
CodeWarrior™
Development Studio for

Freescale™ 56800/E
Digital Signal
Controllers:

MC56F8xxx/DSP5685x
Family Targeting

Manual

 Revised: 19 June 2006

Freescale, the Freescale logo, and CodeWarrior are trademarks or registered trademarks of Freescale Corporation in the
United States and/or other countries. All other trade names and trademarks are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor company. All rights reserved.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Freescale. Use of this document and related materials is gov-
erned by the license agreement that accompanied the product to which this manual pertains. This document may
be printed for non-commercial personal use only in accordance with the aforementioned license agreement. If
you do not have a copy of the license agreement, contact your Freescale representative or call 1-800-377-5416 (if
outside the U.S., call +1-512-996-5300).

Freescale reserves the right to make changes to any product described or referred to in this document without further
notice. Freescale makes no warranty, representation or guarantee regarding the merchantability or fitness of its products
for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product
described herein and specifically disclaims any and all liability. Freescale software is not authorized for and has not
been designed, tested, manufactured, or intended for use in developing applications where the failure, malfunc-
tion, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage to tangible
property, including, but not limited to, use in factory control systems, medical devices or facilities, nuclear facil-
ities, aircraft navigation or communication, emergency systems, or other applications with a similar degree of
potential hazard.

How to Contact Freescale

Corporate Headquarters Freescale Corporation

7700 West Parmer Lane

Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Introduction 13
CodeWarrior IDE . 13

Freescale 56800/E Digital Signal Controllers . 14

References. 16

2 Getting Started 19
System Requirements . 19

Installing and Registering the CodeWarrior IDE . 19

Creating a Project . 24

3 Development Studio Overview 35
CodeWarrior IDE . 35

Development Process . 36

Project Files. 38

Editing Code . 39

Building: Compiling and Linking . 40

Debugging . 42

4 Target Settings 43
Target Settings Overview . 43

Target Setting Panels . 43

Changing Target Settings . 45

Exporting and Importing Panel Options to XML Files. 46

Restoring Target Settings . 47

CodeWarrior IDE Target Settings Panels . 47

DSP56800E-Specific Target Settings Panels . 48

Target Settings. 49

M56800E Target . 50

C/C++ Language (C Only) . 51

C/C++ Preprocessor . 55

C/C++ Warnings . 57

M56800E Assembler. 62
356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
M56800E Processor. .64

ELF Disassembler .68

M56800E Linker .71

Remote Debugging .76

M56800E Target (Debugging). .77

Remote Debug Options .82

5 Processor Expert Interface 85
Processor Expert Overview. .85

Processor Expert Code Generation .86

Processor Expert Beans .87

Processor Expert Menu .89

Processor Expert Windows .93

Bean Selector .93

Bean Inspector .94

Target CPU Window .96

Memory Map Window. .101

CPU Types Overview .103

Resource Meter .104

Installed Beans Overview .104

Peripherals Usage Inspector .105

Processor Expert Tutorial .106

6 C for DSP56800E 121
Number Formats .121

Calling Conventions and Stack Frames. .123

Passing Values to Functions .123

Returning Values From Functions .124

Volatile and Non-Volatile Registers. .124

Stack Frame and Alignment .128

User Stack Allocation .129

Data Alignment Requirements .133

Word and Byte Pointers .134

Reordering Data for Optimal Usage .135

Variables in Program Memory .135
4 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Declaring Program Memory Variables . 136

Using Variables in Program Memory . 136

Linking with Variables in Program Memory. 138

Code and Data Storage . 140

Large Data Model Support . 141

Extended Data Addressing Example. 142

Accessing Data Objects Examples . 142

External Library Compatibility . 144

Optimizing Code. 144

 Deadstripping and Link Order . 145

Working with Peripheral Module Registers . 146

Compiler Generates Bit Instructions . 146

Explanation of Undesired Behavior . 147

Recommended Programming Style. 148

Generating MAC Instruction Set . 150

7 High-Speed Simultaneous Transfer 151
Host-Side Client Interface . 151

hsst_open. 151

hsst_close . 152

hsst_read . 152

hsst_write . 153

hsst_size . 154

hsst_block_mode. 154

hsst_noblock_mode. 155

hsst_attach_listener . 155

hsst_detach_listener . 156

hsst_set_log_dir. 156

HSST Host Program Example. 157

Target Library Interface . 158

HSST_open . 159

HSST_close. 159

HSST_setvbuf . 159

HSST_write. 161

HSST_read . 161
556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
HSST_flush .162

HSST_size .162

HSST_raw_read. .163

HSST_raw_write .164

HSST_set_log_dir .164

HSST Target Program Example .165

8 Data Visualization 167
Starting Data Visualization .167

Data Target Dialog Boxes .168

Memory .168

Registers .170

Variables .170

HSST .171

Graph Window Properties .172

9 Debugging for DSP56800E 175
Using Remote Connections. .175

Accessing Remote Connections .176

Understanding Remote Connections .177

Editing Remote Connections .178

Target Settings for Debugging .185

Command Converter Server .187

Essential Target Settings for Command Converter Server 187

Changing the Command Converter Server Protocol to Parallel Port 188

Changing the Command Converter Server Protocol to HTI190

Changing the Command Converter Server Protocol to PCI190

Setting Up a Remote Connection .191

Debugging a Remote Target Board .193

Launching and Operating the Debugger .193

Setting Breakpoints and Watchpoints .196

Viewing and Editing Register Values .197

Viewing X: Memory .199

Viewing P: Memory. .200

Load/Save Memory .203
6 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Fill Memory . 205

Save/Restore Registers . 207

EOnCE Debugger Features. 209

Set Hardware Breakpoint Panel . 210

Special Counters . 210

Trace Buffer. 212

Set Trigger Panel . 215

Using the DSP56800E Simulator . 217

Cycle/Instruction Count . 218

Memory Map. 219

Register Details Window . 219

Loading a .elf File without a Project. 220

Using the Command Window. 221

System-Level Connect . 221

Debugging in the Flash Memory . 222

Flash Memory Commands . 222

set_hfmclkd <value>. 222

set_hfm_base <address> . 223

set_hfm_config_base <address> . 223

add_hfm_unit <startAddr> <endAddr> <bank> <numSectors> <pageSize>
<progMem> <boot> <interleaved> . 223

set_hfm_erase_mode units | pages | all . 224

set_hfm_verify_erase 1 | 0 . 224

set_hfm_verify_program 1 | 0 . 224

target_code_sets_hfmclkd 1 | 0 . 224

Flash Lock/Unlock . 224

Notes for Debugging on Hardware . 225

10 Profiler 227

11 Inline Assembly Language and Intrinsics 229
Inline Assembly Language . 229

Inline Assembly Overview . 229

Assembly Language Quick Guide. 230

Calling Assembly Language Functions from C Code. 232
756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Calling Functions from Assembly Language .234

Intrinsic Functions. .234

Implementation .234

Fractional Arithmetic. .235

Intrinsic Functions for Math Support .236

abs_s .239

negate. .239

L_abs .240

L_negate .240

add .241

sub .241

L_add .242

L_sub .243

stop. .243

wait .244

turn_off_conv_rndg .244

turn_off_sat .245

turn_on_conv_rndg .245

turn_on_sat .245

extract_h .246

extract_l .246

L_deposit_h .247

L_deposit_l .247

div_s. .248

div_s4q. .248

div_ls .249

div_ls4q .249

mac_r .250

msu_r .251

mult .252

mult_r. .252

L_mac .253

L_msu .253

L_mult .254

L_mult_ls. .255
8 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
ffs_s . 255

norm_s. 256

ffs_l . 256

norm_l . 257

round . 258

shl . 259

shlftNs . 260

shlfts . 260

shr . 261

shr_r. 262

shrtNs . 263

L_shl . 263

L_shlftNs. 264

L_shlfts . 265

L_shr . 265

L_shr_r . 266

L_shrtNs . 267

Modulo Addressing Intrinsic Functions . 267

__mod_init . 269

__mod_initint16 . 269

__mod_start. 270

__mod_access . 270

__mod_update . 271

__mod_stop . 271

__mod_getint16. 271

__mod_setint16 . 272

__mod_error . 272

12 ELF Linker 279
Structure of Linker Command Files . 279

Memory Segment . 279

Closure Blocks . 280

Sections Segment . 281

Linker Command File Syntax. 282

Alignment . 282
956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Arithmetic Operations .282

Comments .283

Deadstrip Prevention .283

Variables, Expressions, and Integral Types .284

File Selection .286

Function Selection .286

ROM to RAM Copying .287

Utilizing Program Flash and Data RAM for Constant Data in C289

Utilizing Program Flash for User-Defined Constant Section in Assembler 289

Stack and Heap .291

Writing Data Directly to Memory .291

Linker Command File Keyword Listing .291

. (location counter) .292

ADDR .292

ALIGN. .293

ALIGNALL. .293

FORCE_ACTIVE .294

INCLUDE .294

KEEP_SECTION .295

MEMORY .295

OBJECT. .297

REF_INCLUDE .297

SECTIONS .297

SIZEOF .299

SIZEOFW .299

WRITEB .299

WRITEH .300

WRITEW. .300

13 Command-Line Tools 301
Usage. .301

Response File .302

Sample Build Script .303

Arguments .303

General Command-Line Options. .303
10 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Compiler . 305

Linker . 313

Assembler . 317

14 Libraries and Runtime Code 319
MSL for DSP56800E . 319

Using MSL for DSP56800E . 319

Allocating Stacks and Heaps for the DSP56800E. 322

Runtime Initialization . 323

EOnCE Library . 326

_eonce_Initialize . 327

_eonce_SetTrigger. 328

_eonce_SetCounterTrigger . 329

_eonce_ClearTrigger . 330

_eonce_GetCounters . 331

_eonce_GetCounterStatus . 331

_eonce_SetupTraceBuffer . 332

_eonce_GetTraceBuffer . 332

_eonce_ClearTraceBuffer . 333

_eonce_StartTraceBuffer. 334

_eonce_HaltTraceBuffer . 334

_eonce_EnableDEBUGEV . 334

_eonce_EnableLimitTrigger . 335

Definitions. 336

A Porting Issues 347
Converting the DSP56800E Projects from Previous Versions 347

Removing "illegal object_c on pragma directive" Warning 348

B DSP56800x New Project Wizard 349
Overview. 349

Page Rules . 351

Resulting Target Rules . 352

Rule Notes . 353

DSP56800x New Project Wizard Graphical User Interface 354
1156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents
Invoking the New Project Wizard .354

New Project Dialog Box .355

Target Pages. .356

Program Choice Page .365

Data Memory Model Page. .366

External/Internal Memory Page. .367

Finish Page .368

Index 371
12 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

1
Introduction

This manual explains how to use the CodeWarrior™ Integrated Development
Environment (IDE) to develop code for the DSP56800E family of processors
(MC56F8xxx and DSP5685x).

This chapter contains the following sections:

• CodeWarrior IDE on page 13

• Freescale 56800/E Digital Signal Controllers on page 14

• References on page 16

CodeWarrior IDE
The CodeWarrior IDE consists of a project manager, a graphical user interface, compilers,
linkers, a debugger, a source-code browser, and editing tools. You can edit, navigate,
examine, compile, link, and debug code, within the one CodeWarrior environment. The
CodeWarrior IDE lets you configure options for code generation, debugging, and
navigation of your project.

Unlike command-line development tools, the CodeWarrior IDE organizes all files related
to your project. You can see your project at a glance, so organization of your source-code
files is easy. Navigation among those files is easy, too.

When you use the CodeWarrior IDE, there is no need for complicated build scripts of
makefiles. To add files to your project or delete files from your project, you use your
mouse and keyboard, instead of tediously editing a build script.

For any project, you can create and manage several configurations for use on different
computer platforms. The platform on which you run the CodeWarrior IDE is called he
host. From the host, you use the CodeWarrior IDE to develop code to target various
platforms.

Note the two meanings of the term target:

• Platform Target — The operating system, processor, or microcontroller from or on
which your code will execute.

• Build Target — The group of settings and files that determine what your code is, as
well as control the process of compiling and linking.

The CodeWarrior IDE lets you specify multiple build targets. For example, a project can
contain one build target for debugging and another build target optimized for a particular
1356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
Freescale 56800/E Digital Signal Controllers
operating system (platform target). These build targets can share files, even though each
build target uses its own settings. After you debug the program, the only actions necessary
to generate a final version are selecting the project’s optimized build target and using a
single Make command.

The CodeWarrior IDE’s extensible architecture uses plug-in compilers and linkers to
target various operating systems and microprocessors. For example, the IDE uses a GNU
tool adapter for internal calls to DSP56800E development tools.

Most features of the CodeWarrior IDE apply to several hosts, languages, and build targets.
However, each build target has its own unique features. This manual explains the features
unique to the CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers.

For comprehensive information about the CodeWarrior IDE, see the CodeWarrior IDE
User’s Guide.

NOTE For the very latest information on features, fixes, and other matters, see the
CodeWarrior Release Notes, on the CodeWarrior IDE CD.

Freescale 56800/E Digital Signal Controllers
The Freescale 56800/E Digital Signal Controllers consist of two sub-families, which are
named the DSP56F80x/DSP56F82x (DSP56800) and the MC56F8xxx/DSP5685x
(DSP56800E). The DSP56800E is an enhanced version of the DSP56800.

The processors in the DSP56800 and DSP56800E sub-families are shown in Table 1.1 on
page 15.

With this product the following Targeting Manuals are included:

• Code Warrior Development Studio for Freescale 56800/E Digital Signal
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

• Code Warrior Development Studio for Freescale 56800/E Digital Signal
Controllers: MC56F8xxx/DSP5685x Family Targeting Manual

NOTE Please refer to the Targeting Manual specific to your processor.
14 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
Freescale 56800/E Digital Signal Controllers
Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio for
Freescale 56800/E Digital Signal Controllers

DSP56800 DSP56800E

DSP56F801 (60 MHz) DSP56852

DSP56F801 (80 MHz) DSP56853

DSP56F802 DSP56854

DSP56F803 DSP56855

DSP56F805 DSP56857

DSP56F807 DSP56858

DSP56F826 MC56F8013

DSP56F827 MC56F8014

MC56F8023

MC56F8025

MC56F8036

MC56F8037

MC56F8122

MC56F8123

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

MC56F8322
1556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
References
References
• Your CodeWarrior IDE includes these manuals:

– CodeWarrior™ IDE User’s Guide

– CodeWarrior™ Development Studio IDE 5.6 Windows® Automation Guide

– CodeWarrior™ Development Studio for Freescale 56800/E Digital Signal
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

– CodeWarrior™ Development Studio for Freescale 56800/E Digital Signal
Controllers: MC56F8xxx/DSP5685x Family Targeting Manual

– CodeWarrior™ Builds Tools Reference for Freescale 56800/E Digital Signal
Controllers

– CodeWarrior™ Development Studio IDE 5.5 User’s Guide Profiler Supplement

– CodeWarrior™ Development Studio for Freescale™ DSP56800x Embedded
Systems Assembler Manual

– Codewarrior™ USB TAP Users Guide

– Freescale™ 56800 Family IEEE - 754 Compliant Floating-Point Library User
Manual

– Freescale™ 56800E Family IEEE - 754 Compliant Floating-Point Library User
Manual

MC56F8323

MC56F8335

MC56F8345

MC56F8346

MC56F8356

MC56F8357

MC56F8365

MC56F8366

MC56F8367

Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio for
Freescale 56800/E Digital Signal Controllers (continued)

DSP56800 DSP56800E
16 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
References
– CodeWarrior™ Development Studio HTI Host Target Interface (for Once™/
JTAG Communication) User’s Manual

– DSP56800 to DSP56800E Porting Guide, Freescale Semiconductors, Inc.

– 56F807 to 56F8300/56F8100 Porting User Guide, Freescale Semiconductors
Inc.

– To learn more about the DSP56800E processor, refer to the Freescale manual,
DSP56800E Family Manual.

To download electronic copies of these manuals or order printed versions, visit:

http://www.freescale.com/
1756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
References
18 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

2
Getting Started

This chapter explains the setup and installation for the CodeWarrior™ IDE, including
hardware connections and communications protocols.

This chapter contains these sections:

• System Requirements on page 19

• Installing and Registering the CodeWarrior IDE on page 19

• Creating a Project

System Requirements
Table 2.1 on page 19 lists system requirements for installing and using the CodeWarrior
IDE for DSP56800E.

Installing and Registering the CodeWarrior
IDE

Follow these steps:

Table 2.1 Requirements for the CodeWarrior IDE

Category Requirement

Host Computer
Hardware

PC or compatible host computer with 1.0-GHz Pentium®-
compatible processor, 512 megabytes of RAM, and a CD-ROM
drive

Operating
System

Microsoft® Windows® 2000/XP

Hard Drive 2.0 gigabytes of free space, plus space for user projects and source
code

DSP56800E 56800E EVM or custom 56800E development board, with JTAG
header
1956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Installing and Registering the CodeWarrior IDE
1. To install the CodeWarrior software:

a. Insert the CodeWarrior CD into the CD-ROM drive — the welcome screen
appears.

NOTE If the Auto Install is disabled, run the program Launch.exe in the root
directory of the CD.

b. Click Launch CodeWarrior Setup — the install wizard displays welcome page.

c. Follow the wizard instructions, accepting all the default settings.

d. At the prompt to check for updates, click the Yes button — the CodeWarrior
updater opens.

2. To check for updates:

NOTE If the updater already has Internet connection settings, you may proceed
directly to substep f.

a. Click the Settings button — the Updater Settings dialog box appears.

b. Click the Load Settings button — the updater loads settings from your Windows
control panel.

c. Modify the settings, as appropriate.

d. If necessary, enter the proxy username and the password.

e. Click the Save button — the Updater Settings dialog box disappears.

f. In the updater screen, click the Check for Updates button.

g. If updates are available, follow the on-screen instructions to download the updates
to your computer.

h. When you see the message, “Your version … is up to date”, click the OK button —
the message box closes.

i. Click the updater Close button — the installation resumes.

j. At the prompt to restart the computer, select the Yes option button.

k. Click the Finish button — the computer restarts, completing installation.

3. To register the CodeWarrior software:

a. Select Start> Programs>Freescale CodeWarrior>CW for DSC56800
R8.0>CodeWarrior IDE.

b. Select Help > Register Product — the Freescale registration page appears.
20 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Installing and Registering the CodeWarrior IDE
Figure 2.1 Freescale Registration Page

c. Click item number 1 — Register your CodeWarrior product.

d. Login or Register on the Freescale site.

e. Enter your Registration Code and click the Continue button.
2156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Installing and Registering the CodeWarrior IDE
NOTE In the next screen you will be asked to confirm your Registration code by
clicking Continue a second time. After registration is complete, you will
receive an email with the activation code and directions on how to activate
your product.

f. Click the Activation link in the email that you receive.

g. Login to the Freescale site.

h. Enter the License Authorization Code into the field.
22 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Installing and Registering the CodeWarrior IDE
i. For the default selection: Ethernet Address — determine your ethernet address:

Launch a Command Prompt window

Enter ipconfig /all

Copy the Physical Address value of the first Ethernet adapter listed

Paste value into the "Node Lock ID for license" text box (remove spaces or dashes)

j. Click Continue Activation.

k. Click Continue to confirm the Host ID and License Authorization Code.

The website will display your license keys along with instructions on installing the
license. Copy and paste these keys into the top of the "license.dat" file located at the root
of your CodeWarrior installation directory. Your product should now be fully licensed and
operational.

Table 2.2 on page 23 lists the directories created during full installation.

To test your system, follow the instructions of the next section to create a project.

Table 2.2 Installation Directories, CodeWarrior IDE for DSP56800E

Directory Contents

(CodeWarrior_Examples) Target-specific projects and code.

(Helper Apps) Applications such as cwspawn.exe and
cvs.exe.
2356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
Creating a Project
To test software installation, create a sample project. Follow these steps:

1. Select Start>Freescale CodeWarrior>CW for DSC56800 R8.0>CodeWarrior
IDE. The IDE starts; the main window appears.

To create a DSP56800x project use either the:

• DSP56800x new project wizard

• DSP56800x EABI stationery

bin The CodeWarrior IDE application and
associated plug-in tools.

ccs Command converter server executable files
and related support files.

DSP56800x_EABI_Support Default files for the DSP56800x stationery.

DSP56800x_EABI_Tools Drivers to the CCS and command line tools,
plus IDE default files for the DSP56800x
stationery

Freescale_Documentation Documentation specific to the Freescale
DSP56800E series.

Help Core IDE and target-specific help files. (Access
help files through the Help menu or F1 key.)

License Licensing information.

M56800E Support Initialization files, Freescale Standard Library
(MSL) and Runtime Library.

M56800x Support Profiler libraries.

ProcessorExpert Files for the Processor Expert.

Release_Notes Release notes for the CodeWarrior IDE and
each tool.

Stationery Templates for creating DSP56800E projects.
Each template pertains to a specific debugging
protocol.

Table 2.2 Installation Directories, CodeWarrior IDE for DSP56800E (continued)

Directory Contents
24 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
To create a new project with the DSP56800x new project wizard, please see the sub-
section “Creating a New Project with the DSP56800x New Project Wizard.”

To create a new project with the DSP56800x EABI stationery, please see the sub-section
“Creating a New Project with the DSP56800x EABI Stationery.”

Creating a New Project with the DSP56800x New
Project Wizard
In this section of the tutorial, you work with the CodeWarrior IDE to create a project. with
the DSP56800x New Project Wizard.

To create a project:

1. From the menu bar of the Freescale CodeWarrior window, select File>New.

The New dialog box (Figure 2.2 on page 25) appears.

Figure 2.2 New Dialog Box

2. Select DSP56800x New Project Wizard.

3. In the Project Name text box, type the project name. For example, the_project.
2556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
4. In the Location text box, type the location where you want to save this project or
choose the default location.

5. Click OK. The DSP56800x New Project Wizard — Target dialog box (Figure
2.3 on page 26) appears.

Figure 2.3 DSP56800x New Project Wizard — Target Dialog Box

6. Select the target board and processor

a. Select the family, such as Simulators, from the DSP56800x Family list.

b. Select the processor or simulator, such as DSP56800E_simulator, from the
Processor list.

7. Click Next. The DSP56800x New Project Wizard — Program Choice dialog box
(Figure 2.4 on page 27) appears.
26 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
Figure 2.4 DSP56800x New Project Wizard — Program Choice Dialog Box

8. Select the example main() program for this project, such as Simple C.

9. Click Next. The DSP56800x New Project Wizard — Finish dialog box (Figure
2.5 on page 28) appears.
2756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
Figure 2.5 DSP56800x New Project Wizard — Finish Dialog Box

10. Click Finish to create the new project.

NOTE For more details of the DSP56800x new project wizard, please see Appendix
B.

This completes project creation. You are ready to edit project contents, according to
the optional steps below.

NOTE Stationery projects include source files that are placeholders for your own files.
If a placeholder file has the same name as your file (such as main.c), you
must replace the placeholder file with your source file.

11. (Optional) Remove files from the project.

a. In the project window, select (highlight) the files.

b. Press the Delete key (or right-click the filename, then select Remove from the
context menu). A CodeWarrior dialog box appears. Select OK and the filenames
disappear.

12. (Optional) Add source files to the project.
28 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
a. Method 1: From the main-window menu bar, select Project>Add Files. Then use
the Select files to add dialog box to specify the files.

b. Method 2: Drag files from the desktop or Windows Explorer to the project
window.

13. (Optional) Edit code in the source files.

a. Double-click the filename in the project window (or select the filename, then press
the Enter key).

b. The IDE opens the file in the editor window; you are ready to edit file contents.

Creating a New Project with the DSP56800x EABI
Stationery
To create a sample project. Follow these steps:

1. From the menu bar, select File>New. The New window (Figure 2.6 on page 29)
appears.

Figure 2.6 New Window
2956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
2. Specify a new DSP56800E project named NewProj1.

a. If necessary, click the Project tab to move the Project page to the front of the
window.

b. From the project list, select DSP56800x EABI Stationery.

NOTE Stationery is a set of project templates, including libraries and place-holders for
source code. Using stationery is the quickest way to create a new project.

c. In the Project name text box, type: NewProj1. (When you save this project, the
IDE automatically will add the .mcp extension to its filename.)

3. In the New window, click the OK button. The New Project window (Figure 2.7 on
page 30) appears, listing board-specific project stationery.

Figure 2.7 New Project Window

4. Select the simulator C stationery target.

a. Click the expand control (+) for the DSP56800E Simulator. The tree expands to
show stationery selections.

b. Select Simple C. (Figure 2.8 on page 31 shows this selection.)
30 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
Figure 2.8 Simulator Simple C Selection

NOTE You should select a simulator target if your system is not connected to a
development board. If you do have a development board, your target selection
must correspond to the board’s processor.

c. Click the OK button. A project window opens, listing the folders for project
NewProj1.mcp. Figure 2.9 on page 32 shows this project window docked in the
IDE main window.
3156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
Figure 2.9 Project Window (docked)

NOTE The IDE has the same functionality whether subordinate windows (such as the
project window) are docked, floating, or child.
To undock the project window, right-click its title tab, then select Floating or
Child from the context menu. To dock a floating window, right-click its title
bar, then select Docked from the context menu.

5. This completes project creation. You are ready to edit project contents, according to
the optional steps below.

NOTE Stationery projects include source files that are placeholders for your own files.
If a placeholder file has the same name as your file (such as main.c), you
must remove the placeholder file before adding your source file.

6. (Optional) Remove files from the project.
32 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
a. In the project window, select (highlight) the files.

b. Press the Delete key (or right-click the filename, then select Remove from the
context menu). A CodeWarrior dialog box appears. Select OK and the filenames
disappear.

7. (Optional) Add source files to the project.

a. Method 1: From the main-window menu bar, select Project>Add Files. Then use
the Select files to add dialog box to specify the files.

b. Method 2: Drag files from the desktop or Windows Explorer to the project
window.

8. (Optional) Edit code in the source files.

a. Double-click the filename in the project window (or select the filename, then press
the Enter key).

b. The IDE opens the file in the editor window; you are ready to edit file contents.
3356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project
34 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

3
Development Studio
Overview

This chapter describes the CodeWarrior™ IDE and explains application development
using the IDE. This chapter contains these sections:

• CodeWarrior IDE on page 35

• Development Process on page 36

If you are an experienced CodeWarrior IDE user, you will recognize the look and feel of
the user interface. However, you must become familiar with the DSP56800E runtime
software environment.

CodeWarrior IDE
The CodeWarrior IDE lets you create software applications. It controls the project
manager, the source-code editor, the class browser, the compiler, linker, and the debugger.

You use the project manager to organize all the files and settings related to your project.
You can see your project at a glance and easily navigate among source-code files. The
CodeWarrior IDE automatically manages build dependencies.

A project can have multiple build targets. A build target is a separate build (with its own
settings) that uses some or all of the files in the project. For example, you can have both a
debug version and a release version of your software as separate build targets within the
same project.

The CodeWarrior IDE has an extensible architecture that uses plug-in compilers and
linkers to target various operating systems and microprocessors. The CodeWarrior CD
includes a C compiler for the DSP56800E family of processors. Other CodeWarrior
software packages include C, C++, and Java compilers for Win32, Mac® OS, Linux, and
other hardware and software combinations.

The IDE includes:

• CodeWarrior Compiler for DSP56800E — an ANSI-compliant C compiler, based
on the same compiler architecture used in all CodeWarrior C compilers. Use this
compiler with the CodeWarrior linker for DSP56800E to generate DSP56800E
applications and libraries.
3556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
NOTE The CodeWarrior compiler for DSP56800E does not support C++.

• CodeWarrior Assembler for DSP56800E — an assembler that features easy-to-use
syntax. It assembles any project file that has a.asm filename extension. For further
information, refer to the Code Warrior Development Studio Freescale DSP56800x
Embedded Systems Assembler Manual.

• CodeWarrior Linker for DSP56800E — a linker that lets you generate either
Executable and Linker Format (ELF) or S-record output files for your application.

• CodeWarrior Debugger for DSP56800E — a debugger that controls your
program’s execution, letting you see what happens internally as your program runs.
Use this debugger to find problems in your program.

The debugger can execute your program one statement at a time, suspending
execution when control reaches a specified point. When the debugger stops a
program, you can view the chain of function calls, examine and change the values of
variables, inspect processor register contents, and see the contents of memory.

• Metrowerks Standard Library (MSL) — a set of ANSI-compliant, standard C
libraries for use in developing DSP56800E applications. Access the library sources
for use in your projects. A subset of those used for all platform targets, these libraries
are customized and the runtime adapted for DSP56800E development.

Development Process
The CodeWarrior IDE helps you manage your development work more effectively than
you can with a traditional command-line environment. Figure 3.1 on page 37 depicts
application development using the IDE.
36 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
Figure 3.1 CodeWarrior IDE Application Development

Compile Project

Manage Files (1)

Error-Free?

Create/Manage Project

Specify Target

Success?

(1) Use any combination: stationery

Debug Project

Release

(2) Compiler, linker, debugger

no

yes

Link Project

Edit Files (3)

Start

Settings

Success?

End

no

no

yes

yes

Notes:

(4)

(3) Edit source and resource files.

(4) Possible corrections:

(template) files, library files,
or your own source files.

settings; target specification;
optimizations.

adding a file, changing
settings, or editing a file.

(2)

Build (Make) Project
3756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
Project Files
A CodeWarrior project consists of source-code, library, and other files. The project
window (Figure 3.2 on page 38) lists all files of a project, letting you:

• Add files,

• Remove files,

• Specify the link order,

• Assign files to build targets, and

• Direct the IDE to generate debug information for files.

Figure 3.2 Project Window

NOTE Figure 3.2 on page 38 shows a floating project window. Alternatively, you can
dock the project window in the IDE main window or make it a child window.
You can have multiple project windows open at the same time; if the windows
are docked, their tabs let you control which one is at the front of the main
window.
38 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
The CodeWarrior IDE automatically handles the dependencies among project files, and
stores compiler and linker settings for each build target. The IDE tracks which files have
changed since your last build, recompiling only those files during your next project build.

A CodeWarrior project is analogous to a collection of makefiles, as the same project can
contain multiple builds. Examples are a debug version and a release version of code, both
part of the same project. As earlier text explained, build targets are such different builds
within a single project.

Editing Code
The CodeWarrior text editor handles text files in MS-DOS® , Windows®, UNIX, and
Mac® OS formats.

To edit a source-code file (or any other editable project file), either:

• Double-click its filename in the project window, or

• Select (highlight) the filename, then drag the highlighted filename to the
CodeWarrior main window.

The IDE opens the file in the editor window (Figure 3.3 on page 40). This window lets
you switch between related files, locate particular functions, mark locations within a file,
or go to a specific line of code.
3956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
Figure 3.3 Editor Window

NOTE Figure 3.3 on page 40 shows a floating editor window. Alternatively, you can
dock the editor window in the IDE main window or make it a child window.

Building: Compiling and Linking
For the CodeWarrior IDE, building includes both compiling and linking. To start building,
you select Project>Make, from the IDE main-window menu bar. The IDE compiler:

• Generates an object-code file from each source-code file of the build target,
incorporating appropriate optimizations.

• Updates other files of the build target, as appropriate.

• In case of errors, issues appropriate error messages and halts.

NOTE It is possible to compile a single source file. To do so, highlight its filename in
the project window, then select Project > Compile, from the main-window
menu bar. Another useful option is compiling all modified files of the build
target: select Project>Bring Up to Date from the main-window menu bar.
40 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
In UNIX and other command-line environments, the IDE stores object code in a binary
(.o or .obj) file. On Windows targets, the IDE stores and manages object files internally
in the data folder.

A proprietary compiler architecture at the heart of the CodeWarrior IDE handles multiple
languages and platform targets. Front-end language compilers generate an intermediate
representation (IR) of syntactically correct source code. This IR is memory-resident and
language-independent. Back-end compilers generate code from the IR for specific
platform targets. As Figure 3.4 on page 41 depicts, the CodeWarrior IDE manages this
whole process.

Figure 3.4 CodeWarrior Build System

This architecture means that the CodeWarrior IDE uses the same front-end compiler to
support multiple back-end platform targets. In some cases, the same back-end compiler
can generate code from a variety of languages. User benefits of this architecture include:

• An advance in the C/C++ front-end compiler means an immediate advance in all
code generation.

• Optimizations in the IR mean that any new code generator is highly optimized.

• Targeting a new processor does not require compiler-related changes in source code,
simplifying porting.

Freescale builds all compilers as plug-in modules. The compiler and linker components
are modular plug-ins. Freescale publishes this API, so that developers can create custom
or proprietary tools. For more information, go to Freescale Support:

http://www.Freescale.com/MW/Support

When compilation succeeds, building moves on to linking. The IDE linker:
4156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process
• Links the object files into one executable file. (You use the M56800E Target settings
panel to name the executable file.)

• In case of errors, issues appropriate error messages and halts.

The IDE uses linker command files to control the linker, so you do not need to specify a
list of object files. The Project Manager tracks all the object files automatically; it lets you
specify the link order.

When linking succeeds, you are ready to test and debug your application.

Debugging
To debug your application, select Project>Debug from the main-window menu bar.
The debugger window opens, displaying your program code.

Run the application from within the debugger, to observe results. The debugger lets you
set breakpoints, and check register, parameter, and other values at specific points of code
execution.

When your code executes correctly, you are ready to add features, to release the
application to testers, or to release the application to customers.

NOTE Another debugging feature of the CodeWarrior IDE is viewing preprocessor
output. This helps you track down bugs cause by macro expansion or another
subtlety of the preprocessor. To use this feature, specify the output filename in
the project window, then select Project>Preprocess from the main-window
menu bar. A new window opens to show the preprocessed file.
42 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

4
Target Settings

Each build target in a CodeWarrior™ project has its own settings. This chapter explains
the target settings panels for DSP56800E software development. The settings that you
select affect the DSP56800E compiler, linker, assembler, and debugger.

This chapter contains the following sections:

• Target Settings Overview on page 43

• CodeWarrior IDE Target Settings Panels on page 47

• DSP56800E-Specific Target Settings Panels on page 48

Target Settings Overview
The target settings control:

• Compiler options

• Linker options

• Assembler options

• Debugger options

• Error and warning messages

When you create a project using stationery, the build targets, which are part of the
stationery, already include default target settings. You can use those default target settings
(if the settings are appropriate), or you can change them.

NOTE Use the DSP56800E project stationery when you create a new project.

Target Setting Panels
Table 4.1 on page 44 lists the target settings panels:

• Links identify the panels specific to DSP56800E projects. Click the link to go to the
explanation of that panel.

• The Use column explains the purpose of generic IDE panels that also can apply to
DSP56800E projects. For explanations of these panels, see the IDE User Guide.
4356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
Target Settings Overview
Table 4.1 Target Setting Panels

Group Panel Name Use

Target Target Settings on
page 49

Access Paths Selects the paths that the IDE
searches to find files of your project.
Types include absolute and project-
relative.

Build Extras Sets options for building a project,
including using a third-party
debugger.

File Mappings Associates a filename extension,
such as .c, with a plug-in compiler.

Source Trees Defines project-specific source trees
(root paths) for your project.

M56800E Target on
page 50

Language Settings C/C++ Language (C
Only) on page 51

C/C++ Preprocessor on
page 55

C/C++ Warnings on
page 57

M56800E Assembler on
page 62

Code Generation ELF Disassembler on
page 68

M56800E Processor on
page 64

Global Optimizations Configures how the compiler
optimizes code.

Linker M56800E Linker on
page 71
44 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
Target Settings Overview
Changing Target Settings
To change target settings:

1. Select Edit > Target Name Settings.

Target Name is the name of the current build target in the CodeWarrior project.

After you select this menu item, the CodeWarrior IDE displays the Target
Settings window (Figure 4.1 on page 46).

Editor Custom Keywords Changes colors for different types of
text.

Debugger Debugger Settings Specifies settings for the
CodeWarrior debugger.

Remote Debugging on
page 76

M56800E Target
Settings (Debugging)

Remote Debug
Options on page 82

Table 4.1 Target Setting Panels (continued)

Group Panel Name Use
4556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
Target Settings Overview
Figure 4.1 Target Settings Window

The left side of the Target Settings window contains a list of target settings panels
that apply to the current build target.

2. To view the Target Settings panel:

Click on the name of the Target Settings panel in the Target Settings panels list
on the left side of the Target Settings window.

The CodeWarrior IDE displays the target settings panel that you selected.

3. Change the settings in the panel.

4. Click OK.

Exporting and Importing Panel Options to
XML Files
The CodeWarrior IDE can export options for the current settings panel to an Extensible
Markup Language (XML) file or import options for the current settings panel from a
previously saved XML file.
46 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
CodeWarrior IDE Target Settings Panels
Exporting Panel Options to XML File
1. Click the Export Panel button.

2. Assign a name to the XML file and save the file in the desired location.

Importing Panel Options from XML File
1. Click the Import Panel button.

2. Locate the XML file to where you saved the options for the current settings panel.

3. Open the file to import the options.

Saving New Target Settings in Stationery
To create stationery files with new target settings:

1. Create your new project from an existing stationery.

2. Change the target settings in your new project for any or all of the build targets in the
project.

3. Save the new project in the Stationery folder.

Restoring Target Settings
After you change settings in an existing project, you can restore the previous settings by
using any of the following methods:

• To restore the previous settings, click Revert at the bottom of the Target
Settings window.

• To restore the settings to the factory defaults, click Factory Settings at the
bottom of the window.

CodeWarrior IDE Target Settings Panels
Table 4.2 on page 48 lists and explains the CodeWarrior IDE target settings panels that
can apply to DSP56800E.
4756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
DSP56800E-Specific Target Settings Panels
The rest of this chapter explains the target settings panels specific to DSP56800E
development.

Table 4.2 Code Warrior IDE Target Settings Panels

Target Settings
Panels

Description

Access Paths Use this panel to select the paths that the
CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and
project-relative.

 See IDE User Guide.

Build Extras Use this panel to set options that affect the way the
CodeWarrior IDE builds a project, including the use of a
third-party debugger.

See IDE User Guide.

File Mappings Use this panel to associate a file name extension, such
as.c, with a plug-in compiler.

See IDE User Guide.

Source Trees Use this panel to define project-specific source trees (root
paths) for use in your projects.

See IDE User Guide.

Custom Keywords Use this panel to change the colors that the
CodeWarrior IDE uses for different types of text.

See IDE User Guide.

Global Optimizations Use this panel to configure how the compiler optimizes the
object code.

See IDE User Guide.

Debugger Settings Use this panel to specify settings for the CodeWarrior
debugger.
48 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Target Settings
Use the Target Settings panel (Figure 4.2 on page 49) to specify a linker. This selection
also specifies your target. Table 4.3 on page 49 explains the elements of the Target
Settings panel.

The Target Settings window changes its list of panels to reflect your linker choice. As
your linker choice determines which other panels are appropriate, it should be your first
settings action.

Figure 4.2 Target Settings Panel

Table 4.3 Target Settings Panel Elements

Element Purpose Comments

Target Name
text box

Sets or changes the name of a build
target.

For your development
convenience, not the name of
the final output file. (Use the
M56800E Target panel to
name the output file.)

Linker list box Specifies the linker. Select M56800E Linker.

Pre-linker list
box

Specifies a pre-linker. Select None.

(No pre-linker is available for
the M56800E linker.)
4956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Target
Use the M56800E Target panel (Figure 4.3 on page 50) to specify the project type and
the name of the output file. Table 4.4 on page 51 explains the elements of this panel.

Figure 4.3 M56800E Target Panel

Post-linker
list box

Specifies a post-linker. Select None.

(No post-linker is available for
the M56800E linker.)

Output
Directory text
box

Tells the IDE where to save the
executable file. To specify a different
output directory, click the Choose
button, then use the access-path
dialog box to specify a directory. (To
delete such an alternate directory,
click the Clear button.)

Default: the directory that
contains the project file.

Save Project
Entries Using
Relative
Paths
checkbox

Controls whether multiple project
files can have the same name:

• Clear — Each project
entry must have a unique
name.

• Checked — The IDE uses
relative paths to save
project entries; entry
names need not be
unique.

Default: Clear — project entries
must have unique names.

Table 4.3 Target Settings Panel Elements (continued)

Element Purpose Comments
50 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
NOTE Be sure to name libraries with the extension .lib. It is possible to use a
different extension, but this requires a file-mapping entry in the File Mappings
panel. For more information, see the IDE User Guide.

C/C++ Language (C Only)
Use the C/C++ Language (C Only) panel (Figure 4.4 on page 52) to specify C language
features. Table 4.5 on page 53 explains the elements of this panel that apply to the
DSP56800E processor, which supports only the C language.

Table 4.4 M56800E Target Panel Elements

Element Purpose Comments

Project Type
list box

Specifies an Application or Library
project.

Application is the usual
selection.

Output File
Name text
box

Specifies the name of the output file. End application filenames with
the .elf extension; end library
filenames with the .lib
extension.
5156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.4 C/C++ Language Panel (C Only)

NOTE Always disable the following options, which do not apply to the DSP56800E
compiler: Legacy for-scoping and Pool Strings.

52 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.5 C/C++ Language (C Only) Panel Elements

Element Purpose Comments

IPA list box Specifies Interprocedural Analysis
(IPA):

Off — IPA is disabled

File — inlining is deferred to the end
of the file processing

Program — Inlining is deferred until
all files within the program are
processed.

When the Program option is
selected the Disable
Deadstripping option on the
linker preference panel must
be enabled.

Inline Depth
list box

Together with the ANSI Keyword
Only checkbox, specifies whether to
inline functions:

Don’t Inline — do not inline any

Smart — inline small functions to a
depth of 2 to 4

1 to 8 — Always inline functions to
the number’s depth

Always inline — inline all functions,
regardless of depth

If you call an inline function, the
compiler inserts the function
code, instead of issuing calling
instructions. Inline functions
execute faster, as there is no
call. But overall code may be
larger if function code is
repeated in several places.

Auto-Inline
checkbox

Checked — Compiler selects the
functions to inline

Clear — Compiler does not select
functions for inlining

To check whether automatic
inlining is in effect, use the
__option(auto_inline)
command.

Bottom-up
Inlining
checkbox

Checked — For a chain of function
calls, the compiler begins inlining
with the last function.

Clear — Compiler does not do
bottom-up inlining.

To check whether bottom-up
inlining is in effect, use the
__option(inline_bottom_up)
command.
5356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
ANSI Strict
checkbox

Checked — Disables CodeWarrior
compiler extensions to C

Clear — Permits CodeWarrior
compiler extensions to C

Extensions are C++-style
comments, unnamed
arguments in function
definitions, # not an argument
in macros, identifier after
#endif, typecasted pointers as
lvalues, converting pointers to
same-size types, arrays of zero
length in structures, and the D
constant suffix.

To check whether ANSI
strictness is in effect, use the
__option(ANSI_strict)
command.

ANSI
Keywords
Only
checkbox

Checked — Does not permit
additional keywords of CodeWarrior
C.

Clear — Does permit additional
keywords.

Additional keywords are asm
(use the compiler built-in
assembler) and inline (lets you
declare a C function to be
inline).

To check whether this keyword
restriction is in effect, use the
__option(only_std_keywords)
command.

Expand
Trigraphs
checkbox

Checked — C Compiler ignores
trigraph characters.

Clear — C Compiler does not allow
trigraph characters, per strict ANSI/
ISO standards.

Many common character
constants resemble trigraph
sequences, especially on the
Mac OS. This extension lets
you use these constants
without including escape
characters.

NOTE: If this option is on, be
careful about initializing strings
or multi-character constants
that include question marks.

To check whether this option is
on. use the __option(trigraphs)
command.

Table 4.5 C/C++ Language (C Only) Panel Elements (continued)

Element Purpose Comments
54 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
C/C++ Preprocessor
The C/C++ Preprocessor (Figure 4.5 on page 56) panel controls how the preprocessor
interprets source code. By modifying the settings on this panel, you can control how the
preprocessor translates source code into preprocessed code.

More specifically, the C/C++ Preprocessor panel provides an editable text field that can be
used to #define macros, set #pragmas, or #include prefix files.

Require
Function
Prototypes
checkbox

Checked — Compiler does not allow
functions that do not have
prototypes.

Clear — Compiler allows functions
without prototypes.

