

Document Number: ZRCAPUG
Rev. 1.2

2/2012

ZigBee Remote Control (ZRC)
Application Profile

User’s Guide

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008, 2009, 2010, 2011. All rights reserved.

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor iii

Contents
About This Book. v
Audience . v
Organization . v
Revision History . v
Conventions . v
Definitions, Acronyms, and Abbreviations . vi

Chapter 1
ZRC Application Profile Implementation Overview

1.1 Interfacing With the ZRC Command Tx/Rx and PBP sublayers . 1-2
1.2 Power Saving . 1-5

Chapter 2
Controller-side Push-button Pairing

2.1 Configuration . 2-1
2.1.1 The Push-button Pairing Process . 2-1

Chapter 3
Target-side Push-button Pairing

3.1 Configuration . 3-1
3.1.1 The Push-button Pairing Process . 3-1

Chapter 4
ZRC Command Transmit and Receive

4.1 Configuration . 4-1
4.1.1 Command Transmit . 4-1
4.1.2 Command Receive . 4-4
4.2 ZRC Attributes . 4-5

ZRC Application Profile User’s Guide, Rev. 1.2

iv Freescale Semiconductor

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor v

About This Book

This user's guide provides an overview of the Freescale Zigbee Remote Control (ZRC) Application Profile
implementation and describes how an overlying application can access the features it provides. This
document replaces the Freescale Consumer Electronics Remote Control Application Profile User’s Guide
(CERCAPUG).

Audience

This document is intended for software developers writing applications based on Freescale's BeeStack
Consumer stack intending to use the Freescale's ZRC application profile implementation to simplify the
application design.

Organization
This document contains the following chapters:

Chapter 1 ZRC Application Profile Implementation Overview — Describes the ZRC
application profile implementation and how an application can interface with it.

Chapter 2 Controller-side Push-button Pairing — Describes the controller side push-button
pairing procedure.

Chapter 3 Target-side Push-button Pairing — Describes the target-side push-button pairing
procedure.

Chapter 4 ZRC Command Transmit and Receive — Describes the command transmit and
receive procedures.

Revision History

The following table summarizes revisions to this manual since the previous release (Rev. 1.1).

Conventions

This document uses the following notational conventions:

• Courier monospaced type is used to identify commands, explicit command parameters, code
examples, expressions, data types, and directives.

• Italic type is used for emphasis, to identify new terms, and for replaceable command parameters.

Revision History

Date / Author Description / Location of Changes

Feb. 2012, Dev Team Minor changes for March software release.

ZRC Application Profile User’s Guide, Rev. 1.2

vi Freescale Semiconductor

Definitions, Acronyms, and Abbreviations

The following list defines the abbreviations used in this document.

API Application Programming Interface

NLDE Network Layer Data Entity

NLME Network Layer Management Entity

SAP Service Access Point

NWK Network Layer

gMaxPairTableEntries_c The size of the RF4CE pair table

PBP Push Button Pair

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 1-1

Chapter 1
ZRC Application Profile Implementation Overview

NOTE

This document refers only to HS08 platforms. For ARM platform legacy
refer to documents from \ Documentation \ BeeStack Consumer Documents
\ ARM Legacy Documents \.

To aid in the development of applications based on BeeStack Consumer, Freescale has developed an
implementation of the ZRC profile. The profile resides in the protocol stack between the BeeStack
Consumer layer and the application layer. The application can still access the network layer directly.

Figure 1-1. Freescale ZRC Profile Application Structure

The profile relies completely on the underlying network layer to perform its tasks. The profile layer uses
BeeStack Consumer API calls to pass data to the network layer and depends on indication and confirm
messages to receive data from the network layer. The NLDE and NLME SAPs must be configured to
redirect messages intended for the profile layer to the profile SAPs, so that these don’t erroneously reach
the application.. The next section describes an example of how to do this.

NOTE

The BeeStack Consumer network layer handles one request at a time,
whether it comes directly from the application or from the profile. Care
must be taken to ensure that the application and the profile never make
request so the network layer simultaneously.

ZRC Application Profile Implementation Overview

ZRC Application Profile User’s Guide, Rev. 1.2

1-2 Freescale Semiconductor

The ZRC profile implements the following functionality, available as separate libraries:

1. Controller-side push-button pairing.

2. Target-side push-button pairing.

3. ZRC command transmission and reception.

NOTE

The Push-Button Pair (PBP) functionality is implemented as a separate
framework and can be used as a stand alone layer by other profiles, such as
ZID Profile. In this way, the ZRC profile layer is seen as being formed from
two small sublayers: the ZRC Command Tx/Rx sublayer and the Push
Button Pair (PBP) sublayer. For more details refer to ZigBee Remote
Control Application Profile Reference Manual.

Note that this document describes the PBP procedures in conjunction with
the ZRC profile. The ZRC applications should include the Push-Button Pair
libraries and files implementing the desired functionality.

1.1 Interfacing With the ZRC Command Tx/Rx and PBP sublayers

The application communicates with the profile layer in the same manner as it communicates with the
network layer. There are API calls for the application to profile communication and indication/confirm
messages for the profile to application communication.

