-
P N

CodeWarrior™
Development Studio for
Freescale™ 56800/E
Digital Signal
Controllers:
MC56F8xxXx/DSP5685x
Family Targeting
Manual

freescale‘"‘

Revised: 19 June2006 ~ samiconductor

y
A

Freescale, the Freescalelogo, and CodeWarrior are trademarks or registered trademarks of Freescal e Corporation in the
United States and/or other countries. All other trade names and trademarks are the property of their respective owners.

Copyright © 2006 by Freescale Semiconductor company. All rights reserved.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Freescale. Use of this document and related materialsis gov-
erned by thelicense agreement that accompanied the product to which thismanual pertains. Thisdocument may
be printed for non-commercial personal use only in accordance with the aforementioned license agreement. If
you do not have a copy of the license agr eement, contact your Freescalerepresentative or call 1-800-377-5416 (if
outsidethe U.S,, call +1-512-996-5300).

Freescal e reserves the right to make changes to any product described or referred to in this document without further
notice. Freescale makes no warranty, representation or guarantee regarding the merchantability or fitness of its products
for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product
described herein and specifically disclaimsany and al liability. Freescale softwareisnot authorized for and has not
been designed, tested, manufactured, or intended for use in developing applications where the failure, malfunc-
tion, or any inaccuracy of the application carries arisk of death, serious bodily injury, or damage to tangible
property, including, but not limited to, usein factory control systems, medical devices or facilities, nuclear facil-

ities, aircraft navigation or communication, emergency systems, or other applications with a similar degree of
potential hazard.

How to Contact Freescale

Corporate Headquarters Freescale Corporation
7700 West Parmer Lane
Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

g |

Table of Contents

1 Introduction 13
CodeWarrior IDEo e 13

Freescale 56800/E Digital Signal Controllers 14

REfErenCes. 16

2 Getting Started 19
System ReqUIreMeNtS oot e 19

Installing and Registering the CodeWarrior IDE 19

Creating aProjectt 24

3 Development Studio Overview 35
CodeWarrior IDE 35
Development ProCESS oo it 36

Project Files. . ..o 38

Editing Codeo 39

Building: Compilingand Linking. i ... 40

DEDUGOING .+« vttt e 42

4 Target Settings 43
Target SEttingS OVEINVIEWo e e e e 43

Target Setting Panels.o 43

Changing Target Settingsot 45

Exporting and Importing Panel Optionsto XML Files. 46

Restoring Target Settingso o 47

CodeWarrior IDE Target SettingsPanels. it 47
DSP56800E-Specific Target SettingsPanelsot 48

Target SEttingsS. oot 49

MBBBO0E Target . . o v v e et ettt e e e e 50
C/IC++Language (CONly) . ..o e e e e 51

CICH+ PreproCESSOr . . oo vttt e e ettt et 55
CICHHWarNiNgS . . oottt e e e 57

MB6800E Assembler. . ..o e 62

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 3

Table of Contents

MS56800E PrOCESSON. . . . oot v vt e ettt e 64
ELFDisassembler 68
MB5BBO0E LinKer\ttt e 71
Remote Debuggingot 76
MB56800E Target (Debugging). - - « v v v v et 77
Remote Debug Options.o oot 82

5 Processor Expert Interface 85
Processor EXpert OVErVIaW.ot e 85
Processor Expert Code Generationoooiiiiiiii 86
Processor Expert Beans. 87
Processor EXpert Menuot e 89
Processor EXpert WIindowso 93
Bean SEleCtOr.o 93
Bean INSpeCtOr.o e 94
Target CPUWINAOW oo e e 96
Memory MapWindow. 101
CPU TYPES OVEIVIEW o\ ottt ettt ittt it et e e 103
Resource Meter 104
Installed BeanS OVErVIeW oo 104
PeripheralsUsagelnspector ... 105
Processor Expert Tutorialo 106
6 C for DSP56800E 121
Number FOmMatsS 121
Calling Conventionsand Stack Frames. oo, 123
Passing Valuesto Functionscv it 123
Returning Values From Functions. oo 124
Volatile and Non-Volatile Registers., 124
Stack Frameand Alignment 128
User Stack AlOCaEION oo 129
Data Alignment Requirements i 133
Word and Byte POINters. 134
Reordering Datafor OptimalUsage 135
Variablesin Program Memory i 135

4 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents

Declaring Program Memory Variables. 136
Using Variablesin ProgramMemory, 136
Linking with Variablesin ProgramMemory. 138
Codeand Data Storage« oo v et e 140
Large DataModel SUppOrt oo 141
Extended Data AddressingExample. 142
Accessing DataObjectsExamples 142
External Library Compatibility........... L. 144
Optimizing Code. . ..ot e 144
Deadstrippingand Link Order. 145
Working with Peripheral Module Registers 146
Compiler GeneratesBit Instructions., 146
Explanation of Undesired Behavior 147
Recommended Programming Style. 148
Generating MAC Instruction Set 150
7 High-Speed Simultaneous Transfer 151
Host-SideClient Interface e 151
hSSt Open. . .. 151
hSSt ClOSE ..o e 152
hsst read 152
RSSt WIite .. 153
RSSt SIZe ... e 154
hsst block mode. i 154
hsst noblock mode. 155
hsst_attach listener........... .. i 155
hsst detach listener 156
hsst set log dir.o 156
HSST Host Program Example. 157
Target Library Interface 158
HSST _0pen. ... 159
HSST Close. ..o e e 159
HSST setvbuf o 159
HSST Write. ..o e 161
HSST read ...t 161

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 5

Table of Contents

HSST_flush . ..o e 162
HSST Size. ... 162
HSST raw read.ot et 163
HSST raw WIHte. . .ot e et e 164
HSST set log dir. ... 164
HSST Target ProgramExample ...t 165

8 Data Visualization 167
Starting DataVisuaization e 167
Data Target DialogBOXES.o 168
MEMOrY . . e 168
REG SIS . .ot e 170
Variables 170
HS ST o 171
Graph Window Properties. 172
9 Debugging for DSP56800E 175
Using Remote CoNNeCtions. oottt 175
Accessing Remote Connectionso e 176
Understanding Remote Connections., 177
Editing Remote Connections.t 178
Target Settingsfor Debugging oot 185
Command CoNVErter SEIVEr oottt e e 187
Essential Target Settings for Command Converter Server 187
Changing the Command Converter Server Protocol to Parallel Port 188
Changing the Command Converter Server Protocol to HTI 190
Changing the Command Converter Server Protocol toPCI 190
Setting Up aRemote Connection, 191
DebuggingaRemote Target Board 193
Launching and OperatingtheDebugger, 193
Setting Breakpoints and Watchpointsot 196
Viewing and Editing Register Values 197
Viewing X: MemMOry . ..ottt 199
Viewing P: MemOry.o 200
Load/Save MEemMOrYot 203

6 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents

Fill MEMOIY .o e e 205
Save/ReSIOrEe REQISIEIS . . o o ottt 207
EONCE Debugger Features. e 209
Set Hardware Breakpoint Panel oo, 210
Special COUNLErSttt 210
Trace Buffer. 212
Set Trigger Panel 215
Using the DSP56800E Simulatorooe i 217
Cycle/instruction Countot e 218
Memory Map. 219
Register DetaillsSWindow e 219
Loading a.elf FilewithoutaProject. 220
Using the Command Window. i 221
System-Level CONNECtottt 221
DebuggingintheFlashMemory 222
FlashMemory Commandsottt 222
set hfmclkd <value>......... 222
set hfm base <address>............ i 223
set_hfm_config base <address>.............. it 223
add_hfm_unit <startAddr> <endAddr> <bank> <numSectors> <pageSize>
<progMem> <boot> <interleaved>. 223
set_hfm_erase mode units|pages|all................ ..., 224
set hfm_verify erase 1|0o 224
set_hfm_verify program 1[0........ ..o 224
target_code sets hfmclkd 1|0......... ... 224
Flash Lock/UnlocK e 224
Notesfor Debuggingon Hardware., 225
10 Profiler 227
11 Inline Assembly Language and Intrinsics 229
Inline Assembly Language.o i et 229
Inline Assembly OVEIVIEWot 229
Assembly Language Quick Guide. 230
Calling Assembly Language FunctionsfromCCode. 232
56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 7

Table of Contents

Calling Functionsfrom Assembly Language 234
INtriNSIC FUNCLIONS.o e 234
Implementation e 234
Fractional Arithmetic. 235
Intrinsic Functionsfor Math Support ot 236
DS S 239
1< T= (= 239
L A0S, ot 240
Lonegate ..o e 240
add . .. 241
SUD L 241
Loadd. ..o 242
L SUD . o 243
(] o 243
WAt 244
turn_off_conv_rndg.o 244
turn Off Sat e 245
100 o) T o 1Y/ 1o o 245
TUM 0N Sa ..ot e e e e 245
EXEraCt N 246
EXEraCt | .o 246
Lodeposit h.o 247
Lodeposit | ... o 247
AiV S o 248
AIV Q. o 248
AiV IS, 249
AV IS, o 249
070 250
015 251
MU L 252
MU F e 252
L MaC . o 253
L MU e 253
L MUt . 254
LomuUlt IS, e 255

8 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents

LS 255
701 0 T T 256
IS | 256
NOMM | . 257
FOUNG .« e e e e e e e e 258
SNl 259
SN S, ot 260
SIS Lt 260
S 261
£ 0] 262
SHIINS . L 263
= | 263
L SINS. o e 264
L SNt . e 265
= 265
I 2 266
Lo ShrtNS . . e 267
Modulo Addressing Intrinsic Functions 267
MO NIt L e 269
Cmod nitintd6 e 269
MOO_Start. . . oo 270
MO BCCESS . . . ottt ettt et et e e 270
MOd_UPdaLe. . . .o 271
107070 TS o] o 271

o mod _QEINtLG. . ..o 271
omod SEtintdB. ... e 272
0700 = 1 (0 272
12 ELF Linker 279
Structure of Linker Command Files.t 279
Memory Segment 279
ClosureBIocks 280
SECtiONS SEgMENtottt 281
Linker Command FileSyntax. 282
AlIGNMENt 282

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 9

Table of Contents

Arithmetic Operations. e 282
COMMENTS . . o 283
Deadstrip Prevention e 283
Variables, Expressions, and Integral Types.cooviveun... 284
FileSelection.o 286
Function Selection. 286
ROM tO RAM COpYiNg . . . oottt e 287
Utilizing Program Flash and Data RAM for Constant DatainC 289
Utilizing Program Flash for User-Defined Constant Section in Assembler 289
Stack and Heap 291
Writing DataDirectly toMemory 291
Linker Command File Keyword Listing., 291
. (location CoUNLEr) . ..ot 292
ADDR . 292
ALIGN . . 293
ALIGNALL . ..o 293
FORCE ACTIVE ...ttt e e 294
INCLUDE . ..o 294
KEEP_SECTION ...\ttt et et 295
MEMORY ..t 295
OBUIECT . . ot 297
REF INCLUDE ... it e e 297
SECTIONS . .t 297
SIZEOF . . 299
SIZEORW o 299
WRITEB ... 299
WRITEH .. 300
WRITEW . . e e e 300
13 Command-Line Tools 301
USA0B. . ittt et e e 301
Response Fileo 302
SampleBuild Script ... 303
ATQUMBNES . .« .o e 303
General Command-Line Options.iuiii it 303

10

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Table of Contents

COMPIlEr . e e 305
LinKer 313
ASSEMDIEr . . 317
14 Libraries and Runtime Code 319
MSL for DSPS6800E oot 319
Using MSL for DSP56800Eo et 319
Allocating Stacks and Heaps for the DSP56800E. 322
Runtime Initidization. oo 323
EONCE Libraryo 326
—eonce Initialize. ... 327

L BONCE SEI T GO . o v vttt e e et 328
_eonce_SetCounterTrigger . ..o et 329
_e0NCe ClearTrigOer . « o o vttt e 330
_e0NCE_GEICOUNTEIS. . o . vt ittt e e e e 331
_eonce GetCounterSatuS. . ..o vt e 331
_eonce_SetupTraceBuffer. i 332
_eonce GetTraceBuffer i 332
_eonce ClearTraceBuffer i 333
_eonce StartTraceBuffer. i 334
_eonce HaltTraceBuffer........... ... i i 334
_eonce EnableDEBUGEV o i 334
_eonce EnableLimitTriggercooviini i 335
DEfiNItIONS. . ..ottt 336

A Porting Issues 347
Converting the DSP56800E Projects from Previous Versions. 347
Removing "illegal object_c on pragmadirective" Warning............... 348
B DSP56800x New Project Wizard 349
OV IV BV . o ettt e et e e 349
Page RUIES. 351
Resulting Target RUIESo e e 352
RUIENOLES. . . 353
DSP56800x New Project Wizard Graphical User Interface. 354

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 11

Table of Contents

Invoking the New Project Wizard, 354
New Project Dialog BOXo oo 355
Target Pages. . . .o e 356
ProgramChaicePage e 365
DataMemory Model Page. 366
Externa/Internal Memory Page. 367
FinishPage 368
Index 371
12 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction

This manual explains how to use the CodeWarrior™ Integrated Development
Environment (IDE) to develop code for the DSP56800E family of processors
(MC56F8xxx and DSP5685x).

This chapter contains the following sections:
¢ CodeWarrior IDE on page 13

« Freescale 56800/E Digital Signal Controllers on page 14
* References on page 16

CodeWarrior IDE

The CodeWarrior IDE consists of a project manager, agraphical user interface, compilers,
linkers, a debugger, a source-code browser, and editing tools. Y ou can edit, navigate,
examine, compile, link, and debug code, within the one CodeWarrior environment. The
CodeWarrior IDE lets you configure options for code generation, debugging, and
navigation of your project.

Unlike command-line devel opment tools, the CodeWarrior IDE organizes all files related
to your project. Y ou can see your project at a glance, so organization of your source-code
filesis easy. Navigation among thosefilesis easy, too.

When you use the CodeWarrior IDE, there is no need for complicated build scripts of
makefiles. To add filesto your project or delete files from your project, you use your
mouse and keyboard, instead of tediously editing a build script.

