

QN902x
BLE Application Developer Guide

Rev.<1.7>— 04 April 2018

Document information

Info Content

Keywords Architecture, Working mode, Operating System, Protocol, bootloader,

driver, application

Abstract This document specifies the QN902x Bluetooth Low Energy (BLE)

technical details.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 2 of 113

Revision history

Rev Date Description

0.1 20130130 Initial release

0.2 20130307 Update chapter of application samples and ACI message example

0.3 20130328

Added abbreviations.

Added pseudo code of message scheduler

Updated NVDS TAGs.

0.4 20130425 Updated application initialization flow and device driver.

0.5 20130517 Updated chapter of application samples and device driver.

0.6 20130710 Updated to firmware version v18.

0.7 20130821 Updated to SDK v0.9.2.

0.8 20131028 Updated to SDK v0.9.6.

0.9 20131122 Updated the figure of initialization flow.

1.0 20131218 Updated to SDK v0.9.8.

1.1 20140211 Updated to SDK v1.0.0

1.2 20140408 Updated to SDK v1.2.0

1.3 20140603 Updated flash arrangements

1.4 20140707 Updated table number

1.5 20150402 Migrate to NXP template, refine some description

1.6 20150924 Updated with comments from PSP and native speaker’

1.7 20180404 Updated quintic to NXP, Table 42

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 3 of 113

Contents

Contents.. 3
1. Introduction ... 6
1.1 Purpose ... 6
1.2 References .. 6
1.3 Definitions, Symbols and Abbreviations 6
2. QN902x BLE Software Platform......................... 6
2.1 Software Architecture .. 6
2.2 Working Mode ... 8
2.2.1 Wireless SoC Mode ... 8
2.2.2 Network Processor Mode 8
2.2.3 Controller Mode ... 9
2.3 Operation System ...10
2.3.1 Overview ..10
2.3.2 Events ..11
2.3.3 Messages ...12
2.3.4 Tasks ..14
2.3.5 Message Scheduler ..17
2.3.6 Timer Scheduling..19
2.3.7 Include Files ...20
3. BLE Protocol Stack ...21
3.1 Link Layer (LL)..21
3.2 Logical Link Control and Adaptation Protocol (L2CAP) 22
3.3 Security Manager Protocol (SMP)23
3.4 Attribute Protocol (ATT)25
3.5 Generic Attribute Profile (GATT).......................25
3.5.1 Interface with APP/PRF26
3.5.2 Generic Interface ..27
3.5.3 Configuration ..27
3.5.4 Service Discovery ...28
3.5.5 Characteristic Discovery29
3.5.6 Read and Write Characteristics30
3.5.7 Notify and Indication Characteristics32
3.5.8 Profile Interface ..33
3.6 Generic Access Profile (GAP)33
3.6.1 Interface with APP ..34
3.6.2 Generic Interface ..34
3.6.3 Device Mode Setting ..35
3.6.4 White List Manipulation36
3.6.5 LE Advertisement and Observation37
3.6.6 Name Discovery and Peer Information37
3.6.7 Device Discovery ..38
3.6.8 Connection Establishment and Detachment39
3.6.9 Random Addressing ...40
3.6.10 Privacy Setting..40
3.6.11 Pair and Key Exchange41
3.6.12 Parameter Update ..43
3.6.13 Channel Map Update ..44
3.6.14 RSSI ...45
3.7 Include Files ...45
4. Bootloader ..46
4.1 Flash Arrangement ...47
4.2 Peripherals Used in the Bootloader48

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 4 of 113

4.3 Program Protection ...48
4.4 ISP Protocol Description49
4.4.1 ISP Interface Requirements49
4.4.2 ISP PDU Format ...49
4.4.3 ISP Commands ..49
4.4.4 ISP Program Flow Diagram57
5. NVDS ...58
5.1 BLE Stack TAG ..59
5.2 Include Files ...60
6. Application Development61
6.1 Available hardware resource for APP61
6.1.1 MCU ...61
6.1.2 Memory ..61
6.1.3 Peripheral ...62
6.1.4 Interrupt Controller ..63
6.2 Application Execution Flow64
6.2.1 Startup (Remap) ...65
6.3 Creating a Custom BLE Application66
6.3.1 User Configuration ..66
6.3.2 BLE Profiles ..68
6.3.3 BLE main function ..71
6.3.4 Application Task ...78
6.4 Application Debug ..79
6.5 Application Samples ...79
6.5.1 Directory Structure ..79
6.5.2 Proximity Reporter ..81
6.6 Device Driver ..87
6.6.1 Device Driver File Structure87
6.6.2 Driver Configuration ..89
6.6.3 System Controller Driver90
6.6.4 GPIO Driver ..90
6.6.5 UART Driver ...91
6.6.6 SPI Driver ...92
6.6.7 I2C Driver ...92
6.6.8 Timer Driver ..93
6.6.9 RTC Driver ...93
6.6.10 Watchdog Timer Driver94
6.6.11 PWM Driver ..94
6.6.12 DMA Driver ...94
6.6.13 ADC Driver ...95
6.6.14 Analog Driver ..95
6.6.15 Sleep Dirver ..96
6.6.16 Serial Flash Driver ..96
6.6.17 RF Driver ..96
7. Network Processor ..97
7.1 ACI PDU Format...98
7.2 ACI Message Example99
8. Controller Mode ...101
8.1 HCI PDU Format ..101
8.2 Supported Commands and Events102
8.3 Direct Test Mode ..106
9. Legal information ...109
9.1 Definitions ...109
9.2 Disclaimers ...109

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 5 of 113

9.3 Trademarks ..109
10. List of figures ...111
11. List of tables ..112

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 6 of 113

1. Introduction

1.1 Purpose
This document specifies the QN902x Bluetooth Low Energy (BLE) technical
details which the software developers need to know. QN902x BLE solution offers
a complete Software Development Kit (SDK) to develop various single-mode
BLE applications. This document serves as a guide for the users to develop
application program based on QN902x.

1.2 References
[1] Bluetooth Specification Version 4.2
[2] ARMv6-M Architecture Reference Manual
[3] Cortex-M0 R0P0 Technical Reference Manual
[4] QN902x API Programming Guide

1.3 Definitions, Symbols and Abbreviations
ACI Application Control Interface
API Application Program Interface
APP Application
ATT Attribute Protocol
BLE Bluetooth Low Energy
BSP Board Support Package
GAP Generic Access Profile
GATT Generic Attribute Profile
HCI Host Control Interface
ISP In-system Program
LL Link Layer
L2CAP Logical Link Control and Adaptation Protocol
PHY Physical
SMP Security Manager Protocol
SoC System on Chip
PC Program Counter
AHB ARM High Based

2. QN902x BLE Software Platform

2.1 Software Architecture
QN902x is an Ultra-Low Power SoC (System-on-Chip) solution designed for
Bluetooth Low Energy standard, which combines an ARM Cortex-M0 processor,
96kB ROM, 64kB SRAM, 128kB FLASH, 2.4GHz RF transceiver and a full range
of peripherals.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 7 of 113

MCU

ROM SRAM Flash

Peripherals BLE HW

QN902x

Figure 1 QN902x Hardware Architecture

The software platform of QN902x consists of two main parts: Firmware and
Application project. All codes should be executed from internal SRAM and ROM.
The code executed in the ROM is called Firmware. The code executed in the
SRAM is called Application project. The FLASH can be used to store the
application program and the user data which should be saved when system is
power-down.

APP

Device

Driver

 GAP, GATT

SMP

L2CAP

Link Layer

ATT

Hardware

LE Profiles

Figure 2 Software Architecture

The software platform is also considered as five major sections: Kernel, BLE
protocol stack, Profiles, Device drivers and Application. The Firmware in the
ROM contains the Kernel and BLE protocol stack which are only provided as
APIs. The Application project executing in the SRAM contains Profiles, Device
drivers and Application which are provided as full source code.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 8 of 113

2.2 Working Mode
QN902x provides the most flexible platform for wireless applications, which
supports three working modes: Wireless SoC Mode, Network Processor Mode
and Controller Mode.

2.2.1 Wireless SoC Mode
In the Wireless SoC Mode the link layer, host protocol, profiles and application all
run on the QN902x as a single chip solution. This is the work mode that the
application samples are used.

 GAP, GATT

SMP

L2CAP

Link Layer

ATT

LE Profiles

Application

PHY

QN902x

Figure 3 Wireless SoC Mode

2.2.2 Network Processor Mode
In the Network Processor Mode the link layer, host protocols and profiles run on
the QN902x, and the application runs on the external microcontroller or PC.
These two components communicate via ACI (Application Control Interface),
which are provided on QN902x.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 9 of 113

Application Control Interface

 GAP, GATT

SMP

L2CAP

Link Layer

ATT

LE Profiles

PHY

Application

QN902x

Application MCU

Figure 4 Network Processor Mode

2.2.3 Controller Mode
In the Controller Mode only the link layer runs on the QN902x. The host protocol,
profiles and application all run on the external microcontroller or PC. These two
components communicate via HCI. Generally this mode is not used in the
product design except for the product testing.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 10 of 113

Link Layer

PHY

Host Controller Interface

 GAP, GATT

SMP

L2CAP

ATT

LE Profiles

Application

Application MCU

QN902x

Figure 5 Controller Mode

2.3 Operation System

2.3.1 Overview
The BLE protocol stack is composed of several protocol layers which have their
own state machines and will exchange messages with each other. In order to
support data and message exchange between different protocol layers, a very
basic message driven kernel is implemented. It is a small and efficient Real Time
Operating System, offering the features of event service, exchange of messages,
memory management and timer functionality.

The kernel provides an event service used to defer actions. In the interrupt
handler only the critical handling is performed and less critical handling is done in
an event handler that is scheduled under interrupt.

BLE protocol is composed of LL, L2CAP, SMP, ATT, GATT, GAP, Profiles and
APP Layer. Each protocol layer may be divided into a number of sub-layers.
These layers have these own state machine which is managed by an individual
task. The kernel defines task descriptor to help each task to manage their state
machine and message processing handler.

The kernel manages a message queue which saves all of the messages sent by
task. And the kernel is responsible for distributing messages in the message
queue. It will find the appropriate message handler based on the message ID
and execute the handler. When there is no message in the message queue, the
kernel enters into idle state.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 11 of 113

The kernel provides basic memory management which is similar to C standard
malloc/free function. These memory management functions are only
implemented for kernel message, kernel timer and ATTS database. So the user
will use message API, timer API and ATT service API instead of using memory
management functions directly. This kernel memory management module needs
its own heap to control. So the application should arrange an available memory
space to memory management module. The heap size is based on application
design. If you want to know how to determine the heap size, please refer to
chapter 7.

The kernel provides timer services for tasks. Timers are used to reserve a
message, delay some time and then send the message.

In this chapter, we just introduce the basic concept of the kernel. For more
details about how to add application tasks into the kernel and how to execute the
kernel in the application, please refer to chapter 7.

2.3.2 Events

When the scheduler is called in the main loop of the background, the kernel
checks if the event field is non-null, gets the one with highest priority and
executes the event handlers for which the corresponding event bit is set.

There are total 32 events, the highest 8 priority events are used by the BLE
stack. Users have 24 events left that can be used in the application. The
following snippet is a pseudo code of the event scheduler.

 // Get event field
 field = ke_env.evt_field;

 while (field)
 {
 // Find highest priority event set
 event = co_clz(field);

 // Execute corresponding handler
 (ke_evt_hdlr[event])();

 // Update the event field
 field = ke_env.evt_field;
 }

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 12 of 113

Table 1 API for Event

API Description

ke_evt_set Set one or more events in the event field.

ke_evt_clear Clear one or more events in the event field.

ke_evt_callback_set Register one event callback.

2.3.3 Messages
A message is an entity that is exchanged between two tasks. Message can load
any type data as a message parameter and can be any size. The structure of the
message contains:

hdr List header for chaining.
hci_type Type of HCI data (used by the HCI only, user do not need
to fill it).
hci_offset Offset of the HCI data in the message (used by the HCI
only, user do not need to fill it).
hci_len Length of the HCI traffic (used by the HCI only, user do not
need to fill it).
id Message identifier.
dest_id Destination task identifier.
src_id Source task identifier.
param_len Parameter embedded structure length.
param Parameter embedded structure.

A message is identified by a unique ID composed of the task type and an
increasing number. The following Figure 6 illustrates how the message ID is
constituted.

Figure 6 Message ID constitution

The element ‘dest_id’ is destination task unique identifier. Refer chapter 3.3 for
details of task id.

The element ‘src_id’ is source task unique identifier. Refer chapter 3.3 for details
of task id.

The element ‘param’ in the message structure contains message content. This
field is defined by each message and shall have different content and length.
The message sender is responsible for filling this field.

Transmission of messages is done in 3 steps. First the message structure must
be allocated in the kernel heap by the sender task calling the function
‘ke_msg_alloc()’ or the macro ‘KE_MSG_ALLOC’ which is a convenient wrapper
for ke_msg_alloc(). In order to store the message data conveniently, the pointer
of the element ‘param’ in the message structure will be returned. Second, the
user will fill the message parameter which pointer is returned by ke_msg_alloc().

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 13 of 113

Third, call ke_msg_send() to pushed message into the kernel ‘s message queue.
The function ke_msg_send() will signal the kernel that there is at least one
message in message queue by setting message exist flag.

Figure 7 Message Allocation and Transmission

The following table lists a brief description of all message APIs. For detailed
usage, please refer to the file ‘ke_msg.h’ in the example.

Table 2 API for Message Allocation and Transmission

API Description

ke_param2msg Convert a parameter pointer to a message pointer.

ke_msg2param Convert a message pointer to a parameter pointer.

ke_msg_alloc This function allocates memory for a message that has
to be sent. The memory is allocated dynamically on the
heap and the length of the variable parameter structure
has to be provided in order to allocate the correct size.

ke_msg_send Send a message previously allocated with any
ke_msg_alloc()-like functions. The kernel will take care
of freeing the message memory. Once the function
havs been called, it is not possible to access its data
anymore as the kernel may have copied the message
and freed the original memory.

ke_msg_send_front Send a message and insert at the front of message
queue.

ke_msg_send_basic Send a message that has a zero length parameter
member. No allocation is required as it will be done
internally.

ke_msg_forward Forward a message to another task by changing its
destination and source tasks IDs.

ke_msg_free Free allocated message.

1: Source task allocates and fills

the message

Message

Pool

Free

Message

2: Source task pushes the

message to kernel message

queue
New

Message

Msg0 Msg1 Msg2
New

Msg

First Msg

NULL

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 14 of 113

2.3.4 Tasks
One task is defined by its task type and task descriptor. The task type is a
constant value defined by the kernel and this value is unique for each task. The
Table 3 lists all available task types in the QN902x. Only the profile task type can
be arranged to the profile determined by application design, the other task types
are fixed.

Table 3 Task Type Definition

Task Type Description

0~3 Link layer tasks

4~5 L2CAP tasks

6~7 SMP tasks

8~10 ATT tasks

11 GATT task

12 GAP task

13~20 Profile tasks

21 Application task

Each task has its own state machine and message processing handler that are
saved in the task descriptor. The kernel keeps a pointer to each task descriptor
that is used to handle the scheduling of the messages transmitted from a task to
another one.
The structure of task descriptor contains:

state_handler The messages that it is able to receive in each of its
states
default_handler The messages that it is able to receive in the
default state
state The current state of each instance of the task
state_max The number of states of the task
idx_max The number of instances of the task

The proximity reporter is used as an example to illustrate how to construct a task
descriptor. The following figure is the state machine of proximity reporter task.

PROXR

DISABLED

PROXR IDLE
PROXR

CONNECTED

PROXR_CREATE_DB_REQ

PROXR_ENABLE_REQ

GAP_DISCON_CMP_EVT

GATT_WRITE_CMD_IND

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 15 of 113

From the above figure Proximity Reporter task has three states. The arrows
show the messages that will be processed in each state. The following snippet is
created based on state machine.
state_handler

/// Disabled State handler definition.
const struct ke_msg_handler proxr_disabled[] =
{
 {PROXR_CREATE_DB_REQ, (ke_msg_func_t)
proxr_create_db_req_handler },
};

/// Idle State handler definition.
const struct ke_msg_handler proxr_idle[] =
{
 {PROXR_ENABLE_REQ, (ke_msg_func_t) proxr_enable_req_handler },
};

/// Connected State handler definition.
const struct ke_msg_handler proxr_connected[] =
{
 {GATT_WRITE_CMD_IND, (ke_msg_func_t)
gatt_write_cmd_ind_handler},
};

/// Specifies the message handler structure for every input state.
const struct ke_state_handler proxr_state_handler[PROXR_STATE_MAX] =
{
 [PROXR_DISABLED] = KE_STATE_HANDLER(proxr_disabled),
 [PROXR_IDLE] = KE_STATE_HANDLER(proxr_idle),
 [PROXR_CONNECTED] = KE_STATE_HANDLER(proxr_connected),
};

default_handler
The message GAP_DISCON_CMP_EVT is put in the default state handler. That
means this message can be processed in any states.

/// Default State handlers definition
const struct ke_msg_handler proxr_default_state[] =
{
 {GAP_DISCON_CMP_EVT, (ke_msg_func_t) gap_discon_cmp_evt_handler},

};

/// Specifies the message handlers that are common to all states.
const struct ke_state_handler proxr_default_handler =
KE_STATE_HANDLER(proxr_default_state);

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 16 of 113

state

/// Defines the place holder for the states of all the task instances.
ke_state_t proxr_state[PROXR_IDX_MAX];

state_max

/// Possible states of the PROXR task
enum
{
 /// Disabled State
 PROXR_DISABLED,
 /// Idle state
 PROXR_IDLE,
 /// Connected state
 PROXR_CONNECTED,

 /// Number of defined states.
 PROXR_STATE_MAX
};

idx_max
Proximity Reporter which works as a server role is only one instance.

/// Maximum number of Proximity Reporter task instances
#define PROXR_IDX_MAX (1)

PROXR task descriptor

// Register PROXR task into kernel
void task_proxr_desc_register(void)
{
 struct ke_task_desc task_proxr_desc;

 task_proxr_desc.state_handler = proxr_state_handler;
 task_proxr_desc.default_handler=&proxr_default_handler;
 task_proxr_desc.state = proxr_state;
 task_proxr_desc.state_max = PROXR_STATE_MAX;
 task_proxr_desc.idx_max = PROXR_IDX_MAX;

 task_desc_register(TASK_PROXR, task_proxr_desc);
}

The following Table 4 lists a brief description of all task APIs. For detailed usage,
please refer to the file ‘ke_task.h’.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 17 of 113

Table 4 API for Task Management

API Description

ke_state_get Retrieve the state of a task.

ke_state_set Set the state of the task identified by its task id.

ke_msg_discard Generic message handler to consume message without
handling it in the task.

ke_msg_save Generic message handler to return KE_MSG_SAVED
without handling it in the task.

task_desc_register Register task description into kernel.

2.3.5 Message Scheduler
The message scheduler provides a mechanism to transmit one or more
messages to a task. The message scheduler is called in one event handler. The
following snippet is a pseudo code of message scheduler.

void ke_task_schedule(void)
{
 while(1)
 {
 // Get a message from the queue
 msg = ke_queue_pop(queue_msg);

 if (msg == NULL) break;

 // Retrieve a pointer to the task instance data
 func = ke_task_handler_get(msg->id, msg->dest_id);

 // Call the message handler
 if (func != NULL)
 {
 msg_status = func(msg->id, ke_msg2param(msg), msg->dest_id,
msg->src_id);
 }
 else
 {
 msg_status = KE_MSG_CONSUMED;
 }

 switch (msg_status)
 {
 case KE_MSG_CONSUMED:
 // Free the message
 ke_msg_free(msg);
 break;

 case KE_MSG_NO_FREE:
 break;

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 18 of 113

 case KE_MSG_SAVED:
 // The message has been saved
 // Insert it at the end of the save queue
 ke_queue_push(queue_saved, msg);
 break;
 } // switch case
 }
}

When the scheduler is executed, it checks if the message queue is not empty,
finds the corresponding message handler, and executes the handler. The
scheduler will take care of freeing processed message. If the message cannot be
consumed by the destination task at this time, the message handler will return
status ‘KE_MSG_SAVED’. Then the scheduler holds this message in the saved
message queue until the task state changes. When one task state is changed,
the kernel looks for all of the messages destined to this task that have been
saved and inserts them into message queue again. These messages will be
scheduled at the next scheduling round.

Figure 8 Scheduling Algorithm

The following Table 5 lists a brief description of all scheduler APIs. For detailed
usage, please refer to the document ‘QN902x API Programming Guide’.

Table 5 API for Scheduler

API Description

ke_schedule Run scheduler.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 19 of 113

2.3.6 Timer Scheduling
The kernel provides timer services including start and stop timer. The timer runs
by absolute time counter. Timers are implemented by the mean of a reserved
queue of delayed messages, and timer messages do not have parameters.
Time is defined as duration. The minimal step is 10ms. The minimal duration is
20ms and the maximal duration is 300s.

Figure 9 Timer Setting Procedure

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 20 of 113

Figure 10 Timer Expiry Procedure

The following Table 6 lists a brief description of all timer APIs. For detailed
usage, please refer to the document ‘QN902x API Programming Guide’.

Table 6 Timer API Definition

API Description

ke_timer_set The function first cancel the timer if it is already exist, then
it creates a new one. The timer can be one-shot or periodic,
i.e. it will be automatically set again after each trigger.

ke_timer_clear This function search for the timer identified by its id and its
task id. If found it is stopped and freed, otherwise an error
message is returned.

