
UM11182
Q100 (MC33XS2410) Extreme switch software driver user
guide
Rev. 1.1 — 5 September 2022 User manual

Document information
Information Content

Keywords Q100 eSwitch extreme switch

Abstract This documentation describes how to install and use the Q100 Extreme
Switch software driver.

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

Rev Date Description

v1.1 20220905 Section 2.2: Corrected the following entry:
• 12 bits ADC:

– Current from 5.0 mA to 5.0 A with ± 6 % above 1 A
– Voltage from 0.5 to 65 V with ± 6.5 % above 5.0 V
– Temperature warning for each channel plus central die monitoring

• Revision history relocated

v.1.0 20190830 Initial version

Revision history

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
2 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

1 Overview

This documentation describes how to install and use the Q100 Extreme Switch software
driver (driver).

The Q100 Extreme Switch software driver encapsulates the functionality of the Q100
(MC33XS2410) device. The driver acts as an API layer between the microcontroller low-
level drivers, e.g. SDK, and the user application, allowing you to perform the following:

• Setting and reading device registers (control and diagnostic bank)
• Initializing device with default or custom register values
• Controlling the OUTx channel by Direct Input or SPI signal, PWM or without PWM
• Reading fault, warning and channel status
• Measurements of voltage, current and temperature
• Enabling watchdog, transit to safe mode
• Setting PWM PI regulation

2 MCU compatibility

The driver implementation is generic; there is no dependency on a specific MCU.
Virtually any MCU with the required peripherals should be able to use the driver.

2.1 Peripheral requirements
The driver needs the following MCU peripherals for its function:

• SPI Module is required for communication (MOSI_M, MISO_M, SCLK_M, CSB_M).
• GPIO is required for controlling RESET_B pin or optionally used for software controlled

SPI chip select (CSB_M) instead of HW chip select.
• Interrupt pin is optionally required for use with the FAULT_B pin – interrupt

implementation is up to user.
• Timer is optionally required for generating external clock signal for Pulse-Width

Modulation (PWM) of the Q100 device - implementation is up to user

Depending on the user application, other resources may be required. See the provided
example projects.

2.2 Supported devices
Q100 (MC33XS2410)

• Four fully-protected 100 mΩ / dual 50 mΩ (at 25 °C) high-side switches
• 4 x 1.8 A DC (Pd 2.5 W @ TJ 150 °C) or 2 x 3.6 A DC in parallel mode configuration
• Floating power output architecture to drive all types of loads
• 16-bit SPI port communication 3.3 V / 5.0 V compatible with daisy chain capability
• Outputs controllable via SPI-bus or direct inputs
• Diagnostic status reported via SPI-bus
• Watchdog for invalid commands or inactive SPI, with programmable timeout
• Programmable interrupt generator that reports to FAULT pin or SPI-bus
• Four independent PWM modules programmable from 0.5 Hz to 2.0 kHz
• Protection for battery transient overvoltage and reversed polarity battery connection
• Configurable safe mode

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
3 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

• Standby mode with very low power consumption
• 10 mA open load detection in ON state
• Latch off with configurable auto retry
• Severe short-circuit and overload protection
• Programmable active current limit threshold to minimize short-circuit effect
• 12 bits ADC:

– Current from 5.0 mA to 5.0 A with ± 6 % above 1 A
– Voltage from 0.5 to 65 V with ± 6.5 % above 5.0 V
– Temperature warning for each channel plus central die monitoring

• Qualified in accordance with AEC Q100 grade 1
• Electrical transient disturbance immunity according of ISO 7637-2 and ISO 16750-2

2.3 Supported MCUs
The current implementation of the Q100 software driver is generic, such that any suitable
32 b microcontroller with SPI module and other necessary peripheries can be used. See
Section 2.1 for peripheral requirements.

Board name MCU Board Description

FRDM-XS2410EVB FRDM-KL25Z Q100 board with FRDM-KL25

FRDM-XS2410EVB S32K144EVB-Q100 Q100 board with S32K144EVB

The driver was tested with an S32K144 MCU and S32K14x EAR SDK 0.8.6. Figure 1
shows a HW setup of S32K144EVB-Q100 and Q100 EVB.

The FRDM-XS2410EVB (Q100) evaluation board is directly compatible with the FRDM
KL25Z board. See Table 1 for used pin compatibility between FRDM-XS2410EVB (Q100)
evaluation board and S32K144EVB-Q100 and FRDM KL25Z.