For any project, you can create and manage several configurations for use on different
computer platforms. The platform on which you run the CodeWarrior IDE is called he
host. From the host, you use the CodeWarrior IDE to develop code to target various
platforms.

Note the two meanings of the term target:

¢ Platform Target — The operating system, processor, or microcontroller from or on
which your code will execute.

« Build Target — The group of settings and files that determine what your code is, as
well as control the process of compiling and linking.

The CodeWarrior IDE lets you specify multiple build targets. For example, a project can
contain one build target for debugging and another build target optimized for a particular

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 13

3
4

'
A

Introduction
Freescale 56800/E Digital Signal Controllers

operating system (platform target). These build targets can share files, even though each
build target usesits own settings. After you debug the program, the only actions necessary
to generate afinal version are selecting the project’s optimized build target and using a
single Make command.

The CodeWarrior IDE’ s extensible architecture uses plug-in compilers and linkers to
target various operating systems and microprocessors. For example, the IDE uses a GNU
tool adapter for internal callsto DSP56800E devel opment tools.

Most features of the CodeWarrior IDE apply to several hosts, languages, and build targets.
However, each build target hasits own unique features. This manual explains the features
unique to the CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers.

For comprehensive information about the CodeWarrior IDE, see the CodeWarrior IDE
User’s Guide.

NOTE For the very latest information on features, fixes, and other matters, see the
CodeWarrior Release Notes, on the CodeWarrior IDE CD.

Freescale 56800/E Digital Signal Controllers

The Freescale 56800/E Digital Signal Controllers consist of two sub-families, which are
named the DSP56F80x/DSP56F82x (DSP56800) and the M C56F8xxx/D SP5685x
(DSP56800E). The DSP56800E is an enhanced version of the DSP56800.

The processors in the DSP56800 and DSP56800E sub-families are shownin Table 1.1 on
page 15.

With this product the following Targeting Manuals are included:

¢ Code Warrior Development Sudio for Freescale 56800/E Digital Sgnal
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

¢ Code Warrior Development Studio for Freescale 56800/E Digital Sgnal
Controllers: MC56F8xxx/DSP5685x Family Targeting Manual

NOTE Pleaserefer to the Targeting Manual specific to your processor.

14

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

h o
g |

Introduction
Freescale 56800/E Digital Signal Controllers

Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio for
Freescale 56800/E Digital Signal Controllers

DSP56800 DSP56800E

DSP56F801 (60 MHz) DSP56852

DSP56F801 (80 MHz) DSP56853

DSP56F802 DSP56854

DSP56F803 DSP56855

DSP56F805 DSP56857

DSP56F807 DSP56858

DSP56F826 MC56F8013

DSP56F827 MC56F8014

MC56F8023

MC56F8025

MC56F8036

MC56F8037

MC56F8122

MC56F8123

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

MC56F8322

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 15

'
A

Introduction
References

Table 1.1 Supported DSP56800x Processors for CodeWarrior Development Studio for
Freescale 56800/E Digital Signal Controllers (continued)

DSP56800 DSP56800E

MC56F8323

MC56F8335

MC56F8345

MC56F8346

MC56F8356

MC56F8357

MC56F8365

MC56F8366

MC56F8367

References

¢ Your CodeWarrior IDE includes these manuals:

CodeWarrior™ |DE User’s Guide

CodeWarrior™ Development Sudio IDE 5.6 Windows® Automation Guide

CodeWarrior™ Development Sudio for Freescale 56800/E Digital Signal
Controllers: DSP56F80x/DSP56F82x Family Targeting Manual

CodeWarrior™ Development Sudio for Freescale 56800/E Digital Signal
Controllers: MC56F8xx/DSP5685x Family Targeting Manual

CodeWarrior ™ Builds Tools Reference for Freescale 56800/E Digital Signal
Controllers

CodeWarrior™ Development Sudio IDE 5.5 User’s Guide Profiler Supplement

CodeWarrior™ Development Sudio for Freescale™ DSP56800x Embedded
Systems Assembler Manual

Codewarrior™ USB TAP Users Guide

Freescale™ 56800 Family |EEE - 754 Compliant Floating-Point Library User
Manual

Freescale™ 56800E Family |EEE - 754 Compliant Floating-Point Library User
Manual

16

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Introduction
References

— CodeWarrior™ Development Studio HTI Host Target Interface (for Once™/
JTAG Communication) User’s Manual

— DSP56800 to DSP56800E Porting Guide, Freescale Semiconductors, Inc.

— 56F807 to 56F8300/56F8100 Porting User Guide, Freescale Semiconductors
Inc.

— Tolearn more about the DSP56800E processor, refer to the Freescale manual,
DSP56800E Family Manual.

To download electronic copies of these manuals or order printed versions, visit:

http://www.freescale.com/

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 17

wr
4\

Introduction
References

18 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Getting Started

This chapter explains the setup and installation for the CodeWarrior™ IDE, including
hardware connections and communications protocols.

This chapter contains these sections:
» System Requirements on page 19
¢ |nstalling and Registering the CodeWarrior IDE on page 19

» Creating a Project

System Requirements

Table 2.1 on page 19 lists system requirements for installing and using the CodeWarrior
IDE for DSP56800E.

Table 2.1 Requirements for the CodeWarrior IDE

Category Requirement

Host Computer PC or compatible host computer with 1.0-GHz Pentium®-

Hardware compatible processor, 512 megabytes of RAM, and a CD-ROM
drive

Operating Microsoft® Windows® 2000/XP

System

Hard Drive 2.0 gigabytes of free space, plus space for user projects and source
code

DSP56800E 56800E EVM or custom 56800E development board, with JTAG
header

Installing and Registering the CodeWarrior
IDE

Follow these steps:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 19

A 4
4\

Getting Started

Installing and Registering the CodeWarrior IDE

1. Toinstall the CodeWarrior software:

a

NOTE

Insert the CodeWarrior CD into the CD-ROM drive — the welcome screen
appears.

If the Auto Install is disabled, run the program Launch . exe in the root
directory of the CD.

Click Launch CodeWarrior Setup — the install wizard displays welcome page.
Follow the wizard instructions, accepting all the default settings.

d. At the prompt to check for updates, click the Y es button — the CodeWarrior

updater opens.

2. To check for updates:

NOTE

If the updater already has Internet connection settings, you may proceed
directly to substep f.

a. Click the Settings button — the Updater Settings dialog box appears.

=)

-~ 0o a0

@

J-

k.

Click the L oad Settings button — the updater loads settings from your Windows
control panel.

Modify the settings, as appropriate.

If necessary, enter the proxy username and the password.

Click the Save button — the Updater Settings dialog box disappears.
In the updater screen, click the Check for Updates button.

If updates are available, follow the on-screen instructions to download the updates
to your computer.

When you seethe message, “ Y our version ... isup to date”, click the OK button —
the message box closes.

Click the updater Close button — the installation resumes.
At the prompt to restart the computer, select the Y es option button.
Click the Finish button — the computer restarts, completing installation.

3. Toregister the CodeWarrior software:
a Select Start> Programs>Freescale CodeWarrior>CW for DSC56800

b.

R8.0>CodeWarrior IDE.
Select Help > Register Product — the Freescale registration page appears.

20

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Installing and Registering the CodeWarrior IDE

Figure 2.1 Freescale Registration Page

Freescale = CodeWarrior Development Tools = Licensing and Registration
Licensing and Registration

CodeWarrior Product Licensing and Registration
To register and activate your neswly-installed Codeiarrior product, followe the steps below.

1. BRegister your Codeiarrior product
2. Authorize your registered Codelarrior procuct

For more information shout licensing and registration your Codediarrior product, please read our Licensing and
Registration Frequently Asked Guestions (FAG).

c. Click item number 1 — Register your CodeWarrior product.
d. Login or Register on the Freescale site.
Freaszcale = Login

Enter your ID and password to log in: To access your personal homepage and your profile, log
into our site now.

I [10hnsmith |

Passward [sesssses [»>]

Forgotten Password?

New to Freescale Semiconductor? REGISTER HOW IO

If this iz your first log in, you will be required to reviews and agree to the Extranst
Access Agreement before access is granted. Please remember that Freescale
Semiconductor takes the protection of confidential information seriously. By clicking
"Redgister Mow" below you signify your intent to comply with the confidentislity
restrictions and other terms contained in the Extranet Access Agreement.

Registered Cust % have to
Freescale Semiconductor

pecial services offered by

Request Information and Assistance (Helpline)

Attend Technical Learning Center courses

Subszcribe to receive updates for Products and Interests

Download special Software packages

Access Secure Application information and services

e. Enter your Registration Code and click the Continue button.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 21

PR 4

Getting Started
Installing and Registering the CodeWarrior IDE

Registration and Licensing System

This online registration system will register your Metrowerks product and maintenance and technical support agreement. If
you have guestions regarding registration or licensing click here,

Step 1 of 3: Enter your Registration code.

ttems marked with an ~ are required.

Product or Support Registration Code.

Registration Code” AsAsA-BBBBB-CCCCC-DDDDD|

Need to Register an Evaluation?

I I

NOTE Inthe next screen you will be asked to confirm your Registration code by
clicking Continue a second time. After registration is complete, you will
receive an email with the activation code and directions on how to activate
your product.

f. Click the Activation link in the email that you receive.
g. Login to the Freescale site.
h. Enter the License Authorization Code into the field.

22 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Getting Started
Installing and Registering the CodeWarrior IDE

Licensing Activation System

This online licensing system will license your Metrowerks product. If you have guestions regarding registration or licensing,
click here.

Step 1 of 3: Enter your Host ID and License Activation Code
ttems marked with an ~ are required.

Enter License Authorization Code™
AAATT-1ATZ3-AATAA 23AA-A5678

Node Lock ID for license™

Select Mode Lock ID Type Erter Mode Lock ID
& Ethernet Lddress \‘_) 01AD4ETBDART
" Solaris HostiD @

' Dongle I \?)
€ Disk D @

[o cioions

i. For the default selection: Ethernet Address — determine your ethernet address:
Launch a Command Prompt window
Enter ipconfig /all
Copy the Physical Address value of the first Ethernet adapter listed
Paste valueinto the "Node Lock ID for license" text box (remove spaces or dashes)
j. Click Continue Activation.
k. Click Continue to confirm the Host ID and License Authorization Code.

The website will display your license keys along with instructions on installing the
license. Copy and paste these keys into the top of the "license.dat" file located at the root
of your CodeWarrior installation directory. Y our product should now befully licensed and
operational.

Table 2.2 on page 23 lists the directories created during full installation.
To test your system, follow the instructions of the next section to create a project.

Table 2.2 Installation Directories, CodeWarrior IDE for DSP56800E

Directory Contents

(CodeWarrior_Examples) Target-specific projects and code.

(Helper Apps) Applications such as cwspawn.exe and
cvs.exe.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 23

y
A

Getting Started
Creating a Project

Table 2.2 Installation Directories, CodeWarrior IDE for DSP56800E (continued)

Directory Contents

bin The CodeWarrior IDE application and
associated plug-in tools.

ccs Command converter server executable files

and related support files.

DSP56800x_EABI_Support

Default files for the DSP56800x stationery.

DSP56800x_EABI_Tools

Drivers to the CCS and command line tools,
plus IDE default files for the DSP56800x
stationery

Freescale_Documentation

Documentation specific to the Freescale
DSP56800E series.

Help Core IDE and target-specific help files. (Access
help files through the Help menu or F1 key.)
License Licensing information.

M56800E Support

Initialization files, Freescale Standard Library
(MSL) and Runtime Library.

M56800x Support

Profiler libraries.

ProcessorExpert

Files for the Processor Expert.

Release_Notes

Release notes for the CodeWarrior IDE and
each tool.

Stationery

Templates for creating DSP56800E projects.
Each template pertains to a specific debugging
protocol.

Creating a Project

To test software installation, create a sample project. Follow these steps:

1. Select Start>Freescale CodeWarrior>CW for DSC56800 R8.0>CodeWarrior
IDE. The IDE starts; the main window appears.

To create a DSP56800x project use either the:
« DSP56800x new project wizard
« DSP56800x EABI stationery

24 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Getting Started
Creating a Project

To create a new project with the DSP56800x new project wizard, please see the sub-
section “ Creating a New Project with the DSP56800x New Project Wizard.”

To create a new project with the DSP56800x EABI stationery, please see the sub-section
“Creating a New Project with the DSP56800x EABI Stationery.”

Creating a New Project with the DSP56800x New
Project Wizard

In this section of thetutorial, you work with the CodeWarrior IDE to create a project. with
the DSP56800x New Project Wizard.
To create a project:
1. From the menu bar of the Freescale CodeWarrior window, select File>New.
The New dialog box (Figure 2.2 on page 25) appesars.

Figure 2.2 New Dialog Box
New

Project | File | Object |

5 DSP56800: EABI Stationery Project name:
ﬁ DSP56800: EVM Examples Stationery J[hejmject
‘5 DSP 56800« New Project Wizard
8 Empty Project Location:
i Makefile Importer Wizard oo =Ty n
I Amy_projectsithe_project Set...
@ Processor Expert Examples Stationery J L_I
8 Processor Bxpert Stationery 1 Add Targets to Project:

Project:

oK Cancel

2. Select DSP56800x New Project Wizard.
3. Inthe Project Name text box, type the project name. For example, the_project.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 25

4
A

Getting Started
Creating a Project

4. Inthe L ocation text box, type the location where you want to save this project or
choose the default location.

5. Click OK. The DSP56800x New Project Wizard — Target dialog box (Figure
2.3 on page 26) appears.

Figure 2.3 DSP56800x New Project Wizard — Target Dialog Box

DSP56800x New Project Wizard - Target

Select famity and then processor for this project..

DSP5E80E: Family Processor
DSP5EFEM DSP5ER00_simulator
DSPSEFE2x DSP5EE00E_simulator
DSP568R
MC56F801x
MCE6F 802
MC56F 803
MCE6F8 T
MCBEF8 3o
Simulataors

Mead = Cancel

6. Select the target board and processor
a. Sdect thefamily, such as Simulators, from the DSP56800x Family list.

b. Select the processor or simulator, such as DSP56800E_simulator, from the
Processor list.
7. Click Next. The DSP56800x New Project Wizard — Program Choice dialog box
(Figure 2.4 on page 27) appears.

