UM11884 EVBMA777T2 user manual Rev. 2.0 — 14 February 2025

User manual

Document information

Information	Content
Keywords	MC33777A, EVBMA777T2
Abstract	This user manual targets the EVBMA777T2 board. The EVBMA777T2 is an evaluation board for the MC33777A (battery junction box IC).

EVBMA777T2 user manual

IMPORTANT NOTICE

For engineering development or evaluation purposes only

NXP provides this evaluation product under the following conditions:

Evaluation kits or reference designs are intended solely for technically qualified professionals, specifically for use in research and development environments to facilitate evaluation purposes. This evaluation kit or reference design is not a finished product, nor is it intended to be a part of a finished product. Any software or software tools provided with an evaluation product are subject to the applicable terms that accompany such software or software tool.

The evaluation kit or reference design is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This evaluation kit or reference design may be used with any development system or other source of I/O signals by connecting it to the host MCU or computer board via off-the-shelf cables. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality. This evaluation kit or reference design provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end device incorporating the evaluation product. Due to the open construction of the evaluation product, it is the responsibility of the user to take all appropriate precautions for electric discharge. To minimize risks associated with the customers' applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact NXP sales and technical support services.

1 Introduction

The user manual describes the EVBMA777T2. The evaluation board embeds one MC33777A battery junction box controller IC.

The NXP analog product development boards provide a platform for evaluating NXP products.

These development boards support a range of analog, mixed-signal, and power solutions. These boards incorporate monolithic ICs and system-in-package devices that use high-volume technology. NXP products offer reduced component counts, lower costs, and improved performance in powering state-of-the-art systems.

2 Getting ready

2.1 Kit contents

- EVBMA777T2 in an antistatic bag
- One electrical transport protocol link (ETPL) communication cable
- One power supply cable
- Four two-position connectors
- Two 12-position connectors

2.2 Extra hardware

- Mandatory 24 V and 100 mA power supply
- Optional voltage sources (to test the measurements)
- Optional power resistors (to test the pyrotechnic switch controller)
- Optional negative temperature coefficient (NTC) resistor (to test temperature measurement)

2.3 Configuring the hardware

This section describes the typical setup to configure EVBMA777T2 and evaluate the MC33777A current measurement feature.

EVBMA777T2 user manual

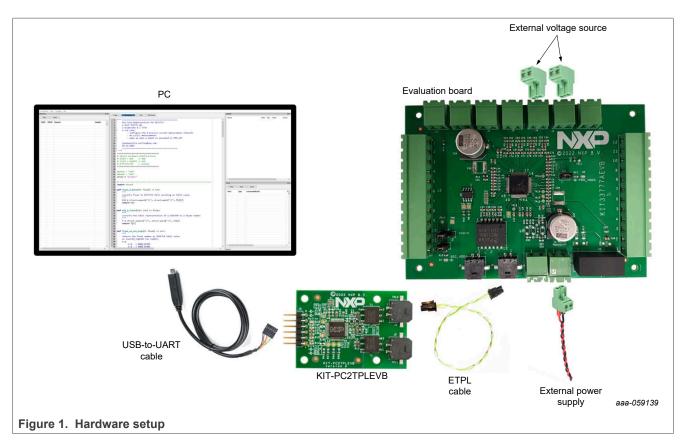


Table 1 lists the material required to set up the test.

Table 1. Bill of materials

Material	Comment
Personal computer	
KIT-PC2TPL communication board	
USB-to-universal asynchronous receiver/transmitter (UART) cable	included in the KIT-PC2TPL kit
EVBMA777T2 evaluation board	
ETPL cable	included in the EVBMA777T2 kit
Power supply cable	included in the EVBMA777T2 kit
Interface connectors	included in the EVBMA777T2 kit
External power supply	output voltage 24 V, output current 100 mA minimum
External voltage source (emulating the current measurement)	output voltage range is −300 mV to +300 mV

The USB-to-UART cable interfaces the KIT-PC2TPL (connector J5) communication board with the computer (USB port).

