UM10319 Cake8026_02_D Rev. 1.0 — 4 August 2011

User manual

Document information

Info	Content
Keywords	TDA8026, Demo Board
Abstract	This user manual describes how to use the Cake8026_02_D, a demo board used to evaluate the TDA8026 device, a 5 slots smart cards reader.

Revision history

Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10319

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

1. Introduction

1.1 TDA8026

The TDA8026 is a 5 slots smart card reader interface. It is mainly dedicated to Point-Of-Sales applications with one or two main slots for customer card and 4 or 3 extra slots for

Secure Access Modules.

1.2 Cake8026_02_D

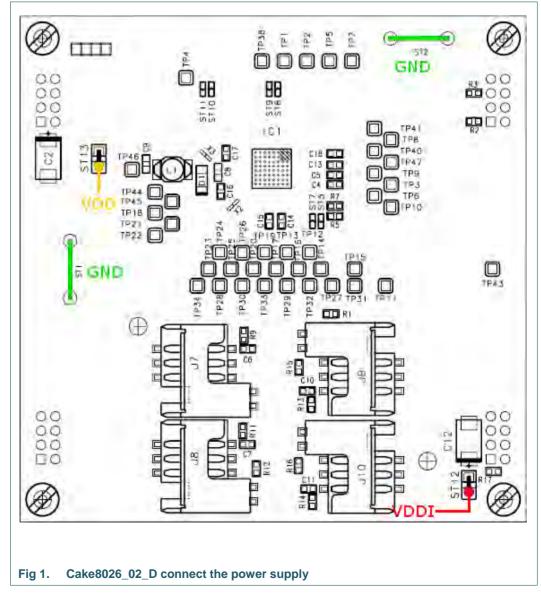
The demo board Cake8026_02_D is an evaluation board for the TDA8026. It allows testing the main functionalities of the TDA8026.

This board embeds all the mandatory components to design the TDA8026 so that the user just need to connect the interface with its host to start developing applications based on the TDA8026.

On this demo board, the slot 1 can receive a general banking sized smart card while the slots from 2 to 5 have SIM-sized smart card connectors.

User manual

2. Configuration

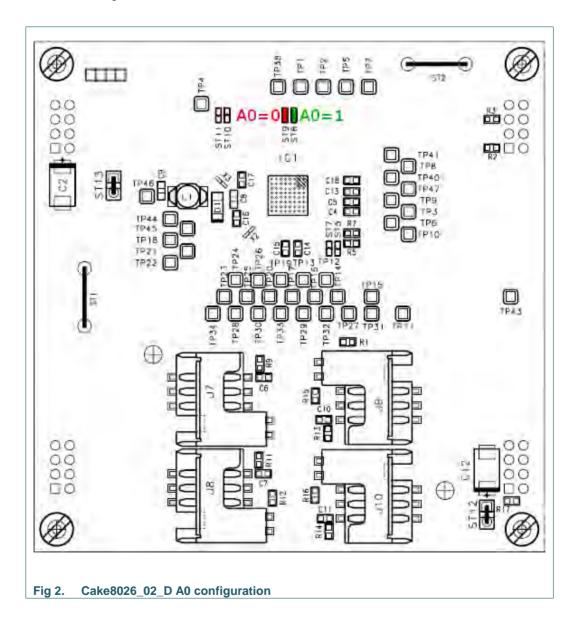

2.1 Power Supply

The TDA8026 is supplied through 2 supply pins: VDDI for the interface with the host and VDD for the core and the DCDC converter.

On the board, the two pins can be connected together with the same power supply or be supplied separately.

VDD can be input by the ST13 connector. The jumper can be removed and VDD applied on the pin described in Fig 1.

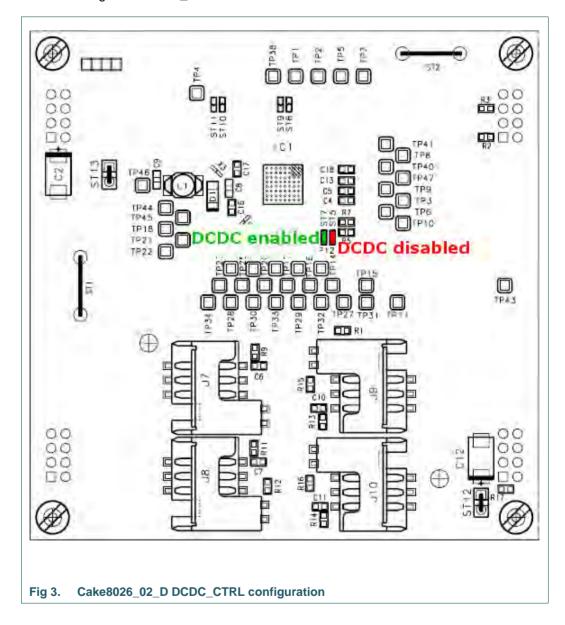
VDDI can be applied in the same way on ST12, by removing the jumper. See Fig 1. The ground must always be connected. It can be easily plugged on a jumper called ST1 or ST2.