26 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Getting Started
Creating a Project

Figure 2.4 DSP56800x New Project Wizard — Program Choice Dialog Box

DSP56800x New Project Wizard - Program Choice

Select the starter main{) program for this project...

Program

{* Simple C

" Simple Mixed Assembly and C
™ Simple Assembhy

(" Blank C

< Back Mend = Cancel ‘

8. Select the example main() program for this project, such as Simple C.

9. Click Next. The DSP56800x New Project Wizard — Finish dialog box (Figure
2.5 on page 28) appears.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 27

y
A

Getting Started
Creating a Project

Figure 2.5 DSP56800x New Project Wizard — Finish Dialog Box

DSP56800x New Project Wizard - Finish

Click Finizh to create the project ...

< Back | Finizh | Cancel

10. Click Finish to create the new project.

NOTE For more details of the DSP56800x new project wizard, please see Appendix
B.

This completes project creation. Y ou are ready to edit project contents, according to
the optional steps below.

NOTE Stationery projectsinclude sourcefilesthat are placeholdersfor your own files.
If a placeholder file has the same name as your file (suchasmain. c), you
must replace the placeholder file with your source file.

11. (Optional) Remove files from the project.
a. Inthe project window, select (highlight) the files.

b. Pressthe Delete key (or right-click the filename, then select Remove from the
context menu). A CodeWarrior dialog box appears. Select OK and the filenames
disappear.

12. (Optional) Add source files to the project.

28

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Getting Started
Creating a Project

a Method 1: From the main-window menu bar, select Project>Add Files. Then use
the Select filesto add dialog box to specify the files.

b. Method 2: Drag files from the desktop or Windows Explorer to the project
window.

13. (Optional) Edit code in the sourcefiles.

a. Double-click the filename in the project window (or select the filename, then press
the Enter key).

b. TheIDE opensthefilein the editor window; you are ready to edit file contents.

Creating a New Project with the DSP56800x EABI
Stationery

To create a sample project. Follow these steps:

1. From the menu bar, select File>New. The New window (Figure 2.6 on page 29)
appears.

Figure 2.6 New Window
New

Project | Fie | Obiect |

;{; DSP56800c EABI Stationery Project name:
ﬁ DSP56300: EVM Examples Stationery |NewPr0j1
ﬁ DSP56300: Mew Project Wizard
ﬁ Empty Project Location:
S Makefile Importer Wizard A incts :
I Amy_projects’MNewProj1 Set...
ﬁ Processor Expert Examples Stationery J “_J
‘S Processor Expert Stationery — ¢/
Project:

| =]

QK | Cancel

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 29

3
4

y
A

Getting Started
Creating a Project

2. Specify anew DSP56800E project named NewProj1.

a. If necessary, click the Project tab to move the Project page to the front of the
window.

b. From the project list, select DSP56800x EABI Stationery.

NOTE Stationery isaset of project templates, including libraries and place-holdersfor
source code. Using stationery is the quickest way to create a new project.

¢. Inthe Project name text box, type: NewProj1. (When you save this project, the
IDE automatically will add the . mcp extension to its filename.)

3. Inthe New window, click the OK button. The New Project window (Figure 2.7 on
page 30) appears, listing board-specific project stationery.

Figure 2.7 New Project Window

= -

Mew Project

Select project stationen:

H Project Stationery

- DSPEEFS0x —
- DSPEEFE2.

- MCBEFS0T =

- MCBEFB02,

- MCBEFS03x:

- MCBEFET an

- MICBEF 830

- Simulators

30l [PSEA00E_Simulator
+- D5SPSER00_Simulator -

| Cancel

4, Select the simulator C stationery target.

a. Click the expand control (+) for the DSP56800E Simulator. The tree expands to
show stationery selections.

b. Select Simple C. (Figure 2.8 on page 31 shows this selection.)

| #H [FEFFEE

30 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project

Figure 2.8 Simulator Simple C Selection

Mew Project

Select project stationeny:

H Project Stationery
- MCBEF303: —
- MCBEFETu
- MCBEF 3
- Simulators

- DSPEEB00E_Simulator
- Blank
- Simple_sAszm
-~ Simple_Asm_and_C

+

+

+

o S imple_C

4. DSPSEE00. Simulatar v

aF. | Cancel

NOTE You should select asimulator target if your system is not connected to a
development board. If you do have a development board, your target selection
must correspond to the board’ s processor.

c. Click the OK button. A project window opens, listing the folders for project
NewProj1.mcp. Figure 2.9 on page 32 shows this project window docked in the
IDE main window.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 31

PR 4

Getting Started
Creating a Project

Figure 2.9 Project Window (docked)

-0 A IEFAY EEE 4L B.1 "BY
xl

DSPexample...]the_prnject... NewProj1.mcp

® Docked

I'ﬂ' sdm j B ¢ @ 5‘ ¥ Floating
. MDI Child
Files |Link Elru:lerl Targetsl I

Close

¥ | Fie | Code | Data 4

¥ [F-<Fcode 0 0+ + =

o -l mainc 1] 0« + =

@ (== DSPSES00E sim support] 0+ « =

¢ Wi 0 0 o x

¥ [FJ interupt vectors 1] 0+« + =

w {3 linker command files o 0 - =

« H{]lb 1] o= =l

9 files] I}
<] | (2]

NOTE ThelDE hasthe same functionality whether subordinate windows (such asthe
project window) are docked, floating, or child.
To undock the project window, right-click itstitle tab, then select Floating or
Child from the context menu. To dock a floating window, right-click itstitle
bar, then select Docked from the context menu.

5. This completes project creation. Y ou are ready to edit project contents, according to
the optional steps below.

NOTE Stationery projectsinclude source filesthat are placeholdersfor your own files.
If a placeholder file has the same name as your file (suchasmain. c), you
must remove the placeholder file before adding your sourcefile.

6. (Optional) Remove files from the project.

32

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Getting Started
Creating a Project

a. Inthe project window, select (highlight) the files.

b. Pressthe Delete key (or right-click the filename, then select Remove from the
context menu). A CodeWarrior dialog box appears. Select OK and the filenames

disappear.
7. (Optional) Add source filesto the project.

a Method 1: From the main-window menu bar, select Project>Add Files. Then use
the Select filesto add dialog box to specify the files.

b. Method 2: Drag files from the desktop or Windows Explorer to the project
window.

8. (Optional) Edit code in the source files.

a. Double-click the filename in the project window (or select the filename, then press
the Enter key).

b. TheIDE opensthefile in the editor window; you are ready to edit file contents.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 33

wr
4\

Getting Started
Creating a Project

34 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio
Overview

This chapter describes the CodeWarrior™ IDE and explains application devel opment
using the IDE. This chapter contains these sections:

¢ CodeWarrior IDE on page 35

« Development Process on page 36

If you are an experienced CodeWarrior IDE user, you will recognize the look and feel of
the user interface. However, you must become familiar with the DSP56800E runtime
software environment.

CodeWarrior IDE

The CodeWarrior IDE |ets you create software applications. It controls the project
manager, the source-code editor, the class browser, the compiler, linker, and the debugger.

Y ou use the project manager to organize all the files and settings related to your project.
Y ou can see your project at a glance and easily navigate among source-code files. The
CodeWarrior IDE automatically manages build dependencies.

A project can have multiple build targets. A build target is a separate build (with its own
settings) that uses some or all of thefilesin the project. For example, you can have both a
debug version and arelease version of your software as separate build targets within the
same project.

The CodeWarrior IDE has an extensible architecture that uses plug-in compilers and
linkers to target various operating systems and microprocessors. The CodeWarrior CD
includes a C compiler for the DSP56800E family of processors. Other CodeWarrior
software packages include C, C++, and Java compilers for Win32, Mac® OS, Linux, and
other hardware and software combinations.

The IDE includes:

e CodeWarrior Compiler for DSP56800E — an ANSI-compliant C compiler, based
on the same compiler architecture used in all CodeWarrior C compilers. Use this
compiler with the CodeWarrior linker for DSP56800E to generate DSP56800E
applications and libraries.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 35

y
A

Development Studio Overview
Development Process

NOTE The CodeWarrior compiler for DSP56800E does not support C++.

e CodeWarrior Assembler for DSP56800E — an assembler that features easy-to-use
syntax. It assembles any project file that has a. asm filename extension. For further
information, refer to the Code Warrior Development Sudio Freescale DSP56800x
Embedded Systems Assembler Manual.

e CodeWarrior Linker for DSP56800E — alinker that lets you generate either
Executable and Linker Format (ELF) or S-record output files for your application.

« CodeWarrior Debugger for DSP56800E — a debugger that controls your
program’s execution, letting you see what happens internally as your program runs.
Use this debugger to find problemsin your program.

The debugger can execute your program one statement at atime, suspending
execution when control reaches a specified point. When the debugger stops a
program, you can view the chain of function calls, examine and change the values of
variables, inspect processor register contents, and see the contents of memory.

¢ Metrowerks Standard Library (MSL) — aset of ANSI-compliant, standard C
libraries for use in devel oping DSP56800E applications. Access the library sources
for usein your projects. A subset of those used for all platform targets, these libraries
are customized and the runtime adapted for DSP56800E devel opment.

Development Process

The CodeWarrior IDE helps you manage your development work more effectively than
you can with atraditional command-line environment. Figure 3.1 on page 37 depicts
application development using the IDE.

36 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process

Figure 3.1 CodeWarrior IDE Application Development

Y

| Edit Files (3) |
| I _* _____ .
Build (Make) Project ——

| Compile Project |

|
yes |

Link Project

Debug Project

yes

‘Create/Manage Project— 1

| Manage Files (1) I 4)
| Specify Target |

| Settings @ |

I

Notes:

(1) Use any combination: stationery
(template) files, library files,

or your own source files.

(2) Compiler, linker, debugger
settings; target specification;
optimizations.

(3) Edit source and resource files.

(4) Possible corrections:
adding a file, changing
settings, or editing a file.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 37

wr
4\

Development Studio Overview
Development Process

Project Files

A CodeWarrior project consists of source-code, library, and other files. The project
window (Figure 3.2 on page 38) lists al files of a project, letting you:

« Addfiles,

* Removefiles,

Specify the link order,

« Assignfilesto build targets, and

Direct the IDE to generate debug information for files.

Figure 3.2 Project Window

NewProjlmep |
| % sdn RE=RC R S
Files | Link. Ellderl Targetsl

| File | Code | Data /3 ||

«] code i 0e « ==
w [ESRADSPSES00E sim support 0 0« « =
w [init 1] 0« « =
% [F{] interupt vectors I 0 « =
% [F{_] linker command files] 0 - =
¥ E3lb I 0 - =
w 8 Runtime S6800E.Iib I 0« =
W {8 MSL C BE200E Ik I 0« =
BB Runtime 56800E Imm.lib nta na |
A MSL C BE200E Imm.lib nia nia =

[.-

9 files a0 I 4

NOTE Figure 3.2 on page 38 shows afloating project window. Alternatively, you can
dock the project window in the IDE main window or make it a child window.
Y ou can have multiple project windows open at the same time; if the windows
are docked, their tabslet you control which oneis at the front of the main
window.

38 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process

The CodeWarrior IDE automatically handles the dependencies among project files, and
stores compiler and linker settings for each build target. The IDE tracks which files have
changed since your last build, recompiling only those files during your next project build.

A CodeWarrior project is analogous to a collection of makefiles, as the same project can
contain multiple builds. Examples are a debug version and a release version of code, both
part of the same project. As earlier text explained, build targets are such different builds
within asingle project.

Editing Code

The CodeWarrior text editor handles text filesin MS-DOS® , Windows®, UNIX, and
Mac® OS formats.

To edit a source-code file (or any other editable project file), either:
« Double-click itsfilename in the project window, or

« Select (highlight) the filename, then drag the highlighted filename to the
CodeWarrior main window.

The IDE opens the file in the editor window (Eigure 3.3 on page 40). This window lets
you switch between related files, locate particular functions, mark locations within afile,
or go to a specific line of code.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 39

y
A

Development Studio Overview
Development Process

Figure 3.3 Editor Window

-IBix

b-{} - - o~ Path:|E:'\Program Filzs\Metrowerk st Codetw amiortE ... \WMEBS00E_main.c <>

1

Lire 1

g
#def ine SIZE 10 [
int arr[SIZE] = {4.6.7.1.2.3.4.12.4.5};
int 1,73:
printf("====s===========s==s=s=s==s=s============\pn");
rrintf{"Are you ready to ke a DSP Warrior?®™n"):
printf("==================================“n"n"):
print_array{arr,SIZE);
for (i=0;i<SIZE-1:i++)

for (j=i: j<SIZE: j++)

if {arr[ilrarr[]i])
svapl(darr[i].&arr([]]):

print_arrav{arr.SIZE):

exiti{0); ~#* Call Exit to flush all IO bufifers *-

-

Call | [4] | L

NOTE

Figure 3.3 on page 40 shows afloating editor window. Alternatively, you can
dock the editor window in the IDE main window or make it a child window.

Building: Compiling and Linking
For the CodeWarrior IDE, building includes both compiling and linking. To start building,
you select Project>M ake, from the IDE main-window menu bar. The IDE compiler:

« Generates an object-code file from each source-code file of the build target,
incorporating appropriate optimizations.

» Updates other files of the build target, as appropriate.

« Incaseof errors, issues appropriate error messages and halts.

NOTE

It is possible to compile asingle source file. To do so, highlight its filenamein
the project window, then select Project > Compile, from the main-window
menu bar. Another useful option is compiling all modified files of the build
target: select Project>Bring Up to Date from the main-window menu bar.

40

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Development Studio Overview
Development Process

In UNIX and other command-line environments, the IDE stores object code in abinary
(.oo0r .obj) file. On Windows targets, the IDE stores and manages object filesinternally
in the data fol der.

A proprietary compiler architecture at the heart of the CodeWarrior IDE handles multiple
languages and platform targets. Front-end language compilers generate an intermediate
representation (IR) of syntactically correct source code. This IR is memory-resident and
language-independent. Back-end compilers generate code from the IR for specific
platform targets. As Figure 3.4 on page 41 depicts, the CodeWarrior IDE manages this
whole process.