2.3.7 Include Files
In order to use the services offered by the kernel the user should include the
following header files:
Table 7 Include Files

File Description

ke_msg.h Contains the definition related to message scheduling
and the primitives called to allocate, send or free a
message.

ke_task.h Contains the definition related to kernel task
management

ke_timer.h Contains the primitives called to create or delete a
timer.

ble.h Contains the definition related to scheduler.

lib.h Contains the scheduler declaration.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 21 of 113

3. BLE Protocol Stack

The BLE protocol stack architecture is illustrated in following Figure 11.

Figure 11 BLE Stack Architecture

3.1 Link Layer (LL)
Link Layer lies above the physical layer and interfaces with host layer protocols.
Link layer is in charge of following features.

• Packet scheduling over the air.

• Link establishment and maintenance. The LE LL transport and
L2CAP logical link between two devices is set up using the Link Layer
Protocol. The Link Layer provides orderly delivery of data packets. No
more than one Link Layer channel exists between any two devices. The
LE LL always provides the impression of full-duplex communication
channels. The LE LL performs data integrity checking and resending data
until they are successfully acknowledged or a timeout occurs. The LE LL
also maintains the link supervision timeout.

• Frequency hopping calculation.

• Packet construction and recovery. The LE LL follows the little
endian format to create the packet sent over the air. Only the CRC is
transmitted by most significant bit first.

• Encryption and decryption.

• Link Control procedures (connection update, channel map update,
encryption, feature exchange, version exchange, and termination).

• Device filtering policy applied based on device white list.

Link Layer has five possible states which are controlled by a state machine
describing the operation of the link layer. The Link Layer state machine allows
only one state to be active at a time.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 22 of 113

Figure 12 LL State Diagram

• Standby
Device has no activity. Do not transmit or receive any packet.

• Advertising
Device sends advertising packets
Device can receive scan request, and return scan response
Device can accept connection request

• Scanning
Device waits to receive advertising packets
Device can respond with scan request, and wait for scan response

• Initiating
Device waits to receive advertising packet from a specific device, and responds
with connection request

• Connection
Device exchanges data. Two roles are defined, master role and slave role. When
entered from the Initiating State, the Connection State shall be in the Master
Role. When entered from the Advertising State, the Connection State shall be in
the Slave Role.

In Wireless SoC mode and Network Processor mode, the application shall not
exchange message with link layer directly. In controller mode, the application in
the host processor could use standard HCI interface to communication with link
layer. For details about controller mode, please refer to chapter 9.

3.2 Logical Link Control and Adaptation Protocol (L2CAP)
L2CAP lies above the link layer and interfaces with higher layer protocols.
L2CAP in BLE operates only in basic mode and uses fixed channels. In the fixed
channel type, only BLE signaling, security management protocol and Attribute
protocol channels shall only be used.

L2CAP Layer is in charge of following features:

• Provide connection-oriented data services to upper layer protocols.

• Provide a mean to set or change the connection parameters of the data
link.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 23 of 113

• Support protocol and/or channel multiplexing (fixed channels – ATT, SMP,
SIGNAL).

• The application shall not exchange message with link layer directly.

3.3 Security Manager Protocol (SMP)
QN902x has integrated AES-128 security coprocessor internally. The Security
Manager Protocol (SMP) is in charge of BLE secure communication issues
including encrypted links, identity or private addresses resolution and signed
unencrypted messages. The functionalities of the SMP are enforced by clearly
specified pairing and key distribution methods, and the protocol that is to be
respected for their correct implementation.

• Interface with APP
The Application is keeper of keys which are necessary during the
pairing/encrypting procedure, so all key requests are received and answered by
the Application. Messages exchanged between the SMP and the APP list in the
following table. The SMP tasks have handlers for these messages sent by APP.
The APP task should implement handlers for these message sent by SMP. All of
these message and parameter structures are defined in smpc_task.h and
smpm_task.h. Please refer to the document ‘QN902x API Programming Guide’
for more details.

Table 8 SMPM Message

Message Direction Description Parameters Response

SMPM_SET_
KEY_REQ

APP 
SMPM

Set the device
keys that are
unique for the
device and not
connection
dependent.

struct
smpm_set_ke
y_req

SMPM_SET_KEY
_CFM

SMPM_SET_
KEY_CFM

SMPM
 APP

Respond to the
Application to its
SMPM_SET_KEY
_REQ, informing it
that saving the
key values was
done.

struct
smpm_set_ke
y_cfm

Table 9 SMPC Message

Message Direction Description Parameters Response

SMPC_STAR
T_ENC_REQ

APP 
SMPC

Encrypt a link with
a peer using
known bonding
information from a
previous
connection when
pairing and
bonding occurred.

struct
smpc_start_
enc_req

SMPC_SEC_ST
ARTED_IND

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 24 of 113

SMPC_SEC_
STARTED_IN
D

SMPC 
APP

Response the
status of a security
procedure.

struct
smpc_sec_st
arted_ind

SMPC_TK_R
EQ_IND

SMPC 
APP

Request for TK. struct
smpc_tk_req
_ind

SMPC_TK_REQ
_RSP

SMPC_TK_R
EQ_RSP

APP 
SMPC

Response for TK
request.

struct
smpc_tk_req
_rsp

SMPC_LTK_
REQ_IND

SMPC 
APP

Request for LTK. struct
smpc_ltk_req
_ind

SMPC_LTK_RE
Q_RSP

SMPC_LTK_
REQ_RSP

APP 
SMPC

Response for LTK
request.

struct
smpc_ltk_req
_rsp

SMPC_IRK_R
EQ_IND

SMPC 
APP

Request for IRK. struct
smpc_irk_re
q_ind

SMPC_IRK_RE
Q_RSP

SMPC_IRK_R
EQ_RSP

APP 
SMPC

Response for IRK
request.

struct
smpc_irk_re
q_rsp

SMPC_CSRK
_REQ_IND

SMPC 
APP

Request for
CSRK.

struct
smpc_csrk_r
eq_ind

SMPC_CSRK_R
EQ_RSP

SMPC_CSRK
_REQ_RSP

APP 
SMPC

Response for
CSRK request.

struct
smpc_csrk_r
eq_rsp

SMPC_KEY_I
ND

SMPC 
APP

Indicate the value
of received
bonding
information from
peer device.

struct
smpc_key_in
d

SMPC_CHK_
BD_ADDR_R
EQ_IND

SMPC 
APP

Request to check
if the address
exists in
application.

struct
smpc_chk_b
d_addr_req

SMPC_CHK_BD
_ADDR_REQ_R
SP

SMPC_CHK_
BD_ADDR_R
EQ_RSP

APP 
SMPC

Inform that the
Bluetooth address
that was
requested to be
checked has been
found or not.

struct
smpc_chk_b
d_addr_rsp

SMPC_TIME
OUT_EVT

SMPC 
APP

SMP timeout
event. Inform
application to
disconnect.

struct
smpc_timeou
t_evt

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 25 of 113

SMPC_NC_IN
D

SMPC 
APP

Indicate the
numeric value for
comparison.

struct
smpc_nc_ind

SMPC_NC_RSP

SMPC_NC_R
SP

APP 
SMPC

To accept or reject
the NC pairing
procedure.

struct
smpc_nc_rsp

SMPC_OOB_
REQ_IND

SMPC 
APP

Indicate the
confirm and
random value
generated from
SMPC and wait for
the response.

struct
smpc_oob_r
eq_ind

SMPC_OOB_RE
Q_RSP

SMPC_OOB_
REQ_RSP

APP 
SMPC

Send the peer
confirm and rand
values to SMPC if
local device can
get those values
via OOB otherwise
just accept or
reject the pairing
procedure.

struct
smpc_oob_r
sp

3.4 Attribute Protocol (ATT)
Attribute Protocol lies above L2CAP and interfaces with L2CAP and GATT. The
Attribute Protocol is used to read and write the attribute values from an attribute
database of a peer device, called the attribute server. To do this, firstly the list of
attributes in the attribute database on the attribute server shall be discovered.
Once the attributes have been found, they can be read and written as required
by the attribute client. The application shall not exchange message with Attribute
Protocol directly.

3.5 Generic Attribute Profile (GATT)
The GATT profile is designed to be used by an application or other LE profiles,
so that a client can communicate with a server. The server contains a number of
attributes, and the GATT Profile defines how to use the Attribute Protocol to
discover, read, write and obtain indications of these attributes, as well as
configuring broadcast of attributes.

The GATT of QN902x has complete and substantial support of the LE GATT
(Core 4.0):

• Two Roles–client and server

• Configuration Exchange

• Service Discovery

• Characteristic Discovery

• Reading Characteristic

• Writing Characteristic

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 26 of 113

• Indicating Characteristic

• Notifying Characteristic

• Profile Interface

3.5.1 Interface with APP/PRF
Messages exchanged between the GATT and the APP/PRF list in the following
tables. The GATT task has handlers for these messages sent by APP/PRF. The
APP/PRF task should implement handlers for these message sent by GATT. All
of these messages and parameter structures are defined in gatt_task.h.
Moreover it is recommended that the users check the document ‘QN902x API
Programming Guide’ for GATT APIs. This document can further provide
information on GATT interface (e.g. data structures, message calling).

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 27 of 113

3.5.2 Generic Interface
The generic GATT interface includes commands and events common to GATT
server and client.

Table 10 Generic Interface Message

Message Direction Description Parameters Response
GATT_CMP_EVT GATT 

PRF/APP
Complete event for
GATT operation.
This is the generic
complete event for
GATT operations.

struct
gatt_cmp_ev
t

GATT_TIMEOUT_
EVT

GATT 
PRF/APP

Timeout notification.

GATT_READ_ATT
RIBUTE_REQ

PRF/APP
 GATT

Read an attribute
element in local
attribute server
database.

struct
gatt_read_att
ribute_req

GATT_READ_
ATTRIBUTE_C
MP_EVT

GATT_READ_ATT
RIBUTE_CMP_EV
T

GATT 
PRF/APP

Complete event for
read an attribute
element in local
attribute server
database.

struct
gatt_read_att
ribute_cmp_
evt

GATT_WRITE_AT
TRIBUTE_REQ

PRF/APP
 GATT

Write an attribute
element in local
attribute server
database.

struct
gatt_write_at
tribute_req

GATT_WRITE
ATTRIBUTE
CMP_EVT

GATT_WRITE_AT
TRIBUTE_CMP_E
VT

GATT 
PRF/APP

Complete event for
write an attribute
element in local
attribute server
database.

struct
gatt_write_at
tribute_cmp_
evt

GATT_RESOURC
E_ACCESS_REQ

GATT 
APP

Inform upper layer
that a peer device
request access of
database resources.

struct
gatt_resourc
e_access_re
q

GATT_RESOU
RCE_ACCESS
_RSP

GATT_RESOURC
E_ACCESS_RSP

APP 
GATT

When the response
is received by
GATT, peer device
is able to access
attribute database.

struct
gatt_resourc
e_access_rs
p

3.5.3 Configuration
This is intended for setting the Maximum Transmission Unit (MTU) of the link for
GATT transactions. The client and the server will exchange this information to
inform the peer of their sending bandwidth.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 28 of 113

Table 11 Configuration Message

Message Directio
n

Description Parameters Response

GATT_EXC_MT
U_REQ

APP 
GATT

Inform the peer
device of the MTU
size. This is an
optional GATT
transaction to
make. If the MTU is
set to the default
value (23 bytes)
specified in the
specification, there
is no need to send
this command.

struct
gatt_exc_m
tu_req

3.5.4 Service Discovery
Discovery of services exposed by the GATT server to the GATT client is an
important interface for the GATT. Once the primary services are discovered,
additional information can be accessed including characteristic and relationship.
The GATT provides means for the user to discover the services by group type
and by UUID.
Table 12 Service Discovery Message

Message Direction Description Parameters Response

GATT_DISC_
SVC_REQ

PRF/APP
 GATT

Discover services
exposed by peer
device in its
attribute database.

struct
gatt_disc_s
vc_req

GATT_DISC_
SVC_ALL_C
MP_EVT
GATT_DISC_
SVC_ALL_12
8_CMP_EVT
GATT_DISC_
SVC_BY_UUI
D_CMP_EVT
GATT_DISC_
SVC_INCL_C
MP_EVT
GATT_DISC_
CMP_EVT

GATT_DISC_
SVC_ALL_CM
P_EVT

GATT 
PRF/APP

Complete event for
discovery of all
services. This
event will contain
the list of services
discovered from
the attribute
database of the
peer.

struct
gatt_disc_s
vc_all_cmp
_evt

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 29 of 113

GATT_DISC_
SVC_ALL_12
8_CMP_EVT

GATT 
PRF/APP

Complete event for
discovery all
services using 128-
bit UUID.

struct
gatt_disc_s
vc_all_128_
cmp_evt

GATT_DISC_
SVC_BY_UUI
D_CMP_EVT

GATT 
PRF/APP

Complete event for
discovery of a
specific service
identified by UUID.

struct
gatt_disc_s
vc_by_uuid
_cmp_evt

GATT_DISC_
SVC_INCL_C
MP_EVT

GATT 
PRF/APP

Complete event for
discovery of
included services.
The incl_list is
represented in a
union list because
an entry in the
include list may be
represented in a
128-bit UUID

struct
gatt_disc_s
vc_incl_cm
p_evt

GATT_DISC_
CMP_EVT

GATT 
PRF/APP

Complete event for
GATT discovery
operation.

struct
gatt_disc_c
mp_evt

3.5.5 Characteristic Discovery
The GATT of QN902x provides the means to discover characteristic present in
the Attribute database of the GATT server. The search interface can take
different parameters, giving the user the ability to tailor its characteristic search.
Some of these parameters include range handles, UUID search pattern and all
characteristic group discoveries.

Table 13 Characteristic Discovery Message

Message Direction Description Parameters Response

GATT_DISC_
CHAR_REQ

PRF/APP
 GATT

Discover
characteristics
exposed by peer
device in its
attribute database.

struct
gatt_disc_c
har_req

GATT_DISC_
CHAR_ALL_
CMP_EVT/G
ATT_DISC_C
HAR_ALL_12
8_CMP_EVT/
GATT_DISC_
CHAR_BY_U
UID_CMP_E
VT/
GATT_DISC_
CHAR_BY_U
UID_128_CM
P_EVT

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 30 of 113

GATT_DISC_
CHAR_ALL_C
MP_EVT

GATT 
PRF/APP

Complete event for
discovery all
characteristics
exposed by peer
device in its
attribute database.

struct
gatt_disc_c
har_all_cm
p_evt

GATT_DISC_
CHAR_ALL_1
28_CMP_EVT

GATT 
PRF/APP

Complete event for
discovery all
characteristics
using 128-bit UUID.

struct
gatt_disc_c
har_all_128
_cmp_evt

GATT_DISC_
CHAR_BY_U
UID_CMP_EV
T

GATT 
PRF/APP

Complete event for
discover specific
characteristics
exposed by peer
device in its
attribute database.

struct
gatt_disc_c
har_by_uui
d_cmp_evt

GATT_DISC_
CHAR_BY_U
UID_128_CM
P_EVT

GATT 
PRF/APP

Complete event for
discovery
characteristic by
UUID.

struct
gatt_disc_c
har_by_uui
d_128_cmp
_evt

GATT_DISC_
CHAR_DESC
_REQ

PRF/APP
 GATT

Discover all
characteristics
within a given
range of element
handle.

struct
gatt_disc_c
har_desc_r
eq

GATT_DISC_
CHAR_DESC
_CMP_EVT/
GATT_DISC_
CHAR_DESC
_128_CMP_E
VT

GATT_DISC_
CHAR_DESC
_CMP_EVT

GATT 
PRF/APP

Complete event for
discovery of
characteristic
descriptors within a
specified range.

struct
gatt_disc_c
har_desc_c
mp_evt

GATT_DISC_
CHAR_DESC
_128_CMP_E
VT

GATT 
PRF/APP

Complete event for
discovery of
characteristic
descriptors within a
specified range.
128-bit UUID is
used.

struct
gatt_disc_c
har_desc_1
28_cmp_ev
t

3.5.6 Read and Write Characteristics
The GATT of QN902x provides a way for a peer characteristic to be read and
written. More than just reading and writing, it has a ready interface to modify or
read characteristic with different format or length.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 31 of 113

Table 14 Read and Write Message

Message Direction Description Parameters Response

GATT_READ_
CHAR_REQ

PRF/APP
 GATT

Read a
characteristic from
peer attribute
database.

struct
gatt_read_c
har_req

GATT_READ
_CHAR_RES
P
GATT_READ
_CHAR_LON
G_RESP
GATT_READ
_CHAR_MUL
TI_RESP
GATT_READ
_CHAR_LON
G_DESC_RE
SP

GATT_READ_
CHAR_RESP

GATT 
PRF/APP

Read characteristic
response. This will
contain the value of
the attribute handle
element which is
being queried from
the read
characteristic
request.

struct
gatt_read_c
har_resp

GATT_READ_
CHAR_LONG_
RESP

GATT 
PRF/APP

Read long
characteristic
response.

struct
gatt_read_c
har_long_re
sp

GATT_READ_
CHAR_MULT_
RESP

GATT 
PRF/APP

Read multiple
characteristics
response.

struct
gatt_read_c
har_mult_re
sp

GATT_READ_
CHAR_LONG_
DESC_RESP

GATT 
PRF/APP

Read long
characteristic
descriptor
response.

struct
gatt_read_c
har_long_d
esc_resp

GATT_WRITE_
CHAR_REQ

PRF/APP
 GATT

Write a
characteristic to
peer attribute
database.

struct
gatt_write_c
har_req

GATT_WRITE
_CHAR_RES
P

GATT_WRITE_
CHAR_RESP

GATT 
PRF/APP

Write characteristic
response.

struct
gatt_write_c
har_resp

GATT_WRITE_
RELIABLE_RE
Q

PRF/APP
 GATT

Write reliable
characteristic to
peer attribute
database.

struct
gatt_write_r
eliable_req

GATT_WRITE
RELIABLE
RESP

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 32 of 113

GATT_WRITE_
CHAR_RELIAB
LE_RESP

GATT 
PRF/APP

Write reliable
characteristic
response.

struct
gatt_write_r
eliable_resp

GATT_CANCE
L_WRITE_CHA
R_RESP

GATT 
PRF/APP

Cancel write
characteristic
response.

struct
gatt_cancel
_write_char
_resp

GATT_EXECU
TE_WRITE_CH
AR_REQ

PRF/APP
 GATT

Send an attribute
execute reliable
write request to
peer. This is used
when automatic
sending of execute
write reliable to
peer is turned off.
The command can
either ask the peer
to execute all the
reliable writes
performed earlier,
or cancel the write
operation.

struct
gatt_execut
e_write_cha
r_req

GATT_CMP_
EVT

GATT_WRITE_
CMD_IND

ATTS 
PRF

Write command
indication.

struct
gatt_write_c
md_ind

3.5.7 Notify and Indication Characteristics
Characteristics can be notified and indicated. These actions originate from GATT
server. Notification would not expect attribute protocol layer acknowledgement.
Unlike indication would expect a confirmation from GATT client.
Table 15 Notify and Indication Message

Message Direction Description Parameters Response

GATT_NOTIFY
_REQ

PRF/APP
 GATT

Notify
characteristic. The
GATT server does
not wait for any
attribute protocol
layer
acknowledgement.

struct
gatt_notify_
req

GATT_NOTIF
Y_CMP_EVT

GATT_NOTIFY
_CMP_EVT

GATT 
PRF/APP

Complete event for
notification.

struct
gatt_notify_
cmp_evt

GATT_INDICAT
E_REQ

PRF/APP
 GATT

Indicate
characteristic.

struct
gatt_indicat
e_req

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 33 of 113

GATT_HANDL
E_VALUE_NOT
IF

GATT 
PRF/APP

Inform that a
notification is
received.

struct
gatt_handle
_value_notif

GATT_HANDL
E_VALUE_IND

GATT 
PRF/APP

Inform that an
indication is
received.

struct
gatt_handle
_value_ind

GATT_HANDL
E_VALUE_CFM

GATT 
PRF/APP

Inform that a
confirmation is
received.

struct
gatt_handle
_value_cfm

3.5.8 Profile Interface
Interface for the profiles or higher layer is necessary to have efficient connection
to GATT.

Table 16 Profile Interface Message

Message Direction Description Parameters Response

GATT_SVC_RE
G2PRF_REQ

PRF/APP
 GATT

Register a SVC for
indications,
notifications or
confirms forward

struct
gatt_svc_re
g2prf_req

GATT_SVC_U
NREG2PRF_R
EQ

PRF/APP
 GATT

Unregister a SVC
for indications,
notifications

struct
gatt_svc_un
reg2prf_req

3.6 Generic Access Profile (GAP)
The Generic Access Profile (GAP) defines the basic procedures related to
discovery of Bluetooth devices and link management aspects of connecting to
Bluetooth devices. Furthermore, it defines procedures related to the use of
different LE security levels. This profile describes common format requirements
for parameters accessible on the user interface level.

The GAP of QN902x has complete and substantial support of the LE GAP (Core
4.2):

• Four Roles–central, peripheral, broadcaster and scanner

• Broadcast and Scan

• Modes–Discovery, Connectivity, Bonding

• Security with Authentication, Encryption and Signing

• Link Establishment and Detachment

• Random and Static Addresses

• Privacy Features

• Pairing and Key Generation

• BR/EDR/LE combination support ready

• Secure connection

The GAP of QN902x supports all defined GAP roles.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 34 of 113

• Broadcaster
This is a device that sends advertising events, and shall have a transmitter and
may have a receiver. This is also known as Advertiser.

• Observer
This is a device that receives advertising events, and shall have a receiver and
may have a transmitter. This is also known as Scanner.