2.2 A0

A0 allows choosing the I²C address. It can be fixed by hardware thanks to the soldering points ST8 and ST9.

Connecting ST8: A0 = 1. TDA8026's addresses = 4Ch, 44h and 46h.

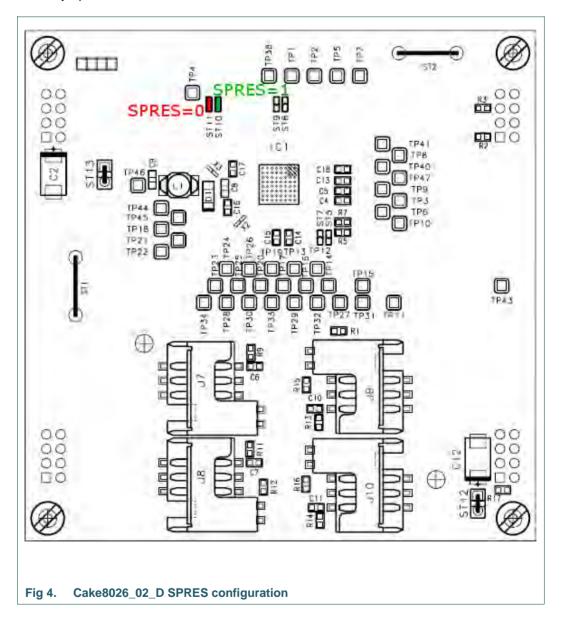

Connecting ST9: A0 = 0. TDA8026's addresses = 48h, 40h and 42h.

2.3 DCDC_CTRL

The DCDC_CTRL pin allows enabling or disabling the DCDC converter. It can be selected by soldering ST5 or ST7.

Connecting ST5: DCDC_CTRL = $1 \square$ DCDC disabled Connecting ST7: DCDC_CTRL = $0 \square$ DCDC enabled

2.4 SPRES


SPRES is used to choose the polarity of the smart card connector on slot 1, as described below:

Connecting ST10: SPRES = 1

normally closed card connector

Connecting ST11: SPRES = $0 \square$ normally open card connector

The default value for this board is SPRES = 0 as the default card connector type is normally open.

3. Connection to the host

To start using the TDA, a few wires are required. Then the other wires can be added to evaluate more features of the TDA8026. The following tables give a summary of the connections to make in order to achieve a specific goal.

Please note: The ground connection is not mentioned in the tables but shall always be connected between the host board and the Cake8026_02_D board.

Cake8026 pin	Host connection	Cake 8026 pin position	TDA8026 application example
VDD = VDDI	Microcontroller power supply	J3-1 and J2-1 or VDD and VDDI test pin.	Read the product version. Check the pending
SDA	Master I ² C SDA pin	J1-1 or SDA test pin	interrupts. Check the card
SCL	Master I ² C SCL pin	J1-3 or SCL test pin	presence. See Table 6 in chapter 5: TDA8026 application examples

Table 1. Connection to access the TDA8026' registers

	1	Fable :	2.	Access	s slo	ot 1	
--	---	----------------	----	--------	-------	------	--

Cake8026 pin	Host connection	Cake8026 pin position	TDA8026 application example
VDD = VDDI	Microcontroller power supply	J3-1 and J2-1 or VDD and VDDI test pin.	Activate the smart card.
SDA	Master I ² C SDA pin	J1-1 or SDA test pin	Receive the ATR.
SCL	Master I ² C SCL pin	J1-3 or SCL test pin	receive the answer.
IOUC1	Host's ISO 7816 UART I/O line	J2-3 or IOUC1 test pin	See Table 7 in
CLKIN1	Host's ISO 7816 UART CLK line	J2-5 or CLKIN1 pin	chapter 5: TDA8026 application examples