Figure 3.4 CodeWarrior Build System

Front—-end Language Project Manager I

| C/C++, Java

Object Pascal

Intermediate h 5 h
Representation Compller) [Assembler)
Back-end CodeGen

|M|PS, PPC, VR, x86 | N
68K, DSP, SH, ¥8xx [CodeWarrior Linker)

v
[TorgetHardware |

This architecture means that the CodeWarrior |DE uses the same front-end compiler to
support multiple back-end platform targets. In some cases, the same back-end compiler
can generate code from avariety of languages. User benefits of this architecture include:

* An advance in the C/C++ front-end compiler means an immediate advance in all
code generation.

¢ Optimizationsin the IR mean that any new code generator is highly optimized.

» Targeting a new processor does not require compiler-related changesin source code,
simplifying porting.

Freescale builds al compilers as plug-in modules. The compiler and linker components
are modular plug-ins. Freescale publishesthis AP, so that devel opers can create custom
or proprietary tools. For more information, go to Freescal e Support:

http://www.Freescal e.com/MW/Support
When compilation succeeds, building moves on to linking. The IDE linker:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 41

3
4

y
A

Development Studio Overview
Development Process

¢ Linksthe object filesinto one executablefile. (Y ou use the M56800E Target settings
panel to name the executable file.)

¢ Incase of errors, issues appropriate error messages and halts.

The IDE uses linker command files to control the linker, so you do not need to specify a
list of object files. The Project Manager tracks all the object files automaticaly; it lets you
specify the link order.

When linking succeeds, you are ready to test and debug your application.

Debugging

To debug your application, select Project>Debug from the main-window menu bar.
The debugger window opens, displaying your program code.

Run the application from within the debugger, to observe results. The debugger lets you
set breakpoints, and check register, parameter, and other values at specific points of code
execution.

When your code executes correctly, you are ready to add features, to release the
application to testers, or to release the application to customers.

NOTE Ancther debugging feature of the CodeWarrior IDE is viewing preprocessor
output. This helps you track down bugs cause by macro expansion or another
subtlety of the preprocessor. To use this feature, specify the output filenamein
the project window, then select Pr oj ect>Pr epr ocess from the main-window
menu bar. A new window opens to show the preprocessed file.

42

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Target Settings

Each build target in a CodeWarrior™ project has its own settings. This chapter explains
the target settings panels for DSP56800E software devel opment. The settings that you
select affect the DSP56800E compiler, linker, assembler, and debugger.

This chapter contains the following sections:
o Target Settings Overview on page 43

¢ CodeWarrior IDE Target Settings Panels on page 47
« DSP56800E-Specific Target Settings Panels on page 48

Target Settings Overview

The target settings control:
e Compiler options
¢ Linker options
« Assembler options
« Debugger options
¢ Error and warning messages

When you create a project using stationery, the build targets, which are part of the
stationery, already include default target settings. Y ou can use those default target settings
(if the settings are appropriate), or you can change them.

NOTE Usethe DSP56800E project stationery when you create a new project.

Target Setting Panels
Table 4.1 on page 44 lists the target settings panels:

¢ Linksidentify the panels specific to DSP56800E projects. Click the link to go to the
explanation of that pandl.

¢ The Use column explains the purpose of generic IDE panels that also can apply to
DSP56800E projects. For explanations of these panels, see the IDE User Guide.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 43

y
A

Target Settings
Target Settings Overview

Table 4.1 Target Setting Panels

page 49

Group Panel Name Use
Target Target Settings on

Access Paths

Selects the paths that the IDE
searches to find files of your project.
Types include absolute and project-
relative.

Build Extras Sets options for building a project,
including using a third-party
debugger.

File Mappings Associates a filename extension,

such as .c, with a plug-in compiler.

Source Trees

Defines project-specific source trees
(root paths) for your project.

M56800E Target on
page 50

Language Settings

C/C++ Language (C

Only) on page 51

C/C++ Preprocessor on

page 55

C/C++ Warnings on
page 57

M56800E Assembler on

page 62

Code Generation

ELF Disassembler on
page 68

M56800E Processor on

page 64

Global Optimizations

Configures how the compiler
optimizes code.

Linker

M56800E Linker on
page 71

44 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
Target Settings Overview

Table 4.1 Target Setting Panels (continued)

Group Panel Name Use

Editor Custom Keywords Changes colors for different types of
text.

Debugger Debugger Settings Specifies settings for the

CodeWarrior debugger.

Remote Debugging on
page 76

M56800E Target
Settings (Debugging)

Remote Debug
Options on page 82

Changing Target Settings
To change target settings:
1. Select Edit > Target Name Settings.
Target Name isthe name of the current build target in the CodeWarrior project.

After you select this menu item, the CodeWarrior IDE displaysthe Target
Settings window (Figure 4.1 on page 46).

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 45

y
A

Target Settings
Target Settings Overview

Figure 4.1 Target Settings Window

i @ sdm Settings

IE Target Settings Panels B Target Settings
=+ Target -

T arget Mame: |sdm
- Acoess Paths . -
- Build Estras Linker: [MBEB00E Linker
- File Mappings Pre-linker:|None

- Source Trees .
.. MEEA0DE Target Fastlinker.|Hone
= Language Settings Qutput Directary:

- C/C++ Language Choose...

- C/C++ Preprocessor {Project}output
o CAC++ Warnings ﬂ
- MBGB00E Aszsembler
= Code Generation —
- ELF Disaszembler
- MBEBOOE Processar
- Global Optimizations
= Linker
‘o MEGSOOE Linker =

LefledLed

Save project enties using relative paths

FactorySettings| | Import Panel... | Export Panel... |

ok | Cancel | |

The left side of the Target Settings window contains alist of target settings panels
that apply to the current build target.

. Toview the Target Settings panel:

Click on the name of the Target Settings pand in the Target Settings panelslist
on the left side of the Target Settings window.

The CodeWarrior IDE displays the target settings panel that you selected.

3. Change the settings in the panel.
. Click OK.

Exporting and Importing Panel Options to
XML Files

The CodeWarrior IDE can export options for the current settings panel to an Extensible
Markup Language (XML) file or import options for the current settings panel from a
previoudy saved XML file.

46

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
CodeWarrior IDE Target Settings Panels

Exporting Panel Options to XML File

1. Click the Export Panel button.

2. Assign anameto the XML file and save thefile in the desired location.

Importing Panel Options from XML File

1. Click the Import Panel button.
2. Locatethe XML file to where you saved the options for the current settings panel.
3. Open thefile to import the options.

Saving New Target Settings in Stationery

To create stationery files with new target settings:
1. Create your new project from an existing stationery.

2. Change the target settings in your new project for any or al of the build targetsin the
project.

3. Savethe new project in the Stationery folder.

Restoring Target Settings

After you change settings in an existing project, you can restore the previous settings by
using any of the following methods:

 To restore the previous settings, click Revert at the bottom of the Target
Settings window.

« Torestore the settings to the factory defaults, click Factory Settings at the
bottom of the window.

CodeWarrior IDE Target Settings Panels

Table 4.2 on page 48 lists and explains the CodeWarrior IDE target settings panels that
can apply to DSP56800E.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual a7

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.2 Code Warrior IDE Target Settings Panels

Target Settings Description
Panels
Access Paths Use this panel to select the paths that the

CodeWarrior IDE searches to find files in your project. You
can add several kinds of paths including absolute and
project-relative.

See IDE User Guide.

Build Extras Use this panel to set options that affect the way the
CodeWarrior IDE builds a project, including the use of a
third-party debugger.

See IDE User Guide.

File Mappings Use this panel to associate a file name extension, such
as.c, with a plug-in compiler.

See IDE User Guide.

Source Trees Use this panel to define project-specific source trees (root
paths) for use in your projects.

See IDE User Guide.

Custom Keywords Use this panel to change the colors that the
CodeWarrior IDE uses for different types of text.

See IDE User Guide.

Global Optimizations Use this panel to configure how the compiler optimizes the
object code.

See IDE User Guide.

Debugger Settings Use this panel to specify settings for the CodeWarrior
debugger.

DSP56800E-Specific Target Settings Panels

Therest of this chapter explains the target settings panels specific to DSP56800E
development.

48 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Target Settings

Usethe Target Settings panel (Figure 4.2 on page 49) to specify alinker. This selection
also specifies your target. Table 4.3 on page 49 explains the elements of the Target

Settings panel.

The Target Settings window changesits list of panelsto reflect your linker choice. As
your linker choice determines which other panels are appropriate, it should be your first

settings action.

Figure 4.2 Target Settings Panel

IE T arget Settings

Output Crirechory:

T arget Mame: ISimuIatDr

Linker:lMEEBDDE Linker

F're-linker:lN.:.ne

Past-linker:anne

LefLefLe]

Chooze... I

|{F'ru:uieu:t}u:uutput

Clear I

[T Save project entries uzsing relative paths

Table 4.3 Target Settings Panel Elements

Element

Purpose

Comments

Target Name
text box

Sets or changes the name of a build
target.

For your development
convenience, not the name of
the final output file. (Use the
M56800E Target panel to
name the output file.)

Linker list box

Specifies the linker.

Select M56800E Linker.

Pre-linker list
box

Specifies a pre-linker.

Select None.

(No pre-linker is available for
the M56800E linker.)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 49

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.3 Target Settings Panel Elements (continued)

Element Purpose Comments
Post-linker Specifies a post-linker. Select None.
list box

(No post-linker is available for
the M56800E linker.)

Output Tells the IDE where to save the Default: the directory that
Directory text | executable file. To specify a different | contains the project file.
box output directory, click the Choose

button, then use the access-path
dialog box to specify a directory. (To
delete such an alternate directory,
click the Clear button.)

Save Project Controls whether multiple project Default: Clear — project entries
Entries Using | files can have the same name: must have unique names.
Relative

e Clear — Each project

Paths entry must have a unique
checkbox name.

* Checked — The IDE uses
relative paths to save
project entries; entry
names need not be
unique.

M56800E Target

Use the M56800E Tar get panel (Figure 4.3 on page 50) to specify the project type and
the name of the output file. Table 4.4 on page 51 explains the elements of this panel.

Figure 4.3 M56800E Target Panel
N t5ER00E T arget

Project T_I,Ipe:l.-'l'-.pplicatiu:un j

Application [nfa

Output File Mame Isdm.e"

50 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.4 M56800E Target Panel Elements

Element

Purpose

Comments

Project Type
list box

Specifies an Application or Library
project.

Application is the usual
selection.

Output File
Name text
box

Specifies the name of the output file.

End application filenames with
the .elf extension; end library
filenames with the .lib
extension.

NOTE Besureto namelibrarieswith the extension . 1ib. Itispossibleto usea
different extension, but this requires afile-mapping entry in the File M appings
panel. For more information, see the IDE User Guide.

C/C++ Language (C Only)

Use the C/C++ Language (C Only) pand (Figure 4.4 on page 52) to specify C language
features. Table 4.5 on page 53 explains the elements of this panel that apply to the

DSP56800E processor, which supports only the C language.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

51

4
A

Target Settings
DSP56800E-Specific Target Settings Panels

Figure 4.4 C/C++ Language Panel (C Only)

{ @simulator Settings d B
rﬂ Target Settings Panels Iﬁ C/C++ Language [C only)
- Target . = ™| Force C++ Compilation [~ &NSI Shict

- Target Settings

o Arcess Paths ™| 1510 C++ Template Parser [~ &NSI Keywards Only

- Build Extras ™| Use Instance M anager ™ Expand Trigraphs

- File Mappings ™| Enable C++ Exceptions ™ Legacy for-scoping

- Soures Trees ™| Enable BT v Fiequire Function Prototypes

- MBEE00 T arget

I™ | Enatle bool Support

= Languge Seltings I~ | Enatlz £33 Extensions

“++ Language [... I~ | Enable wehar,_b Suppart - ;
< C/C++ Preprocessar] B oy Hods Enable GEE Extensions
- CAC++ Warnings
- MBERO0 Assembler IF: ot - I Enums Always Int
[= Code Generation — \rine Denth: I™" Use Unsigned Chars
- ELF Disazsembler P -ISmart j'
- MBE300 Processor ™ Autelnline " Paal Strings
~ Global Optimizations ™ Battarm-up Inlining [# Reuse Stings
[= Linker
o BES00 Lirker ~|
Factory Settings Fewvert Import Panel... | Export Fanel... |
Qg | Cancel | Spply |

NOTE Alwaysdisable the following options, which do not apply to the DSP56800E
compiler: Legacy for-scoping and Pool Strings.

52 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.5 C/C++ Language (C Only) Panel Elements

Element

Purpose

Comments

IPA list box

Specifies Interprocedural Analysis
(IPA):

Off — IPA is disabled

File — inlining is deferred to the end
of the file processing

Program — Inlining is deferred until
all files within the program are
processed.

When the Program option is
selected the Disable
Deadstripping option on the
linker preference panel must
be enabled.

Inline Depth
list box

Together with the ANSI Keyword
Only checkbox, specifies whether to
inline functions:

Don't Inline — do not inline any

Smart — inline small functions to a
depth of 2 to 4

1 to 8 — Always inline functions to
the number’s depth

Always inline — inline all functions,
regardless of depth

If you call an inline function, the
compiler inserts the function
code, instead of issuing calling
instructions. Inline functions
execute faster, as there is no
call. But overall code may be
larger if function code is
repeated in several places.

Auto-Inline
checkbox

Checked — Compiler selects the
functions to inline

Clear — Compiler does not select
functions for inlining

To check whether automatic
inlining is in effect, use the
__option(auto_inline)
command.

Bottom-up
Inlining
checkbox

Checked — For a chain of function
calls, the compiler begins inlining
with the last function.

Clear — Compiler does not do
bottom-up inlining.

To check whether bottom-up
inlining is in effect, use the
__option(inline_bottom_up)
command.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 53

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.5 C/C++ Language (C Only) Panel Elements (continued)

Element Purpose Comments
ANSI Strict Checked — Disables CodeWarrior Extensions are C++-style
checkbox compiler extensions to C comments, unnamed

arguments in function
definitions, # not an argument
in macros, identifier after
#endif, typecasted pointers as
Ivalues, converting pointers to
same-size types, arrays of zero
length in structures, and the D
constant suffix.