The ZRC Command Tx/Rx sublayer runs its own task. To send messages to the application, the ZRC
Command Tx/Rx sublayer calls a ZRC SAP handler. The ZRC SAP handler must be implemented by the
application. It is a callback function which has one parameter, a pointer to the incoming message. In our
demo application the profile ZRC SAP handler simply adds the message from the profile to the profile
messages queue and sends an event to the application main task:

void ZRCProfile_App_SapHandler(zrcProfileToAppMsg_t* zrcProfileToAppMsg)
{
 /* Put the incoming ZRC profile message in the applications input queue. */
 MSG_Queue(&mZRCProfileAppInputQueue, zrcProfileToAppMsg);
 TS_SendEvent(gAppTaskID, gAppEvtMsgFromZRCProfile_c);
}

The ZRC Command Tx/Rx sublayer sends messages to the application. These messages have the
following structure:

1.1.0.1 Message Structure

/* General structure of a message received by the application over ZRC Profile SAP */
typedef struct zrcProfileToAppMsg_tag
{
 zrcProfileToAppMsgType_t msgType;
 union {
 /*--*/

ZRC Application Profile Implementation Overview

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 1-3

 zrcProfileCommandInd_t zrcProfileCommandInd;
 zrcProfileCommandCnf_t zrcProfileCommandCnf;
 zrcProfileDiscoveryCmdCnf_t zrcProfileDiscoveryCmdCnf;
 } msgData;
}zrcProfileToAppMsg_t;

where zrcProfileToAppMsgType_t is typedef for:

typedef enum {
 gZRCProfileCommandInd_c = 0x10,
 gZRCProfileCommandCnf_c,
 gZRCProfileDiscoveryCmdCnf,
 /*---------------------------*/
 gZRCProfileMax_c
}zrcProfileToAppMsgType_t;

The application should determine the message type from the msgType field and use that information to
access the correct member of the msgData union.

To allow the ZRC profile to handle transmission and reception of ZRC commands it must receive the data
indication and data confirm messages the have a ZRC profile ID (0x01).

To intercept NLDE data indication and data confirm messages intended to the ZRC Command Tx/Rx
sublayer , the Freescale sample applications the SAP handler was updated as shown below :
void NWK_NLDE_SapHandler(nwkNldeToAppMsg_t* nwkNldeToAppMsg)
{
 /* Put the incoming NLDE message in the right queue. */
 if(((nwkNldeToAppMsg->msgType == gNwkNldeDataInd_c) &&
(nwkNldeToAppMsg->msgData.nwkNldeDataInd.profileId == gZRCProfileId_c)) ||
 ((nwkNldeToAppMsg->msgType == gNwkNldeDataCnf_c) &&
(nwkNldeToAppMsg->msgData.nwkNldeDataCnf.profileId == gZRCProfileId_c)))
 {
 /* NLDE message is for ZRC profile */
 ZRCProfile_HandleNwkNldeMsg(nwkNldeToAppMsg);
 }
 else
 {
 /* Put the incoming NLDE message in the applications input queue. */
 MSG_Queue(&mNldeAppInputQueue, nwkNldeToAppMsg);
 TS_SendEvent(gAppTaskID, gAppEvtMsgFromNlde_c);
 }
}

The modified NLDE SAP handler first checks whether the message has the ZRC profile ID and calls the
ZRC profile message handler if that is the case. Otherwise the message is added to the NLDE queue and
an event is sent to the application task. All data indication and data confirm messages that have the profile
ID set to 0x01 (ZRC profile) must be redirected to the ZRC Command Tx/Rx sublayer. The application
should abstain from issuing NLDE Data Requests with ZRC profile ID directly, as all NLDE Data Confirm
messages with a ZRC profile ID is redirected to the ZRC Command Tx/Rx sublayer .

In the same manner as the ZRC Command Tx/Rx sublayer, the PBP sublayer runs its own task. To send
messages to the application, the PBP sublayer calls a PBP SAP handler. The PBP SAP handler must be

ZRC Application Profile Implementation Overview

ZRC Application Profile User’s Guide, Rev. 1.2

1-4 Freescale Semiconductor

implemented by the application. This handler simply adds the incoming message from the PBP sublayer
to the PBP messages queue and sends an event to the application main task:
void PBP_APP_SapHandler(pushButtonToAppMsg_t* pbpToAppMsg)
{
 MSG_Queue(&mPushButtonAppInputQueue, pbpToAppMsg);
 TS_SendEvent(gAppTaskID, gAppEvtMsgFromPushButton_c);
}

The incoming messages structure and messages type are:
typedef struct pushButtonToAppMsg_tag
{
 pushButtonToAppMsgType_t msgType;
 union {
 /*--*/
 pushButtonPairOrigCnf_t pushButtonPairOrigCnf;
 pushButtonPairRecipCnf_t pushButtonPairRecipCnf;
 pushButtonPairOrigContinueInd_t pushButtonPairOrigContinueInd;
 pushButtonPairRecipContinueInd_t pushButtonPairRecipContinueInd;
 } msgData;
}pushButtonToAppMsg_t;

typedef enum {
 /*---------------------------*/
 gPushButtonPairOrigCnf_c = 0,
 gPushButtonPairRecipCnf_c,
 gPushButtonPairOrigContinueInd_c,
 gPushButtonPairRecipContinueInd_c
 /*---------------------------*/
}pushButtonToAppMsgType_t;

To allow the PBP sublayer to perform the push-button pairing process, it must have access to the NLME
indication and confirm messages (specifically discovery confirm/auto-discovery confirm, pair
confirm/pair indication and commStatus indication messages). The Freescale sample applications
accomplish this as shown in the following example.

void NWK_NLME_SapHandler(nwkNlmeToAppMsg_t* nwkNlmeToAppMsg)
{
 if(appStateMachine.state == gAppStatePushButtonPairing_c)
 {
 /* NLME message is for Push Button Pair */
 PBP_HandleNwkNlmeMsg(nwkNlmeToAppMsg);
 }
 else
 {
 /* Put the incoming NLME message in the applications input queue. */
 MSG_Queue(&mNlmeAppInputQueue, nwkNlmeToAppMsg);
 TS_SendEvent(gAppTaskID, gAppEvtMsgFromNlme_c);
 }
}

When doing push-button pairing the sample application’s state machine is in a special state called
gAppStatePushButtonPairing_c. Whenever the application is in that state, all NLME messages are
redirected to the PBP sublayer; otherwise they are put in the NLME message queue, as usual. Any

ZRC Application Profile Implementation Overview

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 1-5

application utilizing the PBP sublayer must ensure that NLME messages are forwarded to the PBP
sublayer during the push button pairing process.