This option helps prevent
errors from calling a function
before its declaration or
definition.

To check whether this option is
in effect, use the
__option(require_prototypes)
command.

Enums
Always Int
checkbox

Checked — Restricts all
enumerators to the size of a signed
int.

Clear — Compiler converts
unsigned int enumerators to signed
int, then chooses an
accommodating data type, char to
long int.

To check whether this
restriction is in effect, use the
__option(enumalwaysint)
command.

Use
Unsigned
Chars
checkbox

Checked — Compiler treats a char
declaration as an unsigned char
declaration.

Clear — Compiler treats char and
unsigned char declarations
differently.

Some libraries were compiled
without this option. Selecting
this option may make your
code incompatible with such
libraries.

To check whether this option is
in effect, use the
__option(unsigned_char)
command.

Reuse
Strings
checkbox

Checked — Compiler stores only
one copy of identical string literals,
saving memory space.

Clear — Compiler stores each string
literal.

If you select this option,
changing one of the strings
affects them all.

Table 4.5 C/C++ Language (C Only) Panel Elements (continued)

Element Purpose Comments
5556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.5 The C/C++ Preprocessor Panel

Table 4.6 on page 56 provides information about the options in this panel.

Table 4.6 C/C++ Language Preprocessor Elements

Element Purpose Comments

Source
encoding

Allows you to specify the default
encoding of source files. Multibyte
and Unicode source text is
supported.

To replicate the obsolete
option “Multi-Byte Aware”, set
this option to System or
Autodetect. Additionally,
options that affect the
"preprocess" request appear in
this panel.

Use prefix
text in
precompiled
header

Controls whether a *.pch or *.pch++
file incorporates the prefix text into
itself.

This option defaults to “off” to
correspond with previous
versions of the compiler that
ignore the prefix file when
building precompiled headers.
If any #pragmas are imported
from old C/C++ Language (C
Only) Panel settings, this
option is set to “on”.
56 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
C/C++ Warnings
Use the C/C++ Warnings panel (Figure 4.6 on page 58) to specify C language features for
the DSP56800E. Table 4.7 on page 59 explains the elements of this panel.

NOTE The CodeWarrior compiler for DSP56800E does not support C++.

Emit file
changes

Controls whether notification of file
changes (or #line changes) appear
in the output.

Emit
#pragmas

Controls whether #pragmas
encountered in the source text
appear in the preprocessor output.

This option is essential for
producing reproducible test
cases for bug reports.

Show full
paths

Controls whether file changes show
the full path or the base filename of
the file.

Keep
comments

Controls whether comments are
emitted in the output.

Use #line Controls whether file changes
appear in comments (as before) or
in #line directives.

Keep
whitespace

Controls whether whitespace is
stripped out or copied into the
output.

This is useful for keeping the
starting column aligned with
the original source, though we
attempt to preserve space
within the line. This doesn’t
apply when macros are
expanded.

Table 4.6 C/C++ Language Preprocessor Elements (continued)

Element Purpose Comments
5756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.6 C/C++ Warnings Panel
58 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.7 C/C++ Warnings Panel Elements

Element Purpose Comments

Illegal
Pragmas
checkbox

Checked — Compiler issues
warnings about invalid pragma
statements.

Clear — Compiler does not issue
such warnings.

According to this option, the
invalid statement #pragma
near_data off would prompt
the compiler response
WARNING: near data is not a
pragma.

To check whether this option is
in effect, use the
__option(warn_illpragma)
command.

Possible
Errors
checkbox

Checked — Compiler checks for
common typing mistakes, such as
== for =.

Clear — Compiler does not perform
such checks.

If this option is in effect, any of
these conditions triggers a
warning: an assignment in a
logical expression; an
assignment in a while, if, or for
expression; an equal
comparison in a statement that
contains a single expression; a
semicolon immediately after a
while, if, or for statement.

To check whether this option is
in effect, use the
__option(warn_possunwant)
command.

Extended
Error
Checking
checkbox

Checked — Compiler issues
warnings in response to specific
syntax problems.

Clear — Compiler does not perform
such checks.

Syntax problems are: a non-
void function without a return
statement, an integer or
floating-point value assigned to
an enum type, or an empty
return statement in a function
not declared void.

To check whether this option is
in effect, use the
__option(extended_errorcheck
) command.

Hidden
Virtual
Functions

Leave clear. Does not apply to C.
5956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Implicit
Arithmetic
Conversions
checkbox

Checked — Compiler verifies that
operation destinations are large
enough to hold all possible results.

Clear — Compiler does not perform
such checks.

If this option is in effect, the
compiler would issue a warning
in response to assigning a long
value to a char variable.

To check whether this option is
in effect, use the
__option(warn_implicitconv)
command.

Pointer/
Integral
Conversions

Checked — Compiler checks for
pointer/integral conversions.

Clear — Compiler does not perform
such checks.

See #pragma
warn_any_ptr_int_conv and
#pragma warn_ptr_int_conv.

Unused
Variables
checkbox

Checked — Compiler checks for
declared, but unused, variables.

Clear — Compiler does not perform
such checks.

The pragma unused overrides
this option.

To check whether this option is
in effect, use the
__option(warn_unusedvar)
command.

Unused
Arguments
checkbox

Checked — Compiler checks for
declared, but unused, arguments.

Clear — Compiler does not perform
such checks.

The pragma unused overrides
this option.

Another way to override this
option is clearing the ANSI
Strict checkbox of the C/C++
Language (C Only) panel, then
not assigning a name to the
unused argument.

To check whether this option is
in effect, use the
__option(warn_unusedarg)
command.

Missing
‘return’
Statements

Checked — Compiler checks for
missing ‘return’ statements.

Clear — Compiler does not perform
such checks.

See #pragma
warn_missingreturn.

Table 4.7 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
60 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Expression
Has No Side
Effect

Checked — Compiler issues
warning if expression has no side
effect.

Clear — Compiler does not perform
such checks.

See #pragma
warn_no_side_effect

Extra
Commas
checkbox

Checked — Compiler checks for
extra commas in enums.

Clear — Compiler does not perform
such checks.

To check whether this option is
in effect, use the
__option(warn_extracomma)
command.

Inconsistent
Use of ‘class’
and ‘struct’
Keywords
checkbox

Leave clear. Does not apply to C.

Empty
Declarations
checkbox

Checked — Compiler issues
warnings about declarations without
variable names.

Clear — Compiler does not issue
such warnings.

According to this option, the
incomplete declaration int ;
would prompt the compiler
response WARNING.

To check whether this option is
in effect, use the
__option(warn_emptydecl)
command.

Include File
Capitalization

Checked — Compiler issues
warning about include file
capitalization.

Clear — Compiler does not perform
such checks.

See #pragma
warn_filenamecaps.

Pad Bytes
Added

Checked — Compiler checks for
pad bytes added.

Clear — Compiler does not perform
such checks.

See #pragma warn_padding.

Undefined
Macro In #if

Checked — Compiler checks for
undefined macro in #if.

Clear — Compiler does not perform
such checks.

See #pragma
warn_undefmacro.

Table 4.7 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
6156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Assembler
Use the M56800E Assembler panel (Figure 4.7 on page 62) to specify the format of the
assembly source files and the code that the DSP56800E assembler generates. Table 4.8 on
page 63 explains the elements of this panel.

Figure 4.7 M56800E Assembler Panel

Non-Inlined
Functions
checkbox

Checked — Compiler issues a
warning if unable to inline a function.

Clear — Compiler does not issue
such warnings.

To check whether this option is
in effect, use the
__option(warn_notinlined)
command.

Treat All
Warnings As
Errors
checkbox

Checked — System displays
warnings as error messages.

Clear — System keeps warnings
and error messages distinct.

Table 4.7 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
62 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.8 M56800E Assembler Panel Elements

Element Purpose Comments

Generate
Listing File
checkbox

Checked — Assembler generates a
listing file during IDE assembly of
source files.

Clear — Assembler does not
generate a listing file.

A listing file contains the
source file with line numbers,
relocation information, and
macro expansions. The
filename extension is .lst.

Expand
Macros in
Listing
checkbox

Checked — Assembler macros
expand in the assembler listing.

Clear — Assembler macros do not
expand.

This checkbox is available only
if the Generate Listing File
checkbox is checked.

Assert NOPs
on pipeline
conflicts
checkbox

Checked — Assembler
automatically resolves pipeline
conflicts by inserting NOPs.

Clear — Assembler does not insert
NOPs; it reports pipeline conflicts in
error messages.

Emit
Warnings for
NOP
assertions
checkbox

Checked — Assembler issues a
warning any time it inserts a NOP to
prevent a pipeline conflict.

Clear — Assembler does not issue
such warnings.

This checkbox is available only
if the Assert NOPs on pipeline
conflicts checkbox is checked.

Emit
Warnings for
Hardware
Stalls
checkbox

Checked — Assembler warns when
a hardware stall occurs upon
execution.

Clear — Assembler does not issue
such warnings.

This option helps optimize the
cycle count.

Allow legacy
instructions
checkbox

Checked — Assembler permits
legacy DSP56800 instruction
syntax.

Clear — Assembler does not permit
this legacy syntax.

Selecting this option sets the
Default Data Memory Model
and Default Program Memory
Model values to 16 bits.
6356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Processor
Use the M56800E Processor panel (Figure 4.8 on page 65) to specify the kind of code the
compiler creates. This panel is available only if the current build target uses the M56800E
Linker. Table 4.9 on page 65 explains the elements of this panel.

Pad Pipeline
for Debugger
checkbox

Checked — Mandatory for using the
debugger. Inserts NOPs after
certain branch instructions to make
breakpoints work reliably.

Clear — Does not insert such
NOPs.

If you select this option, you
should select the same option
in the M56800E Processor
Settings panel. Selecting this
option increases code size by 5
percent. But not selecting this
option risks nonrecovery after
the debugger comes to
breakpoint branch instructions.

Emit
Warnings for
odd SP
Increment/
Decrement
checkbox

Checked — Enables assembler
warnings about instructions that
could misalign the stack frame.

Clear — Does not enable such
warnings.

Default Data
Memory
Model list box

Specifies 16 or 24 bits as the default
size.

Factory setting: 16 bits.

Default
Program
Memory
Model list box

Specifies 16, 19, or 21 bits as the
default size.

Factory setting: 19 bits.

Prefix File
text box

Specifies a file to be included at the
beginning of every assembly file of
the project.

Lets you include common
definitions without using an
include directive in every file.

Table 4.8 M56800E Assembler Panel Elements (continued)

Element Purpose Comments
64 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.8 M56800E Processor Panel

Table 4.9 M56800E Processor Panel Elements

Element Purpose Comments

Hardware
DO Loops list
box

Specifies the level of hardware DO
loops:

• No DO Loops — Compiler
does not generate any

• No Nested DO Loops —
Compiler generates
hardware DO loops, but
does not nest them

• Nested DO Loops —
Compiler generates
hardware DO loops,
nesting them two deep.

If hardware DO loops are
enabled, debugging will be
inconsistent about stepping
into loops.

Test immediately after this
table contains additional Do-
loop information.

Small
Program
Model
checkbox

Checked — Compiler generates a
more efficient switch table, provided
that code fits into the range 0x0—
0xFFFF

Clear — Compiler generates an
ordinary switch table.

Do not check this checkbox
unless the entire program code
fits into the 0x0—0xFFFF
memory range.
6556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Large Data
Model
checkbox

Checked — Extends DSP56800E
addressing range by providing 24-bit
address capability to instructions

Clear — Does not extend address
range

24-bit address modes allow
access beyond the 64K-byte
boundary of 16-bit addressing.

Globals live
in lower
memory
checkbox

Checked — Compiler uses 24-bit
addressing for pointer and stack
operations, 16-bit addressing for
access to global and static data.

Clear — Compiler uses 24-bit
addressing for all data access.

This checkbox is available only
if the Large Data Model
checkbox is checked.

Pad pipeline
for debugger
checkbox

Checked — Mandatory for using the
debugger. Inserts NOPs after
certain branch instructions to make
breakpoints work reliably.

Clear — Does not insert such
NOPs.

If you select this option, you
should select the same option
in the M56800E Assembler
panel. Selecting this option
increases code size by 5
percent. But not selecting this
option risks nonrecovery after
the debugger comes to
breakpoint branch instructions.

Emit
separate
character
data section
checkbox

Checked — Compiler breaks out all
character data, placing it in
appropriate data sections
(.data.char, .bss.char, or
.const.data.char).

Clear — Compiler does not break
out this data.

See additional information
immediately after this table.

Zero-
initialized
globals live in
data instead
of BSS
checkbox

Checked — Globals initialized to
zero reside in the .data section.

Clear — Globals initialized to zero
reside in the .bss section.

Create
assembly
output
checkbox

Checked — Assembler generates
assembly code for each C file.

Clear — Assembler does not
generate assembly code for each C
file.

The pragma #asmoutput
overrides this option for
individual files.

Table 4.9 M56800E Processor Panel Elements (continued)

Element Purpose Comments
66 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
The compiler generates hardware DO loops for two situations:

1. Aggregate (array and structure) initializations, and for struct copy, under any of these
conditions:

• The aggregate is byte aligned, and the aggregate size is greater than four bytes.

• The aggregate is word aligned, and the aggregate size is greater than four words.

• The aggregate is long aligned, the aggregate size is greater than eight words, and the
Global Optimizations panel specifies Optimize for Smaller Code Size.

• The aggregate is long aligned, the aggregate size is greater than 32 words, and the
Global Optimizations panel specifies Optimize for Faster Execution.

Generate
code for
profiling

Checked — Compiler generates
code for profiling.

Clear — Compiler does not
generate code for profiling.

For more details about the
profiler, see the “Profiler” on
page 227.

Pipeline
Conflict
Detection
Inline ASM
list box

Specifies pipeline conflict detection
during compiling of inline assembly
source code:

• Not Detected — compiler
does not check for
conflicts

• Conflict Error — compiler
issues error messages if it
detects conflicts

• Conflict Error/Hardware
Stall Warning — compiler
issues error messages if it
detects conflicts,
warnings if it detects
hardware stalls

For more information about
pipeline conflicts, see the
explanations of pragmas
check_c_src_pipeline and
check_inline_asm_pipeline.

Pipeline
Conflict
Detection C
Language list
box

Specifies pipeline conflict detection
during compiling of C source code:

• Not Detected — compiler
does not check for
conflicts

• Conflict error — compiler
issues error messages if it
detects conflicts

For more information about
pipeline conflicts, see the
explanations of pragmas
check_c_src_pipeline and
check_inline_asm_pipeline.

Table 4.9 M56800E Processor Panel Elements (continued)

Element Purpose Comments
6756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
2. Counted loops in C, provided that the loop counter value is less than 65536, and that
there are no jumps to subroutines inside the loop.

If you enable separate character data sections, the compiler puts character data (and
structures containing character data) into these sections:

• .data.char — initialized static or global character data objects

• .bss.char — uninitialized static or global character data objects

• .const.data.char — const qualified character objects and static string data

You can locate these data sections in the lower half of the memory map, making sure that
the data can be addressed.

ELF Disassembler
Use the ELF Disassembler panel (Figure 4.9 on page 68) to specify the content and
display format for disassembled object files. Table 4.10 on page 69 explains the elements
of this panel. (To view a disassembled module, select Project>Disassemble from the
main-window menu bar.)

Figure 4.9 ELF Disassembler Panel
68 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.10 ELF Disassembler Panel Elements

Element Purpose Comments

Show
Headers
checkbox

Checked — Disassembled output
includes ELF header information.

Clear — Disassembled output does
not include this information.

Show
Symbol and
String Tables
checkbox

Checked — Disassembled modules
include symbol and string tables.

Clear — Disassembled modules do
not include these tables.

Verbose Info
checkbox

Checked — ELF file includes
additional information.

Clear — ELF file does not include
additional information.

For the .symtab section,
additional information includes
numeric equivalents for some
descriptive constants. For the
.line and .debug sections,
additional information includes
an unstructured hex dump.

Show
Relocations
checkbox

Checked — Shows relocation
information for corresponding text
(.rela.text) or data (.rela.data)
section.

Clear — Does not show relocation
information.

Show Code
Modules
checkbox

Checked — Disassembler outputs
ELF code sections for the
disassembled module. Enables
subordinate checkboxes.

Clear — Disassembler does not
output these sections. Disables
subordinate checkboxes.

Subordinate checkboxes are
Use Extended Mnemonics,
Show Addresses and Object
Code, Show Source Code, and
Show Comments.

Use
Extended
Mnemonics
checkbox

Checked — Disassembler lists
extended mnemonics for each
instruction of the disassembled
module.

Clear — Disassembler does not list
extended mnemonics.

This checkbox is available only
if the Show Code Modules
checkbox is checked.
6956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Show
Addresses
and Object
Code
checkbox

Checked — Disassembler lists
address and object code for the
disassembled module.

Clear — Disassembler does not list
this code.

This checkbox is available only
if the Show Code Modules
checkbox is checked.

Show Source
Code
checkbox

Checked — Disassembler lists
source code for the current module.

Clear — Disassembler does not list
source code.

Source code appears in mixed
mode, with line-number
information from the original C
source file.

This checkbox is available only
if the Show Code Modules
checkbox is checked.

Show
Comments
checkbox

Checked — Disassembler
comments appear in sections that
have comment columns.

Clear — Disassembler does not
produce comments.

This checkbox is available only
if the Show Code Modules
checkbox is checked.

Show Data
Modules
checkbox

Checked — Disassembler outputs
ELF data sections, such as .data
and .bss, for the disassembled
module.

Clear — Disassembler does not
output ELF data sections.

Disassemble
Exception
Tables
checkbox

Leave clear. Does not apply to C.

Show Debug
Info
checkbox

Checked — Disassembler includes
DWARF symbol information in
output.

Clear — Disassembler does not
include this information in output.

Table 4.10 ELF Disassembler Panel Elements (continued)

Element Purpose Comments
70 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Linker
Use the M56800E Linker panel (Figure 4.10 on page 71) to specify linker behavior of the
linker. (This panel is only available if the current build target uses the M56800E Linker.)
Table 4.11 on page 72 explains the elements of this panel.

Figure 4.10 M56800E Linker Panel
7156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.11 M56800E Linker Panel Elements

Element Purpose Comments

Generate
Symbolic Info
checkbox

Checked — Linker generates
debugging information, within the
linked ELF file.

Clear — Linker does not generate
debugging information.

If you select Project>Debug
from the main-window menu
bar, the IDE automatically
enables this option.

Clearing this checkbox
prevents you from using the
CodeWarrior debugger on your
project; it also disables the
subordinate Store Full Path
Names checkbox.

Store Full
Path Names
checkbox

Checked — Linker includes full path
names for source files. (Default)

Clear — Linker uses only file
names.

This checkbox is available only
if the Generate Symbolic Info
checkbox is checked.

Generate
Link Map
checkbox

Checked — Linker generates a link
map. Enables subordinate
checkboxes List Unused Objects,
Show Transitive Closure, and
Annotate Byte Symbols.

Clear — Linker does not generate a
link map.

A link map shows which file
provided the definition of each
object and function, the
address of each object and
function, a memory map of
section locations, and values of
linker-generated symbols. It
also lists unused but
unstripped symbols.

List Unused
Objects
checkbox

Checked — Linker includes unused
objects in the link map.

Clear — Linker does not include
unused objects in the link map.

This checkbox is available only
if the Generate Link Map
checkbox is checked.

Show
Transitive
Closure
checkbox

Checked — Link map includes a list
of all objects that main() references.

Clear — Link map does not include
this list.

Text after this table includes an
example list.

This checkbox is available only
if the Generate Link Map
checkbox is checked.
72 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Annotate
Byte
Symbols

Checked — Linker includes B
annotation for byte data types (e.g.,
char) in the Linker Command File.

Clear — By default, the Linker does
not include the B annotation in the
Linker Command File. Everything
without the B annotation is a word
address.

For an example of the Linker
Command File with and without
the B annotation, see Listing
4.3 on page 75.

Disable
Deadstrippin
g checkbox

Checked — Prevents the linker from
stripping unused code or data.

Clear — Lets the linker deadstrip.

Generate
ELF Symbol
Table
checkbox

Checked — Linker includes an ELF
symbol table and relocation list in
the ELF executable file.

Clear — Linker does not include
these items in the ELF executable
file.

Suppress
Warning
Messages
checkbox

Checked — Linker does not display
warnings in the message window.

Clear — Linker displays warnings in
the message window.

Generate S-
Record File
checkbox

Checked — Linker generates an
output file in S-record format.
Activates subordinate checkboxes.

Clear — Linker does not generate
an S-record file.

For the DSP56800E, this
option outputs three S-record
files: .s (both P and X memory
contents), .p (P memory
contents), and .x (X memory
contents). The linker puts S-
record files in the output folder
(a sub-folder of the project
folder.)

Sort By
Address
checkbox

Checked — Enables the compiler to
use byte addresses to sort type S3
S-records that the linker generates.

Clear — Does not enable byte-
address sorting.

This checkbox is available only
if the Generate S-Record File
checkbox is checked.

Table 4.11 M56800E Linker Panel Elements (continued)

Element Purpose Comments
7356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Check the Show Transitive Closure checkbox to have the link map include the list of
objects main() references. Consider the sample code of Listing 4.1 on page 74. If the
Show Transitive Closure option is in effect and you compile this code, the linker generates
a link map file that includes the list of Listing 4.2 on page 75.

Listing 4.1 Sample Code for Show Transitive Closure

void foot(void){ int a = 100; }
void pad(void){ int b = 101; }

int main(void){
foot();
pad();

Generate
Byte
Addresses
checkbox

Checked — Enables the linker to
generate type S3 S-records in bytes.

Clear — Does not enable byte
generation.

This checkbox is available only
if the Generate S-Record File
checkbox is checked.

Max Record
Length text
box

Specifies the maximum length of
type S3 S-records that the linker
generates, up to 256 bytes.

The CodeWarrior debugger
handles 256-byte S-records. If
you use different software to
load your embedded
application, this text box should
specify that software’s
maximum length for S-records.

This checkbox is available only
if the Generate S-Record File
checkbox is checked.

EOL
Character list
box

Specifies the end-of-line character
for the type S3 S-record file: MAC,
DOS, or UNIX format.

This checkbox is available only
if the Generate S-Record File
checkbox is checked.

Entry Point
text box

Specifies the program starting point
— the first function the linker uses
when the program runs.

Text after this table includes
additional information about
the entry point.

Force Active
Symbols text
box

Directs the linker to include symbols
in the link, even if those symbols are
not referenced. Makes symbols
immune to deadstripping.

Separate multiple symbols with
single spaces.

Table 4.11 M56800E Linker Panel Elements (continued)

Element Purpose Comments
74 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
return 1;
}

Listing 4.2 Link Map File: List of main() references

Link map of Finit_sim_
1] interrupt_vectors.text found in 56800E_vector.asm
2] sim_intRoutine (notype,local) found in 56800E_vector.asm
2] Finit_sim_ (func,global) found in 56800E_init.asm
3] Fmain (func,global) found in M56800E_main.c
4] Ffoot (func,global) found in M56800E_main.c
4] Fpad (func,global) found in M56800E_main.c
3] F__init_sections (func,global) found in Runtime 56800E.lib

initsections.o
4] Fmemset (func,global) found in MSL C 56800E.lib mem.o
5] F__fill_mem (func,global) found in MSL C 56800E.lib

mem_funcs.o
1] Finit_sim_ (func,global) found in 56800E_init.asm

Use the Entry Point text box to specify the starting point for a program. The default
function this text box names is in the startup code that sets up the DSP56800E
environment before your code executes. This function and its corresponding startup code
depend on your stationery selection.

For hardware-targeted stationery, the startup code is on the path:

support\<name of hardware, e.g., M56852E>\startup

For simulator-targeted stationery, the startup code is on the path:

support\M56800E\init

The startup code performs such additional tasks as clearing the hardware stack, creating an
interrupt table, and getting the addresses for the stack start and exception handler. The
final task for the startup code is calling your main() function.

Check the Annotate Byte Symbols checkbox to have the link map include the B annotation
for byte addresses and no B annotation for word addresses (Listing 4.3 on page 75).

Listing 4.3 Example of Annotate Byte Symbols

int myint;
char mychar;

B 0000049C 00000001 .bss Fmychar (main.c)
0000024F 00000001 .bss Fmyint (main.c)
7556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Remote Debugging
Use the Remote Debugging panel (Figure 4.11 on page 76, Figure 4.12 on page 76) to set
parameters for communication between a DSP56800E board or Simulator and the
CodeWarrior DSP56800E debugger. Table 4.12 on page 77 explains the elements of this
panel.

NOTE Communications specifications also involve settings of the debugging
M56800E Target panel (Figure 4.14 on page 79).

Figure 4.11 Remote Debugging Panel (56800E Simulator)

Figure 4.12 Remote Debugging Panel (56800E Local Connection)
76 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
M56800E Target (Debugging)
Use the debugging M56800E Target panel (Figure 4.14 on page 79) to set parameters for
communication between a DSP56800E board or Simulator and the CodeWarrior
DSP56800E debugger. Table 4.13 on page 79 explains the elements of this panel.

NOTE Communications specifications also involve settings of the Remote Debugging
panel (Figure 4.11 on page 76, Figure 4.12 on page 76).

Table 4.12 Remote Debugging Panel Elements

Element Purpose Comments

Connection
list box

Specifies the connection type:

• 56800E Simulator —
appropriate for testing
code on the simulator
before downloading code
to an actual board.

• 56800E Local Hardware
Connection (CSS) —
appropriate for using your
computer’s command
converter server,
connected to a
DSP56800E board.

Selecting 56800E Simulator
keeps the panel as Figure
4.11 on page 76 shows.

Selecting Local Hardware
Connection adds the JTAG
Clock Speed text box to the
panel, as Figure 4.12 on
page 76 shows.

Remote
download
path text box

Not supported at this time.

Launch
Remote Host
Application
checkbox

Not supported at this time.

JTAG Clock
Speed text
box

Specifies the JTAG clock speed for
local hardware connection. (Default
is 500 kilohertz.)

This list box is available only if
the Connection list box
specifies Local Hardware
Connection (CSS). The HTI will
not work properly with a clock
speed over 500 kHz.
7756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Auto-clear previous breakpoint on new
breakpoint request
This option is only available when you enable the Breakpoint Mode (HW only)
option. When you also enable the Auto-clear previous hardware breakpoint
and set a breakpoint, the original breakpoint is automatically cleared and the new
breakpoint is immediately set. If you disable the Auto-clear previous hardware
breakpoint option and attempt to set another breakpoint, you will be prompted with the
following message:

Figure 4.13 Hardware Breakpoint Already Set

If you click the Yes button, the previous breakpoint is cleared and the new breakpoint is
set.

If you click the Yes to all button, the Auto-clear previous hardware
breakpoint option is enabled and the previously set breakpoint is cleared out without
prompting for every subsequent occurrence.

If you click the No button, the previous breakpoint is kept and the new breakpoint request
is ignored.
78 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.14 Debugging M56800E Target Panel

Table 4.13 Debugging M56800E Target Panel Elements

Element Purpose Comments

Always reset
on download
checkbox

Checked — IDE issues a reset to
the target board each time you
connect to the board.

Clear — IDE does not issue a reset
each time you connect to the target
board.

Use
initialization
file checkbox

Checked — After a reset, the IDE
uses an optional hardware
initialization file before downloading
code.

Clear — IDE does not use a
hardware initialization file.

The Use initialization file text
box specifies the file.

Text immediately after this
table gives more information
about initialization files.

Use
initialization
file text box

Specifies the initialization file. Applicable only if the Use
initialization file checkbox is
checked.
7956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
An initialization file consists of text instructions telling the debugger how to initialize the
hardware after reset, but before downloading code. You can use initialization file
commands to assign values to registers and memory locations, and to set up flash memory
parameters.

The initialization files of your IDE are on the path:

{CodeWarrior path}\M56800E Support\initialization

The name of each initialization file includes the number of the corresponding processor,
such as 568345. Each file with “_ext” enables the processor’s external memory. If the
processor has Flash memory, the initialization file with “_flash” enables both Flash and
external memory.

To set up an initialization file:

Breakpoint
Mode
checkbox

Specifies the breakpoint mode:

• Automatic —
CodeWarrior software
determines when to use
software or hardware
breakpoints.

• Software — CodeWarrior
software always uses
software breakpoints.

• Hardware — CodeWarrior
software always uses the
available hardware
breakpoints.

Software breakpoints contain
debug instructions that the
debugger writes into your code.
You cannot set such
breakpoints in flash, as it is
read-only.

Hardware breakpoints use the
on-chip debugging capabilities
of the DSP56800E. The
number of available hardware
breakpoints limits these
capabilities.

Note, Breakpoint Mode (HW
only) affects HW targets.

Auto-clear
previous
hardware
breakpoint

Checked — Automatically clears the
previous hardware breakpoint.

Clear — Does not automatically
clear the previous hardware
breakpoint.

Target OS list
box

Specifies the OS Selects the OS plug-in. The
BareBoard option does not
use an OS plug-in.

Processor list
box

Specifies the processor Currently this selects the
register layout.

Table 4.13 Debugging M56800E Target Panel Elements (continued)

Element Purpose Comments
80 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
1. In the debugging M56800E Target panel, check the Use initialization file checkbox.

2. Specify the name of the initialization file, per either substep a or b:

a. Type the name in the Use initialization file text box. If the name is not a full
pathname, the debugger searches for the file in the project directory. If the file is
not in this directory, the debugger searches on the path:

{CodeWarrior path}\M56800E Support\initialization
directory.

b. Click the Choose button; the Choose file dialog box appears. Navigate to the
appropriate file. When you select the file, the system puts its name in the Use
initialization file text box.

Each text line of a command file begins with a command or the comment symbol #. The
system ignores comment lines, as well as blank lines.

Table 4.14 on page 81 lists the supported commands and their arguments. For a more
detailed description of the Flash Memory commands see “Flash Memory Commands.”

Table 4.14 Initialization File Commands and Arguments

Command Arguments Description

writepmem <addr> <value> Writes a 16-bit value to
the specified P: Memory
location.

writexmem <addr> <value> Writes a 16-bit value to
the specified X: Memory
location.

writereg <regName> <value> Writes a 16-bit value to
the specified register.

set_hfmclkd <value> Writes the flash memory’s
clock divider value to the
hfmclkd register

set_hfm_base <address> Sets the address of
hfm_base. This is the map
location of the flash
memory control registers
in X: Memory.

add_hfm_unit <startAddr><endAddr>
<bank><numSectors>
<pageSize><progMem>
<boot><interleaved>

Adds a flash memory unit
to the list and sets its
parameter values.
8156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Remote Debug Options
Use the Remote Debug Options panel (Figure 4.15 on page 83) to specify different remote
debug options.

set_hfm_programmer_base <address> Specifies the address
where the onboard flash
programmer will be
loaded in P: Memory.

set_hfm_prog_buffer_base <address> Specifies where the data
to be programmed will be
loaded in X: Memory.

set_hfm_prog_buffer_size <size> Specifies the size of the
buffer in X: Memory which
will hold the data to be
programmed.

set_hfm_erase_mode <units | pages | all> Sets the erase mode.

set_hfm_verify_erase <1 | 0> Sets the flash memory
erase verification mode.

set_hfm_verify_program <1 | 0> Sets the flash program
verification mode.

unlock_flash_on_connec
t

<1 | 0> Unlocks and erases flash
memory immediately upon
connection.

Table 4.14 Initialization File Commands and Arguments (continued)

Command Arguments Description
82 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Figure 4.15 Remote Debug Options
8356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels
Table 4.15 Remote Debug Options Panel Elements

Element Purpose Comments

Program
Download
Options area

Checked Download checkboxes
specify the section types to be
downloaded on initial launch and on
successive runs.

Checked Verify checkboxes specify
the section types to be verified (that
is, read back to the linker).

Section types:

• Executable —
program-code
sections that have X
flags in the linker
command file.

• Constant Data —
program-data
sections that do not
have X or W flags in
the linker command
file.

• Initialized Data —
program-data
sections with initial
values. These
sections have W
flags, but not X flags,
in the linker
command file.

• Uninitialized Data —
program-data
sections without
initial values. These
sections have W
flags, but not X flags,
in the linker
command file.

Use Memory
Configuration
File
checkbox

Not supported at this time.
84 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

5
Processor Expert Interface

Your CodeWarrior™ IDE features a Processor Expert™ plug-in interface, for rapid
development of embedded applications. This chapter explains Processor Expert concepts,
and Processor Expert additions to the CodeWarrior visual interface. This chapter includes
a brief tutorial exercise.

This chapter contains these sections:

• Processor Expert Overview on page 85

• Processor Expert Windows on page 93

• Processor Expert Tutorial on page 106

Processor Expert Overview
The Processor Expert Interface (PEI) is an integrated development environment for
applications based on DSP56800/E (or many other) embedded microcontrollers. It reduces
development time and cost for applications. Its code makes very efficient use of
microcontroller and peripheral capabilities. Furthermore, it helps develop code that is
highly portable.

Features include:

• Embedded Beans™ components — Each bean encapsulates a basic functionality of
embedded systems, such as CPU core, CPU on-chip peripherals, and virtual devices.
To create an application, you select, modify, and combine the appropriate beans.

– The Bean Selector window lists all available beans, in an expandable tree
structure. The Bean Selector describes each bean; some descriptions are
extensive.

– The Bean Inspector window lets you modify bean properties, methods, events,
and comments.

• Processor Expert page — This additional page for the CodeWarrior project window
lists project CPUs, beans, and modules, in a tree structure. Selecting or double-
clicking items of the page opens or changes the contents of related Processor Expert
windows.

• Target CPU window — This window depicts the target microprocessor as a simple
package or a package with peripherals. As you move the cursor over this picture’s
8556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview
pins, the window shows pin numbers and signals. Additionally, you can have this
window show a scrollable block diagram of the microprocessor.

• CPU Structure window — This window shows the relationships of all target-
microprocessor elements, in an expandable-tree representation.

• CPU Types Overview — This reference window lists all CPUs that your Processor
Expert version supports.

• Memory Map — This window shows the CPU address space, plus mapping for
internal and external memory.

• Resource Meter — This window shows the resource allocation for the target
microprocessor.

• Peripheral Usage Inspector — This window shows which bean allocates each on-
chip peripheral.

• Installed Beans Overview — This reference window provides information about all
installed beans in your Processor Expert version.

• Driver generation — The PEI suggests, connects, and generates driver code for
embedded-system hardware, peripherals, and algorithms.

• Top-Down Design — A developer starts design by defining application behavior,
rather than by focussing on how the microcontroller works.

• Extensible beans library — This library supports many microprocessors,
peripherals, and virtual devices.

• Beans wizard — This external tool helps developers create their own custom beans.

• Extensive help information — You access this information either by selecting Help
from the Program Expert menu, or by clicking the Help button of any Processor
Expert window or dialog box.

Processor Expert Code Generation
The PEI manages your CPU and other hardware resources so that you can concentrate on
virtual prototyping and design. Your steps for application development are:

1. Creating a CodeWarrior project, specifying the Processor Expert stationery
appropriate for your target processor.

2. Configuring the appropriate CPU bean.

3. Selecting and configuring the appropriate function beans.

4. Starting code design (that is, building the application).

As you create the project, the project window opens in the IDE main window. This project
window has a Processor Expert page (Figure 5.1 on page 87). The Processor Expert Target
CPU window also appears at this time. So does the Processor Expert bean selector
window, although it is behind the Target CPU window.
86 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview
Figure 5.1 Project Window: Processor Expert Page

When you start code design, the PEI generates commented code from the bean settings.
This code generation takes advantage of the Processor Expert CPU knowledge system and
solution bank, which consists of hand-written, tested code optimized for efficiency.

To add new functionalities, you select and configure additional beans, then restart code
design. Another straightforward expansion of PEI code is combining other code that you
already had produced with different tools.

Processor Expert Beans
Beans encapsulate the most-required functionalities for embedded applications. Examples
include port bit operations, interrupts, communication timers, and A/D converters.

The Bean Selector (Figure 5.2 on page 88) helps you find appropriate beans by category:
processor, MCU external devices, MCU internal peripherals, or on-chip peripherals. To
open the bean selector, select Processor Expert > View > Bean Selector, from the main-
window menu bar.
8756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview
Figure 5.2 Bean Selector

The bean selector’s tree structures list all available beans; double-clicking the name adds
the bean to your project. Clicking the Quick Help button opens or closes an explanation
pane that describes the highlighted bean.

Once you determine the appropriate beans, you use the Bean Inspector (Figure 5.3 on
page 89) to fine tune each bean, making it optimal for your application.
88 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview
Figure 5.3 Bean Inspector

Using the Bean Inspector to set a bean’s initialization properties automatically adds bean
initialization code to CPU initialization code. You use the Bean Inspector to adjust bean
properties, so that generated code is optimal for your application.

Beans greatly facilitate management of on-chip peripherals. When you choose a peripheral
from bean properties, the PEI presents all possible candidates. But the PEI indicates which
candidates already are allocated, and which are not compatible with current bean settings.

Processor Expert Menu
Table 5.1 on page 90 explains the selections of the Processor Expert menu.
8956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview
Table 5.1 Processor Expert Menu Selections

Item Subitem Action

Open Processor
Expert

none Opens the PEI for the current project.

(Available only if the current project does
not already involve the PEI.)

Code Design
<Project>

none Generates code, including drivers, for the
current project. Access these files via the
Generate Code folder, of the project-
window Files page.

Undo Last Code
Design

none Deletes the most recently-generated
code, returning project files to their state
after the previous, error-free code
generation.

View Project Panel Brings the Processor Expert page to the
front of the CodeWarrior project window.

(Not available if the project window does
not include a Processor Expert page.)

Bean Inspector Opens the Bean Inspector window,
which gives you access to bean
properties.

Bean Selector Opens the Beans Selector window,
which you use to choose the most
appropriate beans.

Target CPU Package Opens the Target CPU Package window,
which depicts the processor. As you
move your cursor over the pins of this
picture, text boxes show pin numbers
and signal names.

Target CPU Block
Diagram

Opens the Target CPU Package window,
but portrays the processor as a large
block diagram. Scroll bars let you view
any part of the diagram. As you move
your cursor over modules, floating text
boxes identify pin numbers and signals.

Error Window Opens the Error Window, which shows
hints, warnings, and error messages.
90 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview
Resource Meter Opens the Resource Meter window,
which shows usage and availability of
processor resources.

View (continued) Target CPU Structure Opens the CPU Structure window, which
uses an expandible tree structure to
portray the processor.

Peripherals Usage
Inspector

Opens the Peripherals Usage Inspector
window, which shows which bean
allocates each peripheral.

Peripheral
Initialization Inspector

Opens the Peripherals Initialization
Inspector window, which show the
initialization value and value after reset
for all peripheral register bits.

Installed Beans
Overview

Opens the Beans Overview window,
which provides information about all
beans in your project.

CPU Types Overview Opens the CPU Overview window, which
lists supported processors in an
expandable tree structure.

CPU Parameters
Overview

Opens the CPU Parameters window,
which lists clock-speed ranges, number
of pins, number of timers, and other
reference information for the supported
processors.

Memory Map Opens the Memory Map window, which
depicts CPU address space, internal
memory, and external memory.

Tools <tool name> Starts the specified compiler, linker or
other tool. (You use the Tools Setup
window to add tool names to this menu.)

SHELL Opens a command-line window.

Tools Setup Opens the Tools Setup window, which
you use to add tools to this menu.

Help Processor Expert Help Opens the help start page.

Table 5.1 Processor Expert Menu Selections (continued)

Item Subitem Action
9156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview
Introduction Opens the PEI help introduction.

Benefits Opens an explanation of PEI benefits.

User Interface Opens an explanation of the PEI
environment.

Tutorial [None available for the DSP56800/E.]

Quick Start Opens PEI quick start instructions.

Help (continued) Embedded Beans Opens the first page of a description
database of all beans.

Embedded Beans
Categories

Opens the first page of a description
database of beans, organized by
category.

Supported CPUs,
Compilers, and
Debuggers

Opens the list of processors and tools
that the PEI plug-in supports.

PESL Library User
Manual

Opens the Processor Expert System
Library, for advanced developers.

User Guide Opens a .pdf guide that focuses on the
DSP56800/E processor family.

Search in PDF
Documentation of the
Target CPU

Opens documentation of the target
processor, in a .pdf search window.

Go to Processor
Expert Home Page

Opens your default browser, taking you
to the PEI home page.

About Processor
Expert

Opens a standard About dialog box for
the PEI.

Update Update Processor
Exert Beans from
Package

Opens the Open Update Package
window. You can use this file-selection
window to add updated or new beans
(which you downloaded over the web) to
your project.

Table 5.1 Processor Expert Menu Selections (continued)

Item Subitem Action
92 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Processor Expert Windows
This section illustrates important Processor Expert windows and dialog boxes.

Bean Selector
The Bean Selector window (Figure 5.4 on page 93) explains which beans are available,
helping you identify those most appropriate for your application project. To open this
window, select Processor Expert > View > Bean Selector, from the main-window menu
bar.

Figure 5.4 Bean Selector Window

The Bean Categories page, at the left side of this window, lists the available beans in
category order, in an expandable tree structure. Green string bean symbols identify beans

Check Processor
Expert Web for
Updates

Checks for updates available over the
web. If any are available, opens your
default browser, so that you can
download them.

Bring PE
Windows to Front

none Moves PEI windows to the front of your
monitor screen.

Arrange PE
Windows

none Restores the default arrangement of all
open PEI windows.

Table 5.1 Processor Expert Menu Selections (continued)

Item Subitem Action
9356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
that have available licenses. Grey string bean symbols identify beans that do not have
available licenses.

The On-Chip Peripherals page lists beans available for specific peripherals, also in an
expandable tree structure. Yellow folder symbols identify peripherals fully available.
Light blue folder symbols identify partially used peripherals. Dark blue folder symbols
identify fully used peripherals.

Bean names are black; bean template names are blue. Double-click a bean name to add it
to your project.

Click the Quick Help button to add the explanation pane to the right side of the window, as
Figure 5.4 on page 93 shows. This pane describes the selected (highlighted) bean. Use the
scroll bars to read descriptions that are long.

Click the two buttons at the bottom of the window to activate or deactivate filters. If the
all/CPU filter is active, the window lists only the beans for the target CPU. If the license
filter is active, the window lists only the beans for which licenses are available.

Bean Inspector
The Bean Inspector window (Figure 5.5 on page 95) lets you modify bean properties and
other settings. To open this window, select Processor Expert > View > Bean Inspector,
from the main-window menu bar.
94 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Figure 5.5 Bean Inspector Window

This window shows information about the currently selected bean — that is, the
highlighted bean name in the project-window Processor Expert page. The title of the Bean
Inspector window includes the bean name.

The Bean Inspector consists of Properties, Methods, Events, and Comment pages. The
first three pages have these columns:

• Item names — Items to be set. Double-click on group names to expand or collapse
this list. For the Method or Event page, double-clicking on an item may open the file
editor, at the corresponding code location.

• Selected settings — Possible settings for your application. To change any ON/OFF-
type setting, click the circular-arrow button. Settings with multiple possible values
have triangle symbols: click the triangle to open a context menu, then select the
appropriate value. Timing settings have an ellipsis (...) button: click this button to
open a setting dialog box.
9556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
• Setting status — Current settings or error statuses.

Use the comments page to write any notations or comments you wish.

NOTE If you have specified a target compiler, the Bean Inspector includes an
additional Build options page for the CPU bean.
If your project includes external peripherals, the Bean Inspector includes an
additional Used page. Clicking a circular-arrow button reserves a resource for
connection to an external device. Clicking the same button again frees the
resource.

The Basic, Advanced, and Expert view mode buttons, at the bottom of the window, let you
change the detail level of Bean Inspector information.

The Bean Inspector window has its own menu bar. Selections include restoring default
settings, saving the selected bean as a template, changing the bean’s icon, disconnecting
from the CPU, and several kinds of help information.

Target CPU Window
The Target CPU window (Figure 5.6 on page 97) depicts the target processor as a
realistic CPU package, as a CPU package with peripherals, or as a block diagram. To open
this window, select Processor Expert > View > Target CPU Package, from the main-
window menu bar. (To have this window show the block diagram, you may select
Processor Expert > View > Target CPU Block Diagram, from the main-window menu
bar.)
96 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Figure 5.6 Target CPU Window: Package

Arrows on pins indicate input, output, or bidirectional signals. As you move your cursor
over the processor pins, text boxes at the bottom of this window show the pin numbers and
signal names.