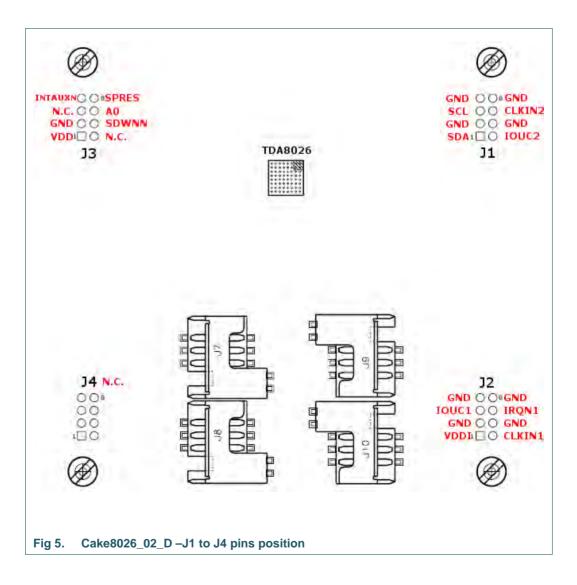
Cake8026 pin	Host connection	Cake8026 pin position	TDA8026 application example
VDD = VDDI	Microcontroller power supply	J3-1 and J2-1 or VDD and VDDI test pin.	
SDA	Master I ² C SDA pin	J1-1 or SDA test pin	Activate several
SCL	Master I ² C SCL pin	J1-3 or SCL test pin	smart cards and receive all
IOUC1	Host's ISO 7816 UART I/O line	J2-3 or IOUC1 test pin	ATR.
CLKIN1	Host's ISO 7816 UART CLK line	J2-5 or CLKIN1 pin	Access different smart cards alternatively.
IOUC2	Host's ISO 7816 UART I/O line (IOUC1 and IOUC2 can be connected together)	J1-5 or IOUC2 test pin	See Table 8 in chapter 5: TDA8026 application examples
CLKIN2	Host's ISO 7816 UART CLK line (CLKIN1 and CLKIN2 can be connected together)	J1-7 or CLKIN2 test pin	

Table 4. Handle the TDA8026's interrupt

Cake8026 pin	Host connection	Cake 8026 pin position	TDA8026 application example
VDD = VDDI	Microcontroller power supply	J3-1 and J2-1 or VDD and VDDI test pin.	
SDA	Master I ² C SDA pin	J1-1 or SDA test pin	
SCL	Master I ² C SCL pin	J1-3 or SCL test pin	
IOUC1	Host's ISO 7816 UART I/O line	J2-3 or IOUC1 test pin	Receive an interrupt
CLKIN1	Host's ISO 7816 UART CLK line	J2-5 or CLKIN1 pin	smart card insertion or extraction.
IOUC2	Host's ISO 7816 UART I/O line (IOUC1 and IOUC2 can be connected together)	J1-5 or IOUC2 test pin	See Table 9 in chapter 5: TDA8026 application examples
CLKIN2	Host's ISO 7816 UART CLK line (CLKIN1 and CLKIN2 can be connected together)	J1-7 or CLKIN2 test pin	
IRQN	Microcontroller's external interrupt input	J2-7 or IRQN test pin	

Note: The IRQN line must be externally pulled-up by a 1k resistor.

Cake8026 pin	Host connection	Cake8026 pin position	TDA8026 application example	
VDD = VDDI	Microcontroller power supply	J3-1 and J2-1 or VDD and VDDI test pin.		
SDA	Master I ² C SDA pin	J1-1 or SDA test pin		
SCL	Master I ² C SCL pin	J1-3 or SCL test pin		
IOUC1	Host's ISO 7816 UART I/O line	J2-3 or IOUC1 test pin	Put the TDA8026 in shutdown mode.	
CLKIN1	Host's ISO 7816 UART CLK line	J2-5 or CLKIN1 pin	Insert a card and	
IOUC2	Host's ISO 7816 UART I/O line (IOUC1 and IOUC2 can be connected together)	J1-5 or IOUC2 test pin	wake up the TDA8026. See Table 10 in chapter 5: TDA8026	
CLKIN2	Host's ISO 7816 UART CLK line (CLKIN1 and CLKIN2 can be connected together)	J1-7 or CLKIN2 test pin	application examples	
IRQN	Microcontroller's external interrupt input	J2-7 or IRQN test pin		
SDWNN	Any microcontroller's output	J3-6 or SDWNN test pin		

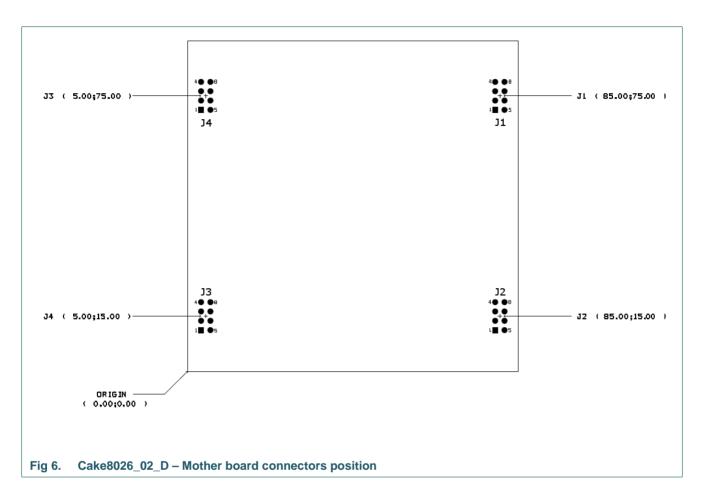

Table 5. Handle the TDA8026's shutdown mode

4. Connection to a mother board

The Cake8026_02_D board has 4 connectors soldered on the bottom side. They can be used to plug the Cake on a dedicated mother board, with respect to the connected signals.