To be able to benefit from the functionality of the PBP sublayer the application must first link to the
relevant library (a list of the profile libraries can be found in the Freescale ZRC reference manual) in
addition to the profile task framework library. Each functionality also has an initialization function which
must be called once at application startup. The best place to call the initialization function is in the main
application initialization function:

void App_Init(void)
{
...
 /* Init ZRC profile and PBP procedures */
PBP_InitPushButtonPairOrig();
ZRCProfile_InitCommandTxRx();
...
}

The sample application code above is using the originator push-button pairing functionality, allowing it to
conduct controller-side push-button pairing. It is also transmitting and receiving ZRC commands through
the ZRC Command Tx/Rx sublayer .

1.2 Power Saving

The application Idle task needs to now when the entire layer stack is idle to enter a low power state. To
check whether the ZRC Command Tx/Rx and PBP sublayers are idle the application can use the
ZRCProfile_IsIdle() and PBP_IsIdle() functions.

1.2.0.1 Prototypes

bool_t ZRCProfile_IsIdle(void);
bool_t PBP_IsIdle(void);

It returns FALSE if the layer is currently busy and TRUE otherwise.

The idle task should test the layers for idleness before entering low power. The Freescale sample
application’s idle task shows a correct way how to do this:

void IdleTask(event_t events)
{

 (void)events; /* remove compiler warning */

 /* There are some UART errors that are hard to clear in the UART */
 /* ISRs, and the UART driver does not have a task to clear them */
 /* in non-interrupt context. */
 Uart_ClearErrors();

if((NWK_IsIdle() == TRUE)
#if gZRCProfileCommandTxRx_d
 && (ZRCProfile_IsIdle())

ZRC Application Profile Implementation Overview

ZRC Application Profile User’s Guide, Rev. 1.2

1-6 Freescale Semiconductor

#endif
#if gPBPTask_d
 && (PBP_IsIdle())
#endif
)
 {
#if gNvStorageIncluded_d

 /* Process NV Storage save-on-idle and save-on-count requests. */
 NvIdle();

#endif /* gNvStorageIncluded_d */

#if gLpmIncluded_d
 HandleLowPower();
#endif /* gLpmIncluded_d *
}

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 2-1

Chapter 2
Controller-side Push-button Pairing
Controller-side push-button pairing is made easy with the PBP sublayer. Although it was designed for
controllers, this functionality can also be used on target nodes to pair two targets. A node using this feature
will start the discovery process followed by the pair request. The push-button pairing functionality can be
used to pair with any RF4CE ZRC compliant device.

2.1 Configuration

The initialization function for the controller-side push-button pairing functionality is
PBP_InitPushButtonPairOrig.

Aside from initialization no other configuration needs to be done. The application must only ensure that
the RF4CE_PushButtonTask and RF4CE_PushButtonOrig libraries are linked.

2.1.1 The Push-button Pairing Process

The application initiates the push-button pairing process by calling PBP_PushButtonPairOrigRequest.

2.1.1.1 Prototype

uint8_t PBP_PushButtonPairOrigRequest(
 uint16_t recipPanId,
 uint16_t recipShortAddress,
 uint8_t recipDeviceType,
 appCapabilities_t origAppCapabilities,
 uint8_t* origDeviceTypeList,
 uint8_t* origProfileIdList,
 uint8_t discProfileIdListSize,
 uint8_t* discProfileIdList,
 uint8_t keyExTransferCount,
 bool_t bRequestAppAcceptToPair,
 uint16_t timeToWaitAppAcceptToPair
)

The parameters are as follows:

• recipPanId – the recipient’s PAN Id, this is the destination PAN Id of the discovery request frame
(usually this is 0xFFFF unless the application knows the PAN Id of the device it intends to pair
with)

• recipShortAddress – the recipient’s short address, this is the destination address of the discovery
request frame (usually 0xFFFF)

• recipDeviceType – the required device type of the device it wants to pair with

• origAppCapabilities – the current node’s application capabilities

Controller-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

2-2 Freescale Semiconductor

• origDeviceTypeList – the list of device types the current node supports

• origProfileIdList – the list of profiles the current node supports

• discProfileIdListSize – the size of the discovery profile list

• discProfileIdList – the discovery profile list (the profiles the current node is looking for)

• keyExTransferCount – the number of frames that should be used for exchanging the security key
(this is required when both devices support security as a secured pairing link is established under
this condition).

• bRequestAppAcceptToPair - the application’s option to request whether or not to accept the
push-button pair procedure by pairing with the successfully discovered device

• timeToWaitAppAcceptToPair - time (in ms) the PBP sublayer waits for the application to respond
if it pairs with the successfully discovered device

If an error which can be reported immediately has been encountered, the function call return value contains
the error code. In this case, the process is aborted and no further confirmation messages will arrive.

A return value of gNWSuccess_c indicates that the push-button pairing process has begun.

When the discovery process is successfully completed, if the bRequestAppAcceptToPair parameter was
set to TRUE, the application is notified through a push-button pairing originator continue indication
message. This message has the same structure as the network discovery confirm node descriptor message:

typedef nodeDescriptor_t pushButtonPairOrigContinueInd_t;
typedef struct nodeDescriptor_tag
{
 uint8_t status;
 uint8_t recipChannel;
 uint8_t recipPanId[2];
 uint8_t recipMacAddress[8];
 uint8_t recipCapabilities;
 uint8_t recipVendorId[2];
 uint8_t recipVendorString[gSizeOfVendorString_c];
 appCapabilities_t recipAppCapabilities;
 uint8_t recipUserString[gSizeOfUserString_c];
 uint8_t recipDeviceTypeList[gMaxNrOfNodeDeviceTypes_c];
 uint8_t recipProfilesList[gMaxNrOfNodeProfiles_c];
 uint8_t requestLQI;
}nodeDescriptor_t;

It has the following fields:

• status – this field is always set to gNWSuccess_c.