Use the control buttons at the left edge of this window to modify the depiction of the
processor. One button, for example, changes the picture view the CPU package with
peripherals. However, as Figure 5.7 on page 98 shows, it is not always possible for the
picture of a sophisticated processor to display internal peripherals.
9756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Figure 5.7 Target CPU Window: Package and Peripherals

In such a case, you can click the Always show internal peripheral devices control
button. Figure 5.8 on page 99 shows that this expands the picture size, as necessary, to
allow the peripheral representations. This view also includes bean icons (blue circles)
attached to the appropriate processor pins. Use the scroll bars to view other parts of the
processor picture.
98 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Figure 5.8 Target CPU Window: Peripherals and Bean Icons

Click the Show CPU Block Diagram to change the picture to a block diagram, as Figure
5.9 on page 100 shows. Use the scroll bars to view other parts of the diagram. (You can
bring up the block diagram as you open the Target CPU window, by selecting Processor
Expert > View > Target CPU Block Diagram, from the main-window menu bar.)
9956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Figure 5.9 Target CPU Window: Block Diagram

Other control buttons at the left edge of the window let you:

• Show bean icons attached to processor pins.

• Rotate the CPU picture clockwise 90 degrees.

• Toggle default and user-defined names of pins and peripherals.

• Print the CPU picture.

NOTE As you move your cursor over bean icons, peripherals, and modules, text boxes
or floating hints show information such as names, descriptions, and the
allocating beans.

And note these additional mouse control actions for the Target CPU window:

• Clicking a bean icon selects the bean in the project window’s Processor Expert page.
100 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
• Double-clicking a bean icon opens the Bean Inspector, displaying information for
that bean.

• Right-clicking a bean icon, a pin, or a peripheral opens the corresponding context
menu.

• Double-clicking an ellipsis (...) bean icon opens a context menu of all beans using
parts of the peripheral. Selecting one bean from this menu opens the Bean Inspector.

• Right-clicking an ellipsis (...) bean icon opens a context menu of all beans using parts
of the peripheral. Selecting one bean from this menu opens the bean context menu.

Memory Map Window
The Memory Map window (Figure 5.10 on page 102) depicts CPU address space, and the
map of internal and external memory. To open this window, select Processor Expert >
View > Memory Map, from the main-window menu bar.
10156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Figure 5.10 Memory Map Window

The color key for memory blocks is:

• White — Non-usable space

• Dark Blue — I/O space

• Medium Blue — RAM

• Light Blue — ROM

• Cyan — FLASH memory or EEPROM

• Black — External memory.
102 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Pause your cursor over any block of the map to bring up a brief description.

CPU Types Overview
The CPU Types Overview window (Figure 5.11 on page 103) lists supported processors,
in an expandable tree structure. To open this window, select Processor Expert > View >
CPU Types Overview, from the main-window menu bar.

Figure 5.11 CPU Types Overview Window

Right-click the window to open a context menu that lets you add the selected CPU to the
project, expand the tree structure, collapse the tree structure, or get help information.
10356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Resource Meter
The Resource Meter window (Figure 5.12 on page 104) shows the usage or availability
of processor resources. To open this window, select Processor Expert > View >
Resource Meter, from the main-window menu bar.

Figure 5.12 Resource Meter Window

Bars of this window indicate:

• The number of pins used

• The number of ports used

• Allocation of timer compare registers

• The number of timer capture registers used

• Allocation of serial communication channels

• Allocation of A/D converter channels.

Pausing your cursor over some fields of this window brings up details of specific
resources.

Installed Beans Overview
The Installed Beans Overview window (Figure 5.13 on page 105) shows reference
information about the installed beans. To open this window, select Processor Expert >
View > Installed Beans Overview, from the main-window menu bar.
104 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows
Figure 5.13 Installed Beans Overview Window

This window’s View menu lets you change the display contents, such as showing driver
status and information, restricting the kinds of beans the display covers, and so on.

Peripherals Usage Inspector
The Peripherals Usage window (Figure 5.14 on page 106) shows which bean allocates
each peripheral. To open this window, select Processor Expert > View > Peripherals
Usage Inspector, from the main-window menu bar.
10556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
Figure 5.14 Peripherals Usage Window

The pages of this window reflect the peripheral categories: I/O, interrupts, timers, and
channels. The columns of each page list peripheral pins, signal names, and the allocating
beans.

Pausing your cursor over various parts of this window brings up brief descriptions of
items. This window’s View menu lets you expand or collapse the display.

Processor Expert Tutorial
This tutorial exercise generates code that flashes the LEDs of a DSP56858 development
board. Follow these steps:

1. Create a project:

a. Start the CodeWarrior IDE, if it is not started already.

b. From the main-window menu bar, select File > New. The New window appears.

c. In the Project page, select (highlight) Processor Expert Examples Stationery.
106 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
d. In the Project name text box, enter a name for the project, such as LEDcontrol.

e. Click the OK button. The New Project window replaces the New window.

f. In the Project Stationery list, select TestApplications > Tools > LED > 56858.

g. Click the OK button.

h. Click the OK button. The IDE:

• Opens the project window, docking it the left of the main window. This project
window includes a Processor Expert page.

• Opens the Target CPU window, as Figure 5.15 on page 107 shows. This window
shows the CPU package and peripherals view.

• Opens the Bean Selector window, behind the Target CPU window.

Figure 5.15 Project, Target CPU Windows

2. Select the sdm external memory target.

a. Click the project window’s Targets tab. The Targets page moves to the front of the
window.

b. Click the target icon of the sdm external memory entry. The black arrow symbol
moves to this icon, confirming your selection.
10756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
3. Add six BitIO beans to the project.

a. Click the project window’s Processor Expert tab. The Processor Expert page
moves to the front of the window.

b. Make the Bean Selector window visible:

• Minimize the Target CPU window.

• Select Processor Expert > View > Bean Selector, from the main-window menu
bar.

c. In the Bean Categories page, expand the entry MCU internal peripherals.

d. Expand the subentry Port I/O.

e. Double-click the BitIO bean name six times. (Figure 5.16 on page 108 depicts this
bean selection.) The IDE adds these beans to your project; new bean icons appear
in the project window’s Processor Expert page.

Figure 5.16 Bean Selector: BitIO Selection

NOTE If new bean icons do not appear in the Processor Expert page, the system still
may have added them to the project. Close the project, then reopen it. When
you bring the Processor Expert page to the front of the project window, the
page should show the new bean icons.

4. Add two ExtInt beans to the project.
108 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
a. In the Bean Categories page of the Bean Selector window, expand the Interrupts
subentry.

b. Double-click the ExtInt bean name two times. The IDE adds these beans to your
project; new bean icons appear in the Processor Expert page.

c. You may close the Bean Inspector window.

5. Rename the eight beans GPIO_C0 — GPIO_C3, GPIO_D6, GPIO_D7, IRQA, and
IRQB.

a. In the project window’s Processor Expert page, right-click the name of the first
BitIO bean. A context menu appears.

b. Select Rename Bean. A change box appears around the bean name.

c. Type the new name GPIO_C0, then press the Enter key. The list shows the new
name; as Figure 5.17 on page 109 shows, this name still ends with BitIO.

Figure 5.17 New Bean Name

d. Repeat substeps a, b, and c for each of the other BitIO beans, renaming them
GPIO_C1, GPIO_C2, GPIO_C3, GPIO_D6, and GPIO_D7.
10956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
e. Repeat substeps a, b, and c for the two ExtInt beans, renaming them IRQA and
IRQB. (Figure 5.18 on page 110 shows the Processor Expert page at this point.)

Figure 5.18 New Bean Names

6. Update pin associations for each bean.

a. In the Processor Expert page, double-click the bean name GPIO_C0. The Bean
Inspector window opens, displaying information for this bean.

b. Use standard window controls to make the middle column of the Properties page
about 2 inches wide.

c. In the Pin for I/O line, click the triangle symbol of the middle-column list box.
The list box opens.

d. Use this list box to select GPIOC0_SCLK1_TB0_PHASEA1. (Figure 5.19 on
page 111 depicts this selection.)
110 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
Figure 5.19 New Pin Association

e. In the project window’s Processor Expert page, select the bean name GPIO_C1.
The Bean Inspector information changes accordingly.

f. Use the Pin for I/O middle-column list box to select
GPIOC1_MOSI1_TB1_PHASEB1.

g. Repeat substeps e and f, for bean GPIO_C2, to change its associated pin to
GPIOC2_MISO1_TB2_INDEX1.

h. Repeat substeps e and f, for bean GPIO_C3, to change its associated pin to
GPIOC3_SSA_B_TB3_HOME1.

i. Repeat substeps e and f, for bean GPIO_D6, to change its associated pin to
GPIOD6_TxD1.

j. Repeat substeps e and f, for bean GPIO_D7, to change its associated pin to
GPIOD7_RxD1.

k. In the project window’s Processor Expert page, select the bean name IRQA. The
Bean Inspector information changes accordingly.

l. Use the Pin middle-column list box to select IRQA_B.

m. Repeat substeps k and l, for bean IRQB, to change its associated pin to IRQB_B.

n. You may close the Bean Inspector window.

7. Enable BitIO SetDir, ClrVal, and SetVal functions.
11156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
a. In the Processor Expert page, click the plus-sign control for the GPIO_C0 bean.
The function list expands: red X symbols indicate disabled functions, green check
symbols indicate enabled functions.

b. Double-click function symbols as necessary, so that only SetDir, ClrVal, and
SetVal have green checks. (Figure 5.20 on page 112 shows this configuration.)

Figure 5.20 GPIO_C3 Enabled Functions

c. Click the GPIO_C0 minus-sign control. The function list collapses.

d. Repeat substeps a, b, and c for beans GPIO_C1, GPIO_C2, GPIO_C3,
GPIO_D6, and GPIO_D7.

8. Enable ExtInt OnInterrupt, GetVal functions.

a. In the Processor Expert page, click the plus-sign control for the IRQA bean. The
function list expands.

b. Double-click function symbols as necessary, so that only OnInterrupt and
GetVal have green check symbols.

c. Click the IRQA minus-sign control. The function list collapses.

d. Repeat substeps a, b, and c for bean IRQB.

9. Design (generate) project code.

a. From the main-window menu bar, select Processor Expert > Code Design
‘LEDcontrol.mcp.’ (This selection shows the actual name of your project.) The
IDE and PEI generate several new files for your project.

b. You may close all windows except the project window.

10. Update file Events.c.

a. Click the project window’s Files tab. The Files page moves to the front of the
window.
112 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
b. Expand the User Modules folder.

c. Double-click filename Events.c. An editor window opens, displaying this file’s
text. (Listing 5.1 on page 113, at the end of this tutorial, shows this file’s contents.)

d. Find the line IRQB_OnInterrupt().

e. Above this line, enter the new line extern short IRQB_On;.

f. Inside IRQB_OnInterrupt(), enter the new line IRQB_On ^= 1;.

g. Find the line IRQA_OnInterrupt().

h. Above this line, enter the new line extern short IRQA_On;.

i. Inside IRQA_OnInterrupt(), enter the new line IRQA_On ^= 1;.

NOTE Listing 5.1 on page 113 shows these new lines as bold italics.

j. Save and close file Events.c.

11. Update file LEDcontrol.c.

a. In the project window’s Files page, double-click filename LEDcontrol.c (or the
actual .c filename of your project). An editor window opens, displaying this file’s
text.

b. Add custom code, to utilize the beans.

NOTE Listing 5.2 on page 116 shows custom entries as bold italics. Processor Expert
software generated all other code of the file.

c. Save and close the file.

12. Build and debug the project.

a. From the main-window menu bar, select Project > Make. The IDE compiles and
links your project, generating executable code.

b. Debug your project, as you would any other CodeWarrior project.

This completes the Processor Expert tutorial exercise. Downloading this code to a
DSP56836E development board should make the board LEDs flash in a distinctive
pattern.

Listing 5.1 File Events.c

/*
** ###
**
** Filename : Events.C
**
** Project : LEDcontrol
11356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
**
** Processor : DSP56F836
**
** Beantype : Events
**
** Version : Driver 01.00
**
** Compiler : Metrowerks DSP C Compiler
**
** Date/Time : 3/24/2003, 1:18 PM
**
** Abstract :
**
** This is user's event module.
** Put your event handler code here.
**
** Settings :
**
**
** Contents :
**
** IRQB_OnInterrupt - void IRQB_OnInterrupt(void);
** IRQA_OnInterrupt - void IRQA_OnInterrupt(void);
**
**
** (c) Copyright UNIS, spol. s r.o. 1997-2002
**
** UNIS, spol. s r.o.
** Jundrovska 33
** 624 00 Brno
** Czech Republic
**
** http : www.processorexpert.com
** mail : info@processorexpert.com
**
** ###
*/
/* MODULE Events */

/*Including used modules for compilling procedure*/
#include "Cpu.h"
#include "Events.h"
#include "GPIO_C0.h"
#include "GPIO_C1.h"
#include "GPIO_C2.h"
#include "GPIO_C3.h"
#include "GPIO_D6.h"
#include "GPIO_D7.h"
114 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
#include "IRQA.h"
#include "IRQB.h"

/*Include shared modules, which are used for whole project*/
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

/*
** ==
** Event : IRQB_OnInterrupt (module Events)
**
** From bean : IRQB [ExtInt]
** Description :
** This event is called when the active signal edge/level
** occurs.
** Parameters : None
** Returns : Nothing
** ==
*/
#pragma interrupt called
extern short IRQB_On;
void IRQB_OnInterrupt(void)
{
 IRQB_On ^=1;
 /* place your IRQB interrupt procedure body here */
}

/*
** ==
** Event : IRQA_OnInterrupt (module Events)
**
** From bean : IRQA [ExtInt]
** Description :
** This event is called when the active signal edge/level
** occurs.
** Parameters : None
** Returns : Nothing
** ===
*/
#pragma interrupt called
extern short IRQA_On;
void IRQA_OnInterrupt(void)
{
 IRQA_On ^= 1;
 /* place your IRQA interrupt procedure body here */
11556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
}

/* END Events */

/*
** ##
**
** This file was created by UNIS Processor Expert 03.15 for
** the Freescale DSP56x series of microcontrollers.
**
** ##
*/

Listing 5.2 File LEDcontrol.c

/*
** ###
** Filename : LEDcontrol.C
**
** Project : LEDcontrol
**
** Processor : DSP56F836
**
** Version : Driver 01.00
**
** Compiler : Metrowerks DSP C Compiler
**
** Date/Time : 3/24/2003, 1:18 PM
**
** Abstract :
**
** Main module.
** Here is to be placed user's code.
**
** Settings :
**
**
** Contents :
**
** No public methods
**
**
** (c) Copyright UNIS, spol. s r.o. 1997-2002
**
** UNIS, spol. s r.o.
** Jundrovska 33
116 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
** 624 00 Brno
** Czech Republic
**
** http : www.processorexpert.com
** mail : info@processorexpert.com
**
** ###
*/
/* MODULE LEDcontrol */

/* Including used modules for compilling procedure */
#include "Cpu.h"
#include "Events.h"
#include "GPIO_C0.h"
#include "GPIO_C1.h"
#include "GPIO_C2.h"
#include "GPIO_C3.h"
#include "GPIO_D6.h"
#include "GPIO_D7.h"
#include "IRQA.h"
#include "IRQB.h"
/* Include shared modules, which are used for whole project */
#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

/*
 * Application Description:
 * LED program for the 56836 EVM.
 *
 * Pattern: "Count" from 0 to 63, using LEDs to represent the bits of
the number.
 *
 * Pressing the IRQA button flips LED order: commands that previously
went to LED1 go to LED6, and so forth.
 * Pressing the IRQB button reverses the enabled/disabled LED states.
 *
 */

/* global used as bitfield, to remember currently active bits, used to
 * enable/disable all LEDs. */
long num = 0;
short IRQA_On,IRQB_On;

/* simple loop makes LED changes visible to the eye */
void wait(int);
voide wait(int count)
11756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
{
 int i;
 for (i=0; i<count; ++i);
}

/*set the given LED */
void setLED(int);
void setLED(int num)
{
 if (!IRQA_On)
 {
 num = 7-num;
 }
 if (!IRQB_On)
 {
 switch (num)
 {
 case 1: GPIO_C0_ClrVal(); break;
 case 2: GPIO_C1_ClrVal(); break:
 case 3: GPIO_C2_ClrVal(); break;
 case 4: GPIO_C3_ClrVal(); break;
 case 5: GPIO_D6_ClrVal(); break;
 case 6: GPIO_D7_ClrVal(); break;
 }
 }
 else
 {
 switch (num)
 {
 case 1: GPIO_C0_SetVal(); break;
 case 2: GPIO_C1_SetVal(); break;
 case 3: GPIO_C2_SetVal(); break;
 case 4: GPIO_C3_SetVal(); break;
 case 5: GPIO_D6_SetVal(); break;
 case 6: GPIO_D7_SetVal(); break;
 }
 }
}

/* clear the given LED */
void clrLED(int);
void clrLED(int num)
{
 if (!IRQA_On)
 {
 num = 7-num;
 }
 if (IRQB_On)
118 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
 {
 switch (num)
 {
 case 1: GPIO_C0_ClrVal(); break;
 case 2: GPIO_C1_ClrVal(); break;
 case 3: GPIO_C2_ClrVal(): break;
 case 4: GPIO_C3_ClrVal(); break;
 case 5: GPIO_D6_ClrVal(); break;
 case 6: GPIO_D7_ClrVal(); break;
 }
 }
 else
 {
 switch (num)
 {
 case 1: GPIO_C0_SetVal(); break;
 case 2: GPIO_C1_SetVal(); break;
 case 3: GPIO_C2_SetVal(); break;
 case 4: GPIO_C3_SetVal(); break;
 case 5: GPIO_D6_SetVal(); break;
 case 6: GPIO_D7_SetVal(); break;
 }
 }
}

#define CLEARLEDS showNumberWithLEDs(0)
/* method to set each LED status to reflect the given number/bitfield
*/
void shwNumberWithLEDs(long);
void showNumberWithLEDs(long num)
{
 int i;
 for (i=0; i<6; ++i)
 {
 if ((num>>i) & 1
 setLED(i+1);
 else
 clrLED(i+1);
 }
}

/* Pattern: "Count" from 0 to 63 in binary using LEDs to represent
bits of the current number. 1 = enabled LED, 0 = disabled LED. */
void pattern();
void pattern()
{
 long i;
 int j;
11956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial
 for (i=0; i<=0b111111; ++i)
 {
 showNumberWithLEDs(i);
 wait(100000);
 }
}

void main(void)
{
 /*** Processor Expert internal initialization. DON'T REMOVE THIS
CODE!!! ***/
 PE_low_level_init();
 /*** End of Processor Expert internal initialization. ***/

 /*Write your code here*/
#pragma warn_possunwant off

 IRQA_On = IRQA_GetVal() ? 1 : 0;
 IRQB_On = IRQB_GetVal() ? 1 : 0;

 for(;;); {

 CLEARLEDS;
 pattern();

 }

#pragma warn_possunwant reset
}

/* END LEDcontrol */
/*
** ###
/*
** This file was created by UNIS Processor Expert 03.15 for
** the Freescale DSP56x series of microcontrollers.
**
** ###
*/
120 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

6
C for DSP56800E

This chapter explains considerations for using C with the DSP56800E processor. Note that
the DSP56800E processor does not support:

• The C++ language

• Standard C trigonometric and algebraic floating-point functions (such as sine, cosine,
tangent, and square root)

Furthermore, C pointers allow access only to X memory.

NOTE The DSP56800E MSL implements a few trigonometric and algebraic
functions, but these are mere examples that the DSP56800E does not support.

This chapter contains these sections:

• Number Formats on page 121

• Calling Conventions and Stack Frames on page 123

• User Stack Allocation on page 129

• Data Alignment Requirements on page 133

• Variables in Program Memory on page 135

• Code and Data Storage on page 140

• Large Data Model Support on page 141

• Optimizing Code on page 144

• Deadstripping and Link Order on page 145

• on page 146Working with Peripheral Module Registers on page 146

• Generating MAC Instruction Set on page 150

Number Formats
This section explains how the CodeWarrior compiler implements ordinal and floating-
point number types for 56800E processors. For more information, read limits.h and
float.h, under the M56800E Support folder.

Table 6.1 on page 122 shows the sizes and ranges of ordinal data types.
12156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Number Formats

Table 6.2 on page 123 shows the sizes and ranges of the floating-point types.

Table 6.1 56800E Ordinal Types

Type Option Setting Size
(bits)

Range

char Use Unsigned Chars is
disabled in the C/C++
Language (C Only)
settings panel

8 -128 to 127

Use Unsigned Chars is
enabled

8 0 to 255

signed char n/a 8 -128 to 127

unsigned char n/a 8 0 to 255

short n/a 16 -32,768 to 32,767

unsigned short n/a 16 0 to 65,535

int n/a 16 -32,768 to 32,767

unsigned int n/a 16 0 to 65,535

long n/a 32 -2,147,483,648 to
2,147,483,647

unsigned long n/a 32 0 to 4,294,967,295

pointer small data model (“Large
Data Model” is disabled
in the M56800E
Processor settings
panel)

16 0 to 65,535

large data model (“Large
Data Model” is enabled)

24 0 to 16,777,215
122 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
Calling Conventions and Stack Frames
The DSP56800E compiler stores data and call functions differently than the DSP56800
compiler does. Advantages of the DSP56800E method include: more registers for
parameters and more efficient byte storage.

Passing Values to Functions
The compiler uses registers A,B, R1, R2, R3, R4, Y0, and Y1 to pass parameter values to
functions. Upon a function call, the compiler scans the parameter list from left to right,
using registers for these values:

• The first two 8/16-bit integer values — Y0 and Y1.

• The first two 32-bit integer or float values — A and B.

• The first four pointer parameter values — R2, R3, R4, and R1 (in that order).

• The third and fourth 8/16-bit integer values — A and B (provided that the compiler
does not use these registers for 32-bit parameter values).

• The third 8/16-bit integer value — B (provided that the compiler does not use this
register for a 32-bit parameter value).

The compiler passes the remaining parameter values on the stack. The system increments
the stack by the total amount of space required for memory parameters. This incrementing
must be an even number of words, as the stack pointer (SP) must be continuously long-
aligned. The system moves parameter values to the stack from left to right, beginning with
the stack location closest to the SP. Because a long parameter must begin at an even
address, the compiler introduces one-word gaps before long parameter values, as
appropriate.

Table 6.2 M56800E Floating-Point Types

Type Size
(bits)

Range

float 32 1.17549e-38 to 3.40282e+38

short double 32 1.17549e-38 to 3.40282e+38

double 32 1.17549e-38 to 3.40282e+38

long double 32 1.17549e-38 to 3.40282e+38
12356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
Returning Values From Functions
The compiler returns function results in registers A, R0, R2, and Y0:

• 8-bit integer values — Y0.

• 16-bit integer values — Y0.

• 32-bit integer or float values — A.

• All pointer values — R2.

• Structure results — R0 contains a pointer to a temporary space allocated by the
caller. (The pointer is a hidden parameter value.)

Additionally, the compiler:

• Reserves R5 for the stack frame pointer when a function makes a dynamic allocation.
(This is the original stack pointer before allocations.) Otherwise, the compiler saves
R5 across function calls.

• Saves registers C10 and D10 across function calls.

• Does not save registers C2 and D2 across function calls.

Volatile and Non-Volatile Registers
Values in non-volatile registers can be saved across functions calls. Another term for such
registers is saved over a call registers (SOCs).

Values in volatile registers cannot be saved across functions calls. Another term for such
registers is non-SOC registers.

Table 6.3 on page 124 lists both the volatile and non-volatile registers.

Table 6.3 Volatile and Non-Volatile Registers

Unit Regist
er

Siz
e

Type Comments

Arithmetic Logic
Unit (ALU)

Y1 16 Volatile (non-
SOC)

Y0 16 Volatile (non-
SOC)

Y 32 Volatile (non-
SOC)

X0 16 Volatile (non-
SOC)
124 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
A2 4 Volatile (non-
SOC)

A1 16 Volatile (non-
SOC)

A0 16 Volatile (non-
SOC)

Arithmetic Logic
Unit (ALU)
(continued)

A10 32 Volatile (non-
SOC)

A 36 Volatile (non-
SOC)

B2 4 Volatile (non-
SOC)

B1 16 Volatile (non-
SOC)

B0 16 Volatile (non-
SOC)

B10 32 Volatile (non-
SOC)

B 36 Volatile (non-
SOC)

C2 4 Volatile (non-
SOC)

C1 16 Non-Volatile
(SOC)

C0 16 Non-Volatile
(SOC)

C10 32 Non-Volatile
(SOC)

C 36 Volatile (non-
SOC)

Includes volatile register
C2.

Table 6.3 Volatile and Non-Volatile Registers (continued)

Unit Regist
er

Siz
e

Type Comments
12556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
D2 4 Volatile (non-
SOC)

D1 16 Non-Volatile
(SOC)

D0 16 Non-Volatile
(SOC)

D10 32 Non-Volatile
(SOC)

D 36 Volatile (non-
SOC)

Includes volatile register
D2.

Address
Generation Unit
(AGU)

R0 24 Volatile (non-
SOC)

R1 24 Volatile (non-
SOC)

R2 24 Volatile (non-
SOC)

R3 24 Volatile (non-
SOC)

R4 24 Volatile (non-
SOC)

R5 24 Non-volatile
(SOC)

If the compiler uses R5 as
a pointer, it becomes a
non-volatile register — its
value can not be saved
over called functions.

N 24 Volatile (non-
SOC)

Address
Generation Unit
(AGU)
(continued)

SP 24 Volatile (non-
SOC)

Table 6.3 Volatile and Non-Volatile Registers (continued)

Unit Regist
er

Siz
e

Type Comments
126 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
N3 16 Volatile (non-
SOC)

M01 16 Volatile (non-
SOC)

Certain registers must
keep specific values for
proper C execution — set
this register to 0xFFFF.

Program
Controller

PC 21 Volatile (non-
SOC)

LA 24 Volatile (non-
SOC)

LA2 24 Volatile (non-
SOC)

HWS 24 Volatile (non-
SOC)

FIRA 21 Volatile (non-
SOC)

FISR 13 Volatile (non-
SOC)

OMR 16 Volatile (non-
SOC)

Certain registers must
keep specific values for
proper C execution — in
this register, set the CM
bit.

SR 16 Volatile (non-
SOC)

LC 16 Volatile (non-
SOC)

LC2 16 Volatile (non-
SOC)

Table 6.3 Volatile and Non-Volatile Registers (continued)

Unit Regist
er

Siz
e

Type Comments
12756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames
Stack Frame and Alignment
Figure 6.1 on page 128. depicts generation of the stack frame. The stack grows upward, so
pushing data onto the stack increments the stack pointer’s address value.

Figure 6.1 Stack Frame

The stack pointer (SP) is a 24-bit register, always treated as a word pointer. During a
function execution, the stable position for the SP is at the top of the user and compiler
locals. The SP increases during the call if the stack is used for passed parameters.

The software stack supports structured programming techniques, such as parameter
passing to subroutines and local variables. These techniques are available for both
assembly-language and high-level-language programming. It is possible to support passed
parameters and local variables for a subroutine at the same time within the stack frame.

The compiler stores local data by size. It stores smaller data closest to the SP, exploiting
SP addressing modes that have small offsets. This means that the compiler packs all bytes
two per word near the stack pointer. It packs the block of words next, then blocks of longs.
Aggregates (structs and arrays) are farthest from the stack pointer, not sorted by size.

NOTE When a function makes a dynamic allocation, the compiler reserves R5 as a
stack frame pointer. (This is the stack pointer before allocations.)

The compiler always must operate with the stack pointer long aligned. This means that:

• The start-up code in the runtime first initializes the stack pointer to an odd value.

• At all times after that, the stack pointer must point to an odd word address.

• The compiler never generates an instruction that adds or subtracts an odd value from
the stack pointer.

called function stack space

outgoing parameters

user and compiler locals

nonvolatile registers

status register

return address

incoming parameters

calling function stack space

 SP

callee’s SP
128 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
• The compiler never generates a MOVE.W or MOVEU.W instruction that uses the
X:(SP)+ or X:(SP)- addressing mode.

User Stack Allocation
The 56800E compilers build frames for hierarchies of function calls using the stack
pointer register (SP) to locate the next available free X memory location in which to locate
a function call’s frame information. There is usually no explicit frame pointer register.
Normally, the size of a frame is fixed at compile time. The total amount of stack space
required for incoming arguments, local variables, function return information, register
save locations (including those in pragma interrupt functions) is calculated and the stack
frame is allocated at the beginning of a function call.

Sometimes, you may need to modify the SP at runtime to allocate temporary local storage
using inline assembly calls. This invalidates all the stack frame offsets from the SP used to
access local variables, arguments on the stack, etc. With the User Stack Allocation feature,
you can use inline assembly instructions (with some restrictions) to modify the SP while
maintaining accurate local variable, compiler temps, and argument offsets, i.e., these
variables can still be accessed since the compiler knows you have modified the stack
pointer.

The User Stack Allocation feature is enabled with the #pragma
check_inline_sp_effects [on|off|reset] pragma setting. The pragma
may be set on individual functions. By default the pragma is off at the beginning of
compilation of each file in a project.

The User Stack Allocation feature allows you to simply add inline assembly modification
of the SP anywhere in the function. The restrictions are straight-forward:

1. The SP must be modified by the same amount on all paths leading to a control flow
merge point.

2. The SP must be modified by a literal constant amount. That is, address modes such as
“(SP)+N” and direct writes to SP are not handled.

3. The SP must remain properly aligned.

4. You must not overwrite the compiler’s stack allocation by decreasing the SP into the
compiler allocated stack space.

Point 1 above is required when you think about an if-then-else type statement. If one
branch of a decision point modifies the SP one way and the other branch modifies SP
another way, then the value of the SP is run-time dependent, and the compiler is unable to
determine where stack-based variables are located at run-time. To prevent this from
happening, the User Stack Allocation feature traverses the control flow graph, recording
the inline assembly SP modifications through all program paths. It then checks all control
flow merge points to make sure that the SP has been modified consistently in each branch
converging on the merge point. If not, a warning is emitted citing the inconsistency.
12956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
Once the compiler determined that inline SP modifications are consistent in the control
flow graph, the SP’s offsets used to reference local variables, function arguments, or
temps are fixed up with knowledge of inline assembly modifications of the SP. Note, you
may freely allocate local stack storage:

1. As long as it is equally modified along all branches leading to a control flow merge
point.

2. The SP is properly aligned. The SP must be modified by an amount the compiler can
determine at compile time.

A single new pragma is defined. #pragma check_inline_sp_effects
[on|off|reset] will generate a warning if the user specifies an inline assembly
instruction which modifies the SP by a run-time dependent amount. If the pragma is not
specified, then stack offsets used to access stack-based variables will be incorrect. It is the
user’s responsibility to enable #pragma check_inline_sp_effects, if they
desire to modify the SP with inline assembly and access local stack-based variables. Note
this pragma has no effect in function level assembly functions or separate assembly only
source files (.asm files).

In general, inline assembly may be used to create arbitrary flow graphs and not all can be
detected by the compiler.

For example:

REP #3
ADDA #2,SP

This example would modify the SP by three, but the compiler would only see a
modification of one. Other cases such as these might be created by the user using inline
jumps or branches. These are dangerous constructs and are not detected by the compiler.

In cases where the SP is modified by a run-time dependent amount, a warning is issued.

Listing 6.1 Example 1 – Legal modification of SP Using Inline Assembly

#define EnterCritical() { asm(adda #2,SP);\
asm(move.l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop); \
asm(nop);}

#define ExitCritical() { asm(deca.l SP);\
asm(move.l x:(SP)-,SR); \
asm(nop);\

asm(nop);}

#pragma check_inline_sp_effects on
130 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
int func()
{

int a=1, b=1, c;

EnterCritical();

c = a+b;

ExitCritical();

}

This case will work because there are no control flow merge points. SP is modified
consistently along all paths from the beginning to the end of the function and is properly
aligned.

Listing 6.2 Example 2 – Illegal Modification of SP using Inline Assembly

#define EnterCritical() { asm(adda #2,SP);\
asm(move.l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop); \
asm(nop);}

#define ExitCritical() { asm(deca.l SP);\
asm(move.l x:(SP)-,SR); \
asm(nop);\

asm(nop);}

#pragma check_inline_sp_effects on

int func()
{

int a=1, b=1, c;

if (a)
{

EnterCritical();

c = a+b;

}
else {

c = b++;
}

ExitCritical();
13156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation
return (b+c);
}

This example will generate the following warning because the SP entering the
‘ExitCritical’ macro is different depending on which branch is taken in the if. Therefore,
accesses to variables a, b, or c may not be correct.

Warning : Inconsistent inline assembly modification of SP in this
function.
M56800E_main.c line 29 ExitCritical();

Listing 6.3 Example 3 – Modification of SP by a Run-time Dependent Amount

#define EnterCritical() { asm(adda R0,SP);\
asm(move,l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop); \
asm(nop);}

#define ExitCritical() { asm(deca.l SP);\
asm(move.l X:(SP)-,SR); \
asm(nop);\
asm(nop);}

#pragma check_inline_sp_effects on
int func()
{

int a=1, b=1, c;

if (a)
{

EnterCritical();

c = a+b;

}
else {

EnterCritical();
c = b++;

}

132 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Data Alignment Requirements
return (b+c);
}

This example will generate the following warning:

Warning : Cannot determine SP modification value at compile time
M56800E_main.c line 20 EnterCritical();

This example is not legal since the SP is modified by run-time dependent amount.

If all inline assembly modifications to the SP along all branches are equal approaching the
exit of a function, it is not necessary to explicitly deallocate the increased stack space. The
compiler “cleans up” the extra inline assembly stack allocation automatically at the end of
the function.

Listing 6.4 Example 4 – Automatic Deallocation of Inline Assembly Stack Allocation

#pragma check_inline_sp_effects on
int func()
{

int a=1, b=1, c;

if (a)
{

EnterCritical();

c = a+b;

}
else {

EnterCritical();
c = b++;

}

return (b+c);
}

This example does not need to call the ‘ExitCritical’ macro because the compiler will
automatically clean up the extra inline assembly stack allocation.

Data Alignment Requirements
The data alignment rules for DSP56800E stack and global memory are:
13356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Data Alignment Requirements
• Bytes — byte boundaries.

Exception: bytes passed on the stack are always word-aligned, residing in the lower
bytes.

• Words — word boundaries.

• Longs, floats, and doubles — double-word boundaries:

– Least significant word is always on an even word address.

– Most significant word is always on an odd word address.

– Long accesses through pointers in AGU registers (for example, R0 through R5 or
N) point to the least significant word. That is, the address is even.

– Long accesses through pointers using SP point to the most significant word. That
is, the address in SP is odd.

• Structures — word boundaries (not byte boundaries).

NOTE A structure containing only bytes still is word aligned.

• Structures — double-word boundaries if they contain 32-bit elements, or if an inner
structure itself is double-word aligned.

• Arrays — the size of one array element.

Word and Byte Pointers
The alignment requirements explained above determine how the compiler uses
DSP56800E byte and word pointers to implement C pointer types. The compiler uses:

• Word pointers for all structures

• The SP to access the stack resident data of all types:

– Bytes

– Shorts

– Longs

– Floats

– Doubles

– Any pointer variables

• Word pointers to access:

– Shorts

– Longs

– Any pointer variables
134 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
• Byte pointers for:

– Single global or static byte variable, if accessed through a pointer using X:(Rn)

– Global or static array of byte variables

The compiler does not use pointers to access scalar global or static byte variables
directly by their addresses. Instead, it uses an instruction with a .BP suffix:

MOVE[U].BP X:xxxx,<dest>

MOVE.BP <src>,X:xxxx

Reordering Data for Optimal Usage
The compiler changes data order, for optimal usage. The data reordering follows these
guidelines:

• Reordering is mandatory if local variables are allocated on the stack.

• The compiler does not reorder data for parameter values passed in memory (instead
of being passed in registers).

• The compiler does not reorder data when locating fields within a structure.

Variables in Program Memory
This feature allows the programmer full flexibility in deciding the placement of variables
in memory. Variables can be now declared as part of the program memory, using a very
simple and intuitive syntax. For example:

__pmem int c; // 'c' is an integer that will be stored in program memory.

This feature is very useful when data memory is tight, because some or all of the data can
be moved to program memory. It can be handled exactly the same way as normal data.
This is almost completely transparent to the programmer, with a few exceptions that will
be presented in the next paragraphs.

The CPU architecture only allows post increment addressing of words (16-bit data) in
program memory. While the compiler circumvents this restriction and allows full access
to all data types in program memory, the performance is decreased. If placement of some
variables in program memory is needed, and at the same time the execution speed is
important, here are some pointers that can be used to organize the code:

• Try to keep all variables that are used in a loop (the loop counter included) in data
memory. This condition becomes more important as the loop nesting level increases.

• If possible, place only int (16-bit) data in program memory. Data types with different
dimensions are accessed via sequences of code rather than single instructions. 16-bit
data is fastest, followed by 32-bit data and 8-bit data.
13556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
• Data in program memory can be loaded and stored in a limited number of DALU
registers. Because of this, a number of register save/restore sequences can appear if
there are not enough available DALU registers. This could be a problem with
computational intensive code because the operations do not take place only in
registers anymore, and the execution of the code will be slower. This can be avoided
by using as many variables in data memory as possible.

Declaring Program Memory Variables
A program memory variable is declared using the __pmem qualifier. Here are some
examples:

typedef struct // simple structure declaration
{
 int i;
 char *p;
 long l;
} test;

__pmem int ip1 = 5; // initialized int in program memory
__pmem int ip2; // uninitialized int in program memory
int *__pmem ppx1; // pointer in program memory to int in data memory
__pmem int * __pmem ppp1; // pointer in program memory to int in
program memory
__pmem int parr[100]; // array in program memory
__pmem test sp; // structure in program memory
__pmem int aap[2][2]; // two dimensional array in program memory
__pmem int *pxp1; // pointer in data memory to int in program memory

Using Variables in Program Memory
Variables in program memory can be used almost exactly like variables in data memory.
The exceptions are presented below:

• the __pmem qualifier can't be used in a structure declaration because a structure can
have all its members either in program memory or in data memory, but not in both
memory spaces. The compiler will issue an error message in this case. For example:

typedef struct // simple structure declaration
{
 int i;
 char __pmem *p; // error, __pmem not allowed here
 long l;
136 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
} test;

• the compiler will signal an error when an implicit conversion between a pointer to
data in data memory and a pointer to data in program memory is attempted. For
example, using the previous definitions, the compiler gives an error for this
assignment:

pxp1 = ppx1;

Explicit conversions are allowed, but they should be used with care. An explicit
conversion for the previous assignment that is accepted by the compiler is given below:

pxp1 = (__pmem int *)ppx1;

Another consequence of this restriction is that an important part of the MSL functions that
have at least an argument that is a pointer will not work with variables in program
memory. For example:

char *c1; // pointer in data memory to char in data memory
char __pmem *c2; // pointer in data memory to char in program
memoryvstrcat(c1, c2); // error, the second argument can't be
converted to 'const char *'

If variable argument lists are used, this problem is generally hidden. The program is
compiled with no errors from the compiler, but it doesn't work as expected. The most
common example is the printf function:

char *c1 = "xmem"; // pointer in data memory to char in data
memory
char __pmem *c2 = "pmem"; // pointer in data memory to char in program
memory

printf("%s\n", c1); // works as expected
printf("%s\n", c2); // doesn't work as expected
13756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
Here, the type of the arguments is lost because printf uses a variable argument list.
Thus the compiler can not signal a type mismatch and the program will compile without
errors, but it won't work as expected, because printf assumes that all the data is stored
in data memory.

Linking with Variables in Program Memory
The compiler creates special sections in the output file for variables in program memory.
This is a description of all data in program memory sections:

• .data.pmem (initialized program memory data)

• .const.data.pmem (constant program memory data)

• bss.pmem (uninitialized program memory data).

The following sections are also generated if you choose to generate separate sections for
char data:

• .data.char.pmem (initialized program memory chars)

• .const.data.char.pmem (constant program memory chars)

• .bss.char.pmem (uninitialized program memory chars)

These sections are used in the linker command file just like normal sections. A typical
linker command file for a program that uses data in program memory looks like this:

MEMORY
{
 .p_RAM (RWX) : ORIGIN = 0x0082, LENGTH = 0xFF3E
 .p_reserved_regs (RWX) : ORIGIN = 0xFFC0, LENGTH = 0x003F
 .p_RAM2 (RWX) : ORIGIN = 0xFFFF, LENGTH = 0x0000
 .x_RAM (RW) : ORIGIN = 0x0001, LENGTH = 0x7FFE #
SDM xRAM limit is 0x7FFF
}

SECTIONS
{
 .application_code :
 {v # .text sections

 * (.text)
 * (rtlib.text)
 * (fp_engine.text)
 * (user.text)
 * (.data.pmem) # program memory initalized data
 * (.const.data.pmem) # program memory constant data
 * (.bss.pmem) # program memory uninitialized data
 } > .p_RAM
138 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory
 .data :
 {
 # .data sections

 * (.const.data.char) # used if "Emit Separate Char Data
Section" enabled
 * (.const.data)v * (fp_state.data)
 * (rtlib.data)
 * (.data.char) # used if "Emit Separate Char Data
Section" enabled
 * (.data)

 # .bss sections

 * (rtlib.bss.lo)
 * (rtlib.bss)
 . = ALIGN(1);
 _START_BSS = .;
 * (.bss.char) # used if "Emit Separate Char Data
Section" enabled
 * (.bss)
 _END_BSS = .;

 # setup the heap address

 . = ALIGN(4);
 _HEAP_ADDR = .;
 _HEAP_SIZE = 0x100;
 _HEAP_END = _HEAP_ADDR + _HEAP_SIZE;
 . = _HEAP_END;

 # setup the stack address

 _min_stack_size = 0x200;
 _stack_addr = _HEAP_END;
 _stack_end = _stack_addr + _min_stack_size;
 . = _stack_end;

 # export heap and stack runtime to libraries

 F_heap_addr = _HEAP_ADDR;
 F_heap_end = _HEAP_END;
 F_Lstack_addr = _HEAP_END;
 F_start_bss = _START_BSS;
 F_end_bss = _END_BSS;
 } > .x_RAM
}

13956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Code and Data Storage
Code and Data Storage
The DSP56800E processor has a dual Harvard architecture with separate CODE (P:
memory) and DATA (X: memory) memory spaces. Table 6.4 on page 140. shows the sizes
and ranges of these spaces, as well as the range of character data within X memory, for
both the small and large memory models. (You may need to use the ELF Linker and
Command Language or M56800E Linker settings panel to specify how the project-
defined sections map to real memory.)

A peculiarity of the DSP56800E architecture is byte addresses for character (1-byte) data,
but word addresses for data of all other types. To calculate a byte address, multiply the
word address by 2. An address cannot exceed the maximum physical address, so placing
character data in the upper half of memory makes the data unaddressable. (Address
registers have a fixed width.)

For example, in the small memory model (maximum data address: 64 KB), placing
character data at 0x8001 requires an access address of 0x10002. But this access address
does not fit into 16-bit storage, as the small data memory model requires. Under your
control, the compiler increases flexibility by placing all character data into specially-
named sections as described in “Emit separate character data section checkbox.” You can
locate these sections in the lower half of the memory map, making sure that the data can
be addressed.

Table 6.4 Code and Data Memory Ranges

Section
Small Model Large Model

Size Range

(Word Address)

Size Range

(Word Address)

CODE

(P: memory)

128 KB 0 - 0xFFFF 1 MB 0 - 0x7FFFF

DATA

(X: memory)

128 KB 0 - 0xFFFF 32 MB 0 - 0xFFFFFF

DATA

(X: memory)

character
data

64 KB 0 - 0x7FFF 16 MB 0 - 0x7FFFFF
140 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support
Large Data Model Support
The DSP56800E extends the DSP56800 data addressing range, by providing 24-bit
address capability to some instructions. 24-bit address modes allow user accesses beyond
the 64K-word boundary of 16-bit addressing. To control large data memory model
support, use the M56800E Processor panel (Figure 6.2 on page 141). See “M56800E
Processor” on page 64 for explanations of this panel’s elements.

