Status

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
59 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Component name Source node Comment

Charge_Cost SEVENSTAX + CLOUD stack_data.chg_cost = stack_data.energy_delivered *
cloud_data.tariff_cost;

Charge_Current SEVENSTAX stack_data.chg_rate

Time2Charge SEVENSTAX stack_data.chg_remaining_time

Elapsed_Time SEVENSTAX stack_data.chg_elapsed_time

Table 9. Data Source of EVSE Status...continued

9.12 Vehicle Settings page
This section describes how the Vehicle Settings page is made and the purpose of it.

In this page, the user can find the following elements: Vehicle ID, Requested/Delivered Energy with unit kWh,
and Protocol (Base or ISO15118). All the data are aligned with SEVENSTAX and the protocol implies the
changes from basic charging to high-level charging.

Figure 49. Vehicle Settings page

Component name Source node Comment

Vehicle_ID SEVENSTAX stack_data. evcc_id

Requested_Energy SEVENSTAX stack_data.energy_requested/1000.0

Delivered_Energy SEVENSTAX stack_data.energy_delivered/1000.0

Protocol SEVENSTAX stack_data.protocol

Table 10. Data source of Vehicle Settings

9.13 Meter Menu page
This section describes how the Meter Menu is made and the purpose of it.

The Meter Menu page shows the information about voltage, current, and power. All the data are aligned with
SEVENSTAX and meter with the UART bridge. The meaning of the charging mode is aligned with ISO15118
and mode C means charging normally.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
60 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 50. Meter Menu page

Component name Source node Comment

Mode SEVENSTAX stack_data.chg_state

KW SEVENSTAX meter_data.power /1000.0

VARh SEVENSTAX 0

I RMS SEVENSTAX meter_data.voltage

V RMS SEVENSTAX meter_data.current

Reactive SEVENSTAX 0

Active SEVENSTAX meter_data.power /1000.0

Apparent SEVENSTAX meter_data.power /1000.0

Table 11. Data source of Meter Menu

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
61 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

10 Near-field communications (NFC)

This chapter describes the addition and implementation of the NXP public NFC reader library to the host
controller. The library is software, written in the C language, as is integrated into the host controller project to
manage the PN7160 NFC multiprotocol reader.

NFC enables an EVSE user or local operator to authenticate with a single tap using a card, key fob, cell phone,
and so on. In this EasyEVSE platform, the Unique ID (UID) from an NFC device such as a MIFARE product-
based card is read and displayed locally (serial terminal and GUI) and in the cloud (the Azure IoT Central
application).

Even though your NFC IC is provisioned with a UID number, this number cannot be the basis of authentication.
For example, an attacker could supplant a device of yours using its UID.

Note: In a real application, the UID is not considered secure and we must rely on encrypted and authenticated
data stored on the card or key fob.

The host controller configures the NFC PN7160 reader in a discovery loop mode. When performing discovery,
the reader scans for any NFC devices. If a device is discovered (detected on the field of the reader antenna),
the reader triggers an interrupt to the host controller. Then the host controller requests the basic card
information including the UID. This communication is done in plaintext.

The EasyEVSE platform simply reads card information as a demonstration of the NFC functionality. Therefore,
the NFC authentication and data encryption and any specific development is out of the scope of this document.
For details on how to implement NFC features, contact your local Field Applications Engineer (FAE).

10.1 PN7160 plug and play NFC controller
The PN7160 is an NFC plug and play controller with integrated firmware and NFC controller interface (NCI).
The NCI provides users a logical interface, which can be used with different physical transports, such as SPI
and I2C.

For more technical details about the chip, see NFC Plug and Play Controller with Integrated Firmware and NCI
Interface.

10.2 NXP NFC kernel driver
The nxpnfc kernel driver is used to communicate with the PN7160 NFC controller. The driver offers
communication to the NFC controller connected over either I2C or SPI physical interface. In our case, the SPI
interface is used.

When loaded to the kernel, this driver exposes the interface to the NFC controller through the device node
named /dev/nxpnfc.

In the final image, the NFC driver is added and integrated into the Linux kernel through patches located in the
meta-nxp-easyevse/recipes-kernel/linux/files directory. These patches are added to the linux-
imx recipe.

These patches automatically port the PN7160 library in Linux, according to PN7160 Linux porting guide
(document AN13287).

The following steps are performed:

• Replacing the existing NFC drivers implementations from the kernel directory drivers/nfc with the cloned
nxpnfc repository.

• Including the driver to the kernel and making it loaded during device boot by adding into the device tree
imx93-11x11-evk-evse.dts the appropriate configuration.

&lpspi6 {
UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
62 / 92

https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-plug-and-play-controller-with-integrated-firmware-and-nci-interface:PN7160
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-readers/nfc-plug-and-play-controller-with-integrated-firmware-and-nci-interface:PN7160
https://github.com/NXPNFCLinux/nxpnfc
https://www.nxp.com/docs/en/application-note/AN13287.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

...
status = "okay";

nxpnfc@0 {
compatible = "nxp,nxpnfc";
reg = <0>;
nxp,nxpnfc-irq = <&gpio2 22 GPIO_ACTIVE_HIGH>;
nxp,nxpnfc-ven = <&gpio2 23 GPIO_ACTIVE_HIGH>;
nxp,nxpnfc-fw-dwnld = <&gpio2 24 GPIO_ACTIVE_HIGH>;
spi-max-frequency = <7000000>;
};
};

• Including the targeted driver (I2C and SPI version) to the build, as built-in.

do_copy_defconfig:append () {
echo "CONFIG_NXP_NFC_I2C=y" >> ${B}/.config
echo "CONFIG_NXP_NFC_SPI=y" >> ${B}/.config
echo "CONFIG_NXP_NFC_RECOVERY=y" >> ${B}/.config
}

10.3 PN71xx NFC library
The NFC Linux libnfc-nci stack is implemented for NCI-based NXP NFC controllers (PN71xx) and consists
in a library running in the user space. It is available in the following repository: https://github.com/NXPNFCLinux/
linux_libnfc-nci

The vertical structure of the NXP NFC library is classified into the following layers described in Figure 51.