Pin Function
(Q100 EVB)

MOSI MISO CLK CS RST_B FAULT_B LHM IN1 IN2 IN3 IN4

S32K144EVB-Q100 PTB4 PTB3 PTB2 PTB5 PTD13 PTB8 PTB9 PTC11 PTC10 PTB11 PTB10

FRDM KL25Z PTD2 PTD3 PTD1 PTD0 PTA13 PTD4 PTA12 PTC9 PTC8 PTA5 PTA4

Table 1. Q100 EVB pin compatibility with S32K144EVB-Q100

When other MCU boards or other Q100 EVB are used, refer to the provided user guides
and schematics of the respective boards.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
4 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

Figure 1. Set of S32K144 and FRDM-XS2410EVB (Q100) evaluation boards

3 Q100 Extreme switch software driver

This section provides an overview of the functionality, settings and usage of the driver
(configuration and functions). For additional information, see the API Programmer's
Guide (included in the Q100 software driver zip file) and the comments embedded in the
code.

The MSDI software driver consists of three files. The main functionality is contained in
Q100.c and Q100.h whereas Q100_regmap.h contains register map of device. As the
driver is not platform specific, several functions (marked as externalin Q100.h) need to be
implemented by the user.

3.1 Configuring the driver
The configuration structure shown in Figure 2 is the user interface available for
configuring the driver and its behavior. The user must set appropriate Q100 device
type and instance of the driver (in case more instances will be used) into the driver
configuration structure (Q100_driver_t). The driver configuration structure is passed to all
API functions of the driver as a parameter. Members qSpiStatus, regMap and toggleBit
are initialized automatically in the Q100_Init function.

As the driver is not platform specific, the user needs to implement several low-
level functions. See Section 3.2. Instance member in Q100_driver_t structure is not
modified by the driver itself. This member is passed to user-defined functions in order
to differentiate between Q100 driver instances in case that more Q100 devices are
connected to the MCU.

Figure 2. Driver configuration

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
5 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

For a more detailed description of the user configuration structure, refer to the API
programmer's guide.

3.2 Driver API
This Q100 software driver provides API that can be used for dynamic real-time
configuration of a device in user code. For a summary of available functions, see Table 2.
As the Q100 SW driver is platform independent, functions for SPI transfer and GPIO
control need to be implemented by the user. There are helper functions that can be used
for converting user-friendly float values into raw values. These values can be filled in the
driver structure.

Function Description

External function

Q100_SPI_Transfer External defined function for SPI transfer.

SPI communications functions

Q100_SpiWriteCtrl Used for writing control registers via SPI

Q100_SpiReadCtrl Used for reading control registers via SPI

Q100_SpiReadDiag Used for reading diagnostic registers via SPI

APP control helpers configuration functions

Q100_UserCtrlPwmToRaw Used for conversion user PWM (float) value to raw (uint8_t) value

Q100_RawCtrlPwmToUserVal Used for conversion PWM raw (uint8_t) value to user (float)

Q100_UserCtrlCurrToRaw Used for conversion user Current (float) value to raw (uint8_t) value

Q100_RawCtrlCurrToUserVal Used for conversion Current raw (uint8_t) value to user (float) value

Q100_UserCtrlVoltToRaw Used for conversion user Voltage (float) value to raw (uint8_t) value

Q100_RawCtrlVoltToUserVal Used for conversion Voltage raw (uint8_t) value to user (float) value

Q100_UserCtrlTempToRaw Used for conversion user Temperature (float) to raw (uint8_t) value

Q100_RawCtrlTempToUserVal Used for conversion Temperature raw (uint8_t) to user (float) value

APP control configuration functions

Q100_WriteGlobalControlSettings Writes global control settings (reg: Q100_GLB_CTRL #00h → Q100_READBACK #01h)

Q100_ReadGlobalControlSettings Reads global control settings (reg: Q100_GLB_CTRL #00h → Q100_READBACK #01h)

Q100_WriteInputControlSettings Writes input control settings (reg: Q100_OUT1_4_CTRL #02h → Q100_IN_CTRL2 #04h)

Q100_ReadInputControlSettings Reads input control settings (reg: Q100_OUT1_4_CTRL #02h → Q100_IN_CTRL2 #04h)

Q100_WritePwmSettings Writes PWM control settings (reg: Q100_PWM_CTRL1 #05h → Q100_PWM_DC4 #0Fh)