Figure 6.2 M56800E Processor Panel: Large Data Model

Extended data is data located beyond the 16-bit address boundary — as if it exists in
extended (upper) memory. Memory located below the 64K boundary is lower memory.

The compiler default arrangement is using 16-bit addresses for all data accesses. This
means that absolute addresses (X:xxxx addressing mode) are limited to 16 bits. Direct
addressing or pointer registers load or store 16-bit addresses. Indexed addressing indexes
are 16-bit quantities. The compiler treats data pointers as 16-bit pointers that you may
store in single words of memory.

If the large data memory model is enabled, the compiler accesses all data by 24-bit
addressing modes. It treats data pointers as 24-bit quantities that you may store in two
words of memory. Absolute addressing occurs as 24-bit absolute addresses. Thus, you
may access the entire 24-bit data memory, locating data objects anywhere.
14156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support
You do not need to change C source code to take advantage of the large data memory
model.

Examples in DSP56800E assembly code of extended data addressing are:

Extended Data Addressing Example
Consider the code of Listing 6.5 on page 142:

Listing 6.5 Addressing Extended Data

move.w x:0x123456,A1 ; move int using 24 bit absolute address
tst.l x:(R0-0x123456) ; test a global long for zero using 24-bit

; pointer indexed addressing
move.l r0,x:(R0)+ ; r0 stored as 24-bit quantity
cmpa r0,r1 ; compare pointer registers as 24 bit

; quantities

The large data memory model is convenient because you can place data objects anywhere
in the 24-bit data memory map. But the model is inefficient because extended data
addressing requires more program memory and additional execution cycles.

However, all global and static data of many target applications easily fit within the 64 K
word memory boundary. With this in mind, you can check the Globals live in lower
memory checkbox of the M56800E Processor settings panel. This tells the compiler to
access global and static data with 16-bit addresses, but to use 24-bit addressing for all
pointer and stack operations. This arrangement combines the flexibility of the large data
memory model with the efficiency of the small data model’s access to globals and statics.

NOTE If you check the Globals live in lower memory checkbox, be sure to store data
in lower memory.

Accessing Data Objects Examples
Table 6.5 on page 143 and Table 6.6 on page 143 show appropriate ways to access a
global integer and a global pointer variable. The first two columns of each table list states
of two checkboxes, Large Data Model and Globals live in lower memory. Both
checkboxes are in the M56800E Processor settings panel. Note that the first enables the
second.

Table 6.5 on page 143 lists ways to access a global integer stored at address X:0x1234.

int g1;
142 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support
Table 6.6 on page 143 lists ways to load a global pointer variable, at X:0x4567, into an
address register.

int * gp1;

Table 6.5 Accessing a Global Integer

Large Data
Model
checkbox

Globals live in
lower memory
checkbox

Instruction Comments

Clear Clear move.w
X:0x1234,y0

Default values

Checked Clear move.w
X:0x001234,y
0

Clear Checked Combination
not allowed

Checked Checked move.w
X:0x1234,y0

Global accesses
use 16-bit
addressing

Table 6.6 Loading a Global Pointer Variable

Large Data
Model
checkbox

Globals live in
lower memory
checkbox

Instruction Comments

Clear Clear move.w
X:0x4567,r0

Default 16-bit
addressing, 16-bit
pointer value

Checked Clear move.l
X:0x004567,r0

24-bit addressing,
pointer value is 24-bit

Clear Checked Combination not
allowed

Checked Checked move.l
X:0x4567,r0

16-bit addressing,
pointer value is 24-bit
14356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Optimizing Code
External Library Compatibility
If you enable the large data model when the compiler builds your main application,
external libraries written in C also must be built with the large data model enabled. The
linker enforces this requirement, catching global objects located out of range for particular
instructions.

A more serious compatibility problem involves pointer parameters. Applications built
with the large data memory model may pass pointer parameter values in two words of the
stack. But libraries built using the small memory model may expect pointer arguments to
occupy a single word of memory. This incompatibility will cause runtime stack
corruption.

You may or may not build external libraries or modules written in assembly with extended
addressing modes. The linker does not enforce any compatibility rules on assembly
language modules or libraries.

The compiler encodes the memory model into the object file. The linker verifies that all
objects linked into an executable have compatible memory models. The ELF header’s
e_flags field includes the bit fields that contain the encoded data memory model attributes
of the object file:

#define EF_M56800E_LDMM 0x00000001 /* Large data memory model
flag */

Additionally, C language objects are identified by an ELF header flag.

#define EF_M56800E_C 0x00000002 /* Object file generated from
C source */

Optimizing Code
Register coloring is an optimization specific to DSP56800E development. The compiler
assigns two (or more) register variables to the same register, if the code does not use the
variables at the same time. The code of Listing 6.6 on page 144 does not use variables i
and j at the same time, so the compiler could store them in the same register:

Listing 6.6 Register Coloring Example

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<100; j++) { MyFunc(j); }

However, if the code included the expression MyFunc (i+j), the variables would be in
use at the same time. The compiler would store the two variables in different registers.
144 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Deadstripping and Link Order
For DSP56800E development, you can instruct the compiler to:

1. Store all local variables on the stack. — (That is, do not perform register coloring.)
The compiler loads and stores local variables when you read them and write to them.
You may prefer this behavior during debugging, because it guarantees meaningful
values for all variables, from initialization through the end of the function. To have the
compiler behave this way, specify Optimizations Off, in the Global Optimizations
settings panel.

2. Place as many local variables as possible in registers. — (That is, do perform
register coloring.) To have the compiler behave this way, specify optimization Level 1
or higher, in the Global Optimizations settings panel.

NOTE Optimizations Off is best for code that you will debug after compilation.
Other optimization levels include register coloring. If you compile code with
an optimization level greater than 0 and then debug the code, register coloring
could produce unexpected results.

Variables declared volatile (or those that have the address taken) are not kept in
registers and may be useful in the presence of interrupts.

3. Run Peephole Optimization. — The compiler eliminates some compare instructions
and improves branch sequences. Peephole optimizations are small and local
optimizations that eliminate some compare instructions and improve branch
sequences. To have the compiler behave this way, specify optimization Levels 1
through 4, in the Global Optimizations settings panel.

 Deadstripping and Link Order
The M56800E Linker deadstrips unused code and data only from files compiled by the
CodeWarrior C compiler. The linker never deadstrips assembler relocatable files or C
object files built by other compilers.

Libraries built with the CodeWarrior C compiler contribute only the used objects to the
linked program. If a library has assembly files or files built with other C compilers, the
only files that contribute to the linked program are those that have at least one referenced
object. If you enable deadstripping, the linker completely ignores files without any
referenced objects.

The Link Order page of the project window specifies the order (top to bottom) in which
the DSP56800E linker processes C source files, assembly source files, and archive (.a and
.lib) files. If both a source-code file and a library file define a symbol, the linker uses the
definition of the file that appears first, in the link order. To change the link order, drag the
appropriate filename to a different place, in this page’s list.
14556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Working with Peripheral Module Registers
Working with Peripheral Module Registers
This section highlights the issues and recommends programming style for using bit fields
to access memory mapped I/O. Memory mapped I/O is a way of accessing devices that are
not on the system. A part of the normal address space is mapped to I/O ports. A read/write
to that memory location triggers an access to the I/O device, though to the program it
seems like a normal memory access. Even if one byte is written to in the space allocated to
a peripheral register, the whole register is written to. So the other byte of the peripheral
register will not retain its data. This may happen because the compiler generates optimal
bit-field instructions with a read(byte)-mask-writeback(byte) code sequence.

Compiler Generates Bit Instructions
The compiler generates BFSET for |= , BFCLR for &=, and BFCHG for ^= operators.

Listing 6.7 on page 146 shows a C source example and the generated sample code.

Listing 6.7 C Source Example

int i;
int *ip;

void main(void)
{

i &= ~1;

/* generated codes
P: 00000082: 8054022D0001 bfclr #1,X:0x00022d
*/

(*(ip))^= 1;

/* generated codes
P:00000085: F87C022C moveu.w X:0x00022c,R0
P:00000087: 84400001 bfchg #1,X:(R0)
*/

((int)(0x1234))|=1;

/* generated codes
P:00000089: E4081234 move.l #4660,R0
P:0000008B: 82400001 bfset #1,X:(R0)
*/

}

146 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Working with Peripheral Module Registers

/* generated codes
P:0000008D: E708 rts
*/

Note, the following example:

#define word int

union {
 word Word;
 struct {
 word SBK :1;
 word RWU :1;
 word RE :1;
 word TE :1;
 word REIE :1;
 word RFIE :1;
 word TIIE :1;
 word TEIE :1;
 word PT :1;
 word PE :1;
 word POL :1;
 word WAKE :1;
 word M :1;
 word RSRC :1;
 word SWAI :1;
 word LOOP :1;
 } Bits;
} SCICR;

/* Code:*/
SCICR.Bits.TE = 1; /* SCICR content is 0x0800 */
SCICR.Bits.PE = 1; /* SCICR content is 0x0002 ??? */

Explanation of Undesired Behavior
If "SCICR" is mapped to a peripheral register, the code that is used to access the register is
not portable and might be unsafe, like in DSP56800E at present.

Bit field behavior in C is almost all implementation defined. So generating the following
code is legal:

SCICR.Bits.TE = 1; /* SCICR content is 0x0800 */
14756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Working with Peripheral Module Registers
/* generated codes
P:00000082:874802c moveu.w #SCICR,R0
P:00000084:F0E0000 move.b X:(R0),A
P:00000086:8350008 bfset #8,A1
P:00000088:9800 move.b A1,X:(R0)
*/

SCICR.Bits.PE = 1; /* SCICR content is 0x0002 ??? */

/* generated codes
P:00000089:F0E00001 move.b X:(R0+1),A
P:0000008B:83500002 bfset #2,A1
P:0000008D:9804 move.b A1,X:(R0+1)
*/

However, since the writes (at P:0x88 and at P:0x8D) are byte instructions and only 16 bits
can be written to the SCICR register, the other bytes look as if they are filled with zeros
before the SCICR is overwritten.

The use of byte accesses is due to a compiler optimization that tries to generate the
smallest possible memory access.

Recommended Programming Style
The use of a union of a member that can hold the whole register (the "Word" member
above) and a struct that can access the bits of the register (the "Bits" member above) is a
good idea.

What is recommended is to read the whole memory mapped register (using the "Word"
union member) into a local instance of the union, do the bit-manipulation on the local, and
then write the result as a whole word into the memory mapped register. So the C code
would look something like:

#define word int

union SCICR_union{
 word Word;
 struct {
 word SBK :1;
 word RWU :1;
 word RE :1;
 word TE :1;
 word REIE :1;
 word RFIE :1;
 word TIIE :1;
 word TEIE :1;
 word PT :1;
148 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Working with Peripheral Module Registers
 word PE :1;
 word POL :1;
 word WAKE :1;
 word M :1;
 word RSRC :1;
 word SWAI :1;
 word LOOP :1;
 } Bits;
} SCICR;

/* Code: */

 union SCICR_union localSCICR;
 localSCICR.Word = SCICR.Word;

/* generated codes
P:00000083:F07C022C move.w X:#SCICR,A
P:00000085:907F move.w A1, X: (SP-1)
*/

 localSCICR.Bits.TE = 1;

/* generated codes
P:00000086:8AB4FFFF adda #-1,SP,R0
P:00000088:F0E00000 move.b X:(R0),A
P:0000008A:83500008 bfset #8,A1
P:0000008C:9800 move.b A1,X: (R0)
*/

 localSCICR.Bits.PE = 1;

/* generated codes
P:0000008D:F0E00001 move.b X: (R0+1),A
P:0000008F:83500002 bfset #2,A1
P:00000091:9804 move.b A1,x: (R0+1)
*/

 SCICR.Word = localSCICR.Word;

*/ generated codes
P:00000092:B67F022C move.w X:(SP-1),X:#SCICR
*/

14956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Generating MAC Instruction Set
Generating MAC Instruction Set

The compiler generates the imac.l instruction if the C code performs multiplication on
two long operands which are casted to short type; and the product is added to a long type.
For example, the following code:

short a;
short b;
long c;
.....
long d = c+((long)a*(long)b);
.....

generates the following assembly:

move.w X:0x000000,Y0 ; Fa
move.w X:0x000000,B ; Fb
move.l X:0x000000,A ; Fc
imac.l B1,Y0,A
150 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

7
High-Speed Simultaneous
Transfer

High-Speed Simultaneous Transfer (HSST) facilitates data transfer between low-level
targets (hardware or simulator) and host-side client applications. The data transfer occurs
without stopping the core.

The host-side client must be an IDE plug-in or a script run through the command-line
debugger.

When the customer links their application to the target side hsst lib, the debugger detects
that the customer wants to use hsst and automatically enables hsst communications.

NOTE To use HSST, you must launch the target side application through the
debugger.

Host-Side Client Interface
This section describes the API calls for using High-Speed Simultaneous Transfer (HSST)
from your host-side client application.

At the end of this section, an example of a HSST host-side program is given (Listing
7.1 on page 157).

hsst_open

A host-side client application uses this function to open a communication channel with the
low-level target. Opening a channel that has already been opened will result in the same
channel ID being returned.

Prototype

HRESULT hsst_open (
const char* channel_name,
size_t *cid);
15156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
Parameters

channel_name

Specifies the communication channel name.

cid

Specifies the channel ID associated with the communication channel.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_close

A host-side client application uses this function to close a communication channel with the
low-level target.

Prototype

HRESULT hsst_close (size_t channel_id) ;

Parameters

channel_id

Specifies the channel ID of the communication channel to close.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_read

A host-side client application uses this function to read data sent by the target application
without stopping the core.

Prototype

HRESULT hsst_read (
void *data,
size_t size,
size_t nmemb,
size_t channel_id,
size_t *read);
152 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
Parameters

data

Specifies the data buffer into which data is read.

size

Specifies the size of the individual data elements to read.

nmemb

Specifies the number of data elements to read.

channel_id

Specifies the channel ID of the communication channel from which to read.

read

Contains the number of data elements read.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_write

A host-side client application uses this function to write data that the target application can
read without stopping the core.

Prototype

HRESULT hsst_write (
void *data,
size_t size,
size_t nmemb,
size_t channel_id,
size_t *written);

Parameters

data

Specifies the data buffer that holds the data to write.

size

Specifies the size of the individual data elements to write.

nmemb

Specifies the number of data elements to write.
15356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
channel_id

Specifies the channel ID of the communication channel to write to.

written

Contains the number of data elements written.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_size

A host-side client application uses this function to determine the size of unread data (in
bytes) in the communication channel.

Prototype

HRESULT hsst_size (
size_t channel_id,
size_t *unread);

Parameters

channel_id

Specifies the channel ID of the applicable communication channel.

unread

Contains the size of unread data in the communication channel.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_block_mode

A host-side client application uses this function to set a communication channel in
blocking mode. All calls to read from the specified channel block indefinitely until the
requested amount of data is available. By default, a channel starts in the blocking mode.

Prototype

HRESULT hsst_block_mode (size_t channel_id);
154 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
Parameters

channel_id

Specifies the channel ID of the communication channel to set in blocking mode.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_noblock_mode

A host-side client application uses this function to set a communication channel in non-
blocking mode. Calls to read from the specified channel do not block for data availability.

Prototype

HRESULT hsst_noblock_mode (size_t channel_id);

Parameters

channel_id

Specifies the channel ID of the communication channel to set in non-blocking mode.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_attach_listener

Use this function to attach a host-side client application as a listener to a specified
communication channel. The client application receives a notification whenever data is
available to read from the specified channel.

HSST notifies the client application that data is available to read from the specified
channel. The client must implement this function:

void NotifiableHSSTClient:: Update (size_t descriptor, size_t
size, size_t nmemb);

HSST calls the Notifiable HSST Client:: Update function when data is
available to read.

Prototype

HRESULT hsst_attach_listener (
15556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
size_t cid,
NotifiableHSSTClient *subscriber);

Parameters

cid

Specifies the channel ID of the communication channel to listen to.

subscriber

Specifies the address of the variable of class Notifiable HSST Client.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_detach_listener

Use this function to detach a host-side client application that you previously attached as a
listener to the specified communication channel.

Prototype

HRESULT hsst_detach_listener (size_t cid);

Parameters

cid

Specifies the channel ID of the communication channel from which to detach a previously
specified listener.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

hsst_set_log_dir

A host-side client application uses this function to set a log directory for the specified
communication channel.

This function allows the host-side client application to use data logged from a previous
High-Speed Simultaneous Transfer (HSST) session rather than reading directly from the
board.
156 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface
After the initial call to hsst_set_log_dir, the CodeWarrior software examines the
specified directory for logged data associated with the relevant channel instead of
communicating with the board to get the data. After all the data has been read from the
file, all future reads are read from the board.

To stop reading logged data, the host-side client application calls hsst_set_log_dir
with NULL as its argument. This call only affects host-side reading.

Prototype

HRESULT hsst_set_log_dir (
size_t cid,
const char* log_directory);

Parameters

cid

Specifies the channel ID of the communication channel from which to log data.

log_directory

Specifies the path to the directory in which to store temporary log files.

Returns

S_OK if the call succeeds or S_FALSE if the call fails.

HSST Host Program Example
In Listing 7.1 on page 157 the host is the IDE plugin (DLL) to the interface with the HSST
target (DSP56800E) project. This establishes data transfer between the host (your
computer) and the target (the DSP56800E board).

NOTE Before launching the program, the IDE plugin needs to be created and placed
in the folder: CodeWarrior\bin\Plugins\Com.

Listing 7.1 Sample HSST Host Program

#include "CodeWarriorCommands.h"
#include "HSSTInterface.h"
#include <cstdio>
#include <cstdlib>

unsigned __stdcall HSSTClientMain (void *pArguments);

#define buf_size 1000 /* Data
size */
15756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
/* Assigning name for Plugin and Menu Title */
extern const CWPluginID kToolbarTestPluginID = "HSST_host_sample";
extern const wchar_t* MenuTitle = L"HSST_host_sample";

unsigned __stdcall HSSTClientMain (void *pArguments)
{

IMWHSST_Client *pHSST = (IMWHSST_Client *)pArguments;

long data[buf_size];
size_t channel_1, channel_2, read_items, written_items;

* Opening channel 1 and 2 from HOST side */
HRESULT hr_1 = pHSST->hsst_open ("channel_1",

&channel_1);
HRESULT hr_2 = pHSST->hsst_open ("channel_2",

&channel_2);

/* HOST reading data from channel 1 */
pHSST->hsst_read (data, sizeof(long), buf_size, channel_1,

&read_items);

/* HOST writing data to channel 2 */
pHSST->hsst_write(data, sizeof(long), buf_size, channel_2,

&written_items);

return 0;
}

Target Library Interface
This section describes the API calls for using High-Speed Simultaneous Transfer (HSST)
from your target application.

At the end of this section, an example of a HSST target program is given (Listing 7.2 on
page 165).
158 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
HSST_open

A target application uses this function to open a bidirectional communication channel with
the host. The default setting is for the function to open an output channel in buffered
mode. Opening a channel that has already been opened will result in the same channel ID
being returned.

Prototype

HSST_STREAM* HSST_open (const char *stream);

Parameters

stream

Passes the communication channel name.

Returns

The stream associated with the opened channel.

HSST_close

A target application uses this function to close a communication channel with the host.

Prototype

int HSST_close (HSST_STREAM *stream);

Parameters

stream

Passes a pointer to the communication channel.

Returns

0 if the call was successful or -1 if the call was unsuccessful.

HSST_setvbuf

A target application can use this function to perform the following actions:

• Set an open channel opened in write mode to use buffered mode
15956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
NOTE This can greatly improve performance.

• Resize the buffer in an existing buffered channel opened in write mode

• Provide an external buffer for an existing channel opened in write mode

• Reset buffering to unbuffered mode

You can use this function only after you successfully open the channel.

The contents of a buffer (either internal or external) at any time are indeterminate.

Prototype

int HSST_setvbuf (
HSST_STREAM *rs,
unsigned char *buf,
int mode,
size_t size);

Parameters

rs

Specifies a pointer to the communication channel.

buf

Passes a pointer to an external buffer.

mode

Passes the buffering mode as either buffered (specified as HSSTFBUF) or unbuffered
(specified as HSSTNBUF).

size

Passes the size of the buffer.

Returns

0 if the call was successful or -1 if the call was unsuccessful.

NOTE You must flush the buffers before exiting the program to ensure that all the data
that has been written is sent to the host. For more details, see HSST_flush on
page 162.
160 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
HSST_write

A target application uses this function to write data for the host-side client application to
read.

Prototype

size_t HSST_write (
void *data,
size_t size,
size_t nmemb,
HSST_STREAM *stream);

Parameters

data

Passes a pointer to the data buffer holding the data to write.

size

Passes the size of the individual data elements to write.

nmemb

Passes the number of data elements to write.

stream

Passes a pointer to the communication channel.

Returns

The number of data elements written.

HSST_read

A target application uses this function to read data sent by the host.

Prototype

size_t HSST_read (
void *data,
size_t size,
size_t nmemb,
HSST_STREAM *stream);
16156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
Parameters

data

Passes a pointer to the data buffer into which to read the data.

size

Passes the size of the individual data elements to read.

nmemb

Passes the number of data elements to read.

stream

Passes a pointer to the communication channel.

Returns

The number of data elements read.

HSST_flush

A target application uses this function to flush out data buffered in a buffered output
channel.

Prototype

int HSST_flush (HSST_STREAM *stream);

Parameters

stream

Passes a pointer to the communication channel. The High-Speed Simultaneous Transfer
(HSST) feature flushes all open buffered communication channels if this parameter is null.

Returns

0 if the call was successful or -1 if the call was unsuccessful.

HSST_size

A target application uses this function to determine the size of unread data (in bytes) for
the specified communication channel.
162 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
Prototype

size_t HSST_size (HSST_STREAM *stream);

Parameters

stream

Passes a pointer to the communication channel.

Returns

The number of bytes of unread data.

HSST_raw_read

A target application uses this function to read raw data from a communication channel
(without any automatic conversion for endianness while communicating).

Prototype

size_t HSST_raw_read (
void *ptr,
size_t length,
HSST_STREAM *rs);

Parameters

ptr

Specifies the pointer that points to the buffer into which data is read.

length

Specifies the size of the buffer in bytes.

rs

Specifies a pointer to the communication channel.

Returns

The number of bytes of raw data read.

NOTE This function is useful for sending data structures (e.g., C-type structures).
16356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
HSST_raw_write

A target application uses this function to write raw data to a communication channel
(without any automatic conversion for endianness while communicating).

Prototype

size_t HSST_raw_write (
void *ptr,
size_t length,
HSST_STREAM *rs);

Parameters

ptr

Specifies the pointer that points to the buffer that holds the data to write.

length

Specifies the size of the buffer in bytes.

rs

Specifies a pointer to the communication channel.

Returns

The number of data elements written.

NOTE This function is useful for sending data structures (e.g., C-type structures).

HSST_set_log_dir

A target application uses this function to set the host-side directory for storing temporary
log files. Old logs that existed prior to the call to HSST_set_log_dir() are over-
written. Logging stops when the channel is closed or when HSST_set_log_dir() is
called with a null argument. These logs can be used by the host-side function
HSST_set_log_dir.

Prototype

int HSST_set_log_dir (
HSST_STREAM *stream,
char *dir_name);
164 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
Parameters

stream

Passes a pointer to the communication channel.

dir_name

Passes a pointer to the path to the directory in which to store temporary log files.

Returns

0 if the call was successful or -1 if the call was unsuccessful.

HSST Target Program Example
In Listing 7.2 on page 165 the HSST target program runs in parallel with the host plugin.
The target communicates with the host-side (your computer).

NOTE To restart the program after execution, click on Restart HSST as shown in
Figure 7.1 on page 166.

Listing 7.2 Sample HSST Target Program

#include <stdio.h>
#include <stdlib.h>
#include "HSST.h"

#define buf_size 1000 /* Data size */

long i, test_buffer[buf_size];

int main ()
{

HSST_STREAM *channel_1, *channel_2;
int written_items=0;
int read_items=0;

for (i = 0; i < buf_size; ++ i)
{

test_buffer[i] = i;
}

/* Opening channel 1 and 2 from TARGET side */
channel_1 = HSST_open ("channel_1");
channel_2 = HSST_open ("channel_2");
16556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface
/* TARGET writing data to channel 1 */
written_items = HSST_write(test_buffer, sizeof(long),

buf_size, channel_1);

/* TARGET reading data from channel 2 */
read_items = HSST_read(test_buffer, sizeof(long), buf_size,

channel_2);

return 0;
}

Figure 7.1 Restart HSST

NOTE For an HSST example, see the HSST example in this path:
{CodeWarrior path}(CodeWarrior_Examples)\
DSP56800E_hsst_client-to-client
166 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

8
Data Visualization

Data visualization lets you graph variables, registers, regions of memory, and HSST data
streams as they change over time.

The Data Visualization tools can plot memory data, register data, global variable data, and
HSST data.

• Starting Data Visualization on page 167

• Data Target Dialog Boxes on page 168

• Graph Window Properties on page 172

Starting Data Visualization
To start the Data Visualization tool:

1. Start a debug session

2. Select Data Visualization > Configurator.

The Data Types window (Figure 8.1 on page 167) appears. Select a data target type
and click the Next button.

Figure 8.1 Data Types Window
16756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes
3. Configure the data target dialog box and filter dialog box.

4. Run your program to display the data (Figure 8.2 on page 168).

Figure 8.2 Graph Window

Data Target Dialog Boxes
There are four possible data targets. Each target has its own configuration dialog.

• Memory on page 168

• Registers on page 170

• Variables on page 170

• HSST on page 171

Memory
The Target Memory dialog box lets you graph memory contents in real-time.
168 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes
Figure 8.3 Target Memory Dialog Box

Data Type
The Data Type list box lets you select the type of data to be plotted.

Data Unit
The Data Units text field lets you enter a value for number of data units to be plotted. This
option is only available when you select Memory Region Changing Over Time.

Single Location Changing Over Time
The Single Location Changing Over Time option lets you graph the value of a single
memory address. Enter this memory address in the Address text field.

Memory Region Changing Over Time
The Memory Region Changing Over Time options lets you graph the values of a memory
region. Enter the memory addresses for the region in the X-Axis and Y-Axis text fields.
16956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes
Registers
The Target Registers dialog box lets you graph the value of registers in real-time.

Figure 8.4 Target Registers Dialog Box

Select registers from the left column, and click the -> button to add them to the list of
registers to be plotted.

Variables
The Target Globals dialog box lets you graph the value of global variables in real-time.
(See Figure 8.5 on page 171.)
170 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes
Figure 8.5 Target Globals Dialog Box

Select global variables from the left column, and click the -> button to add them to the list
of variables to be plotted.

HSST
The Target HSST dialog box lets you graph the value of an HSST stream in real-time.
(See Figure 8.6 on page 172.)

NOTE To plot HSST data, the data visualization tool needs its own HSST channel.
Make sure your program opens a separate channel exclusively for the data
visualization window. This will avoid impacting data transmissions on other
channels.
17156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Graph Window Properties
Figure 8.6 Target HSST Dialog Box

Channel Name
The Channel Name text field lets you specify the name of the HSST stream to be plotted.

Data Type
The Data Type list box lets you select the type of data to be plotted.

Graph Window Properties
To change the look of the graph window, click the graph properties button to open
the Format Axis dialog box.
172 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Graph Window Properties
Figure 8.7 Format Axis Dialog Box

Scaling
The default scaling settings of the data visualization tools automatically scale the graph
window to fit the existing data points.

To override the automatic scaling, uncheck a scaling checkbox to enable the text field and
enter your own value.

To scale either axis logarithmically, enable the Logarithmic Scale option of the
corresponding axis.

Display
The Display settings let you change the maximum number of data points that are plotted
on the graph.
17356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Graph Window Properties
NOTE For a data visualization example that uses HSST, see the data visualization
example in this path:
{CodeWarrior path}(CodeWarrior_Examples)\
hsst_Data_Visualization
174 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

9
Debugging for DSP56800E

This chapter, which explains the generic features of the CodeWarrior™ debugger, consists
of these sections:

• Using Remote Connections on page 175

• Command Converter Server on page 187

• Launching and Operating the Debugger

• Load/Save Memory

• Fill Memory on page 205

• Save/Restore Registers on page 207

• EOnCE Debugger Features on page 209

• Using the DSP56800E Simulator

• Register Details Window

• Loading a .elf File without a Project on page 220

• Using the Command Window on page 221

• System-Level Connect on page 221

• Debugging in the Flash Memory

• on page 225Notes for Debugging on Hardware on page 225

Using Remote Connections
Remote connections are settings that describe how the CodeWarrior IDE should connect
to and control program execution on target boards or systems, such as the debugger
protocol, connection type, and connection parameters the IDE should use when it connects
to the target system. This section shows you how to access remote connections in the
CodeWarrior IDE, and describes the various debugger protocols and connection types the
IDE supports.

NOTE We have included several types of remote connections in the default
CodeWarrior installation. You can modify these default remote connections to
suit your particular needs.
17556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
NOTE When you import a Makefile into the CodeWarrior IDE to create a
CodeWarrior project, the IDE asks you to specify the type of debugger
interface (remote connection) you want to use. To debug the generated
CodeWarrior project, you must properly configure the remote connection you
selected when you created the project.

Accessing Remote Connections
You access remote connections in the CodeWarrior IDE Preferences window. Remote
connections listed in the preferences window are available for use in all CodeWarrior
projects and build targets.

To access remote connections:

1. From the CodeWarrior menu bar, select Edit > Preferences.

The IDE Preferences window (Figure 9.1 on page 176) appears.

Figure 9.1 IDE Preferences Window

2. In the IDE Preference Panels list, select Remote Connections.

The Remote Connections preference panel (Figure 9.2 on page 177) appears.
176 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 9.2 Remote Connections Preference Panel

NOTE The specific remote connections that appear in the Remote Connections list
differ between CodeWarrior products and hosts.

The Remote Connections preference panel lists all of the remote connections of which
the CodeWarrior IDE is aware. You use this preference panel to add your own remote
connections, remove remote connections, and configure existing remote connections to
suit your needs.

To add a new remote connection, click Add.

To configure an existing remote connection, select it and click Change.

To remove an existing remote connection, select it and click Remove.

NOTE To specify a remote connection for a particular build target in a CodeWarrior
project, you select the remote connection from the Connection list box in the
Remote Debugging target settings panel. For an overview of the Remote
Debugging settings panel, see the CodeWarrior IDE User’s Guide.

Understanding Remote Connections
Every remote connection specifies a debugger protocol and a connection type.
17756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
A debugger protocol is the protocol the IDE uses to debug the target system. This setting
generally relates specifically to the particular device you use to physically connect to the
target system.

A connection type is the type of connection (such as CCS, USBTAP, or Simulator) the
CodeWarrior IDE uses to communicate with and control the target system.

Table 9.1 on page 178 describes each of the supported debugger protocols.

Each of these protocols supports one or more types of connections (CCS, USBTAP, and
Simulator). “Editing Remote Connections” on page 178 describes each supported
connection type and how to configure them.

Editing Remote Connections
Based on the specified debugger protocol and connection type, the IDE makes different
settings available to you. For example, if you specify a Serial connection type, the IDE
presents settings for baud rate, stop bits, flow control, and so on. Table 9.2 on page 178
describes the supported connection types for each debugger protocol.

To configure a remote connection to correspond to your particular setup, you must edit the
connection settings. You access the settings with the Edit Connection dialog box. You
can view this dialog box in one of these ways:

• In the Remote Connections IDE preference panel, select a connection from the list,
and click Edit. The Edit Connection dialog box appears.

• In the Remote Connections IDE preference panel, click Add to create a new remote
connection. The New Connection dialog box appears.

Table 9.1 Debugger Protocols

Debugger Protocol Description

CCS 56800E Protocol Plugin Select to use a CCS hardware target system.

56800E Simulator Select to use the Simulator on the host computer.

Table 9.2 Supported Connection Types

Debugger Protocol Supported Connection Types

CCS 56800E Protocol Plugin CCS Remote Connection on page 179, USBTAP on
page 181

56800E Simulator on page 183Simulator on page 183
178 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
• In the Remote Debugging target settings panel, select a connection from the
Connection list box, then click the Edit Connection button. The Edit Connection
dialog box appears.

This section describes the settings for each connection type:

• CCS Remote Connection on page 179

• USBTAP on page 181

• Simulator on page 183

CCS Remote Connection
Use this connection type to configure how the IDE uses the Command Converter Server
(CCS) protocol to connect with the target system. This connection type is available only
when the CCS 56800E Protocol Plugin debugger protocol is selected.

Figure 9.3 on page 180 shows the settings that are available to you when you select CCS
Remote Connection from the Connection Type list box in the Edit Connection dialog
box.
17956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 9.3 CCS Remote Connection Settings

Table 9.3 on page 180 describes the options in this dialog box.

Table 9.3 CCS Remote Connection Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800E Protocol Plugin.

Connection Type Select CCS Remote Connection.

Use Remote CCS Check to debug code on a target system when the system
already has CCS running and connected.
180 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
USBTAP
Use this connection type to configure how the IDE uses CodeWarrior USB TAP device to
connect with the target system. This connection type is available only when the CCS
56800E Protocol Plugin debugger protocol is selected.

Figure 9.4 on page 182 shows the settings that are available to you when you select
USBTAP from the Connection Type list box in the Edit Connection dialog box.

Server IP Address Enter the Internet Protocol (IP) address assigned to the
target system.

Port # Enter the port number on the target system to which the IDE
should connect for CCS operations. The default port number
for CCS hardware connections is 41475. Enter 41476 for the
CCS Simulator.

Specify CCS Executable Check to use another CCS executable file rather than the
default CCS executable file:
CWInstall\ccs\bin\ccs.exe

Multi-Core Debugging Check to debug code on a target system with multiple cores
where you need to specify the JTAG chain for debugging.
Click Choose to specify the JTAG initialization file. A JTAG
initialization file contains the names and order of the boards /
cores you want to debug.

Note: this option has no effect for the 56800E Digital Signal
Controller.

CCS Timeout Enter the duration (in seconds) after which the CCS should
attempt to reconnect to the target system if a connection
attempt fails.

Table 9.3 CCS Remote Connection Options (continued)

Option Description
18156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 9.4 USBTAP Connection Settings

Table 9.4 on page 182 describes the options in this dialog box.

Table 9.4 UBTAP Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800E Protocol Plugin.

Connection Type Select USBTAP Connection.
182 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Simulator
Use this connection type to configure the behavior of the simulator. This connection type
is available only when the 56800E Simulator Protocol Plugin debugger protocol is
selected.

Figure 9.5 on page 184 shows the setting that are available to you when you select
Simulator from the Connection Type list box in the Edit Connection dialog box.

CCS Timeout Enter the maximum number of seconds the debugger should
wait for a response from CCS. By default, the debugger
waits up to 10 seconds for responses.

Multi-Core Debugging Check to debug code on a target system with multiple cores
where you need to specify the JTAG chain for debugging.
Click Choose to specify the JTAG initialization file. A JTAG
initialization file contains the names and order of the boards /
cores you want to debug.

Note: this option has no effect for the 56800E Digital Signal
Controller.

Reset Target on Launch Check to have the debugger send a reset signal to the target
system when you start debugging.

Clear to prevent the debugger from resetting the target
device when you start debugging.

Table 9.4 UBTAP Options (continued)

Option Description
18356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections
Figure 9.5 Simulator Connection Settings

Table 9.5 on page 184 describes the options in this dialog box.

Table 9.5 Simulator Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select SIM 56800E Protocol Plugin.

Connection Type Select Simulator.

Simulation Bandwidth Select the simulator bandwidth (low, medium, or high).
184 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Target Settings for Debugging
Target Settings for Debugging

Table 9.6 Target Settings for Debugging

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800E Protocol Plugin.

Connection Type Select USBTAP.

Use default serial
number

Check if you only have one USB TAP device connected to
the host computer.

Clear if you have more than one USB TAP device connected
to the host computer. When this checkbox is checked, the
USB TAP Serial Number text box is available.

USB TAP Serial Number If you have more than one USB TAP connected to the host
computer, enter the serial number of the USB TAP you want
to use for debugging.

Note: The USB TAP serial number is located on a label on
the bottom of the device.

CCS Timeout Enter the maximum number of seconds the debugger should
wait for a response from CCS. By default, the debugger
waits up to 10 seconds for responses.

Interface Clock
Frequency

Select the clock frequency for the Ethernet TAP device. We
recommended you set this to 4 MHz.

Mem Read Delay Enter the number of additional processor cycles (in the
range: 0 through 65024) the debugger should insert as a
delay for completion of memory read operations. By default,
the debugger delays for 350 cycles.

Mem Write Delay Enter the number of additional processor cycles (in the
range: 0 through 65024) the debugger should insert as a
delay for completion of memory write operations. By default,
the debugger does not delay.

Reset Target on Launch Check to have the debugger send a reset signal to the target
system when you start debugging.

Clear to prevent the debugger from resetting the target
device when you start debugging.
18556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Target Settings for Debugging
This section explains how to control the debugger by modifying the appropriate settings
panels.

To properly debug DSP56800E software, you must set certain preferences in the Target
Settings window. The M56800E Target panel is specific to DSP56800E
development. The remaining settings panels are generic to all build targets.

Other settings panels can affect debugging. Table 9.7 on page 186 lists these panels.

Force Shell Download Check to have the debugger start the Ethernet TAP shell
when you start debugging.

Clear to prevent the debugger from starting the Ethernet
TAP shell when you start debugging.

Do not use fast
download

Check to have the debugger use a standard (slow)
procedure to write to memory on the target system.

Clear to have the debugger use an optimized (fast)
download procedure to write to memory on the target
system.

Enable Logging Check to have the IDE display a log of all debugger
transactions during the debug session. If this checkbox is
checked, a protocol logging window appears when you
connect the debugger to the target system.

Note: If you set the AMCTAP_LOG_FILE environment
variable, the IDE directs log messages to the specified file.

Table 9.7 Setting Panels that Affect Debugging

This panel… Affects… Refer to…

M56800E Linker symbolics, linker
warnings

“Deadstripping and Link Order” on
page 145

M56800E Processor optimizations “Optimizing Code” on page 144

Debugger Settings Debugging options

Table 9.6 Target Settings for Debugging (continued)

Option Description
186 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
The M56800E Target panel is unique to DSP56800E debugging. The available
options in this panel depend on the DSP56800E hardware you are using and are described
in detail in the section on “Remote Debug Options” on page 82.

Command Converter Server
The command converter server (CCS) handles communication between the CodeWarrior
debugger and the target board. An icon in the status bar indicates the CCS is running. The
CCS is automatically launched by your project when you start a CCS debug session if you
are debugging a target board using a local machine. However, when debugging a target
board connected to a remote machine, see “Setting Up a Remote Connection.”

NOTE Projects are set to debug locally by default. The protocol the debugger uses to
communicate with the target board, for example, PCI, is determined by how
you installed the CodeWarrior software. To modify the protocol, make changes
in the Freescale Command Converter Server window ().

Essential Target Settings for Command
Converter Server
Before you can download programs to a target board for debugging, you must specify the
target settings for the command converter server:

• Local Settings

If you specify that the CodeWarrior IDE start the command converter server locally,
the command converter server uses the connection port (for example, LPT1) that you
specified when you installed CodeWarrior Development Studio for Freescale 56800/
E Digital Signal Controllers.

• Remote Settings

Remote Debugging Debugging
communication
protocol

“Remote Debugging” on page 76

Remote Debug
Options

Debugging options “Remote Debug Options” on page 82

Table 9.7 Setting Panels that Affect Debugging (continued)

This panel… Affects… Refer to…
18756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
If you specify that the CodeWarrior IDE start the command converter server on a
remote machine, specify the IP address of the remote machine on your network (as
described in “Setting Up a Remote Connection.”)

• Default Settings

By default, the command converter server listens on port 41475. You can specify a
different port number for the debugger to connect to if needed (as described in
“Setting Up a Remote Connection.”) This is necessary if the CCS is configured to a
port other than 41475.

After you have specified the correct settings for the command converter server (or verified
that the default settings are correct), you can download programs to a target board for
debugging.

The CodeWarrior IDE starts the command converter server at the appropriate time if you
are debugging on a local target.

Before debugging on a board connected to a remote machine, ensure the following:

• The command converter server is running on the remote host machine.

• Nobody is debugging the board connected to the remote host machine.

Changing the Command Converter Server
Protocol to Parallel Port
If you specified the wrong parallel port for the command converter server when you
installed CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers, you can change the port.

Change the parallel port:

1. Click the command converter server icon.

While the command converter server is running, locate the command converter server
icon on the status bar. Right-click on the command converter server icon (Figure
9.6 on page 188):

Figure 9.6 Command Converter Server Icon

A menu appears (Figure 9.7 on page 189):
188 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
Figure 9.7 Command Converter Server Menu

2. Select Show console from the menu.

The Freescale Command Converter Server window appears ().

Figure 9.8 Command Converter Server Window

3. On the console command line, type the following command:

delete all

4. Press Enter.

5. Type the following command, substituting the number of the parallel port to use (for
example, 1 for LPT1):

config cc parallel:1

6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.
18956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
Changing the Command Converter Server
Protocol to HTI
To change the command converter server to an HTI Connection:

1. While the command converter server is running, right-click on the command converter
server icon shown in Figure 9.6 on page 188 or double click on it.

2. From the menu shown in Figure 9.7 on page 189, select Show Console.

3. At the console command line in the Freescale Command Converter Server
window, type the following command:

delete all

4. Press Enter.

5. Type the following command:

config cc: address

(substituting for address the name of the IP address of your CodeWarrior HTI)

NOTE If the software rejects this command, your CodeWarrior HTI may be an earlier
version. Try instead the command: config cc nhti:address, or the
command: config cc Panther:address, substituting for address
the IP address of the HTI.

6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.

Changing the Command Converter Server
Protocol to PCI
To change the command converter server to a PCI Connection:

1. While the command converter server is running, right-click on the command converter
server icon shown in Figure 9.6 on page 188 or double click on it.

2. From the menu shown in Figure 9.7 on page 189, select Show Console.

3. At the console command line in the Freescale Command Converter Server
window, type the following command:

delete all

4. Press Enter.
190 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
5. Type the following command:

config cc pci

6. Press Enter.

7. Type the following command to save the configuration:

config save

8. Press Enter.

Setting Up a Remote Connection
A remote connection is a type of connection to use for debugging along with any
preferences that connection may need. To change the preferences for a remote connection
or to create a new remote connection:

1. On the main menu, select Edit > Preferences.

The IDE Preferences Window appears.

2. Click Remote Connections in the left column.

The Remote Connections panel shown in Figure 9.9 on page 191 appears.

Figure 9.9 Remote Connections Panel
19156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server
To Add a New Remote Connection
To add a new remote connection:

1. Click the Add button.

The New Connection window appears as shown in Figure 9.10 on page 192.

Figure 9.10 New Connection Window

2. In the Name edit box, type in the connection name.

3. Check Use Remote CCS checkbox.

Select this checkbox to specify that the CodeWarrior IDE is connected to a remote
command converter server. Otherwise, the IDE starts the command converter server
locally

4. Enter the Server IP address or host machine name.

Use this text box to specify the IP address where the command converter server resides
when running the command converter server from a location on the network.
192 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
5. Enter the Port # to which the command converter server listens or use the default port,
which is 41475.

6. Click the OK button.

To Change an Existing Remote Connection
To change an existing remote connection:

Double click on the connection name that you want to change, or click once on the
connection name and click the Change button (shown in Figure 9.9 on page 191 in
grey).

To Remove an Existing Remote Connection
To remove an existing remote connection:

Click once on the connection name and click the Remove button (shown in Figure
9.9 on page 191 in grey).

Debugging a Remote Target Board
For debugging a target board connected to a remote machine with Code Warrior IDE
installed, perform the following steps:

1. Connect the target board to the remote machine.

2. Launch the command converter server (CCS) on the remote machine with the local
settings configuration using instructions described in the section “Essential Target
Settings for Command Converter Server” on page 187.