• recipChannel – the logical channel of the discovered device

• recipPanId – the PAN identifier of the discovered device

• recipMacAddress – the IEEE address of the discovered device

• recipCapabilities – the capabilities of the discovered node

• recipVendorId – the vendor identifier of the discovered node

• recipVendorString – the vendor string of the discovered node

• recipAppCapabilities – the application capabilities of the discovered node

Controller-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 2-3

• recipUserString – the user defined identification string of the discovered node; this field is present
only if the user string specified sub-fields of the recipAppCapabilities is set to one

• recipDeviceTypeList – the list of device types supported by the discovered node

• recipProfilesList – the list of profile identifiers supported by the discovered node

• requestLQI - the LQI of the discovery request command frame reported by the discovered device

When the application receives the push-button pairing originator continue indication message, it must
respond by calling PBP_PushButtonPairOrigContinueResponse. If the application does not respond in
timeToWaitAppAcceptToPair ms from the moment it received the push-button pairing originator continue
indication message, the push-button pair process will complete with the gNWNoResponse_c status. The
PBP_PushButtonPairOrigContinueResponse function has the following prototype:
uint8_t PBP_PushButtonPairOrigContinueResponse(
 bool_t bContinue
);

The bContinue parameter shows the option of the application to accept or not the pair process from the
push-button pairing procedure on controller-side.

When the process is complete (whether successful or not) the application is notified through a push-button
pairing originator confirm message, which has the following structure:

typedef nwkNlmePairCnf_t pushButtonPairOrigCnf_t;
typedef struct nwkNlmePairCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t recipVendorId[2];
 uint8_t* recipVendorString;
 appCapabilities_t recipAppCapabilities;
 uint8_t* recipUserString;
 uint8_t* recipDeviceTypeList;
 uint8_t* recipProfilesList;
}nwkNlmePairCnf_t;

It has the following fields:

• status – the status of the push-button pairing process, which can be either gNWSuccess_c or it
describes the error. See the ZRC Applications Profile Reference Manual (ZRCAPRM) for a
detailed description of all status checks.

• deviceId – the pair table entry index of the new pairing link

• recipVendorId[2] – the recipient’s vendor Id

• recipAppCapabilities – the recipient’s application capabilities

• recipUserString – the recipient’s user string, actually a pointer to the user string stored the pair table

• recipDeviceTypeList – the list of device types the recipient supports

• recipProfilesList – the list of profiles the recipient supports

If the status field has any value other than gNWSuccess_c all the other fields should be ignored.

Controller-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

2-4 Freescale Semiconductor

While push-button pairing is in progress, the receiver is enabled (power saving is disabled) by calling
NLME_RxEnableRequest(0x00FFFFFF). The initial value of the activePeriod NIB is saved in an internal
variable and restored when push-button pairing is complete. The application should not change the state
of the receiver during this time period as pairing may fail. Additionally, the application should not change
the value of the parameters that are passed by pointer (the device type list, the profile list and the discovery
profile list) as the PBP sublayer will reference them throughout the push-button pairing process.

The Controller Node Demo application in the BeeStack Consumer codebase shows an example of how to
handle the push-button pairing process:

if((events & gAppEvtStateStart_c) && (appStateMachine.subState == gAppSubStateStart_c))
 {

 UartUtil_Print("\n\rPush Button Pairing... ", gAllowToBlock_d);

 /* Make a push button pairing request.*/
 status = PBP_PushButtonPairOrigRequest(
 gAppZRCDiscoverySearchedPanId_c,
 gAppZRCDiscoverySearchedShortAddress_c,
 gAppZRCDiscoverySearchedDeviceType_c,
 localAppCapabilities,
 localDeviceTypesList,
 localProfilesList,
 localAppCapabilities.nrSupportedProfiles,
 localProfilesList,
 gAppZRCKeyExTransferCount_c,
 gAppZRCRequestAppAcceptToPair_c,
 gAppZRCTimeToWaitAppAcceptToPair_c
);

 /* Exit the state if this is not successful, otherwise wait confirm */
 if(gNWSuccess_c == status)
 {
 appStateMachine.subState = gAppSubStateWaitCnf_c;
 }
 else
 {
 appStateMachine.subState = gAppSubStateEnd_c;
 }
 }

 switch(appStateMachine.subState)
 {
 case gAppSubStateWaitCnf_c:
 if((events & gAppEvtMsgFromPushButton_c) &&
 (pMsgIn != NULL))
 {
 /* This substate handles both the messages:
 - gPushButtonPairOrigCnf_c - informing the application that
 the push button pair process has completed
 - gPushButtonPairOrigContinueInd_c - asking for application's aproval
 to continue the push button pair procedure by pairing with the just discovered device */
 if(pPBPMsgIn->msgType == gPushButtonPairOrigCnf_c)
 {
 status = pPBPMsgIn->msgData.pushButtonPairOrigCnf.status;

Controller-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 2-5

 appStateMachine.subState = gAppSubStateEnd_c;
 }
 else if(pPBPMsgIn->msgType == gPushButtonPairOrigContinueInd_c)
 {
 /* The application can decide here whether it wants to continue the push button pair
 process or not, after consulting the information about the recipient provided by the
profile
 in the pushButtonPairOrigContinueInd_t message.
 This demo app always choose to continue with the pair process */
 (void)PBP_PushButtonPairOrigContinueResponse(TRUE);
 }
 }
 break;

 default:
 break;
 }

 if(appStateMachine.subState == gAppSubStateEnd_c)
 {

 /* Print the status */
 App_PrintResult(status);

 if(status == gNWSuccess_c)
 {
 pushButtonPairOrigCnf_t* pPBPOrigCnf = &pPBPMsgIn->msgData.pushButtonPairOrigCnf;

 UartUtil_Print("Successfully paired with device ", gAllowToBlock_d);
 UartUtil_Print(pPBPOrigCnf->recipUserString, gAllowToBlock_d);
 UartUtil_Print(".\n\r", gAllowToBlock_d);
}

 /* Send event to end the state */
 TS_SendEvent(gAppTaskID, gAppEvtStateEnd_c);
 }

The process begins when the user selects push-button pairing from the menu. The recipient’s device Id is
stored and the application enters push-button pairing state with a gAppEvtStateStart_c event. The
push-button pairing state has three sub-states: start, wait for confirm and end.