Q100_ReadPwmSettings Reads PWM control settings (reg: Q100_PWM_CTRL1 #05h → Q100_PWM_DC4 #0Fh)

Q100_WriteIrqWarningSettings Writes interrupt and warnings configuration for SPI and FAULT_B pin (reg: Q100_EN_IRQ_SPI #10h → Q100_
EN_WARN_PIN #13h)

Q100_ReadIrqWarningSettings Reads interrupt and warnings configuration for SPI and FAULT_B pin (reg: Q100_EN_IRQ_SPI #10h → Q100_
EN_WARN_PIN #13h)

Q100_WriteWatchdogSettings Writes watchdog configuration (reg: Q100_WDT_REG #14h)

Q100_ReadWatchdogSettings Reads watchdog configuration (reg: Q100_WDT_REG #14h)

Q100_WriteMeasurementsSettings Writes measurements configuration (reg: Q100_M_SETUP #15h → Q100_C_CTRL #16h)

Q100_ReadMeasurementsSettings Reads measurements configuration (reg: Q100_M_SETUP #15h → Q100_C_CTRL #16h)

Q100_WriteUnderOverCurrentSettings Writes undercurrent and overcurrent configurations (reg: Q100_WC_CTRL #17h → Q100_UCW_OUT4 #1Fh)

Q100_ReadUnderOverCurrentSettings Reads undercurrent and overcurrent configurations (reg: Q100_WC_CTRL #17h → Q100_UCW_OUT4 #1Fh)

Q100_WriteUnderOverVoltageSettings Writes undervoltage and overvoltage configurations (reg: Q100_WV_CTRL #20h → Q100_UVW_OUT4 #28h)

Q100_ReadUnderOverVoltageSettings Reads undervoltage and overvoltage configurations (reg: Q100_WV_CTRL #20h → Q100_UVW_OUT4 #28h)

Q100_WriteTemperatureSettings Writes common temperature warning threshold (reg: Q100_TEMP_WT #29h)

Table 2. Q100 software driver API

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
6 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

Function Description

Q100_ReadTemperatureSettings Reads common temperature warning threshold (reg: Q100_TEMP_WT #29h)

Q100_WriteVBATinOFFstateSettings Writes short to VBAT in OFF state settings (reg: Q100_BV_STVB #2Ah → Q100_BT_STVB #2Bh)

Q100_ReadVBATinOFFstateSettings Reads short to VBAT in OFF state settings (reg: Q100_BV_STVB #2Ah → Q100_BT_STVB #2Bh)

Q100_WriteOpenLoadSettings Writes open load settings (reg: Q100_OPD_CTRL1 #2Ch → Q100_I_OLDx #31h)

Q100_ReadOpenLoadSettings Reads open load settings (reg: Q100_OPD_CTRL1 #2Ch → Q100_I_OLDx #31h)

Q100_WriteActiveCurrentLimitSettings Writes active current limit settings (reg: Q100_ACL_CTRL1 #32h → Q100_ACL_CTRL2 #33h)

Q100_ReadActiveCurrentLimitSettings Reads active current limit settings (reg: Q100_ACL_CTRL1 #32h → Q100_ACL_CTRL2 #33h)

Q100_WriteSevereShortCircuitSettings Writes severe short circuit settings (reg: Q100_SSC_CTRL #34h)

Q100_ReadSevereShortCircuitSettings Reads severe short circuit settings (reg: Q100_SSC_CTRL #34h)

Q100_WriteOverloadProtectionSettings Writes over load protection settings (reg: Q100_OLP_CTRL #35h → Q100_OCL_OUT4 #39h)

Q100_ReadOverloadProtectionSettings Reads over load protection settings (reg: Q100_OLP_CTRL #35h → Q100_OCL_OUT4 #39h)

Q100_WritePwmRegulationSettings Writes Proportional-integral regulation compensation settings (reg: Q100_PI_CTRL1 #3Ah → Q100_I_SET4
#3Fh)

Q100_ReadPwmRegulationSettings Reads Proportional-integral regulation compensation settings (reg: Q100_PI_CTRL1 #3Ah → Q100_I_SET4
#3Fh)

Q100_FillDataStructureBy Gets settings for driver structure depend on parameter filledBy

Q100_Init Initializes device by values stored in driver data structure

Runtime control functions

Q100_EnableNonPwmOutput Controls specified non-PWM output

Q100_EnablePwmOutput Controls specified PWM output

Q100_SynchronizePwmOutputs Synchronize all PWM outputs

APP diagnostic status functions

Q100_ReadGlobalStatus Reads global status from diagnostic register (Q100_GLB_STA #00h)