Figure 51. NXP NFC library

The following list explains Figure 51:

• conf: Contains files that allow configuring the library at runtime. There are defining tags, which impact library
behavior.

• demo: Here can be found the main function of the application.
• firmware: Firmware library for PN7160

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
63 / 92

https://github.com/NXPNFCLinux/linux_libnfc-nci
https://github.com/NXPNFCLinux/linux_libnfc-nci
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

• src: API implementation

The NFC library is added to the image using the libnfceasyevse.bb recipe, located in the meta-nxp-
easyevse/recipes-nxp-easyevse/libnfceasyevse directory. The library is fetched from the GitHub
repository, placed under the tmp/work/ armv8a-poky-linux/libnfceasyevse directory, then compiled
and deployed to the target’s rootfs.

10.4 NFC library operation theory
The following section describes the principles of the NFC library’s functionality. Figure 52 covers the main steps
for initializing the NFC library and how it works in polling loop mode.

aaa-055995

Start

Initialize NFC
reader

Enter
polling mode

Read type,
technology, UID

and UID size

Card
detect

Figure 52. NFC library

To initialize the NFC library, follow the steps below:

1. Create mutexes and threads for NFC library.
2. Initialize data parameter structures.
3. Initialize the protocol abstraction layer.
4. PN7160 enters the polling loop and waits for a card detection.
5. On-card detection determines a single or multi card in the field.
6. Select each card individually.
7. Now, perform the following:

• Identify card type
• Identify card technology
• Identify the UID of the card
• Identify size of UID

10.5 Application executing
Every time a card is presented in the PN7160 antenna field, the chip raises an IRQ on every card detect.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
64 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 53. Signal capture of NFC communication interface activity upon reading an NFC card

This signals an SPI transfer from the host controller to determine if a valid card has been detected.

10.6 NFC client implementation
Similar to the other client applications, the NFC one is divided into two parts: the ROS and the peripheral
processing side.

The ROS part (nfcNode.cpp) starts first and establishes the communication mechanism with the other clients
through the framework, after which it starts the peripheral part as a thread.

The peripheral part of the NFC client application (nfc_api.c) implements the basic discovery loop behavior,
similar to how the NFC library demo does it. This reads the UID of the NFC card whenever it is presented and
transmits that to the ROS client.

The data published by the NFC client can be found in the NfcNode.msg file:

string nfc_id

the nfc_id contains the UID of the last scanned NFC device.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
65 / 92

https://github.com/NXPNFCLinux/linux_libnfc-nci/blob/NCI2.0_PN7160/demoapp/main.c
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

11 Meter

This chapter introduces the basic electrical meter principles using the NXP Kinetis KM3x MCUs and meter
libraries. Also, the section describes the implementation of the EasyEVSE meter block. For detailed information
on how to develop a meter application, see the metering application notes and design reference guides listed in
Reference documentation.

11.1 Introduction
The goal of a digital electric meter is to mathematically compute billing information with high accuracy. A
digital electric meter must calculate the charge for consuming power from the electrical grid; and non-billing
information for grid balancing and further analysis.

The computation of meter quantities requires periodic sample of instantaneous current and voltage (denoted as
i(t) and u(t), respectively) from circuits that condition the mains AC or electrical grid.

The mains AC can be arranged as three-phase four-wire, two-phase two-wire, or single- phase one-wire
topologies. Figure 54 shows a diagram of an electric meter computing billing and non-billing quantities from a
three-phase mains AC.

aaa-055996

Signal
conditioning

Meter
f(x)

Billing and
non-billing
quantities

208 V

120 V

120 V

240 V240 V

240 V
Phase 2

Phase 1

Neutral

Phase 3

Figure 54. Example of a meter with three phases four wire AC

An EVSE requires a high-accuracy meter interface to measure the power delivered to the vehicle. For example,
if high accuracy is not achieved, it represents substantial amounts of lost revenue or an overcharge to the
customer.

The NXP Kinetis KM metrology MCUs are a specialized solution that fits high-accuracy EVSE metering
requirements. This MCU series is based on the Arm Cortex-M0+ and integrates a powerful and dedicated AFE
to achieve high-resolution sampling. It also features a specialized MMAU support for 32-bit and 64-bit math,
enabling fast execution of metering algorithms.

Table 12 outlines some general electric meter quantities and highlights, which are commonly referred as billing
quantities.

Quantity Unit/symbol Description Billing

Active energy Wh Measured in the unit of watt hours (Wh). Represents the electrical
energy produced, flowing or supplied by an electric circuit during a
time interval.

✓

Reactive energy Varh Measured in the unit of volt-ampere-reactive hours (VARh). ✓

Active power Wh/P Measured in watts (W). Expressed as the product of the voltage and
the in-phase component of the alternating current.

✓

Reactive power VAR/Q Expressed in volt-amperes-reactive (VAR) is the product of the
voltage and current and the sine of the phase angle between them.

✓

Apparent power VA/S Measured in the units of volt-amperes (VA). The total power in an
AC circuit (both absorbed and dissipated) is referred to as the total
apparent power (S).

Table 12. General electric meter quantities

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
66 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Quantity Unit/symbol Description Billing

RMS voltage URMS Measurement of the magnitude of the alternating voltage.

RMS current IRMS Measurement of the magnitude of the alternating current.

Table 12. General electric meter quantities...continued

The computation of meter quantities can be done either in the time or in the frequency domain. For the time
domain, there is a filter-based algorithm and conversely a Fast Fourier Transform (FFT) algorithm for the
frequency domain.

aaa-055997

FFT lib
or filter lib

IRMS

URMS

S

Q

P

kVARh

kWh

Current {i(t)}

Voltage {u(t)}

Figure 55. Implementation of FFT or filter library

NXP provides libraries for both algorithms. Both share the requirement of instantaneous voltage and current
samples to be provided at constant sampling intervals, to calculate billing and non-billing quantities. However,
the libraries are different.

If you want harmonic information, use the FFT library.

• Only the FFT library supports harmonic information.

The FFT library requires the signal frequency, so the FFT needs more hardware resources.

• FFT needs one CMP module and at least one timer channel.
• Use these resources to measure the signal frequency.
• Filter library does not use the frequency information. FFT uses more RAM resources.
• FFT uses a double buffer. One is used for calculation, and the other for saving sampled values. Therefore,

FFT uses more RAM.