• Peripheral
This is any device that accepts the establishment of an LE physical link using
any of the specified connection establishment procedure in the Core
specification. When the device is operating on this role, it will be assumed as the
Slave role of the link layer connection state. This device shall have both a
transmitter and a receiver.

• Central
This is any device that initiates the establishment of a link. It shall assume the
Master role of the link layer connection state. Similarly with the peripheral, this
device shall have both a transmitter and a receiver.

3.6.1 Interface with APP
Messages exchanged between the GAP and the APP are listed in the following
table. The GAP task has handlers for these messages sent by APP. The APP
task should implement handlers for these messages sent by GAP. All of these
messages and parameter structures are defined in gap_task.h. Moreover it is
recommended that the user check the document ‘QN902x API Programming
Guide’ for GAP APIs. This document can further provides information on GAP
interface (e.g. data structures, message calling).

3.6.2 Generic Interface
The generic GAP interface includes commands which are device setup and
information gathering related control. These commands are available for any
BLE GAP role.

Table 17 Generic Interface Message

Message Directi
on

Description Parameters Respons
e

GAP_RESET_REQ APP 
GAP

Reset the BLE stack
including the link
layer and the host.

None GAP_RE
SET_RE
Q_CMP_
EVT

GAP_RESET_REQ
_CMP_EVT

GAP 
APP

Complete event for
device driver.

struct
gap_event_co
mmon_cmd_c
omplete

GAP_SET_DEVNA
ME_REQ

APP 
GAP

Set the device name
as seen by remote
device.

struct
gap_set_devn
ame_req;

GAP_SE
T_DEVN
AME_RE
Q_CMP_
EVT

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 35 of 113

GAP_SET_DEVNA
ME_REQ_CMP_EV
T

GAP 
APP

Complete event for
set the device name.

struct
gap_event_co
mmon_cmd_c
omplete

GAP_READ_VER_
REQ

APP 
GAP

Read the version
information of the
BLE stack.

None GAP_RE
AD_VER
_REQ_C
MP_EVT

GAP_READ_VER_
REQ_CMP_EVT

GAP 
APP

Complete event for
read the version
information of the
BLE stack.

struct
gap_read_ver
_req_cmp_evt

GAP_READ_BDAD
DR_REQ

APP 
GAP

Read the Bluetooth
address of the
device.

None GAP_RE
AD_BDA
DDR_RE
Q_CMP_
EVT

GAP_READ_BDAD
DR_REQ_CMP_EV
T

GAP 
APP

Complete event for
read the Bluetooth
address of the
device.

struct
gap_read_bda
ddr_req_cmp_
evt

GAP_SET_SEC_RE
Q

APP 
GAP

Set security level of
the device. It is
advisable to set the
security level as
soon as the device
starts.

struct
gap_set_sec_r
eq

GAP_SE
T_SEC_
REQ_CM
P_EVT

GAP_SET_SEC_RE
Q_CMP_EVT

GAP 
APP

Complete event for
set security level.

Struct
gap_set_sec_r
eq_cmp_evt

GAP_READY_EVT GAP 
APP

Inform the APP that
the GAP is ready.

None

GAP_ADD_KNOWN
_ADDR_IND

GAP 
APP

Indicate address to
remember as known
device.

struct
gap_add_kno
wn_addr_ind

3.6.3 Device Mode Setting
The mode setting interface is used to put the device in a GAP specific mode.

Table 18 Device Mode Setting Message

Message Directi
on

Description Parameters Response

GAP_SET_MODE
_REQ

APP 
GAP

Set the device
mode.

struct
gap_set_mode_
req

GAP_SET_M
ODE_REQ_C
MP_EVT

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 36 of 113

GAP_SET_MODE
_REQ_CMP_EVT

GAP 
APP

Complete event
for set mode
request.

struct
gap_event_com
mon_cmd_com
plete

3.6.4 White List Manipulation
The white list manipulation interface pertains to commands that control the white
list components and information inside the BLE device. Control includes adding
and removing of the addresses in the lists –public and private. Reading of white
list size is included in this sub group.

Table 19 White List manipulation Message

Message Directio
n

Description Parameters Response

GAP_LE_RD_
WLST_SIZE_R
EQ

APP 
GAP

Read the white
list size of the
local device.

None GAP_LE_RD_W
LST_SIZE_CM
D_CMP_EVT

GAP_LE_RD_
WLST_SIZE_C
MD_CMP_EVT

GAP 
APP

Complete event
for read the
white list size of
the local
device.

struct
gap_rd_wlst_siz
e_cmd_complet
e

GAP_LE_ADD
_DEV_TO_WL
ST_REQ

APP 
GAP

Add device to
white list.

struct
gap_le_add_dev
_to_wlst_req

GAP_LE_ADD_
DEV_TO_WLST
_REQ_CMP_EV
T

GAP_LE_ADD
_DEV_TO_WL
ST_REQ_CMP
_EVT

GAP 
APP

Complete event
for add device
to white list.

Struct
gap_event_com
mon_cmd_comp
lete

GAP_LE_RMV
_DEV_FRM_W
LST_REQ

APP 
GAP

Remove device
from white list.

struct
gap_le_rmv_dev
_frm_wlst_req

GAP_LE_RMV_
DEV_FRM_WL
ST_REQ_CMP_
EVT

GAP_LE_RMV
_DEV_FRM_W
LST_REQ_CM
P_EVT

GAP 
APP

Complete event
for remove
device from
white list

Struct
gap_event_com
mon_cmd_comp
lete

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 37 of 113

3.6.5 LE Advertisement and Observation
LE advertising mode allows a device to send advertising data in a unidirectional
connectionless manner. In a similar fashion, the LE scanning mode allows a
device to receive advertising data. For a broadcaster, scanning is not possible.
Advertising on the other hand is not possible for a Scanner. Central and
Peripheral devices shall support both advertising and scanning features.

Table 20 Advertisement and Observation Message

Message Direction Description Parameters Response

GAP_ADV_
REQ

APP 
GAP

Start or stop data
broadcast.

struct
gap_adv_req

GAP_ADV_RE
Q_CMP_EVT

GAP_ADV_
REQ_CMP
_EVT

GAP 
APP

Complete event for
start or stop data
broadcast.

struct
gap_event_com
mon_cmd_comp
lete

GAP_SCA
N_REQ

APP 
GAP

Set scanning
parameters and
start or stop
observing.

struct
gap_scan_req

GAP_SCAN_R
EQ_CMP_EVT

GAP_SCA
N_REQ_C
MP_EVT

GAP 
APP

Complete event for
set scanning
parameters and
start or stop
observing.

struct
gap_event_com
mon_cmd_comp
lete

GAP_ADV_
REPORT_
EVT

GAP 
APP

Indicate
advertising report
and data.

struct
gap_adv_report
_evt

3.6.6 Name Discovery and Peer Information
The name discovery procedure is used to retrieve the name of the peer device.
Normally this is performed when the name of the device is not acquired either
from limited discovery procedure or general discovery procedure. Once the name
of the peer device is discovered by GATT client of the local device (read by
Characteristic UUID), the connection will be terminated.

Table 21 Name Discovery and Peer Information Message

Message Direct
ion

Description Parameters Response

GAP_NA
ME_REQ

APP

GAP

Find out the user
friendly name of
peer device.

struct
gap_name_r
eq

GAP_NAME_REQ_C
MP_EVT

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 38 of 113

GAP_NA
ME_REQ
_CMP_E
VT

GAP

APP

Complete event for
name request. The
name of the
romote device will
be returned.

struct
gap_name_r
eq_cmp_evt

GAP_RD
_REM_V
ER_INFO
_REQ

APP

GAP

Read version
information of peer
device.

struct
gap_rd_rem
_ver_info_re
q

GAP_RD_REM_VER
_INFO_CMP_EVT

GAP_RD
_REM_V
ER_INFO
_CMP_E
VT

GAP

APP

Complete event for
read remote
version
information.

struct
gap_rd_rem
_ver_info_c
mp_evt

GAP_LE_
RD_REM
OTE_FEA
T_REQ

APP

GAP

Read remote
features.

struct
gap_le_rd_r
em_used_fe
ats_req

GAP_LE_RD_REMO
TE_FEAT_REQ_CMP
_EVT

GAP_LE_
RD_REM
OTE_FEA
T_REQ_C
MP_EVT

GAP

APP

Complete event for
read remote
features.

struct
gap_le_rd_r
emote_feat_
req_cmp_evt

3.6.7 Device Discovery
This device discovery interface searches for devices within range, with
consideration on specific parameters. There are three types of inquiry:

• 0x00 General Inquiry - The advertising data must have the flag option and
its bit set to GEN DISC

• 0x01 Limited Inquiry - The advertising data must have the flag option and
its bit set to LIM DISC

• 0x02 Known Device Inquiry - Received advertising data will be filtered by
GAP and will return to the upper layer only those devices which are known and
recognized by the device.

Table 22 Device Discovery Message

Message Directi
on

Description Parameters Response

GAP_DE
V_INQ_R
EQ

APP

GAP

Search
devices within
range.

struct
gap_dev_inq_req

GAP_DEV_INQ_R
EQ_CMP_EVT
GAP_DEV_INQ_R
ESULT_EVT
GAP_KNOWN_DE
V_DISC_RESULT_
EVT

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 39 of 113

GAP_DE
V_INQ_R
EQ_CMP
_EVT

GAP

APP

Complete
event of
device search.

struct
gap_event_comm
on_cmd_complet
e

GAP_DE
V_INQ_R
ESULT_E
VT

GAP

APP

Return result
of the inquiry
command.

struct
gap_dev_inq_res
ult_evt

GAP_KN
OWN_DE
V_DISC_
RESULT_
EVT

GAP

APP

Return known
device result
of the inquiry
command.

struct
gap_known_dev_
disc_result_evt

3.6.8 Connection Establishment and Detachment
The connection modes and procedures allow a device to establish a link to
another device. Only central and peripheral devices can perform connection and
disconnection procedure.

Table 23 Connection Establishment and Detachment Message

Message Direction Description Parameters Response

GAP_LE_
CREATE_
CONN_R
EQ

APP 
GAP

Establish LE connection.
This is initiated by central
device, which will
become the master of the
link.

struct
gap_le_cre
ate_conn_r
eq

GAP_LE_CR
EATE_CONN
_REQ_CMP_
EVT

GAP_LE_
CREATE_
CONN_R
EQ_CMP
_EVT

GAP 
APP

Complete event for LE
create and cancel
connection
establishment.

struct
gap_le_cre
ate_conn_r
eq_cmp_ev
t

GAP_LE_
CANCEL_
CONN_R
EQ

APP 
GAP

Cancel LE connection
establishment. This is
initiated when there is a
currently existing
connection request
attempt by the central
device to a peripheral
device.

None GAP_CANCE
L_CONN_RE
Q_CMP_EVT

GAP_CA
NCEL_C
ONN_RE
Q_CMP_
EVT

GAP 
APP

Complete event of cancel
LE connection
establishment.

struct
gap_event_
common_c
md_comple
te

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 40 of 113

GAP_DIS
CON_RE
Q

APP
GAP

Destroy an existing LE
connection.

struct
gap_discon
_req

GAP_DISCO
N_CMP_EVT

GAP_DIS
CON_CM
P_EVT

GAP 
APP/PR
F

Complete event for LE
connection detachment.

struct
gap_discon
_cmp_evt

3.6.9 Random Addressing
The use of random address is to enhance security of the LE transactions. The
GAP provides an interface to generate random address (static, resolvable or
non-resolvable addresses) and to set the random address to the link layer.
Table 24 Random Addressing Message

MessageRandom
Addressin

Directi
on

Description Parameters Response

GAP_SET_RANDO
M_ADDR_REQ

APP

GAP

Set random
address in link
layer.

struct
gap_set_rando
m_addr_req

GAP_SET_
RANDOM_A
DDR_REQ_
CMP_EVT

GAP_SET_RANDO
M_ADDR_REQ_C
MP_EVT

GAP

APP

Complete
event of set
random
address
command.

struct
gap_set_rando
m_addr_req_cm
p_evt

3.6.10 Privacy Setting
The privacy feature of the LE GAP provides a level of protection which makes it
harder for an attacker to track a device over a period of time. All roles have
specific privacy implementation as mandated by the Core specification.
Table 25 Privacy Setting Message

Message Direc
tion

Description Parameters Response

GAP_SET_RE
CON_ADDR_R
EQ

APP

GAP

Set
reconnection
address
command.
This will be set
by the central
device to the
reconnection
address
attribute of the
peripheral
device.

struct
gap_set_recon_a
ddr_req

GAP_SET_RECO
N_ADDR_REQ_
CMP_EVT

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 41 of 113

GAP_SET_RE
CON_ADDR_R
EQ_CMP_EVT

GAP
AP
P

Complete
event for set
reconnection
address
command.

struct
gap_set_recon_a
ddr_req_cmp_evt

GAP_SET_PRI
VACY_REQ

APP

GAP

Set privacy
feature of the
device.

struct
gap_set_privacy_
req

GAP_SET_PRIV
ACY_REQ_CMP
_EVT

GAP_SET_PRI
VACY_REQ_C
MP_EVT

GAP

APP

Complete
event for set
privacy feature
of the device.

struct
gap_event_comm
on_cmd_complet
e

GAP_SET_PH
_PRIVACY_RE
Q

APP

GAP

Set the
privacy
settings of the
peer
peripheral
device. This
will cause a
sending of
characteristic
write attribute
request to the
peer, to
change the
value of the
privacy flag in
the attribute
database.

struct
gap_set_ph_priva
cy_req

GAP_SET_PH_P
RIVACY_REQ_C
MP_EVT

GAP_SET_PH
_PRIVACY_RE
Q_CMP_EVT

GAP

APP

Complete
event for
privacy setting
of the
peripheral
device.

struct
gap_event_comm
on_cmd_complet
e

3.6.11 Pair and Key Exchange
Pairing allows two linked devices to exchange and store security and identity
information for building a trusted relationship. To start the creation of a trusted
relationship, either the central or peripheral will issue bonding request. Bonding
should occur only when these devices which intended to pair are in bondable
mode. During bonding, set of parameters are exchanged and scrutinized for
compatibility between these devices. Input and Output capabilities,
authentication requirements, key distribution parameters are some of the values
which are shared and exchanged during the initial portion of the pairing
procedure. If privacy is enabled, IRKs of both devices should be exchanged. At
any time, pairing procedure can be aborted (due to insufficient bonding
requirements, etc).

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 42 of 113

Table 26 Link Security Status

Table 27 Pair and Key Exchange Message

Message Direction Description Parameter
s

Response

GAP_BO
ND_REQ

APP 
GAP

Initiate bonding procedure.
The bonding request can
originate from either central
or peripheral.

struct
gap_bond
_req

GAP_BOND
_REQ_CMP
_EVT

GAP_BO
ND_REQ
_CMP_E
VT

GAP 
APP

Complete event for
bonding command. This
will return the status of the
operation, if the bonding
procedure has been
successful.

struct
gap_bond
_req_cmp
_evt

GAP_BO
ND_RES
P

GAP 
APP

Answer to bond request
from peer device. This
message will contain
bonding information like
input/output capabilities,
authentication
requirements, key
distribution preferences,
etc.

struct
gap_bond
_resp

GAP_BO
ND_REQ
_IND

GAP 
APP

Indicate bonding request
from peer. The application
needs to send
GAP_BOND_RESP to the
GAP to indicate response
to the bonding request.

struct
gap_bond
_req_ind

GAP_BO
ND_INFO
_IND

APP 
GAP

Retrieve bonding
information. The
application informs the
GAP on the bonding status
of the device.

struct
gap_bond
_info_ind

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 43 of 113

3.6.12 Parameter Update
The connection parameter update is a way for a connected device to change the
link layer connection parameters set up during connection establishment. This
procedure is only available for central and peripheral devices. When central
wants to update the connection parameters of the link, it will directly send a
message to the link layer. If the peripheral wants to change the connection
parameters of the link, it needs to send the request via L2CAP and inform the
central device about the desired parameters. The central will decide on whether
to accept the connection parameters. Furthermore, it will be the central which will
send the request to its link layer block, for the update of the connection
parameters of the link.

Table 28 Parameter Update Message

Message Directi
on

Description Parameters Response

GAP_PAR
AM_UPDA
TE_REQ

APP

GAP

Change the current
connection
parameter. The
peripheral is the only
one that can send
this request. The
central device, upon
receiving this request
will decide if it will
accept the request of
not. The central will
eventually change
the current
connection
parameters by
issuing
GAP_CHANGE_PAR
AM_REQ.

struct
gap_param_
update_req

GAP_PARAM_U
PDATE_RESP

GAP_PAR
AM_UPDA
TE_RESP

GAP

APP

Indicate parameter
update response
from peer device.

struct
gap_param_
update_resp

GAP_PAR
AM_UPDA
TE_REQ_I
ND

GAP

APP

Indicate parameter
update request from
peer device.

struct
gap_param_
update_req_i
nd

GAP_CHANGE_
PARAM_REQ

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 44 of 113

GAP_CHA
NGE_PAR
AM_REQ

APP

GAP

Master sends
parameter update
change. This
command is sent in
two occasions: 1.
Device receives
connection parameter
update from slave, 2.
Device wants to
change the current
connection
parameters.

struct
gap_change
_param_req

GAP_CHANGE_
PARAM_REQ_C
MP_EVT

GAP_CHA
NGE_PAR
AM_REQ_
CMP_EVT

GAP

APP

Complete event for
master which sent
parameter update
change.

struct
gap_change
_param_req
_cmp_evt

3.6.13 Channel Map Update
The LE controller of the master may receive some channel classification data
from the host and can trigger performing channel update. This will ensure that
the channels for use in the Bluetooth transactions are available and not used by
WLAN or other technologies simultaneously.

Table 29Channel Map Update Message

Message Direction Descriptio
n

Parameters Response

GAP_CHANNE
L_MAP_REQ

APP 
GAP

Central
role can
either read
or update
the current
channel
map.
Peripheral
role can
only read
it.

struct
gap_channel_m
ap_req;

GAP_CHANNE
L_MAP_CMP_E
VT

GAP_CHANNE
L_MAP_CMP_E
VT

GAP 
APP

Complete
event of
the
channel
map
update
operation.

struct
gap_channel_m
ap_cmp_evt;

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 45 of 113

3.6.14 RSSI
Table 30 RSSI Message

Message Direction Description Parameters Response

GAP_READ_RS
SI_REQ

APP 
GAP

Read RSSI
value.

struct
gap_read_r
ssi_req

GAP_READ_RSSI_
REQ_CMP_EVT

GAP_READ_RS
SI_REQ_CMP_
EVT

GAP 
APP

Complete
event for
read RSSI
value.

struct
gap_read_r
ssi_req_cm
p_evt

3.7 Include Files
In order to use the services offered by the BLE protocol the user should include
the following header files:

Table 31 Include Files

File Description

llc_task.h Contains LLC data structure quoted by GAP.

llm_task.h Contains LLM data structure quoted by GAP.

smpc.h Contains the definition related to security manager
protocol.

smpc_task.h Contains the message definitions and message
parameters which exchange between SMPC task and
APP task.

smpm_task.h Contains the message definitions and message
parameters which exchange between SMPM task and
APP task.

attc_task.h Contains the definitions quoted by GAP.

attm.h Contains ATT defines and data structures quoted by
upper layer.

attm_cfg.h Contains the definitions quoted by upper layer.

atts.h Contains ATT defines and data structures quoted by
upper layer.

atts_db.h Contains the primitives called to operate ATT
database.

atts_util.h Contains utility functions for ATT.

gatt.h Contains the definition related to GATT.

gatt_task.h Contains the message definitions and message
parameters which exchange between GATT task and
APP/PRF task.

gap.h Contains the definition related to GAP.

gap_cfg.h Contains configurable value related to GAP.

gap_task.h Contains the message definitions and message
parameters which exchange between GAP task and
APP task.

co_bt.h Contains common BLE defines.

co_error.h Contains error codes in BLE messages.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 46 of 113

co_list.h Contains definitions related to list management.

co_utils.h Contains common utilities.

4. Bootloader

The QN902x contains a tiny bootloader which is capable of:

1. Downloading an application via UART/SPI and programming the application

image to the flash in QN902x.
2. Downloading an application to internal SRAM via UART/SPI and executing

the application directly.
3. Loading an application located in Flash to internal SRAM and executing the

application.

There are two modes in the bootloader (ISP Mode and Load Mode). The ISP
mode assures correct information downloaded and the Load Mode is responsible
for correctly loading application from Flash to internal SRAM. When the QN902x
is powered on or reset, the bootloader is activated firstly. It looks for a connection
command from UART and SPI interface for a while to determine which mode to
go.

If the connection command is found, the bootloader enters into Program Mode. It
starts the ISP command parser which is implemented to process host commands
(see chaptor 5.4.3 for details), and then the host could send the ISP commands
to download application, to verify correction of downloaded application, to branch
to the application entry point and to finish other features provided by bootloader.

Figure 13 ISP mode

Branch 1: Bootloader downloads APP image to flash.
Branch 2: Bootloader downloads APP image to SRAM.

If no connection command found from UART and SPI interface, the bootloader
enters into Load Mode. The bootloader copies application stored in the flash to

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 47 of 113

internal SRAM, and then jump to the address of application entry point in the
SRAM.

Figure 14 Load Mode

4.1 Flash Arrangement
QN902x has a 128K bytes flash. The flash is divided into four parts (NVDS area,
bootloader information area, application area and NVDS backup area).

The NVDS area occupies 4k bytes Flash space from address 0x0 to 0xfff, and
NVDS backup area occupies 4k bytes Flash space from address 0x1f000 to
0x1ffff. The details refer to Chapter 6.