In the start sub-state (gAppSubStateStart_c) the push-button pairing process is initiated by calling
PBP_PushButtonPairOrigRequest. Depending on the return value we change to the next state. A
push-button pairing originator confirm message will only arrive if PBP_PushButtonPairOrigRequest
returns gNWSuccess_c, so we switch to sub-state gAppSubStateWaitCnf_c only in that case, otherwise we
switch directly to the end sub-state, which performs some cleanup.

Controller-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

2-6 Freescale Semiconductor

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 3-1

Chapter 3
Target-side Push-button Pairing
Target-side push-button pairing is made easy with the PBP sublayer. The functionality can only be used
on target nodes. A node using this feature will start the auto-discovery process followed by the waiting of
a pair request frame. The push-button pairing functionality can be used to pair with any RF4CE ZRC
compliant device.

3.1 Configuration

The initialization function for the target-side push-button pairing functionality is
PBP_InitPushButtonPairRecip.

Aside from initialization no other configuration needs to be done. The application must only ensure that
the RF4CE_PushButtonTask and RF4CE_PushButtonRecip libraries are linked.

3.1.1 The Push-button Pairing Process

The application initiates the push-button pairing process by calling PBP_PushButtonPairRecipRequest.

3.1.1.1 Prototype

uint8_t PBP_PushButtonPairRecipRequest(
 appCapabilities_t origAppCapabilities,
 uint8_t* origDeviceTypeList,
 uint8_t* origProfileIdList,
 uint8_t discLQIThreshold,
 bool_t bRequestAppAcceptToPair,
 uint16_t timeToWaitPairInd,
 uint16_t timeToWaitAppAcceptToPair
)

The parameters are as follows:

• origAppCapabilities – the current node’s application capabilities

• origDeviceTypeList – the list of device types the current node supports

• origProfileIdList – the list of profiles the current node supports

• discLQIThreshold – the discovery request link quality threshold that must be met by an incoming
discovery request frame

• bRequestAppAcceptToPair - the application’s option to be asked (or not) if it accepts to continue
the push-button pair process by pairing with the device who successfully discovered it and initiated
the pair request

• timeToWaitPairInd - time (in ms) the PBP sublayer will wait for a pair indication from the device
which successfully discovered the current node. If the value of the timeToWaitPairInd parameter

 Target-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

3-2 Freescale Semiconductor

is less than aplcMaxPairIndicationWaitTime (1000ms) this function sets the timeToWaitPairInd
parameter to aplcMaxPairIndicationWaitTime. The parameter offers the possibility to wait for the
Pair Indication longer than aplcMaxPairIndicationWaitTime (1000 ms).

• timeToWaitAppAcceptToPair - time (in ms) the PBP sublayer will wait the application to respond
if it accepts the pair process with the device which has sent the pair request

If an error which can be reported immediately has been encountered, the function call return value contains
the error code. In this case, the process is aborted and no further confirmation messages will arrive.

A return value of gNWSuccess_c indicates that the push-button pairing process has begun.

After the auto-discovery process is successfully ended, a pair request from the device which has
successfully discovered the current node is expected for timeToWaitPairInd ms. If the pair request is not
received in this amount of time, gNWNoResponse_c status is returned and the push-button pairing process
fails.

If a pair request is received from the same device that has successfully discovered the current node and if
the bRequestAppAcceptToPair parameter was set to TRUE, the application is notified through a
push-button pairing recipient continue indication message that a pair request has arrived. The message has
the following structure:

typedef nwkNlmePairInd_t pushButtonPairRecipContinueInd_t;
typedef struct nwkNlmePairInd_tag
{

uint8_t status;
uint8_t origPanId[2];
uint8_t origMacAddress[8];
uint8_t origCapabilities;
uint8_t origVendorId[2];
uint8_t* origVendorString;
appCapabilities_t origAppCapabilities;
uint8_t* origUserString;
uint8_t* origDeviceTypeList;
uint8_t* origProfilesList;
uint8_t keyExTransferCount;
uint8_t deviceId;

}nwkNlmePairInd_t;

It has the following fields:

• status – this field will always be set to gNWSuccess_c or gNWDuplicatePairing_c

• origPanId[2] – the pair’s originator PAN Id

• origMacAddress – the pair’s originator MAC address

• origCapabilities – the pair’s originator node capabilities

• origVendorId[2] – the pair’s originator vendor Id

• origVendorString – the pair’s originator vendor string

• origAppCapabilities – the pair’s originator application capabilities

• origUserString – the pair’s originator user string, actually a pointer to the user string stored the pair
table

 Target-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 3-3

• origDeviceTypeList – the list of device types the pair’s originator supports

• origProfilesList – the list of profiles the pair’s originator supports

• keyExTransferCount – The number of transfers to use for exchanging the encryption key

• deviceId – the pair table entry index of the new provisional pairing link

When the application receives push-button pairing recipient continue indication message, it must respond
by calling PBP_PushButtonPairRecipContinueResponse whether it wants to continue the push-button pair
procedure by accepting the pair or not. If the application does not respond in timeToWaitAppAcceptToPair
ms from the moment it received the push-button pairing recipient continue indication message, the
push-button pair process completes with the gNWNoResponse_c status. The
PBP_PushButtonPairRecipContinueResponse function has the following prototype:
uint8_t PBP_PushButtonPairRecipContinueResponse(
 bool_t bContinue
);

The bContinue parameter shows the option of the application to accept or not the pair request inside the
push-button pairing procedure on target-side.