3. In the Target Settings>Remote Debugging panel for your project, make sure the proper
remote connection is selected.

4. Launch the debugger.

Launching and Operating the Debugger

NOTE CodeWarrior IDE automatically enables the debugger and sets debugger-
related settings within the project.

1. Set debugger preferences.

Select Edit >sdm Settings from the menu bar of the Freescale CodeWarrior
window.

The IDE displays the Remote Debugging window.
19356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
Figure 9.11 Remote Debugging Panel

2. Select the Connection.

For example, select 56800E Local Hardware Connection (CCS).

3. Click OK button.

4. Debug the project.

 Use either of the following options:

• From the Freescale CodeWarrior window, select Project > Debug.

• Click the Debug button in the project window.

This command resets the board (if Always reset on download is checked in the
Debugger’s M56800E Target panel shown in Figure 4.14 on page 79) and the
download process begins.

When the download to the board is complete, the IDE displays the Program window
(sdm.elf in sample) shown in Figure 9.12 on page 195.

NOTE Source code is shown only for files that are in the project folder or that have
been added to the project in the project manager, and for which the IDE has
created debug information. You must navigate the file system in order to locate
sources that are outside the project folder and not in the project manager, such
as library source files.
194 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
Figure 9.12 Program Window

5. Navigate through your code.

The Program window has three panes:

• Stack pane

The Stack pane shows the function calling stack.

• Variables pane

The Variables pane displays local variables.

• Source pane

The Source pane displays source or assembly code.

The toolbar at the top of the window has buttons that allows you access to the
execution commands in the Debug menu.

Step Over

Break

Step Into

Step Out

Breakpoint

Kill

Run

Watchpoint
Symbolics
19556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
Setting Breakpoints and Watchpoints
1. Locate the code line.

Scroll through the code in the Source pane of the Program window until you come
across the main() function.

2. Select the code line.

Click the gray dash in the far left-hand column of the window, next to the first line of
code in the main() function. A red dot appears (Figure 9.13 on page 196),
confirming you have set your breakpoint.

Figure 9.13 Breakpoint in the Program Window

NOTE To remove the breakpoint, click the red dot. The red dot disappears.

For more details on how to set breakpoints and use watchpoints, see the CodeWarrior IDE
User’s Guide.

NOTE For the DSP56800E only one watchpoint is available. This watchpoint is only
available on hardware targets.

Breakpoint
Setting
196 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
Viewing and Editing Register Values
Registers are platform-specific. Different chip architectures have different registers.

1. Access the Registers window.

From the menu bar of the Freescale CodeWarrior window, select View >
Registers.

Expand the General Purpose Registers tree control to view the registers as in Figure
9.14 on page 197, or double-click on General Purpose Registers to view the registers
as in Figure 9.15 on page 198.

Figure 9.14 General Purpose Registers for DSP56800E
19756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
Figure 9.15 General Purpose Registers Window

2. Edit register values.

To edit values in the register window, double-click a register value. Change the value
as you wish.

3. Exit the window.

The modified register values are saved.

NOTE To view peripheral registers, select the appropriate processor form the
processor list box in the M56800E Target Settings Panel.
198 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
Viewing X: Memory
You can view X memory space values as hexadecimal values with ASCII equivalents.
You can edit these values at debug time.

NOTE On targets that have Flash ROM, you cannot edit those values in the memory
window that reside in Flash memory.

1. Locate a particular address in program memory.

From the menu bar of the Freescale CodeWarrior window, select Data > View
Memory.

NOTE The Source pane in the Program window needs to be the active one in order
for the Data > View Memory to be activated.

The Memory window appears (Figure 9.16 on page 199).

Figure 9.16 View X:Memory Window

2. Select type of memory.

Locate the Page list box at the bottom of the View Memory window. Select X for
X Memory.

3. Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter a hexadecimal address, use standard C hex notation, for example, 0x0.
19956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
NOTE You also can enter the symbolic name whose value you want to view by typing
its name in the Display field of the Memory window.

NOTE The other view options (Disassembly, Source and Mixed) do not apply when
viewing X memory.

Viewing P: Memory
You can view P memory space and edit the opcode hexadecimal values at debug time.

NOTE On targets that have Flash ROM, you cannot edit those values in the memory
window that reside in Flash memory.

1. Locate a particular address in program memory.

To view program memory, from the menu bar of the Freescale CodeWarrior
window, select Data > View Memory.

The Memory window appears (Figure 9.16 on page 199).

2. Select type of memory.

Locate the Page list box at the bottom of the View Memory window. Select P for
P Memory.

3. Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter a hexadecimal address, use standard C hex notation, for example: 0x82.

4. Select how you want to view P memory.

Using the View list box, you have the option to view P Memory in four different
ways.

• Raw Data (Figure 9.17 on page 201).
200 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
Figure 9.17 View P:Memory (Raw Data) Window

• Disassembly (Figure 9.18 on page 201).

Figure 9.18 View P:Memory (Disassembly) Window

• Source (Figure 9.19 on page 202).
20156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger
Figure 9.19 View P:Memory (Source) Window

• Mixed (Figure 9.20 on page 202).

Figure 9.20 View P:Memory (Mixed) Window
202 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Load/Save Memory
Load/Save Memory
From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E >
Load/Save Memory to display the Load/Save Memory dialog box (Figure
9.21 on page 203).

Figure 9.21 Load/Save Memory Dialog Box

Use this dialog box to load and save memory at a specified location and size with a user-
specified file. You can associate a key binding with this dialog box for quick access. Press
the Tab key to cycle through the dialog box displays, which lets you quickly make
changes without using the mouse.

History Combo Box
The History combo box displays a list of recent loads and saves. If this is the first time
you load or save, the History combo box is empty. If you load/save more than once, the
combo box fills with the memory address of the start of the load or save and the size of the
fill, to a maximum of ten sessions.

If you enter information for an item that already exists in the history list, that item moves
up to the top of the list. If you perform another operation, that item appears first.
20356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Load/Save Memory
NOTE By default, the History combo box displays the most recent settings on
subsequent viewings.

Radio Buttons
The Load/Save Memory dialog box has two radio buttons:

• Load Memory

• Save Memory

The default is Load Memory.

Memory Type Combo Box
The memory types that appear in the Memory Type Combo box are:

• P: Memory (Program Memory)

• X: Memory (Data Memory)

Address Text Field
Specify the address where you want to write the memory. If you want your entry to be
interpreted as hex, prefix it with 0x; otherwise, it is interpreted as decimal.

Size Text Field
Specify the number of words to write to the target. If you want your entry to be interpreted
as hex, prefix it with 0x; otherwise, it is interpreted as decimal.

Dialog Box Controls

Cancel, Esc, and OK
In Load and Save operations, all controls are disabled except Cancel for the duration of
the load or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the Esc key is same as clicking
the Cancel button.

With the Load Memory radio button selected, clicking OK loads the memory from the
specified file and writes it to memory until the end of the file or the size specified is
reached. If the file does not exist, an error message appears.
204 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Fill Memory
With the Save Memory radio button selected, clicking OK reads the memory from the
target piece by piece and writes it to the specified file. The status field is updated with the
current progress of the operation.

Browse Button
Clicking the Browse button displays OPENFILENAME or SAVEFILENAME,
depending on whether you selected the Load Memory or Save Memory radio
button.

Fill Memory
From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E >
Fill Memory to display the Fill Memory dialog box (Figure 9.22 on page 205).

Figure 9.22 Fill Memory Dialog Box

Use this dialog box to fill memory at a specified location and size with user- specified raw
memory data. You can associate a key binding with this dialog box for quick access. Press
the Tab key to cycle through the dialog box display, which lets you quickly make
changes without using the mouse.
20556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Fill Memory
NOTE Fill Memory does not support Flash Memory.

History Combo Box
The History combo box displays a list of recent fill operations. If this is the first time
you perform a fill operation, the History combo box is empty. If you do more than one
fill, then the combo box populates with the memory address of that fill, to a maximum of
ten sessions.

If you enter information for an item that already exists in the history list, that item moves
up to the top of the list. If you do another fill, then this item is the first one that appears.

NOTE By default, the History combo box displays the most recent settings on
subsequent viewings.

Memory Type Combo Box
The memory types that can appear in the Memory Type Combo box are:

• P:Memory (Program Memory)

• X:Memory (Data Memory)

Address Text Field
Specify the address where you want to write the memory. If you want it to be interpreted
as hex, prefix it with 0x; otherwise, it is interpreted as decimal.

Size Text Field
Specify the number of words to write to the target. If you want it to be interpreted as hex,
prefix your entry with 0x; otherwise, it is interpreted as decimal.

Fill Expression Text Field
Fill writes a set of characters to a location specified by the address field on the target,
repeatedly copying the characters until the user-supplied fill size has been reached. Size
is the total words written, not the number of times to write the string.

Interpretation of the Fill Expression
The fill string is interpreted differently depending on how it is entered in the Fill String
field. Any words prefixed with 0x is interpreted as hex bytes. Thus, 0xBE 0xEF would
206 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Save/Restore Registers
actually write 0xBEEF on the target. Optionally, the string could have been set to
0xBEEF and this would do the same thing. Integers are interpreted so that the equivalent
signed integer is written to the target.

ASCII Strings
ASCII strings can be quoted to have literal interpretation of spaces inside the quotes.
Otherwise, spaces in the string are ignored. Note that if the ASCII strings are not quoted
and they are numbers, it is possible to create illegal numbers. If the number is illegal, an
error message is displayed.

Dialog Box Controls

OK, Cancel, and Esc
Clicking OK writes the memory piece by piece until the target memory is filled in. The
Status field is updated with the current progress of the operation. When this is in
progress, the entire dialog box grays out except the Cancel button, so the user cannot
change any information. Clicking the Cancel button halts the fill operation, and re-
enables the controls on the dialog box. Clicking the Cancel button again closes the
dialog box. Pressing the Esc key is same as pressing the Cancel button.

Save/Restore Registers
From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E >
Save/Restore Registers to display the Save/Restore Registers dialog box
(Figure 9.23 on page 208).
20756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Save/Restore Registers
Figure 9.23 Save/Restore Registers Dialog Box

Use this dialog box to save and restore register groups to and from a user-specified file.

History Combo Box
The History combo box displays a list of recent saves and restores. If this is the first time
you have saved or restored, the History combo box is empty. If you saved or restored
before, the combo box remembers your last ten sessions. The most recent session will
appear at the top of the list.

Radio Buttons
The Save/Restore Registers dialog box has two radio buttons:

• Save Registers

• Restore Registers

The default is Save Registers.
208 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
Register Group List
This list is only available when you have selected Save Registers. If you have
selected Restore Registers, the items in the list are greyed out. Select the register
group that you wish to save.

Dialog Box Controls

Cancel, Esc, and OK
In Save and Restore operations, all controls are disabled except Cancel for the duration
of the load or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the Esc key is same as clicking
the Cancel button.

With the Restore Registers radio button selected, clicking OK restores the registers
from the specified file and writes it to the registers until the end of the file or the size
specified is reached. If the file does not exist, an error message appears.

With the Save Register radio button selected, clicking OK reads the registers from
the target piece by piece and writes it to the specified file. The status field is updated with
the current progress of the operation.

Browse Button
Clicking the Browse button displays OPENFILENAME or SAVEFILENAME,
depending on whether you selected the Restore Registers or Save Registers
radio button.

EOnCE Debugger Features
The following EOnCE Debugger features are discussed in this section:

• Set Hardware Breakpoint Panel on page 210

• Special Counters on page 210

• Trace Buffer on page 212

• Set Trigger Panel on page 215

NOTE These features are only available when debugging with a hardware target.

For more information on the debugging capabilities of the EOnCE, see the EOnCE
chapter of your processor’s user manual.
20956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
Set Hardware Breakpoint Panel
The Set Hardware BreakPoint panel (Figure 9.24 on page 210) lets you set a trigger to
do one of the following: halt the processor, cause an interrupt, or start or stop trace buffer
capture.

To open this panel:

1. From the menu bar, select DSP56800E > Set Breakpoint Trigger(s).

To clear triggers set with this panel:

1. From the menu bar, select DSP56800E > Clear Triggers.

Figure 9.24 Set Hardware Breakpoint Panel

The Set Hardware BreakPoint panel options are:

• Set trigger

Select this button to open the Set Trigger panel (Figure 9.28 on page 216). For more
information on using this panel, see “Set Trigger Panel.”

• Action

This pull down list lets you select the resulting action caused by the trigger.

– Halt core

Stops the processor.

– Interrupt

Causes an interrupt and uses the vector for the EOnCE hardware breakpoint (unit
0).

Special Counters
This feature lets you use the special counting function of the EOnCE unit.
210 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
To open the EOnCE Special Counter panel (Figure 9.25 on page 211):

1. From the menu bar, select DSP56800E > Special Counter.

This panel is non-modal and will update itself whenever the processor stops.

Figure 9.25 EOnCE Special Counter Panel

The EOnCE Special Counter panel options are:

• Counter size

This pull down list gives you the option to use a 16 or 40-bit counter.

NOTE Using the 40-bit counter will disable stepping in the debugger.

• Counter function

This pull down list allows you to choose which counting function to use.

• Set trigger(s)

Pushing this button opens the Set Trigger panel. For more information on using
this panel, see “Set Trigger Panel.”.
21156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
• Perform action

This pull down list lets you select the action that occurs when the correct conditions
are met, as set in the Set Trigger panel and the On condition pull down list.

• On condition

This pull down list lets you set the order in which a trigger and counter reaching zero
must occur to perform the action specified in Perform action.

• Counter value

This edit box should be preloaded with a non-zero counter value when setting the
counter. The counter will proceed backward until a stop condition occurs. The edit
box will contain the value of the counter and will be updated whenever the processor
stops.

Trace Buffer
The trace buffer lets you view the target addresses of change-of-flow instructions that the
program executes. The trace buffer is configured with the Trace Buffer Setup panel
(Figure 9.26 on page 213).

To open this panel:
212 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
1. From the IDE menu bar, select DSP56800E > Setup Trace Buffer.

Figure 9.26 Trace Buffer Setup Panel

To view the contents of the trace buffer (Figure 9.27 on page 214):
21356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
1. From the IDE menu bar, select DSP56800E > Dump Trace Buffer.

Figure 9.27 Contents of Trace Buffer

To clear triggers set with the Trace Buffer Setup panel (Figure 9.26 on page 213):

1. From the menu bar, select DSP56800E > Clear Triggers.

The Trace Buffer Setup panel options are:

• Capture Events

Select this set of checkboxes to specify which instructions get captured by the trace
buffer.

– Change of flow not taken

Select this checkbox to capture target addresses of conditional branches and
jumps that are not taken.

– Interrupt

Select this checkbox to capture addresses of interrupt vector fetches and target
addresses of RTI instructions.

– Subroutine

Select this checkbox to capture target addresses of JSR, BSR, and RTS
instructions.
214 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
– Forward branches and JCC Backward branches

Select this checkbox to capture target addresses of the following taken
instructions:

 BCC forward branch

 BRSET forward branch

 BRCLR forward branch

 JCC forward and backward branches

– Backward branches excluding JCC backward branches

Select this checkbox to capture target addresses of the following taken
instructions:

BCC backward branch

BRSET backward branch

BRCLR backward branch

• Set trigger(s)

Select this button to open the Set Trigger panel (Figure 9.28 on page 216). For
more information on using this panel, see “Set Trigger Panel.”. The resulting trigger
halts trace buffer capture.

• Capture initially halted, started by trigger

When this option is checked, the trace buffer starts off halted.

• Buffer full action

This pull down list lets you select the resulting action caused by the trace buffer
filling.

Set Trigger Panel
The Set Trigger panel (Figure 9.28 on page 216) lets you set triggers for all the EOnCE
functions. It can be accessed from the panels used to configure those functions. The
options available change depending on the function being configured.
21556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EOnCE Debugger Features
Figure 9.28 Set Trigger Panel

The Set Trigger panel options are:

• Primary trigger type

This pull down list contains the general categories of triggers that can be set.

• Primary trigger

This pull down list contains the specific forms of the triggers that can be set. This list
changes depending on the selection made in the Primary trigger type option. The #
symbol contained in some of the triggers' descriptions specifies that the sub-trigger
that it precedes must occur the number of times specified in the Breakpoint counter
option to cause a trigger. The -> symbol specifies that the first sub-trigger must
occur, then the second sub-trigger must occur to cause a trigger.

• Value options

There are two edit boxes used to specify addresses and data values. The descriptions
next to the boxes change according to the selection in Primary trigger type and
Primary trigger. According to these options, only one value may be available.

• Data compare length

When the data trigger (address and data) compare trigger is selected, this set of radio
buttons becomes available. These options allow you to specify the length of data
being compared at that address.
216 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using the DSP56800E Simulator
• Data mask

When a data compare trigger is selected, this edit box becomes available. This value
specifies which bits of the data value are compared.

• Invert data compare

When a data compare trigger is selected, this checkbox becomes available. When
checked, the comparison result of the data value is inverted (logical NOT).

• Breakpoint counter

This edit box specifies the number of times a sub-trigger preceded by a # (see above)
must occur to cause a trigger.

• Advanced trigger

This pull down list contains options for combining triggers. The types of triggers that
can be combined are triggers set in this panel and core events.

• Core events

This set of checkboxes specify which core events are allowed to enter the breakpoint
logic and cause a trigger.

– DEBUGEV trigger enabled

When this checkbox is selected, the DEBUGEV instruction causes a core event.

– Overflow trigger enabled

 When this checkbox is selected, overflow and saturation conditions in the
processor cause core events.

• Use step counter to execute

When this checkbox is selected, the processor steps through additional
instructions after a trigger is signalled. The number of instructions to be stepped
is specified in the edit box that is enabled when this checkbox is checked.

Using the DSP56800E Simulator
The CodeWarrior Development Studio for Freescale 56800/E Digital Signal Controllers
includes the Freescale DSP56800E Simulator. This software lets you run and debug code
on a simulated DSP56800E architecture without installing any additional hardware.

The simulator simulates the DSP56800E processor, not the peripherals. In order to use the
simulator, you must select a connection that uses the simulator as your debugging protocol
from the Remote Debugging panel.

NOTE The simulator also enables the DSP56800E menu for retrieving the machine
cycle count and machine instruction count when debugging.
21756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using the DSP56800E Simulator
NOTE The data memory of the 56800E simulator is read-only from X:0xFF80 to
X:0xFFFF.

Cycle/Instruction Count
From the menu bar of the Freescale CodeWarrior window, select 56800E > Display
Cycle/Instruction count. The following window appears (Figure 9.29 on
page 218):

Figure 9.29 Simulator Cycle/Instruction Count

NOTE Cycle counting is not accurate while single stepping through source code in the
debugger. It is only accurate while running. Thus, the cycle counter is more of
a profiling tool than an interactive tool.

Press the Reset button to zero out the current machine-cycle and machine-instruction
readings.
218 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Register Details Window
Memory Map
Figure 9.30 Simulator Memory Map

NOTE Figure 9.30 on page 219 is the memory map configuration for the simulator.
Therefore, the simulator does not simulate each DSP568xx device’s specific
memory map, but assumes the memory map of the DSP56824.

Register Details Window
From the menu bar of the Freescale CodeWarrior window, select View > Register Details
or in the Registers window (Figure 9.14 on page 197) double-click on the register. The
Register Details window appears (Figure 9.31 on page 220).

Program
Memory
Space

Interrupt
Vectors

 Reserved

1FFFFF $FFFFFF

$7F

$0 $0

P: X:

$FFCO

 X Data
 Memory
 Space
21956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Loading a .elf File without a Project
Figure 9.31 Register Details Window

In the Register Details window, type the name of the register (e.g., OMR, SR, IPR,
etc.) in the Description File field. The applicable register and its values appears.

By default, the CodeWarrior IDE looks in the following path when searching for register
description files.

\CodeWarrior\bin\Plugins\support\Registers\M56800E\GPR

Register description files must end with the .xml extension. Alternatively, you can use
the Browse button to locate the register description files.

Using the Format list box in the Register Details window, you can change the format in
which the CodeWarrior IDE displays the registers.

Using the Text View list box in the Register Details window, you can change the text
information the CodeWarrior IDE displays.

Loading a .elf File without a Project
You can load and debug a .elf file without an associated project. To load a .elf file for
debugging without an associated project:

1. Launch the CodeWarrior IDE.

2. Choose File > Open and specify the file to load in the standard dialog box that
appears.

Alternatively, you can drag and drop a .elf file onto the IDE.
220 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using the Command Window
3. You may have to add additional access paths in the Access Path preference panel in
order to see all of the source code.

4. Choose Project > Debug to begin debugging the application.

NOTE When you debug a .elf file without a project, the IDE sets the Build before
running setting on the Build Settings panel of the IDE Preference panels to
Never. Consequently, if you open another project to debug after debugging a
.elf file, you must change the Build before running setting before you can
build the project.

The project that the CodeWarrior tools uses to create a new project for the given .elf file
is 56800E_Default_Project.xml, which is in the directory located in the path:

CodeWarrior\bin\plugins\support

You can create your own version of this file to use as a default setting when opening a
.elf file:

1. Create a new project with the default setting you want.

2. Export the project to xml format.

3. Rename the xml format of the project to 56800E_Default_Project.xml and place it in
the support directory.

NOTE Back up or rename the original version of the default xml project before
overwriting it with your own customized version.

Using the Command Window
In addition to using the regular CodeWarrior IDE debugger windows, you also can debug
using Tcl scripts or the Command Window.

For more information on Tcl scripts and the Command Window, please see the
CodeWarrior Development Studio IDE 5.6 Windows® Automation Guide.

System-Level Connect
The CodeWarrior DSP56800E debugger lets you connect to a loaded target board and
view system registers and memory. A system-level connect does not let you view
symbolic information during a connection.

NOTE The following procedure explains how to connect in the context of developing
and debugging code on a target board. However, you can select the Debug >
22156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Debugging in the Flash Memory
Connect command anytime you have a project window open, even if you
have not yet downloaded a file to your target board.

To perform a system-level connect:

1. Select the Project window for the program you downloaded.

2. From the menu bar, select Debug > Connect.

The debugger connects to the board. You can now examine registers and the contents
of memory on the board.

Debugging in the Flash Memory
The debugger is capable of programming flash memory. The programming occurs at
launch, during download. The flash programming option is turned on and the parameters
are set in the initialization file. This file is specified in the Debugger>M56800E Target
preference panel. A list of flash memory commands is given in the next section.

The stationery provides an example of how to specify a default initialization file, how to
write a linker command file for flash memory, and how to copy initialized data from ROM
to RAM using provided library functions.

NOTE If you use the phase locked loop (PLL) to change the system speed and you are
using software or automatic breakpoints, you will need to enable the alternate
flash download sequence, as described by the “target_code_sets_hfmclkd”
command in the following section.

Flash Memory Commands
The following is a list of flash memory commands that can be included in your
initialization file.

For more information on flash memory commmands and initialization of the flash, see
“M56800E Target (Debugging).”

set_hfmclkd <value>

This command writes the value which represents the clock divider for the flash memory
to the hfmclkd register.

The value for the set_hfmclkd command depends on the frequency of the clock. If
you are using a supported EVM, this value should not be changed from the value provided
222 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Debugging in the Flash Memory
in the default initialization file. However, if you are using an unsupported board and the
clock frequency is different from that of the supported EVM, a new value must be
calculated as described in the user’s manual of the particular processor that you are using.

NOTE The set_hfmclkd, set_hfm_base, and at least one add_hfm_unit
command must exist to enable flash programming. All other flash
memory commands are optional.

set_hfm_base <address>

This command sets the address of hfm_base, which is where the flash control registers
are mapped in X: memory.

NOTE The set_hfm_base and add_hfm_unit commands should not be
changed for a particular processor. Their values will always be the
same.

set_hfm_config_base <address>

This command sets the address of hfm_config_base, which is where the flash
security values are written in program flash memory. If this command is present, the
debugger used the address to mimic part of the hardware reset behavior by copying the
protection values from the configuration field to the appropriate flash control registers.

add_hfm_unit <startAddr> <endAddr> <bank> <numSectors>

<pageSize> <progMem> <boot> <interleaved>

This command adds a flash unit to the list and sets its parameters.

NOTE The set_hfm_base and add_hfm_unit commands should not be
changed for a particular processor. Their values will always be the
same.
22356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Debugging in the Flash Memory
set_hfm_erase_mode units | pages | all

This command sets the erase mode as units, pages or all. If you set this to units,
the units that are programmed are mass erased. If set this to pages, the pages that are
programmed are erased. If you set this to all, all units are mass erased including those
that have not been programmed. If you omit this command, the erase mode defaults to the
unit mode.

set_hfm_verify_erase 1 | 0

If you set this to 1, the debugger verifies that the flash memory has been erased, and alerts
you if the erase failed. If this command is omitted, the flash erase is not verified.

set_hfm_verify_program 1 | 0

If you set this to 1, the debugger verifies that the flash has been programmed correctly,
and alerts you if the programming failed. If you omit this command, flash programming is
not verified.

target_code_sets_hfmclkd 1 | 0

If you set this to 1, the debugger uses an alternate launch sequence. First, the flash
memory is loaded. Next, the processor is reset to clear the hfmclkd register to allow the
correct divider to be set for the new system speed (as set by the PLL). Finally, if needed,
the RAM is loaded.

When this option is enabled, the hfmclkd register needs to be loaded in the startup code.
For more details on setting the hfmclkd register, see the chapter “Flash Memory” in the
MC56F8300 Peripheral User Manual. For a demo of the proper use of this feature, see the
example code.

Flash Lock/Unlock
The Flash Lock and Flash Unlock commands let you control the Flash security state.

The Flash Lock command enables the Flash security state. In this state, you can not read
the memory or the registers.
224 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Notes for Debugging on Hardware
The Flash Unlock command disables the Flash security. This results in all the Flash
memory being erased.

NOTE The Flash Lock and Flash Unlock commands can only be enabled if the
debugger session is not running.

 To use the Flash Lock or Flash Unlock command:

1. Kill any open debugger sessions.

2. Select a DSP56800E project with a Flash target.

NOTE A Flash target is a target using an initialization file containing Flash
commands.

3. Select a Flash target.

4. Select either Debug > 56800E > Flash Lock or Debug > 56800E > Flash Unlock
command.

Notes for Debugging on Hardware
Below are some tips and some things to be aware of when debugging on a hardware target:

• Ensure your Flash data size fits into Flash memory.

The linker command file specifies where data is written to. There is no bounds
checking for Flash programming.

• The standard library I/O function such as printf uses large amount of memory
and may not fit into flash targets.

• Use the Flash stationery when creating a new project intended for ROM.

The default stationery contains the Flash configuration file and debugger settings
required to use the Flash programmer.

• There is only one hardware breakpoint available, which is shared by IDE breakpoints
(when the Breakpoint Mode is set to hardware in the M56800E Target panel),
watchpoints, and EOnCE triggers. Only one of these may be set at a time.

• When a hardware breakpoint trigger is set to react to an instruction fetch (IDE
hardware breakpoint or EOnCE trigger) be aware that the hardware will react to the
fetch whether or not the fetched instruction is executed. For example, if a hardware
breakpoint is set just after a loop, the processor will stop with the execution point
inside the loop. This is because the target instruction will be fetched while the
program is in the loop due to the large pipeline. A branch will occur to facilitate the
loop; however, the processor will stop because the target instruction has already been
fetched.
22556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Notes for Debugging on Hardware
• The M56800E cannot single step over certain two and three-word uninterrupted
sequences. However, the debugger compensates using software breakpoints and the
trace buffer to allow single stepping in these situations. But, if these techniques
cannot be used (e.g., debugging in ROM or the trace buffer in use) single stepping
over these sequences results in the processor executing each instruction in the
sequence before stopping. The execution will be correct. Just be aware of this "slide"
in these situations.

• Debugging an application involves single-stepping through code. But if you don't
modify interrupts that are part of normal code execution, the debugger could jump to
interrupt-handler code, instead of stepping to the next instruction. By default, The
CodeWarrior debugger for DSC automatically masks all interrupt levels when the
user single steps over an instruction or a function and unmasks them afterwards.
Therefore, the user is advised to be aware of the temporary interrupt mask enable
values in Status Register (SR) when stepping over an inline assembly instruction that
copies the value of SR to another location.
226 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

10
Profiler

The profiler is a run-time feature that collects information about your program. It records
the minimum, maximum, and total number of clock cycles spent in each function. The
profiler allows you to evaluate your code and determine which functions require
optimization.

When profiling is enabled, the compiler adds code to call the entry functions in the profiler
library. These profiler library functions do all of the data collection. The profiler library,
with the help of the debugger create a binary output file, which is opened and displayed by
the CodeWarrior IDE.

NOTE For more information on the profiler library and its usage, see the CodeWarrior
Development Studio IDE 5.5 User’s Guide Profiler Supplement.

To enable your project for profiling:

1. Add the following path to your list of user paths in the Access Paths settings panel:

 {Compiler}M56800x Support\profiler

2. Add the following line to the file that contains the function main():

 #include "Profiler.h"

3. Add the profiler library file to your project. Select the library that matches your target
from this path:

 {CodeWarrior path}M56800x Support\profiler\lib

4. Add the following function calls to main():

 ProfilerInit()

 ProfilerClear()

 ProfilerSetStatus()

 ProfilerDump()

 ProfilerTerm()

For more details of these functions, see the CodeWarrior Development Studio IDE 5.5
User’s Guide Profiler Supplement.

5. It may be necessary to increase the heap size to accommodate the profiler data
collection. This can be set in the linker command file by changing the value of
__heap_size.
22756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Profiler
6. Enable profiling by setting the Generate code for profiling option in the M56800E
Processor settings panel or by using the profile on | off pragma to select individual
functions to profile.

NOTE For a profiler example, see the profiler example in this path:
{CodeWarrior path}(CodeWarrior_Examples)\
SimpleProfiler
228 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

11
Inline Assembly Language
and Intrinsics

The CodeWarrior™ compiler supports inline assembly language and intrinsic functions.
This chapter explains the IDE implementation of Freescale assembly language, with
regard to DSP56800E development. It also explains the relevant intrinsic functions.

This chapter contains these sections:

• Inline Assembly Language on page 229

• Intrinsic Functions on page 234

Inline Assembly Language
This section explains how to use inline assembly language. It contains these sections:

• Inline Assembly Overview on page 229

• Assembly Language Quick Guide on page 230

• Calling Assembly Language Functions from C Code on page 232

• Calling Functions from Assembly Language on page 234

Inline Assembly Overview
To specify assembly-language interpretation for a block of code in your file, use the asm
keyword and standard DSP56800E instruction mnemonics.

NOTE To make sure that the C compiler recognizes the asm keyword, you must clear
the ANSI Keywords Only checkbox of the C/C++ Language (C Only)
settings panel.
Differences in calling conventions mean that you cannot re-use DSP56800
assembly code in the DSP56800E compiler.

Listing 11.1 on page 230 shows how to use the asm keyword with braces, to specify that
an entire function is in assembly language.
22956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language
Listing 11.1 Function-Level Syntax

asm <function header>
{

<assembly instructions>
}

The function header can be any valid C function header; the local declarations are any
valid C local declarations.

Listing 11.2 on page 230 shows how to use the asm keyword with braces, to specify that a
block of statements or a single statement is in assembly language.

Listing 11.2 Statement-Level Syntax

asm { inline assembly statement
 inline assembly statement
 ...

}

asm {inline assembly statement}

The inline assembly statement is any valid assembly-language statement.

Listing 11.3 on page 230 shows how to use the asm keyword with parentheses, to specify
that a single statement is in assembly language. Note that a semicolon must follow the
close parenthesis.

Listing 11.3 Alternate Single-Statement Syntax

asm (inline assembly statement);

NOTE If you apply the asm keyword to one statement or a block of statements within
a function, you must not define local variables within any of the inline-
assembly statements.

Assembly Language Quick Guide
Keep these rules in mind as you write assembly language functions:
230 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language
1. Each statement must be a label or a function.

2. A label can be any identifier not already declared as a local variable.

3. All labels must follow the syntax:

[LocalLabel:]

Listing 11.4 on page 231 illustrates the use of labels.

Listing 11.4 Labels in M56800E Assembly

x1: add x0,y1,a
x2:

add x0,y1,a
x3 add x0,y1,a //ERROR, MISSING COLON

4. All instructions must follow the syntax:

((instruction) [operands])

5. Each statement must end with a new line

6. Assembly language directives, instructions, and registers are not case-sensitive. The
following two statements are the same:

add x0,y0

ADD X0,Y0

7. Comments must have the form of C or C++ comments; they must not begin with the ;
or # characters. on page 231Listing 11.5 on page 231 shows the valid syntax for
comments.

Listing 11.5 Valid Comment Syntax

move.w x:(r3),y0 # ERROR
add.w x0,y0 // OK
move.w r2,x:(sp) ; ERROR
adda r0,r1,n /* OK */

8. To optimize a block of inline assembly source code, use the inline assembly directive
.optimize_iasm on before the code block. Then use the directive
.optimize_iasm off at the end of the block. (Omitting .optimize_iasm
off means that optimizations continue to the end of the function.)
23156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language
Calling Assembly Language Functions
from C Code
You can call assembly language functions from C just as you would call any standard C
function, using standard C syntax.

Calling Inline Assembly Language Functions
Listing 11.6 on page 232 demonstrates how to create an inline assembly language function
in a C source file. This example adds two 16-bit integers and returns the result.

Notice that you are passing two 16-bit addresses to the add_int function. You pick up
those addresses in R2 and R3, passing the sum back in Y0.

Listing 11.6 Sample Code - Creating an Inline Assembly Language Function

asm int add_int(int * i, int * j)
{

move.w x:(r2),y0
move.w x:(r3),x0
add x0,y0
// int result returned in y0
rts

}

Listing 11.7 on page 232 shows the C calling statement for this inline-assembly-language
function.

Listing 11.7 Sample Code - Calling an Inline Assembly Language Function

int x = 4, y = 2;

y = add_int(&x, &y); /* Returns 6 */

Calling Pure Assembly Language Functions
If you want C code to call assembly language files, you must specify a SECTION mapping
for your code, for appropriate linking. You must also specify a memory space location.
Usually, this means that the ORG directive specifies code to program memory (P) space.

In the definition of an assembly language function, the GLOBAL directive must specify the
current-section symbols that need to be accessible by other sections.
232 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language
Listing 11.8 on page 233 is an example of a complete assembly language function. This
function writes two 16-bit integers to program memory. A separate function is required for
writing to P: memory, because C pointer variables allow access only to X: data memory.

The first parameter is a short value and the second parameter is the 16-bit address.

Listing 11.8 Sample Code - Creating an Assembly Language Function

;”my_asm.asm”
SECTION user ;map to user defined section in CODE
ORG P: ;put the following program in P

;memory

GLOBAL Fpmemwrite ;This symbol is defined within the
;current section and should be
;accessible by all sections

Fpmemwrite:
MOVE Y1,R0 ;Set up pointer to address
NOP ;Pipeline delay for R0
MOVE Y0,P:(R0)+ ;Write 16-bit value to address

;pointed to by R0 in P: memory and
;post-increment R0

rts ;return to calling function

ENDSEC ;End of section
END ;End of source program

Listing 11.9 on page 233 shows the C calling statement for this assembly language
function.

Listing 11.9 Sample Code - Calling an Assembly Language Function from C

void pmemwrite(short, short);/* Write a value into P: memory */

void main(void)
{

// ...other code

 // Write the value given in the first parameter to the address
 // of the second parameter in P: memory
 pmemwrite((short)0xE9C8, (short)0x0010);

 // other code...
}

23356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Calling Functions from Assembly
Language
Assembly language programs can call functions written in either C or assembly language.

• From within assembly language instructions, you can call C functions. For example,
if the C function definition is:

void foot(void) {
/* Do something */

}

Your assembly language calling statement is:

jsr Ffoot

• From within assembly language instructions, you can call assembly language
functions. For example, if pmemwrite is an assembly language function, the
assembly language calling statement is:

jsr Fpmemwrite

Intrinsic Functions
This section explains CodeWarrior intrinsic functions. It consists of these sections:

• Implementation on page 234

• Fractional Arithmetic on page 235

• Intrinsic Functions for Math Support on page 236

• Modulo Addressing Intrinsic Functions on page 267

Implementation
The CodeWarrior IDE for DSP56800E has intrinsic functions to generate inline-assembly-
language instructions. These intrinsic functions are a CodeWarrior extension to ANSI C.

Use intrinsic functions to target specific processor instructions. For example:

• Intrinsic functions let you pass in data for specific optimized computations. For
example, ANSI C data-representation rules may make certain calculations
inefficient, forcing the program to jump to runtime math routines. Such calculations
would be coded more efficiently as assembly language instructions and intrinsic
functions.

• Intrinsic functions can control small tasks, such as enabling saturation. One method
is using inline assembly language syntax, specifying the operation in an asm block,
234 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
every time that the operation is required. But intrinsic functions let you merely set
the appropriate bit of the operating mode register.

The IDE implements intrinsic functions as inline C functions in file
intrinsics_56800E.h, in the MSL directory tree. These inline functions contain
mostly inline assembly language code. An example is the abs_s intrinsic, defined as:

Listing 11.10 Example Code - Definition of Intrinsic Function: abs_s

#define abs_s(a) __abs_s(a)
/* ABS_S */

inline Word16 __abs_s(register Word16 svar1)
{
/*
 * Defn: Absolute value of a 16-bit integer or fractional value
 * returning a 16-bit result.
 * Returns $7fff for an input of $8000
 *
 * DSP56800E instruction syntax: abs FFF
 * Allowed src regs: FFF
 * Allowed dst regs: (same)
 *
 * Assumptions: OMR's SA bit was set to 1 at least 3 cycles
 * before this code.
 */

asm(abs svar1);
return svar1;

}

Fractional Arithmetic
Many of the intrinsic functions use fractional arithmetic with implied fractional values.
An implied fractional value is a symbol declared as an integer type, but calculated as a
fractional type. Data in a memory location or register can be interpreted as fractional or
integer, depending on program needs.

All intrinsic functions that generate multiply or divide instructions perform fractional
arithmetic on implied fractional values. (These intrinsic functions are DIV, MPY, MAC,
MPYR, and MACR) The relationship between a 16-bit integer and a fractional value is:

Fractional Value = Integer Value / (215)

The relationship between a 32-bit integer and a fractional value is similar:

Fractional Value = Long Integer Value / (231)

Table 11.1 on page 236 on page 236 shows how 16- and 32-bit values can be interpreted
as either fractional or integer values.
23556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
NOTE Intrinsic functions us these macros:

Word16. — A macro for signed short.

Word32. — A macro for signed long.

Intrinsic Functions for Math Support
Table 11.2 on page 237 lists the math intrinsic functions. See section “Modulo Addressing
Intrinsic Functions.” for explanations of the remaining intrinsic functions.

For the latest information about intrinsic functions, refer to file
intrinsics_56800E.h.

Table 11.1 Interpretation of 16- and 32-bit Values

Type Hex Integer Value Fixed-point Value

short int 0x2000 8192 0.25

short int 0xE000 -8192 -0.25

long int 0x20000000 536870912 0.25

long int 0xE0000000 -536870912 -0.25
236 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Table 11.2 Intrinsic Functions for DSP56800E

Category Function Category (cont.) Function (cont.)

Absolute/
Negate on
page 239

abs_s on page 239 Multiplication/
MAC on page 250

mac_r on
page 250

negate on page 239 msu_r on
page 251

L_abs on page 240 mult on page 252

L_negate on
page 240

mult_r on
page 252

Addition/
Subtraction on
page 241

add on page 241 L_mac on
page 253

sub on page 241 L_msu on
page 253

L_add on page 242 L_mult on
page 254

L_sub on page 243 L_mult_ls on
page 255
23756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Control on
page 243

stop on page 243 Normalization on
page 255

ffs_s on page 255

wait on page 244 norm_s on
page 256

turn_off_conv_rndg
on page 244

ffs_l on page 256

turn_off_sat on
page 245

norm_l on
page 257

turn_on_conv_rndg
on page 245

Rounding on
page 258

round on page 258

turn_on_sat on
page 245

Shifting on
page 258

shl on page 259

Deposit/
Extract on
page 245

extract_h on
page 246

shlftNs on
page 260

extract_l on
page 246

shlfts on page 260

L_deposit_h on
page 247

shr on page 261

L_deposit_l on
page 247

shr_r on page 262

Division on
page 247

div_s on page 248 shrtNs on
page 263

div_s4q on
page 248

L_shl on page 263

div_ls on page 249 L_shlftNs on
page 264

div_ls4q on
page 249

L_shlfts on
page 265

L_shr on page 265

L_shr_r on
page 266

L_shrtNs on
page 267

Table 11.2 Intrinsic Functions for DSP56800E (continued)

Category Function Category (cont.) Function (cont.)
238 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Absolute/Negate
The intrinsic functions of the absolute-value/negate group are:

• abs_s on page 239

• negate on page 239

• L_abs on page 240

• L_negate on page 240

abs_s

Absolute value of a 16-bit integer or fractional value returning a 16-bit result. Returns
0x7FFF for an input of 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 abs_s(Word16 svar1)

Example

int result, s1 = 0xE000; /* - 0.25 */

result = abs_s(s1);

// Expected value of result: 0x2000 = 0.25

negate

Negates a 16-bit integer or fractional value returning a 16-bit result. Returns 0x7FFF for
an input of 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 negate(Word16 svar1)
23956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

int result, s1 = 0xE000; /* - 0.25 */

result = negate(s1);

// Expected value of result: 0x2000 = 0.25

L_abs

Absolute value of a 32-bit integer or fractional value returning a 32-bit result. Returns
0x7FFFFFFF for an input of 0x80000000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_abs(Word32 lvar1)

Example

long result, l = 0xE0000000; /* - 0.25 */

result = L_abs(s1);

// Expected value of result: 0x20000000 = 0.25

L_negate

Negates a 32-bit integer or fractional value returning a 32-bit result. Returns 0x7FFFFFFF
for an input of 0x80000000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_negate(Word32 lvar1)

Example

long result, l = 0xE0000000; /* - 0.25 */
240 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
result = L_negate(s1);

// Expected value of result: 0x20000000 = 0.25

Addition/Subtraction
The intrinsic functions of the addition/subtraction group are:

• add on page 241

• sub on page 241

• L_add on page 242

• L_sub on page 243

add

Addition of two 16-bit integer or fractional values, returning a 16-bit result.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 add(Word16 src_dst, Word16 src2)

Example

short s1 = 0x4000; /* 0.5 */

short s2 = 0x2000; /* 0.25 */

short result;

result = add(s1,s2);

// Expected value of result: 0x6000 = 0.75

sub

Subtraction of two 16-bit integer or fractional values, returning a 16-bit result.
24156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 sub(Word16 src_dst, Word16 src2)

Example

short s1 = 0x4000; /* 0.5 */

short s2 = 0xE000; /* -0.25 */

short result;

result = sub(s1,s2);

// Expected value of result: 0x6000 = 0.75

L_add

Addition of two 32-bit integer or fractional values, returning a 32-bit result.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_add(Word32 src_dst, Word32 src2)

Example

long la = 0x40000000; /* 0.5 */

long lb = 0x20000000; /* 0.25 */

long result;

result = L_add(la,lb);

// Expected value of result: 0x60000000 = 0.75
242 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_sub

Subtraction of two 32-bit integer or fractional values, returning a 32-bit result.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_sub(Word32 src_dst, Word32 src2)

 Example

long la = 0x40000000; /* 0.5 */

long lb = 0xE0000000; /* -0.25 */

long result;

result = L_sub(la,lb);

// Expected value of result: 0x60000000 = 0.75

Control
The intrinsic functions of the control group are:

• stop on page 243

• wait on page 244

• turn_off_conv_rndg on page 244

• turn_off_sat on page 245

• turn_on_conv_rndg on page 245

• turn_on_sat on page 245

stop

Generates a STOP instruction which places the processor in the low power STOP mode.
24356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

void stop(void)

Usage

stop();

wait

Generates a WAIT instruction which places the processor in the low power WAIT mode.

Prototype

void wait(void)

Usage

wait();

turn_off_conv_rndg

Generates a sequence for disabling convergent rounding by setting the R bit in the OMR
register and waiting for the enabling to take effect.