The bootloader information area occupies 256 bytes Flash space from address
0x1000 to 0x10ff. This area stores some important information needed by the
bootloader, such as storage address of application, application size and so on.
This area is prohibited storing application.

The application area is from address 0x1100 to the end of the Flash. The starting
address of the application is not fixed, which is easily configured by ISP
command.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 48 of 113

4KB NVDS

256 BYTES BOOTLOADER

Information

0x00000

0x01000

0x01100

Application

0x1FFFF
4KB NVDS Backup

0x1F000

Figure 15 Flash Address Map

4.2 Peripherals Used in the Bootloader
• GIPIO

• TIMER0

• UART0

• SPI1

• Flash Controller

Bootloader uses above peripherals, therefore application should set these
peripherals in a correct state. Although the pin-mux feature allows that the
peripheral interface can be mapping to different pin, bootloader use fixed pin for
UART0 and SPI1. QN902x’s PIN0_0 and PIN1_7 are used as UART ISP
interface; PIN1_0, PIN1_1, PIN1_2 and PIN1_3 are used as SPI ISP interface.

4.3 Program Protection
All of the data and code in the Flash are encrypted. Even if the cracker can
bypass the flash controller in the QN902x and directly access the Flash, they
cannot read the correct data. In order to prevent from stealing code through
SWD interface, the QN902x provides Flash and SRAM lock feature. After
PROTECT_CMD is sent to bootloader, the bootloader will shut down the way
SWD accessing Flash and SRAM.
Notes:

1. In the developing phase the SWD interface is used to debug. Do not set

PROTECT_CMD(don’t check the Flash Lock option in QBlueISPStudio while
downloading app to BLE device).

2. The application executed in the SRAM can always access Flash and SRAM.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 49 of 113

4.4 ISP Protocol Description

4.4.1 ISP Interface Requirements
The QN902x provides two kinds of interface for interactive ISP protocol PDU,
which are UART and SPI. The frame format requirement as below:

• UART Frame Format
1bit start + 8bit data + 1bit stop

• SPI Frame Format
8 bit data width
MSB transmitting first
Mode 0(CPOL: 0, CPHA: 0)

4.4.2 ISP PDU Format
UART and SPI interface both use the same ISP PDU format when downloading
application. The format of PDU is defined as below:

Host TX HeadCode Command Data Length(3
bytes)

Data(N) CRC(2bytes)

BL Confirm Confirm

BL EXE
Result

Result

• Head Code is the first byte of a PDU, which is transmitted first.
The Head Code is defined as 0x71.

• Data Length is byte number of the Data field. Do not include
CRC field.

• Data is the payload transmitting in the PDU and it must be word
align.

• CRC is the result of 16-bits CRC which covers Command field,
Data Length field and Data field. The CRC16 polynomial is
X16+X12+X5+X0.

• Confirm is sent by bootloader to acknowledge whether the PDU
has been received correctly. 0x01 means the correct reception otherwise
0x02 sent to host.

• Result is sent by bootloader when the command PDU needs
execution result return. 0x03 means the command is executed
successfully; otherwise 0x04 is sent to host.

4.4.3 ISP Commands
All of the ISP commands are listed in below table.

Table 32 ISP Commands

CMD Code UART Commands Functions

0x33 B_C_CMD Build connection with bootloader.

0x34 SET_BR_CMD Set UART baud rate used in ISP mode.

0x35 SET_FLASH_CLK_CM
D

Set clock frequency used by QN902x’s
flash.

0x36 RD_BL_VER_CMD Read bootloader version.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 50 of 113

0x37 RD_CHIP_ID_CMD Read the chip number of QN902x.

0x38 RD_FLASH_ID_CMD Read flash ID of QN902x.

0x39 SET_APP_LOC_CMD Set application routine download location,
internal SRAM or Flash.

0x3A SETUP_FLASH_CMD Set the flash operation commands.

0x3B SET_ST_ADDR_CMD Set the start address of Read, Program,
Erase and Verify commands.

0x3C SET_APP_SIZE_CMD Set the application size.

0x3E SET_APP_CRC_CMD Set the CRC result of verifying application.

0x40 SET_APP_IN_FLASH_
ADDR_CMD

Set the starting address of application
storage location.

0x42 SE_FLASH_CMD Sector erase flash

0x43 BE_FLASH_CMD Block erase flash

0x44 CE_FLASH_CMD Chip erase flash

0x45 PROGRAM _CMD Download.

0x46 RD_CMD Read NVDS.

0x47 VERIFY_CMD Verify the application.

0x48 PROTECT_CMD Enter into protect mode.

0x49 RUN_APP_CMD Run application.

0x4A REBOOT_CMD Reboot system. (software reset)

0x4B WR_RANDOM_DATA_
CMD

Write a random number to Bootloader.

0x4C SET_APP_IN_RAM_A
DDR_CMD

Set the starting address of application
location in the SRAM.

0x4D SET_APP_RESET_AD
DR_CMD

Set the address of application entry point.

The procedure of building connection with bootloader

Host TX B_C_CMD

BL Confirm Confirm

This format of B_C_CMD is different from the other ISP commands. There is only
one byte in this command, no Head Code and Data Length, Data and CRC. The
host continuously sends connection command until receive the confirmation
which represents that the bootloader entered into ISP mode.

The procedure of setting UART baud rate

Host TX 0x71 SET_BR_CMD 4 V0~V
7

V8~V1
5

V16~V23 V24~V31 CRC

BL Confirm Confirm

The payload in SET_BR_CMD is one word data which represent the value of
UART0 baud rate register. Refer to QN902x data sheet for details. After
SET_BR_CMD is confirmed the new baud rate will be used for Subsequent PDU
exchange.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 51 of 113

The procedure of setting Flash clock

Host TX 0x71 SET_FLASH_CLK_CM
D

4 C0 C1 C2 C3 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

The payload in SET_FLASH_CLK_CMD is one word data which represent the
Flash clock frequency and the unit is Hz. The range of clock frequency is from
100000Hz to 16000000Hz. Bootloader will return an execution result when it has
already set the Flash clock.

The procedure of reading bootloader version number

Host TX 0x7
1

RD_BL_VER_C
MD

0 CR
C

BL Confirm Confirm

BL Return 0x7
1

RD_BL_VER_C
MD

4 Ver
0

Ver
1

Ver
2

Ver
3

CRC

When bootloader receives RD_BL_VER_CMD command, firstly it returns
confirmation, and then returns a PDU including bootloader version information.

The procedure of reading Chip ID

Host TX 0x
71

RD_CHIP_ID
_CMD

0 CRC

BL
Confirm

Confirm

BL
Return

0x
71

RD_CHIP_ID
_CMD

4 ID0 ID1 ID2 ID3 CRC

When bootloader receives RD_CHIP_ID_CMD command, firstly it returns
confirmation, and then returns a PDU including QN902x Chip ID.

The procedure of reading Flash ID

Host TX 0x71 RD_FLASH_ID_C
MD

0 CRC

BL Confirm Confirm

BL Return 0x71 RD_FLASH_ID_C
MD

4 ID0 ID1 ID2 ID3 CRC

When bootloader receives RD_FLASH_ID_CMD command, firstly it returns
confirmation, and then returns a PDU including Flash ID.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 52 of 113

The procedure of setting application location (Flash or SRAM)

BL Return 0x71 SET_CD_LOC_CM
D

4 L0 L 1 L 2 L 3 CRC

BL Confirm Confirm

The command SET_CD_LOC_CMD indicates where the following code
download, Flash or SRAM. The payload in SET_FLASH_CLK_CMD is one word
data which represent the location of following code. 0 means SRAM, 1 means
Flash. The default download location is Flash in the bootloader.

The procedure of setting Flash operation commands

Host TX 0x71 SETUP_FLASH_CM
D

8 CMD0 … CMD7 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

When the internal Flash is not existent, the Flash can be connected outside of
the chip. In this case the type of Flash may be variety, and the Flash operation
commands may be a little different from each other. The command
SETUP_FLASH_CMD is used to set proper Flash operation code. Then the
bootloader can access the Flash correctly.

The payload meaning is shown as below table.

CMD Index Flash Commands

CMD0 RDSR_CMD: Read Status Register

CMD1 WREN_CMD: Write Enable

CMD2 SE_CMD: Sector Erase

CMD3 BE_CMD: Block Erase

CMD4 CE_CMD: Chip Erase

CMD5 DPD_CMD: Deep Power Down

CMD6 RDPD_CMD: Release Deep Power Down

CMD7 Reserved

Bootloader will return an execution result when Bootloader has executed this
command.

The procedure of setting the starting address of Read, Program and Erase
command

Host TX 0x71 SET_ST_ADDR_CM
D

4 A0~
A7

A8-
A15

A16-
A23

A24-
A31

CRC

BL Confirm Confirm

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 53 of 113

Host must set the operation address once before Reading, Programming and
Erasing operations. Bootloader will increase address automatically. So it is no
necessary to set operation address before the next command of the same
operation.

The procedure of setting application size

Host TX 0x71 SET_APP_SIZE_C
MD

4 S0 S1 S2 S3 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

The payload in SET_APP_SIZE_CMD is one word data which represent the size
of the application. This number will be saved in the flash for next loading and
also for CRC calculation.

The procedure of setting the CRC result of application

Host TX 0x71 SET_APP_CRC_C
MD

4 C0 C1 C2 C3 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

The payload in SET_APP_CRC_CMD is one word data which represent the
CRC result of the application. This number will be compared with the CRC which
is calculated by bootloader and then complete the verification procedure.

The procedure of setting the starting address of application storage
location in the Flash

Host TX 0x71 SET_APP_IN_FLAS
H_ADDR_CMD

4 A0 A1 A2 A3 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

The application shall not occupy the NVDS area and the bootloader information
area, so the address must be bigger and equal than 0x1100. Bootloader will
return an execution result when Bootloader has executed this command.

The procedure of Flash sector erasing

Host TX 0x71 SE_FLASH_CMD 4 SN0 SN 1 SN 2 SN 3 CRC

BL Confirm Confirm

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 54 of 113

BL EXE
Result

EXE Result

The payload in SE_FLASH_CMD is one word data which represent the number
of section will be erased. The address of the first section is set by
SET_ST_ADDR_CMD. The size of each is fixed to 4KB.

The procedure of Flash block erasing

Host TX 0x71 BE_FLASH_CMD 8 BS0 BS1 BS2 BS 3

BN0 BN1 BN2 BN3 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

The payload in BE_FLASH_CMD is two words data. The first word represents
the size of each block and the second word represents the number of block will
be erased. The unit of block size is byte. The address of the first block is set by
SET_ST_ADDR_CMD.

The procedure of Flash chip erasing

Host TX 0x71 CE_FLASH_CMD 0 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

This command is used to erase all of the Flash.

The procedure of Programming

Host TX 0x71 PROGRAM _CMD <=256 Data CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

The programming length must be word align and less and equal than 256 byte.
When programming the Flash, the starting address is set by
SET_ST_ADDR_CMD. When programming the SRAM, the starting address is
set by SET_APP_IN_RAM_ADDR_CMD and SET_ST_ADDR_CMD.

The procedure of reading information in the NVDS

Host TX 0x71 RD_CMD 4 L0 L1 L2 L3 CRC

BL Confirm Confirm

BL Return 0x71 RD_FLASH_CM
D

<=256 Data CRC

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 55 of 113

The length must be word align and less and equal than 256. Bootloader will
return an execution result when Bootloader has executed this command. The
starting address of NVDS is set by SET_ST_ADDR_CMD.

The procedure of verifying downloaded application

Host TX 0x71 VERIFY_CMD 0 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

Bootloader will calculate the CRC of downloaded application and compare with
the CRC set by SET_APP_CRC_CMD . Then bootloader returns the result of
comparison.

The procedure of entering into protection mode

Host TX 0x71 PROTECT_CM
D

0 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

When the protection mode is set, SWD will not access Flash and SRAM after
rebooting.

The Procedure of running application

Host TX 0x71 RUN_APP_CM
D

0 CRC

BL Confirm Confirm

When host transmits this command to bootloader, the bootloader will quit the ISP
mode and goes to execute QN902x application.

The procedure of Rebooting QN902x

Host TX 0x71 REBOOT_CMD 0 CRC

BL Confirm Confirm

When host transmits this command to Bootloader, QN902x will be rebooted by
bootloader.

The procedure of writing a 32bit random number to bootloader

Host TX 0x71 WR_RANDOM_DATA_C
MD

4 D0 D1 D2 D3 CRC

BL Confirm Confirm

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 56 of 113

BL EXE
Result

EXE Result

Bootloader will return an execution result when bootloader has executed this
command.

The procedure of setting the starting address of application location in the
SRAM

Host TX 0x71 SET_APP_IN_RAM_ADD
R_CMD

4 A0 A1 A2 A3 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

The payload in SET_APP_IN_RAM_ADDR_CMD is one word data which
represent the starting address of application will be downloaded to SRAM. The
default address is 0x10000000 in the bootloader.

The procedure of setting the address of application entry point

Host TX 0x71 SET_APP_RESET_AD
DR_CMD

4 A0 A1 A2 A3 CRC

BL Confirm Confirm

BL EXE
Result

EXE Result

The payload in SET_APP_RESET_ADDR_CMD is one word data which
represent the entry point of application. After loading application to SRAM, the
bootloader will jump to this address to execute the application. The default value
of application reset address is set 0x100000D4 in the bootloader. If this address
is not configured, bootloader will jump to default address.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 57 of 113

4.4.4 ISP Program Flow Diagram

Build Connection

Host BL

Read BL Version

Read Chip ID

Read Flash ID

Set UART Baudrate

Set Flash Clock

Set APP LOC(Flash)

Erase Flash

Set Random Num

Set APP Reset Addr

Set APP Size

Set APP CRC

Verify

Set Protect

Reboot

Set APP in Flash Addr

Set Start Address

Program

Program

Figure 16 Download an application to Flash

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 58 of 113

Build Connection

Host BL

Read BL Version

Read Chip ID

Read Flash ID

Set APP LOC(SRAM)

Set Start Address

Set APP Reset Addr

Program

Program

Run APP

Set UART Baudrate

Set APP in SRAM Addr

Set APP Size

Set APP CRC

Verify

Figure 17 Download an application to SRAM

5. NVDS

The QN902x provides a normalized way to access Non Volatile Data Storage
(NVDS). The NVDS is used for storing information which should be saved when
the chip loses power. The Non Volatile Memory could be FLASH or E2PROM.
For now the NVDS driver only supports the internal FLASH as NVDS.

The information in the NVDS is consisted of several TAGs. Each TAG records
one type of information and contains ID field, Status field, Length field and Value
field. The following NVDS APIs are provided for developer.
Table 33 API for NVDS

API Description

nvds_get Look for a specific tag and return the value field of the tag.

nvds_del Look for a specific tag and delete it. (Status set to invalid)

nvds_lock Look for a specific tag and lock it. (Status lock bit set to
LOCK)

nvds_put Add a specific tag to the NVDS.

Due to the physical characteristics of the FLASH, erasing must be done before
writing. In order to prevent the information already existed in the Flash lost, the
information in the FLASH shall be stored in the SRAM first, and then erase
FLASH, then write the correct information to the FLASH. The length of NVDS
data is dependent on application design. In order to provide a buffer for NVDS

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 59 of 113

driver storing temporary data, the software developer should allocate an array
and pass the address and size to NVDS driver using function ‘plf_init()’.
When write operation is used, the erase operation could be executed. If the
power is lost, when the NVDS area is erasing, the system configuration and user
configuration will be lost. So one 4k flash area at the end of the Flash is used to
backup information in the NVDS to prevent losing configuration.

5.1 BLE Stack TAG
Following NVDS TAGs are used in program. These TAGs are recommended for
setting. If these TAGs do not exist in the NVDS, the BLE stack will use the
default value or the value set by application.

Table 34 BLE Stack TAG

TAG ID Label Length(By
tes)

Default Value

NVDS_TAG_BD_ADDRESS(0x1) Bluetooth device

address

6 0x087CBE000001

NVDS_TAG_DEVICE_NAME(0x2) Device name 32 "NXP BLE"

NVDS_TAG_LPCLK_DRIFT(0x3) Clock Drift 2 100ppm

NVDS_TAG_EXT_WAKEUP_TIME(0x4) External wake-up

time

2 900us

NVDS_TAG_OSC_WAKEUP_TIME(0x5) Oscillator wake-up

time

2 900us

NVDS_TAG_TK_TYPE(0xb) TK Type 1 False

NVDS_TAG_TK_KEY(0xc) TK 6 ‘111111’

NVDS_TAG_IRK_KEY(0xd) IRK 16 01 5F E8 B4 56 07 8E

22 18 A6 7C E1 E4 BA

99 A5

NVDS_TAG_CSRK_KEY(0xe) CSRK 16 02 45 30 DA 3A FC 81

48 F1 0D AD 2E 91 9D

57 7B

NVDS_TAG_LTK_KEY(0xf) LTK 16 02 45 30 DA 3A FC 81

48 F1 0D AD 2E 91 9D

57 7B

NVDS_TAG_XCSEL(0x10) XCSEL 1 0x11

NVDS_TAG_TEMPERATURE_OFFSET(

0x11)

Temperature Offset 4 -200

NVDS_TAG_ADC_INT_REF_SCALE(0x

12)

ADC Scale 4 xx

NVDS_TAG_ADC_INT_REF_VCM(0x13) ADC VCM 4 xx

Description:
Bluetooth device address:
It is the device’s unique public Bluetooth address, allocated during
manufacturing. The first three words represent the company, other words is the
unique number ID for the device.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 60 of 113

Device name:
Which is the name of the Bluetooth device, and editable as user’s preference.

Clock Drift:
1) While using 32.768 kHz crystal oscillator, set it according to the spec of the
crystal used. Recommended value is 100ppm to have margin for load variation
and temperature change.
2) While using 32 kHz RC oscillator, set it to 500ppm

External wake-up time/Oscillator wake-up time:
900us (0x384) is recommended by default. But while using 32K Low Power
Mode, it should be set as 3000us (0xbb8).

XCSEL: to program load cap of 16M/32M crystal oscillator. Need calibrate load
cap by measuring the RF frequency offset.

ADC Scale/ADC VCM:
Both parameters are for ADC and the values for them might be different for each
chip, the value are tested and calibration while manufacturing.

5.2 Include Files
In order to use the NVDS API the user should include the following header files:

File Description
nvds.h Contains the declarations of NVDS driver.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 61 of 113

6. Application Development

About the how to setup the development environment and start with a simple
project, please refer to QN902x Quick Start Guide which can be downloaded
from NXP web
(http://www.nxp.com/products/microcontrollers/key_feature/bluetooth/QN9020.ht
ml#documentation) or request it from QN902x support engineers.

6.1 Available hardware resource for APP

6.1.1 MCU
The QN902x utilizes an ultra-low-power ARM Cortex-M0 microcontroller. The
ARM M0 is a full 32-bit processor that incorporates Thumb-2 technology with
features of energy efficiency and code density. The ARM Cortex-M0 also
contains a nested vector interrupt controller (NVIC) which is useful for interrupt
latency and interrupt service routines are able to be coded directly as C
functions. For further information on ARM Cortex-M0, please visit www.arm.com.

6.1.2 Memory
There are four types of memory in QN902x. (ROM, SRAM, peripheral registers
and NVDS if on-chip flash exists)

ROM(96KB)

0x01000000

0x01017FFF

SRAM(64 KB)

0x10000000

0x1000FFFF

APB peripherals

0x40000000

0x4007FFFF

0x40080000

0x4FFFFFFF

GPIO

0x50000000

0x50003FFF

0x50004000

0x50007FFF

ADC

0x50010000

0x50013FFF

0x50014000

0xDFFFFFFF

Private peripheral

0xE0000000

0xEFFFFFFF

0xF0000000

0xFFFFFFFF

System Registers
0x40000000

Watch Dog Timer
0x40001000

Timer0
0x40002000

Timer1
0x40003000

Timer2
0x40004000

Timer3
0x40005000

RTC
0x40006000

USART0
0x40007000

I2C
0x40008000

DMA
0x40009000

USART1
0x4000A000

PWM

0xE0000000

Watchpoint unit
0xE0001000

Breakpoint unit
0xE0002000

0xE0003000

Auxiliary Control

Registers 0xE000E000

System Timer
0xE000E010

NVIC
0xE000E100

System Control Block
0xE000ED00

0xE000ED90

Debug Control Registers
0xE000EDF0

0xE000EF00

ROM Table
0xE00FF000

0xE0100000

0x4000E000

Figure 18 Memory Map

http://www.nxp.com/products/microcontrollers/key_feature/bluetooth/QN9020.html#documentation
http://www.nxp.com/products/microcontrollers/key_feature/bluetooth/QN9020.html#documentation

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 62 of 113

The internal ROM is located at 0x01000000. When system is powered up, the
address 0x0 is also mapped to the first address of ROM. The ROM is used for
storing QN902x firmware’s code and RO data. The firmware is composited of
BLE protocol stack, bootloader and some device drivers. The application can use
the firmware functionality by calling API functions provided. For details please
refer to chapter 4.

The internal SRAM is located at 0x10000000. After REMAP_BIT is set, the
address 0x0 is mapped to the first address of SRAM. The SRAM is used for
storing QN902x firmware’s RW data and application’s code and data. Although
the internal SRAM is total 64k bytes, the application does not use all of SRAM
space. Because firmware’s RW data also needs to take up 0x32e0 bytes of the
SRAM space, which is located at 0x1000cd20 in the SRAM. The application shall
not use this part of SRAM. The firmware stack is located in SRAM. When the
program jumps to the application entry point, the stack space then becomes
available to the application for use..