Q100_ReadInputOutputState Reads input output state from diagnostic register (Q100_IN_OUT_STA #01h)

Q100_ReadChannelStatus Reads channel status from diagnostic register (Q100_OUT1_STAx #02h → #05h)

Q100_GetSpecificChannelStatus Helps to find specific event in channel status register

Q100_ReadIrqStatus Reads IRQ interrupt status from diagnostic register (Q100_ISR_IRQ #06h)

Q100_GetSpecificIrqStatus Helps to find specific event in IRQ status register

Q100_ReadWarningStatus Reads Warning interrupt status from diagnostic register (Q100_ISR_WARN #07h)

Q100_GetSpecificWarnStatus Helps to find specific event in WARN status register

APP diagnostic helpers configuration functions

Q100_RawDiagCurrToUserVal Helper conversion function from diagnostic raw Current (uint16_t) to user value (float)

Q100_RawDiagVoltToUserVal Helper conversion function from diagnostic raw Voltage uint16_t) to user value (float)

Q100_RawDiagTempToUserVal Helper conversion function from diagnostic raw Temperature (uint16_t) to user value (float)

Q100_RawDiagPiDutyToUserVal Helper conversion function from diagnostic raw PI duty cycle (uint16_t) to user value (float)

Q100_RawDiagFBCurrToUserVal Helper conversion function from diagnostic raw Feedback Current in Ton/2 (uint16_t) to user value (float)

APP diagnostic measurement functions

Q100_ReadDiagnosticCurrent Reads current from device diagnostic register

Q100_ReadDiagnosticVoltage Reads voltage from device diagnostic register

Q100_ReadTemperature Reads central temperatures from device diagnostic register

Q100_ReadPiPwmDutyCycle Reads device duty cycle of proportional-integral controller

Q100_ReadFeedbackCurrentTon2 Reads device feedback current in Ton/2

Table 2. Q100 software driver API...continued

For a more detailed description of software driver API (function signatures, parameters)
refer to the programmer's guide, included in the Q100 software driver zip file, or to the
comments embedded in the Q100.h file.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
7 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

3.3 Required driver setup
In order to execute correctly, the Q100 software driver requires the following:

1. Fill in the driver configuration structure (Q100_driver_t).
2. Implement the external functions of Q100/Q100.h.

Moreover, the driver requires correctly pin-muxed pins and correctly initialized SPI
periphery, which is handled by the external function Q100_SPI_Transfer:

• SPI: 16 bits/frame, MSB first, clock polarity: active high, clock phase: capture on the
2nd edge, active low chip select.

• SW controlled CSB_M chip select (if HW chip select is not possible): GPIO output pin,
active low, initial value: high.

• SW controlled RESET_B pin, which is active in low, initial value high.

Additionally, some applications may require another set of correctly pin-muxed Q100
pins:

• FAULTB_M: Interrupt pin
• INx: Direct input pins for all channels

For more details refer to the provided example project.

3.4 Implementation notes
Q100 Extreme Switch SW driver is based on variables of bool, uint8_t, uint16_t and float
types and requires standard stdbool.h, stdint.h and stddef.h libraries.

Each data received via MISO pin is parsed in order to get QuickSpi status flags. Fault
or warning status flags are always saved into qSpiStatus member of the Q100_driver_t
structure and can be read directly from the structure. There are three different SPI
transfer functions, depending on R/W action on Control register bank and R Diagnostic
register bank. Q100 driver automatically toggles the bit by each SPI transfer action. The
user does not need to care about it.

4 Installing the software

This section describes installation of S32 Design Studio for ARM and shows how to
use this SW driver with S32K144 and S32K14x SDK for application development. A
process of adding the Q100 SW driver to an existing project in different IDEs or with use
of different MCUs should be analogical. Most likely, the addition of a low-level SDK driver
will vary.

4.1 Installing IDE
This procedure explains how to obtain and install the latest version of S32 Design Studio
for ARM (2018.R1).

Note: The example in the driver package is intended for S32 Design Studio for ARM
2018.R1. If the selected IDE is already installed on the system, skip this section.

1. Obtain the latest S32 Design Studio for ARM 2018.R1 installer file from the NXP
website here: www.nxp.com/S32DS

2. Run the executable file and follow the instructions.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
8 / 21

http://www.nxp.com/S32DS

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

4.2 Import an example project into IDE
The following steps show how to import an example from the downloaded zip file into
S32 Design Studio for ARM.