NOTE

NOTE If convergent rounding is disabled, the assembler performs 2’s complement
rounding.

Prototype

void turn_off_conv_rndg(void)

Usage

turn_off_conv_rndg();
244 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
turn_off_sat

Generates a sequence for disabling automatic saturation in the MAC Output Limiter by
clearing the SA bit in the OMR register and waiting for the disabling to take effect.

Prototype

void turn_off_sat(void)

Usage

turn_off_sat();

turn_on_conv_rndg

Generates a sequence for enabling convergent rounding by clearing the R bit in the OMR
register and waiting for the enabling to take effect.

Prototype

void turn_on_conv_rndg(void)

Usage

turn_on_conv_rndg();

turn_on_sat

Generates a sequence for enabling automatic saturation in the MAC Output Limiter by
setting the SA bit in the OMR register and waiting for the enabling to take effect.

Prototype

void turn_on_sat(void)

Usage

turn_on_sat();

Deposit/Extract
The intrinsic functions of the deposit/extract group are:
24556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
• extract_h on page 246

• extract_l on page 246

• L_deposit_h on page 247

• L_deposit_l on page 247

extract_h

Extracts the 16 MSBs of a 32-bit integer or fractional value. Returns a 16-bit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion. Corresponds to truncation when applied to fractional values.

Prototype

Word16 extract_h(Word32 lsrc)

Example

long l = 0x87654321;

short result;

result = extract_h(l);

// Expected value of result: 0x8765

extract_l

Extracts the 16 LSBs of a 32-bit integer or fractional value. Returns a 16-bit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion.

Prototype

Word16 extract_l(Word32 lsrc)

Example

long l = 0x87654321;

short result;

result = extract_l(l);
246 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
// Expected value of result: 0x4321

L_deposit_h

Deposits the 16-bit integer or fractional value into the upper 16 bits of a 32-bit value, and
zeroes out the lower 16 bits of a 32-bit value.

Prototype

Word32 L_deposit_h(Word16 ssrc)

Example

short s1 = 0x3FFF;

long result;

result = L_deposit_h(s1);

// Expected value of result: 0x3fff0000

L_deposit_l

Deposits the 16-bit integer or fractional value into the lower 16 bits of a 32- bit value, and
sign extends the upper 16 bits of a 32-bit value.

Prototype

Word32 L_deposit_l(Word16 ssrc)

Example

short s1 = 0x7FFF;

long result;

result = L_deposit_l(s1);

// Expected value of result: 0x00007FFF

Division
The intrinsic functions of the division group are:
24756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
• div_s on page 248

• div_s4q on page 248

• div_ls on page 249

• div_ls4q on page 249

div_s

Single quadrant division, that is, both operands are of positive 16-bit fractional values,
returning a 16-bit result. If both operands are equal, returns 0x7FFF (occurs naturally).

NOTE Does not check for division overflow or division by zero.

Prototype

Word16 div_s(Word16 s_numerator, Word16 s_denominator)

Example

short s1=0x2000; /* 0.25 */

short s2=0x4000; /* 0.5 */

short result;

result = div_s(s1,s2);

// Expected value of result: 0.25/0.5 = 0.5 = 0x4000

div_s4q

Four quadrant division of two 16-bit fractional values, returning a 16-bit result.

NOTE Does not check for division overflow or division by zero.

Prototype

Word16 div_s4q(Word16 s_numerator, Word16 s_denominator)

Example

short s1=0xE000;/* -0.25 */
248 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
short s2=0xC000;/* -0.5 */

short result;

result = div_s4q(s1,s2);

// Expected value of result: -0.25/-0.5 = 0.5 = 0x4000

div_ls

Single quadrant division, that is, both operands are positive two 16-bit fractional values,
returning a 16-bit result. If both operands are equal, returns 0x7FFF (occurs naturally).

NOTE Does not check for division overflow or division by zero.

Prototype

Word16 div_ls(Word32 l_numerator, Word16 s_denominator)

Example

long l =0x20000000;/* 0.25 */

short s2=0x4000;/* 0.5 */

short result;

result = div_ls(l,s2);

// Expected value of result: 0.25/0.5 = 0.5 = 0x4000

div_ls4q

Four quadrant division of a 32-bit fractional dividend and a 16-bit fractional divisor,
returning a 16-bit result.

NOTE Does not check for division overflow or division by zero.

Prototype

Word16 div_ls4q(Word32 l_numerator, Word16 s_denominator)
24956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

long l =0xE0000000;/* -0.25 */

short s2=0xC000;/* -0.5 */

short result;

result = div_ls4q(s1,s2);

// Expected value of result: -0.25/-0.5 = 0.5 = 0x4000

Multiplication/MAC
The intrinsic functions of the multiplication/MAC group are:

• mac_r on page 250

• msu_r on page 251

• mult on page 252

• mult_r on page 252

• L_mac on page 253

• L_msu on page 253

• L_mult on page 254

• L_mult_ls on page 255

mac_r

Multiply two 16-bit fractional values and add to 32-bit fractional value. Round into a 16-
bit result, saturating if necessary. When an accumulator is the destination, zeroes out the
LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s complement
rounding, not convergent rounding.

Prototype

Word16 mac_r(Word32 laccum, Word16 sinp1, Word16 sinp2)
250 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

short result;

long Acc = 0x0000FFFF;

result = mac_r(Acc,s1,s2);

// Expected value of result: 0xE001

msu_r

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value. Round into a 16-bit result, saturating if necessary. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s complement
rounding, not convergent rounding.

Prototype

Word16 msu_r(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

short result;

long Acc = 0x20000000;

result = msu_r(Acc,s1,s2);

// Expected value of result: 0x4000
25156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
mult

Multiply two 16-bit fractional values and truncate into a 16-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out
the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 mult(Word16 sinp1, Word16 sinp2)

Example

short s1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult(s1,s2);

// Expected value of result: 0.625 = 0x0800

mult_r

Multiply two 16-bit fractional values, round into a 16-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out
the LSP portion.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s complement
rounding, not convergent rounding.

Prototype

Word16 mult_r(Word16 sinp1, Word16 sinp2)
252 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

short s1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult_r(s1,s2);

// Expected value of result: 0.0625 = 0x0800

L_mac

Multiply two 16-bit fractional values and add to 32-bit fractional value, generating a 32-
bit result, saturating if necessary.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_mac(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

long result, Acc = 0x20000000;/* 0.25 */

result = L_mac(Acc,s1,s2);

// Expected value of result: 0

L_msu

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value, saturating if necessary. Generates a 32-bit result.
25356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_msu(Word32 laccum, Word16 sinp1, Word16 sinp2)

Example

short s1 = 0xC000;/* - 0.5 */

short s2 = 0xC000;/* - 0.5 */

long result, Acc = 0;

result = L_msu(Acc,s1,s2);

// Expected value of result: 0.25

L_mult

Multiply two 16-bit fractional values generating a signed 32-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_mult(Word16 sinp1, Word16 sinp2)

Example

short s1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

long result;

result = L_mult(s1,s2);

// Expected value of result: 0.0625 = 0x08000000
254 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_mult_ls

Multiply one 32-bit and one-16-bit fractional value, generating a signed 32-bit fractional
result. Saturates only for the case of 0x80000000 x 0x8000.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_mult_ls(Word32 linp1, Word16 sinp2)

Example

long l1 = 0x20000000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

long result;

result = L_mult(l1,s2);

// Expected value of result: 0.625 = 0x08000000

Normalization
The intrinsic functions of the normalization group are:

• ffs_s on page 255

• norm_s on page 256

• ffs_l on page 256

• norm_l on page 257

ffs_s

Computes the number of left shifts required to normalize a 16-bit value, returning a 16-bit
result (finds 1st sign bit). Returns a shift count of 31 for an input of 0x0000.

NOTE Does not actually normalize the value! Also see the intrinsic norm_s on
page 256 which handles the case where the input == 0x0000 differently.
25556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

Word16 ffs_s(Word16 ssrc)

Example

short s1 = 0x2000;/* .25 */

short result;

result = ffs_s(s1);

// Expected value of result: 1

norm_s

Computes the number of left shifts required to normalize a 16-bit value, returning a 16-bit
result. Returns a shift count of 0 for an input of 0x0000.

NOTE Does not actually normalize the value! This operation is not optimal on the
DSP56800E because of the case of returning 0 for an input of 0x0000. See the
intrinsic ffs_s on page 255 which is more optimal but generates a different
value for the case where the input == 0x0000.

Prototype

Word16 norm_s(Word16 ssrc)

Example

short s1 = 0x2000;/* .25 */

short result;

result = norm_s(s1);

// Expected value of result: 1

ffs_l

Computes the number of left shifts required to normalize a 32-bit value, returning a 16-bit
result (finds 1st sign bit). Returns a shift count of 31 for an input of 0x00000000.
256 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
NOTE Does not actually normalize the value! Also, see the intrinsic norm_l on
page 257 which handles the case where the input == 0x00000000 differently.

Prototype

Word16 ffs_l(Word32 lsrc)

Example

long ll = 0x20000000;/* .25 */

short result;

result = ffs_l(ll);

// Expected value of result: 1

norm_l

Computes the number of left shifts required to normalize a 32-bit value, returning a 16-bit
result. Returns a shift count of 0 for an input of 0x00000000.

NOTE Does not actually normalize the value! This operation is not optimal on the
DSP56800E because of the case of returning 0 for an input of 0x00000000. See
the intrinsic ffs_l on page 256 which is more optimal but generates a different
value for the case where the input == 0x00000000.

Prototype

Word16 norm_l(Word32 lsrc)

Example

long ll = 0x20000000;/* .25 */

short result;

result = norm_l(ll);

// Expected value of result: 1
25756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Rounding
The intrinsic function of the rounding group is:

• round on page 258

round

Rounds a 32-bit fractional value into a 16-bit result. When an accumulator is the
destination, zeroes out the LSP portion.

Assumptions

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s complement
rounding, not convergent rounding.

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 round(Word32 lvar1)

Example

long l = 0x12348002;/*if low 16 bits = 0xFFFF > 0x8000 then
add 1 */

short result;

result = round(l);

// Expected value of result: 0x1235

Shifting
The intrinsic functions of the shifting group are:

• shl on page 259

• shlftNs on page 260

• shlfts on page 260

• shr on page 261

• shr_r on page 262

• shrtNs on page 263
258 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
• L_shl on page 263

• L_shlftNs on page 264

• L_shlfts on page 265

• L_shr on page 265

• L_shr_r on page 266

• L_shrtNs on page 267

shl

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic shlftNs on
page 260 or shlfts on page 260 which are more optimal.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 shl(Word16 sval2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x1234;

short s2 = 1;

result = shl(s1,s2);

// Expected value of result: 0x2468
25956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
shlftNs

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation does not occur
during a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

If s_shftamount is positive and the value in the
lower 5 bits of s_shftamount is greater than 15, the
result is 0.

If s_shftamount is negative and the absolute value
in the lower 5 bits of s_shftamount is greater than
15, the result is 0 if sval2shft is positive, and
0xFFFF if sval2shft is negative.

Prototype

Word16 shlftNs(Word16 sval2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x1234;

short s2 = 1;

result = shlftNs(s1,s2);

// Expected value of result: 0x2468

shlfts

Arithmetic left shift of 16-bit value by a specified shift amount. Saturation does occur
during a left shift if required. When an accumulator is the destination, zeroes out the LSP
portion.
260 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
NOTE This is not a bidirectional shift.

Assumptions

Assumed s_shftamount is positive.

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 shlfts(Word16 sval2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x1234;

short s2 = 3;

result = shlfts(s1,s2);

// Expected value of result: 0x91a0

shr

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic shrtNs on
page 263 which is more optimal.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 shr(Word16 sval2shft, Word16 s_shftamount)
26156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

short result;

short s1 = 0x2468;

short s2= 1;

result = shr(s1,s2);

// Expected value of result: 0x1234

shr_r

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. If a right shift is performed,
then rounding performed on result. Saturation may occur during a left shift. When an
accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic shrtNs on
page 263 which is more optimal.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word16 shr_r(Word16 s_val2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x2468;

short s2= 1;

result = shr(s1,s2);

// Expected value of result: 0x1234
262 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
shrtNs

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation does not occur
during a left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

If s_shftamount is positive and the value in the
lower 5 bits of s_shftamount is greater than 15, the
result is 0 if sval2shft is positive, and 0xFFFF is
sval2shft is negative.

If s_shftamount is negative and the absolute value
in the lower 5 bits of s_shftamount is greater than
15, the result is 0.

Prototype

Word16 shrtNs(Word16 sval2shft, Word16 s_shftamount)

Example

short result;

short s1 = 0x2468;

short s2= 1;

result = shrtNs(s1,s2);

// Expected value of result: 0x1234

L_shl

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the LSP portion.
26356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic L_shlftNs on
page 264 or L_shlfts on page 265 which are more optimal.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shl(Word32 lval2shft, Word16 s_shftamount)

Example

long result, l = 0x12345678;

short s2 = 1;

result = L_shl(l,s2);

// Expected value of result: 0x2468ACF0

L_shlftNs

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, a right shift is performed. Saturation does not occur
during a left shift.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

Prototype

Word32 L_shlftNs(Word32 lval2shft, Word16 s_shftamount)

Example

long result, l = 0x12345678;

short s2= 1;

result = L_shlftNs(l,s2);

// Expected value of result: 0x2468ACF0
264 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_shlfts

Arithmetic left shift of 32-bit value by a specified shift amount. Saturation does occur
during a left shift if required.

NOTE This is not a bidirectional shift.

Assumptions

Assumed s_shftamount is positive.

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shlfts(Word32 lval2shft, Word16 s_shftamount)

Example

long result, l = 0x12345678;

short s1 = 3;

result = shlfts(l, s1);

// Expected value of result: 0x91A259E0

L_shr

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE This operation is not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic L_shrtNs on
page 267 which is more optimal.

Assumptions

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
26556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

Word32 L_shr(Word32 lval2shft, Word16 s_shftamount)

Example

long result, l = 0x24680000;

short s2= 1;

result = L_shrtNs(l,s2);

// Expected value of result: 0x12340000

L_shr_r

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. If a right shift is performed,
then rounding performed on result. Saturation may occur during a left shift.

Assumptions

OMR's SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shr_r(Word32 lval2shft, Word16 s_shftamount)

Example

long l1 = 0x41111111;

short s2 = 1;

long result;

result = L_shr_r(l1,s2);

// Expected value of result: 0x20888889
266 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
L_shrtNs

Arithmetic shift of 32-bit value by a specified shift amount.If the shift count is positive, a
right shift is performed. Otherwise, a left shift is performed. Saturation does not occur
during a left shift.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

Prototype

Word32 L_shrtNs(Word32 lval2shft, Word16 s_shftamount)

Example

long result, l = 0x24680000;

short s2= 1;

result = L_shrtNs(l,s2);

// Expected value of result: 0x12340000

Modulo Addressing Intrinsic Functions
A modulo buffer is a buffer in which the data pointer loops back to the beginning of the
buffer once the pointer address value exceeds a specified limit.

Figure 11.1 on page 268 depicts a modulo buffer with the limit six. Increasing the pointer
address value to 0x106 makes it point to the same data it would point to if its address value
were 0x100.
26756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Figure 11.1 Example of a Modulo Buffer

The CodeWarrior C compiler for DSP56800E uses intrinsic functions to create and
manipulate modulo buffers. Normally, a modulo operation, such as the % operator,
requires a runtime function call to the arithmetic library. For normally timed critical DSP
loops, this binary operation imposes a large execution-time overhead.

The CodeWarrior implementation, however, replaces the runtime call with an efficient
implementation of circular-address modification, either by using hardware resources or by
manipulating the address mathematically.

Processors such as the DSP56800E have on-chip hardware support for modulo buffers.
Modulo control registers work with the DSP pointer update addressing modes to access a
range of addresses instead of a continuous, linear address space. But hardware support
imposes strict requirements on buffer address alignment, pointer register resources, and
limited modulo addressing instructions. For example, R0 and R1 are the only registers
available for modulo buffers.

Accordingly, the CodeWarrior C compiler uses a well-defined set of instrinsic APIs to
implement modulo buffers.

Modulo Addressing Intrinsic Functions
The intrinsic functions for modulo addressing are:

• __mod_init on page 269

• __mod_initint16 on page 269

• __mod_start on page 270

• __mod_access on page 270

• __mod_update on page 271

• __mod_stop on page 271

• __mod_getint16 on page 271

• __mod_setint16 on page 272

Address Data
0x100 0.68

0x101 0.73

0x105 0.95

0x102 0.81

0x103 0.86

0x104 0.90
268 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
• __mod_error on page 272

__mod_init

Initialize a modulo buffer pointer with arbitrary data using the address specified by the
<addr_expr>. This function expects a byte address. <addr_expr> is an arbitrary C
expression which normally evaluates the address at the beginning of the modulo buffer,
although it may be any legal buffer address. The <mod_desc> evaluates to a compile time
constant of either 0 or 1, represented by the modulo pointers R0 or R1, respectively. The
<mod_sz> is a compile time integer constant representing the size of the modulo buffer in
bytes. The <data_sz> is a compile time integer constant representing the size of data being
stored in the buffer in bytes. <data_sz> is usually derived from the sizeof() operator.

The __mod_init function may be called independently for each modulo pointer register.

If __mod_error has not been previously called, no record of __mod_init errors are saved.

If __mod_error has been previously called, __mod_init may set one of the error condition
in the static memory location defined by __mod_error. (See __mod_error description for a
complete list of error conditions).

Prototype

void __mod_init (

int <mod_desc>,

void * <addr_expr>,

int <mod_sz>,

int <data_sz>);

Example

Initialize a modulo buffer pointer with a buffer size of 3 and where each element is a
structure:

__mod_init(0, (void *)&struct_buf[0], 3, sizeof(struct
mystruct));

__mod_initint16

Initialize modulo buffer pointer with integer data. The __mod_initint16 function behaves
similarly to the __mod_init function, except that word addresses are used to initialize the
modulo pointer register.
26956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Prototype

void __mod_initint16(

int <mod_desc>,

int * <addr_expr>,

int <mod_sz>);

Example

Initialize an integer modulo buffer pointer with a buffer size of 10.

__mod_initint16(0, &int_buf[9], 10);

__mod_start

Write the modulo control register. The __mod_start function simply writes the modulo
control register (M01) for each modulo pointer register which has been previously
initialized. The values written to M01 depends on the size of the modulo buffer and which
pointers have been initialized.

Prototype

void __mod_start(void);

__mod_access

Retrieve the modulo pointer. The __mod_access function returns the modulo pointer value
specified by <mod_desc> in the R2 register, as per calling conventions. The value
returned is a byte address. The data in the modulo buffer may be read or written by a cast
and dereference of the resulting pointer.

Prototype

void *__mod_access(int <mod_desc>);

Example

Assign a value to the modulo buffer at the current pointer.

*((char *)__mod_access(0)) = (char)i;
270 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
__mod_update

Update the modulo pointer. The __mod_update function updates the modulo pointer by
the number of data type units specified in <amount>. <amount> may be negative. Of
course, the pointer will wrap to the beginning of the modulo buffer if the pointer is
advanced beyond the modulo boundaries. <amount> must be a compile time constant.

Prototype

void __mod_update(int <mod_desc>, int <amount>);

Example

Advance the modulo pointer by 2 units.

__mod_update(0, 2);

__mod_stop

Reset modulo addressing to linear addressing. This function writes the modulo control
register with a value which restore linear addressing to the R0 and R1 pointer registers.

Prototype

void __mod_stop(int <mod_desc);

__mod_getint16

Retrieve a 16-bit signed value from the modulo buffer and update the modulo pointer.This
function returns an integer value from the location pointed to by the modulo pointer. The
function then updates the modulo pointer by <amount> integer units (<amount>*2 bytes).
<amount> must be a compile time constant.

Prototype

int __mod_getint16(int <mod_desc>, int <amount>);

Example

Retrieve an integer value from a modulo buffer and update the modulo buffer pointer by
one word.
27156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
int y;

y = __mod_getint16(0, 1);

__mod_setint16

Write a 16-bit signed integer to the modulo buffer and update the pointer. This function
evaluates <int_expr> and copies the value to the location pointed to by the modulo
pointer. The modulo pointer is then updated by <amount>. <amount> must be a compile
time constant.

Prototype

int __mod_setint16(int <mod_desc>, int <int_expr>, int
<amount>);

Example

Write the modulo buffer with a value derived from an expression, do not update modulo
pointer.

__mod_setint16(0, getrandomint(), 0);

__mod_error

Set up a modulo error variable. This function registers a static integer address to hold the
error results from any of the modulo buffer API calls. The function returns 0 if it is
successful, 1 otherwise. The argument must be the address of a static, global integer
variable. This variable holds the result of calling each of the previously defined API
functions. This allows the user to monitor the status of the error variable and take action if
the error variable is non-zero. Typically, the user would use __mod_error during
development and remove it once debugging is complete. __mod_error generates no code,
although the error variable may occupy a word of memory. A non-zero value in the error
variable indicates a misuse of the one of the API functions. Once the error variable is set it
is reset when __mod_stop is called. The error variable contains the error number of the
last error. A successful call to an API function will not reset the error variable; only
__mod_stop will reset the error variable.

Prototype

int __mod_error(int * <static_object_addr>);
272 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
Example

Register the error number variable

static int myerrno;

assert(__mod_error(&myerrno) == 0) ;

Modulo Buffer Examples
Listing 11.11 on page 273 and Listing 11.12 on page 274.are two modulo buffer
examples.

Listing 11.11 Modulo Buffer Example 1

#pragma define_section DATA_INT_MODULO ".data_int_modulo"

/* Place the buffer object in a unique section so the it can be aligned
properly in the linker control file. */

#pragma section DATA_INT_MODULO begin
int int_buf[10];
#pragma section DATA_INT_MODULO end

/* Convenient
defines for modulo descriptors */

#define M0 0
#define M1 1

int main (void)
{

int i;

/* Modulo buffer will be initialized. R0 will be the modulo pointer
register. The buffer size is 10 units. The unit size is ‘sizeof(int)’.
*/

__mod_init(M0, (void *)&int_buf[0], 10, sizeof(int));

/* Write the modulo control register */

__mod_start();

/* Write int_buf[0] through int_buf[9]. R0 initially points at
27356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
int_buf[0] and wraps when the pointer value exceeds int_buf[9]. The
pointer is updated by 1 unit each time through the loop */

for (i=0;
i<100; i++)

{

*((int
*)__mod_access(M0)) = i;

__mod_update(M0,
1);

}

/* Reset modulo control register to linear addressing mode */
__mod_stop();

}

Listing 11.12 Modulo Buffer Example 2

/* Set up a static location to save error codes */
if (! __mod_error(&err_codes)) {

printf
(“__mod_error set up failed\n”);
}

/* Initialize a modulo buffer pointer, pointing to an array of 10 ints.
*/

__mod_initint16(M0, &int_buf[9], 10);

/* Check for success of previous call */

if (err_code) {
printf (“__mod_initint16 failed\n”) };

__mod_start();

/* Write modulo buffer with the result of the expression “i”.
Decrement the buffer pointer for each execution of the loop.
The modulo buffer wraps from index 0 to 9 through the entire execution
of the loop. */

for (i=100;
i>0; i--) {
274 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
__mod_setint16(M0, i, -1);

}
__mod_stop();

Points to Remember
As you use modulo buffer intrinsic functions, keep these points in mind:

1. You must align modulo buffers properly, per the constraints that the M56800E User’s
Manual explains. There is no run-time validation of alignment. Using the modulo
buffer API on unaligned buffers will cause erratic, unpredictable behavior during data
accesses.

2. Calling __mod_start() to write to the modulo control register effectively changes
the hardware’s global-address-generation state. This change of state affects all user
function calls, run-time supporting function calls, standard library calls, and interrupts.

3. You must account for any side-effects of enabling modulo addressing. Such a side-
effect is that R0 and R1update in a modulo way.

4. If you need just one modulo pointer is required, use the R0 address register. Enabling
the R1 address register for modulo use also enables the R0 address register for modulo
use. This is true even if __mod_init() or __mod_initint16() have not
explicitly initialized R0.

5. A successful API call does not clear the error code from the error variable. Only
function __mod_stop clears the error code.

Modulo Addressing Error Codes
If you want to register a static variable for error-code storage, use __mod_error(). In
case of an error occur, this static variable will contain one of the values Table 11.3 on
page 275 explains. Table 11.4 on page 276. lists the error codes possible for each modulo
addressing intrinsic function.

Table 11.3 Modulo Addressing Error Codes

Code Meaning

11 <mod_desc> parameter must be zero or one.

12 R0 modulo pointer is already initialized. An extraneous call to
__mod_init or __mod_initint16 to initialize R0 has been made.
27556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
13 R1 modulo pointer is already initialized. An extraneous call to
__mod_init or __mod_initint16 to initialize R1 has been made.

14 Modulo buffer size must be a compile time constant.

15 Modulo buffer size must be greater than one.

16 Modulo buffer size is too big.

17 Modulo buffer size for R0 and R1 must be the same.

18 Modulo buffer data types for R0 and R1 must be the same.

19 Modulo buffer has not been initialized.

20 Modulo buffer has not been started.

21 Parameter is not a compile time constant.

22 Attempt to use word pointer functions with byte pointer initialization.
__mod_getint16 and __mod_setint16 were called but __mod_init
was used for initialization. __mod_initint16 is required for pointer
initialization.

23 Modulo increment value exceeds modulo buffer size.

24 Attempted use of R1 as a modulo pointer without initializing R0 for modulo
use.

Table 11.4 Possible Error Codes

Function Possible Error Code

__mod_init 11, 12, 13, 14, 15, 16, 17, 18, 21

__mod_stop none

__mod_getint16 11, 14, 20, 22, 24

__mod_setint16 11, 14, 20, 22, 24

__mod_start none

__mod_access 11, 19, 20, 24

Table 11.3 Modulo Addressing Error Codes (continued)

Code Meaning
276 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
__mod_update 11, 14, 20, 23, 24

__mod_initint16 11, 12, 13, 14, 15, 16, 17

Table 11.4 Possible Error Codes (continued)

Function Possible Error Code
27756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions
278 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

12
ELF Linker

The CodeWarrior™ Executable and Linking Format (ELF) Linker makes a program file
out of the object files of your project. The linker also allows you to manipulate code in
different ways. You can define variables during linking, control the link order to the
granularity of a single function, change the alignment, and even compress code and data
segments so that they occupy less space in the output file.

All of these functions are accessed through commands in the linker command file (LCF).
The linker command file has its own language complete with keywords, directives, and
expressions, that are used to create the specifications for your output code. The syntax and
structure of the linker command file is similar to that of a programming language.

This chapter contains the following sections:

• Structure of Linker Command Files on page 279

• Linker Command File Syntax on page 282

• Linker Command File Keyword Listing on page 291

Structure of Linker Command Files
Linker command files contain three main segments:

• Memory Segment on page 279

• Closure Blocks on page 280

• Sections Segment on page 281

A command file must contain a memory segment and a sections segment. Closure
segments are optional.

Memory Segment
In the memory segment, available memory is divided into segments. The memory segment
format looks like Listing 12.1 on page 279.

Listing 12.1 Sample MEMORY Segment

MEMORY {
segment_1 (RWX): ORIGIN = 0x8000, LENGTH = 0x1000
segment_2 (RWX): ORIGIN = AFTER(segment_1), LENGTH = 0
27956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Structure of Linker Command Files
data (RW) : ORIGIN = 0x2000, LENGTH = 0x0000
#segment_name (RW) : ORIGIN = memory address, LENGTH = segment
#length
#and so on...

}

The first memory segment definition (segment_1) can be broken down as follows:

• the (RWX) portion of the segment definition pertains to the ELF access permission of
the segment. The (RWX) flags imply read, write, and execute access.

• ORIGIN represents the start address of the memory segment (in this case 0x8000).

• LENGTH represents the size of the memory segment (in this case 0x1000).

Memory segments with RWX attributes are placed into P: memory while RW attributes
are placed into X: memory.

If you cannot predict how much space a segment will occupy, you can use the function
AFTER and LENGTH = 0 (unlimited length) to fill in the unknown values.

Closure Blocks
The linker is very good at deadstripping unused code and data. Sometimes, however,
symbols need to be kept in the output file even if they are never directly referenced.
Interrupt handlers, for example, are usually linked at special addresses, without any
explicit jumps to transfer control to these places.

Closure blocks provide a way to make symbols immune from deadstripping. The closure
is transitive, meaning that symbols referenced by the symbol being closed are also forced
into closure, as are any symbols referenced by those symbols, and so on.

NOTE The closure blocks need to be in place before the SECTIONS definition in the
linker command file.

The two types of closure blocks available are:

• Symbol-level

Use FORCE_ACTIVE to include a symbol into the link that would not be otherwise
included. An example is shown in Listing 12.2 on page 280.

Listing 12.2 Sample Symbol-level Closure Block

FORCE_ACTIVE {break_handler, interrupt_handler, my_function}

• Section-level
280 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Structure of Linker Command Files
Use KEEP_SECTION when you want to keep a section (usually a user-defined
section) in the link. Listing 12.3 on page 281 shows an example.

Listing 12.3 Sample Section-level Closure Block

KEEP_SECTION {.interrupt1, .interrupt2}

A variant is REF_INCLUDE. It keeps a section in the link, but only if the file where it is
coming from is referenced. This is very useful to include version numbers. Listing 12.4 on
page 281 shows an example of this.

Listing 12.4 Sample Section-level Closure Block With File Dependency

REF_INCLUDE {.version}

Sections Segment
Inside the sections segment, you define the contents of your memory segments, and define
any global symbols to be used in the output file.

The format of a typical sections block looks like Listing 12.5 on page 281.

NOTE As shown in Listing 12.5 on page 281, the .bss section always needs to be
put at the end of a segment or in a standalone segment, because it is not a
loadable section.

Listing 12.5 Sample SECTIONS Segment

SECTIONS {
.section_name : #the section name is for your reference
{ #the section name must begin with a '.'

filename.c (.text) #put the .text section from filename.c
filename2.c (.text) #then the .text section from filename2.c
filename.c (.data)
filename2.c (.data)
filename.c (.bss)
filename2.c (.bss)
. = ALIGN (0x10); #align next section on 16-byte boundary.

} > segment_1 #this means "map these contents to segment_1"

.next_section_name:
{

more content descriptions
28156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
} > segment_x # end of .next_section_name definition
} # end of the sections block

Linker Command File Syntax
This section explains some practical ways in which to use the commands of the linker
command file to perform common tasks.

Alignment
To align data on a specific word-boundary, use the ALIGN on page 293 and
ALIGNALL on page 293 commands to bump the location counter to the preferred
boundary. For example, the following fragment uses ALIGN to bump the location counter
to the next 16-byte boundary. An example is given in Listing 12.6 on page 282.

Listing 12.6 Sample ALIGN Command Usage

file.c (.text)
. = ALIGN (0x10);
file.c (.data) # aligned on a word boundary.

You can also align data on a specific word-boundary with ALIGNALL, as shown in
Listing 12.7 on page 282.

Listing 12.7 Sample ALIGNALL Command Usage

file.c (.text)
ALIGNALL (0x10); #everything past this point aligned on word boundary
file.c (.data)

Arithmetic Operations
Standard C arithmetic and logical operations may be used to define and use symbols in the
linker command file. Table 12.1 on page 283 shows the order of precedence for each
operator. All operators are left-associative.
282 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
NOTE The shift operator shifts two-bits for each shift operation. The divide operator
performs division and rounding.

Comments
Comments may be added by using the pound character (#) or C++ style double-slashes (/
/). C-style comments are not accepted by the LCF parser. Listing 12.8 on page 283 shows
examples of valid comments.

Listing 12.8 Sample Comments

This is a one-line comment
* (.text) // This is a partial-line comment

Deadstrip Prevention
The M56800E linker removes unused code and data from the output file. This process is
called deadstripping. To prevent the linker from deadstripping unreferenced code and
data, use the FORCE_ACTIVE on page 294, KEEP_SECTION on page 295, and
REF_INCLUDE on page 297 directives to preserve them in the output file.

Table 12.1 Arithmetic Operators

Precedence Operators

highest (1) - ˜ !

2 * / %

3 + -

4 >> <<

5 == != > < <= >=

6 &

7 |

8 &&

9 ||
28356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
Variables, Expressions, and Integral Types
This section explains variables, expressions, and integral types.

Variables and Symbols
All symbol names within a Linker Command File (LCF) start with the underscore
character (_), followed by letters, digits, or underscore characters. Listing 12.9 on
page 284 shows examples of valid lines for a command file:

Listing 12.9 Valid Command File Lines

_dec_num = 99999999;
_hex_num_ = 0x9011276;

Variables that are defined within a SECTIONS section can only be used within a
SECTIONS section in a linker command file.

Global Variables
Global variables are accessed in a linker command file with an ‘F’ prepended to the
symbol name. This is because the compiler adds an ‘F’ prefix to externally defined
symbols.

Listing 12.10 on page 284 shows an example of using a global variable in a linker
command file. This example sets the global variable _foot, declared in C with the
extern keyword, to the location of the address location current counter.

Listing 12.10 Using a Global Variable in the LCF

F_foot = .;

If you use a global symbol in an LCF, as in Listing 12.10 on page 284, you can access it
from C program sources as shown in Listing 12.11 on page 284.

Listing 12.11 Accessing a Global Symbol From C Program Sources

extern unsigned long _foot;
void main(void) {

unsigned long i;
// ...
i = _foot; // _foot value determined in LCF
// ...

}

284 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
Expressions and Assignments
You can create symbols and assign addresses to those symbols by using the standard
assignment operator. An assignment may only be used at the start of an expression, and a
semicolon is required at the end of an assignment statement. An example of standard
assignment operator usage is shown in Listing 12.12 on page 285.

Listing 12.12 Standard Assignment Operator Usage

_symbolicname = some_expression; # Legal
_sym1 + _sym2 = _sym3; # ILLEGAL!

When an expression is evaluated and assigned to a variable, it is given either an absolute
or a relocatable type. An absolute expression type is one in which the symbol contains the
value that it will have in the output file. A relocatable expression is one in which the value
is expressed as a fixed offset from the base of a section.

Integral Types
The syntax for linker command file expressions is very similar to the syntax of the C
programming language. All integer types are long or unsigned long.

Octal integers (commonly know as base eight integers) are specified with a leading zero,
followed by numeral in the range of zero through seven. Listing 12.13 on page 285 shows
valid octal patterns that you can put into your linker command file.

Listing 12.13 Sample Octal Patterns

_octal_number = 012;
_octal_number2 = 03245;

Decimal integers are specified as a non-zero numeral, followed by numerals in the range
of zero through nine. To create a negative integer, use the minus sign (-) in front of the
number. Listing 12.14 on page 285 shows examples of valid decimal integers that you can
write into your linker command file.

Listing 12.14 Sample Decimal Integers

_dec_num = 9999;
_decimalNumber = -1234;

Hexadecimal (base sixteen) integers are specified as 0x or 0X (a zero with an X),
followed by numerals in the range of zero through nine, and/or characters A through F.
Examples of valid hexadecimal integers that you can put in your linker command file
appear in Listing 12.15 on page 286.
28556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
Listing 12.15 Sample Hex Integers

_somenumber = 0x0F21;
_fudgefactorspace = 0XF00D;
_hexonyou = 0xcafe;

NOTE When assigning a value to a pointer variable, the value is in byte units despite
that in the linked map (.xMAP file), the variable value appears in word units.

File Selection
When defining the contents of a SECTION block, specify the source files that are
contributing to their sections.

In a large project, the list can become very long. For this reason, you have to use the
asterisk (*) keyword. The * keyword represents the filenames of every file in your project.
Note that since you have already added the .text sections from the main.c,
file2.c, and file3.c files, the * keyword does not include the .text sections
from those files again.

Function Selection
The OBJECT on page 297 keyword allows precise control over how functions are placed
within a section. For example, if the functions pad and foot are to be placed before
anything else in a section, use the code as shown in the example in Listing 12.16 on
page 286.

Listing 12.16 Sample Function Selection Using OBJECT Keyword

SECTIONS {
.program_section :

{
OBJECT (Fpad, main.c)
OBJECT (Ffoot, main.c)
* (.text)

} > ROOT
}

NOTE If an object is written once using the OBJECT function selection keyword, the
same object will not be written again if you use the '*' file selection keyword.
286 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
ROM to RAM Copying
In embedded programming, it is common to copy a portion of a program resident in ROM
into RAM at runtime. For example, program variables cannot be accessed until they are
copied to RAM.

To indicate data or code that is meant to be copied from ROM to RAM, the data or code is
assigned two addresses. One address is its resident location in ROM (where it is
downloaded). The other is its intended location in RAM (where it is later copied in C
code).

Use the MEMORY segment to specify the intended RAM location, and the AT(address)
parameter to specify the resident ROM address.

For example, you have a program and you want to copy all your initialized data into RAM
at runtime. Listing 12.17 on page 287 shows the LCF you use to set up for writing data to
ROM.

Listing 12.17 LCF to Setup for ROM to RAM Copy

MEMORY {
.text (RWX) : ORIGIN = 0x8000, LENGTH = 0x0 # code (p:)
.data (RW) : ORIGIN = 0x3000, LENGTH = 0x0 # data (x:)->

RAM
}

SECTIONS{

.main_application :
{

.text sections

*(.text)
*(.rtlib.text)
*(.fp_engine.txt)
*(user.text)

} > .text

__ROM_Address = 0x2000
.data : AT(__ROM_Address) # ROM Address definition
{

.data sections
F__Begin_Data = .; # Start location for RAM (0x3000)
*(.data) # Write data to the section (ROM)
*(fp_state.data);
*(rtlib.data);
F__End_Data = .; # Get end location for RAM

.bss sections
28756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
* (rtlib.bss.lo)
* (.bss)
F__ROM_Address = __ROM_Address

} > .data
}

To make the runtime copy from ROM to RAM, you need to know where the data starts in
ROM (__ROM_Address) and the size of the block in ROM you want to copy to RAM.
In the following example (Listing 12.18 on page 288), copy all variables in the data
section from ROM to RAM in C code.

Listing 12.18 ROM to RAM Copy From C After Writing Data Flash

#include <stdio.h>
#include <string.h>

int GlobalFlash = 6;

// From linker command file
extern __Begin_Data, __ROMAddress, __End_Data;

void main(void)
{

unsigned short a = 0, b = 0, c = 0;
unsigned long dataLen = 0x0;
unsigned short __myArray[] = { 0xdead, 0xbeef, 0xcafe };

// Calculate the data length of the X: memory written to Flash
dataLen = (unsigned long)&__End_Data -
unsigned long)&__Begin_Data;

// Block move from ROM to RAM
memcpy((unsigned long *)&__Begin_Data,

(const unsigned long *)&__ROMAddress,dataLen);

a = GlobalFlash;

return;
 }
288 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
Utilizing Program Flash and Data RAM for
Constant Data in C
There are many advantages and one disadvantage if constant data in C is flashed to
program flash memory (pROM) and copied to data flash memory (xRAM) at startup, with
the usual pROM-to-xRAM initialization.

The advantages are:

• constant data is defined and addressed conventionally via C language

• pROM flash space is used for constant data (pROM is usually larger than xROM)

• the pROM flash is now freed up or available

The disadvantage is that the xRAM is consumed for constant data at run-time.

If you wish to store constant data in program flash memory and have it handled by the
pROM-to-xRAM startup process, a simple change is necessary to the pROM-to-xRAM
LCF. Simply, place the constant data references into the data_in_p_flash_ROM section
after the __xRAM_data_start variable like the other data references and remove the "data
in xROM" section. Please see Listing 12.19 on page 289.

Listing 12.19 Using the Typical pROM-to-xRAM LCF

.data_in_p_flash_ROM : AT(__pROM_data_start)
{

__xRAM_data_start = .;

* (.const.data.char) # move constant data references here
* (.const.char)

* (.data.char)
* (.data)

etc.

Utilizing Program Flash for User-Defined
Constant Section in Assembler
There are many advantages and one disadvantage in writing specific data to pROM with
linker commands and accessing this data in assembly,

The advantages are:

• pROM flash space is used for user-specified constant data (pROM is usually larger
than xROM), where the constant data is defined and addressed by assembly
language
28956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax
• part of the pROM flash is now freed up or available

The disadvantage is that data is not defined or accessed conventionally via C language;
data is specifically flashed to pROM via the linker command file and fetched from pROM
with assembly.

If you want to keep specific constant data in pROM and access it from there, you can use
the linker commands to explicitly store the data in pROM and then later access the data in
pROM with assembly.

The next two sections describe putting data in the pROM flash at build and run-time.

Putting Data in pROM Flash at Build-time
The linker commands have specific instructions which set values in the binary image at
the build time (Listing 12.20 on page 290). For example, WRITEH inserts two bytes of
data at the current address of a section. These commands are placed in the LCF, which
tells the linker at build time to place data in P or X memory. Optionally, you can also set
the current location prior to the write command to ensure a specific location address for
easier reference later. The location within the section is not important.

For more information, please see the LCF section in this document.

Listing 12.20 LCF write example using MC56F832x for build-time

.executing_code :
{

.text sections

. = 0x00A4; # optionally set the location -- we use 0x00A4 in this
case
WRITEH(0xABCD); # now set some value here; location within the
section is not important
* (.text)
* (interrupt_routines.text)
* (rtlib.text)
* (fp_engine.text)
* (user.text)

etc

} > .p_flash_ROM

Putting Data in pROM Flash at Run-time

The assembly example in Listing 12.21 on page 291 fetches the pROM-flashed value at
run-time in Listing 12.20 on page 290.
290 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
Listing 12.21 LCF write example using MC56F832x for run-time

move.l #$00A4, r1 ; move the pROM address into r3
move.w p:(r3)+, x0 ; fetch data from pROM at address r1 into x0

Stack and Heap
To reserve space for the stack and heap, arithmetic operations are performed to set the
values of the symbols used by the runtime.

The Linker Command File (LCF) performs all the necessary stack and heap initialization.
When Stationery is used to create a new project, the appropriate LCFs are added to the
new project.

See any Stationery-generated LCFs for examples of how stack and heap are initialized.

Writing Data Directly to Memory
You can write data directly to memory using the WRITEx command in the linker
command file. The WRITEB command writes a byte, the WRITEH command writes two
bytes, and the WRITEW command writes four bytes. You insert the data at the section’s
current address.

Listing 12.22 Embedding Data Directly Into Output

.example_data_section :
{

WRITEB 0x48; // 'H'
WRITEB 0x69; // 'i'
WRITEB 0x21; // '!'

}

Linker Command File Keyword Listing
This section explains the keywords available for use when creating CodeWarrior
Development Studio for Freescale 56800/E Digital Signal Controllers application objects
with the linker command file. Valid linker command file functions, keywords, directives,
and commands are:
29156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
. (location counter)

The period character (.) always maintains the current position of the output location.
Since the period always refers to a location in a SECTIONS on page 297 block, it
can not be used outside a section definition.

A period may appear anywhere a symbol is allowed. Assigning a value to period that is
greater than its current value causes the location counter to move, but the location counter
can never be decremented.

This effect can be used to create empty space in an output section. In the example below,
the location counter is moved to a position that is 0x1000 words past the symbol
FSTART_.

Example

.data :

{

*(.data)

*(.bss)

FSTART_ = .;

. = FSTART_ + 0x1000;

__end = .;

} > DATA

ADDR

The ADDR function returns the address of the named section or memory segment.

Prototype

ADDR (sectionName | segmentName | symbol)

In the example below, ADDR is used to assign the address of ROOT to the symbol
__rootbasecode.

Example

MEMORY{

ROOT (RWX) : ORIGIN = 0x8000, LENGTH = 0

}

292 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
SECTIONS{

.code :

{

__rootbasecode = ADDR(ROOT);

*(.text);

} > ROOT

}

NOTE In order to use segmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, as is the case with sectionName.

ALIGN

The ALIGN function returns the value of the location counter aligned on a boundary
specified by the value of alignValue. The alignValue must be a power of two.