Figure 56 shows an example representation of a single-phase meter.

aaa-055998

Voltage
divider

SAR
ADC

FFT or
filter meter
algorithm

PGA SD
ADC

Voltage dynamic range

Single phase Single
conditioning circuits

Non-billing
information

KM3x AFE Billing informationKM3x meter library

Fixed sample rate

80 V to 280 V

Current dynamic range
50 mA to 120 A

Shunt
resistor

*Shunt resistor, current
transformer
or Rogowski coil

Instantaneous
voltage samples

Instantaneous
current samples

RMS voltage
RMS current

(URMS)

(kWh)
(kVARh)
(P)
(Q)
(S)

(IRMS)

Active energy
Reactive energy
Active power
Reactive power
Apparent power

Process
samples

Figure 56. Single phase meter simplified example

11.2 Application meter vs simulated meter
This section lists some significant differences between a real application meter and the simulated meter,
implemented in the EasyEVSE demo platform.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
67 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

The EasyEVSE meter with the TWR-KM3x board is a simulated meter. The meter constantly samples a rotary
potentiometer to calculate meter quantities and performs additional tasks as described in Section 11.3. A real
application meter also performs the same or similar computations. However, the difference between both is that
a real meter is capable to be connected to the AC mains using dedicated AC conditioning circuits.

Warning: The TWR-KM3x board is not designed to support direct connection with the AC mains. Therefore,
attempting to connect with AC mains could result in a personal safety hazard or damage to the board. To
develop a real meter, see the standalone electricity meter reference designs, which are designed to connect
directly to mains.

From a software perspective, both application and simulated meters share the implementation of metering
libraries and several functionalities such as LCD driving. Therefore, the simulated meter, using the TWR-KM3x
is a good point to start your application meter.

11.2.1 Topology

The topology of a meter is designed on the number of AC mains phases. For measuring the current of a single
phase, there is one sigma-delta (SD) ADC channel plus another one for the neutral line. Therefore, a three-
phase AC mains requires four SD channels to measure AC current. Furthermore, this topology implements all
the available SD ADC channels on the KM3x family (up to four). To measure the phase and neutral voltage, the
SAR ADC channels can be used with ease because v(t) has a low dynamic range. Typically, the range is from
80 V to 280 V.

A three-phase meter implemented on a Kinetis-M device is based on the signals dynamic range analysis. The
metering current signal is typically from 50 mA to 120 A. A precise and linear ADC with a wide dynamic range,
typically 24-bit, must digitize the current.

Therefore, SD ADC is the ideal solution to solve current dynamic range requirements. The voltage dynamic
range is approximately 60 times smaller than the current dynamic range. The use of a hi-resolution SAR ADC
can solve the voltage requirements.

Even though the EasyEVSE meter is not connected to the AC mains, you can say that it implements a single-
phase topology, with no measure of the neutral line. It only samples a rotary potentiometer, which is wired to an
SAR ADC channel of the KM3x MCU.

The filter-based library implemented only calculates meter quantities for a single-phase current and voltage.
However, no SD ADC channels are implemented. Also, the neutral line calculations are not performed. For your
application, you must consider the number of phases required. Both filter based and FFT meter libraries support
1, 2 or 3 phases. See Reference documentation and choose the appropriate design reference manual.

11.2.2 Analog circuits

For demonstration, the instantaneous current or i(t) delivered to the EV is acquired from a single SAR ADC
channel. This channel samples the voltage at the rotary potentiometer of the TWR-KM3x board. Then, the
sampled voltage generates input variables for the filter-based metering library, and therefore obtain meter
quantities.

aaa-055999

J21
HDR 1X2 TH

C29
0.1 μF

R21
5 kΩ

V_BRD

PTF1/ADC0_SE8 (4)
Default: 1-2
(use potentiometer)

12
2 POT_5K

Potentiometer

1

3

Figure 57. EasyEVSE sampling potentiometer voltage

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
68 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

However, for a real application, see the analog circuits in the design reference manual.

11.2.3 Meter library configuration

The meter project is based on the TWR-KM3xZ75 MCUXpresso SDK example: meterlib1ph_test. The
project implements the filter-based metering library. The coefficients of the library must be tuned according to
the specific application. The project simply uses the default coefficients.

Figure 58. Meter project filter-based library with default parameters

To adapt the library for your application, see Section 4.2 "Configuration tool" in Filter-Based Algorithm for
Metering Applications (document: AN4265).

11.2.4 UART isolation board

When communicating with other ICs, application meters implement an isolation barrier. For this evaluation
platform, no isolation layer is implemented. Also, if power is applied to the IO of the i.MX 93, it could fail to start.
This issue can occur with the KM3x and i.MX 93 UART communication line. To include UART isolation between
KM3x and i.MX 93 in a real application, see the ADM3251E evaluation board from Analog Devices.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
69 / 92

https://www.nxp.com/docs/en/application-note/AN4265.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 59. UART isolation board

Product page: EVAL-ADM3251E

User guide: UG-124

11.3 Meter project
The meter project implements the filter-based metrology library to convert the voltage read from the TWR-KM3x
board-rotary potentiometer into the electrical meter quantities related to the charge of the EV. It reports the data
onto the board LCD and establishes a serial communication channel with the EVSE-SIG-BRD.

aaa-056000

KM3x meter library

UART interface

TWR-KM35Z75 LCD

Rotary
potentiometer
(instantaneous

simulated current)

U - RMS voltage
I - RMS current
P - active power
Q - reactive power
S - apparent power
F - frequency

Figure 60. Meter project

The meter project performs three main tasks:

• Run meter: To calculate meter quantities.
• Display data on LCD: Presenting instantaneous current and charging state information.
• Communication with EVSE-SIG-BRD: Replying to meter data request commands.

Figure 61 shows four general flowcharts corresponding to each task that the meter project performs. Each task
is described in the following subsections.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
70 / 92

https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-ADM3251E.html#eb-overview
https://www.analog.com/media/en/technical-documentation/user-guides/UG-124.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056001

Communication with
host controller

Init peripherals
Sample potentiometer
and calculate variables

to process

Run meter library

Store meter
variables

Reply to command
with meter variables

New host
command
received?