1. In the S32 Design Studio menu bar, click File → Import…. In the pop-up window,
select General → Existing Projects into Workspace and click Next.

2. Click Browse and locate the folder where you unzipped the downloaded example

files. Find the folder S32DS_Examples and select a project to import. Then click OK.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
9 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

3. With your project now loaded in the Select root directory box, click on the Copy
projects into workspace checkbox. Then click Finish. The project is now in the S32
Design Studio workspace where you can build and run it.

4.3 Creating a new project with an MSDI software driver
If you choose not to use the example project, the following instructions describe how to
create and set up a new project for S32K144 MCU that uses the MSDI SW driver.

To create a new project in S32 Design Studio for ARM, do the following:

1. In the S32 Design Studio menu bar, select File → New → S32DS Application
Project.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
10 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

2. When the S32DS Application Project box opens, enter a project name into the text

box, choose S32K144 processor in the Processors tab, Standard S32DS toolchain
for ARM in ToolChain Selection and click Next.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
11 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

3. Select NewLib Nano library, S32K144_SDK (version 0.8.6) SDK and click Finish.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
12 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

4. The Project Explorer panel and a part of the main.c content after creation of new
project is shown. This project includes only startup code and minimal driver set from
S32K144 SDK.

4.3.1 Adding the Q100 eSwitch software driver to the project

This section describes how to add the Q100 software driver to the project.

1. Copy the content of SDK_SW_Driver to the Sources folder in your newly created
project as shown.

2. Include the Q100.h header file in main.c in order to get access to the Q100 software

driver in the user code.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
13 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

4.3.2 Setting up the project

Once the new project has been created and the Q100 software driver has been added
into it, the project must be set up.

1. In order to implement the platform specific (external) functions of the Q100 software
driver, LPSPI and GPIO S32K14x SDK drivers are required. GPIO driver is already
attached to the project. In order to generate the LPSPI driver into the project, click
twice on the lpspi component in Components Library window. If the Components
Library window is hidden, open it by clicking Processor Expert → Show Views.
When the lpspi component is included in the PEx file, it is shown in the Components
window.

2. In order to get the Q100 software driver to run on S32K144, the PinSettings

component must be edited to configure the LPSPI and GPIO pins being used and
the RESET_B signal. This entails making the correct MCU pin selections and then
muxing them as needed. See Section 2.3. The following image is an example of
LPSPI0 pin muxing. You should also set the correct GPIO pin directions and initial
values in the PinSettings component.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
14 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

3. In order to get the Q100 software driver to run on an S32K144, check the

clock_manager component settings for the following:
• The peripheral clock to LPSPI and PORT peripheries must be enabled AND
• The frequency for theses peripheries must be in the allowed range

4. In the Components window, click the Generate Processor Expert Code icon to

generate the component settings into the Generated_Code folder.
In order to set the clock configuration and mux the pins according to the settings
generated from the Processor Expert components, add the following lines to the
beginning of the main() function:
CLOCK_SYS_Init(g_clockManConfigsArr, CLOCK_MANAGER_CONFIG_CNT,
g_clockManCallbacksArr, CLOCK_MANAGER_CALLBACK_CNT);

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
15 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

CLOCK_SYS_UpdateConfiguration(0U,
CLOCK_MANAGER_POLICY_FORCIBLE);
PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr);

5. Create a variable of type Q100_driver_t that will be passed to all used functions.
This variable stores Q100 software driver configuration and its internal data. This
variable must be accessible during run time and should be declared either in the
main() function or as a global variable.

6. Configure the Q100 as shown. You may change all individual items as needed.

7. Set up the LPSPI peripherals that will be used by the Q100 software driver.

The easiest way is to set the LPSPI configuration in the lpspi Processor Expert
component. After clicking the Generate Processor Expert Code icon, the lpspi
configuration is generated in the Generated_Code folder. This configuration
can be passed as a parameter of LPSPI_DRV_MasterInit SDK function in
main(). In addition, it is recommended to set the Chip Select To Clock Delay
(CSTCD) configuration and Delay Between Frames (DBF) configuration by
LPSPI_DRV_MasterSetDelay when using the HW chip select.

8. The Q100 initialization function should be called. User must pass reference to driver
configuration structure.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
16 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

9. Except for the peripheral and Q100 initialization function, the external function
(listed in Q100.h and Table 2) used by Q100 driver need to be implemented. See
the S32 DS S32K144 folder in the provided example project as a template of its
implementation for S32K144.