Clear — Permits CodeWarrior
compiler extensions to C

To check whether ANSI
strictness is in effect, use the
__option(ANSI_strict)

command.
ANSI Checked — Does not permit Additional keywords are asm
Keywords additional keywords of CodeWarrior (use the compiler built-in
Only C. assembler) and inline (lets you
checkbox Clear — Does permit additional Qe_clare a C function to be
inline).
keywords.
To check whether this keyword
restriction is in effect, use the
__option(only_std_keywords)
command.
Expand Checked — C Compiler ignores Many common character
Trigraphs trigraph characters. constants resemble trigraph
checkbox sequences, especially on the

Clear — C Compiler does not allow
trigraph characters, per strict ANSI/
ISO standards.

Mac OS. This extension lets
you use these constants
without including escape
characters.

NOTE: If this option is on, be
careful about initializing strings
or multi-character constants
that include question marks.

To check whether this option is
on. use the __option(trigraphs)
command.

54 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.5 C/C++ Language (C Only) Panel Elements (continued)

Element

Purpose

Comments

Require
Function
Prototypes
checkbox

Checked — Compiler does not allow
functions that do not have
prototypes.

Clear — Compiler allows functions
without prototypes.

This option helps prevent
errors from calling a function
before its declaration or
definition.

To check whether this option is
in effect, use the
__option(require_prototypes)
command.

Enums
Always Int
checkbox

Checked — Restricts all
enumerators to the size of a signed
int.

Clear — Compiler converts
unsigned int enumerators to signed
int, then chooses an
accommodating data type, char to
long int.

To check whether this
restriction is in effect, use the
__option(enumalwaysint)
command.

Use
Unsigned
Chars
checkbox

Checked — Compiler treats a char
declaration as an unsigned char
declaration.

Clear — Compiler treats char and
unsigned char declarations
differently.

Some libraries were compiled
without this option. Selecting
this option may make your
code incompatible with such
libraries.

To check whether this option is
in effect, use the
__option(unsigned_char)
command.

Reuse
Strings
checkbox

Checked — Compiler stores only
one copy of identical string literals,
saving memory space.

Clear — Compiler stores each string
literal.

If you select this option,
changing one of the strings
affects them all.

C/C++ Preprocessor

The C/C++ Preprocessor (Figure 4.5 on page 56) panel controls how the preprocessor
interprets source code. By modifying the settings on this panel, you can control how the
preprocessor translates source code into preprocessed code.

More specifically, the C/C++ Preprocessor panel provides an editable text field that can be
used to #define macros, set #pragmas, or #include prefix files.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 55

'
A

Target Settings

DSP56800E-Specific Target Settings Panels

Figure 4.5 The C/C++ Preprocessor Panel

H C/C++ Preprocessor

Prefis Tt

Source encoding: |ASC) -

Preproceszsing O ptions
[v Emit file changes

[v Emit #pragmas

[Show full paths

[Eeep comments

[Usze prefis text in precompiled headers

[Usze Hine
[Keep whitespace

Table 4.6 on page 56 providesinformation about the options in this panel.

Table 4.6 C/C++ Language Preprocessor Elements

Element

Purpose

Comments

Source
encoding

Allows you to specify the default
encoding of source files. Multibyte
and Unicode source text is
supported.

To replicate the obsolete
option “Multi-Byte Aware”, set
this option to System or
Autodetect. Additionally,
options that affect the
"preprocess" request appear in
this panel.

Use prefix
text in
precompiled
header

Controls whether a *.pch or *.pch++
file incorporates the prefix text into
itself.

This option defaults to “off” to
correspond with previous
versions of the compiler that
ignore the prefix file when
building precompiled headers.
If any #pragmas are imported
from old C/C++ Language (C
Only) Panel settings, this
option is set to “on”.

56 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.6 C/C++ Language Preprocessor Elements (continued)

Element Purpose Comments
Emit file Controls whether notification of file
changes changes (or #line changes) appear
in the output.
Emit Controls whether #pragmas This option is essential for
#pragmas encountered in the source text producing reproducible test
appear in the preprocessor output. cases for bug reports.
Show full Controls whether file changes show
paths the full path or the base filename of
the file.
Keep Controls whether comments are
comments emitted in the output.
Use #line Controls whether file changes
appear in comments (as before) or
in #line directives.
Keep Controls whether whitespace is This is useful for keeping the
whitespace stripped out or copied into the starting column aligned with

output.

the original source, though we
attempt to preserve space
within the line. This doesn’t
apply when macros are
expanded.

C/C++ Warnings

Use the C/C++ Warnings panel (Figure 4.6 on page 58) to specify C language features for
the DSP56800E. Table 4.7 on page 59 explains the elements of this panel.

NOTE

The CodeWarrior compiler for DSP56800E does not support C++.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 57

'
A

Target Settings
DSP56800E-Specific Target Settings Panels

Figure 4.6 C/C++ Warnings Panel

§ C/C++ ‘#arnings

Diagnostics
[v llegal Pragmas

[+ Pazzible Errars
[v Extended Emor Checking
| Hidden Yirtual Functions
[Implicit Arithrnetic Conversions
[
[
[
[Painter/Integral Corversions
[Unused“arables
[Unuszed Argurnents
[Mizzing return’ Statements
[E=xpression Haz No Side Effect

Enable &l | Disable &l |
Portability

[v Extra Commas

v Inconsistent 'class’ / 'stuct’ Uszage
[v Ermnpty Declarations
[Include File Capitalization
[
[Pad Bytes &dded *
[Undefined Macra [n #if *

O ptirmizatian
Iv Mannlined Functions *
[Treat Al arnings &5 Ermars

* Mote: likely to generate many spurious
warnings!

58

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.7 C/C++ Warnings Panel Elements

Element

Purpose

Comments

lllegal
Pragmas
checkbox

Checked — Compiler issues
warnings about invalid pragma
statements.

Clear — Compiler does not issue
such warnings.

According to this option, the
invalid statement #pragma
near_data off would prompt
the compiler response
WARNING: near datais not a
pragma.

To check whether this option is
in effect, use the
__option(warn_illpragma)
command.

Possible
Errors
checkbox

Checked — Compiler checks for
common typing mistakes, such as
== for =.

Clear — Compiler does not perform
such checks.

If this option is in effect, any of
these conditions triggers a
warning: an assignment in a
logical expression; an
assignment in a while, if, or for
expression; an equal
comparison in a statement that
contains a single expression; a
semicolon immediately after a
while, if, or for statement.

To check whether this option is
in effect, use the
__option(warn_possunwant)
command.

Extended
Error

Checking
checkbox

Checked — Compiler issues
warnings in response to specific
syntax problems.

Clear — Compiler does not perform
such checks.

Syntax problems are: a non-
void function without a return
statement, an integer or
floating-point value assigned to
an enum type, or an empty
return statement in a function
not declared void.

To check whether this option is
in effect, use the
__option(extended_errorcheck
) command.

Hidden
Virtual
Functions

Leave clear.

Does not apply to C.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

59

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.7 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
Implicit Checked — Compiler verifies that If this option is in effect, the
Arithmetic operation destinations are large compiler would issue a warning
Conversions enough to hold all possible results. in response to assigning a long
checkbox . value to a char variable.
Clear — Compiler does not perform
such checks. To check whether this option is
in effect, use the
__option(warn_implicitconv)
command.
Pointer/ Checked — Compiler checks for See #pragma
Integral pointer/integral conversions. warn_any_ptr_int_conv and

Conversions

Clear — Compiler does not perform
such checks.

#pragma warn_ptr_int_conv.

Unused Checked — Compiler checks for The pragma unused overrides
Variables declared, but unused, variables. this option.
checkbox . . L
Clear — Compiler does not perform To check whether this option is
such checks. in effect, use the
__option(warn_unusedvar)
command.
Unused Checked — Compiler checks for The pragma unused overrides
Arguments declared, but unused, arguments. this option.
checkbox . . .
Clear — Compiler does not perform Another way to override this
such checks. option is clearing the ANSI
Strict checkbox of the C/C++
Language (C Only) panel, then
not assigning a name to the
unused argument.
To check whether this option is
in effect, use the
__option(warn_unusedarg)
command.
Missing Checked — Compiler checks for See #pragma
‘return’ missing ‘return’ statements. warn_missingreturn.
Statements

Clear — Compiler does not perform
such checks.

60

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.7 C/C++ Warnings Panel Elements (continued)

Clear — Compiler does not perform
such checks.

Element Purpose Comments
Expression Checked — Compiler issues See #pragma
Has No Side warning if expression has no side warn_no_side_effect
Effect effect.
Clear — Compiler does not perform
such checks.
Extra Checked — Compiler checks for To check whether this option is
Commas extra commas in enums. in effect, use the
checkbox __option(warn_extracomma)

command.

Capitalization

warning about include file
capitalization.

Clear — Compiler does not perform
such checks.

Inconsistent Leave clear. Does not apply to C.
Use of ‘class’
and ‘struct’
Keywords
checkbox
Empty Checked — Compiler issues According to this option, the
Declarations warnings about declarations without incomplete declaration int ;
checkbox variable names. would prompt the compiler
Clear — Compiler does not issue response WARNING.
such warnings. To check whether this option is
in effect, use the
__option(warn_emptydecl)
command.
Include File Checked — Compiler issues See #pragma

warn_filenamecaps.

Pad Bytes
Added

Checked — Compiler checks for
pad bytes added.

Clear — Compiler does not perform
such checks.

See #pragma warn_padding.

Undefined
Macro In #if

Checked — Compiler checks for
undefined macro in #if.

Clear — Compiler does not perform
such checks.

See #pragma
warn_undefmacro.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 61

'
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.7 C/C++ Warnings Panel Elements (continued)

Element Purpose Comments
Non-Inlined Checked — Compiler issues a To check whether this option is
Functions warning if unable to inline a function. | in effect, use the
checkbox Clear — Compiler does not issue __option(warn_notinlined)
) command.

such warnings.
Treat All Checked — System displays
Warnings As warnings as error messages.
Errors

Clear — System keeps warnings

checkbox and error messages distinct.

M56800E Assembler

Use the M56800E Assembler panel (Figure 4.7 on page 62) to specify the format of the
assembly sourcefiles and the code that the DSP56800E assembl er generates. Table 4.8 on
page 63 explains the elements of this panel.

Figure 4.7 M56800E Assembler Panel

1& MBES00E Azzembler

[T Generate Listing Fils

[T | Expand Macros in Listing

v Azzert MOPz on pipeline conflicts
[T Emit W arnings for MOF assertions
[Emit W arnings for Hardware Stalls
[T Allow legacy instuctions

W Pad Fipeline for Debugger

[Emit W arnings for odd 5P Increment/Decrement

Drefault Data Memon Model]'I B-bit vI
[refault Program Memaony Model I'I 3-bit vi

Prefix File:

62 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.8 M56800E Assembler Panel Elements

Element

Purpose

Comments

Generate
Listing File
checkbox

Checked — Assembler generates a
listing file during IDE assembly of
source files.

Clear — Assembler does not
generate a listing file.

A listing file contains the
source file with line numbers,
relocation information, and
macro expansions. The
filename extension is .Ist.

Expand
Macros in
Listing
checkbox

Checked — Assembler macros
expand in the assembler listing.

Clear — Assembler macros do not
expand.

This checkbox is available only
if the Generate Listing File
checkbox is checked.

Assert NOPs
on pipeline
conflicts
checkbox

Checked — Assembler
automatically resolves pipeline
conflicts by inserting NOPs.

Clear — Assembler does not insert
NOPs; it reports pipeline conflicts in
error messages.

Emit
Warnings for
NOP
assertions
checkbox

Checked — Assembler issues a
warning any time it inserts a NOP to
prevent a pipeline conflict.

Clear — Assembler does not issue
such warnings.

This checkbox is available only
if the Assert NOPs on pipeline
conflicts checkbox is checked.

Emit
Warnings for
Hardware
Stalls
checkbox

Checked — Assembler warns when
a hardware stall occurs upon
execution.

Clear — Assembler does not issue
such warnings.

This option helps optimize the
cycle count.

Allow legacy
instructions
checkbox

Checked — Assembler permits
legacy DSP56800 instruction
syntax.

Clear — Assembler does not permit
this legacy syntax.

Selecting this option sets the
Default Data Memory Model
and Default Program Memory
Model values to 16 bits.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 63

y
A

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.8 M56800E Assembler Panel Elements (continued)

Element Purpose Comments
Pad Pipeline Checked — Mandatory for using the If you select this option, you
for Debugger debugger. Inserts NOPs after should select the same option
checkbox certain branch instructions to make in the M56800E Processor
breakpoints work reliably. Settings panel. Selecting this
Clear — Does not insert such option increases code ?'Ze by 5
NOPs percent. But not selecting this
’ option risks nonrecovery after
the debugger comes to
breakpoint branch instructions.
Emit Checked — Enables assembler
Warnings for warnings about instructions that
odd SP could misalign the stack frame.
Increment/ Clear — Does not enable such
Decrement warninas
checkbox gs.

Default Data

Specifies 16 or 24 bits as the default

Factory setting: 16 bits.

the project.

Memory size.

Model list box

Default Specifies 16, 19, or 21 bits as the Factory setting: 19 bits.
Program default size.

Memory

Model list box

Prefix File Specifies a file to be included at the Lets you include common
text box beginning of every assembly file of definitions without using an

include directive in every file.

M56800E Processor

Use the M56800E Processor panel (Figure 4.8 on page 65) to specify the kind of code the
compiler creates. This panel isavailable only if the current build target uses the M56800E
Linker. Table 4.9 on page 65 explains the elements of this panel.