Prototype

ALIGN(alignValue)

Note that ALIGN does not update the location counter; it only performs arithmetic. To
update the location counter, use an assignment such as:

Example

. = ALIGN(0x10); #update location counter to 16
#byte alignment

ALIGNALL

ALIGNALL is the command version of the ALIGN function. It forces the minimum
alignment for all the objects in the current segment to the value of alignValue. The
alignValue must be a power of two.

Prototype

ALIGNALL(alignValue);
29356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
Unlike its counterpart ALIGN on page 293, ALIGNALL is an actual command. It updates
the location counter as each object is written to the output.

Example

.code :

{

ALIGNALL(16); // Align code on 16 byte boundary

* (.init)

* (.text)

ALIGNALL(16); //align data on 16 byte boundary

* (.rodata)

} > .text

FORCE_ACTIVE

The FORCE_ACTIVE directive allows you to specify symbols that you do not want the
linker to deadstrip. You must specify the symbol(s) you want to keep before you use the
SECTIONS on page 297 keyword.

Prototype

FORCE_ACTIVE{ symbol[, symbol] }

INCLUDE

The INCLUDE command let you include a binary file in the output file.

Prototype

INCLUDE filename
294 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
KEEP_SECTION

The KEEP_SECTION directive allows you to specify sections that you do not want the
linker to deadstrip. You must specify the section(s) you want to keep before you use the
SECTIONS on page 297 keyword.

Prototype

KEEP_SECTION{ sectionType[, sectionType] }

MEMORY

The MEMORY directive allows you to describe the location and size of memory segment
blocks in the target. This directive specifies the linker the memory areas to avoid, and the
memory areas into which it links the code and date.

The linker command file may only contain one MEMORY directive. However, within the
confines of the MEMORY directive, you may define as many memory segments as you
wish.

Prototype

MEMORY { memory_spec }

The memory_spec is:

segmentName (accessFlags) : ORIGIN = address, LENGTH = length, [COMPRESS] [>
fileName]

segmentName can include alphanumeric characters and underscore '_' characters.

accessFlags are passed into the output ELF file (Phdr.p_flags). The
accessFlags can be:

• R-read

• W-write

• X-executable (for P: memory placement)

ORIGIN address is one of the following:
29556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
Example

memory{

code (RWX) : ORIGIN = 0x8000, LENGTH = 0

overlay1 (RWX) : ORIGIN = AFTER(code), LENGTH = 0

overlay2 (RWX) : ORIGIN = AFTER(code), LENGTH = 0

data (RW) : ORIGIN = 0x1000, LENGTH = 0

}

ORIGIN is the assigned address.

LENGTH is one of the following:

NOTE There is no overflow checking with autolength. The linker can produce an
unexpected result if you use the autolength feature without leaving enough free
memory space to contain the memory segment. For this reason, when you use
autolength, use the AFTER keyword to specify origin addresses.

> fileName is an option to write the segment to a binary file on disk instead of an ELF
program header. The binary file is put in the same folder as the ELF output file. This
option has two variants:

Table 12.2 Origin Address

a memory address Specify a hex address, such as 0x8000.

an AFTER command Use the AFTER(name [,name]) command to tell the linker to
place the memory segment after the specified segment. In
the example below, overlay1 and overlay2 are placed after
the code segment. When multiple memory segments are
specified as parameters for AFTER, the highest memory
address is used.

Table 12.3 Length

a value greater than
zero

If you try to put more code and data into a memory segment
than your specified length allows, the linker stops with an
error.

autolength by specifying
zero

When the length is 0, the linker lets you put as much code
and data into a memory segment as you want.
296 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
OBJECT

The OBJECT keyword allows control over the order in which functions are placed in the
output file.

Prototype

OBJECT (function, sourcefile.c)

It is important to note that if you write an object to the output file using the OBJECT
keyword, the same object will not be written again by either the GROUP keyword or the '*'
wildcard.

REF_INCLUDE

The REF_INCLUDE directive allows you to specify sections that you do not want the
linker to deadstrip, but only if they satisfy a certain condition: the file that contains the
section must be referenced. This is useful if you want to include version information from
your source file components. You must specify the section(s) you want to keep before you
use the SECTIONS on page 297 keyword.

Prototype

REF_INCLUDE{ sectionType [, sectionType]}

SECTIONS

A basic SECTIONS directive has the following form:

Prototype

SECTIONS { <section_spec> }

section_spec is one of the following:

Table 12.4 Option Choices

>fileName Writes the segment to a new file.

>>fileName Appends the segment to an existing file.
29756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
• sectionName: [AT (loadAddress)] {contents} > segmentName

• sectionName: [AT (loadAddress]] {contents} >> segmentName

sectionName is the section name for the output section. It must start with a period
character. For example, ".mysection".

AT (loadAddress) is an optional parameter that specifies the address of the section.
The default (if not specified) is to make the load address the same as the relocation
address.

contents are made up of statements. These statements can:

• Assign a value to a symbol.

• Describe the placement of an output section, including which input sections are
placed into it.

segmentName is the predefined memory segment into which you want to put the
contents of the section. The two variants are:

Example

SECTIONS {

.text : {

F_textSegmentStart = .;

footpad.c (.text)

. = ALIGN (0x10);

padfoot.c (.text)

F_textSegmentEnd = .;

} > TEXT

.data : { *(.data) } > DATA

.bss : { *(.bss) > BSS

*(COMMON)

}

}

Table 12.5 Option Choices

>segmentName Places the section contents at the beginning of the memory
segment segmentName.

>>segmentName Appends the section contents to the memory segment
segmentName.
298 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
SIZEOF

The SIZEOF function returns the size of the given segment or section. The return value is
the size in bytes.

Prototype

SIZEOF(sectionName | segmentName | symbol)

NOTE In order to use segmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, as is the case with sectionName.

SIZEOFW

The SIZEOFW function returns the size of the given segment or section. The return value
is the size in words.

Prototype

SIZEOFW(sectionName | segmentName | symbol)

NOTE In order to use segmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, as is the case with sectionName.

WRITEB

The WRITEB command inserts a byte of data at the current address of a section.

Prototype

WRITEB (expression);

expression is any expression that returns a value 0x00 to 0xFF.
29956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing
WRITEH

The WRITEH command inserts two bytes of data at the current address of a section.

Prototype

WRITEH (expression);

expression is any expression that returns a value 0x0000 to 0xFFFF.

WRITEW

The WRITEW command inserts 4 bytes of data at the current address of a section.

Prototype

WRITEW (expression);

expression is any expression that returns a value 0x00000000 to 0xFFFFFFFF.
300 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

13
Command-Line Tools

This chapter contains the following sections:

• Usage on page 301

• Response File on page 302

• Sample Build Script on page 303

• Arguments on page 303

Usage
To call the command-line tools, use the following format:

The compiler automatically calls the linker by default and any options from the linker is
passed on by the compiler to the assembler. However, you may choose to only compile
with the –c flag. In this case, the assembler will only assemble and will not call the linker.

Also, available are environment variables. These are used to provide path information for
includes or libraries, and to specify which libraries are to be included. You can specify the
variables listed in Table 13.2 on page 302.

Table 13.1 Format

Tools File Names Format

Compiler mwcc56800e.exe compiler-options [linker-options] file-list

Linker mwld56800e.exe linker-options file-list

Assemble
r

mwasm56800e.exe assembler-options file-list
30156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Response File
These are the target-specific variables, and will only work with the DSP56800E tools. The
generic variables MWCIncludes, MWLibraries, MWLibraryFiles, and
MWAsmIncludes apply to all target tools on your system (such as Windows). If you only
have the DSP56800E tools installed, then you may use the generic variables if you prefer.

Response File
In addition to specifying commands in the argument list, you may also specify a “response
file”. A response file’s filename begins with an ‘@’ (for example, @file), and the contents
of the response file are commands to be inserted into the argument list. The response file
supports standard UNIX-style comments. For example, the response file @file, contain
the following:

Response file @file
-o out.elf # change output file name to ‘out.elf’
-g # generate debugging symbols

The above response file can used in a command such as:

mwcc56800e @file main.c

It would be the same as using the following command:

mwcc56800e –o out.elf –g main.c

Table 13.2 Environment Variables

Tool Library Description

Compiler MWC56800EIncludes Similar to Access Paths panel; separate
paths with ‘;’ and prefix a path with ‘+’ to
specify a recursive path

Linker MW56800ELibraries

MW56800ELibraryFiles

Similar to MWC56800EIncludes

List of library names to link with project;
separate with ‘;’

Assembler MWAsm56800EIncludes (similar to MWC56800EIncludes)
302 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Sample Build Script
Sample Build Script
This following is a sample of a DOS batch (BAT) file. The sample demonstrates:

• Setting of the environmental variables.

• Using the compiler to compile and link a set of files.

 REM *** set GUI compiler path ***
 set COMPILER={path to compiler}

 REM *** set includes path ***
 set MWCIncludes=+%COMPILER%\M56800E Support
 set MWLibraries=+%COMPILER%\M56800E Support
 set MWLibraryFiles=Runtime 56800E.Lib;MSL C 56800E.lib

 REM *** add CLT directory to PATH ***
 set
PATH=%PATH%;%COMPILER%\DSP56800E_EABI_Tools\Command_Line_Tools\

 REM *** compile options and files ***
 set COPTIONS=-O3
 set CFILELIST=file1.c file2.c
 set LOPTIONS=-m FSTART_ -o output.elf -g
 set LCF=linker.cmd

 REM *** compile, assemble and link ***
 mwcc56800e %COPTIONS% %CFILELIST%
 mwasm56800e %AFILELIST%
 mwld56800e %LOPTIONS% %LFILELIST% %LCF%

Arguments

General Command-Line Options
--
General Command-Line Options

All the options are passed to the linker unless otherwise noted.

Please see '-help usage' for details about the meaning of this help.
--

-help [keyword[,...]] # global; for this tool;
display help
30356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
usage # show usage information
[no]spaces # insert blank lines between options in

printout
all # show all standard options
[no]normal # show only standard options
[no]obsolete # show obsolete options
[no]ignored # show ignored options
[no]deprecated # show deprecated options
[no]meaningless # show options meaningless for this

target
[no]compatible # show compatibility options

opt[ion]=name # show help for a given option; for
'name',

maximum length 63 chars
search=keyword # show help for an option whose name or

help
contains 'keyword' (case-sensitive);

for
'keyword', maximum length 63 chars

group=keyword # show help for groups whose names contain
'keyword' (case-sensitive); for

'keyword'
maximum length 63 chars

tool=keyword[,...] # categorize groups of options by tool;
default

all # show all options available in this tool
this # show options executed by this tool

default
other|skipped # show options passed to another tool
both # show options used in all tools

#
#

-version # global; for this tool;
show version, configuration, and build

date
-timing # global; collect timing statistics
-progress # global; show progress and version
-v[erbose] # global; verbose information; cumulative;

implies -progress
-search # global; search access paths for source

files
specified on the command line; may

specify
object code and libraries as well; this
option provides the IDE's 'access paths'

functionality
-[no]wraplines # global; word wrap messages; default
-maxerrors max # specify maximum number of errors to print,
304 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
zero
means no maximum; default is 0

-maxwarnings max # specify maximum number of warnings to print,
zero means no maximum; default is 0

-msgstyle keyword # global; set error/warning message style
mpw # use MPW message style
std # use standard message style; default
gcc # use GCC-like message style
IDE # use CW IDE-like message style
parseable # use context-free machine-parseable

message
style
#

-[no]stderr # global; use separate stderr and stdout
streams;

if using -nostderr, stderr goes to
stdout

Compiler
--
Preprocessing, Precompiling, and Input File Control Options
--

-c # global; compile only, do not link
-[no]codegen # global; generate object code
-[no]convertpaths # global; interpret #include filepaths

specified
for a foreign operating system; i.e.,
<sys/stat.h> or <:sys:stat.h>; when

enabled,
'/' and ':' will separate directories and
cannot be used in filenames (note: this is
not a problem on Win32, since these
characters are already disallowed in
filenames; it is safe to leave the option

'on'); default
-cwd keyword # specify #include searching semantics: before

searching any access paths, the path
specified by this option will be searched

proj # begin search in current working directory;
default

source # begin search in directory of source file
explicit # no implicit directory; only search '-I' or

'-ir' paths
include # begin search in directory of referencing
30556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
file
#

-D+ | -d[efine # cased; define symbol 'name' to 'value' if
name[=value] # specified, else '1'

-[no]defaults # global; passed to linker;
same as '-[no]stdinc'; default

-dis[assemble] # global; passed to all tools;
disassemble files to stdout

-E # global; cased; preprocess source files
-EP # global; cased; preprocess and strip out

#line
directives

-ext extension # global; specify extension for generated object
files; with a leading period ('.'), appends
extension; without, replaces source file's
extension; for 'extension', maximum length 14

chars; default is none
-gccinc[ludes] # global; adopt GCC #include semantics: add '-I'

paths to system list if '-I-' is not
specified, and search directory of

referencing file first for #includes (same as
'-cwd include')

-i- | -I- # global; change target for '-I' access paths to
the system list; implies '-cwd explicit';
while compiling, user paths then system paths
are searched when using '#include "..."; only
system paths are searched with '#include

<...>'
-I+ | -i p # global; cased; append access path to current

#include list(see '-gccincludes' and '-I-')
-ir path # global; append a recursive access path to

current #include list
-[no]keepobj[ects] # global; keep object files generated after

invoking linker; if disabled, intermediate
object files are temporary and deleted

after
link stage; objects are always kept when

compiling
-M # global; cased; scan source files for

dependencies and emit Makefile, do not
generate object code

-MM # global; cased; like -M, but do not list
system

include files
-MD # global; cased; like -M, but write dependency

map to a file and generate object code
-MMD # global; cased; like -MD, but do not list

system
306 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
include files
-make # global; scan source files for dependencies

and
emit Makefile, do not generate object

code -nofail # continue working after errors in earlier
files

-nolink # global; compile only, do not link
-noprecompile # do not precompile any files based on the

filename extension
-nosyspath # global; treat #include <...> like #include

"..."; always search both user and system
path lists

-o file|dir # specify output filename or directory for
object

file(s) or text output, or output filename
for linker if called

-P # global; cased; preprocess and send output to
file; do not generate code

-precompile file|di # generate precompiled header from source;
write

header to 'file' if specified, or put
header

in 'dir'; if argument is "", write header
to

source-specified location; if neither is
defined, header filename is derived from
source filename; note: the driver can tell
whether to precompile a file based on its
extension; '-precompile file source' then

is
the same as '-c -o file source'

-preprocess # global; preprocess source files
-prefix file # prefix text file or precompiled header onto

all
source files

-S # global; cased; passed to all tools;
disassemble and send output to file

-[no]stdinc # global; use standard system include paths
(specified by the environment variable

%MWCIncludes%); added after all system '-
I'

paths; default
-U+ | -u[ndefine] name # cased; undefine symbol 'name'

--
Front-End C/C++ Language Options
--

-ansi keyword # specify ANSI conformance options, overriding
30756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
the given settings
off # same as '-stdkeywords off', '-enum min',

and
'-strict off'; default

on|relaxed # same as '-stdkeywords on', '-enum min', and
'-strict on'

strict # same as '-stdkeywords on', '-enum int', and
'-strict on'
#

-ARM on|off # check code for ARM (Annotated C++ Reference
Manual) conformance; default is off

-bool on|off # enable C++ 'bool' type, 'true' and 'false'
constants; default is off

-char keyword # set sign of 'char'
signed # chars are signed; default
unsigned # chars are unsigned

#
-Cpp_exceptions on|off # passed to linker;

enable or disable C++ exceptions; default
is

on
-dialect | -lang keyword # passed to linker;

specify source language
c # treat source as C always
c++ # treat source as C++ always
ec++ # generate warnings for use of C++ features

outside Embedded C++ subset (implies
'dialect cplus')
‘dialect cplus’)

-enum keyword # specify word size for enumeration types
min # use minimum sized enums; default
int # use int-sized enums

#
-inline keyword[,...] # specify inline options

on|smart # turn on inlining for 'inline' functions;
default

none|off # turn off inlining
auto # auto-inline small functions (without

'inline' explicitly specified)
noauto # do not auto-inline; default
all # turn on aggressive inlining: same as

'-inline on, auto'
deferred # defer inlining until end of compilation

unit; this allows inlining of functions
in

both directions
level=n # cased; inline functions up to 'n' levels

deep; level 0 is the same as '-inline
308 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
on';
for 'n', range 0 - 8
#

-iso_templates on|off # enable ISO C++ template parser (note:
this

requires a different MSL C++ library);
default is off

-[no]mapcr # reverse mapping of '\n' and '\r' so that
'\n'==13 and '\r'==10 (for Macintosh

MPW
compatability)

-msext keyword # [dis]allow Microsoft VC++ extensions
 on # enable extensions: redefining macros,

allowing XXX::yyy syntax when
declaring

method yyy of class XXX,
allowing extra commas,
ignoring casts to the same type,

treating function types with
equivalent

parameter lists but different return
types

as equal,
allowing pointer-to-integer conversions,

and various syntactical differences
off # disable extensions; default on non-

x86
targets
#

-[no]multibyte[aware] # enable multi-byte character encodings
for

source text, comments, and strings
-once # prevent header files from being processed

more
than once

-pragma # define a pragma for the compiler such as
"#pragma ..."

-r[equireprotos] # require prototypes
-relax_pointers # relax pointer type-checking rules
-RTTI on|off # select run-time typing information (for

C++);
default is on

-som # enable Apple's Direct-to-SOM
implementation

-som_env_check # enables automatic SOM environment and
new

allocation checking; implies -som
-stdkeywords on|off # allow only standard keywords; default is
30956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
off
-str[ings] keyword[,...] # specify string constant options

[no]reuse # reuse strings; equivalent strings are
the

same object; default
[no]pool # pool strings into a single data

object
[no]readonly # make all string constants read-only

#
-strict on|off # specify ANSI strictness checking; default

is
off

-trigraphs on|off # enable recognition of trigraphs; default is
off

-wchar_t on|off # enable wchar_t as a built-in C++ type;
default

is on

--
Optimizer Options

Note that all options besides '-opt
off|on|all|space|speed|level=...' are

for backwards compatibility; other optimization options may be
superceded

by use of '-opt level=xxx'.
--

-O # same as '-O2'
-O+keyword[,...] # cased; control optimization; you may

combine
options as in '-O4,p'

0 # same as '-opt off'
1 # same as '-opt level=1'
2 # same as '-opt level=2'
3 # same as '-opt level=3'
4 # same as '-opt level=4'
p # same as '-opt speed'
s # same as '-opt space'

#
-opt keyword[,...] # specify optimization options

off|none # suppress all optimizations; default
on # same as '-opt level=2'
all|full # same as '-opt speed, level=4'
[no]space # optimize for space
[no]speed # optimize for speed
l[evel]=num # set optimization level:

level 0: no optimizations
#

310 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
level 1: global register
allocation,

peephole, dead code elimination
#
level 2: adds common subexpression
elimination and copy propagation
#
level 3: adds loop transformations,

strength reduction, loop-invariant code
motion
#
level 4: adds repeated common
subexpression elimination and
loop-invariant code motion

; for 'num', range 0 - 4; default is 0
[no]cse # common subexpression elimination

[no]commonsubs #
[no]deadcode # removal of dead code
[no]deadstore # removal of dead assignments
[no]lifetimes # computation of variable lifetimes
[no]loop[invariants] # removal of loop invariants
[no]prop[agation] # propagation of constant and copy

assignments
[no]strength # strength reduction; reducing

multiplication
by an index variable into addition

[no]dead # same as '-opt [no]deadcode' and '-opt
[no]deadstore'

display|dump # display complete list of active
optimizations
#

--
DSP M56800E CodeGen Options
--

-DO keyword # for this tool;
specify hardware DO loops

off # no hardware DO loops; default
nonested # hardware DO loops but no nested ones
nested # nested hardware DO loops

#
-padpipe # for this tool;

pad pipeline for debugger
-ldata | -largedata # for this tool;

data space not limited to 64K
-globalsInLowerMemory # for this tool;

globals live in lower memory; implies '-
large
31156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
data model'
-sprog | -smallprog # for this tool;

program space limited to 64K

--
Debugging Control Options
--

-g # global; cased; generate debugging
information;

same as '-sym full'
-sym keyword[,...] # global; specify debugging options

off # do not generate debugging
information;

default
on # turn on debugging information
full[path] # store full paths to source files

#
--
C/C++ Warning Options
--

-w[arn[ings]] # global; for this tool;
keyword[,...] # warning options
off # passed to all tools;

turn off all warnings
on # passed to all tools;

turn on most warnings
[no]cmdline # passed to all tools;

command-line driver/parser warnings
[no]err[or] | # passed to all tools;

[no]iserr[or] # treat warnings as errors
all # turn on all warnings, require

prototypes
[no]pragmas | # illegal #pragmas

[no]illpragmas #
[no]empty[decl] # empty declarations
[no]possible | # possible unwanted effects

[no]unwanted #
[no]unusedarg # unused arguments
[no]unusedvar # unused variables
[no]unused # same as -w

[no]unusedarg,[no]unusedvar
[no]extracomma | # extra commas

[no]comma #
[no]pedantic | # pedantic error checking

[no]extended #
[no]hidevirtual | # hidden virtual functions

[no]hidden[virtual] #
[no]implicit[conv] # implicit arithmetic conversions
312 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
[no]notinlined # 'inline' functions not inlined
[no]largeargs # passing large arguments to

unprototyped
functions

[no]structclass # inconsistent use of 'class' and
'struct'

[no]padding # padding added between struct members
[no]notused # result of non-void-returning function

not
used

[no]unusedexpr # use of expressions as statements
without

side effects
[no]ptrintconv # conversions from pointers to integers,

and
vice versa

display|dump # display list of active warnings

Linker
--
Command-Line Linker Options

-dis[assemble] # global; disassemble object code and do
not

link; implies '-nostdlib'
-L+ | -l path # global; cased; add library search path; default

is to search current working directory and
then system directories (see '-defaults');
search paths have global scope over the
command line and are searched in the order
given

-lr path # global; like '-l', but add recursive library
search path

-l+file # cased; add a library by searching access paths
for file named lib<file>.<ext> where <ext>

is
a typical library extension; added before
system libraries (see '-defaults')

-[no]defaults # global; same as -[no]stdlib; default
-nofail # continue importing or disassembling

after
errors in earlier files
31356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
-[no]stdlib # global; use system library access paths
(specified by %MWLibraries%) and add system

libraries (specified by
%MWLibraryFiles%);

default
-S # global; cased; disassemble and send output to

file; do not link; implies '-nostdlib'

--
ELF Linker Options
--

-[no]dead[strip] # enable dead-stripping of unused code;
default

-force_active # specify a list of symbols as undefined;
useful

symbol[,...] # to force linking of static libraries
#

-keep[local] on|off # keep local symbols (such as relocations and
output segment names) generated during

link;
default is on

-m[ain] symbol # set main entry point for application or
shared

library; use '-main ""' to specify no entry
point; for 'symbol', maximum length 63

chars;
default is 'FSTART_'

-map [keyword[,...]] # generate link map file
closure # calculate symbol closures
unused # list unused symbols

#
-sortbyaddr # sort S-records by address; implies '-srec'
-srec # generate an S-record file; ignored when

generating static libraries
-sreceol keyword # set end-of-line separator for S-record

file;
implies '-srec'

mac # Macintosh ('\r')
dos # DOS ('\r\n'); default
unix # Unix ('\n')

-sreclength length # specify length of S-records (should be a

multiple of 4); implies '-srec'; for
'length', range 8 - 252; default is 64

-usebyteaddr # use byte address in S-record file;
implies

'-srec'
-o file # specify output filename
314 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
--
DSP M56800E Project Options
--

-application # global; generate an application; default
-library # global; generate a static library

--
DSP M56800E CodeGen Options
--

-ldata | -largedata # data space not limited to 64K

--
Linker C/C++ Support Options

--
-Cpp_exceptions on|off # enable or disable C++ exceptions; default

is on
-dialect | -lang keyword # specify source language

c # treat source as C++ unless its extension
is

'.c', '.h', or '.pch'; default
c++ # treat source as C++ always

#

--
Debugging Control Options

--
-g # global; cased; generate debugging

information;
same as '-sym full'

-sym keyword[,...] # global; specify debugging options
off # do not generate debugging

information;
default

on # turn on debugging information
full[path] # store full paths to source files

#

--
Warning Options
--

-w[arn[ings]] # global; warning options
keyword[,...] #
off # turn off all warnings
31556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
on # turn on all warnings
[no]cmdline # command-line parser warnings
[no]err[or] | # treat warnings as errors
[no]iserr[or] #

display|dump # display list of active warnings
#

--
ELF Disassembler Options
--

-show keyword[,...] # specify disassembly options
only|none # as in '-show none' or, e.g.,

'-show only,code,data'
all # show everything; default
[no]code | [no]text # show disassembly of code sections;

default
[no]comments # show comment field in code; implies '-

show
code'; default

[no]extended # show extended mnemonics; implies '-
show

code'; default
[no]data # show data; with '-show verbose', show

hex
dumps of sections; default

[no]debug | [no]sym # show symbolics information; default
[no]exceptions # show exception tables; implies '-show

data';
default

[no]headers # show ELF headers; default
[no]hex # show addresses and opcodes in code

disassembly; implies '-show code';
default

[no]names # show symbol table; default
[no]relocs # show resolved relocations in code and

relocation tables; default
[no]source # show source in disassembly; implies '-

show
code'; with '-show verbose', displays
entire source file in output, else

shows
only four lines around each function;

default
[no]xtables # show exception tables; default
[no]verbose # show verbose information, including hex

dump
of program segments in

applications;
316 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
default
#

Assembler
--
Assembler Control Options
--

-[no]case # identifiers are case-sensitive; default
-[no]debug # generate debug information
-[no]macro_expand # expand macro in listin output
-[no]assert_nop # add nop to resolve pipeline dependency;

default
-[no]warn_nop # emit warning when there is a pipeline

dependency
-[no]warn_stall # emit warning when there is a hardware stall

 -[no]legacy # allow legacy DSP56800 instructions(imply
data/prog 16)

-[no]debug_workaround # Pad nop workaround debuggin issue in
some

implementation; default
-data keyword # data memory compatibility

16 # 16 bit; default
24 # 24 bit

#
-prog keyword # program memory compatibility

16 # 16 bit; default
19 # 19 bit
21 # 21 bit

#

31756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments
318 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

14
Libraries and Runtime Code

You can use a variety of libraries with the CodeWarrior™ IDE. The libraries include
ANSI-standard libraries for C, runtime libraries, and other codes. This chapter explains
how to use these libraries for DSP56800E development.

With respect to the Metrowerks Standard Library (MSL) for C, this chapter is an extension
of the MSL C Reference. Consult that manual for general details on the standard libraries
and their functions.

This chapter contains the following sections:

• MSL for DSP56800E on page 319

• Runtime Initialization on page 323

• EOnCE Library on page 326

MSL for DSP56800E
This section explains the Metrowerks Standard Library (MSL) that has been modified for
use with DSP56800E.

Using MSL for DSP56800E
CodeWarrior Development Studio for Freescale 56800/E Digital Signal Controllers
includes a version of the Metrowerks Standard Library (MSL). MSL is a complete C
library for use in embedded projects. All of the sources necessary to build MSL are
included in CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers, along with the project files for different configurations of MSL. If you already
have a version of the CodeWarrior IDE installed on your computer, the CodeWarrior
installer adds the new files needed for building versions of MSL for DSP56800E.

The project directory for the DSP56800E MSL is:

CodeWarrior\M56800E Support\msl\MSL_C\DSP_56800E\projects\MSL C
56800E.mcp

Do not modify any of the source files included with MSL. If you need to make changes
based on your memory configuration, make changes to the runtime libraries.

Ensure that you include one or more of the header files located in the following directory:
31956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
MSL for DSP56800E
CodeWarrior\M56800E Support\msl\MSL_C\DSP_56800E\inc

When you add the relative-to-compiler path to your project, the appropriate MSL and
runtime files will be found by your project. If you create your project from Stationery, the
new project will have the proper support access path.

Console and File I/O
DSP56800E Support provides standard C calls for I/O functionality with full ANSI/ISO
standard I/O support with host machine console and file I/O for debugging sessions (Host
I/O) through the JTAG port or HSST in addition to such standard C calls such as memory
functions malloc() and free().

A minimal "thin" printf via "console_write" and "fflush_console" is provided in addition
to standard I/O.

See the MSL C Reference manual (Metrowerks Standard Library).

Library Configurations
There are Large Data Model and Small Data Model versions of all libraries. (Small
Program Model default is off for all library and Stationery targets.)

Metrowerks Standard Library (MSL) provides standard C library support.

The Runtime libraries provide the target-specific low-level functions below the high-level
MSL functions. There are two types of Runtime libraries:

• JTAG-based Host I/O

• HSST-based Host I/O.

For each project requiring standard C library support, a matched pair of MSL and
Runtime libraries are required (SDM or LDM pairs).

The HSST library is added to HSST client-to-client DSP56800E targets. For more
information see “High-Speed Simultaneous Transfer” on page 151.

NOTE DSP56800E stationery creates new projects with LDM and SDM targets and
the appropriate libraries.

Below is a list of the DSP56800E libraries:

• Metrowerks Standard Libraries (MSL)

– MSL C 56800E.lib

Standard C library support for Small Data Model.

– MSL C 56800E lmm.lib
320 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
MSL for DSP56800E
Standard C library support for Large Data Model.

• Runtime Libraries

– runtime 56800E.lib

Low-level functions for MSL support for Small Data Model with Host I/O via
JTAG port.

– runtime 56800E lmm.lib

Low-level functions for MSL support for Large Data Model with Host I/O via
JTAG port.

– runtime_hsst_56800E.lib

Low-level functions for MSL support for Small Data Model with Host I/O via
HSST.

– runtime_hsst_56800E_lmm.lib

Low-level functions for MSL support for Large Data Model with Host I/O via
HSST.

• HSST Libraries

There are debug and release targets for SDM and LDM. The release targets have
maximum optimization settings and debug info turned off. For more information see
“High-Speed Simultaneous Transfer” on page 151.

– hsst_56800E.lib

DSP 56800E HSST client functions for Small Data Model.

– hsst_56800E_lmm.lib

DSP56800E HSST client functions for Large Data Model.

Host File Location
Files are created with fopen on the host machine as shown in Table 14.1 on page 321.

Table 14.1 Host File Creation Location

fopen Filename Parameter Host Creation Location

filename with no path target project file folder

full path location of full path
32156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
MSL for DSP56800E
Allocating Stacks and Heaps for the
DSP56800E
Stationery linker command files (LCF) define heap, stack, and bss locations. LCFs are
specific to each target board. When you use M56800E stationery to create a new project,
CodeWarrior automatically adds the LCF to the new project.

See “ELF Linker,” for general LCF information. See each specific target LCF in
Stationery for specific LCF information.

See Table 14.2 on page 322 for the variables defined in each Stationery LCF.

To change the locations of these default values, modify the linker command file in your
DSP56800E project.

NOTE Ensure that the stack and heap memories reside in data memory.

Definitions

Stack
The stack is a last-in-first-out (LIFO) data structure. Items are pushed on the stack and
popped off the stack. The most recently added item is on top of the stack. Previously
added items are under the top, the oldest item at the bottom. The "top" of the stack may be
in low memory or high memory, depending on stack design and use. M56800E uses a 16-
bit-wide stack.

Table 14.2 LCF Variables and Address

Variables Address

_stack_addr the start address of the stack

_heap_size the size of the heap

_heap_addr the start address of the heap

_heap_end the end address of the heap

_bss_start start address of memory reserved for uninitialized variables

_bss_end end address of bss
322 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
Runtime Initialization
Heap
Heap is an area of memory reserved for temporary dynamic memory allocation and
access. MSL uses this space to provide heap operations such as malloc. M56800E does not
have an operating system (OS), but MSL effectively synthesizes some OS services such as
heap operations.

BSS
BSS is the memory space reserved for uninitialized data. The compiler will put all
uninitialized data here. If the Zero initialized globals live in data instead of BSS
checkbox in the M56800E Processor Panel is checked, the globals that are initialized to
zero reside in the .data section instead of the .bss section. The stationery init code
zeroes this area at startup. See the M56852 init (startup) code in this chapter for general
information and the stationery init code files for specific target implementation details.

NOTE Instead of accessing the original Stationery files themselves (in the Stationery
folder), create a new project using Stationery which will make copies of the
specific target board files such as the LCF.

Runtime Initialization
The default init function is the bootstrap or glue code that sets up the DSP56800E
environment before your code executes. This function is in the init file for each board-
specific stationery project. The routines defined in the init file performs other tasks such as
clearing the hardware stack, creating an interrupt table, and retrieving the stack start and
exception handler addresses.

The final task performed by the init function is to call the main() function.

The starting point for a program is set in the Entry Point field in the M56800E
Linker on page 71 settings panel.

The project for the DSP56800E runtime is:

CodeWarrior\M56800E Support\runtime_56800E\projects\Runtime 56800E.mcp
32356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
Runtime Initialization
When creating a project from R1.1 or later Stationery, the associated init code is specific
to the DSP56800E board. See the startup folder in the new project folder for the init code.

Listing 14.1 Sample Initialization File (DSP56852EVM)

#

; ---
;
; 56852_init.asm
; sample

description: main entry point to C code.
; setup runtime for C and call main
;
; ---

;===============================
; OMR mode bits
;===============================
NL_MODE EQU $8000
CM_MODE EQU $0100
XP_MODE EQU $0080
R_MODE EQU $0020
SA_MODE EQU $0010

section rtlib

XREF F_stack_addr
org p:

GLOBAL Finit_M56852_

Table 14.3 Library Names and Locations

Library Name Location

Large Memory Model

Runtime 56800E lmm.lib

CodeWarrior\M56800E
Support\runtime_56800E\lib

Small Memory Model

Runtime 56800E.Lib

CodeWarrior\M56800E
Support\runtime_56800E\lib
324 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
Runtime Initialization
SUBROUTINE "Finit_M56852_",Finit_M56852_,Finit_M56852END-
Finit_M56852_

Finit_M56852_:

;
; setup the OMr with the values required by C
;

bfset #NL_MODE,omr ; ensure NL=1 (enables nsted DO
loops)

nop
nop

bfclr #(CM_MODE|XP_MODE|R_MODE|SA_MODE),omr ; ensure CM=0
(optional for C)

; ensure XP=0 to enable harvard architecture
; ensure R=0 (required for C)
; ensure SA=0 (required for C)

; Setup the m01 register for linear addressing
move.w #-1,x0
moveu.w x0,m01 ; Set the m register to linear

addressing

moveu.w hws,la ; Clear the hardware stack
moveu.w hws,la
nop
nop

CALLMAIN: ; Initialize compiler environment

;Initialize the Stack
move.l #>>F_Lstack_addr,r0
bftsth #$0001,r0
bcc noinc
adda #1,r0

noinc:
tfra r0,sp ; set stack pointer too
move.w #0,r1
nop
move.w r1,x:(sp)
adda #1,sp

jsr F__init_sections

; Call main()
32556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
move.w #0,y0 ; Pass parameters to main()
move.w #0,R2
move.w #0,R3

jsr Fmain ; Call the Users program
;
; The fflush calls where removed because they added code
; growth in cases where the user is not using any debugger IO.
; Users should now make these calls at the end of main if they use
debugger IO
;
; move.w #0,r2
; jsr Ffflush ; Flush File IO
; jsr Ffflush_console ; Flush Console IO

; end of program; halt CPU
debughlt
rts

Finit_M56852END:

endsec

EOnCE Library
The EOnCE (Enhanced On Chip Emulator) library provides functions, which allows your
program to control the EOnCE. The library lets you set and clear triggers for breakpoints,
watchpoints, program traces, and counters. With several option enumerations, the library
greatly simplifies using the EOnCE from within the core, and thus eliminates the need for
a DSP56800E User Manual. The library and the debugger are coordinated so that the
debugger does not overwrite a trigger set by the library, and vice versa.

To use the EOnCE library, you must include it in your project. The name of the file is
eonce 56800E lmm.lib and it is located at:

CodeWarrior\M56800ESupport\eonce\lib

The Large Data Model option must be enabled in the M56800E Processor
preference panel. Any source file that contains code that calls any of the EOnCE Library
functions must #include eonceLib.h. This header file is located at:

CodeWarrior\M56800E Support\eonce\include

The library functions are listed below:

• _eonce_Initialize on page 327

• _eonce_SetTrigger on page 328

• _eonce_SetCounterTrigger on page 329
326 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
• _eonce_ClearTrigger on page 330

• _eonce_GetCounters on page 331

• _eonce_GetCounterStatus on page 331

• _eonce_SetupTraceBuffer on page 332

• _eonce_GetTraceBuffer on page 332

• _eonce_ClearTraceBuffer on page 333

• _eonce_StartTraceBuffer on page 334

• _eonce_HaltTraceBuffer on page 334

• _eonce_EnableDEBUGEV on page 334

• _eonce_EnableLimitTrigger on page 335

The sub-section “Definitions” on page 336 defines:

• Return Codes on page 336

• Normal Trigger Modes on page 337

• Counter Trigger Modes on page 338

• Data Selection Modes on page 340

• on page 340Counter Function Modes on page 340

• Normal Unit Action Options on page 341

• Counter Unit Action Options on page 341

• Accumulating Trigger Options on page 342

• Miscellaneous Trigger Options on page 343

• Trace Buffer Capture Options on page 343

• Trace Buffer Full Options on page 344

• Miscellaneous Trace Buffer Option on page 345

_eonce_Initialize

Initializes the library by setting the necessary variables.

Prototype

void _eonce_Initialize(unsigned long baseAddr, unsigned int
units)
32756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Parameters

baseAddrunsigned long

Specifies the location in X: memory where the EOnCE registers are located.

unitsunsigned int

Specifies the number of EOnCE breakpoint units available.

Remarks

This function must be called before any other library function is called. Its parameters are
dependent on the processor being used. Instead of calling this function directly, one of the
defined macros can be called in its place. These include _eonce_Initialize56838E(),
_eonce_Initialize56852E(), and _eonce_Initialize56858E(). These macros call
_eonce_Initialize with the correct parameters for the 56838, 56852, and 56858,
respectively.

Returns

Nothing.

_eonce_SetTrigger

Sets a trigger condition used to halt the processor, cause an interrupt, or start and stop the
trace buffer. This function does not set triggers for special counting functions.

Prototype

int _eonce_SetTrigger(unsigned int unit, unsigned long
options, unsigned long value1, unsigned long value2,
unsigned long mask, unsigned int counter)

Parameters

unitunsigned int

Specifies which breakpoint unit to use.

optionsunsigned long

Describes the behavior of the trigger. For more information on the identifiers for this
parameter, please see the sub-section “Definitions” on page 322.

value1unsigned long

Specifies the address or data value to compare as defined by the options parameter.
328 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
value2unsigned long

Specifies the address or data value to compare as defined by the options parameter.

maskunsigned long

Specifies which bits of value2 to compare.

counterunsigned int

Specifies the number of successful comparison matches to count before completing trigger
sequence as defined by the options parameter

Remarks

This function sets all triggers, except those used to define the special counting function
behavior. Carefully read the list of defined identifiers that can be OR’ed into the options
parameter.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_SetCounterTrigger

Sets a trigger condition used for special counting functions.

Prototype

int _eonce_SetCounterTrigger(unsigned int unit, unsigned
long options, unsigned long value1, unsigned long value2,
unsigned long mask, unsigned int counter, unsigned long
counter2)

Parameters

unitunsigned int

Specifies which breakpoint unit to use.

optionsunsigned long

Describes the behavior of the trigger. For more information on the identifiers for this
parameter, please see the sub-section “Definitions” on page 322.

value1unsigned long

Specifies the address or data value to compare as defined by the options parameter.

value2unsigned long

Specifies the address or data value to compare as defined by the options parameter.
32956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
maskunsigned long

Specifies which bit of value2 to compare.

counterunsigned int

Specifies the value used to pre-load the counter, which proceeds backward when
EXTEND_COUNTER is OR’ed into the options parameter. counter contains the least
significant 16-bits.

counter2unsigned long

Specifies the value used to pre-load the counter, which proceeds backward. When
EXTEND_COUNTER is OR’ed into the options parameter. counter2 contains the most
significant 24-bits. However, when EXTEND_COUNTER is not OR’ed counter2 should
be set to 0.

Remarks

This function is used to set special counting function triggers. The special counting
options are defined in the sub-section “Definitions.” Carefully read the list of defined
identifiers that can be OR’ed into the options parameter.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_ClearTrigger

Clears a previously set trigger.

Prototype

int _eonce_ClearTrigger(unsigned int unit)

Parameters

unitunsigned int

Specifies which breakpoint unit to use.

Remarks

This function clears a trigger set with the _eonce_SetTrigger or
_eonce_SetCounterTrigger functions.

Returns

Error code as defined in the sub-section “Definitions.”
330 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
_eonce_GetCounters

Retrieves the values in the two counter registers.

Prototype

int _eonce_GetCounters(unsigned int unit, unsigned int
*counter, unsigned long *counter2)

Parameters

unitunsigned int

Specifies which breakpoint unit to use.

counterunsigned int *

Holds the value of the counter, or the least significant 16-bits, if the counter has been
extended to 40-bits.

counter2unsigned long *

Holds the most significant 24-bits if the counter has been extended to 40-bits. This
parameter must be a valid pointer even if the counter has not been extended.

Remarks

This function retrieves the value of the counter of the specified breakpoint unit. This
function is most useful when using the special counting function of the breakpoint, but can
also be used to retrieve the trigger occurrence counter.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_GetCounterStatus

Retrieves the status of the breakpoint counter.

Prototype

int _eonce_GetCounters(char *counterIsZero, char
*counterIsStopped)
33156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Parameters

counterIsZero char *

Returns a 1 if the breakpoint counter has reached zero.

counterIsStopped char *

Returns a 1 if the breakpoint counter has been stopped by a Counter Stop Trigger.

Remarks

This function returns the state of the breakpoint counter when using the special counting
function.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_SetupTraceBuffer

Configures the behavior of the trace buffer.

Prototype

int _eonce_SetupTraceBuffer(unsigned int options)

Parameters

optionsunsigned int

Describes the behavior of the trace buffer. Please see the section Definitions for more
information on the identifiers for this parameter.

Remarks

Sets the behavior of the trace buffer. Triggers can also be set to start and stop trace buffer
capture using the _eonce_SetTrigger function.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_GetTraceBuffer

Retrieves the contents of the trace buffer.
332 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Prototype

int _eonce_GetTraceBuffer(unsigned int *count, unsigned long
*buffer)

Parameters

countunsigned int *

Passes in the size of the buffer; if 0 is passed in, the contents of the trace buffer are not
retrieved, instead the number of entries in the trace buffer are returned in count.

bufferunsigned long *

Points to an array in which the contents of the trace buffer are returned starting with the
oldest entry.

Remarks

This function retrieves the addresses contained in the trace buffer. The addresses represent
the program execution point when certain change-of-flow events occur. The trace buffer
behavior, including capture events, can be configured using _eonce_SetupTraceBuffer.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_ClearTraceBuffer

Clears the contents of the trace buffer.

Prototype

int _eonce_ClearTraceBuffer()

Parameters

None.

Remarks

This function clears the trace buffer and is useful when you want a fresh set of data. It is
necessary to resume capturing when the trace buffer is full and configured to stop
capturing.

Returns

Error code as defined in the sub-section “Definitions.”
33356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
_eonce_StartTraceBuffer

Resumes trace buffer capturing.

Prototype

int _eonce_StartTraceBuffer()

Parameters

None.

Remarks

This function causes the trace buffer to immediately start capturing.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_HaltTraceBuffer

Halts trace buffer capturing.

Prototype

int _eonce_HaltTraceBuffer()

Parameters

None.

Remarks

Causes the trace buffer to immediately stop capturing.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_EnableDEBUGEV

Allows or disallows a DEBUGEV instruction to cause a core event in breakpoint unit 0.
334 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Prototype

int _eonce_EnableDEBUGEV(char enable)

Parameters

enablechar

If a non-zero value, allows the DEBUGEV instruction to cause a core event. If a zero
value, prevents the DEBUGEV instruction from causing a core event.

Remarks

This function configures the behavior for the DEBUGEV instructions. For a core event to
occur, breakpoint unit 0 must be activated by setting a trigger using the
_eonce_SetTrigger or _eonce_SetCounterTrigger functions.