The ETPL cable links the KIT-PC2TPLEVB (connector J1) with the EVBMA777T2 evaluation board (connector J7 or J8).

<u>Table 2</u> describes the power supply connection using the power supply cable.

Table 2. External power supply connection			
External power supply output	Connection on the EVBMA777T2		
Positive output	J13.1		
Negative output	J13.2		

Table 2. External power supply connection

<u>Table 3</u> describes the connection of the external voltage source emulating the voltage drop across the shunt resistor.

 Table 3. External voltage source connection

External voltage source output	Connection on the EVBMA777T2	Singal on the EVBMA777T2	
Positive output	J3.1	PRM_ISENSEP	
	J4.1	SEC_ISENSEP	
Negative output	J3.2	PRM_ISENSEN	
	J4.2	SEC_ISENSEN	

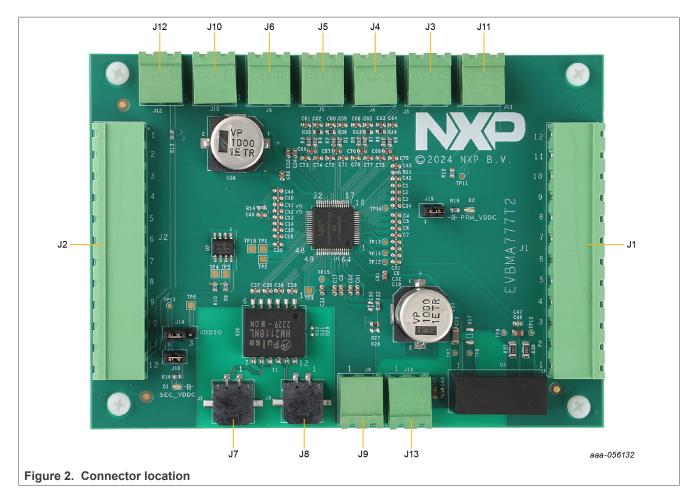
3 Getting to know the hardware

3.1 Board description

The EVBMA777T2 allows the user to exercise all the functions of the MC33777A battery junction box controller IC. Most pins of the MC33777A are accessible via a connector. The user can configure the IC to evaluate all use cases.

3.2 Board features

The main features of the EVBMA777T2 are:


- Isolated power supply
- ETPL communication
- LED indicator for supply voltages and operation modes
- Four current measurement inputs
- Two external temperature measurement channels
- All inputs and outputs of the MC33777A are accessible with connectors
- Energy reservoir capacitor for pyrotechnic switch control
- EEPROM connected to the MC33777A in I²C

3.3 Connectors

The EVBMA777T2 has multiple connectors for interfacing a power supply, a controller, or external instruments.

Figure 2 shows the location of the connectors.

EVBMA777T2 user manual

Table 4 lists the connectors.

Table 4. Connector description

Pin	Connection	Description		
Power supply (J13)				
J13.1	24V+	positive power supply terminal		
J13.2	24V-	power supply isolated ground		
ETPL communication	on (J7)			
J7.1	TPL1P	ETPL positive input/output from/to lower node		
J7.2	TPL1N	ETPL negative input/output from/to lower node		
ETPL communication	ETPL communication (J8)			
J8.1	TPL2P	ETPL positive input/output from/to upper node		
J8.2	TPL2N	ETPL negative input/output from/to upper node		
Primary ISENSE in	outs (J3)			
J3.1	PRM_ISENSEP	primary positive current measurement input		
J3.2	PRM_ISENSEN	primary negative current measurement input		