Run main
function

Run meter Display data on LCD

Run SysTick
timer handler

Run low power
timer handler

Time overflow?

Refresh data
display on LCD

Time overflow?

No

Yes

Yes

Yes

Figure 61. Meter tasks

The meter project runs on TWR-KM3x devices. It is implemented on bare-metal, uses a filter-based metering
library and it is based on the meterlibFFT1ph_test MCUXpresso SDK example.

Note: This project is intended to serve you as a demonstration application, giving the basics to develop your
own meter application.

11.3.1 Run meter

This section describes the basic operation of the meter software.

11.3.1.1 SysTick timer handler

The SysTick timer handler routine is triggered every 10 ms to perform the following actions:

• Sample the rotary potentiometer. The sampling is done by pulling the conversion-complete flag of the SAR
ADC channel and then reading the conversion result value.

• Convert the 16-bit ADC result to be part of the input variables of the meter library.
• Trigger a new ADC conversion by software.
• Run the meter library to obtain the meter quantities.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
71 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 62. SysTick handler

11.3.1.2 Potentiometer sample

The TWR-KM3x board-rotary potentiometer R21 is used to simulate the instantaneous current being drawn from
the vehicle:

• Clock-wise adjustment increases the current up to a maximum of 32 Amps.
• Counter clockwise reduces the simulated current down to 0 Amps.

To represent the maximum current input of 32 Amps, the voltage sampled from the potentiometer is acquired by
the tmp16 uint16_t variable. This variable is used in the calculations of:

• Instantaneous current displayed on the TWR-KM3x LCD.
• RMS voltage.
• Simulated current waveform.

11.3.1.3 Processing variables with the meter library

In the Run_MeterLib() function, current and voltage sine wave forms are simulated using the potentiometer
value and other variables and parameters.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
72 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 63. Meter library implementation

The meter quantities are then stored in global variables, ready to be sent to the host controller data request. For
details on the use of the filter-based library, see the Filter-Based Algorithm for Metering Applications (document:
AN4265).

Finally, the meter library calculates the meter quantities and stores them in global variables.

11.3.2 Communication with the host controller

The EVSE-SIG-BRD and the meter board have a UART communication channel running at 115200 baud. The
host controller sends a command to request meter data or to change the current charging state. Figure 64
shows a snapshot of the function Process_HostCommand(), which continuously polls for commands.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
73 / 92

https://www.nxp.com/docs/en/application-note/AN4265.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 64. Function Process_HostCommand()

For example, if the host controller sends a '0' char, the meter responds by sending I_RMS, U_RMS, and P and
the current charging state, represented by numbers. Figure 65 shows an example of the physical link of the host
and meter boards.

aaa-056208
HDR_2X13 HDR_1X4

Meter KM35

MCU_VDD

EVSE-SIG-BRD

M_UART_TXD
M_UART_RXD

Meter_RX

Meter_RX

Meter_GND

J25

J46

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18 1

2
3
4

19 20
21 22
23 24
25 26

Figure 65. Link of the host and meter boards

11.3.3 Displaying data on LCD

The TWR-KM3x uses an S-Tek GDH-1247WP display to represent instantaneous current, controlled by the
potentiometer.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
74 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Note: The meter project does not display any meter quantity calculated by the meter library.

Figure 66. Meter LCD

The LCD data is refreshed under a periodic rate of the KM3x low-power timer.

Figure 67. Function LPTMR0_IRQHandler()

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
75 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

12 Appendix

This appendix describes the pin tables, meter, and LCD information.

12.1 TWR-KM3x pin table
The meter project pin table is in the *.mex file. You can open the pin mux table using the Pins Config Tool.

To open the pin mux table, perform the following steps:

1. Select the project.
2. Click the config tools icon.
3. Select Open Pins.

Figure 68. Open Pins tool
4. You can see the pins mux table in the Pins tool.

Figure 69. Pins table
5. To export the pin table in a separate output file, follow the steps in the "Exporting the Pins table" section in

the MCUXpresso Config Tools User's Guide (IDE) (document MCUXIDECTUG).

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
76 / 92

https://www.nxp.com/doc/MCUXIDECTUG
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

12.2 Meter LCD information
The following subsections describe the specific meter board LCD screen visual components and schematic.

12.2.1 LCD layout

Figure 70 graphically shows the layout of the meter LCD screen and a matrix of the pins enabing each
individual element.

COM1

aaa-056004

PIN
P7

1
P5

COM2 14D 12D
COM3 14E 12E
COM4 14C 12C
COM5 14G 12G
COM6 14F 12F
COM7 14B 12B
COM8 14A 12A

3
P6
13D
13E
13C
13G
13F
13B
13A

2
P4
11D
11E
11C
11G
11F
11B
11A

4
S18
10D
10E
10C
10G
10F
10B
10A

5
15D
15E
15C
15G
15F
15B
15A
S17

6
S40
S7
S12
S13
S11
S10
S14
S19

7
S3
S4
S8
S5
S9
S6
S1
S20

8
S28
S25
S24
S16
S23
S22
S21
S38

9
S26
1A
1F
1B
1G
1E
1C
1D

10
S27
2A
2F
2B
2G
2E
2C
2D

11
S39
3A
3F
3B
3G
3E
3C
3D

12
S36
4A
4F
4B
4G
4E
4C
4D

13
L1
5A
5F
5B
5G
5E
5C
5D

14
L2
6A
6F
6B
6G
6E
6C
6D

15
L3
7A
7F
7B
7G
7E
7C
7C

16
S29
8A
8F
8B
8G
8E
8C
8D

17
S30
9A
9F
9B
9G
9E
9C
9D

18
S2
P3
S31
S32
S33
S34
P2
P1

19
S15
rms
T1
T2
T3
T4
S37
S35

20
COM1
\
\
\
\
\
\
\

21
\
COM2
\
\
\
\
\
\

22
\
\
COM3
\
\
\
\
\

23
\
\
\
COM4
\
\
\
\

24
\
\
\
\
COM5
\
\
\

25
\
\
\
\
\
COM6
\
\

26

15

A

F B

D

E C 0.
55

4.
70

G

A
S30S29

281

S38S1

S7

S3 S8 S6

S9

S11

S13 S14
15

10
S18

S19

S17

14

P4

S12
S40

S15

S10

S4 S5
BATT1

S20 S21
+Q
-Q

S22

S16

S23 S24

S28 S39
R8

COM F B

D

E
91

P1 P2

C

G

\
\
\
\
\
\
COM7
\

27
\
\
\
\
\
\
\
COM8

28

0.2
6

0.2
6

0.2
2

0.55
1.90
15

A

F B

D

E C 0.
35 3.