Returns

Error code as defined in the sub-section “Definitions.”

_eonce_EnableLimitTrigger

Allows or disallows a limit trigger to cause a core event in breakpoint unit 0.

Prototype

int _eonce_EnableLimitTrigger(char enable)

Parameters

enablechar

If a non-zero value, allows this instruction to cause a core event. If a zero value, prevents
this instruction from causing a core event.

Remarks

This function configures the behavior for overflow and saturation conditions in the
processor core. For a core event to occur, breakpoint unit 0 must be activated by setting a
trigger using the _eonce_SetTrigger or _eonce_SetCounterTrigger functions.

Returns

Error code as defined in the sub-section “Definitions.”
33556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Definitions
This sub-section defines:

• Return Codes on page 336

• Normal Trigger Modes on page 337

• Counter Trigger Modes on page 338

• Data Selection Modes on page 340

• on page 340Counter Function Modes on page 340

• Normal Unit Action Options on page 341

• Counter Unit Action Options on page 341

• Accumulating Trigger Options on page 342

• Miscellaneous Trigger Options on page 343

• Trace Buffer Capture Options on page 343

• Trace Buffer Full Options on page 344

• Miscellaneous Trace Buffer Option on page 345

Return Codes
Every function except _eonce_Initialize returns one of the error codes in Table 14.4 on
page 336.

Table 14.4 Error Codes

Error Code Description

EONCE_ERR_NONE No error.

EONCE_ERR_NOT_INITIALIZED The _eonce_Initialize function has not been
called before the current function.

EONCE_ERR_UNIT_OUT_OF_RA
NGE

The unit parameter is greater than or equal to the
number of units specified in _eonce_Initialize.

EONCE_ERR_LOCKED_OUT The core cannot access the EOnCE registers
because the debugger has locked out the core.
This occurs when a trigger has been set using
the EOnCE GUI panels or through an IDE
breakpoint or watchpoint.
336 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Normal Trigger Modes
One of the defined identifiers listed in Listing 14.2 on page 337 must be OR’ed into the
options parameter of the _eonce_SetTrigger function. A key for the defined identifiers
listed in Listing 14.2 on page 337 is given in Table 14.5 on page 338 on page 337.

Listing 14.2 Normal Trigger Modes

B1PA_N
B1PR_N
B1PW_N
B2PF_N
B1XA_OR_B2PF_N
B1XA_N_OR_B2PF
B1PF_OR_B2PF_N
B1PA_OR_B2PF_N
B1PA_N_OR_B2PF
B1PF_OR_N_B2PF
B1PA_OR_N_B2PF
B1XR_AND_N_B2DR
B1XW_AND_N_B2DW
B1XA_AND_N_B2DRW
B1PF_N_THEN_B2PF
B2PF_THEN_B1PF_N
B1PA_N_THEN_B2PF
B1PA_THEN_B2PF_N
B2PF_N_THEN_B1PA
B2PF_THEN_B1PA_N
B1XA_N_THEN_B2PF
B1XA_THEN_B2PF_N
B2PF_N_THEN_B1XA
B2PF_THEN_B1XA_N
B1XW_N_THEN_B2PF
B1XW_THEN_B2PF_N
B2PF_N_THEN_B1XW
B2PF_THEN_B1XW_N
B1XR_N_THEN_B2PF
B1XR_THEN_B2PF_N
B2PF_N_THEN_B1XR
B2PF_THEN_B1XR_N
B1PF_STB_B2PF_HTB
B1PA_STB_B2PF_HTB
B2PF_STB_B1PA_HTB
Defined Identifier Key for Normal Trigger Modes
33756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Counter Trigger Modes
The following triggers generate a Counter Stop Trigger. The exceptions are the modes that
generate both start and stop triggers.

The defined identifiers listed in Listing 14.3 on page 339 must be OR’ed into the options
parameter of the _eonce_SetCounterTrigger function. A key for the defined identifiers
listed in Listing 14.3 on page 339 is given in Table 14.6 on page 339

Table 14.5 Defined Identifier Key: Normal Trigger Modes

Identifier Fragments Description

B1 breakpoint 1; value set in value1

B2 breakpoint 2; value set in value2

P p-memory address; this is followed by a type of access

X x-memory address; this is followed by a type of access

D value being read from or written to x-memory

A memory access

R memory read

W memory write

F memory fetch; only follows a P

OR links two sub-triggers by a logical or

AND links two sub-triggers by a logical and

THEN creates a sequence; first sub-trigger must occur, then
second sub-trigger must occur to complete the trigger

N the sub-trigger it follows must occur N times as set in
the count parameter; if N follows an operation, then the
combination of the sub-triggers must occur N times;
(count - 1) will be written to the BCNTR register

STB sub-trigger starts the trace buffer

HTB sub-trigger halts the trace buffer
338 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Listing 14.3 Counter Trigger Modes

B1PA
B1PR
B1PW
B2PF
B1XA_OR_B2PF
B1PF_OR_B2PF
B1PA_OR_B2PF

B1XR_AND_B2DR
B1XW_AND_B2DW
B1XA_AND_B2DRW
B1PF_THEN_B2PF
B1PA_THEN_B2PF
B2PF_THEN_B1PA
B1XA_THEN_B2PF
B2PF_THEN_B1XA
B1XW_THEN_B2PF
B2PF_THEN_B1XW
B1XR_THEN_B2PF
B2PF_THEN_B1XR
B1PF_SC_B2PF_HC
B1PA_SC_B2PF_HC
B2PF_SC_B1PA_HC

Table 14.6 Defined Identifier Key: Counter Trigger Modes

Identifier Fragments Description

B1 breakpoint 1; value set in value1

B2 breakpoint 2; value set in value2

P p-memory address; this is followed by a type of access

X x-memory address; this is followed by a type of access.

D value being read from or written to x-memory

A memory access

R memory read

W memory write

F memory fetch; only follows a P
33956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Data Selection Modes
If the trigger mode being set includes a data value compare (contains B2D from the list
Normal Trigger Modes or Counter Trigger Modes), then one of the defined identifiers in
Table 14.7 on page 340 must be OR’ed into the options parameter of the
_eonce_SetTrigger or _eonce_SetCounterTrigger function. If not, then do not OR in
any of these identifiers.

Counter Function Modes
One of the defined identifiers in Table 14.8 on page 340 must be OR’ed into the options
parameter of the _eonce_SetCounterTrigger function.

OR links two sub-triggers by a logical or

AND links two sub-triggers by a logical and

THEN creates a sequence; first sub-trigger must occur, then
second sub-trigger must occur to complete the trigger

SC sub-trigger starts the counter

HC sub-trigger halts the counter

Table 14.7 Data Selection Modes

Defined
Identifiers

Description

B2D_BYTE makes a comparison when the data being moved is of byte-length

B2D_WORD makes a comparison when the data being moved is of word-length

B2D_LONG makes a comparison when the data being moved is of long-length

Table 14.8 Counter Function Modes

Defined Identifiers Description

PCLK_CLOCK_CYCLES count pclk cycles

CLK_CLOCK_CYCLES count clk cycles

Table 14.6 Defined Identifier Key: Counter Trigger Modes (continued)

Identifier Fragments Description
340 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Normal Unit Action Options
This list of options describes the action taken when a non-counter trigger is generated.
One of the defined identifiers in Table 14.9 on page 341 must be OR’ed into the options
parameter of the _eonce_SetTrigger function.

Counter Unit Action Options
This list of options describes the action taken when a counter trigger is generated. One of
the defined identifiers in Table 14.10 on page 342 must be OR’ed into the options
parameter of the _eonce_SetCounterTrigger function. Identifiers that include
ZERO_BEFORE_TRIGGER only perform the action when the counter counts down to
zero before the Counter Stop Trigger occurs. Identifiers that include
TRIGGER_BEFORE_ZERO only perform the action when the Counter Stop Trigger
occurs before the counter counts down to zero.

INSTRUCTIONS_EXECUTED count instructions executed

TRACE_BUFFER_WRITES count writes to the trace buffer

COUNTER_START_TRIGGERS count Counter Start Triggers

PCLK_CLOCK_CYCLES count pclk cycles

Table 14.9 Normal Unit Actions Options Mode

Defined Identifiers Description

UNIT_ACTION enters debug mode is unit 0, else passes signal on
to next unit

INTERRUPT_CORE interrupts to vector set for this unit

HALT_TRACE_BUFFER trace buffer capture is halted

START_TRACE_BUFFER trace buffer capture is started

UNIT_ACTION enters debug mode is unit 0, else passes signal on
to next unit

Table 14.8 Counter Function Modes (continued)

Defined Identifiers Description
34156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Accumulating Trigger Options
One of the defined identifiers in Table 14.11 on page 342 must be OR’ed into the options
parameter of the _eonce_SetTrigger function when breakpoint unit 0 is being configured.

Table 14.10 Counter Unit Actions Options Mode

Defined Identifiers Description

NO_ACTION counter status bits still get set

UNIT_ACTION_ZERO_BEFORE_TRIGGE
R

enters debug mode is unit 0, else passes
signal on to next unit

INTERRUPT_CORE_ZERO_BEFORE_TR
IGGER

interrupts to vector set for this unit

UNIT_ACTION_TRIGGER_BEFORE_ZER
O

enters debug mode is unit 0, else passes
signal on to next unit

INTERRUPT_CORE_TRIGGER_BEFORE
_ZERO

interrupts to vector set for this unit

Table 14.11 Accumulating Trigger Options Mode with Breakpoint Unit 0

Defined Identifiers Description

PREV_UNIT_OR_THIS_TRIGGER_OR_
CORE_EVENT

a trigger is generated if the previous
breakpoint unit passes in a trigger signal
or this breakpoint unit creates a trigger
signal or if a core event occurs

PREV_UNIT_THEN_THIS_TRIGGER_OR
_CORE_EVENT

a trigger is generated if the previous
breakpoint unit passes in a trigger signal
followed by either this breakpoint unit
creating a trigger signal or a core event
occurring

THIS_TRIGGER_THEN_CORE_EVENT a trigger is generated if this breakpoint
unit creates a trigger signal followed by a
core event occurring

PREV_UNIT_THEN_THIS_TRIGGER_
THEN_CORE_EVENT

a trigger is generated if the previous
breakpoint unit passes in a trigger signal
followed by this breakpoint unit creating a
trigger signal followed by a core event
occurring
342 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
One of the defined identifiers in Table 14.12 on page 343 must be OR’ed into the options
parameter of the _eonce_SetTrigger function when a breakpoint unit other than unit 0 is
being configured.

Miscellaneous Trigger Options
The defined identifiers in Table 14.13 on page 343 are optional.

Trace Buffer Capture Options
The options in Table 14.14 on page 344 determine which kind of changes-of-flow will be
captured. OR in as many of the following defined identifiers into the options parameter of
the _eonce_SetupTraceBuffer function.

Table 14.12 Accumulating Trigger Options Mode, Non-0 Breakpoint Unit

Defined Identifiers Description

PREV_UNIT_OR_THIS_TRIGGER a trigger is generated if the previous
breakpoint unit passes in a trigger signal
or this breakpoint unit creates a trigger
signal

PREV_UNIT_THEN_THIS_TRIGGER a trigger is generated if the previous
breakpoint unit passes in a trigger signal
followed by this breakpoint unit creating a
trigger signal

Table 14.13 Miscellaneous Trigger Options

Defined Identifiers Description

INVERT_B2_COMPARE the signal from breakpoint 2 is inverted before entering the
combination logic; this can be OR’ed into the options
parameter of the _eonce_SetTrigger or
_eonce_SetCounterTrigger function

EXTEND_COUNTER the counter, when using the special counting function, is
extended to 40-bits by using the OSCNTR as the most
significant 24-bits; this can be OR’ed into the options
parameter of the _eonce_SetCounterTrigger function
when configuring breakpoint unit 0; WARNING: It is not
recommended that this option be used if the processor will
enter debug mode (breakpoint, console or file I/O) before
the counter is read, because the OSCNTR is needed for
stepping and would corrupt the counter
34356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Trace Buffer Full Options
The options in Table 14.15 on page 344 describe what action to take when the trace buffer
is full. One of the following defined identifiers must be OR’ed into the options parameter
of the _eonce_SetupTraceBuffer function.

Table 14.14 Trace Buffer Capture Options

Defined Identifiers Description

CAPTURE_CHANGE_OF_FLOW_
NOT_TAKEN

saves target addresses of conditional branches
and jumps that are not taken to the trace buffer

CAPTURE_CHANGE_OF_FLOW_
INTERRUPT

saves addresses of interrupt vector fetches and
target addresses of RTI instructions to the trace
buffer

CAPTURE_CHANGE_OF_FLOW_
SUBROUTINE

saves the target addresses of JSR, BSR, and
RTS instructions to the trace buffer

CAPTURE_CHANGE_OF_FLOW_
0

saves the target addresses of the following taken
instructions to the trace buffer:

BCC forward branch

BRSET forward branch

BRCLR forward branch

JCC forward and backward branches

CAPTURE_CHANGE_OF_FLOW_
1

saves the target addresses of the following taken
instructions to the trace buffer:

BCC backward branch

BRSET backward branch

BRCLR backward branch

Table 14.15 Trace Buffer Full Options

Defined Identifiers Description

TB_FULL_NO_ACTION capture continues, overwriting previous
entries

TB_FULL_HALT_CAPTURE capture is halted
344 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
Miscellaneous Trace Buffer Option
The TRACE_BUFFER_HALTED option may be OR’ed into the options parameter of the
_eonce_SetupTraceBuffer function. This option puts the trace buffer in a halted state
when leaving _eonce_SetupTraceBuffer function. This is most useful when setting a
trigger, by calling _eonce_SetTrigger, to start the trace buffer when a specific condition
is met.

TB_FULL_DEBUG processor enters debug mode

TB_FULL_INTERRUPT processor interrupts to vector specified
as Trace Buffer Interrupt

Table 14.15 Trace Buffer Full Options (continued)

Defined Identifiers Description
34556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EOnCE Library
346 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

A
Porting Issues

This appendix explains issues relating to successfully porting code to the most current
version of the CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers.

This appendix contains the following sections:

• Converting the DSP56800E Projects from Previous Versions on page 347

• Removing "illegal object_c on pragma directive" Warning on page 348

Converting the DSP56800E Projects from
Previous Versions

When you open older projects in the CodeWarrior IDE, the IDE automatically prompts
you to convert your existing project (Figure A.1 on page 347). Your old project will be
backed up if you need to access that project file at a later time. The CodeWarrior IDE
cannot open older projects if you do not convert them.

Figure A.1 Project Conversion Dialog
34756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Porting Issues
Removing "illegal object_c on pragma directive" Warning
Removing "illegal object_c on pragma
directive" Warning

If after porting a project to DSP56800E 7.x, you get a warning that says illegal
object_c on pragma directive, you need to remove it. To remove this
warning:

1. Open the project preference and go to the C/C++ Preprocessor.

2. Remove the line #pragma objective_con from the prefix text field.
348 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

B
DSP56800x New Project
Wizard

This appendix explains the high-level design of the new project wizard.

Overview
The DSP56800x New Project Wizard supports the DSP56800x processors listed in Table
B.1 on page 349.

Table B.1 Supported DSP56800x Processors for the New Project Wizard

DSP56800 DSP56800E

DSP56F801 (60 MHz) DSP56852

DSP56F801 (80 MHz) DSP56853

DSP56F802 DSP56854

DSP56F803 DSP56855

DSP56F805 DSP56857

DSP56F807 DSP56858

DSP56F826 MC56F8013

DSP56F827 MC56F8014

MC56F8023

MC56F8025

MC56F8036

MC56F8037

MC56F8122

MC56F8123
34956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview
Wizard rules for the DSP56800x New Project Wizard are described in the following sub-
sections:

• Page Rules on page 351

• Resulting Target Rules on page 352

• on page 353Rule Notes on page 353

Click on the following link for details about the DSP56800x New Project Wizard
Graphical User Interface:

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

MC56F8322

MC56F8323

MC56F8335

MC56F8345

MC56F8346

MC56F8356

MC56F8357

MC56F8365

MC56F8366

MC56F8367

Table B.1 Supported DSP56800x Processors for the New Project Wizard (continued)

DSP56800 DSP56800E
350 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview
• DSP56800x New Project Wizard Graphical User Interface on page 354

Page Rules
The page rules governing the wizard page flow for the simulator and the different
processors are shown in the Table B.2 on page 351, Table B.3 on page 351, Table B.4 on
page 352, and Table B.5 on page 352.

Table B.2 Page Rules for the Simulator, DSP56F801 (60 and 80 MHz), DSP56F802,
MC56F801x, MC56F802x, MC56F803x, MC56F812x, and MC56F832x

Target Selection Page Next Page Next Page

any simulator Program Choice Page

Finish Page

DSP56F801 60 MHz

DSP56F801 80 MHz

DSP56F802

MC56F801x

MC56F802x

MC56F803x

MC56F812x

MC56F832x

Table B.3 Page Rules for the DSP56F803, DSP56F805, DSP56F807, DSP56F826, and
DSP56F827

Target Selection
Page

Next Page Next Page Next Page

DSP56F803 Program
Choice Page

External/Internal
Memory Page

Finish Page

DSP56F805

DSP56F807

DSP56F826

DSP56F827
35156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview
Resulting Target Rules
The rules governing possible final project configurations are shown in Table B.6 on
page 353.

Table B.4 Page Rules for the DSP56852, DSP56853, DSP56854, DSP56855, DSP56857,
and DSP56858

Target Selection Page Next Page Next Page

DSP56852 Program Choice
Page

Finish Page

DSP56853

DSP56854

DSP56855

DSP56857

DSP56858

Table B.5 Page Rules for the MC56F814x, MC56F815x, MC56F816x, MC56F833x,
MC56F834x, MC56F835x, and MC56F836x

Target
Selection
Page

Next Page Next Page Next Page if
Processor
Expert Not
Selected

Next Page

MC56F814x Program
Choice Page

Data Memory
Model Page

External/Internal
Memory Page

Finish Page

MC56F815x

MC56F816x

MC56F833x

MC56F834x

MC56F835x

MC56F836x
352 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview
Rule Notes
Additional notes for the DSP56800x New Project Wizard rules are:

• The DSP56800x New Project Wizard uses the DSP56800x EABI Stationery for all
projects. Anything that is in the DSP56800x EABI
Stationery will be in the wizard-created projects depending on the wizard choices.

• The DSP56800x EABI Stationery has all possible targets, streamlined and tuned
with the DSP56800x New Project Wizard in mind.

Table B.6 Resulting Target Rules

Target Possible Targets

56800 Simulator Target with Non-HostIO Library and Target with Host IO
Library

56800E Simulator Small Data Model and Large Data Model

DSP5680x External Memory and/or Internal Memory with pROM-to-
xRAM Copy

DSP5682x External Memory and/or Internal Memory with pROM-to-
xRAM Copy

DSP5685x (Small Data Model and Small Data Model with HSST) or
(Large Data Model and Large Data Model with HSST)

MC56F801x

MC56F802x

MC56F803x

Small Data Model Internal Memory with pROM-to-xRAM
Copy

MC56F812x

MC56F832x

Small Data Model or Large Data Model Internal Memory
with pROM-to xRAM Copy

MC56F814x

MC56F815x

MC56F816x

MC56F833x

MC56F834x

MC56F835x

MC56F836x

(Small Data Memory External and/or Small Data Memory
Internal with pROM-to-xRAM Copy) or (Large Data
Memory External and/or Large Data Memory Internal with
pROM-to-xRAM Copy)
35356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
• The DSP56800x New Project Wizard creates the entire simulator project with all the
available targets in context of “Stationery as documentation and example.”

DSP56800x New Project Wizard Graphical
User Interface

This section describe the DSP56800x New Project Wizard graphical user interface.

The subsections in this section are:

• Invoking the New Project Wizard on page 354

• New Project Dialog Box on page 355

• Target Pages on page 356

• Program Choice Page on page 365

• Data Memory Model Page on page 366

• External/Internal Memory Page on page 367

• Finish Page on page 368

Invoking the New Project Wizard
To invoke the New Project dialog box, from the Freescale CodeWarrior menu bar, select
File>New (Figure B.1 on page 355).
354 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.1 Invoking the DSP56800x New Project Wizard

New Project Dialog Box
After selecting File>New from the Freescale CodeWarrior menu bar, the New project
Dialog Box (Figure B.2 on page 356) appears. In the list of stationeries, you can select
either the “DSP56800x New Project Wizard” or any of the other regular stationery.
35556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.2 New Project Dialog Box

Target Pages
When invoked, the New Project Wizard first shows a dynamically created list of
supported target families and processors or simulators. Each DSP56800x family is
associated with a subset of supported processors and a simulator (Figure B.3 on page 357,
Figure B.4 on page 358, Figure B.5 on page 359, Figure B.6 on page 360, Figure B.7 on
page 361, Figure B.8 on page 362, Figure B.9 on page 363, Figure B.10 on page 364, and
Figure B.11 on page 365).
356 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.3 DSP56800x New Project Wizard Target Dialog Box (DSP56F80x)
35756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.4 DSP56800x New Project Wizard Target Dialog Box (DSP56F82x)
358 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.5 DSP56800x New Project Wizard Target Dialog Box (DSP5685x)
35956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.6 DSP56800x New Project Wizard Target Dialog Box (MC56F801x)
360 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.7 DSP56800x New Project Wizard Target Dialog Box (MC56F802x)
36156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.8 DSP56800x New Project Wizard Target Dialog Box (MC56F803x)
362 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.9 DSP56800x New Project Wizard Target Dialog Box (MC56F81xx)
36356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.10 DSP56800x New Project Wizard Target Dialog Box (MC56F8xxx)
364 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.11 DSP56800x New Project Wizard Target Dialog Box (Simulators)

One target family and one target processor or simulator must be selected before continuing
to the next wizard page.

NOTE Depending on which processor you select, different screens will appear
according to the “Page Rules” on page 351.

If you choose the simulator, then the DSP56800x New Project Wizard - Program Choice
page appears (see “Program Choice Page” on page 365.)

Program Choice Page
If you chose either of the simulators, then Figure B.12 on page 366 appears and you can
now choose what sort of main() program to include in the project.
36556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.12 DSP56800x New Project Wizard - Program Choice

When you click Next, the Wizard jumps to the appropriate page determined by the “Page
Rules” on page 351.

Data Memory Model Page
If you select a DSP56800E processor (56F83xx or 5685x family), then the Data Memory
Model page appears (Figure B.13 on page 367) and you must select either the Small Data
Model (SDM) or Large Data Model (LDM).
366 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.13 DSP56800x New Project Wizard - 56800E Data Memory Model Page

When you click Next, the Wizard jumps to the appropriate page determined by the “Page
Rules” on page 351.

External/Internal Memory Page
Depending on the processor that you select, the External/Internal Memory page may
appear (Figure B.14 on page 368) and you must select either external or internal memory.

NOTE Multiple memory targets can be checked.
36756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.14 DSP56800x New Project Wizard - External/Internal Memory Page

When you click Next, the Wizard jumps to the appropriate page determined by the “Page
Rules” on page 351.

Finish Page
When you click the Finish button on the Finish Page (Figure B.15 on page 369), the
project creation process start.

NOTE All target choices end on this page.
368 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
Figure B.15 DSP56800x New Project Wizard - Finish Page
36956800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface
370 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Index

Symbols
. (location counter) linker keyword 292
.elf file, loading 220
__mod_access intrinsic function 270
__mod_error intrinsic function 272
__mod_getint16 intrinsic function 271
__mod_init intrinsic function 269
__mod_init16 intrinsic function 269
__mod_setint16 intrinsic function 272
__mod_start intrinsic function 270
__mod_stop intrinsic function 271
__mod_update intrinsic function 271
_eonce_ClearTraceBuffer library function 333
_eonce_ClearTrigger library function 330
_eonce_EnableDEBUGEV library function 334
_eonce_EnableLimitTrigger library function 335
_eonce_GetCounters library function 331
_eonce_GetCounterStatus library function 331,

332
_eonce_GetTraceBuffer library function 332
_eonce_HaltTraceBuffer library function 334
_eonce_Initialize library function 327
_eonce_SetCounterTrigger library function 329,

330
_eonce_SetTrigger library function 328, 329
_eonce_SetupTraceBuffer library function 332
_eonce_StartTraceBuffer library function 334

A
abs_s intrinsic function 239
Access Paths panel 48
add intrinsic function 241
add_hfm_unit flash debugger command 223
ADDR linker keyword 292, 293
ALIGN linker keyword 293
ALIGNALL linker keyword 293, 294
Auto-clear previous breakpoint on new

breakpoint release 78

B
bean inspector window 89, 94, 96

bean selector window 88, 93–94
breakpoints 196
Build Extras panel 48

C
C for DSP56800E 121–145
C/C++ language panel 51
C/C++ warnings panel 57–61
calling conventions 123–127
Changing Target Settings 45
child windows 32
code storage 140
CodeWarrior IDE 13, 14, 35, 36

installing 24
installing and registering 19

CodeWarrior IDE Target Settings Panels 47
command converter server 187–193
command window 221
connection type 178
conventions, calling 123–127
converting CodeWarrior projects 347
CPU types overview window 103
creating a project 29, 33
Custom Keywords settings panel 48
Cycle/Instruction Count 218

D
data alignment 133, 135
data storage 140
deadstripping 145
debugger

command converter server 187–193
EOnCE features 209–217
fill memory 205–207
load/save memory 203–205
operating 193–198
save/restore registers 207–209
system level connect 221, 222

debugger protocol 178
Debugger Settings panel 48
debugging 175–226
37156800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

flash memory 222
notes for hardware 225
supported remote connections 175–183
target settings 185, 187

development process 36–42
building (compling and linking) 40–42
debugging 42
editing code 39, 40
project files 38, 39

development studio overview 35–42
dialog boxes

fill memory 205–207
load/save memory 203–205
save/restore registers 207–209

directories, installation 24
div_ls intrinsic function 249
div_ls4q intrinsic function 249
div_s intrinsic function 248
div_s4q intrinsic function 248
docking windows 32
DSP56800E simulator 217

E
ELF disassembler panel 68–70
EOnCE debugger features 209–217
EOnCE library

definitions 336–345
EOnCE library functions 326–335

_eonce_ClearTraceBuffer 333
_eonce_ClearTrigger 330
_eonce_EnableDEBUGEV 334
_eonce_EnableLimitTrigger 335
_eonce_GetCounters 331
_eonce_GetCounterStatus 331, 332
_eonce_GetTraceBuffer 332
_eonce_HaltTraceBuffer 334
_eonce_Initialize 327
_eonce_SetCounterTrigger 329, 330
_eonce_SetTrigger 328, 329
_eonce_SetupTraceBuffer 332
_eonce_StartTraceBuffer 334

EOnCE panels
set hardware breakpoint 210
set trigger 215–217

special counters 210–212
trace buffer 212–215

example HSST host program 157–158
example HSST target program 165, 166
Exporting and importing panel options to XML

Files 46
extract_h intrinsic function 246
extract_l intrinsic function 246, 247

F
ffs_l intrinsic function 256, 257
ffs_s intrinsic function 255
File Mappings panel 48
fill memory dialog box 205–207
flash debugger commands

add_hfm_unit 223
set_hfm_base 223
set_hfm_config_base 223
set_hfm_erase_mode 224
set_hfm_verify_erase 224
set_hfm_verify_program 224
set_hfmclkd 222, 223
target_code_sets_hfmclkd 224

flash memory debugging 222
Flash ROM

programming tips 225
floating windows 32
FORCE_ACTIVE linker keyword 294
formats, number 121, 123

G
getting started 19, 29, 33
Global Optimizations settings panel 48

H
hardware debugging notes 225
high-speed simultaneous transfer 151–166
host program example, HSST 157–158
host-side API hsst functions 151–157
HSST 151–166

host-side API functions 151–157
target library API functions 158–165
visualization 167
372 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

HSST functions
hsst_attach_listener 155, 156
hsst_block_mode 154, 155
HSST_close 159
hsst_close 152
hsst_detach_listener 156
HSST_flush 162
hsst_noblock_mode 155
HSST_open 159
hsst_open 151
HSST_raw_read 163
HSST_raw_write 164
HSST_read 161
hsst_read 152
HSST_set_log_dir 164, 165
hsst_set_log_dir 156
HSST_setvbuf 159, 160
HSST_size 162
hsst_size 154
HSST_write 161
hsst_write 153

HSST host program example 157–158
HSST target program example 165, 166
hsst_attach_listener function 155, 156
hsst_block_mode function 154, 155
HSST_close function 159
hsst_close function 152
hsst_detach_listener function 156
HSST_flush function 162
hsst_noblock_mode function 155
HSST_open function 159
hsst_open function 151
HSST_raw_read function 163
HSST_raw_write function 164
HSST_read function 161
hsst_read function 152
HSST_set_log_dir function 164, 165
hsst_set_log_dir function 156
HSST_setvbuf function 159, 160
HSST_size function 162
hsst_size function 154
HSST_write function 161
hsst_write function 153

I
IDE, CodeWarrior 13, 14, 35, 36
IDE, installing 24
IDE, installing and registering 19
INCLUDE linker keyword 294
initialization, runtime 323–326
inline assembly

calling functions 232–234
overview 229, 230
quick guide 230, 231

inline assembly language 229–234
installation directories 24
installed beans overview window 104
installing and registering the CodeWarrior

IDE 19
installing the CodeWarrior IDE 24
intrinsic functions 234–277

__mod_access 270
__mod_error 272
__mod_getint16 271
__mod_init 269
__mod_init16 269
__mod_setint16 272
__mod_start 270
__mod_stop 271
__mod_update 271
abs_s 239
add 241
div_ls 249
div_ls4q 249
div_s 248
div_s4q 248
extract_h 246
extract_l 246, 247
ffs_l 256, 257
ffs_s 255
fractional arithmetic 235, 236
implementation 234, 235
L_abs 240
L_add 242
L_deposit_h 247
L_deposit_l 247
L_mac 253
L_msu 253
37356800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

L_mult 254
L_mult_ls 255
L_negate 241
L_shl 263, 264
L_shlftNs 264
L_shlfts 265
L_shr 265, 266
L_shr_r 266
L_shrtNs 267
L_sub 243
mac_r 250, 251
msu_r 251
mult 252
mult_r 252, 253
negate 239, 240
norm_l 257
norm_s 256
round 258
shl 259
shlftNs 260
shlfts 260, 261
shr 261
shr_r 262
shrtNs 263
stop 243
sub 241
turn_off_coonv_rndg 244
turn_off_sat 245
turn_on_conv_rndg 245
wait 244

introduction 13–17

K
KEEP_SECTION linker keyword 295

L
L_abs intrinsic function 240
L_add intrinsic function 242
L_deposit_h intrinsic function 247
L_deposit_l intrinsic function 247
L_mac intrinsic function 253
L_msu intrinsic function 253
L_mult intrinsic function 254
L_mult_ls intrinsic function 255

L_negate intrinsic function 241
L_shl intrinsic function 263, 264
L_shlftNs intrinsic function 264
L_shlfts intrinsic function 265
L_shr intrinsic function 265, 266
L_shr_r intrinsic function 266
L_shrtNs intrinsic function 267
L_sub intrinsic function 243
large data model support 141–144
libraries and runtime code 319–345
link order 145
linker command files

keywords 291–300
structure 279–282
syntax 282–291

linker keywords
. (location counter) 292
ADDR 292, 293
ALIGN 293
ALIGNALL 293, 294
FORCE_ACTIVE 294
INCLUDE 294
KEEP_SECTION 295
MEMORY 295, 297
OBJECT 297
REF_INCLUDE 297
SECTIONS 297, 298
SIZEOF 299
SIZEOFW 299
WRITEB 299
WRITEH 300
WRITEW 300

load/save memory dialog box 203–205
loading .elf file 220

M
M5600E target panel 50, 51
M56800E assembler panel 62, 64
M56800E linker panel 71–75
M56800E processor panel 64
M56800E target (debugging) panel 77–82
mac_r intrinsic function 250, 251
math support intrinsic functions 236–267
MEMORY linker keyword 295, 297
374 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

memory map window 101, 103
memory, viewing 199–202
Metrowerks Standard Library (MSL) 319–323
modulo addressing

error codes 275, 277
intrinsic functions 267–277
points to remember 275

modulo buffer examples 273–275
msu_r intrinsic function 251
mult intrinsic function 252
mult_r intrinsic function 252, 253

N
negate intrinsic function 239, 240
norm_l intrinsic function 257
norm_s intrinsic function 256
number formats 121, 123

O
OBJECT linker keyword 297
operating the debugger 193–198
optimizing code 144, 145
overview, development studio 35–42
overview, target settings 45

P
P memory, viewing 200–202
panels

C/C++ language 51
C/C++ warnings 57–61
ELF disassembler 68–70
M56800E assembler 62, 64
M56800E linker 71–75
M56800E processor 64
M56800E target 50, 51
M56800E target (debugging) 77–82
remote debug options 82–84
remote debugging 76–77
target settings 49–50

panels, settings 48–84
Peripheral Module Registers 146
peripherals usage inspector window 105
porting issues 347

Processor Expert
beans 87–89
code generation 86–87
menu 89–93
overview 85–93
page 87
tutorial 106–120

Processor Expert interface 85–120
Processor Expert windows 93–106

bean inspector 94, 96
bean selector 93–94
CPU types overview 103
installed beans overview 104
memory map 101, 103
peripherals usage inspector 105
resource meter 104
target CPU 96–101

project
creating 29, 33

R
REF_INCLUDE linker keyword 297
references 17
register details window 202, 219
register values 197–198
Registers, peripheral module 146
remote debug options panel 82–84
remote debugging panel 76–77
requirements, system 19
resource meter window 104
Restoring Target Settings 47
round intrinsic function 258
runtime code 319–345
runtime initialization 323–326

S
save/restore registers dialog box 207–209
Saving new target settings

stationery files 47
SECTIONS linker keyword 297, 298
set hardware breakpoint EOnCE panel 210
set trigger EOnCE panel 215–217
set_hflkd flash debugger command 222, 223
set_hfm_base flash debugger command 223
37556800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

set_hfm_config_base flash debugger
command 223

set_hfm_erase_mode flash debugger
command 224

set_hfm_verify_erase flash debugger
command 224

set_hfm_verify_program flash debugger
command 224

settings panels 48–84
Access Paths 48
Build Extras 48
C/C++ language 51
C/C++ warnings 57–61
Custom Keywords 48
Debugger Settings 48
ELF disassembler 68–70
File Mappings 48
Global Optimizations 48
M56800E assembler 62, 64
M56800E linker 71–75
M56800E processor 64
M56800E target 50, 51
M56800E target (debugging) 77–82
remote debug options 82–84
remote debugging 76–77
Source Trees 48
target settings 49–50

settings, target 43–84
shl intrinsic function 259
shlftNs intrinsic function 260
shlfts intrinsic function 260, 261
shr intrinsic function 261
shr_r intrinsic function 262
shrtNs intrinsic function 263
simulator 217
simultaneous transfer, high speed 151–166
SIZEOF linker keyword 299
SIZEOFW linker keyword 299
Source Trees settings panel 48
special counters EOnCE panel 210–212
stack frames 128, 129
stationery

saving new target settings 47
stop intrinsic function 243

storage, code and data 140
sub intrinsic function 241
system level connect 221, 222
system requirements 19

T
target CPU window 96–101
target library API hsst functions 158–165
target program example, HSST 165, 166
target settings 43–84

overview 45
target settings panel 49–50
Target Settings panels

Access Paths 48
Build Extras 48
Custom Keywords 48
Debugger Settings 48
File Mappings 48
Global Optimizations 48
Source Trees 48

Target Settings window 46
target_code_sets_hfmclkd flash debugger

command 224
trace buffer EOnCE panel 212–215
turn_off_conv_rndg intrinsic function 244
turn_off_sat intrinsic function 245
turn_on_conv_rndg intrinsic function 245
tutorial, Processor Expert 106–120

U
undocking windows 32

V
values, register 197–198
viewing memory 199–202

W
wait intrinsic function 244
windows

bean inspector 89, 94, 96
bean selector 88, 93–94
CPU types overview 103
installed beans overview 104
376 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

memory map 101, 103
peripherals usage inspector 105
Processor Expert 93–106
register details 202, 219
resource meter 104
target CPU 96–101

WRITEB linker keyword 299
WRITEH linker keyword 300
WRITEW linker keyword 300

X
X memory, viewing 199–200
XML files

exporting and importing panel options 46
37756800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

378 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

	Introduction
	CodeWarrior IDE
	Freescale 56800/E Digital Signal Controllers
	References

	Getting Started
	System Requirements
	Installing and Registering the CodeWarrior IDE
	Creating a Project

	Development Studio Overview
	CodeWarrior IDE
	Development Process
	Project Files
	Editing Code
	Building: Compiling and Linking
	Debugging

	Target Settings
	Target Settings Overview
	Target Setting Panels
	Changing Target Settings
	Exporting and Importing Panel Options to XML Files
	Restoring Target Settings

	CodeWarrior IDE Target Settings Panels
	DSP56800E-Specific Target Settings Panels
	Target Settings
	M56800E Target
	C/C++ Language (C Only)
	C/C++ Preprocessor
	C/C++ Warnings
	M56800E Assembler
	M56800E Processor
	ELF Disassembler
	M56800E Linker
	Remote Debugging
	M56800E Target (Debugging)
	Remote Debug Options

	Processor Expert Interface
	Processor Expert Overview
	Processor Expert Code Generation
	Processor Expert Beans
	Processor Expert Menu

	Processor Expert Windows
	Bean Selector
	Bean Inspector
	Target CPU Window
	Memory Map Window
	CPU Types Overview
	Resource Meter
	Installed Beans Overview
	Peripherals Usage Inspector

	Processor Expert Tutorial

	C for DSP56800E
	Number Formats
	Calling Conventions and Stack Frames
	Passing Values to Functions
	Returning Values From Functions
	Volatile and Non-Volatile Registers
	Stack Frame and Alignment

	User Stack Allocation
	Data Alignment Requirements
	Word and Byte Pointers
	Reordering Data for Optimal Usage

	Variables in Program Memory
	Declaring Program Memory Variables
	Using Variables in Program Memory
	Linking with Variables in Program Memory

	Code and Data Storage
	Large Data Model Support
	Extended Data Addressing Example
	Accessing Data Objects Examples
	External Library Compatibility

	Optimizing Code
	Deadstripping and Link Order
	Working with Peripheral Module Registers
	Compiler Generates Bit Instructions
	Explanation of Undesired Behavior
	Recommended Programming Style

	Generating MAC Instruction Set

	High-Speed Simultaneous Transfer
	Host-Side Client Interface
	hsst_open
	hsst_close
	hsst_read
	hsst_write
	hsst_size
	hsst_block_mode
	hsst_noblock_mode
	hsst_attach_listener
	hsst_detach_listener
	hsst_set_log_dir
	HSST Host Program Example

	Target Library Interface
	HSST_open
	HSST_close
	HSST_setvbuf
	HSST_write
	HSST_read
	HSST_flush
	HSST_size
	HSST_raw_read
	HSST_raw_write
	HSST_set_log_dir
	HSST Target Program Example

	Data Visualization
	Starting Data Visualization
	Data Target Dialog Boxes
	Memory
	Registers
	Variables
	HSST

	Graph Window Properties

	Debugging for DSP56800E
	Using Remote Connections
	Accessing Remote Connections
	Understanding Remote Connections
	Editing Remote Connections

	Target Settings for Debugging
	Command Converter Server
	Essential Target Settings for Command Converter Server
	Changing the Command Converter Server Protocol to Parallel Port
	Changing the Command Converter Server Protocol to HTI
	Changing the Command Converter Server Protocol to PCI
	Setting Up a Remote Connection
	Debugging a Remote Target Board

	Launching and Operating the Debugger
	Setting Breakpoints and Watchpoints
	Viewing and Editing Register Values
	Viewing X: Memory
	Viewing P: Memory

	Load/Save Memory
	Fill Memory
	Save/Restore Registers
	EOnCE Debugger Features
	Set Hardware Breakpoint Panel
	Special Counters
	Trace Buffer
	Set Trigger Panel

	Using the DSP56800E Simulator
	Cycle/Instruction Count
	Memory Map

	Register Details Window
	Loading a .elf File without a Project
	Using the Command Window
	System-Level Connect
	Debugging in the Flash Memory
	Flash Memory Commands
	set_hfmclkd <value>
	set_hfm_base <address>
	set_hfm_config_base <address>
	add_hfm_unit <startAddr> <endAddr> <bank> <numSectors> <pageSize> <progMem> <boot> <interleaved>
	set_hfm_erase_mode units | pages | all
	set_hfm_verify_erase 1 | 0
	set_hfm_verify_program 1 | 0
	target_code_sets_hfmclkd 1 | 0
	Flash Lock/Unlock

	Notes for Debugging on Hardware

	Profiler
	Inline Assembly Language and Intrinsics
	Inline Assembly Language
	Inline Assembly Overview
	Assembly Language Quick Guide
	Calling Assembly Language Functions from C Code
	Calling Functions from Assembly Language

	Intrinsic Functions
	Implementation
	Fractional Arithmetic
	Intrinsic Functions for Math Support
	abs_s
	negate
	L_abs
	L_negate
	add
	sub
	L_add
	L_sub
	stop
	wait
	turn_off_conv_rndg
	turn_off_sat
	turn_on_conv_rndg
	turn_on_sat
	extract_h
	extract_l
	L_deposit_h
	L_deposit_l
	div_s
	div_s4q
	div_ls
	div_ls4q
	mac_r
	msu_r
	mult
	mult_r
	L_mac
	L_msu
	L_mult
	L_mult_ls
	ffs_s
	norm_s
	ffs_l
	norm_l
	round
	shl
	shlftNs
	shlfts
	shr
	shr_r
	shrtNs
	L_shl
	L_shlftNs
	L_shlfts
	L_shr
	L_shr_r
	L_shrtNs
	Modulo Addressing Intrinsic Functions
	__mod_init
	__mod_initint16
	__mod_start
	__mod_access
	__mod_update
	__mod_stop
	__mod_getint16
	__mod_setint16
	__mod_error

	ELF Linker
	Structure of Linker Command Files
	Memory Segment
	Closure Blocks
	Sections Segment

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Deadstrip Prevention
	Variables, Expressions, and Integral Types
	File Selection
	Function Selection
	ROM to RAM Copying
	Utilizing Program Flash and Data RAM for Constant Data in C
	Utilizing Program Flash for User-Defined Constant Section in Assembler
	Stack and Heap
	Writing Data Directly to Memory

	Linker Command File Keyword Listing
	. (location counter)
	ADDR
	ALIGN
	ALIGNALL
	FORCE_ACTIVE
	INCLUDE
	KEEP_SECTION
	MEMORY
	OBJECT
	REF_INCLUDE
	SECTIONS
	SIZEOF
	SIZEOFW
	WRITEB
	WRITEH
	WRITEW

	Command-Line Tools
	Usage
	Response File
	Sample Build Script
	Arguments
	General Command-Line Options
	Compiler
	Linker
	Assembler

	Libraries and Runtime Code
	MSL for DSP56800E
	Using MSL for DSP56800E
	Allocating Stacks and Heaps for the DSP56800E

	Runtime Initialization
	EOnCE Library
	_eonce_Initialize
	_eonce_SetTrigger
	_eonce_SetCounterTrigger
	_eonce_ClearTrigger
	_eonce_GetCounters
	_eonce_GetCounterStatus
	_eonce_SetupTraceBuffer
	_eonce_GetTraceBuffer
	_eonce_ClearTraceBuffer
	_eonce_StartTraceBuffer
	_eonce_HaltTraceBuffer
	_eonce_EnableDEBUGEV
	_eonce_EnableLimitTrigger
	Definitions

	Porting Issues
	Converting the DSP56800E Projects from Previous Versions
	Removing "illegal object_c on pragma directive" Warning

	DSP56800x New Project Wizard
	Overview
	Page Rules
	Resulting Target Rules
	Rule Notes

	DSP56800x New Project Wizard Graphical User Interface
	Invoking the New Project Wizard
	New Project Dialog Box
	Target Pages
	Program Choice Page
	Data Memory Model Page
	External/Internal Memory Page
	Finish Page

	Index