64 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels

Figure 4.8 M56800E Processor Panel

i @sdm Settings : ﬂﬂ
rﬂ Target Settings Panelz rE MEES00E Proceszor
= Targat =
- Target Settings Hardware DO Loopz: |Mo DO Loops j
ACFBSS Pathis I~ Small Program hodel
- Build Extras
- File Mappings [Large Data Maodel
- Source Trees = Globals live in lower memaony)
- MBEBO0E Target [™ Zero initislized globals ive in data instead of BSS
= Language Settings [Emit separate data section Factarization aptions
- CAC++ Language [... L P Diefault A
. C/C+ Preprocessor IV Pad pipeline far debuager Factorization step 1
e CAC++ Warnings I™ Dieate assembly output Factorization step 2 IDEf@UIt 'I
- MBEBO0E Azzembler [~ Generate code fior profiing . Iﬁ
S Code Generation | | Factorization step 3 |0 efault
- ELF Dizassembler Fipeline Conflict Detection
Infire & Mot Detected -
- Global Optimizations mine Ssm I o eece J
[= Linker C Language INotDetected 'l
e MBRBO0E Linker ﬂ
Factomy Settingsl Fewvert | Import Panel... | Export Fanel... |
k. | Cancel | Apply |
Table 4.9 M56800E Processor Panel Elements
Element Purpose Comments
Hardware Specifies the level of hardware DO If hardware DO loops are
DO Loopslist | loops: enabled, debugging will be
box . inconsistent about steppin
* No DO Loops — Compiler into | pping
does not generate any Into loops.
* No Nested DO Loops — Test immediately after this
Compiler generates table contains additional Do-
hardware DO loops, but loop information.
does not nest them
¢ Nested DO Loops —
Compiler generates
hardware DO loops,
nesting them two deep.
Small Checked — Compiler generates a Do not check this checkbox
Program more efficient switch table, provided unless the entire program code
Model that code fits into the range 0x0— fits into the OXO—OxFFFF
checkbox OxFFFF memory range.
Clear — Compiler generates an
ordinary switch table.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 65

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.9 M56800E Processor Panel Elements (continued)

Element Purpose Comments

Large Data Checked — Extends DSP56800E 24-hit address modes allow
Model addressing range by providing 24-bit | access beyond the 64K-byte
checkbox address capability to instructions boundary of 16-bit addressing.

Clear — Does not extend address

range
Globals live Checked — Compiler uses 24-bit This checkbox is available only
in lower addressing for pointer and stack if the Large Data Model
memory operations, 16-bit addressing for checkbox is checked.
checkbox access to global and static data.

Clear — Compiler uses 24-bit
addressing for all data access.

Pad pipeline Checked — Mandatory for using the If you select this option, you

for debugger debugger. Inserts NOPs after should select the same option
checkbox certain branch instructions to make in the M56800E Assembler
breakpoints work reliably. panel. Selecting this option

increases code size by 5

Clear — Does not insert such ; .
percent. But not selecting this

NOPs. o
option risks nonrecovery after
the debugger comes to
breakpoint branch instructions.
Emit Checked — Compiler breaks out all See additional information
separate character data, placing it in immediately after this table.
character appropriate data sections
data section (.data.char, .bss.char, or
checkbox .const.data.char).

Clear — Compiler does not break
out this data.

Zero- Checked — Globals initialized to
initialized zero reside in the .data section.
globals live in

. Clear — Globals initialized to zero
data instead

reside in the .bss section.

of BSS

checkbox

Create Checked — Assembler generates The pragma #asmoutput
assembly assembly code for each C file. overrides this option for
output Clear — Assembler does not individual files.
checkbox

generate assembly code for each C
file.

66 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.9 M56800E Processor Panel Elements (continued)

Element

Purpose

Comments

Generate
code for
profiling

Checked — Compiler generates
code for profiling.

Clear — Compiler does not
generate code for profiling.

For more details about the
profiler, see the “Profiler” on

page 227.

Pipeline
Conflict
Detection
Inline ASM
list box

Specifies pipeline conflict detection
during compiling of inline assembly
source code:

* Not Detected — compiler
does not check for
conflicts

e Conflict Error — compiler
issues error messages if it
detects conflicts

» Conflict Error/Hardware
Stall Warning — compiler
issues error messages if it
detects conflicts,
warnings if it detects
hardware stalls

For more information about
pipeline conflicts, see the
explanations of pragmas
check_c_src_pipeline and
check_inline_asm_pipeline.

Pipeline
Conflict
Detection C
Language list
box

Specifies pipeline conflict detection
during compiling of C source code:

* Not Detected — compiler
does not check for
conflicts

» Conflict error — compiler
issues error messages if it
detects conflicts

For more information about
pipeline conflicts, see the
explanations of pragmas
check_c_src_pipeline and
check_inline_asm_pipeline.

The compiler generates hardware DO loops for two situations:

1. Aggregate (array and structure) initializations, and for struct copy, under any of these

conditions:

» Theaggregate is byte aligned, and the aggregate size is greater than four bytes.

« The aggregate isword aligned, and the aggregate size is greater than four words.

» Theaggregateislong aligned, the aggregate size is greater than eight words, and the
Global Optimizations panel specifies Optimize for Smaller Code Size.

« The aggregate islong aligned, the aggregate size is greater than 32 words, and the
Global Optimizations panel specifies Optimize for Faster Execution.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 67

|
y

'
A

Target Settings
DSP56800E-Specific Target Settings Panels

2. Counted loopsin C, provided that the loop counter value is less than 65536, and that
there are no jumps to subroutines inside the loop.

If you enable separate character data sections, the compiler puts character data (and
structures containing character data) into these sections:

¢ .data.char — initialized static or global character data objects
¢ .bss.char — uninitialized static or global character data objects
¢ .const.data.char — const qualified character objects and static string data

Y ou can locate these data sections in the lower half of the memory map, making sure that
the data can be addressed.

ELF Disassembler

Use the ELF Disassembler panel (Figure 4.9 on page 68) to specify the content and
display format for disassembled object files. Table 4.10 on page 69 explains the elements
of this panel. (To view adisassembled module, select Pr oj ect>Disassemble from the
main-window menu bar.)

Figure 4.9 ELF Disassembler Panel

N ELF Dizagsembler

¥ Show Headers [™ Werbose Info
¥ Show Symbal and Sting Tables ¥ Show Relocations
— v Show Code Modules

v Use Extended Mnemanics [T Show Source Code
¥ Show sddresses and Object Code ¥ Show Comments

— v Show Data Modules

[Dizazzemble Exception T ables

[T Show Debug Infa

68

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.10 ELF Disassembler Panel Elements

Element

Purpose

Comments

Show
Headers
checkbox

Checked — Disassembled output
includes ELF header information.

Clear — Disassembled output does
not include this information.

Show
Symbol and
String Tables
checkbox

Checked — Disassembled modules
include symbol and string tables.

Clear — Disassembled modules do
not include these tables.

Verbose Info
checkbox

Checked — ELF file includes
additional information.

Clear — ELF file does not include
additional information.

For the .symtab section,
additional information includes
numeric equivalents for some
descriptive constants. For the
line and .debug sections,
additional information includes
an unstructured hex dump.

Show
Relocations
checkbox

Checked — Shows relocation
information for corresponding text
(.rela.text) or data (.rela.data)
section.

Clear — Does not show relocation
information.

Show Code
Modules
checkbox

Checked — Disassembler outputs
ELF code sections for the
disassembled module. Enables
subordinate checkboxes.

Clear — Disassembler does not
output these sections. Disables
subordinate checkboxes.

Subordinate checkboxes are
Use Extended Mnemonics,
Show Addresses and Object
Code, Show Source Code, and
Show Comments.

Use
Extended
Mnemonics
checkbox

Checked — Disassembler lists
extended mnemonics for each
instruction of the disassembled
module.

Clear — Disassembler does not list
extended mnemonics.

This checkbox is available only
if the Show Code Modules
checkbox is checked.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

69

y
A

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.10 ELF Disassembler Panel Elements (continued)

Element

Purpose

Comments

Show
Addresses
and Object
Code
checkbox

Checked — Disassembler lists
address and object code for the
disassembled module.

Clear — Disassembler does not list
this code.

This checkbox is available only
if the Show Code Modules
checkbox is checked.

Show Source
Code
checkbox

Checked — Disassembler lists

source code for the current module.

Clear — Disassembler does not list
source code.

Source code appears in mixed
mode, with line-number
information from the original C
source file.

This checkbox is available only
if the Show Code Modules
checkbox is checked.

Show
Comments
checkbox

Checked — Disassembler
comments appear in sections that
have comment columns.

Clear — Disassembler does not
produce comments.

This checkbox is available only
if the Show Code Modules
checkbox is checked.

Show Data
Modules
checkbox

Checked — Disassembler outputs
ELF data sections, such as .data
and .bss, for the disassembled
module.

Clear — Disassembler does not
output ELF data sections.

Disassemble
Exception
Tables
checkbox

Leave clear.

Does not apply to C.

Show Debug
Info
checkbox

Checked — Disassembler includes
DWARF symbol information in
output.

Clear — Disassembler does not
include this information in output.

70 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Target Settings
DSP56800E-Specific Target Settings Panels

M56800E Linker

Use the M56800E Linker panel (Figure 4.10 on page 71) to specify linker behavior of the
linker. (This panel isonly availableif the current build target uses the M56800E Linker.)
Table 4.11 on page 72 explains the elements of this panel.

Figure 4.10 M56800E Linker Panel

IH Target Settings Panels IE MBEBO0E Linker
= Target * v Generate Symbalic Info
: = ™ Disahle Deadstippin
o Target Settings v Gtore Full Path Names A
- fecess Paths . v Generate ELF Symbol Table
. Build Ext V¥ Generate Link Map .
uild Exiras L) [Supress Waming Messages
- File Mappings List Unuzed Objects
- Source Trees ™ Show Transitive Closure
L MEEBD?;E T.arget WV fnnotate Byte Symbals
B Language Seltngs ™ Generate 5-Recaord File
- C/C++ Language
- C/C++ Preprocessar I=| Sort By Address Mar Record Length: |252
- CAC++ Warnings [| Generate Byte Addiesses EOL Character IMAC v l
- MBERI0E Aszembler Erty Point —
3 Code Generation = ¥ i Finit_sim_
- ELF Dizazzembler Forze dctive Symbals:
- MBEB00E Processor
- [3lobal Optimizations
= _Linker
Lo MERANDE Linker j
Factory Settings Fewert Import Panel... | Export Fanel... |

ak | Cancel | Sppl |

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 71

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.11 M56800E Linker Panel Elements

Element Purpose Comments

Generate Checked — Linker generates If you select Project>Debug
SymbolicInfo | debugging information, within the from the main-window menu
checkbox linked ELF file. bar, the IDE automatically

. enables this option.
Clear — Linker does not generate P

debugging information. Clearing this checkbox
prevents you from using the
CodeWarrior debugger on your
project; it also disables the
subordinate Store Full Path
Names checkbox.

Store Full Checked — Linker includes full path | This checkbox is available only
Path Names names for source files. (Default) if the Generate Symbolic Info
checkbox .) checkbox is checked.

Clear — Linker uses only file

names.
Generate Checked — Linker generates a link A link map shows which file
Link Map map. Enables subordinate provided the definition of each
checkbox checkboxes List Unused Objects, object and function, the

Show Transitive Closure, and address of each object and

Annotate Byte Symbols. function, a memory map of

section locations, and values of

Clear — Linker does not generate a .
9 linker-generated symbols. It

link map. also lists unused but
unstripped symbols.
List Unused Checked — Linker includes unused This checkbox is available only
Objects objects in the link map. if the Generate Link Map
checkbox checkbox is checked.

Clear — Linker does not include
unused objects in the link map.

Show Checked — Link map includes a list | Text after this table includes an
Transitive of all objects that main() references. | example list.
Closure

Clear — Link map does not include This checkbox is available only
this list. if the Generate Link Map
checkbox is checked.

checkbox

72 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.11 M56800E Linker Panel Elements (continued)

Element

Purpose

Comments

Annotate
Byte
Symbols

Checked — Linker includes B
annotation for byte data types (e.qg.,
char) in the Linker Command File.

Clear — By default, the Linker does
not include the B annotation in the
Linker Command File. Everything
without the B annotation is a word
address.

For an example of the Linker
Command File with and without
the B annotation, see Listing

4.3 on page 75.

Disable
Deadstrippin
g checkbox

Checked — Prevents the linker from
stripping unused code or data.

Clear — Lets the linker deadstrip.

Generate
ELF Symbol
Table
checkbox

Checked — Linker includes an ELF
symbol table and relocation list in
the ELF executable file.

Clear — Linker does not include
these items in the ELF executable
file.

Suppress
Warning
Messages
checkbox

Checked — Linker does not display
warnings in the message window.

Clear — Linker displays warnings in
the message window.

Generate S-
Record File
checkbox

Checked — Linker generates an
output file in S-record format.
Activates subordinate checkboxes.

Clear — Linker does not generate
an S-record file.

For the DSP56800E, this
option outputs three S-record
files: .s (both P and X memory
contents), .p (P memory
contents), and .x (X memory
contents). The linker puts S-
record files in the output folder
(a sub-folder of the project
folder.)

Sort By
Address
checkbox

Checked — Enables the compiler to
use byte addresses to sort type S3
S-records that the linker generates.

Clear — Does not enable byte-
address sorting.

This checkbox is available only
if the Generate S-Record File
checkbox is checked.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 73

y
A

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.11 M56800E Linker Panel Elements (continued)

Element

Purpose

Comments

Generate
Byte
Addresses
checkbox

Checked — Enables the linker to

generate type S3 S-records in bytes.

Clear — Does not enable byte
generation.

This checkbox is available only
if the Generate S-Record File
checkbox is checked.

Max Record
Length text
box

Specifies the maximum length of
type S3 S-records that the linker
generates, up to 256 bytes.

The CodeWarrior debugger
handles 256-byte S-records. If
you use different software to
load your embedded
application, this text box should
specify that software’s
maximum length for S-records.

This checkbox is available only
if the Generate S-Record File
checkbox is checked.

EOL
Character list
box

Specifies the end-of-line character
for the type S3 S-record file: MAC,
DOS, or UNIX format.

This checkbox is available only
if the Generate S-Record File
checkbox is checked.

Entry Point
text box

Specifies the program starting point
— the first function the linker uses
when the program runs.

Text after this table includes
additional information about
the entry point.

Force Active
Symbols text
box

Directs the linker to include symbols
in the link, even if those symbols are
not referenced. Makes symbols
immune to deadstripping.

Separate multiple symbols with
single spaces.

Check the Show Transitive Closure checkbox to have the link map include the list of
objects main() references. Consider the sample code of Listing 4.1 on page 74. If the
Show Transitive Closure optionisin effect and you compile this code, the linker generates
alink map file that includes the list of Listing 4.2 on page 75.