20

G

0.35
1.45

5°

0.85
2.80

0.
85

8.
00

1-9 10-14
P3

S37 S35 S32

S34 S33 S31

BATT2

P5 P6

S2

P7

S25 S26 S27 S36

Figure 70. LCD layout

ICON_L1 ICON_P7 ICON_S14 ICON_S28

ICON_L2 ICON_S1 ICON_S15 ICON_S29

ICON_L3 ICON_S2 ICON_S16 ICON_S30

ICON_T1 ICON_S3 ICON_S17 ICON_S31

ICON_T2 ICON_S4 ICON_S18 ICON_S32

ICON_T3 ICON_S5 ICON_S19 ICON_S33

ICON_T4 ICON_S6 ICON_S20 ICON_S34

ICON_RMS ICON_S7 ICON_S21 ICON_S35

ICON_P1 ICON_S8 ICON_S22 ICON_S36

ICON_P2 ICON_S9 ICON_S23 ICON_S37

ICON_P3 ICON_S10 ICON_S24 ICON_S38

ICON_P4 ICON_S11 ICON_S25 ICON_S39

ICON_P5 ICON_S12 ICON_S26 ICON_S40

ICON_P6 ICON_S13 ICON_S27

Table 13. List of specialized icons in the meter LCD screen

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
77 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056005

1
2

3

4

5
6

7

8
9

10
11

12
13

14

28
27

26

25

24
23

22

21
20

19
18

17
16

15

COM8
DS1

GDH-1247WP

COM7

COM6
COM5

COM4
COM3

COM2

COM1
S15/rms/T1/T2/T3/T4/S37/S35

S2/P3/S31/S32/S33/S34/P2/P1
S30/9A/9F/9B/9G/9E/9C/9D

S29/8A/8F/8B/8G/8E/8C/8D

L3/7A/7F/7B/7G/7E/7C/7D

L2/6A/6F/6B/6G/6E/6C/6D

LCD_P14
LCD_P20

LCD_P22
LCD_P56

LCD_P58
LCD_P13

LCD_P19

LCD_P57
LCD_P59

LCD_P44
LCD_P28

LCD_P26

LCD_P24

LCD_P45

LCD_P38
LCD_P36

LCD_P34
LCD_P32

LCD_P31
LCD_P29

LCD_P25

LCD_P23
LCD_P43

LCD_P37
LCD_P35

LCD_P33

LCD_P50

LCD_P30

{4}
{4}

{4}
{4}

{4}
{4}

{4}

{4}
{4}

{4}
{4}

{4}

{4}

{4}

{4}
{4}

{4}
{4}

{4}
{4}

{4}

{4}
{4}

{4}
{4}

{4}

{4}

{4}

P7/14D/14E/14C/14G/14F/14B/14A
P6/13D/13E/13C/13G/13F/13B/13A

P5/12D/12E/12C/12G/12F/12B/12A
P4/11D/11E/11C/11G/11F/11B/11A

S18/10D/10E/10C/10G/10F/10B/10A
15D/15E/15C/15G/15F/15B/15A/S17

S40/S7/S12/S13/S11/S10/S14/S19

S3/S4/S8/S5/S9/S6/S1/S20
S28/S25/S24/S16/S23/S22/S21/S38

S26/1A/1F/1B/1G/1E/1C/1D
S27/2A/2F/2B/2G/2E/2C/2D

S39/3A/3F/3B/3G/3E/3C/3D

S36/4A/4F/4B/4G/4E/4C/4D

L1/5A/5F/5B/5G/5E/5C/5D

Figure 71. LCD schematic

12.3 Device programming
The following subsections describe the tools and means for programming the flash storage of EasyEVSE
component boards.

12.3.1 UUU i.MX 93 programming

The build image could be flashed to the i.MX board using the UUU tool that can be downloaded from the
following link: https://github.com/nxp-imx/mfgtools/releases.

12.3.2 Using blhost flash tool

In the case that the MCU LPC55 firmware on the EVSE-SIG-BRD needs to be updated, the following ISP
method is provided, using blhost flash programming tool, which is part of the NXP Secure Provisioning SDK
(SPSDK).

The SPSDK can be installed by cloning the repository https://github.com/nxp-mcuxpresso/spsdk/tree/master or
by using the Python pip installer inside a Virtual Environment (venv):

C:\Users\nxabcdef>python3 -m venv venv
C:\Users\nxabcfdef>venv\Scripts\activate.bat
(venv) C:\Users\nxabcdef>pip install spsdk

The EVSE-SIG-BRD requires firmware versions 1.1.5 for EVSE and 1.1.1 for EV.

If the EVSE-SIG-BRD came as part of an EVSE kit, then the appropriate images must already be programmed.
Otherwise, you must perform the steps below to check and update the firmware as needed.

You can check the firmware version of an EVSE-SIG-BRD by connecting to it in two different ways:

• From your host computer through a Serial to USB adapter; then open a serial console to the appropriate serial
interface.

• From the UART console of the appropriate i.MX 93 board: In this situation, the EVSE-SIG-BRD is seen as
the serial device /dev/ttyLP2. Then open a serial console to device /dev/ttyLP2 from within the i.MX 93 serial
console.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
78 / 92

https://github.com/nxp-imx/mfgtools/releases
https://github.com/nxp-mcuxpresso/spsdk/tree/master
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Communication parameters with EVSE-SIG-BRD in either case are 115200 8N1.