When the process is complete (whether successful or not) the application is notified through a push-button
pairing recipient confirm message, which has the following structure (the PBP sublayer reuses the network
layer pair indication message, but alters the meaning of the fields):

typedef nwkNlmePairInd_t pushButtonPairRecipCnf_t;
typedef struct nwkNlmePairInd_tag
{

uint8_t status;
uint8_t origPanId[2];
uint8_t origMacAddress[8];
uint8_t origCapabilities;
uint8_t origVendorId[2];
uint8_t* origVendorString;
appCapabilities_t origAppCapabilities;
uint8_t* origUserString;
uint8_t* origDeviceTypeList;
uint8_t* origProfilesList;
uint8_t keyExTransferCount;
uint8_t deviceId;

}nwkNlmePairInd_t;

It has the following fields:

• status – the status of the push-button pairing process, which can be either gNWSuccess_c,
gNWDuplicatePairing_c or it describes the error (for a detailed description of all statuses check
the ZRC Reference Manual).

• origPanId[2] – the originator’s PAN Id

• origMacAddress – the originator’s MAC address

• origCapabilities – the originator’s node capabilities

• origVendorId[2] – the originator’s vendor Id

• origVendorString – the originator’s vendor string

 Target-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

3-4 Freescale Semiconductor

• origAppCapabilities – the originator’s application capabilities

• origUserString – the originator’s user string, actually a pointer to the user string stored the pair
table

• origDeviceTypeList – the list of device types the originator supports

• origProfilesList – the list of profiles the originator supports

• keyExTransferCount – The number of transfers to use for exchanging the encryption key

• deviceId – the pair table entry index of the new pairing link

If the status field has any value other than gNWSuccess_c or gNWDuplicatePairing_c, all the other fields
should be ignored.

While push-button pairing is in progress, the receiver is enabled (power saving is disabled) by calling
NLME_RxEnableRequest(0x00FFFFFF). The initial value of the activePeriod NIB is saved in an internal
variable and restored when push-button pairing is complete. The application should not change the state
of the receiver during this time period as pairing may fail. Additionally, the application should not change
the value of the parameters that are passed by pointer (the device type list and the profile list) as the PBP
sublayer will reference them throughout the push-button pairing process.

The Target Node Demo application provided with the BeeStack Consumer Codebase shows an example
of how to handle the push-button pairing process:

if((events & gAppEvtStateStart_c) && (appStateMachine.subState == gAppSubStateStart_c))
 {

 UartUtil_Print("\n\rPush Button Pairing... ", gAllowToBlock_d);

 /* Make a push button pairing request.*/
 status = PBP_PushButtonPairRecipRequest(
 localAppCapabilities,
 localDeviceTypesList,
 localProfilesList,
 gAppZRCDiscoveryLQIThreshold_c,
 gAppZRCRequestAppAcceptToPair_c,
 gAppZRCTimeToWaitPairInd_c,
 gAppZRCTimeToWaitAppAcceptToPair_c
);

 /* Exit the state if this is not successful, otherwise wait confirm */
 if(gNWSuccess_c == status)
 {
 appStateMachine.subState = gAppSubStateWaitCnf_c;
 }
 else
 {
 appStateMachine.subState = gAppSubStateEnd_c;
 }
 }

 switch(appStateMachine.subState)
 {
 case gAppSubStateWaitCnf_c:
 if((events & gAppEvtMsgFromPushButton_c) &&

 Target-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 3-5

 (pMsgIn != NULL))
 {
 /* This substate handles both the messages:
 - gPushButtonPairRecipCnf_c - informing the application that
 the push button pair process has completed
 - gPushButtonPairRecipContinueInd_c - asking for application's approval
 to continue the push button pair procedure by accepting the pair from the originator
device */
 if(pPBPMsgIn->msgType == gPushButtonPairRecipCnf_c)
 {
 status = pPBPMsgIn->msgData.pushButtonPairRecipCnf.status;
 appStateMachine.subState = gAppSubStateEnd_c;
 }
 else if(pPBPMsgIn->msgType == gPushButtonPairRecipContinueInd_c)
 {
 /* The application can decide here whether it wants to continue the push button pair
 process or not, after consulting the information about the originator provided by the
profile
 in the pushButtonPairRecipContinueInd_t message.
 This demo app always choose to continue with the pair process */
 (void)PBP_PushButtonPairRecipContinueResponse(TRUE);
 }
 }
 break;

 default:
 break;
 }

 if(appStateMachine.subState == gAppSubStateEnd_c)
 {

 /* Print the status */
 App_PrintResult(status);

 if(status == gNWSuccess_c)
 {
 pushButtonPairRecipCnf_t* pPBPRecipCnf = &pPBPMsgIn->msgData.pushButtonPairRecipCnf;
 UartUtil_Print("Successfully paired with device ", gAllowToBlock_d);
 UartUtil_Print(pPBPRecipCnf->origUserString, gAllowToBlock_d);
 UartUtil_Print(".\n\r", gAllowToBlock_d);
 NvSaveOnIdle(gNvDataSet_App_ID_c);
 }

 /* Send event to end the state */
 TS_SendEvent(gAppTaskID, gAppEvtStateEnd_c);
 }

The process begins when the user selects push-button pairing from the menu. The recipient’s device Id is
stored and the application enters push-button pairing state with a gAppEvtStateStart_c event. The
push-button pairing state has three sub-states: start, wait for confirm and end.

In the start sub-state (gAppSubStateStart_c) the push-button pairing process is initiated by calling
PBP_PushButtonPairRecipRequest. Depending on the return value we change to the next state. A push
button pairing confirm message will only arrive if PBP_PushButtonPairRecipRequest returns

 Target-side Push-button Pairing

ZRC Application Profile User’s Guide, Rev. 1.2

3-6 Freescale Semiconductor

gNWSuccess_c, so we switch to sub-state gAppSubStateWaitCnf_c only in that case, otherwise we switch
directly to the end sub-state, which performs general cleanup activities.