FW Data

(0x32e0 Bytes)
0x1000cd20

0x1000ffff

APP Stack

Application

(Code + Data)

 Figure 19 Internal SRAM Map

The peripheral registers are used for configuring and controlling peripheral
device such as GPIO, UART, SPI, ADC and so on.

The Non Volatile Data Storage (NVDS) is used for storing information which is
still valid when the chip loses power. For details please refer to chapter 6.

6.1.3 Peripheral
In addition to the ARM Cortex-M0 processor, internal ROM and SRAM, QN902x
also integrates a wide range of peripherals. Such as UART, SPI, IIC, Flash
Controller, Timer, PWM, RTC, Watchdog Timer, GPIO Controller, DMA
controller, ADC, Comparator. For figuring out how to use these peripheral
devices, please get the detail information from chapter 7.7.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 63 of 113

6.1.4 Interrupt Controller
The Nested Vectored Interrupt Controller (NVIC) is an integral part of Cortex-M0,
which is tightly coupling to the MCU. The NVIC supports 32 vectored interrupt
and 4 programmable interrupt priority levels. External interrupts need to be
enabled before being used. If an interrupt is not enabled, or if the processor is
already running another exception handler with same or higher priority, the
interrupt request will be stored in a pending status register. The pended interrupt
request can be triggered when the priority level allowed for example, when a
higher-priority interrupt handler has been completed and returned. The NVIC can
accept interrupt request signals in the form of logic level, as well as an interrupt
pulse (with a minimum of one clock cycle). The NVIC supports stacking and
unstacking processor status automatically. Do not need ISR to handles this. The
NVIC supports vectored interrupt entry. When an interrupt occurs, the NVIC
automatically locates the entry point of the interrupt service routine from a vector
table in the memory. For detailed information about NVIC, please refer to “ARM®
Cortex™-M0 Technical Reference Manual” and “ARM® v6-M Architecture
Reference Manual”.

Table 35 lists all of the interrupt sources in QN902x. Each peripheral device may
have one or more interrupts lines to the NVIC. Each line may represent more
than one interrupt sources. For more information on how the interrupts are
handled inside the QN902x, please refer to chapter 7.7.

Table 35 Interrupt Vector Define

Interrupt
Number

Source Function

0 GPIO GPIO interrupt

1 Comparator 1 Comparator 1 interrupt

2 Comparator 2 Comparator 2 interrupt

3 BLE Hardware BLE stack interrupt

4 RTC RTC capture interrupt

5 BLE Hardware Exit sleep mode and enable oscillator

6 RTC RTC second interrupt

7 ADC ADC interrupt

8 DMA DMA interrupt

9 Reserved

10 UART 0 UART0 TX ready interrupt

11 UART 1 UART0 RX interrupt

12 SPI 0 SPI0 TX ready interrupt

13 SPI 0 SPI0 RX interrupt

14 UART 1 UART1 TX ready interrupt

15 UART 1 UART1 RX interrupt

16 SPI 1 SPI1 TX ready interrupt

17 SPI 1 SPI1 RX interrupt

18 I2C I2C interrupt

19 Timer 0 Timer 0 interrupt

20 Timer 1 Timer 1 interrupt

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 64 of 113

21 Timer 2 Timer 2 interrupt

22 Timer 3 Timer 3 interrupt

23 Watch dog timer Watchdog timer interrupt

24 PWM CH0 PWM channel 0 interrupt

25 PWM CH1 PWM channel 1 interrupt

26 Calibration Calibration interrupt

27 Reserved

28 Reserved

29 Tuner Tuner RX control interrupt
(unused in 902x-B2)

30 Tuner Tuner TX control interrupt
(unused in 902x-B2)

31 Tuner Tuner setting interrupt
(unused in 902x-B2)

6.2 Application Execution Flow
When the bootloader has already prepared application runtime environment
(copy the Application to correct SRAM location), it sets PC to the entry point of
Reset Handler of the Application. Since then the Application obtains the fully
control of the QN902x. The figure 20 illustrates the Application execution flow.
For the details please see the chapter 7.2.1~7.2.11 as below.

Remap

Call __main

startup.s

… …
Jump to application

bootloader

Memory REMAP

Bootloader call application

Call main function

int main(void)
{
 int ble_sleep_st, usr_sleep_st;

 // DC-DC
 dc_dc_enable(QN_DC_DC_ENABLE);

.

.

.

Figure 20 Application Execution Flow

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 65 of 113

6.2.1 Startup (Remap)
When QN902x is power up, it always boots at address 0x0. Therefore, in the
initial state of the system, it is necessary to ensure that the correct code exists at
the address 0x0 and the space mapping to address 0 is non-volatile memory
(ROM). In QN902x the ROM space is mapped from address 0x0 to 0x17fff when
system is power up.

The vector table of Cortex-M0 exceptions and interrupts is required being at the
fixed memory space from address 0x0 to 0xef, which is in the ROM space when
system is power up. It means the exception and interrupt handler cannot be
changed and an interrupt forwarding mechanism should be provided if the
developers want to add their own interrupt handler. The interrupt forwarding
method is not intuitive for developer, and will increase interrupt response time.
The memory remap is provided by QN902x instead of interrupt forwarding.
REMAP allows the user to lay out the internal SRAM bank to address 0x0. At this
time, the interrupt vector table of application project is placed at the address 0x0,
which is available for Cortex-M0.

One decoder is provided for every AHB Master Interface. The decoder offers
each AHB Master several memory mappings. In fact, depending on the product,
each memory area may be assigned to several slaves. Thus it is possible to boot
at the same address while using different AHB slaves (internal RAM or internal
ROM). Regarding master, two different slaves are assigned to the memory space
decoded at address 0x0: one for internal SRAM, one for internal ROM. The
QN902x provides SYS_REMAP_BIT in System Boot Mode Register
(SYS_MODE_REG) that performs remap action. At reset SYS_REMAP_BIT = 0,
the internal ROM is lay out at address 0x0. When SYS_REMAP_BIT is set to 1,
the internal SRAM is lay out at address 0x0.

SRAM

ROM

ROM

SRAM

Remap

0x00000000

(0x01000000)

0x10000000 0x01000000

0x00000000

(0x10000000)

Figure 21 Remap Action

Notes:
Memory blocks that are not affected by SYS_REMAP_BIT can always be seen at
their specified base addresses. The base address of ROM is 0x01000000. The
base address of SRAM is 0x10000000. See the complete memory map
presented in Figure 21.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 66 of 113

The application is linked from address 0x0. If one absolute jump instruction is
executed before REMAP, the program will jump to ROM space which is lay out at
address 0x0 at that moment. So the REMAP must be finished before any
absolute jump being executed. Adding REMAP at the beginning of application is
recommended. In the sample code, REMAP is executed at the beginning of
RESET handler.

6.3 Creating a Custom BLE Application

By now the BLE system designer should have a firm grasp on the general
system architecture, Application & BLE Stack framework required to implement a
custom Bluetooth Smart application.

This section provides indications on where and how to start writing a custom
Application. First, it’s required to decide what role and purpose the custom
Application should have.

6.3.1 User Configuration
In order to simplify the development, Qblue SDK provides a user configuration
file (usr_config.h) to customize QN902x’s application setting and behavior.

Chip Version
The chip feature and firmware may have diference in the different QN902x
version. Application needs to know which chip version is used.

Work Mode
QN902x is a very flexible BLE chip. It supports a variety of work modes. Define
different macros (CFG_WM_SOC, CFG_WM_NP, CFG_WM_HCI) to set to the
appropriate work mode. These macros are mutually exclusive and cannot be
defined simultaneously.

Easy ACI
Support easy ACI interface. See EACI document for details.

Easy API
Support easy API interface. See EAPI document for details.

Local Name
Generally the local name in the advertising packet is obtained from the NVDS.
Once the device name tag is not available in the NVDS, BLE stack will use the
name string defined by macro ‘CFG_LOCAL_NAME’. The string is considered to
be local name passed to stack, and be added in the advertising packet.

DC-DC Enable
If the DC-DC is used, the macro ‘CFG_DC-DC’ shall be defined.

32k RCO
If the 32k RCO is used, the macro ‘CFG_32K_RCO’ shall be defined.

NVDS Write Support

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 67 of 113

If the application will use ‘nvds_put()’, CFG_NVDS_WRITE shall be defined.

Test mode control pin
The developer can use this macro to select one pin that controls application to
go test mode or the work mode defined by the work mode macro.

Memory retention
Define which memory banks need to be retention in sleep mode.

Deep sleep support
If the macro ‘CFG_DEEP_SLEEP’ is defined, the system is allowed enter into
deep sleep mode.

BLE sleep
If the macro ‘CFG_BLE_SLEEP’ is defined, the BLE stack is allowed enter into
sleep mode.

Maximum sleep duration
This macro defines the maximum sleep duration of BLE sleep timer.

UART Interface for Transport Layer
Define which UART interface is used for ACI or HCI.

UART Interface for Debugging
Define which UART interface is used for debug information output.

Debugging Output API
Define which printf() function is used in the debugging. If the macro
‘CFG_STD_PRINTF’ is defined, the function printf() in the library is used.
Otherwise the NXP’s implementation of printf() is used.

Terminal Menu
When the macro ‘CFG_DEMO_MENU’ is defined, user can use a terminal menu
tree to control QN902x.

Debug Information
If the macro ‘CFG_DBG_PRINT’ and ‘CFG_DBG_TRACE’ are defined, more
debug and trace information can be sent out though UART interface.
If the macro ‘CFG_DBG_INFO’ is defined, some diagnostic information will be
saved in the debug information register (0x1000fffc).

Maximum number of connections
The QN902x fully supports 8 links simultaneously, but BLE heap size and some
data structure size in application depend on maximum links. There is no need to
define 8 links when QN902x runs on peripheral role which requires only one
connection. Please specify maximum number of connections based on product
design.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 68 of 113

GAP Role
The GAP of QN902x supports ALL defined GAP roles (broadcaster, observer,
peripheral and central). With different roles the required message handler is
different. In order to optimize the code size of application, please specify the
GAP role based on product design.

Bluetooth Address Type
Device uses public address or random address.

ATT Role
The ATT role should be supported by Application Task.

Profiles Configuration
The QN902x supports 8 profiles simultaneously. The application shall define the
profiles used in the product. In the reference code, usr_config.h contains enabled
profiles definition. Define the profile macros to include profile source code. For
example, a central device enables three profiles (HTPC, BLPC, HRPC). The
following macros shall be defined.

#define CFG_PRF_HTPC
#define CFG_PRF_BLPC
#define CFG_PRF_HRPC

Furthermore the task ID of profile shall be defined. The available task id for
profiles is from 13 to 20. The different profile used in one device shall occupy a
different task id. For example, the task id should be defined for previous
example.

#define TASK_HTPC TASK_PRF1
#define TASK_BLPC TASK_PRF5
#define TASK_HRPC TASK_PRF7

6.3.2 BLE Profiles
A profile defines an optimal setting for a particular application. Qblue SDK
provides all of the profiles’ source code for developer’s reference. This chapter
describes the non-standard interface of Proximity Profile implementation. The
description is for a better understanding of the user that needs to develop higher
application interface the profiles.

The Proximity profile defines the behavior when a device moves away from a
peer device so that the connection is dropped or the path loss increases above a
preset level, causing an immediate alert. This alert can be used to notify the user
that the devices have become separated.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 69 of 113

The Proximity Reporter shall be a GATT server and must have an instance of the
Link Loss service (LLS), and optionally both the Immediate Alert (IAS) and the Tx
Power service (TPS). The two last ones must be used together, if one is missing,
the other one should be ignored.
The Proximity Monitor shall perform service discovery to get peer device’s
service and characteristic. The following message and API is used for enabling
the Monitor role of the Proximity profile. The Application sends it and it contains
the connection handler for the connection this profile is activated, the connection
type and the previously cached discovered LLS, IAS and TPS details on peer.
Table 36 Message and API

Proximity Monitor Message Direction APP API

PROXM_ENABLE_REQ APPPROXM app_proxm_enable_req

PROXM_ENABLE_CFM PROXMAPP app_proxm_enable_cfm_handler

The connection type may be 0 = Connection for discovery or 1 = Normal
connection. This difference has been made and Application would handle it in
order to not discover the attributes on the Reporter at every connection, but do it
only once and keep the discovered details in the Monitor device between
connections. If it is a discovery type connection, the LLS, IAS and TPS
parameters are useless, they will be filled with 0's. Otherwise it will contain
pertinent data which will be kept in the Monitor environment while enabled.

The LLS allows the user to set an alert level in the Reporter, which will be used
by the reporter to alert in the corresponding way if the link is lost. The
disconnection must not come voluntarily from one of the two devices in order to
trigger the alert.
 Link loss service requirements

Characteristi
c

Req. Properties Permissions Descriptors

Alert level M Read
Write

None

The following message and API is used to set and get an LLS Alert Level.

Proximity Monitor Message Direction APP API

PROXM_RD_ALERT_LVL_REQ APPPROXM app_proxm_enable_req

PROXM_RD_CHAR_RSP PROXMAPP app_proxm_enable_cfm_handl
er

PROXM_WR_ALERT_LVL_REQ APPPROXM app_proxm_wr_alert_lvl_req

PROXM_WR_CHAR_RSP PROXMAPP app_proxm_wr_char_rsp_hand
ler

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 70 of 113

The following message and API is used by the Reporter role to request the
Application to start the alert on the device considering the indicated alert level.

Proximity Reporter Message Direction APP API

PROXR_ALERT_IND PROXRAPP app_proxr_alert_ind_handler

The IAS allows the user to set an immediate alert level based on path loss
computation using the read Tx Power Level and RSSI monitored on received
packets. According to the alert level set in IAS, the Reporter will start alerting
immediately.
Table 37 Immediate alert service requirements

Characteristi
c

Req. Properties Permissions Descriptors

Alert level M Write without
Response

None

The following message and API is used to set an IAS Alert Level.

Proximity Monitor Message Direction APP API

PROXM_WR_ALERT_LVL_RE
Q

APPPROX
M

app_proxm_wr_alert_lvl_req

PROXM_WR_CHAR_RSP PROXMAP
P

app_proxm_wr_char_rsp_han
dler

The following message and API is used by the Reporter role to request the
Application to start the alert on the device considering the indicated alert level.

Proximity Reporter Message Direction APP API

PROXR_ALERT_IND PROXRAP
P

app_proxr_alert_ind_handler

The TPS allows the user to read the Tx Power Level for the physical layer. The
value is used by the Monitor to continuously evaluate path loss during the
connection, and decide to trigger/stop an alert based on path loss going
over/under a set threshold in the Monitor application.
 Tx power service requirements

Characteristi
c

Req. Properties Permissions Descriptors

Tx power
level

M Read None

The following message and API is used for reading the tx power level in TPS Tx
Power Level Characteristic.

Proximity Monitor Message Direction APP API

PROXM_RD_TXPW_LVL_REQ APPPROX
M

app_proxm_rd_txpw_lvl_req

PROXM_RD_CHAR_RSP PROXMAP
P

app_proxm_rd_char_rsp_han
dler

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 71 of 113

6.3.3 BLE main function

Below is an example of main function of BLE application.

int main(void)
{
 int ble_sleep_st, usr_sleep_st;

 // DC-DC
 dc_dc_enable(QN_DC_DC_ENABLE);

 // QN platform initialization

 plf_init(QN_POWER_MODE, __XTAL, QN_32K_RCO，nvds_tmp_buf,

NVDS_TMP_BUF_SIZE);

 // System initialization, user configuration
 SystemInit();

 // Profiles register
 prf_register();

 // BLE stack initialization

ble_init((enum WORK_MODE)QN_WORK_MODE, QN_HCI_UART,
QN_HCI_UART_RD, QN_HCI_UART_WR, ble_heap, BLE_HEAP_SIZE,
QN_BLE_SLEEP);

 set_max_sleep_duration(QN_BLE_MAX_SLEEP_DUR);

 // initialize APP task

app_init();

 // initialize user setting
usr_init();

 // sleep configuration
 sleep_init();
 wakeup_by_sleep_timer(XTAL32);

 GLOBAL_INT_START();

 while(1)
 {
 ke_schedule();

 // Checks for sleep have to be done with interrupt disabled
 GLOBAL_INT_DISABLE_WITHOUT_TUNER();

 // Obtain the status of the user program
 usr_sleep_st = usr_sleep();

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 72 of 113

 // If the user program can be sleep, deep sleep or clock off then check
 // ble status
 if(usr_sleep_st >= PM_IDLE)
 {
 // Obtain the status of ble sleep mode
 ble_sleep_st = ble_sleep(usr_sleep_st);

 // Check if the processor clock can be gated
 if(((ble_sleep_st==PM_IDLE) || (usr_sleep_st==PM_IDLE))
 && (usr_sleep_st!=PM_ACTIVE))
 {
 enter_sleep(SLEEP_CPU_CLK_OFF,
 WAKEUP_BY_ALL_IRQ_SOURCE,
 NULL);
 }
 // Check if the processor can be power down
 else if((ble_sleep_st==PM_SLEEP)
 && (usr_sleep_st==PM_SLEEP))
 {
 enter_sleep(SLEEP_NORMAL,
 (WAKEUP_BY_OSC_EN | WAKEUP_BY_GPIO),
 sleep_cb);
 }
 // Check if the system can be deep sleep
 else if((usr_sleep_st==PM_DEEP_SLEEP)
 && (ble_sleep_st==PM_SLEEP))
 {
 enter_sleep(SLEEP_DEEP,
 WAKEUP_BY_GPIO,
 sleep_cb);
 }
 }

 // Checks for sleep have to be done with interrupt disabled
 GLOBAL_INT_RESTORE_WITHOUT_TUNER();
 }

}

6.3.3.1 DC-DC Configuration

Depending on circuit design of application product to enable or disable the DC-
DC.
dc_dc_enable(QN_DC_DC_ENABLE);

6.3.3.2 BLE Hardware Initialization

At the beginning of main function the subroutine ‘plf_init()’ is invoked to finish the
initialization of RF, modem and BLE related hardware. When this function is
returned, the BLE hardware and physical layer shall be ready.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 73 of 113

There are four parameters required by this function. The parameters’ function
and optional setting is described by following table.

Table 38 Hardware Initialization

Parameter Function Optional Value

pw_mode Configure which
power mode the
BLE hardware
uses.
Two types of
power mode can
be selected.
Developer
should choose
the mode based
on product
design.

NORMAL_MODE :
Chip consumes lower power than
HIGH_PERFORMANCE mode, but
the performance is not good at
HIGH_PERFORMANCE mode.

HIGH_PERFORMANCE :
Chip has higher performance and
consumes more power.

xtal Configure which
frequency the
external crystal
the system used.
Two types of
external crystal
can be selected.
The selection
based on product
design and the
software needs
to know which
type crystal is
used.

16000000UL: 16MHz XTAL
32000000UL: 32MHz XTAL

clk_32k Configure which
32k clock is
used.

0: XTAL
1: RCO

nvds_tmp_buf The start address
of temporary
buffer used by
NVDS driver.

The pointer of unsigned char array.
NULL: No buffer for NVDS.

nvds_tmp_buf_len The length of
temporary buffer
used by NVDS
driver.

4096: 4096 bytes buffer for NVDS.

0: No buffer for NVDS.

6.3.3.3 Initialize System

In the subroutine ‘SystemInit()’, the software developer should set each module’s
clock, configure IO and initialize all of used peripheral.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 74 of 113

These configurations rely on the user’s system design. The module which is not
used in your product should be gated to reduce power consumption. And the
clock should be set to the lowest available value. It is helpful to reduce the power
consumption of clock MUX.
The IO configuration tool is provided to reduce development effort. For the
details please refer to the document ‘Driver_tools_manual’.

6.3.3.4 Register Profiles Functions into BLE Stack

GAP task will invoke two profile subroutines, ‘prf_init()’ and
‘prf_dispatch_disconnect()’. Before BLE kernel running, The function
‘prf_register()’ shall complete the registration of these two profile subroutines into
BLE stack.

6.3.3.5 Initialize BLE Stack

The function ‘ble_init()’ is provided to finish the BLE software configuration and
initialization. Within this function, the BLE heap which memory space is offered
by developer needs to be initialized. The initialization routine for each layer of
BLE stack is called.
Five parameters should be passed to this function, and the function and optional
setting of these parameters are described by following table.
Table 39 BLE Stack Initialization

Parameter Function Optional Value

mode Indicate which work
mode is selected by the
developer. Three modes
can be selected. The
details refer to chapter
2.2.

SOC_MODE:
Wireless SoC Mode
NP_MODE:
Network Processor Mode
HCI_MODE:
Controller Mode

port Configure which
UART/SPI interface is
used for ACI and HCI.

QN_UART0
QN_UART1
QN_SPI0
QN_SPI1

hci_read Configure the UART/SPI
read operation API.

The function
 ‘uart_read()’/’spi_read()’ in the
driver.

hci_write Configure the UART/SPI
write operation API

The function
 ‘uart_write()’/spi_write()’ in the
driver.

ble_heap_addr The BLE heap is
allocated by software
developer. And this
parameter tells BLE stack
where the starting
address of the heap is.

Available address in the SRAM.

ble_heap_size Indicate the size of the
heap which will is used in
BLE stack

Available value.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 75 of 113

sleep_enable Configure whether the
BLE stack can enter into
sleep mode

True:
BLE stack sleep is allowable.
False:
BLE stack sleep is disallowed.

The BLE protocol stack needs a block of memory to dynamically allocate
message and attribute database which is called BLE heap. The BLE heap would
not only depend on the maximum number of possible LE links, but also with the
actual LE profiles to support. In QN902x the heap size is not fixed at a maximum
possible value that will result in a waste of memory. So the allocation of protocol
heap is implemented in the application, and then the function ‘qn_ble_init()’ is
called to configure heap address.
There is a way to determine the heap requirements depending on certain
parameters (profiles, number of links, etc). In the reference code, app_config.h
contains the BLE heap size definition.