EVBMA777T2 user manual

Table 4. Connect	Table 4. Connector descriptioncontinued					
Pin	Connection	Description				
Secondary ISENS	E inputs (J4)					
J4.1	SEC_ISENSEP	secondary positive current measurement input				
J4.2	SEC_ISENSEN	secondary negative current measurement input				
Primary VISENSE	inputs (J5)					
J5.1	PRM_VISENSEP	primary positive current/voltage measurement input				
J5.2	PRM_VISENSEN	primary negative current/voltage measurement input				
Secondary VISEN	SE inputs (J6)					
J6.1	SEC_VISENSEP	secondary positive current/voltage measurement input				
J6.2	SEC_VISENSEN	secondary negative current/voltage measurement input				
Primary external te	emperature measurement (J11)					
J11.1	PRM_IO7	primary external NTC terminal				
J11.2	GND	primary external NTC terminal				
Secondary externa	al temperature measurement (J12)					
J12.1	SEC_IO7	secondary external NTC terminal				
J12.2	GND	secondary external NTC terminal				
Primary I/O and re	ference voltage (J1)					
J1.1	PRM_IO6	primary input/output 6				
J1.2	PRM_IO5	primary input/output 5				
J1.3	GND	ground				
J1.4	PRM_IO4	primary input/output 4				
J1.5	PRM_IO3	primary input/output 3				
J1.6	GND	ground				
J1.7	PRM_IO2	primary input/output 2				
J1.8	PRM_IO1	primary input/output 1				
J1.9	GND	ground				
J1.10	PRM_IO0	primary input/output 0				
J1.11	PRM_VREF2V5	primary 2.5 V reference				
J1.12	PRM_VREF5V0	primary 5 V reference				
Secondary I/O and	l reference voltage (J2)					
J2.1	SEC_IO6	secondary input/output 6				
J2.2	SEC_IO5	secondary input/output 5				
J2.3	GND	ground				
J2.4	SEC_IO4	secondary input/output 4				
J2.5	SEC_IO3	secondary input/output 3				
J2.6	GND	ground				
J2.7	SEC_IO2	secondary input/output 2				
L	•	·				

Table 4 Connector descriptio

UM11884 User manual

Pin	Connection Description		
J2.8	SEC_IO1	secondary input/output 1	
J2.9	GND	ground	
J2.10	SEC_IO0	secondary input/output 0	
J2.11	SEC_VREF2V5	secondary 2.5 V reference	
J2.12	SEC_VREF5V0	secondary 5 V reference	
Primary pyrotechnic switch controller (J9)			
J9.1	PRM_PSCHS	primary high side output of PSC	
J9.2	PRM_PSCLS	primary low side output of PSC	
Secondary pyrotechnic switch controller (J10)			
J10.1	SEC_PSCHS	secondary high side output of PSC	
J10.2	SEC_PSCLS	secondary low side output of PSC	

Table 4. Connector description...continued

Table 5 lists the reference of all connectors and their mating part number.

Table 5. Connector part number

Connector	Manufacturer	Part number	Mating connector
J1, J2	Phoenix	1754630	1757116
J7, J8	Molex	43650-0213	43645-0200
J3, J4, J5, J6, J9, J10, J11, J12, J13	Phoenix	1754436	1757019

3.4 Test points

The EVBMA777T2 offers multiple test points to access signals close to the MC33777A.

Figure 3 shows the location of the test points.

EVBMA777T2 user manual

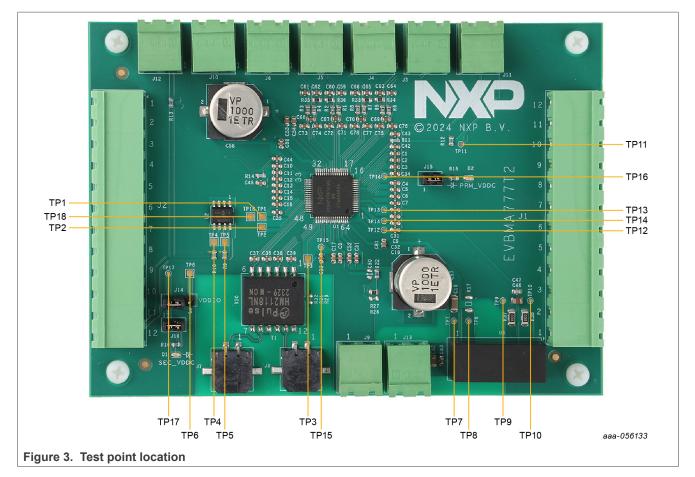


Table 6 lists the test points.