4.1 Connections

The following drawing shows the available signals on these 4 connectors:



The drawing above is represented in top view.

To design the mother board, 4 connectors are needed. The reference of the connectors is:

Bar2x4FD, Header, Dual, Row, Straight, Female, Pitch:2.54,h:8.5 mm

The positions of the connectors on the board must respect the following reference:

4.2 Configuration

As explained in chapter 2, A0 and SPRES can be connected in hardware on the board. If this is done, the corresponding pins (A0 = J3-7 and SPRES = J3-8) must be left unconnected.

Otherwise, if A0 and SPRES configuration solder points are not used, the values can be configured outside, on the mother board. The good value must be input on the A0 and SPRES pins on the connector J3.

4.3 Auxiliary smart card reader

An auxiliary device to read an extra smart card can be connected on the mother board, sharing eventually the IOUC and CLKIN lines with the TDA8026.

In this case, the INTAUXN input of the TDA8026, available on J3-4 can be used to connect the interrupt output of the auxiliary device.

This enables the microcontroller to manage only one external interrupt for both smart card reader devices. See TDA8026's data sheet and application note (AN10724) for details about management of this auxiliary interrupt.

5. TDA8026 application examples

When the demo board is connected to the host, it is possible to access the TDA8026 and test different features. The access to the TDA is made with a standard I²C protocol. In the following examples, the host is the master, meaning that a **write** is a data write from the host to one of the TDA8026's registers, and a **read** is a TDA8026's register read by the host.

The A0 input of the TDA8026 is assumed to be 0 (LOW level). Therefore the addresses are given numerically as 48h for bank 0 and 40h and 42h for bank 1 If A0 is connected to VDDI, (A0 = 1), the addresses must be replaced by 4Ch, 44h and 46h respectively.

Table 6. Access TDS8026's registers

These applications can be achieved only with the power supply and the I²C bus connected

Action/Command	Result	Comment
Power up	-	Power up the TDA with VDD and VDDI
I ² C – Write 00h @ 48h	ACK from the TDA	The host writes 00h at address 48h. The address and the value are acknowledged by the TDA
I ² C – Read @ 48h	00h	Confirmation that the write command worked. The written value (00h) is read back
I ² C – Read @ 40h	C1h	The value read is the TDA8026's version
I ² C – Read @ 42h	1Fh	The first read to this address after power up gives 1Fh, meaning that the 5 slots have an information to give
I ² C – Write 01h @ 48h	ACK from the TDA	Slot 1 selection. The TDA8026 acknowledges the address and the data
l ² C – Read @ 48h	01h	Confirmation that the write command worked. The slot 1 is now selected
l ² C – Read @ 40h	08h	The SUPL bit in slot 1 is set. It is automatically cleared after the read
I ² C – Read @ 40h	00h	The SUPL bit in slot 1 has been cleared
I ² C – Write 02h @ 48h	ACK from the TDA	Slot 2 selection
I ² C – Read @ 40h	08h	The SUPL bit in slot 2 is set. It is automatically cleared after the read
Read SUPL bits for slots	3 to 5 as done for the	e slots 1 and 2 above
I ² C – Write 00h @ 48h	ACK from the TDA	Selection of the general registers
I ² C – Read @ 42h	00h	All the pending interrupts have been cleared
I ² C – Write 01h @ 48h	ACK	Select slot 1
I ² C - Read @ 40h	00h	No card is inserted
Insert a card in slot 1		
I ² C – Read @ 40h	03h	Bit PRES = 1 and bit PRESL = 1. PRESL informs that bit PRES has changed. PRESL is automatically reset after the read
l²C – Read @ 40h	01h	Bit PRES = 1. The card is present

Table 7.Access slot 1IOUC1 and CLKIN1 must		o the host ISO 7816 UART
Action/Command	Result	Comment
Power up and clear the	pending interr	upts by reading each slot's @40h
Insert card and clear the	e interrupt by r	reading the slot 1 @ 40h
I ² C – Write 01h @ 48h	ACK	Select slot1
I ² C – Write 45h @ 40h	ACK	Enable I/O line on slot1, select 5V activation and set START bit
The smart card in slot 1 is	activated. The	ATR is received on IO1
The ATR is transmitted to	the host throug	gh IOUC1
I ² C – Write 47h @ 40h	ACK	IO enabled, 5V card selected, WARM = 1, START = 1
A warm reset is performed	d on smart card	1. The ATR is received on IO1
The ATR is transmitted to	the host throug	gh IOUC1
APDU transmission on I	OUC1	
The APDU is transmitted	to the smart ca	rd on IO1; an answer is received on IO1
The answer can be read of	on IOUC1	