#define BLE_HEAP_SIZE (BLE_DB_SIZE + 300 + 256 *
BLE_CONNECTION_MAX)

BLE_DB_SIZE is added in the equation to take care of the dynamic allocation of
attribute database. When the profile is used, the database size of this profile is
added.
The messages and timers are all allocated from the BLE heap. More messages
and timers are used means more BLE heap is needed. If the free memory in the
BLE heap is not enough and the memory allocation fails, the kernel will
automatically issue a software reset. You can confirm this software reset from
the bit1 in debug information register (0x1000fffc). When memory allocation
failure occurs, developer should increase BLE heap size.

6.3.3.6 Set Maximum BLE Sleep Duration

The maximum BLE sleep duration is used by BLE stack. When the BLE is
inactive, the BLE sleep timer will be configured as the setting value. Otherwise
when the BLE stack is active, the actual sleep duration is revised based on
application scenario (advertising interval, connection interval...).
The unit of the parameter ‘duration’ is 625us, and the value of the parameter
shall be less than 209715199.

6.3.3.7 Initialize Application Task

Application task is responsible for either processing message from the BLE stack
and device driver, or constructing and sending the message to BLE stack. The
application initialization function will prepare the APP task environment and
register APP task into the kernel.

6.3.3.8 Sleep initialization

Initialize configuration for sleep mode.

6.3.3.9 Run Scheduler

After application task initialization, in order to use the kernel, there should be a
call to ‘ke_schedule()’ in forever loop at the end of the main function. This routine
checks the message queue, and implement message deliver.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 76 of 113

6.3.3.10 Sleep Mode

QN902x has four power modes: active mode, idle mode (CPU clock off mode),
sleep mode and deep sleep mode. See the following table to obtain detailed
difference.

Table 40 Processor Power Mode

Proce
ssor
Mode

Proce
ssor
Status

Proce
ssor
Clock

Proces
sor
Power

Wakeup
Source

Modules can
be disabled

Modules
must be
power on

Proces

sor

active

mode

Active Yes Yes / Timer, UART,

SPI, 32k clock,

Flash

controller,

GPIO, ADC,

DMA, BLE,

PWM.

20MHz

oscillator,

Bandgap,

IVREF,

VREG of

analog,

VREG of

digital.

Proces

sor

clock

off

mode

Inactive No Yes All

interrupts

Timer, UART,

SPI, 32k clock,

Flash

controller,

GPIO, ADC,

DMA, BLE,

PWM.

20MHz

oscillator,

Bandgap,

IVREF,

VREG of

analog,

VREG of

digital.

Proces

sor

sleep

mode

Inactive No No GPIO,

comparato

r, BLE

sleep timer

(32k clock

shall be

exist).

/ 32k

XTAL/RCO,

retention

MEM,

Comparator if

used.

Proces

sor

deep

sleep

mode

Inactive No No GPIO,

comparato

r.

/ Retention

MEM,

Comparator if

used.

In the active mode and idle mode, the clock of digital modules (Timer, UART,
SPI, PWM …) can be enabled or disabled independently. The power of analog
modules which have independent power domain can also be enabled or disabled
by application.
In the idle mode, the clock of processor is gated and all of the interrupts can
wakeup system.
In the sleep mode, the interrupts of GPIO, comparator and BLE sleep timer can
wake up the system.
In the deep sleep mode, only the interrupts of GPIO and comparator can wakeup
system. 32k clock is power off, so BLE stack does not work in the deep sleep
mode.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 77 of 113

Power mode setting depends on user setting, peripherals’ status and BLE’s
status.
The user power mode setting is managed by user who can use API
sleep_set_pm() to set the highest level power mode user wants the system
finally to be. The macro CFG_DEEP_SLEEP in the usr_config.h defines the
initial value of user’s power mode setting.
The peripherals’ status is managed by drivers. Actually the driver knows when
the peripherals cannot enter into sleep mode. For example when the ADC is
sampling, the ADC driver knows the system cannot enter into sleep mode at this
time. User does not take care of the peripherals’ status.
The status of BLE is managed by BLE stack. User can invoke API ble_sleep() to
obtain the status of BLE. If the macro CFG_BLE_SLEEP is not defined in the
usr_config.h, ble_sleep() will not enter into sleep mode.

In the main loop the program obtain sleep status by two APIs
(usr_sleep/ble_sleep). Program determines power mode setting based on these
two statuses. Active mode has the highest priority. It means if any one status is
active mode, the system should stay in the active mode. You can see all possible
combination in the table.

When the system is waked up from sleep mode, all register setting of the
peripherals are lost and the peripherals need to be reconfigured.

Sleep API

sleep_int()
Set which modules will be power down when system enter into sleep mode.

set_max_sleep_duration()
This function sets the maximum sleep duration of BLE sleep timer. When the
BLE stack works, the actual sleep duration will be revised based on BLE stack’s
requirement. Otherwise the BLE stack does not work, the sleep duration will be
the configured value.
The unit of the parameter is 625us and the value of the parameter should be less
than 209715199.The maximum sleep duration is about 36hours 16minutes.

sleep_set_pm()
User sets the highest level of power mode which the user want the system finally
to be.

sleep_get_pm()
User gets the highest level of power mode.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 78 of 113

usr_sleep()
Obtain the power mode allowed by user and peripherals.

ble_sleep()
Get the power mode allowed by BLE stack.

enter_sleep()
Set power mode.

sleep_cb()
Restore setting of system, BLE and peripherals in the system wakeup procedure.

save_ble_setting()
When the BLE hardware is really power off, all of the register setting is lost.
When the power is on, the register value will be default value. So it is important
to save necessary register setting before power down to restore system in a
working state.
The peripheral setting will be also lost when system is in the sleep mode. It is
necessary to save the setting of peripheral before entering into sleep mode. Or
the software can reinitialize the peripheral when system exit sleep mode.

restore_ble_setting()
Restore the saved setting of BLE hardware.

enable_ble_sleep()
This function allows or disallows BLE hardware going to Sleep Mode.

ble_hw_sleep()
This function checks BLE hardware sleep states. When the return value is
TRUE, it means BLE hardware is sleeping. When the return value is FALSE, it
means BLE hardware is not in the sleep status.

sw_wakeup_ble_hw ()
This function forcibly wakeups BLE hardware.

reg_ble_sleep_cb()
This function provides a way to register two optional callbacks into the firmware.
The first callback is invoked before firmware runs decision algorithm of BLE
entering sleep. If the return of callback is FALSE, the procedure of checking
whether the BLE hardware goes into sleep mode will be break. BLE hardware
will not be allowed to enter sleeping. Otherwise the BLE hardware is going to
enter sleep mode.
The second callback is invoked after BLE hardware exits sleep mode.

6.3.4 Application Task
The Application Task implements the feature specified by the protocol and
interacts with other protocol layers and profiles in the BLE stack.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 79 of 113

The kernel task is defined by its task type and task descriptor (See 3.3). The task
type of Application task is 21. The task descriptor of Application task needs to be
filled by developer. In the initialization of Application task, the task_app_desc is
registered into kernel using the subroutine ’task_desc_register()’.
After inserting the Application task descriptor the program can start kernel
scheduler.

6.3.4.1 APP_TASK API Description

In order to help developers understand how to develop application task, it
provides message handler for all of the messages sent to application task and all
of the functions which packed the message will send to other tasks. Qblue SDK
calls it APP_TASK API. It is very easy to develop application based on
APP_TASK API. After understanding how the APP_TASK API works, the
developer can cut these APIs for your design and get the optimized program
size.
For the details of APP_TASK API please refer to the document ‘QN902x API
Programming Guide’.

6.4 Application Debug

QN902x provides a standard SWD interface and supports up to four hardware
breakpoints and two watch points. While using Mini DK for application
development, on Mini DK, IDE in PC to debug application running in QN902x
through Jlink OB which is connecting with SWD port of QN902x.

 Debugging Environment

Debug environment is configured in Keil by default.

 Press “Start/Stop” or “Ctrl” + “F5” to start or stop debugging

 Add breakpoints to project

More information please refer to http://www.keil.com/uvision/debug.asp or
choose “Help”.

6.5 Application Samples
Qblue SDK offers a range of BLE examples which cover the application of the
profiles and services provided by NXP. These examples can help software
developers to understand the BLE stack, profiles and how to develop application.
The developers will be able to develop their own products after a little
modification of these examples.

6.5.1 Directory Structure
This section provides information about the directory structure of BLE examples.

http://www.keil.com/uvision/debug.asp

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 80 of 113

Table 41 Directory Elaboration

Block Description

prj_xxx This fold contains project file and a fold includes configuration
files and user design files.

 src This contains BLE stack configuration file, driver configuration
file, system setup file and user design file.

src This fold contains BLE stack related files, application files and
drivers.

 app This contains files which supported BLE application task
development. The file ‘app_xxx_task.c’ process the message
from other tasks in the stack, and the file ‘app_xxx.c’ construct
the messages to send to other tasks. The file’app_task.c’
gathers all of the messages the application task should take
care.

 cmsis This contains CMSIS compatible processor and peripheral
access layer files for QN902x.

 driver This contains device driver for QN902x.

 fw This contains all of firmware feature header file which will be
used by application.

 lib This contains BLE hardware and software initialization library.

 main This contains application main file.

 profiles This contains all of the profiles’ source code.

 qnevb This block contains support files for evaluation board.

 startup This contains startup file for application project.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 81 of 113

6.5.2 Proximity Reporter
In the following chapter proximity reporter is used to illustrate how to use these
examples.

1. Project
The project in the fold ‘prj_proxr’ is a Proximity Reporter example. Developer can
open the project file ‘prj_proxr.uvproj’ in the Keil IDE. The project structure is
shown below. We have already learned the features of Proximity Reporter in the
previous chapter. In this section we will describe the function of each file in the
project and why these file should be picked to support Proximity Reporter.
Through this example, the developers could learn how to choose file to create
their own product.

Table 42 File Elaboration

File Description

BLE/src/startup/startup.s This file is the entry of the project, which
responsible for allocating the stack and heap,
setting the interrupt vector and initializing the
system library. After completion of these

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 82 of 113

functions jump to main function. This file is a
must for every project.

BLE /src/main/app_main.c This file contains main function which
handles all the modules’ initialization and
main loop. This file is a must for every project.

BLE/prj_proxr/keil/src/system.c This file contains system setting including
sub-module’s clock, IO configuration and
peripherals. Sub-module used for each
product may not be the same, so the
developer should modify this file to meet the
design requirements.

BLE/prj_proxr/keil/src/usr_design.
c

Product-related design file. In this example it
is the application how interpret
starting/stopping alert. The developer can
use different device components to show
alert, such as Buzz, LED and so on. It is
recommended to put developer design file in
one fold, but not required.

BLE/src/app/app_util.c This file contains application utility API. This
file is a must for every project.

BLE/src/app/app_env.c This file contains initialization function of
application task and record important
information in the application task. This file is
a must for every project.

BLE/src/app/app_printf.c This file provide a debug way.

BLE /src/app/app_sys.c This file contains peripheral related functions
in the application task.

BLE /src/app/app_task.c This file gathers all of the messages the
application task should take care.

BLE/src/app/app_gap.c This file constructs messages to GAP task
and will be a part of application task. This file
is a must for every project.

BLE/src/app/app_gap_task.c This file takes care of message from GAP
task and will be a part of application task.
This file is a must for every project.

BLE/src/app/app_gatt.c This file constructs messages to GATT task
and will be a part of application task. If the
product plays central role or peripheral role,
this file is a must. It is not necessary to
include this file when product plays
broadcaster role or observer role.

BLE/src/app/app_gatt_task.c This file takes care of message from GATT
task and will be a part of application task. If
the product plays central role or peripheral
role, this file is a must. It is not necessary to
include this file when product plays
broadcaster role or observer role.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 83 of 113

BLE/src/app/app_smp.c This file constructs messages to SMP task
and will be a part of application task. If the
security feature is support in the product, this
file is a must. Otherwise it is no need to
include.

BLE /src/app/app_smp_task.c This file takes care of message from SMP
task and will be a part of application task. If
the security feature is support in the product,
this file is a must. Otherwise it is no need to
include.

BLE/src/app/app_proxr.c This file constructs messages to proximity
reporter task and will be a part of application
task.

BLE/src/app/app_proxr_task.c This file takes care of message from
proximity reporter task and will be a part of
application task.

BLE/src/profiles/prf_utils.c This file is implementation of Profile Utilities.
As long as any profiles are used, this file
should be included.

BLE/src/profiles/prox/proxr/proxr.c The file implements the features of Proximity
Reporter role in the proximity profile. It is
necessary to contain profile source code
when the profile is used.

BLE/src/profiles/prox/proxr/proxr_t
ask.c

The file implements the features of Proximity
Reporter role in the proximity profile.

BLE/src/driver/uart.c In the example UART interface is used to
output debug information, so the UART driver
should be included in the project. Whether
the device driver is contained in the project
depends on the product design
requirements. And also the driver may be
modified by developer. This file is just a
reference design.

BLE/src/driver/gpio.c In the example GPIO is used to control LED
and button.

BLE/src/driver/sleep.c Sleep API.

BLE/src/driver/syscon.c System clock API.

BLE/src/pwm.c In the example PWM is used to control
buzzer.

BLE/src/lib/keil/qn9020b2_lib_allro
les_v40.lib
BLE/src/lib/keil/qn9020b2_lib_allro
les_v42.lib
BLE/src/lib/keil/qn9020b2_lib_peri
pheral_v40.lib
BLE/src/lib/keil/qn9020b2_lib_peri
pheral_v40.lib

The library of BLE hardware and software
initialization API. This file is a must for every
project. Every project need to select one of
these files according to board version (b2 or
b4), device role (peripheral or central) and
ble version (4.0 or 4.2).

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 84 of 113

BLE/src/lib/keil/qn9020b4_lib_allro
les_v40.lib
BLE/src/lib/keil/qn9020b4_lib_allro
les_v42.lib
BLE/src/lib/keil/qn9020b4_lib_peri
pheral_v40.lib
BLE/src/lib/keil/qn9020b4_lib_peri
pheral_v40.lib

.

BLE/src/qnevb/led.c This file provides LED control for EVB. In the
proximity reporter the LEDs are used to show
link status. The developer should design your
own BSP to replace these files.

BLE/src/qnevb/button.c This file provides button control for EVB. In
the proximity reporter the buttons are used to
start/stop advertising and stop alert. The
developer should design your own BSP to
replace these files.

BLE/src/qnevb/buzz.c This file provides buzzer control for EVB. In
the proximity reporter buzzer is used to show
alert. The developer should design your own
BSP to replace these files.

2. User Configuration

BLE stack configuration (usr_config.h)
Application runs on QN902x, so it is Soc Mode. The example of Proximity
Reporter plays peripheral role, so the connection number is one. And the
application should be compiled with proximity server only. The following macro
shall be defined in the ‘usr_config.h’.

• #define CFG_WM_SOC

• #define CFG_PERIPHERAL

• #define CFG_CON 1

• #define CFG_PRF_PXPR

• #define CFG_TASK_PXPR TASK_PRF1

Driver configuration (driver_config.h)
Only GPIO, PWM and UART are used in the Proximity Reporter example. The
developer should enable corresponding driver in the ‘driver_config.h’.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 85 of 113

System setup (system.c)
At the beginning all peripheral’s clock are disabled, and the clock will be enabled
when the driver initialization is invoked.
Set system clock source, system clock and BLE. In the demo, external 16MHz
XTAL is use. CPU runs on 8MHz and BLE also runs on 8MHz. Some APIs for
setting clock configuration are in the file ‘syscon.c’, which can be used to change
clock in the application.
The IOs are recommended as GPIO except UART and PWM which are used in
this project.
Initialize all of the peripherals used in this project.
3. Message Flow
In the proximity reporter example, the developer should understand four basic
procedures (initialization, advertising, connection and profile operation). The
following figures describe message sequence between APP_TASK and stack in
these procedures, and also indicate related application handler. Through the
following illustrations the developer can learn that the APP_TASK is how to
interact with stack task, how to start advertising, how to obtain connection
information and how to work with profiles.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 86 of 113

APP Stack
(GAP/ SMP)

GAP_RESET_REQ_CMP_EVT

GAP_SET_SEC_REQ

GAP_SET_SEC_REQ_CMP_EVT

GAP_READ_VER_REQ

GAP_READ_BDADDR_REQ

SMPM_SET_KEY_REQ

SMPM_SET_KEY_REQ

GAP_SET_MODE_REQ

GAP_READ_VER_REQ_CMP_EVT

GAP_READ_BDADDR_REQ_CMP_EVT

SMPM_SET_KEY_CFM

SMPM_SET_KEY_CFM

GAP_SET_MODE_REQ_CMP_EVT

app_gap_reset_req_cmp_handler()

app_gap_set_sec_req()

app_gap_set_sec_req_cmp_evt_handler()

app_gap_read_ver_req_cmp_evt_handler()

app_gap_read_bdaddr_req_cmp_evt_handler()

app_smpm_set_key_cfm_handler()

app_smpm_set_key_cfm_handler()

app_gap_set_mode_req_cmp_evt_handler()

app_gap_read_ver_req()

app_gap_read_bdaddr_req()

app_init_local_smp_key()

app_smpm_set_key_req()

app_gap_set_bondable_mode_req()

app_gap_reset_req() GAP_RESET_REQ

app_create_server_service_DB() PROXR_CREATE_DB_REQ

PROXR_CREATE_DB_CFMapp_proxr_create_db_cfm_handler()

Figure 22 Application Initialization

APP Stack
(GAP)

GAP_SET_MODE_REQ_CMP_EVTapp_gap_set_mode_req_cmp_evt_handler()

app_gap_adv_start_req() GAP_SET_MODE_REQ

Figure 24 Application Start Advertising

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 87 of 113

APP Profile
(proxr)

GAP_LE_CREATE_CONN_REQ_CMP_EVTapp_gap_le_create_conn_req_cmp_evt_handler()

app_proxr_enable_req() proxr_enable_req_handler()

GAP

PROXR_ENABLE_REQ

Figure 25 Connection

APP Profile
(proxr)

app_proxr_alert_ind_handler()

GATT

GATT_WRITE_CMD_INDgatt_write_cmd_ind_handler()

proxr_alert_start()PROXR_ALERT_IND

Figure 23 Write Alert

4. User Design
The file ‘usr_design.c’ shows how to use peripherals in the BLE application.
On EVB,
Button 4 is used to start/stop advertising.
Button 5 is used to stop alert.
On Mini DK board,
Button 1 is used to start/stop advertising.
Button 2 is used to stop alert.
LED1 is used to show link status.
Buzzer is used to show alert.

6.6 Device Driver
The Device Driver of the QN902x provides an interface of abstraction between
the physical hardware and the application. System-level software developers can
use the QN902x driver to do the fast application software development, instead
of using the register level programming, which can reduce the total development
time significantly.

This document only contains the brief driver descriptions including the followings:
System Controller Driver, GPIO Driver, UART Driver, SPI Driver, I2C Driver,
Timer Driver, RTC Driver, Watch Dog Timer Driver, PWM Driver, DMA Driver,
ADC Driver, Analog Driver, Sleep Driver, Serial Flash Driver and RF Driver.

Please refer to QN902x API Programming Guide for details. In the driver
programming guide, a description, usage and an illustrated example code are
provided for each driver API. The full driver samples and driver source codes can
be found in the QN902x software release package. The example of QN902x
device driver provided in QN902x software package based on QN902x EVB and
it may be modified for developing with a different hardware platform.

6.6.1 Device Driver File Structure
The source code of QN902x driver has five groups of files related to driver:
cmsis, driver, lib, startup, config, the files in these groups are listed as follow:

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 88 of 113

• cmsis: CMSIS defines for a Cortex-M Microcontroller System.

➢ core_cm0.c: CMSIS Cortex-M0 Core Peripheral Access Layer Source
File.

➢ core_cm0.h: CMSIS Cortex-M0 Core Peripheral Access Layer Header
File.

➢ core_cmInstr.h: CMSIS Cortex-M Core Instruction Access Header File.
➢ core_cmFunc.h: CMSIS Cortex-M Core Function Access Header File.
➢ QN9020.h: CMSIS compatible Cortex-M0 Core Peripheral Access Layer

Header File for QN902x.
➢ driver_QN9020.h: This file defines many inline functions which are used

to read/write access to system registers.

• driver: QN902x driver source code.

➢ adc.h: ADC driver header file.
➢ adc.c: ADC driver source file.
➢ analog.h: Analog driver header file.
➢ analog.c: Analog driver source file.
➢ dma.h: DMA driver header file.
➢ dma.c: DMA driver source file.
➢ gpio.h: GPIO driver header file.
➢ gpio.c: GPIO driver source file.
➢ i2c.h: I2C driver header file.
➢ i2c.c: I2C driver source file.
➢ pwm.h: PWM driver header file.
➢ pwm.c: PWM driver source file.
➢ rtc.h: RTC driver header file.
➢ rtc.c: RTC driver source file.
➢ syscon.h: System controller driver header file.
➢ syscon.c: System controller driver source file.
➢ serialflash.h: Serial flash driver header file.
➢ serialflash.c: Serial flash driver source file.
➢ sleep.h: Sleep driver header file.
➢ sleep.c Sleep driver source file.
➢ spi.h: SPI driver header file.
➢ spi.c: SPI driver source file.
➢ timer.h: Timer driver header file.
➢ timer.c: Timer driver source file.
➢ uart.h: UART driver header file.
➢ uart.c: UART driver source file.
➢ wdt.h: Watchdog timer driver header file.
➢ wdt.c: Watchdog timer driver source file.
➢ fw_func_addr.h: ROM driver API point address.
➢ nvds.h: NVDS driver header file.