Table 6. Test point description

Test point	Signal	Description
TP1	GPIO0	
TP2	GPIO1	
TP3	GPIO4	
TP4	GPIO3_SDA	I ² C data line to the external EEPROM
TP5	GPIO2_SCL	I ² C clock line to the external EEPROM
TP6	-	VDDIO alternative voltage
TP7	24V-	power supply isolated ground
TP8	24V+	positive power supply terminal
TP9	VBAT	
TP10	GND	
TP11	PRM_VREF5V0	
TP12	SEC_VREF5V0	
TP13	PRM_VDDA	
TP14	SEC_VDDA	

EVBMA777T2 user manual

Test point	Signal	Description
TP15	VDDIO	
TP16	PRM_VDDC	
TP17	SEC_VDDC	
TP18	GND	

Table 6 Test point description continued

3.5 Jumpers

The EVBMA777T2 has jumpers to configure MC33777A signals.

Figure 4 shows the location of the jumpers.

Figure 4. Jumper location

J15 connects an LED to PRM VDDC of the MC33777A. The LED signals that the device is in active mode. Removing the jumper disables the feature.

J16 connects an LED to SEC_VDDC of the MC33777A. The LED signals that the device is in active mode. Removing the jumper disables the feature.

J14 connects by default VDDIO to SEC VDDC (jumper between pin 1 and pin 2). The user can power VDDIO with another voltage by moving the jumper (between pin 2 and pin 3) and by applying a voltage on TP6.

3.6 Power supply

The EVBMA777T2 integrates an isolated DC-DC converter (TMR 4-2415, from Traco). It generates an isolated supply voltage for the MC33777A (V_{BAT}). The user must connect a power supply to J13 with characteristics shown in Table 7.

Table	7.	Power	supply
-------	----	-------	--------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	TMR 4-2415 active	18	24	36	V
I _{CC}	supply current	TMR 4-2415 active; MC33777A fully operational	200	-	-	mA

3.7 Temperature measurement (IO7)

The EVBMA777T2 dedicates two IOs for temperature measurement with an external NTC resistor. The board includes the associated circuitry (antialiasing filter, voltage reference).

The user can connect an NTC resistor on J11 or J12 to measure a temperature on PRM_IO7 or SEC_IO7 of the MC33777A.

Table 8. Temperature measurement characteristic

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{NTC(ext)}	external NTC resistor	T _{amb} = 25 °C	-	10	-	kΩ
R _{div}	divider resistor	high-side voltage	-	10	-	kΩ

3.8 Current measurement (ISENSE, VISENSE)

The MC33777A offers four current measurement inputs (PRM ISENSE, SEC ISENSE, PRM VISENSE, and SEC_VISENSE).

Figure 5 describes the ISENSE/VISENSE input circuitry.

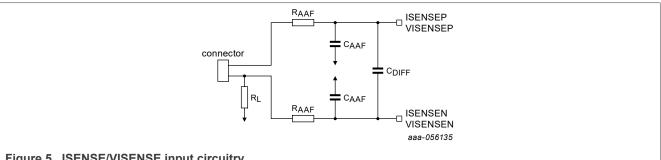


Figure 5. ISENSE/VISENSE input circuitry

The current measurement lines are linked to connectors (see Section 3.3) and embed the recommended filters for current measurement (C_{AAF}, R_{AAF}, and C_{DIFF}).

A 0 Ω resistor (R_I) links the negative measurement line to the ground. The user can remove this resistor, but must ensure that the common mode voltage meets the MC33777A specifications.

The user can connect the EVBMA777T2 to various instruments (voltage source, current source in series with a shunt resistor, and so forth).