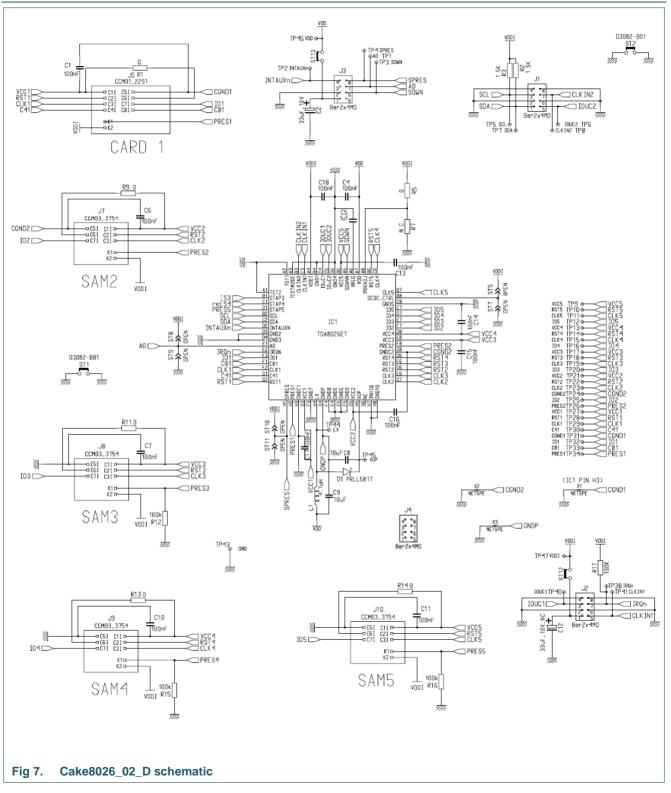

Action/Command	Result	Comment
Power up and clear the	pending interru	ots by reading each slot's @40h
Insert a card in slot 1 ar	nd clear the inter	rupt by reading the slot 1 @ 40h
Insert a card in slot 4		
I ² C – Write 01h @ 48h	ACK	Select slot1
I ² C – Write 45h @ 40h	ACK	Enable I/O line on slot1, select 5V activation and set START bit
The smart card in slot 1 is	s activated. The A	TR is received on IO1
The ATR is transmitted to	the host through	IOUC1
I ² C – Write 05h @ 40h	ACK	Clear IOEN bit in slot 1 but keep card activated at 5 V $$
I ² C – Write 04h @ 48h	ACK	Select slot 4
I ² C – Write 41h @ 40h	ACK	Enable I/O line on slot4, select 3V activation and set START bit
The smart card in slot 4 is	s activated. The A	TR is received on IO4
The ATR is transmitted to	the host through	IOUC2
I ² C – Write 05h @ 40h	ACK	Disable I/O on slot 4 but keep card activated at 3 V
I ² C – Write 01h @ 48h	ACK	Select slot 1
I ² C – Write 45h @ 40h	ACK	Enable I/O line on slot1, keep 5V selection and activation
APDU transmission on	IOUC1	
The APDU is transmitted	to the smart card	on IO1; an answer is received on IO1
The answer can be read	on IOUC1	
I ² C – Write 05h @ 40h	ACK	Disable I/O on slot 1; keep card activated at 5 V
I ² C – Write 04h @ 48h	ACK	Select slot 4
I ² C – Write 45h @ 40h	ACK	Enable I/O line on slot 4, keep 3V selection and activation
APDU transmission on	IOUC2	
The APDLL is transmitted	to the cord on IO	4; an answer is received on IO4