You can check the EVSE-SIG-BRD firmware version with the command 'v':

Figure 72. EVSE console

Figure 73. EV console

To program a new firmware on the EVSE-SIG-BRD, perform the following steps:

1. Open Jumper J29 to enter ISP boot mode.
2. Connect host UART of EVSE-SIG-BRD (J44) to PC USB through a serial port to USB adapter. If you are

using an FTDI programmer, make sure it is a 3.3 V device (for example, TTL-232R-3V3-WE) and you
connect TXD to HOST_UART_RXD, RXD to HOST_UART_TXD, and one of the GND pins.

aaa-056006

TSM-120-01-F-DV-A

GND GND

J44

R769

DNP
0 Ω

R770

0 Ω
R779

0 Ω

R766

R767

0 Ω

0 Ω

0 Ω

R768

1 2 5 V3.3 V
5 V

GND

GND

GND

GND

MOSI
MISO
SCLK

GND

3.3 V
GND

GND

GND

3 4
5 6
7 8
9 10 HOST_UART_RXD

5V_ARD_EXP_CN3V3_ARD_EXP_CN

HOST_UART_TXD
HPGP_RESET

HOST_SPI_CS2

HOST_SPI_CS1

HOST_SPI_CS2

HOST_SPI_IRQ

HPGP_GP_IRQ

HOST_SPI_MOSI

HOST_SPI_MISO

HOST_SPI_CLK

11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

EXP CN
J29

Figure 74. EVSE-SIG-BRD pin connections necessary to program the LPC55 firmware
Note: Be sure that the active environment is active (venv).

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
79 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

3. Discover the serial COM port using the nxpdevscan program.

Figure 75. Using nxpdevscan to find the correct serial port
4. Erase the old firmware with the blhost command flash-erase-all.
5. Specify the firmware file from browse.
6. Flash the binary using the write-memory command to the flash address 0x00.

Figure 76. Expected output of the execution of the write-memory program
7. Close the J29 when the flash process is complete and reset the board.

12.3.3 Using MCUXpresso GUI flash tool

For demonstration purposes, the below figures show the i.MX RT106x programmed with the SE050 VCOM
binary. However, you can use this tool for other MCU targets.

1. Select the MCUXpresso project for the target to program.
2. Click the GUI Flash Tool icon.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
80 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 77. GUI Flash Tool icon
3. The IDE discovers the debugger.

Figure 78. Debugger discovered
4. Specify the File to program and click Run. In this example, it is a binary file.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
81 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 79. Program file to target
5. Verify the successful program operation.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
82 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Figure 80. Finished writing flash successfully
6. Make sure that the target has the proper settings to boot the application. For example, the i.MX RT106x

must be set to boot from internal flash memory.
For further details on the GUI Flash tool, see the MCUXpresso IDE - User Guide (document
MCUXPRESSO-UG).

12.4 EasyEVSE ROS clients data flow
Figure 81 shows the data flow between the EasyEVSE clients, with the publisher and subscribers presented in
a graphical way.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
83 / 92

https://www.nxp.com/doc/MCUXPRESSO-UG
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

aaa-056007

Charging elapsed time

Charging remaining time

Charging cost

Vehicle authentication

Energy requested

Charging rate

Protocol

Is charging

Energy delivered

Charger voltage

Charger current

Charger power

Meter

Charging state

Tariff rate

Charging stop

NFC_ID

Charging stop

GUI

NFC

Charging stop

Tariff cost

Grid power limit

Cloud

Tariff rate

Charging stop

Tariff cost

Grid power limit

Tariff rate

Tariff rate

Charging stop

EVCCID

Stack

Base

Figure 81. EasyEVSE data flow

12.5 References
• Kinetis-M Three-Phase Power Meter Reference Design (document: DRM147)
• Kinetis-M One-Phase Power Meter Reference Design (document: DRM143)
• Low-Power Real-Time Algorithm for Metering Applications (document: AN13259)
• Filter-based Algorithm for Metering Applications (document: AN4265)
• Application Hints For Using Freescale Metering Libraries in Three-Phase Power Meters (document: AN5007)
• J1772 SAE standard (https://www.sae.org/standards/content/j1772_201710/)
• NXP EV Charging Whitepaper (document EV-CHARGINGWP)
• Smart Appliance Solutions Training – Cloud Solutions (https://www.nxp.com/design/training/smart-appliance-

solutions-training-cloud-solutions:TIP-SMART-APPLIANCE-SOLUTIONS-CLOUD-SOLUTIONS)
• Azure RTOS ThreadX documentation (https://docs.microsoft.com/en-us/azure/rtos/threadx/)
• Azure IoT documentation (https://docs.microsoft.com/en-us/azure/iot-fundamentals/)
• MCUXpresso Config Tools User's Guide (IDE) (document MCUXIDECTUG)

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
84 / 92

https://www.nxp.com/docs/en/application-note/DRM147.pdf
https://www.nxp.com/docs/en/application-note/DRM143.pdf
https://www.nxp.com/docs/en/application-note/AN13259.pdf
https://www.nxp.com/docs/en/application-note/AN4265.pdf
https://www.nxp.com/docs/en/application-note/AN5007.pdf
https://www.sae.org/standards/content/j1772_201710/
https://www.nxp.com/doc/EV-CHARGINGWP
https://www.nxp.com/design/training/smart-appliance-solutions-training-cloud-solutions:TIP-SMART-APPLIANCE-SOLUTIONS-CLOUD-SOLUTIONS
https://www.nxp.com/design/training/smart-appliance-solutions-training-cloud-solutions:TIP-SMART-APPLIANCE-SOLUTIONS-CLOUD-SOLUTIONS
https://docs.microsoft.com/en-us/azure/rtos/threadx/
https://docs.microsoft.com/en-us/azure/iot-fundamentals/
https://www.nxp.com/doc/MCUXIDECTUG
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

12.5.1 Reference designs

• KM35Z512 based One-Phase Smart Power Meter Reference Design (document: AN12837)
• Kinetis-M One-Phase Power Meter Reference Design (document: DRM143)
• Kinetis-M Two-Phase Power Meter Reference Design (document: DRM149)
• Kinetis-M Three-Phase Power Meter Reference Design (document: DRM147)

12.5.2 Meter library

• Filter-Based Algorithm for Metering Applications (document: AN4265)
• FFT-Based Algorithm for Metering Applications (document: AN4255)
• Low-Power Real-Time Algorithm for Metering Applications (document: AN13259)

12.5.3 Calibration

See the documents listed in Section 12.5.1 and Section 12.5.2.