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 4-1

Chapter 4
ZRC Command Transmit and Receive
The command transmit and receive feature of the ZRC profile automatically constructs the NLDE payload
for ZRC commands relieving the application of this burden. It also parses a received NLDE data indication
with a ZRC profile ID and presents the individual ZRC command parameters to the application. A device
with the Freescale ZRC Profile implementation can exchange commands with any RF4CE ZRC compliant
devices.

4.1 Configuration

The initialization function for the ZRC command transmission and reception feature is
ZRCProfile_InitCommandTxRx. Aside from initialization no other configuration needs to be done. The
application must only ensure that the RF4CE_ZRCProfile_CommandTxRx library is linked.

4.1.1 Command Transmit

To transmit a ZRC command the application needs to call the ZRCProfile_CommandRequest function
with the necessary parameters. The ZRCProfile_CommandRequest prototype is as follows:

4.1.1.1 Prototype

uint8_t ZRCProfile_CommandRequest(
 uint8_t deviceId,
 uint8_t commandCode,
 uint8_t command,
 uint8_t* vendorId,
 uint8_t payloadLength,
 uint8_t* payload,
 uint8_t txOptions
);

The parameters are as follows:

• deviceId – the command recipient

• commandCode – the ZRC command code; will only be used if txOptions does not indicate vendor
specific data and can take the following values: gZRC_CmdCode_UserCtrlPressed_c,
gZRC_CmdCode_UserCtrlReleased_c, gZRC_CmdCode_DiscoveryRequest_c,
gZRC_CmdCode_UserCtrlPressedAndRepeat_c.

• command – the command Id; its meaning depends on the ZRC command code

• vendorId – the vendor Id to be placed in the RF4CE data frame; will only be used if txOptions
indicates vendor specific data

 ZRC Command Transmit and Receive

ZRC Application Profile User’s Guide, Rev. 1.2

4-2 Freescale Semiconductor

• payloadLength – the length of the command payload

• payload – the command payload; its meaning depends on the ZRC command code

• txOptions – the RF4CE NLDE Data service transmission options are passed to the network layer;
if data is vendor specific the vendorId is included in the data frame. A detailed description of the
RF4CE transmission options can be found in the ZigBee RF4CE specification.

If an error which can be reported immediately has been encountered, the function call return value contains
the error code. In this case, the process is aborted and no further confirmation messages will arrive.

A return value of gNWSuccess_c indicates that the command transmission process has begun. The ZRC
Command Tx/Rx sublayer constructs the NLDE data request payload from the provided parameters and
transmits it to the recipient through the network layer. If the txOptions parameter indicates a vendor
specific transmission the ZRC command code and ZRC command ID are ignored and the NLDE Data
Request payload consists entirely of the ZRC command payload. If the data is not vendor specific the
NLDE Data Request payload depends on the ZRC command code, according to the following table:

Table 4-1. NLDE Data Request Payload (Depending on the ZRC Command Code)

ZRC command code NLDE Data Request payload (in addition to the ZRC command code)

gZRC_CmdCode_UserCtrlPressed_c The command ID, interpreted as the RC command code + the ZRC
command payload. The ZRC profile sends over the air only the User
Control Pressed command frame.

gZRC_CmdCode_UserCtrlReleased_c The command ID; the rest of the parameters are ignored.
The command Id should match the command Id of a previous sent
gZRC_CmdCode_UserCtrlPressedAndRepeat_c request. If the command
Id is successfully matched, the ZRC profile sends over the air the User
Control Released command frame.

gZRC_CmdCode_ DiscoveryRequest_c All the parameters are ignored. The ZRC profile sends over the air the
discovery request command frame and waits the response.

gZRC_CmdCode_UserCtrlPressedAndRepeat_c The command ID, interpreted as the RC command code + the ZRC
command payload.
The profile sends the User Control Pressed command frame and starts to
repeat the RC command ID (sending a User Control Repeated command
frames) at an interval specified by the aplKeyRepeatInterval attribute
(gZrcAttr. keyRepeatInterval). Each transmission of the user control
repeated command frame is signaled to the application only if the
Freescale specific attribute receiveKeyRepeatCnf is set TRUE. Otherwise,
the profile repeats the RC command ID without notifying the application
layer.The RC command is repeated until the application sends a release
command (the commandCode parameter in the function should be set to
gZRC_CmdCode_UserCtrlReleased_c). The release command has to
specify the right RC command ID to end the repetitions. If the ZRC
command ID to be released is not valid, the profile will continue to repeat
the RC command ID.

 ZRC Command Transmit and Receive

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 4-3

NOTE

The ZRC profile can simultaneously process a maximum of two requests
(requests for sending vendor specific data and ZRC commands) at a time. If
more than two requests are sent at a time, the profile will only process the
first two requests and the rest will be denied.On receipt, the ZRC profile can
simultaneously handle the repetitions for a maximum of two RC commands
(e.g. two RC buttons are simultaneously held down).

When the transmission of the ZRC command Discovery Request (using gZRC_CmdCode_ DiscoveryRequest_c

command code) is completed (whether successful or not), the application is notified through a ZRC
Discovery Command Confirm message, which has the following structure:
typedef struct zrcProfileDiscoveryCmdCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t cmdSupportedBitMap[gCmdsSupportedFieldLength_c];
}zrcProfileDiscoveryCmdCnf_t;

It has the following fields:

status – how the transmission request was completed, this is the status from the NLDE data confirm
message

deviceId – identifies the command recipient.
cmdSupportedBitMap - the bitmap containing the supported commands of the remote note.