• lib: Contains library of calibration, RF driver, and platform initial API.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 89 of 113

➢ qn902xbx_lib_lite.lib: Include calibration and RF driver.
➢ lib.h: Header file of lib.
➢ calibration.h: Calibration driver header file.
➢ qnrf.h: RF driver header file.

• startup: QN902x startup code.

➢ startup.s: startup code of QN902x.

• config: QN902x driver configurations.

➢ driver_config.h: Driver configuration for QN902x, please refer to section
Driver Configurations for details.

➢ system.c: QN902x system setup and initial configuration source file.
➢ system.h: QN902x system setup and initial configuration header file.

• Driver example

Example for how to user specific driver locates in XX\QBlue-
1.x.x\Projects\Driver\xxx\src\xx_example.c.

For example, for example for I2C driver, please refer to XXX\QBlue-
1.x.x\Projects\Driver\i2c\src\ i2c_example.c.

6.6.2 Driver Configuration
QN902x Driver example contains one configuration files: driver_config.h which
defines driver status (enable or disable), realization method (interrupt or polling),
which driver to use (driver source code or driver burned in ROM), driver callback
status (enable or disable) and driver work mode (for example, I2C module work
in MASTER or SLAVE mode). All the configurations can be modified by user, the
following is an example of how to configure UART driver:

CONFIG_ENABLE_DRIVER_UART: This macro can be set to TRUE or FALSE,
means to enable or disable UART driver, only if this macro value is TRUE, the
other macros related to UART have meanings.

CONFIG_UART0_TX_DEFAULT_IRQHANDLER: This macro used to enable or
disable UART0 TX default interrupt request handler, can be set to TURE or
FALSE. If the macro defines to FALSE, user can rewrite a new handler to
replace the default handler. This macro will be effective under the condition of
UART driver is enabled and UART0 TX interrupt is enabled.

CONFIG_UART0_TX_ENABLE_INTERRUPT: Define this macro to TRUE to
enable UART0 TX interruption, otherwise, UART0 data will be transmitted via
polling.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 90 of 113

CONFIG_ENABLE_ROM_DRIVER_UART: This macro set to TRUE means to
use driver burned in ROM, all the UART APIs become to function pointer which
point to ROM address and driver configurations are fixed, otherwise, the UART
source code will be used, and user can modify them.

UART_CALLBACK_EN: This macro means enable or disable UART callback.

UART_BAUDRATE_TABLE_EN: This macro means enable or disable UART
baud rate parameters table, if the macro define to FALSE, baud rate will be set
by formula calculation.

6.6.3 System Controller Driver
QN902x System Controller is responsible for controlling Reset Management Unit
(RMU), Clock Management Unit (CMU) and Power Management Unit (PMU).
The following functions are included in these units:

• syscon_set_sysclk_src(), this function is used to set system clock source.

• syscon_set_ahb_clk(), this function is used to set AHB clock.

• syscon_set_apb_clk(), this function is used to set APB clock.

• syscon_set_timer_clk(), this function is used to set TIMER clock.

• syscon_set_usart_clk(), this function is used to set USART clock.

• syscon_set_ble_clk(), this function is used to set BLE clock.

• syscon_get_reset_cause(), this function is used to get system reset cause.

• syscon_enable_transceiver(), this function is used to enable or disable
transceiver, contains BLE clock setting and REF PLL power setting.

• clock_32k_correction_init(), this function is used to initialize 32K clock
correction.

• clock_32k_correction_enable(), this function is used to enable 32K clock
correction.

• clock_32k_correction_cb(), this function will be called after 32K clock
correction finish.

• clk32k_enable(), this function is used to enable 32K clock.

• memory_power_off(), this function is used to set memory power off.

• clk32k_power_off(), this function is used to set 32K clock power off.

• syscon_set_xtal_src(), this function is used to set XTAL clock source type.

6.6.4 GPIO Driver
QN902x has up to 31 General Purpose I/O pins can be shared with other
function pins, it depends on the pin mux configuration. The main functions of
GPIO driver list as follow:

• gpio_init(), this function is used to initialize callback function pointer and
enable GPIO NVIC IRQ.

• gpio_read_pin(), this function is used to get a specified GPIO pin’s level.

• gpio_write_pin(), this function is used to set level high(1) or low(0) to a
specified GPIO pin.

• gpio_set_direction(), this function is used to set direction(input or output) of a
GPIO pin.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 91 of 113

• gpio_read_pin_field(), this function is used to read a set of GPIO pins’s level.

• gpio_write_pin_field(), this function is used to write a set of GPIO pins’s level.

• gpio_set_direction_field(), this function is used to set direction (input or output)
of a set of GPIO pins.

• gpio_toggle_pin(), this function is used to set a specified GPIO pin to the
opposite level that is currently appied.

• gpio_set_interrupt(), this function is used to configure a specified GPIO pin's
interrupt.

• gpio_enable_interrupt(), this function is used to enable a specified GPIO pin's
interrupt.

• gpio_disable_interrupt(), this function is used to disable a specified GPIO pin's
interrupt.

• gpio_pull_set(), this function is used to set a specified GPIO pin’s mode.

• gpio_wakeup_config(), this function is used to configure wakeup GPIO pin.

• gpio_sleep_allowed(), this function is used to check the GPIO module sleep
is allowed or not

• gpio_clock_on(), this function is used to enable clock of GPIO module.

• gpio_clock_off(), this function is used to disable clock of GPIO module.

• gpio_reset(), this function is used to reset GPIO module.

6.6.5 UART Driver
QN902x have two configurable full-duplex UART ports, each UART port support
hardware flow control and baud rate is up to 2MHz while UART clock is 16MHz,
the UART module performs a serial-to-parallel conversion on data characters
received from the peripheral, and a parallel-to-serial conversion on data
characters received from the CPU, QN902x UART driver contains APIs to realize
these operation. The main functions are described as follow:

• uart_init(), this function is used to initialize UART, it consists of baud-rate,
parity, data-bits, stop-bits, over sample rate and bit order, the function is also
used to enable specified UART interrupt, and enable NVIC UART IRQ.

• uart_read(), this function is used to read Rx data from RX FIFO and the data
will be stored in buffer, as soon as the end of the data transfer is detected, the
callback function is executed.

• uart_write(), this function is used to write data into TX buffer to transmit data
by UART, as soon as the end of the data transfer is detected, the callback
function is executed.

• uart_printf(), print a string to specified UART port.

• uart_finish_transfers(), waiting for specified UART port transfer finished.

• uart_flow_on(), enable specified UART port hardware flow control.

• uart_flow_off(), disable specified UART port hardware flow control.

• uart_rx_enable(), enable or disable specified UART RX port

• uart_tx_enable(), enable or disable specified UART TX port.

• uart_clock_on(), this function is used to enable clock of UART module.

• uart_clock_off(), this function is used to disable clock of UART module.

• usart_reset(), this function is used to reset UART and SPI module.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 92 of 113

6.6.6 SPI Driver
The Serial Peripheral Interface (SPI) is a synchronous serial data communication
protocol which operates in full duplex mode. Devices communicate in
master/slave mode with 4-wire bi-direction interface. QN902x contain 2 sets of
SPI controller performing a serial-to-parallel conversion on data received from a
peripheral device, and a parallel-to-serial conversion on data transmitted to a
peripheral device. Each SPI set can drive up to 2 external peripherals. It also can
be driven as the slave device when the slave mode is enabled. The main SPI
driver APIs are described as follow:

• spi_init(), this function is used to initialize SPI, it consists of bit rate, transmit
width, SPI mode, big/little endian, MSB/LSB first, master/salve, the function is
also used to enable specified SPI interrupt, and enable NVIC SPI IRQ.

• spi_read(), this function is used to read Rx data from RX FIFO and the data
will be stored in buffer, as soon as the end of the data transfer or a buffer
overflow is detected, the callback function is called.

• spi_write(), this function is to write data into TX buffer to transmit data by SPI,
as soon as the end of the data transfer is detected, the callback function is
called.

• spi_clock_on(), this function is used to enable clock of SPI module.

• spi_clock_off(), this function is used to disable clock of SPI module.

6.6.7 I2C Driver
For QN902x, I2C device could act as master or slave and I2C driver can help
user to use I2C functions easily. The main function list as follow:

• i2c_init(), this function is used to initialize I2C in master mode, SCL speed is
up to 400KHz, the function is also used to enable I2c interrupt, and enable
NVIC I2C IRQ.

• i2c_read(), this function is used to complete a I2C read transaction from start
to stop. All the intermittent steps are handled in the interrupt handler while the
interrupt is enabled. Before this function is called, the read length, write length,
I2C master buffer, and I2C state need to be filled, please refer to
i2c_byte_read(). As soon as the end of the data transfer is detected, the
callback function is called.

• i2c_write(), this function is used to complete a I2C write transaction from start
to stop. All the intermittent steps are handled in the interrupt handler while the
interrupt is enabled. Before this function is called, the read length, write length,
I2C master buffer, and I2C state need to be filled, please refer to
i2c_byte_write(). As soon as the end of the data transfer is detected, the
callback function is called.

• i2c_byte_read(), read a byte data from slave device, the data address is 8 bits.

• i2c_byte_write(), write a byte data to a 8 bits address of slave device.

• i2c_byte_read2(), read a byte data from slave device, the data address is 16
bits.

• i2c_byte_write2(), write a byte data to a 16 bits address of slave device.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 93 of 113

• i2c_nbyte_read (), read n byte data from slave device, the data address is 8
bits.

• i2c_nbyte_write(), write n byte data to a 8 bits address of slave device.

• i2c_nbyte_read2 (), read n byte data from slave device, the data address is
16 bits.

• i2c_nbyte_write2(), write n byte data to a 16 bits address of slave device.

6.6.8 Timer Driver
QN902x have two 32-bit timers Timer0/1, and two 16-bit timers Timer2/3. All the
Timers support four operation modes, which allow user to easily implement a
counting scheme. The Timers can perform functions like frequency
measurement, event counting, interval measurement, clock generation, delay
timing, and so on. The Timers also can generate an interrupt signal upon
timeout, or provide the current value of count during operation, and support
external count and capture functions. The main Timer driver APIs are listed as
follow:

• timer_init(), this function is used to initialize the timer modules.

• timer_config(), this function is used to configure timer to work in timer mode,
and set timer pre-scaler and top count number.

• timer_pwm_config(), this function is used to configure timer to work in PWM
mode, and set timer pre-scaler, period, and pulse width.

• timer_capture_config(), this function is used to configure timer to work in
capture mode, and set input capture mode, timer pre-scaler, count or event
number.

• timer_enable(), this function is used to enable or disable the specified timer.

• timer_delay(), this function is used to do precise time delay.

• timer_clock_on(), this function is used to enable clock of timer module.

• timer_clock_off(), this function is used to disable clock of timer module.

• timer_reset(), this function is used to reset timer module.

6.6.9 RTC Driver
QN902x Real Time Clock (RTC) module provides user the real time and
calendar message, the RTC real time based on external or internal low power 32
KHz clock, and its main functions are listed as follow:

• rtc_init(), initial RTC environment variable.

• rtc_time_set(), this function is used to set RTC date, time and install callback
function.

• rtc_time_get(), this function is used to get current RTC time.

• rtc_correction(), this function is used to correct RTC time after CPU wakeup.

• rtc_clock_on(), this function is used to enable clock of RTC module.

• rtc_clock_off(), this function is used to disable clock of RTC module.

• rtc_reset(), this function is used to reset RTC module.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 94 of 113

6.6.10 Watchdog Timer Driver
The purpose of Watchdog Timer (WDT) is to perform a system reset after the
software running into a problem. This prevents system from hanging for an
infinite period of time. The main functions of QN902x WDT driver are listed as
follow:

• wdt_init(), this function is used to set WDT work mode and WDT time-out
interval.

• wdt_set(), this function is used to set WDT time-out interval.

• wdt_clock_on(), this function is used to enable clock of WDT module.

• wdt_clock_off(), this function is used to disable clock of WDT module.

• wdt_reset(), this function is used to reset WDT module.

6.6.11 PWM Driver
QN902x PWM module provides two channels with programmable period and
duty cycle. The main functions of PWM driver are listed as follow:

• pwm_init(), this function is used to initialize the specified PWM channel.

• pwm_config(), this function is used to configure PWM pre-scaler, period, and
pulse width.

• pwm_enable(), this function is used to enable/disable the specified PWM
channel.

• pwm_clock_on(), this function is used to enable clock of PWM module.

• pwm_clock_off(), this function is used to disable clock of PWM module.

6.6.12 DMA Driver
QN902x contains a single channel DMA controller, which support 4 types
transfer mode: memory to memory, peripheral to memory, memory to peripheral,
peripheral to peripheral. The main functions of DMA driver are listed as follow:

• dma_init(), this function is used to clear callback pointer and enable DMA
NVIC IRQ.

• dma_memory_copy(), this function is used to transfer data from memory to
memory by DMA.

• dma_tx(), this function is used to transfer data from memory to peripheral by
DMA.

• dma_rx(), this function is used to transfer data from peripheral to memory by
DMA.

• dma_transfer(), this function is used to transfer data from peripheral to
peripheral by DMA.

• dma_abort(), this function is used to abort current DMA transfer, and usually
used in undefined transfer length mode.

• dma_clock_on(), this function is used to enable clock of DMA module.

• dma_clock_off(), this function is used to disable clock of DMA module.

• dma_reset(), this function is used to reset DMA module.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 95 of 113

6.6.13 ADC Driver
QN902x contain an up to 12 bits resolution successive approximation analog-to-
digital converter (SAR A/D converter) with 12 input channels. It takes about 20
ADC clock cycles to convert one sample, and the maximum input clock to ADC is
16MHz. The A/D converter supports multi operation modes and can be started
by 4 types of trigger source. The main functions of ADC driver are listed as
follow:

• adc_init(), this function is used to set ADC module work clock, resolution,
trigger mode and interrupt.

• adc_compare_init(), this function is used to initialize ADC window comparator.

• adc_decimation_enable(), this function is used to enable ADC decimation.

• adc_read(), this function is used to read specified ADC channel conversion
result in specified mode.

• adc_clean_fifo(), this function is used to clear ADC data FIFO.

• adc_enable(), this function is used to enable or disable ADC module.

• adc_clock_on(), this function is used to enable clock of ADC module.

• adc_clock_off(), this function is used to disable clock of ADC module.

• adc_reset(), this function is used to reset ADC module.

• adc_power_on(), this function is used to power on ADC module.

• adc_power_down(), this function is used to power down ADC module.

• adc_buf_in_set(), this function is used to set ADC buffer input source.

• adc_buf_gain_set(), this function is used to set ADC buffer gain stage, and
only available at the input mode with buffer driver.

• adc_offset_get(), this function is used to get ADC offset for conversion result
correction, and should be called after ADC initialization and buffer gain
settings.

• ADC_SING_RESULT_mV(), this function is used to calculate ADC single
mode voltage value.

• ADC_DIFF_RESULT_mV(), this function is used to calculate ADC differential
mode voltage value.

6.6.14 Analog Driver
QN902x analog circuit contains: clock generator, two comparators, ADC, battery
monitor, brown out detector, temperature sensor, RF, power and reset modules.
Please refer to system controller driver for how to control clock generator, power
and reset modules, refer to ADC driver for how to use ADC, and refer to RF
driver for how to set frequency, the rest modules are described in this section
and main functions of analog driver are listed as follow:

• comparator_init(), this function is used to initialize specified analog
comparator, and to register callback function.

• comparator_enable(), this function is used to enable or disable specified
analog comparator.

• battery_monitor_enable(), this function is used to enable or disable battery
monitor.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 96 of 113

• brown_out_enable(), this function is used to enable or disable brown out
detector.

• temp_sensor_enable(), this function is used to enable or disable temperature
sensor.

• get_reset_source(), this function is used to get system reset cause.

6.6.15 Sleep Dirver
In QN902x, three sleep modes are defined according to cortex-M0 low power
modes: CPU clock gating mode, CPU deep clock gating mode, CPU sleep mode.
The main driver functions are listed as follow:

• sleep_init(), this function is used to initialize system sleep mode.

• enter_sleep(), this function is used to enable system to enter sleep status.

• wakeup_by_gpio(), this function is used to enable system wakeup by GPIO.

• wakeup_by_analog_comparator(), this function is used to enable system
wakeup by analog comparator.

• wakeup_by_sleep_timer(), this function is used to enable system wakeup by
sleep timer.

• sleep_cb(), callback function of wakeup.

• enter_low_power_mode(), this function is used to set MCU entering into low
power mode.

• exit_low_power_mode(), this function is used to set MCU exiting from low
power mode.

• restore_from_low_power_mode(), this function is used to set MCU restoring
from low power mode.

6.6.16 Serial Flash Driver
QN902x contains a Serial Flash Controller, which has mainly 2 functions: access
serial flash (erase/read/write) and boot from serial flash (copy code from serial
flash to RAM and then to execute). The main functions of serial flash driver are
listed as follow:

• read_flash_id(), this function is used to read serial flash ID, which consists of
3 or 4 bytes depends on difference vendor.

• chip_erase_flash(), this function is used to erase entire serial flash.

• sector_erase_flash(), this function is used to erase serial flash sector.

• block_earse_flash(), this function is used to erase serial flash block.

• read_flash(), this function is used to read data from serial flash.

• write_flash(), this function is used to write data to serial flash.

6.6.17 RF Driver
The API of RF driver are listed as follow, please refer to qnrf.h for function
prototype:

• rf_enable_sw_set_freq(), this function is used to enable software to set radio
frequency.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 97 of 113

• rf_set_freq(), this function is used to set radio frequency.

• rf_enable(), this function is used to set RF working mode.

• rf_tx_power_level_set(), this function is used to set RF TX power level.

• rf_tx_power_level_get(), this function is used to get RF TX power level.

7. Network Processor

It is called Network Processor Mode when the link layer, host protocols and profiles
run on the QN902x and the application executes on an external microcontroller or
PC (See Figure 22). These two components communicate via ACI (Application
Control Interface) over UART/SPI interface.

Figure 24 ACI Driver Interface

The main goal of the transport layer between the application and the BLE protocol
stack is transparency. The hardware interface is independent of the message
passing over the transport layer. This allows the message API or hardware driver
to be upgraded without affecting each other.
The physical transport layer for ACI is the same as Controller mode. The reception
and sending of these interface messages is adapted from the HCI module. Flow
control with RTS/CTS is used to prevent UART buffer overflow. If the buadrate of
UART is less than or equal 9600, UART flow control could not be used.

Table 43 Uart Settings

Setting Value

Data 8 bits

Parity No parity

Stop bit 1 stop bit

Flow control RTS/CTS

The following setting is used for ACI SPI Transport Layer.

Application

UART

Network Processor ACI

BLE Protocol Stack

SPI ...

Physical Interface

UART SPI ...

Application ACI

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 98 of 113

Table 44 SPI Settings

Setting Value

Mode Slave

Width 8 bits

For UART/SPI transport, the HCI uses a single byte at the beginning of the packet
to identify the type of the packet (Command, Event, ACL or SCO data packets). In
order to identify the Application Control Interface messages, the choice was made
to use such a byte, different from those 4. There was no need to have a complex
classification of messages like in HCI; the same byte (0x05) is used for receiving
and sending messages.
All of the message between application and protocol stack will be exchanged over
ACI interface. In order to not have additional processing of sent and received
messages, the structure of the kernel messages is directly used in the application
to format the packet to be sent to the BLE protocol stack in the QN902x. (See
chapter 4)
When kernel messages from protocol stack are destined to an Application Layer,
the source and destination task identifiers allow the Kernel to know that the
message it is redirecting should go to a task that exists outside the QN902x, thus
requiring to be sent through ACI. A message handler in the ACI is called and then
the kernel message is transformed into an ACI packet and sent through the
interface to external micro controller, and then free.
When an ACI packet is received through the physical interface, according to its
header information it will cause an allocation of a kernel message with a
corresponding source and destination task identifiers and a corresponding length
of parameter structure. The kernel message parameter structure will be filled with
the unpacked ACI parameter values. This kernel message is then delivered to the
kernel to be sent to the appropriate destination task and processed.

7.1 ACI PDU Format
This section describes the non-standard Application Control Interface (ACI) and
explains the format of the interface packets passed between the application
through the physical interface with the QN902x running in Network Processor
mode.
Table 45 ACI PDU Format

Items Packet
Type

MSG_ID DEST_ID SRC_ID LEN PAYLOAD

Length(bytes) 1 2 2 2 2 By LEN

Description 0x05 Message

ID

Destination

task

identifier

Source

task

identifier

Length of

payload

field

Message

Parameter

The transport function was adapted to add the 0x05 byte as Packet Type before
all packets. The Application Control Interface message contains all of the
information included in a kernel message (See chapter 3.3). The message
structures are described in chapter 3.3 which helps understanding how to
construct ACI message (where to pad a packet that is built to map onto a kernel

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 99 of 113

message, what task identifiers to use in the packet, etc.) by application. The
QN902x processes data in ACI message using little endian, so transfer LSB first
for every field in ACI message.
Task Identifiers are simple shifted indexes for tasks that are instantiated only once.
But for those that are instantiated per connection, they are re-indexed with the
connection index e.g.: (TASK_SMPC <<8) + connection_index. When a kernel
message is received outside the QN902x, the task identifier will be indexed with
the connection index which must thus be known in the application handling
sending and receiving messages to the right tasks. Generally in the first messages
corresponding to a connection, the index is present so it can be recovered and
used in a tool to build task identifiers for sending requests, etc.