12.5.4 Total harmonic distortion (THD)

The FFT-based metering library is used to calculate THD for voltage and current signals.

• One-Phase Power Meter Reference Design (document: DRM163)
• Two-Phase Power Meter Reference Design (document: DRM149)
• FFT-based Metering Library for Metering Application (document: AN4255)

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
85 / 92

https://www.nxp.com/docs/en/application-note/AN12837.pdf
https://www.nxp.com/docs/en/application-note/DRM143.pdf
https://www.nxp.com/docs/en/application-note/DRM149.pdf
https://www.nxp.com/docs/en/application-note/DRM147.pdf
https://www.nxp.com/docs/en/application-note/AN4265.pdf
https://www.nxp.com/docs/en/application-note/AN4255.pdf
https://www.nxp.com/docs/en/application-note/AN13259.pdf
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nxp.com%2Fwebapp%2Fsps%2Fdownload%2FpreDownload.jsp%3Frender%3Dtrue&data=04%7C01%7Cnada.lakhal%40nxp.com%7Ce46a969dafd34a86537308d8a1adeb36%7C686ea1d3bc2b4c6fa92cd99c5c301635%7C0%7C0%7C637437115669512554%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=Iq4fv1cjUFQrUXQx68Ible%2B35%2FSjAURRkgbfGPsCnas%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nxp.com%2Fdocs%2Fen%2Fapplication-note%2FDRM149.pdf&data=04%7C01%7Cnada.lakhal%40nxp.com%7Ce46a969dafd34a86537308d8a1adeb36%7C686ea1d3bc2b4c6fa92cd99c5c301635%7C0%7C0%7C637437115669512554%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=568uuBCb36DJ7Yphw1x0CFd8lfWbWd8GOfcJAeBPEYM%3D&reserved=0
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nxp.com%2Fdocs%2Fen%2Fapplication-note%2FAN4255.pdf&data=04%7C01%7Cnada.lakhal%40nxp.com%7Ce46a969dafd34a86537308d8a1adeb36%7C686ea1d3bc2b4c6fa92cd99c5c301635%7C0%7C0%7C637437115669522549%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=YSc9y8A%2FbIecaZ76ImUHlhg0FzC%2F3U6ZYKfoqE4Zzm8%3D&reserved=0
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

13 Acronyms

Table 14 lists acronyms used in this document.

Acronyms Definition

ROS Robot operating system

V2G Vehicle to grid

EVSE Electric vehicle supply equipment

EIM External identification means

HLC High-level control

PLC Powerline communication

SLAC Signal level attenuation characterization

SDP SECC discovery protocol

BC Basic charging

HLC-C High-level communication control

ECDHE Elliptic curve diffie-hellman ephemeral

ECDSA Elliptic curve digital signature algorithm

CBC Cipher block chaining

GCM Galois/counter mode

AES Advanced encryption standard

CPO Charge point operator

PKI Public key infrastructure

SECC Supply equipment communication controller

TLS Transport layer security

ECDH Elliptic-curve diffie-hellman

TEE Trusted execution environment

DPS Device provisioning service

CS Command string

GUI Graphical user interface

AFE Analog front end

MMAU Memory mapped arithmetic unit

Table 14. Acronyms and definition

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
86 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

14 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
87 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

15 Revision history

Table 15 summarizes the revisions to this document.

Document ID Release date Description

UM12110 v.1.0 18 June 2024 Initial public release

Table 15. Revision history

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
88 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
89 / 92

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

EdgeLock — is a trademark of NXP B.V.
Freescale — is a trademark of NXP B.V.
i.MX — is a trademark of NXP B.V.
Kinetis — is a trademark of NXP B.V.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.
MIFARE — is a trademark of NXP B.V.

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
90 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

Contents
1 Introduction .. 2
2 Preparation ... 3
2.1 Get the required hardware 3
2.2 Get required software ..3
2.3 EasyEVSE development environment 4
2.3.1 EasyEVSE software ...4
2.3.2 MCUXpresso IDE and SDK4
2.3.3 Lumissil firmware binaries 4
2.3.4 SEVENSTAX stack library and application

source code ... 5
3 EasyEVSE ... 6
3.1 SAE J1772 ...7
3.1.1 Charge state machine 7
3.1.2 Control pilot ... 8
4 Host controller ... 9
4.1 EVSE software structure 9
4.2 ROS framework ... 10
4.3 ROS node example: Business logic client 10
5 ISO 15118 ..12
5.1 ISO 15118 overview .. 12
5.1.1 Example charging sequence 12
5.1.2 SEVENSTAX ..13
5.2 Basic charging to high-level communication

charging (HLC-C) ...14
5.2.1 EVSE process for BC to HLC-C 14
5.2.2 EV process for BC to HLC-C15
6 EVSE-SIG-BRD ... 17
6.1 Introduction .. 17
6.2 Functional description17
6.2.1 Proximity pilot .. 17
6.2.2 Control pilot ... 18
6.2.3 J1772 PWM ... 19
6.2.4 GFCI detection circuit20
6.2.5 Relay driver ... 21
6.2.6 UART bridge ..21
6.3 HomePlug Green PHY 23
6.3.1 SPI slave interface .. 24
6.3.2 MII PHY interface .. 24
6.3.3 Boot strapping CG5317 25
7 Security ...27
7.1 Credentials provisioning 29
7.1.1 EdgeLock 2Go provisioning29
7.1.2 Manual provisioning ...29
7.1.3 Verify credentials ... 30
7.1.4 Upload root CA to Azure IoT Central

application ..31
7.2 Transport layer security (TLS) 31
7.2.1 Hello phase ..32
7.2.2 Server key exchange phase33
7.2.3 Client key exchange phase 34
7.2.4 Secret key calculation phase35
7.3 Architecture Overview36
7.4 EV/EVSE TLS handshake 37
7.5 Cloud TLS connection 38
8 IoT and connectivity39
8.1 Connection setup ...39