Listing 4.1 Sample Code for Show Transitive Closure

void foot(void){ int a = 100; }
void pad(void){ int b = 101; }

int main(void) {
foot () ;
pad () ;

74 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels

return 1;

}

Listing 4.2 Link Map File: List of main() references

Link map of Finit sim
1] interrupt vectors.text found in 56800E_vector.asm
2] sim_intRoutine (notype,local) found in 56800E_vector.asm
2] Finit sim_ (func,global) found in 56800E_init.asm
3] Fmain (func,global) found in M56800E main.c
4] Ffoot (func,global) found in M56800E main.c
4] Fpad (func,global) found in M56800E main.c
3] F__init sections (func,global) found in Runtime 56800E.lib
initsections.o
4] Fmemset (func,global) found in MSL C 56800E.lib mem.o
5] F_ fill mem (func,global) found in MSL C 56800E.1lib
mem_funcs.o
1] Finit sim_(func,global) found in 56800E_init.asm

Use the Entry Point text box to specify the starting point for a program. The default
function this text box namesis in the startup code that sets up the DSP56800E
environment before your code executes. This function and its corresponding startup code
depend on your stationery selection.

For hardware-targeted stationery, the startup code is on the path:
support\<name of hardware, e.g., M56852E>\startup
For simulator-targeted stationery, the startup code is on the path:
support\M56800E\init

The startup code performs such additional tasks as clearing the hardware stack, creating an
interrupt table, and getting the addresses for the stack start and exception handler. The
final task for the startup codeis calling your main () function.

Check the Annotate Byte Symbols checkbox to have the link map include the B annotation
for byte addresses and no B annotation for word addresses (Listing 4.3 on page 75).

Listing 4.3 Example of Annotate Byte Symbols

int myint;
char mychar;

B 0000049C 00000001 .bss Fmychar (main.c)
0000024F 00000001 .bss Fmyint (main.c)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 75

A 4
4\

Target Settings
DSP56800E-Specific Target Settings Panels

Remote Debugging

Use the Remote Debugging panel (Figure 4.11 on page 76, Figure 4.12 on page 76) to set
parameters for communication between a DSP56800E board or Simulator and the

CodeWarrior DSP56800E debugger. Table 4.12 on page 77 explains the elements of this
panel.

NOTE Communications specifications also involve settings of the debugging
M56800E Target panel (Figure 4.14 on page 79).

Figure 4.11 Remote Debugging Panel (56800E Simulator)

rE Remate Debugaging

— Connection Settings

Eunnectiun:IEEEDDE Sirnulator j Edit Connechon...

" R emaote download path

|—|_ Launch remate host application

Figure 4.12 Remote Debugging Panel (56800E Local Connection)

IH Femote Debugging |

— Connection Settings

EDHHECHDH:IEEBDDE Local Hardware Connection ;I Edit Connectiar... |

"Hemute download path

’7|_ Launch remote host application

JTAG Clock Speed
’7 iﬁI:IEI

76 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.12 Remote Debugging Panel Elements

Element

Purpose

Comments

Connection
list box

Specifies the connection type:

¢ 56800E Simulator —
appropriate for testing
code on the simulator
before downloading code
to an actual board.

» 56800E Local Hardware
Connection (CSS) —
appropriate for using your
computer's command
converter server,
connected to a
DSP56800E board.

Selecting 56800E Simulator
keeps the panel as Figure
4.11 on page 76 shows.

Selecting Local Hardware
Connection adds the JTAG
Clock Speed text box to the
panel, as Figure 4.12 on
page 76 shows.

Remote
download
path text box

Not supported at this time.

Launch
Remote Host
Application
checkbox

Not supported at this time.

JTAG Clock
Speed text
box

Specifies the JTAG clock speed for

local hardware connection. (Default

is 500 kilohertz.)

This list box is available only if
the Connection list box
specifies Local Hardware
Connection (CSS). The HTI will
not work properly with a clock
speed over 500 kHz.

M56800E Target (Debugging)

Use the debugging M56800E Target pand (Figure 4.14 on page 79) to set parameters for
communication between a DSP56800E board or Simulator and the CodeWarrior
DSP56800E debugger. Table 4.13 on page 79 explains the elements of this panel.

NOTE

Communications specifications a so involve settings of the Remote Debugging

panel (Figure 4.11 on page 76, Figure 4.12 on page 76).

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 77

3
4

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Auto-clear previous breakpoint on new
breakpoint request

This option is only available when you enable the Breakpoint Mode (HW only)
option. When you also enable the Auto-clear previous hardware breakpoint
and set a breakpoint, the original breakpoint is automatically cleared and the new
breakpoint isimmediately set. If you disable the Auto-clear previous hardware
breakpoint option and attempt to set another breakpoint, you will be prompted with the
following message:

Figure 4.13 Hardware Breakpoint Already Set

Hardware Breakpoint Already Se x|

Clear the previous breakpoint and set the new one’?

e ez to all | Mo |

If you click the Yes button, the previous breakpoint is cleared and the new breakpoint is
set.

If you click the Yes to all button, the Auto-clear previous hardware
breakpoint option is enabled and the previously set breakpoint is cleared out without
prompting for every subsequent occurrence.

If you click the NO button, the previous breakpoint is kept and the new breakpoint request
isignored.

78

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings
DSP56800E-Specific Target Settings Panels

Figure 4.14 Debugging M56800E Target Panel

@ sdm Settings

21|

§ Target Settings Panels

| | MEER00E T arget Settings

= Language Settings

- C/C++ Lahguage |...
- C/C++ Preprocessar
- C/C++ 'warnings

o MBEBODE Assembler
- Code Generation

i ELF Disassembler

- MB5EB00E Processor

[|

¥ &lways reset on download

[Use initialization file: I

IAutomatic v I

Choopse,.. |

Breakpoint kode [Hw! Ol

= Linker
= Editor

= Debugger

----- Global Optimizations
. MSEBO0E Linker
o Custom Keywords
i Debugger Settingz
- Remate Debugging

f E Tar;
----- Remate Debug Opt... -

Processor:

E_Simulator

™ Auto-clear previous hardware breakpoint

Target O5: IBareBoard vl

Factory Settings Revert

Import Panel... | Export Fanel... |

(1] 4 | Cancel | Apply |

Table 4.13 Debugging M56800E Target Panel Elements

Element

Purpose

Comments

Always reset
on download
checkbox

Checked — IDE issues a reset to
the target board each time you
connect to the board.

Clear — IDE does not issue a reset
each time you connect to the target
board.

Use
initialization
file checkbox

Checked — After a reset, the IDE
uses an optional hardware
initialization file before downloading
code.

Clear — IDE does not use a
hardware initialization file.

The Use initialization file text
box specifies the file.

Text immediately after this
table gives more information
about initialization files.

Use
initialization
file text box

Specifies the initialization file.

Applicable only if the Use
initialization file checkbox is
checked.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 79

y
A

Target Settings

DSP56800E-Specific Target Settings Panels

Table 4.13 Debugging M56800E Target Panel Elements (continued)

Element

Purpose

Comments

Breakpoint
Mode
checkbox

Specifies the breakpoint mode:

e Automatic —
CodeWarrior software
determines when to use
software or hardware
breakpoints.

» Software — CodeWarrior
software always uses
software breakpoints.

¢ Hardware — CodeWarrior
software always uses the
available hardware
breakpoints.

Software breakpoints contain
debug instructions that the
debugger writes into your code.
You cannot set such
breakpoints in flash, as it is
read-only.

Hardware breakpoints use the
on-chip debugging capabilities
of the DSP56800E. The
number of available hardware
breakpoints limits these
capabilities.

Note, Breakpoint Mode (HW
only) affects HW targets.

Auto-clear
previous
hardware
breakpoint

Checked — Automatically clears the
previous hardware breakpoint.

Clear — Does not automatically
clear the previous hardware
breakpoint.

Target OS list
box

Specifies the OS

Selects the OS plug-in. The
BareBoard option does not
use an OS plug-in.

Processor list
box

Specifies the processor

Currently this selects the
register layout.

Aninitidization file consists of text instructions telling the debugger how to initialize the
hardware after reset, but before downloading code. Y ou can use initidization file
commands to assign values to registers and memory locations, and to set up flash memory

parameters.

Theinitiaization files of your IDE are on the path:

{CodeWarrior path}\M56800E Support\initialization

The name of each initialization file includes the number of the corresponding processor,
such as 568345. Each file with “_ext” enables the processor’s external memory. If the
processor has Flash memory, the initialization file with “_flash” enables both Flash and

external memory.

To set up aninitialization file:

80 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Target Settings

DSP56800E-Specific Target Settings Panels

1. Inthedebugging M56800E Target panel, check the Use initialization file checkbox.
2. Specify the name of the initialization file, per either substep aor b:

a. Typethe namein the Useinitialization file text box. If the nameis not afull
pathname, the debugger searches for the file in the project directory. If thefileis
not in this directory, the debugger searches on the path:

{CodeWarrior path}\M56800E Support\initialization

directory.

b. Click the Choose button; the Choose file dialog box appears. Navigate to the
appropriate file. When you select the file, the system putsits name in the Use

initialization file text box.

Each text line of acommand file begins with acommand or the comment symbol #. The
system ignores comment lines, as well as blank lines.

Table 4.14 on page 81 lists the supported commands and their arguments. For amore

detailed description of the Flash Memory commands see " Flash Memory Commands.”

Table 4.14 Initialization File Commands and Arguments

Command Arguments Description

writepmem <addr> <value> Writes a 16-bit value to
the specified P: Memory
location.

writexmem <addr> <value> Writes a 16-bit value to
the specified X: Memory
location.

writereg <regName> <value> Writes a 16-bit value to

the specified register.

set_hfmclkd

<value>

Writes the flash memory’s
clock divider value to the
hfmclkd register

set_hfm base

<address>

Sets the address of
hfm_base. This is the map
location of the flash
memory control registers
in X: Memory.

add_hfm _unit

<startAddr><endAddr>
<bank><numSectors>
<pageSize><progMem>
<boot><interleaved>

Adds a flash memory unit
to the list and sets its
parameter values.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 81

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.14 Initialization File Commands and Arguments (continued)

Command Arguments Description

set_hfm_programmer_base <address> Specifies the address
where the onboard flash
programmer will be
loaded in P: Memory.

set_hfm_prog_buffer_base <address> Specifies where the data
to be programmed will be
loaded in X: Memory.

set_hfm_prog_buffer_size <size> Specifies the size of the
buffer in X: Memory which
will hold the data to be

programmed.
set_hfm erase mode <units | pages | all> Sets the erase mode.
set_hfm verify erase <1]0> Sets the flash memory

erase verification mode.

set_hfm verify program | <1|0> Sets the flash program
verification mode.

unlock flash on connec | <1]|0> Unlocks and erases flash
t memory immediately upon
connection.

Remote Debug Options

Use the Remote Debug Options panel (Figure 4.15 on page 83) to specify different remote
debug options.

82 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Target Settings
DSP56800E-Specific Target Settings Panels

Figure 4.15 Remote Debug Options

H Femote Debug Options

— Program Diownload Options

Iritial Launch Successive Runs
Section Tppe | Download “erify Download Verfy

Executable Ird
Corztant Data v
|nitialized D1ata v

Unitialized D'ata Ird

a0
RURUEUEY
i

— Memom Configuration Optiohz

[~ Usze Memary Configuration File

Browse... |

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

83

y
A

Target Settings
DSP56800E-Specific Target Settings Panels

Table 4.15 Remote Debug Options Panel Elements

Element Purpose Comments
Program Checked Download checkboxes Section types:
Dovynload specify the sectl_on_types to be « Executable —
Options area downloaded on initial launch and on program-code
successive runs. sections that have X
)) flags in the linker
Checked Verify checkboxes specify command file.

the section types to be verified (that

is, read back to the linker). * Constant Data —

program-data
sections that do not
have X or W flags in
the linker command
file.

¢ Initialized Data —
program-data
sections with initial
values. These
sections have W
flags, but not X flags,
in the linker
command file.

¢ Uninitialized Data —
program-data
sections without
initial values. These
sections have W
flags, but not X flags,
in the linker
command file.

Use Memory Not supported at this time.
Configuration
File
checkbox

84 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

5

Processor Expert Interface

Y our CodeWarrior™ |DE features a Processor Expert™ plug-in interface, for rapid
development of embedded applications. This chapter explains Processor Expert concepts,
and Processor Expert additions to the CodeWarrior visua interface. This chapter includes
abrief tutorial exercise.

This chapter contains these sections:
» Processor Expert Overview on page 85

¢ Processor Expert Windows on page 93

« Processor Expert Tutorial on page 106

Processor Expert Overview

The Processor Expert Interface (PEI) is an integrated devel opment environment for
applications based on DSP56800/E (or many other) embedded microcontrollers. It reduces
development time and cost for applications. Its code makes very efficient use of
microcontroller and peripheral capabilities. Furthermore, it helps develop code that is
highly portable.

Features include:

« Embedded Beans™ components— Each bean encapsul ates abasic functionality of
embedded systems, such as CPU core, CPU on-chip peripherals, and virtual devices.
To create an application, you select, modify, and combine the appropriate beans.

— The Bean Selector window lists all available beans, in an expandable tree
structure. The Bean Selector describes each bean; some descriptions are
extensive,

— The Bean Inspector window lets you modify bean properties, methods, events,
and comments.

* Processor Expert page— Thisadditional page for the CodeWarrior project window
lists project CPUs, beans, and modules, in atree structure. Selecting or double-
clicking items of the page opens or changes the contents of related Processor Expert
windows.

e Target CPU window — This window depicts the target microprocessor asasimple
package or a package with peripherals. Asyou move the cursor over this picture’s

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 85

3
4

y
A

Processor Expert Interface
Processor Expert Overview

pins, the window shows pin numbers and signals. Additionally, you can have this
window show a scrollable block diagram of the microprocessor.

CPU Structurewindow — This window shows the relationships of al target-
microprocessor elements, in an expandable-tree representation.

CPU Types Overview — This reference window lists all CPUs that your Processor
Expert version supports.