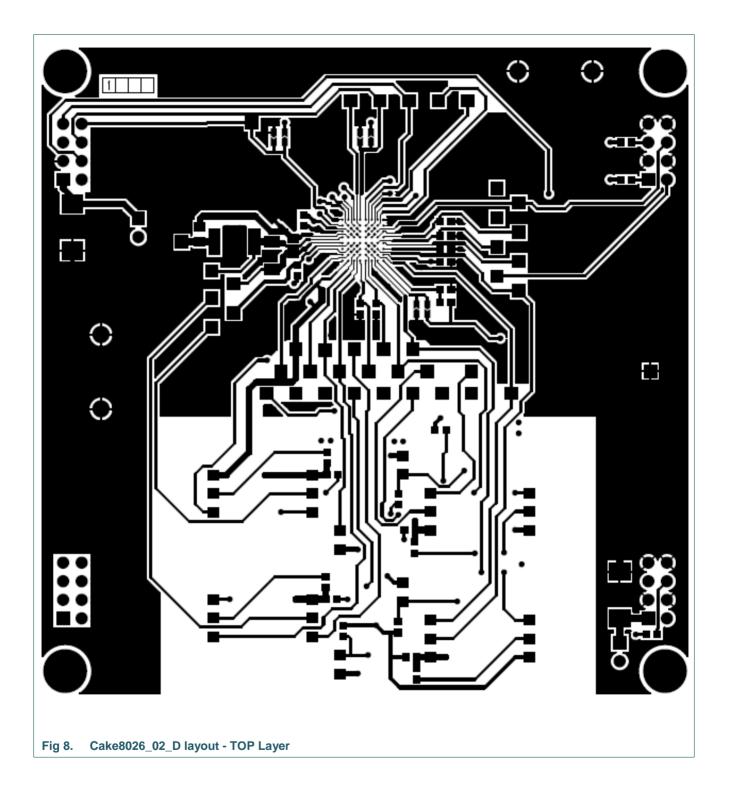
Table 9.Manage the inIRQN must be connected t		terrupt input
Action/Command	Result	Comment
Power up the TDA8026		
The IRQN line goes HIGH	with the power supply	y and then goes LOW
I ² C – Write 00h @ 48h	ACK	
I ² C – Read @ 42h	INT = 1Fh	
I ² C – Write 01h @ 48h	ACK	To be performed only if INT & 01h = 01h
I ² C – Read @ 40h	08h (SUPL)	\sim 10 be performed only if in i \propto 0 m = 0 m
I ² C – Write 02h @ 48h	ACK	To be performed only if NT ℓ 02b - 02b
I ² C – Read @ 40h	08h (SUPL)	To be performed only if INT & 02h = 02h
I ² C – Write 03h @ 48h	ACK	To be performed only if NT 9.04b, 04b
I ² C – Read @ 40h	08h (SUPL)	To be performed only if INT & 04h = 04h
I ² C – Write 04h @ 48h	ACK	To be performed only if NT 9 00b 00b
I ² C – Read @ 40h	08h (SUPL)	To be performed only if INT & 08h = 08h
I ² C – Write 05h @ 48h	ACK	To be performed only if NT 9 40b 40b
I ² C – Read @ 40h	08h (SUPL)	To be performed only if INT & 10h = 10h
The IRQN line goes HIGH		
Insert a smart card in slo	ot 1	
The IRQN line goes LOW		
I ² C – Write 00h @ 48h	ACK	
I ² C – Read @ 42h	INT = 01h	
I ² C – Write 01h @ 48h	ACK	This read is performed because INT 8 Odb Odb
I ² C – Read @ 40h	03h (PRESL and PRES)	 This read is performed because INT & 01h = 01h Bit PRES has changed and is now 1
The IRQN line goes HIGH		

UM10319

able 10. Manage the sh SDWNN must be connecte		t	
Action/Command	Result	Comment	
Power up and clear the p	ending interrup	ts (may be done automatically by the interrupt service routine)	
2C – Write 00h @ 48h	ACK	This instruction is just used to check that the TDA826 is awake and	
²C – Read @ 40h	C1h	answers	
Pull the SDWNN line to G	ND		
The TDA8026 is in shutdov	wn mode		
² C – Write 00h @ 48h	NACK	No ACK neither answer from the TDA8026 meaning that it is indeed in	
²C – Read @ 40h	-	shutdown mode	
nsert a card in slot 1			
The IRQN line goes LOW - TDA8026 is still in shutdow		pending. This information is given to inform about the card insertion but the	
Set the SDWNN line to VI	DDI		
The IRQN line goes HIGH	– The TDA8026 i	is being reset	
The IRQN line goes LOW -	- End of the TDA	8026 reset	
Clear the pending interru	pts as it is done	e after a power up	
² C – Write 00h @ 48h	ACK	Check that the TDA8026 is available for communication	
² C – Read @ 40h	C1h		