8.1.1 Select enrollment and authentication-
attestation method ... 39

8.1.2 DPS onboarding .. 41
8.1.3 Connect state machine42
8.1.4 Connected state .. 43
8.2 Implementation details43
8.3 EasyEVSE dashboard 51
9 GUI ...55
9.1 GUI design overview 55
9.2 Project structure .. 55
9.3 Functionalities .. 56
9.4 Data sending ... 56
9.5 Data reading .. 57
9.6 Logging .. 57
9.7 Transition between pages57
9.8 GUI design ...58
9.9 Main menu page ..58
9.10 NFC Card page ... 59
9.11 EVSE Status page ...59
9.12 Vehicle Settings page60
9.13 Meter Menu page .. 60
10 Near-field communications (NFC) 62
10.1 PN7160 plug and play NFC controller 62
10.2 NXP NFC kernel driver62
10.3 PN71xx NFC library ...63
10.4 NFC library operation theory 64
10.5 Application executing64
10.6 NFC client implementation 65
11 Meter ... 66
11.1 Introduction .. 66
11.2 Application meter vs simulated meter67
11.2.1 Topology ...68
11.2.2 Analog circuits ... 68
11.2.3 Meter library configuration 69
11.2.4 UART isolation board 69
11.3 Meter project ..70
11.3.1 Run meter ..71
11.3.1.1 SysTick timer handler 71
11.3.1.2 Potentiometer sample72
11.3.1.3 Processing variables with the meter library72
11.3.2 Communication with the host controller 73
11.3.3 Displaying data on LCD74
12 Appendix ...76
12.1 TWR-KM3x pin table 76
12.2 Meter LCD information 77
12.2.1 LCD layout ...77
12.3 Device programming ..78
12.3.1 UUU i.MX 93 programming 78
12.3.2 Using blhost flash tool 78
12.3.3 Using MCUXpresso GUI flash tool 80
12.4 EasyEVSE ROS clients data flow83
12.5 References ...84
12.5.1 Reference designs ...85
12.5.2 Meter library ...85
12.5.3 Calibration ..85
12.5.4 Total harmonic distortion (THD)85

UM12110 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User manual Rev. 1.0 — 18 June 2024 Document feedback
91 / 92

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

NXP Semiconductors UM12110
NXP EasyEVSE EV Charging Station Linux User Manual

13 Acronyms ... 86
14 Note about the source code in the

document ..87
15 Revision history ...88

Legal information ...89

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 18 June 2024
Document identifier: UM12110

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK

	1 Introduction
	2 Preparation
	2.1 Get the required hardware
	2.2 Get required software
	2.3 EasyEVSE development environment
	2.3.1 EasyEVSE software
	2.3.2 MCUXpresso IDE and SDK
	2.3.3 Lumissil firmware binaries
	2.3.4 SEVENSTAX stack library and application source code

	3 EasyEVSE
	3.1 SAE J1772
	3.1.1 Charge state machine
	3.1.2 Control pilot

	4 Host controller
	4.1 EVSE software structure
	4.2 ROS framework
	4.3 ROS node example: Business logic client

	5 ISO 15118
	5.1 ISO 15118 overview
	5.1.1 Example charging sequence
	5.1.2 SEVENSTAX

	5.2 Basic charging to high-level communication charging (HLC-C)
	5.2.1 EVSE process for BC to HLC-C
	5.2.2 EV process for BC to HLC-C

	6 EVSE-SIG-BRD
	6.1 Introduction
	6.2 Functional description
	6.2.1 Proximity pilot
	6.2.2 Control pilot
	6.2.3 J1772 PWM
	6.2.4 GFCI detection circuit
	6.2.5 Relay driver
	6.2.6 UART bridge

	6.3 HomePlug Green PHY
	6.3.1 SPI slave interface
	6.3.2 MII PHY interface
	6.3.3 Boot strapping CG5317

	7 Security
	7.1 Credentials provisioning
	7.1.1 EdgeLock 2Go provisioning
	7.1.2 Manual provisioning
	7.1.3 Verify credentials
	7.1.4 Upload root CA to Azure IoT Central application

	7.2 Transport layer security (TLS)
	7.2.1 Hello phase
	7.2.2 Server key exchange phase
	7.2.3 Client key exchange phase
	7.2.4 Secret key calculation phase

	7.3 Architecture Overview
	7.4 EV/EVSE TLS handshake
	7.5 Cloud TLS connection

	8 IoT and connectivity
	8.1 Connection setup
	8.1.1 Select enrollment and authentication-attestation method
	8.1.2 DPS onboarding
	8.1.3 Connect state machine
	8.1.4 Connected state

	8.2 Implementation details
	8.3 EasyEVSE dashboard

	9 GUI
	9.1 GUI design overview
	9.2 Project structure
	9.3 Functionalities
	9.4 Data sending
	9.5 Data reading
	9.6 Logging
	9.7 Transition between pages
	9.8 GUI design
	9.9 Main menu page
	9.10 NFC Card page
	9.11 EVSE Status page
	9.12 Vehicle Settings page
	9.13 Meter Menu page

	10 Near-field communications (NFC)
	10.1 PN7160 plug and play NFC controller
	10.2 NXP NFC kernel driver
	10.3 PN71xx NFC library
	10.4 NFC library operation theory
	10.5 Application executing
	10.6 NFC client implementation

	11 Meter
	11.1 Introduction
	11.2 Application meter vs simulated meter
	11.2.1 Topology
	11.2.2 Analog circuits
	11.2.3 Meter library configuration
	11.2.4 UART isolation board

	11.3 Meter project
	11.3.1 Run meter
	11.3.1.1 SysTick timer handler
	11.3.1.2 Potentiometer sample
	11.3.1.3 Processing variables with the meter library

	11.3.2 Communication with the host controller
	11.3.3 Displaying data on LCD

	12 Appendix
	12.1 TWR-KM3x pin table
	12.2 Meter LCD information
	12.2.1 LCD layout

	12.3 Device programming
	12.3.1 UUU i.MX 93 programming
	12.3.2 Using blhost flash tool
	12.3.3 Using MCUXpresso GUI flash tool

	12.4 EasyEVSE ROS clients data flow
	12.5 References
	12.5.1 Reference designs
	12.5.2 Meter library
	12.5.3 Calibration
	12.5.4 Total harmonic distortion (THD)

	13 Acronyms
	14 Note about the source code in the document
	15 Revision history
	Legal information
	Contents