3.9 Inputs/outputs (IO)

All primary and secondary IOs are accessible with connectors (see <u>Section 3.3</u>). As these pins have several functions (analog measurement, digital input, digital output, and so forth), there is no circuitry on the EVBMA777T2. It only embeds capacitors for electrostatic discharge (ESD) protection.

The user has to provide external circuitry depending on the use case to evaluate.

3.10 Pyrotechnic switch control (PSC)

The EVBMA777T2 embeds circuitry to test the pyrotechnic switch controller.

For each channel, a 1 mF capacitor acts as an energy reservoir (MAL215099614E3).

The resistor R22 (linked to PSC_CFG) configures the capacitor charge current. By default, R1 = 300 k Ω and the charge current equals 60 mA.

Each driver output (PRM_PSC and SEC_PSC) is linked to a connector (see <u>Section 3.3</u>). A real pyrotechnic switch or a power resistor can be connected to evaluate the feature.

3.11 Communication

The MC33777A provides two ETPL communication ports accessible on connectors (see Section 3.3).

The user can link any port to a controller or other NXP devices. A transformer isolates the EVBMA777T2 from other devices.

4 References

NXP Semiconductors provides online resources for this evaluation board and its supported devices on <u>http://www.nxp.com</u>.

The information page for the MC33777A is <u>http://nxp.com/mc33777</u>. This page provides overview information, documentation, software and tools, parametrics, ordering information and a getting started tab.

5 Revision history

Table 9. Revision history

Document ID	Release date	Description
UM11884 v.2.0	14 February 2025	 Update documentation with the latest board name; all information on the EVBMA8420T has been removed
UM11884 v.1.0	6 June 2024	Initial version

EVBMA777T2 user manual

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products - This evaluation product is intended solely for technically qualified professionals, specifically for use in research and development environments to facilitate evaluation purposes. It is not a finished product, nor is it intended to be a part of a finished product. Any software or software tools provided with an evaluation product are subject to the applicable license terms that accompany such software or software too This evaluation product is provided on an "as is" and "with all faults" basis for evaluation purposes only and is not to be used for product qualification or production. If you choose to use these evaluation products, you do so at your risk and hereby agree to release, defend and indemnify NXP (and all of its affiliates) for any claims or damages resulting from your use. NXP, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this evaluation product remains with user. In no event shall NXP, its affiliates or their suppliers be liable to user for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the evaluation product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages

Notwithstanding any damages that user might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP, its affiliates and their suppliers and user's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by user based on reasonable reliance up to the greater of the amount actually paid by user for the evaluation product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose and shall not apply in case of willful misconduct.

HTML publications — An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

EVBMA777T2 user manual

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.

Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products. $\ensuremath{\mathsf{NXP}}\xspace{\mathsf{B.V.}}$ — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

EVBMA777T2 user manual

Tables

4
.5
5
6
8

Tab. 6.	Test point description9
Tab. 7.	Power supply11
Tab. 8.	Temperature measurement characteristic 11
Tab. 9.	Revision history12

Figures

Fig. 1.	Hardware setup	4
Fig. 2.	Connector location	6
Fig. 3.	Test point location	9

Fig. 4.	Jumper location	
Fig. 5.	ISENSE/VISENSE input circuitry	11

EVBMA777T2 user manual

Contents

1	Introduction	3
2	Getting ready	3
2.1	Kit contents	3
2.2	Extra hardware	3
2.3	Configuring the hardware	3
3	Getting to know the hardware	5
3.1	Board description	5
3.2	Board features	5
3.3	Connectors	5
3.4	Test points	8
3.5	Jumpers	10
3.6	Power supply	11
3.7	Temperature measurement (IO7)	11
3.8	Current measurement (ISENSE, VISENSE)	11
3.9	Inputs/outputs (IO)	12
3.10	Pyrotechnic switch control (PSC)	12
3.11	Communication	12
4	References	12
5	Revision history	12
	Legal information	13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2025 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com

Document feedback Date of release: 14 February 2025 Document identifier: UM11884