4.3.3 Writing your application code

All of your application code must reside in the Sources folder in your project directory.
You may modify the code in main.c but you must retain the original comments related to
usage directions.

When the Q100 SW Driver and utilized peripherals are configured properly and external
functions are implemented, you can use all of the prepared API functions to construct
your own application.

See the API Programmer's Guide (included in the Q100 software driver zip file) for
function signatures and required parameters. Also review the Q100.h headerfile, which
contains prototypes and explanation for all available functions.

4.3.4 Compiling, downloading and debugging

To compile a project, click the compile icon in the toolbar.

The process for downloading an application on board in S32 Design Studio for ARM may
differ according to used MCU board. If you have any question, please see S32 Design
Studio for ARM user's guide. To download and debug on S32K144EVB-Q100 MCU
board, do the following:

1. Click the arrow next to the debug icon in the toolbar and select Debug
Configurations….

2. In the Debug Configurations dialog box, select one of the existing configurations

with a project name under GDB PEMicro Interface Debugging.
3. Make sure that the C/C++ Application contains a path to the .elf file of the project in

the Main tab of the Debug Configuration window.
4. Pick up proper debug interface and USB port in the Debugger tab of Debug

Configuration window.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
17 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

5. Apply changes and then click Debug. S32 Design Studio for ARM will download and
launch the program on board.

5 References

[1] FRDM-XS2410EVB Product Summary Page http://www.nxp.com/FRDM-XS2410EVB

[2] Q100 eSwitch software driver Tool Summary Page http://www.nxp.com/Q100-ESWITCH-DRIVER

[3] S32 Design Studio IDE Tool Summary Page http://www.nxp.com/S32DS

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
18 / 21

http://www.nxp.com/FRDM-XS2410EVB
http://www.nxp.com/Q100-ESWITCH-DRIVER
http://www.nxp.com/S32DS

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

6 Legal information

6.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

6.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.
In no event shall NXP Semiconductors, its affiliates or their suppliers
be liable to customer for any special, indirect, consequential, punitive
or incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.
Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors,
its affiliates and their suppliers and customer’s exclusive remedy for all of
the foregoing shall be limited to actual damages incurred by customer based
on reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

6.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
19 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

Tables
Tab. 1. Q100 EVB pin compatibility with

S32K144EVB-Q100 ...4
Tab. 2. Q100 software driver API6

Figures
Fig. 1. Set of S32K144 and FRDM-XS2410EVB

(Q100) evaluation boards5
Fig. 2. Driver configuration ... 5

UM11182 All information provided in this document is subject to legal disclaimers. © 2022 NXP B.V. All rights reserved.

User manual Rev. 1.1 — 5 September 2022
20 / 21

NXP Semiconductors UM11182
Q100 (MC33XS2410) Extreme switch software driver user guide

Contents
1 Overview .. 3
2 MCU compatibility ...3
2.1 Peripheral requirements 3
2.2 Supported devices ...3
2.3 Supported MCUs ... 4
3 Q100 Extreme switch software driver 5
3.1 Configuring the driver .. 5
3.2 Driver API .. 6
3.3 Required driver setup .. 8
3.4 Implementation notes .. 8
4 Installing the software .. 8
4.1 Installing IDE ... 8
4.2 Import an example project into IDE 9
4.3 Creating a new project with an MSDI

software driver ... 10
4.3.1 Adding the Q100 eSwitch software driver to

the project ..13
4.3.2 Setting up the project 14
4.3.3 Writing your application code 17
4.3.4 Compiling, downloading and debugging 17
5 References ... 18
6 Legal information ..19

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2022 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 5 September 2022
Document identifier: UM11182

	1 Overview
	2 MCU compatibility
	2.1 Peripheral requirements
	2.2 Supported devices
	2.3 Supported MCUs

	3 Q100 Extreme switch software driver
	3.1 Configuring the driver
	3.2 Driver API
	3.3 Required driver setup
	3.4 Implementation notes

	4 Installing the software
	4.1 Installing IDE
	4.2 Import an example project into IDE
	4.3 Creating a new project with an MSDI software driver
	4.3.1 Adding the Q100 eSwitch software driver to the project
	4.3.2 Setting up the project
	4.3.3 Writing your application code
	4.3.4 Compiling, downloading and debugging

	5 References
	6 Legal information
	Tables
	Figures
	Contents