7.2 ACI Message Example
A simple illustration of ACI message GAP_LE_CREATE_CON_REQ sent by
Application Task is as below.

Packet Type : QN ACI (0x05)
MSG_ID : GAP_LE_CREATE_CONN_REQ (0x3006)
DEST_ID : GAP_TASK (0x000c)
SRC_ID : APP_TASK (0x0015)
LEN : The length of struct gap_le_create_conn_req (0x001A)
PAYLOAD : Parameter of the GAP_LE_CREATE_CONN_REQ message

struct gap_le_create_conn_req
{

/// LE connection command structure
struct llm_le_create_con_cmd create_cnx;

};

///LLM LE Create Connection Command parameters structure
struct llm_le_create_con_cmd
{
 ///Scan interval
 uint16_t scan_intv;
 ///Scan window size
 uint16_t scan_window;
 ///Initiator filter policy
 uint8_t init_filt_policy;
 ///Peer address type - 0=public/1=random
 uint8_t peer_addr_type;
 ///Peer BD address
 struct bd_addr peer_addr;
 ///Own address type - 0=public/1=random
 uint8_t own_addr_type;
 ///Minimum of connection interval
 uint16_t con_intv_min;
 ///Maximum of connection interval
 uint16_t con_intv_max;
 ///Connection latency
 uint16_t con_latency;
 ///Link supervision timeout
 uint16_t superv_to;
 ///Minimum CE length
 uint16_t ce_len_min;
 ///Maximum CE length

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 100 of 113

 uint16_t ce_len_max;
};

Message Parameter
Scan Interval: 0x0640
Scan Window: 0x0320
Filter policy: 0
Peer Address Type: 0
Peer Address: 01:01:01:BE:7C:08
Connection Interval Minimum: 0x00A0
Connection Interval Maximum: 0x00A0
Latency: 0x0000 |
Supervision Timeout: 0x01F4
Minimum CE Length: 0x0000
Maximum CE Length: 0x0140 |
Data on UART
<UART>TX:[05:06:30:0C:00:15:00:1A:00:40:06:20:03:00:00:01:01:01:BE:7C:08:
00:00:A0:00:A0:00:00:00:F4:01:00:00:40:01]

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 101 of 113

8. Controller Mode

It is called Controller Mode when only the link layer runs on the QN902x. The host
protocol, profiles and application all execute on an external microcontroller. (See
Figure 27) These two components communicate via HCI. The HCI provides
uniform command method of accessing controller capabilities.

Figure 25 HCI Driver Interface

To control the Link Layer below the HCI, a hardware transport layer is needed.
The UART/SPI are available for transferring HCI command, event and data in the
QN902x. The following setting is used for HCI UART Transport Layer. Flow control
with RTS/CTS is used to prevent UART buffer overflow. If the baud rate of UART
is less than or equal 9600, UART flow control could not be used.
Table 46 UART Settings

Setting Value

Data 8 bits

Parity No parity

Stop bit 1 stop bit

Flow control RTS/CTS

8.1 HCI PDU Format
There are 3 types of packet that can be exchanged over the HCI.

• Command (from host to controller)

• Event (from controller to host)

• Data (both directions)

APP, GAP, GATT, ATT, SMP, L2CAP

UART

Controller HCI

Link Layer

SPI ...

Physical Interface

UART SPI ...

Host HCI

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 102 of 113

HCI Command Packets can only be sent to the Controller. The Length depends of
the command type.

Figure 26 HCI Command Packet Format

HCI Data Packets can be sent both to and from the Controller. Connection Handles
are used to identify logical channels between the Host and LE Controller.
Connection Handles are assigned by the LE Controller when a new logical link is
created, using the LE Connection Complete event. No Broadcast Handle for LE.
The flag field indicates if the L2CAP or LL has fragmented the Data or not. The
Length depends of the number of data to transmit.

Figure 27 HCI ACL Packet Format

HCI Event Packets can only be sent from the Controller. The Length depends of
the number of parameters to return.

Figure 28 HCI Event Packet Format

Table 47 Uart Transport Layer

8.2 Supported Commands and Events
Generic Events:

• Command Complete Event.

• Command Status Event.

• Hardware Error Event.

Device Setup:

• Reset Command.

• Controller Flow Control:

• Number of Completed Packets Event.

• LE Read Buffer Size Command

Controller Information:

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 103 of 113

• Read Local Version Information Command.

• Read Local Supported Commands Command.

• Read Local Supported Features Command.

• Read BD_ADDR Command.

• LE Read Local Supported Features Command.

• LE Read Supported States Command.

Controller Configuration:

• LE Set Advertise Enable Command.

• LE Set Advertising Data Command.

• LE Set Advertising Parameters Command.

• LE Set Random Address Command.

• LE Set Scan Response Data Command.

Device Discovery:

• LE Advertising Report Event.

• LE Set Scan Enable Command.

• LE Set Scan Parameters Command.

Connection Setup:

• Disconnect Command.

• Disconnection Complete Event.

• LE Connection Complete Event.

• LE Create Connection Cancel Command.

• LE Create Connection Command.

Remote Information:

• Read Remote Version Information Command.

• Read Remote Version Information Complete Event.

• LE Read Remote Used Features Command.

• LE Read Remote Used Features Complete Event.

Connection State:

• LE Connection Update Command.

• LE Connection Update Complete Event.

Quality of Service:

• Flush Command.

• Flush Occurred Event.

Physical Links:

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 104 of 113

• LE Set Host Channel Classification Command.

Host Flow Control:

• Host Buffer Size Command.

• Set Event Mask Command.

• Set Controller To Host Flow Control Command.

• Host Number Of Completed Packets Command.

• Data Buffer Overflow Event.

• LE Add Device To White List Command.

• LE Clear White List Command.

• LE Read White List Size Command.

• LE Remove Device from White List Command.

• LE Set Event Mask Command.

Link Information:

• Read Transmit Power Level Command.

• Read RSSI Command.

• LE Read Advertising Channel TX Power Command.

• LE Read Channel Map Command.

Authentication and Encryption:

• Encryption Change Event.

• Encryption Key Refresh Complete Event.

• LE Encrypt Command.

• LE Long Term Key Request Event.

• LE Long Term Key Request Reply Command.

• LE Long Term Key Request Negative Reply Comma

• LE Rand Command.

• LE Start Encryption Command.

Testing:

• LE Receiver Test Command.

• LE Transmitter Test Command.

• LE Test End Command.

Direct Test mode:

• LE Test Status Event.

• LE Test Packet Report Event.

Vender Command:

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 105 of 113

• LE_QN_NVDS_GET_CMD

OGF OCF Parameter
Length

Command
Parameters

Return
Parameters

0x3F 0x09 0x2 TAG ID(2) Status(1)
length(1)
data(<=128)

The LE_QN_NVDS_GET_ CMD command is used by the Host to get a specific
tag in the NVDS.

• LE_QN_NVDS_PUT_CMD

OGF OCF Parameter
Length

Command
Parameters

Return
Parameters

0x3F 0x0a <=0x83 TAG ID (2)
length(1)
data(<=128)

Status(1)

The LE_QN_NVDS_PUT_CMD command is used by the Host to add a specific
tag to the NVDS.

• LE_QN_REG_RD_CMD

OGF OCF Parameter
Length

Command
Parameters

Return
Parameters

0x3F 0x30 0x4 Register
address(4)

Status(1)
Register
address(4)
Register
value(4)

The LE_QN_REG_RD_CMD command is used by the Host to get the value of the
specific register.

• LE_QN_REG_WR_CMD

OGF OCF Parameter
Length

Command
Parameters

Return
Parameters

0x3F 0x31 0x8 Register
address(4)
Register
value(4)

Status(1)
Register
address(4)

The LE_QN_SET_BD_ADDR_CMD command is used by the Host to set the value
of the specific register.

• LE_QN_SET_BD_ADDR_CMD

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 106 of 113

OGF OCF Parameter
Length

Command
Parameters

Return
Parameters

0x3F 0x32 0x6 BD address Status

The LE_QN_SET_BD_ADDR_CMD command is used by the Host to set the LE
Bluetooth Device Address in the Controller.

• LE_QN_SET_TYPE_PUB_CMD

OGF OCF Parameter
Length

Command
Parameters

Return
Parameters

0x3F 0x33 0x0 Status

The LE_QN_SET_TYPE_PUB_CMD command is used by the Host to set the LE
Bluetooth Device Address Type to Public Address in the Controller.

• LE_QN_SET_TYPE_RAND_CMD

OGF OCF Parameter
Length

Command
Parameters

Return
Parameters

0x3F 0x34 0x0 Status

The LE_QN_SET_TYPE_RAND_CMD command is used by the Host to set the
LE Bluetooth Device Address Type to Random Address in the Controller.

8.3 Direct Test Mode
One of the main purposes of QN902x controller mode is to provide a solution for
testing transceiver performance. The Direct Test Mode is used to control the
device under test and to provide a report to the tester. The controller mode of
QN902x offers complete test commands and events used in the Direct Test Mode
which can be set up over HCI.

Supported Commands and Events for Direct Test Mode:

• Reset Command.

• BLE Receiver Test Command.

• BLE Transmitter Test Command.

• BLE Test End Command.

• BLE Test Status Event.

• BLE Test Packet Report Event.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 107 of 113

Figure 29 Transmitter Test MSC

Figure 30 Receiver Test MSC

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7--- 04 April 2018 108 of 113

The switch of work mode is very easy, so it is convenient to integrate Direct Test
Mode in the real product. When the product needs to be tested, the application
can switch the work mode to Controller mode and the product is controlled by
tester over HCI. When the testing is finished, the application can switch work mode
back.

E
rro

r!

U
n
k
n

o
w

n

d
o

c
u

m
e

n
t

p
ro

p
e

rty

n
a

m
e

.

E
rro

r! U
n
k
n
o

w
n
 d

o
c
u
m

e
n
t p

ro
p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e

n
t p

ro
p

e
rty

n
a

m
e

.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V.2018. All rights reserved.

 Rev. 1.7 —04 April 2018 109 of 113

9. Legal information

9.1 Definitions

Draft — The document is a draft version only. The content
is still under internal review and subject to formal approval,
which may result in modifications or additions. NXP
Semiconductors does not give any representations or
warranties as to the accuracy or completeness of
information included herein and shall have no liability for
the consequences of use of such information.

9.2 Disclaimers

Limited warranty and liability — Information in this
document is believed to be accurate and reliable. However,
NXP Semiconductors does not give any representations or
warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability
for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in
this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any
indirect, incidental, punitive, special or consequential
damages (including - without limitation - lost profits, lost
savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether
or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal
theory.

Notwithstanding any damages that customer might incur for
any reason whatsoever, NXP Semiconductors’ aggregate
and cumulative liability towards customer for the products
described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves
the right to make changes to information published in this
document, including without limitation specifications and
product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied
prior to the publication hereof.

Suitability for use — NXP Semiconductors products are
not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or
equipment, nor in applications where failure or malfunction
of an NXP Semiconductors product can reasonably be
expected to result in personal injury, death or severe
property or environmental damage. NXP Semiconductors
and its suppliers accept no liability for inclusion and/or use
of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at
the customer’s own risk.

Applications — Applications that are described herein for
any of these products are for illustrative purposes only.
NXP Semiconductors makes no representation or warranty
that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of
their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for
any assistance with applications or customer product
design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit
for the customer’s applications and products planned, as
well as for the planned application and use of customer’s
third party customer(s). Customers should provide
appropriate design and operating safeguards to minimize
the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to
any default, damage, costs or problem which is based on
any weakness or default in the customer’s applications or
products, or the application or use by customer’s third party
customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and
products using NXP Semiconductors products in order to
avoid a default of the applications and the products or of
the application or use by customer’s third party
customer(s). NXP does not accept any liability in this
respect.

Export control — This document as well as the item(s)
described herein may be subject to export control
regulations. Export might require a prior authorization from
competent authorities.

Translations — A non-English (translated) version of a
document is for reference only. The English version shall
prevail in case of any discrepancy between the translated
and English versions.

Evaluation products — This product is provided on an “as
is” and “with all faults” basis for evaluation purposes only.
NXP Semiconductors, its affiliates and their suppliers
expressly disclaim all warranties, whether express, implied
or statutory, including but not limited to the implied
warranties of non-infringement, merchantability and fitness
for a particular purpose. The entire risk as to the quality, or
arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their
suppliers be liable to customer for any special, indirect,
consequential, punitive or incidental damages (including
without limitation damages for loss of business, business
interruption, loss of use, loss of data or information, and the
like) arising out the use of or inability to use the product,
whether or not based on tort (including negligence), strict
liability, breach of contract, breach of warranty or any other
theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for
any reason whatsoever (including without limitation, all
damages referenced above and all direct or general
damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive
remedy for all of the foregoing shall be limited to actual
damages incurred by customer based on reasonable
reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The
foregoing limitations, exclusions and disclaimers shall apply
to the maximum extent permitted by applicable law, even if
any remedy fails of its essential purpose.

9.3 Trademarks

Notice: All referenced brands, product names, service
names and trademarks are property of their respective
owners.

E
rro

r!

U
n
k
n

o
w

n

d
o

c
u

m
e

n
t

p
ro

p
e

rty

n
a

m
e

.

E
rro

r! U
n
k
n
o

w
n
 d

o
c
u
m

e
n
t p

ro
p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e

n
t p

ro
p

e
rty

n
a

m
e

.

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995

© NXP Semiconductors 2018 All rights reserved.

 Rev. 1.7 — 04 April 2018 110 of 113

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 20182014. All rights reserved.

 Rev. 1.7 — 2 April 20158 111 of 113

10. List of figures

Figure 1 QN902x Hardware Architecture 7
Figure 2 Software Architecture ... 7
Figure 3 Wireless SoC Mode .. 8
Figure 4 Network Processor Mode 9
Figure 5 Controller Mode .. 10
Figure 6 Message ID constitution 12
Figure 7 Message Allocation and Transmission 13
Figure 8 Scheduling Algorithm .. 18
Figure 9 Timer Setting Procedure 19
Figure 10 Timer Expiry Procedure 20
Figure 11 BLE Stack Architecture 21
Figure 12 LL State Diagram .. 22
Figure 13 ISP mode .. 46
Figure 14 Load Mode .. 47
Figure 15 Flash Address Map ... 48
Figure 16 Download an application to Flash 57
Figure 17 Download an application to SRAM 58
Figure 18 Memory Map ... 61
Figure 19 Internal SRAM Map .. 62
Figure 20 Application Execution Flow 64
Figure 21 Remap Action ... 65
Figure 22 Application Initialization 86
Figure 23 Write Alert ... 87
Figure 24 ACI Driver Interface .. 97
Figure 25 HCI Driver Interface .. 101
Figure 26 HCI Command Packet Format 102
Figure 27 HCI ACL Packet Format 102
Figure 28 HCI Event Packet Format 102
Figure 29 Transmitter Test MSC 107
Figure 30 Receiver Test MSC ... 107

NXP Semiconductors QN902x
 BLE Application Developer Guide

UM10995 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

 Rev. 1.7 — 04 April 2018 112 of 113

11. List of tables

No table of figures entries found.

Table 1 API for Event .. 12
Table 2 API for Message Allocation and Transmission 13
Table 3 Task Type Definition .. 14
Table 4 API for Task Management 17
Table 5 API for Scheduler ... 18
Table 6 Timer API Definition ... 20
Table 7 Include Files ... 20
Table 8 SMPM Message ... 23
Table 9 SMPC Message ... 23
Table 10 Generic Interface Message 27
Table 11 Configuration Message 28
Table 12 Service Discovery Message 28
Table 13 Characteristic Discovery Message 29
Table 14 Read and Write Message 31
Table 15 Notify and Indication Message 32
Table 16 Profile Interface Message 33
Table 17 Generic Interface Message 34
Table 18 Device Mode Setting Message 35
Table 19 White List manipulation Message 36
Table 20 Advertisement and Observation Message 37
Table 21 Name Discovery and Peer Information Message

 .. 37
Table 22 Device Discovery Message 38
Table 23 Connection Establishment and Detachment

Message ... 39
Table 24 Random Addressing Message 40
Table 25 Privacy Setting Message 40
Table 26 Link Security Status ... 42
Table 27 Pair and Key Exchange Message 42
Table 28 Parameter Update Message 43
Table 29Channel Map Update Message........................... 44
Table 30 RSSI Message ... 45
Table 31 Include Files ... 45
Table 32 ISP Commands .. 49
Table 33 API for NVDS ... 58
Table 34 BLE Stack TAG .. 59
Table 35 Interrupt Vector Define 63
Table 36 Message and API ... 69
Table 37 Immediate alert service requirements 70
Table 38 Hardware Initialization .. 73
Table 39 BLE Stack Initialization 74

Table 40 Processor Power Mode 76
Table 41 Directory Elaboration .. 80
Table 42 File Elaboration .. 81
Table 43 Uart Settings .. 97
Table 44 SPI Settings ... 98
Table 45 ACI PDU Format .. 98
Table 46 UART Settings ... 101
Table 47 Uart Transport Layer .. 102

NXP Semiconductors QN902x
 BLE Application Developer Guide

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2018. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 04 April 2018

Document identifier: UM10995

	QN902x BLE Application Developer Guide
	Contents
	1. Introduction
	1.1 Purpose
	1.2 References
	1.3 Definitions, Symbols and Abbreviations

	2. QN902x BLE Software Platform
	2.1 Software Architecture
	2.2 Working Mode
	1.4
	1.5
	2.2.1 Wireless SoC Mode
	2.2.2 Network Processor Mode
	2.2.3 Controller Mode

	2.3 Operation System
	2.3.1 Overview
	2.3.2 Events
	2.3.3 Messages
	2.3.4 Tasks
	2.3.5 Message Scheduler
	2.3.6 Timer Scheduling
	2.3.7 Include Files

	3. BLE Protocol Stack
	1
	2
	3
	3.1 Link Layer (LL)
	3.2 Logical Link Control and Adaptation Protocol (L2CAP)
	3.3 Security Manager Protocol (SMP)
	3.4 Attribute Protocol (ATT)
	3.5 Generic Attribute Profile (GATT)
	1.6
	1.7
	1.8
	1.9
	1.10
	3.5.1 Interface with APP/PRF
	3.5.2 Generic Interface
	3.5.3 Configuration
	3.5.4 Service Discovery
	3.5.5 Characteristic Discovery
	3.5.6 Read and Write Characteristics
	3.5.7 Notify and Indication Characteristics
	3.5.8 Profile Interface

	3.6 Generic Access Profile (GAP)
	1.11
	3.6.1 Interface with APP
	3.6.2 Generic Interface
	3.6.3 Device Mode Setting
	3.6.4 White List Manipulation
	3.6.5 LE Advertisement and Observation
	3.6.6 Name Discovery and Peer Information
	3.6.7 Device Discovery
	3.6.8 Connection Establishment and Detachment
	3.6.9 Random Addressing
	3.6.10 Privacy Setting
	3.6.11 Pair and Key Exchange
	3.6.12 Parameter Update
	3.6.13 Channel Map Update
	3.6.14 RSSI

	3.7 Include Files

	4. Bootloader
	4
	5
	6
	7
	4.1 Flash Arrangement
	4.2 Peripherals Used in the Bootloader
	4.3 Program Protection
	4.4 ISP Protocol Description
	4.4.1 ISP Interface Requirements
	4.4.2 ISP PDU Format
	4.4.3 ISP Commands
	4.4.4 ISP Program Flow Diagram

	5. NVDS
	8
	5.1 BLE Stack TAG
	5.2 Include Files

	6. Application Development
	9
	6.1 Available hardware resource for APP
	6.1.1 MCU
	6.1.2 Memory
	6.1.3 Peripheral
	6.1.4 Interrupt Controller

	6.2 Application Execution Flow
	6.2.1 Startup (Remap)

	6.3 Creating a Custom BLE Application
	6.3.1 User Configuration
	6.3.2 BLE Profiles
	6.3.3 BLE main function
	6.3.3.1 DC-DC Configuration
	6.3.3.2 BLE Hardware Initialization
	6.3.3.3 Initialize System
	6.3.3.4 Register Profiles Functions into BLE Stack
	6.3.3.5 Initialize BLE Stack
	6.3.3.6 Set Maximum BLE Sleep Duration
	6.3.3.7 Initialize Application Task
	6.3.3.8 Sleep initialization
	6.3.3.9 Run Scheduler
	6.3.3.10 Sleep Mode

	6.3.4 Application Task
	6.3.4.1 APP_TASK API Description

	6.4 Application Debug
	6.5 Application Samples
	6.5.1 Directory Structure
	6.5.2 Proximity Reporter

	6.6 Device Driver
	6.6.1 Device Driver File Structure
	6.6.2 Driver Configuration
	6.6.3 System Controller Driver
	6.6.4 GPIO Driver
	6.6.5 UART Driver
	6.6.6 SPI Driver
	6.6.7 I2C Driver
	6.6.8 Timer Driver
	6.6.9 RTC Driver
	6.6.10 Watchdog Timer Driver
	6.6.11 PWM Driver
	6.6.12 DMA Driver
	6.6.13 ADC Driver
	6.6.14 Analog Driver
	6.6.15 Sleep Dirver
	6.6.16 Serial Flash Driver
	6.6.17 RF Driver

	7. Network Processor
	10
	7.1 ACI PDU Format
	7.2 ACI Message Example

	8. Controller Mode
	11
	8.1 HCI PDU Format
	8.2 Supported Commands and Events
	8.3 Direct Test Mode

	9. Legal information
	9.1 Definitions
	9.2 Disclaimers
	9.3 Trademarks

	10. List of figures
	11. List of tables