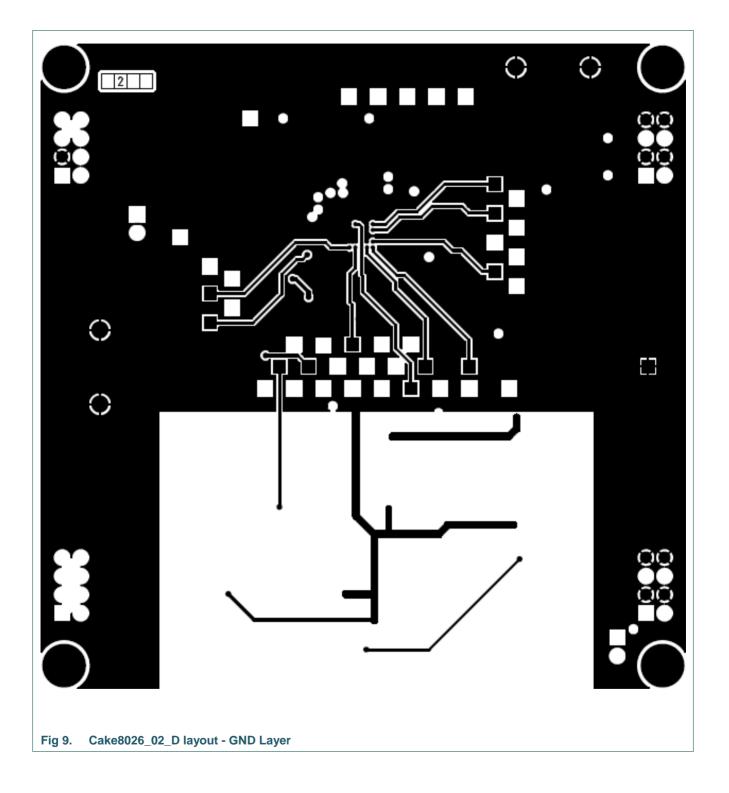
6. Annex A - Schematic

7. Annex B – Layout and Components

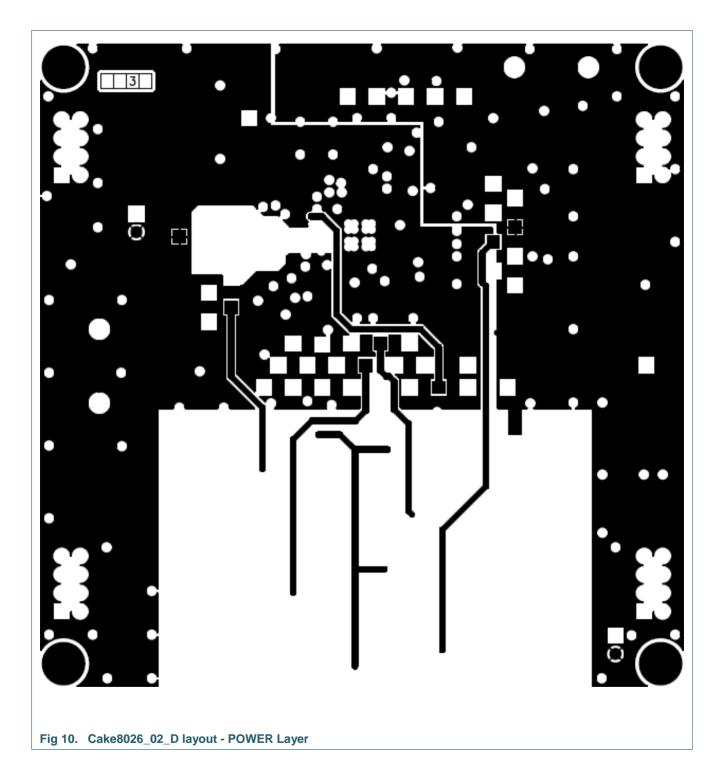

The board Layout and the equipment views are given in the next 6 pages.

The board has 4 layers named TOP, GND, POWER and BOTTOM. The GND and POWER layers are internal, and the BOTTOM layer is seen in transparency.

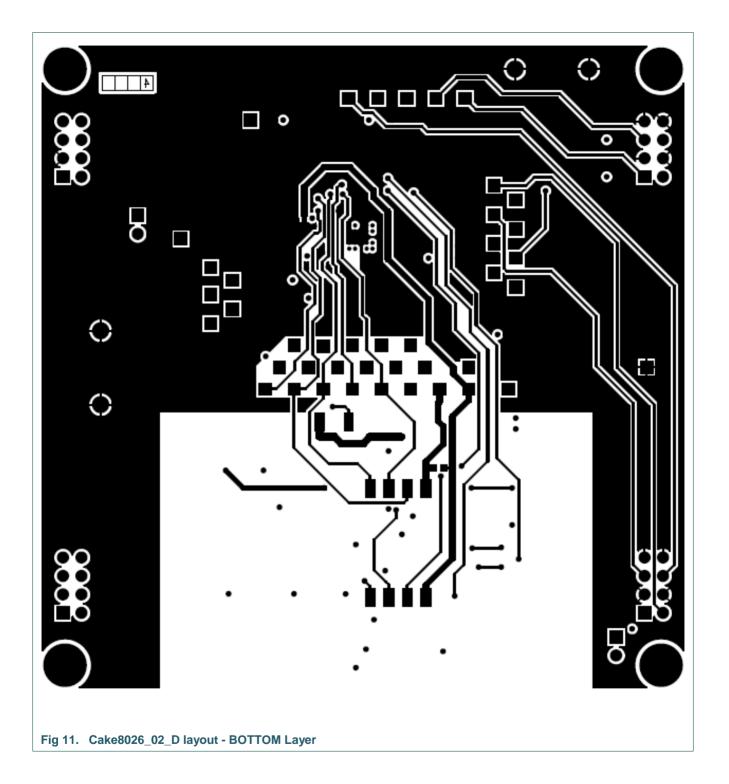
The components placement is given for both TOP and BOTTOM sides.