NOTE

Usually, the command Discovery Request is sent to the remote node when
the pairing process is successfully ended. On the remote node, the
application should keep the receiver open for a while, so that to receive the
Discovery Request command frame. When Discovery Request frame is
received, the remote node will respond by sending a Discovery Response
frame which contains the ZRC supported commands. The supported ZRC
commands are kept in gaZRCCmdSupportedBitMap bitmap which can be
configured from ZRCProfileCommands.h file.

When any other command transmission (except ZRC command Discovery Request) is completed, the
application is notified by the profile through a ZRC command Confirm message, which has the following
structure:

4.1.1.2 Message Structure

typedef struct zrcProfileCommandCnf_tag
{
 uint8_t status;
 uint8_t deviceId;
 uint8_t commandCode;
 uint8_t command;
}zrcProfileCommandCnf_t;

 ZRC Command Transmit and Receive

ZRC Application Profile User’s Guide, Rev. 1.2

4-4 Freescale Semiconductor

It has the following fields:

status – how the transmission request was completed, this is the status from the NLDE data confirm
message

deviceId – identifies the command recipient.

commandcode - the ZRC command code; will only be used if txOptions does not indicate vendor specific
data.

command - the command Id; its meaning depends on the ZRC command code

4.1.2 Command Receive

Whenever a NLDE data indication message with a ZRC profile ID arrives at the profile layer, a ZRC
Command Indication message is sent to the application. It has the following structure:

4.1.2.1 Message Structure

typedef struct zrcProfileCommandInd_tag
{
 uint8_t deviceId;
 uint8_t dataLength;
 uint8_t vendorId[2];
 uint8_t LQI;
 uint8_t rxFlags;
 uint8_t commandCode;
 uint8_t command;
 uint8_t* pData;
}zrcProfileCommandInd_t;

The fields have the following significance:

• deviceId – identifies the command originator

• dataLength – the length of the command payload

• vendorId – the originator’s vendor ID; should be ignored if the rxFlags parameter does not indicate
vendor specific data

• LQI – the link quality of the received data frame

• rxFlags – the NLDE Data Indication rxFlags, see the ZigBee RF4CE specification for details

• commandCode – the command action; should be ignored if the rxFlags parameter indicates vendor
specific data

• command – the command ID; its significance depends on the ZRC command code

• pData – the command payload; consists of the entire NLDE Data Indication payload if rxFlags
indicates vendor specific data; otherwise its significance depends on the ZRC command code.

If the data is vendor specific (i.e. the vendor specific data bit in the rxFlags field is set), the commandCode
and command fields should be ignored and the ZRC Command payload contains the full NLDE Data
Indication payload. If the data is not vendor specific, then the command and pData parameters have the

 ZRC Command Transmit and Receive

ZRC Application Profile User’s Guide, Rev. 1.2

Freescale Semiconductor 4-5

following significance, depending on the ZRC command code (i.e. depending on the value of the
commandCode field).

Table 4-2 lists command significance.

4.2 ZRC Attributes

The ZRC attributes are declared and initialized in the ZRCProfileGlobals.c file as follows:
zrcAttrData_t gZrcAttr ={
 gDefaultKeyRepeatInterval_c,
 gDefaultKeyRepeatWaitTime_c,
 gDefaultExTransferCount_c,
 gDefaultReceiveKeyRepeatCnf_c
 };

typedef struct zrcAttrData_tag{
 uint8_t keyRepeatInterval;
 uint16_t keyRepeatWaitTime;
 uint8_t keyExTransferCount;
 uint8_t receiveKeyRepeatCnf;
}zrcAttrData_t;

Each attribute has the following meaning:

keyRepeatInterval - The interval in milliseconds at which user command repeat frames will be transmitted
(a key pressed is followed by key repetitions – using gZRC_CmdCode_UserCtrlPressedAndRepeat_c
command code).

keyRepeatWaitTime - The duration that a recipient of a user control repeated command frame waits before
terminating a repeated operation.

keyExTransferCount - The value of the KeyExTransferCount parameter passed to the pair request
primitive during the push button pairing procedure.

gDefaultReceiveKeyRepeatCnf_c – is a Freescale-specific attribute and when it is set (TRUE) the profile
signals the application (via a ZRC Command Confirm message) that an user control repeated command
frame was sent (whether successful or not) over the air.

These attributes can be configured at the initialization by modifying the macros from the
ZRCProfileGlobals.h file.

To set or read these attributes you can use the ZRCProfile_SetRequest() and ZRCProfile_GetRequest()
functions which are described in the ZRC Application Profile Reference Manual.

Table 4-2. Significance of the Command and pData parameters (Depending on the ZRC Command Code)

ZRC command code NLDE Data Request payload (in addition to the ZRC command code)

gZRC_CmdCode_UserCtrlPressed_c
gZRC_CmdCode_UserCtrlRepeated_c

command contains the RC command code and pData contains the RC
command payload (if any)

gZRC_CmdCode_UserCtrlReleased_c the pData parameter should be ignored

 ZRC Command Transmit and Receive

ZRC Application Profile User’s Guide, Rev. 1.2

4-6 Freescale Semiconductor

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	Chapter 1 ZRC Application Profile Implementation Overview
	1.1 Interfacing With the ZRC Command Tx/Rx and PBP sublayers
	1.1.0.1 Message Structure

	1.2 Power Saving
	1.2.0.1 Prototypes

	Chapter 2 Controller-side Push-button Pairing
	2.1 Configuration
	2.1.1 The Push-button Pairing Process
	2.1.1.1 Prototype

	Chapter 3 Target-side Push-button Pairing
	3.1 Configuration
	3.1.1 The Push-button Pairing Process
	3.1.1.1 Prototype

	Chapter 4 ZRC Command Transmit and Receive
	4.1 Configuration
	4.1.1 Command Transmit
	4.1.1.1 Prototype
	4.1.1.2 Message Structure

	4.1.2 Command Receive
	4.1.2.1 Message Structure

	4.2 ZRC Attributes