User manual

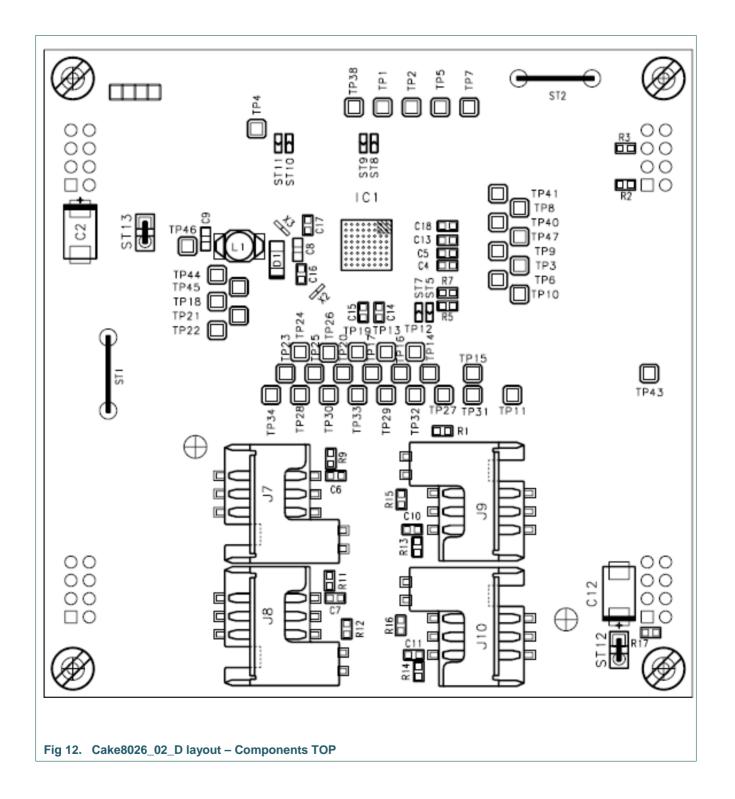
UM10319 Cake8026_02_D


User manual

UM10319 Cake8026_02_D

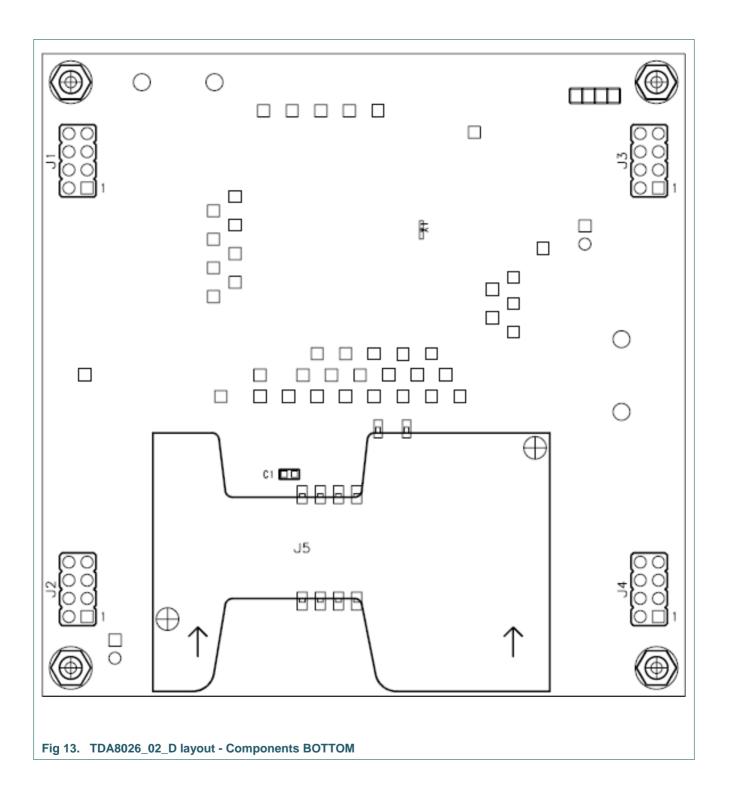


UM10319



© NXP B.V. 2011. All rights reserved.

UM10319 Cake8026_02_D



UM10319 Cake8026_02_D

Cake8026_02_D

UM10319

User manual

8. Legal information

8.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

8.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

9. Contents

1.	Introduction	3
1.1	TDA8026	3
1.2	Cake8026_02_D	3
2.	Configuration	4
2.1	Power Supply	4
2.2	A0	5
2.3	DCDC_CTRL	6
2.4	SPRES	
3.	Connection to the host	8
4.	Connection to a mother board	11
4.1	Connections	11
4.2	Configuration	12
4.3	Auxiliary smart card reader	12
5.	TDA8026 application examples	13
6.	Annex A - Schematic	18
7.	Annex B – Layout and Components	19
8.	Legal information	26
8.1	Definitions	
8.2	Disclaimers	26
8.3	Trademarks	26
9.	Contents	27

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

> Date of release: 4 August 2011 Document identifier: UM10319