Memory Map — Thiswindow shows the CPU address space, plus mapping for
internal and external memory.

Resource M eter — Thiswindow shows the resource allocation for the target
Mi Croprocessor.

Peripheral Usage I nspector — Thiswindow shows which bean all ocates each on-
chip peripheral.

Installed Beans Overview — Thisreference window providesinformation about all
installed beansin your Processor Expert version.

Driver generation — The PEI suggests, connects, and generates driver code for
embedded-system hardware, peripherals, and algorithms.

Top-Down Design — A developer starts design by defining application behavior,
rather than by focussing on how the microcontroller works.

Extensible beanslibrary — This library supports many microprocessors,
peripherals, and virtual devices.

Beans wizard — This external tool helps developers create their own custom beans.

Extensive help infor mation — Y ou access this information either by selecting Help
from the Program Expert menu, or by clicking the Help button of any Processor
Expert window or dialog box.

Processor Expert Code Generation

The PEI manages your CPU and other hardware resources so that you can concentrate on
virtual prototyping and design. Y our steps for application development are:

1

2.
3.
4.

Creating a CodeWarrior project, specifying the Processor Expert stationery
appropriate for your target processor.

Configuring the appropriate CPU bean.
Selecting and configuring the appropriate function beans.
Starting code design (that is, building the application).

Asyou create the project, the project window opensin the IDE main window. This project
window has a Processor Expert page (Figure 5.1 on page 87). The Processor Expert Target
CPU window also appears at this time. So does the Processor Expert bean selector
window, although it is behind the Target CPU window.

86

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview

Figure 5.1 Project Window: Processor Expert Page

MNewProji mcp I

Ilﬁ 2dm extermal memary _vJ B & @ -

Files | Link Order | Targets Processor Expett |

= Configurations
(= Operating Systemn
Bl = CPUs

% (@ CpuEFa34E
% (g CpuBEFE346
(= Beans
El = User Modules
< MewPrajl.c:main
= Generated Modules
(= Extemal Modules
(= Diocumentation
[= PESL

When you start code design, the PEI generates commented code from the bean settings.
This code generation takes advantage of the Processor Expert CPU knowledge system and
solution bank, which consists of hand-written, tested code optimized for efficiency.

To add new functionalities, you select and configure additional beans, then restart code
design. Another straightforward expansion of PEI code is combining other code that you
aready had produced with different tools.

Processor Expert Beans

Beans encapsul ate the most-required functionalities for embedded applications. Examples
include port bit operations, interrupts, communication timers, and A/D converters.

The Bean Selector (Figure 5.2 on page 88) helps you find appropriate beans by category:
processor, MCU externa devices, MCU internal peripherals, or on-chip peripherals. To
open the bean selector, select Processor Expert > View > Bean Selector, from the main-
window menu bar.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 87

y
A

Processor Expert Interface
Processor Expert Overview

Figure 5.2 Bean Selector

e
Bean Categories I Or Chip Peripherals I Bluick help >

= CFU
(= CPU extemnal devices
B = CPU internal perpherals
= Commurication
= Converter
= Intermupts
= Measurement
= Memary
= Peripheral beans
B Part /0
= Jeiio)
g @ Bisi0
g M pyte2i0
g M B30 |

Filker: | alliCPU | Licensed &~

The bean selector’ s tree structures list all available beans; double-clicking the name adds
the bean to your project. Clicking the Quick Help button opens or closes an explanation
pane that describes the highlighted bean.

Once you determine the appropriate beans, you use the Bean Inspector (Figure 5.3 on
page 89) to fine tune each bean, making it optimal for your application.

ry

88 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Processor Expert Interface
Processor Expert Overview

Figure 5.3 Bean Inspector

'--.-_'"-Bean Inspector AM1:AsynchroMaster - |EI|5|

< Bean Itemsz Vizibility Help

Properties | Methods | Events | Comment

Chanmel SCI0 | =|SCIO
+Interrupt ze Dizable
-Settings
Parity wake-up i hardware wake-up

Width 9 bitz 9 bitz
Stop bit 1 |1
+Heceiver |Dizable
+T ransmitti| Dizable
Baud rate ... | Unazzigned iming
Stop in wait|fo
+Initializatior

N 2 R N N N a2 I

BASIC ADYAMNCED ExPERT S

Using the Bean Inspector to set a bean’ sinitialization properties automatically adds bean
initialization code to CPU initialization code. Y ou use the Bean Inspector to adjust bean
properties, so that generated code is optimal for your application.

Beans greatly facilitate management of on-chip peripherals. When you choose a peripheral
from bean properties, the PEI presentsall possible candidates. But the PEI indicates which
candidates already are allocated, and which are not compatible with current bean settings.

Processor Expert Menu

Table 5.1 on page 90 explains the selections of the Processor Expert menu.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 89

y
A

Processor Expert Interface

Processor Expert Overview

Table 5.1 Processor Expert Menu Selections

Item Subitem Action

Open Processor none Opens the PEI for the current project.

Expert (Available only if the current project does
not already involve the PEI.)

Code Design none Generates code, including drivers, for the

<Project> current project. Access these files via the
Generate Code folder, of the project-
window Files page.

Undo Last Code none Deletes the most recently-generated

Design code, returning project files to their state
after the previous, error-free code
generation.

View Project Panel Brings the Processor Expert page to the

front of the CodeWarrior project window.

(Not available if the project window does
not include a Processor Expert page.)

Bean Inspector

Opens the Bean Inspector window,
which gives you access to bean
properties.

Bean Selector

Opens the Beans Selector window,
which you use to choose the most
appropriate beans.

Target CPU Package

Opens the Target CPU Package window,
which depicts the processor. As you
move your cursor over the pins of this
picture, text boxes show pin numbers
and signal names.

Target CPU Block
Diagram

Opens the Target CPU Package window,
but portrays the processor as a large
block diagram. Scroll bars let you view
any part of the diagram. As you move
your cursor over modules, floating text
boxes identify pin numbers and signals.

Error Window

Opens the Error Window, which shows
hints, warnings, and error messages.

90 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Overview

Table 5.1 Processor Expert Menu Selections (continued)

Iltem

Subitem

Action

Resource Meter

Opens the Resource Meter window,
which shows usage and availability of
processor resources.

View (continued)

Target CPU Structure

Opens the CPU Structure window, which
uses an expandible tree structure to
portray the processor.

Peripherals Usage
Inspector

Opens the Peripherals Usage Inspector
window, which shows which bean
allocates each peripheral.

Peripheral
Initialization Inspector

Opens the Peripherals Initialization
Inspector window, which show the
initialization value and value after reset
for all peripheral register bits.

Installed Beans
Overview

Opens the Beans Overview window,
which provides information about all
beans in your project.

CPU Types Overview

Opens the CPU Overview window, which
lists supported processors in an
expandable tree structure.

CPU Parameters

Opens the CPU Parameters window,

Overview which lists clock-speed ranges, number
of pins, number of timers, and other
reference information for the supported
processors.

Memory Map Opens the Memory Map window, which

depicts CPU address space, internal
memory, and external memory.

Tools <tool name> Starts the specified compiler, linker or
other tool. (You use the Tools Setup
window to add tool names to this menu.)

SHELL Opens a command-line window.
Tools Setup Opens the Tools Setup window, which
you use to add tools to this menu.

Help Processor Expert Help | Opens the help start page.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

91

y
A

Processor Expert Interface

Processor Expert Overview

Table 5.1 Processor Expert Menu Selections (continued)

Item Subitem Action
Introduction Opens the PEI help introduction.
Benefits Opens an explanation of PEI benefits.

User Interface

Opens an explanation of the PEI
environment.

Tutorial

[None available for the DSP56800/E.]

Quick Start

Opens PEI quick start instructions.

Help (continued)

Embedded Beans

Opens the first page of a description
database of all beans.

Embedded Beans
Categories

Opens the first page of a description
database of beans, organized by
category.

Supported CPUs,
Compilers, and
Debuggers

Opens the list of processors and tools
that the PEI plug-in supports.

PESL Library User
Manual

Opens the Processor Expert System
Library, for advanced developers.

User Guide

Opens a .pdf guide that focuses on the
DSP56800/E processor family.

Search in PDF
Documentation of the
Target CPU

Opens documentation of the target
processor, in a .pdf search window.

Go to Processor
Expert Home Page

Opens your default browser, taking you
to the PEI home page.

About Processor
Expert

Opens a standard About dialog box for
the PEI.

Update

Update Processor
Exert Beans from
Package

Opens the Open Update Package
window. You can use this file-selection
window to add updated or new beans
(which you downloaded over the web) to
your project.

92

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows

Table 5.1 Processor Expert Menu Selections (continued)

Iltem Subitem

Action

Check Processor

Checks for updates available over the

Windows

open PEI windows.

Expert Web for web. If any are available, opens your
Updates default browser, so that you can
download them.
Bring PE none Moves PEI windows to the front of your
Windows to Front monitor screen.
Arrange PE none Restores the default arrangement of all

Processor Expert Windows

This section illustrates important Processor Expert windows and dialog boxes.

Bean Selector

The Bean Selector window (Figure 5.4 on page 93) explains which beans are available,
helping you identify those most appropriate for your application project. To open this
window, select Processor Expert > View > Bean Selector, from the main-window menu

bar.

Figure 5.4 Bean Selector Window

-loix]
Bean Categories | On Chip Peripheralsl I < Guick help
El & CPU intemal peripherals ;I Bean: BitsIO -

= Communication
g :ZTnvert:r This bean implements a multi-bit input/output, It
+| . -
HE J:;::E:ment uses 1 to 8 contiguous pins of one port,
5E Memon It is recommended to select this bean
) v exclusively for 2 to 7 bit inputfoutput,
= Peripheral beans
B Part 140 :
5 0 B0 | 1. If you want to use 1 bit only, select the
g @m BitIO bean instead.
g @ B2l 2. If you want to use 8 bits, select the
BytelD bean instead.
& (M Byt=3i0 - =l
4

Filker: | allfcPu | Licensed

4

The Bean Categories page, at the left side of this window, lists the available beansin
category order, in an expandable tree structure. Green string bean symbols identify beans

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

93

3
4

y
A

Processor Expert Interface
Processor Expert Windows

that have available licenses. Grey string bean symbols identify beans that do not have
available licenses.

The On-Chip Peripherals page lists beans available for specific peripherals, alsoin an
expandable tree structure. Y ellow folder symbols identify peripherals fully available.
Light blue folder symbolsidentify partially used peripherals. Dark blue folder symbols
identify fully used peripherals.

Bean names are black; bean template names are blue. Double-click a bean name to add it
to your project.

Click the Quick Help button to add the explanation paneto theright side of the window, as

Figure 5.4 on page 93 shows. This pane describes the selected (highlighted) bean. Use the
scroll bars to read descriptions that are long.

Click the two buttons at the bottom of the window to activate or deactivate filters. If the
all/CPU filter is active, the window lists only the beans for the target CPU. If the license
filter is active, the window lists only the beans for which licenses are available.

Bean Inspector

The Bean | nspector window (Figure 5.5 on page 95) lets you modify bean properties and
other settings. To open this window, select Processor Expert > View > Bean | nspector,
from the main-window menu bar.

94

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Processor Expert Interface
Processor Expert Windows

Figure 5.5 Bean Inspector Window

'--.-_'"-Bean Inspector AM1:AsynchroMaster

e

Bean Items Vizibility Help

roperties |Meth-:u:|$| Eventsl Enmmentl

=10 x|

Bean name

A1

Channel

SCI0 = |SCI0

-Interrupt se

E nable

|nterrupt

|nterrupt Fx

[MT_SCIO[INT_SCI0_R=Ful

|nterrupt Fx

mediun «|1

Interrupt Tx

[HT_SCIO[INT _SCIO_T=Ernpty

Interrupt Tx

mediun |1

|nterrupt E m

[HT_SCIO[INT_SCIO_R=Eroar

|nterrupt E m

mediun |1

[nterrupt [dh

[HT_SCIO[INT_SCI0_T=dle

[nterrupt [dh
[nput buffer

mediun |1
1]

Dutput buff

0

-Settings

Parity

wake-up i hardware wake-up

*idth

3 bits 3 btz

Stop bit

1 -|1

bl ode

Mormal -

| N) e I T I N T N s

-I-n Fl"'FiHFI

Mizahle

o~
BASIC | ADWANCED || ExPERT

fid
/4

This window shows information about the currently selected bean — that is, the
highlighted bean name in the project-window Processor Expert page. Thetitle of the Bean
Inspector window includes the bean name.

The Bean Inspector consists of Properties, Methods, Events, and Comment pages. The
first three pages have these columns:

« Item names — Itemsto be set. Double-click on group names to expand or collapse
thislist. For the Method or Event page, double-clicking on an item may open the file
editor, at the corresponding code location.

* Selected settings — Possible settings for your application. To change any ON/OFF-
type setting, click the circular-arrow button. Settings with multiple possible values
have triangle symbols: click the triangle to open a context menu, then select the
appropriate value. Timing settings have an ellipsis (...) button: click this button to
open a setting dialog box.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 95

3
4

y
A

Processor Expert Interface
Processor Expert Windows

¢ Setting status— Current settings or error statuses.
Use the comments page to write any notations or comments you wish.

NOTE If you have specified atarget compiler, the Bean Inspector includes an
additional Build options page for the CPU bean.
If your project includes external peripherals, the Bean Inspector includes an
additional Used page. Clicking a circular-arrow button reserves a resource for
connection to an external device. Clicking the same button again frees the
resource.

The Basic, Advanced, and Expert view mode buttons, at the bottom of the window, let you
change the detail level of Bean Inspector information.

The Bean Inspector window has its own menu bar. Selections include restoring default
settings, saving the selected bean as atemplate, changing the bean’ sicon, disconnecting
from the CPU, and several kinds of help information.

Target CPU Window

The Target CPU window (Figure 5.6 on page 97) depicts the target processor as a
realistic CPU package, asa CPU package with peripherals, or asablock diagram. To open
thiswindow, select Processor Expert > View > Target CPU Package, from the main-
window menu bar. (To have this window show the block diagram, you may select
Processor Expert > View > Target CPU Block Diagram, from the main-window menu
bar.)

96

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

N

Processor Expert Interface
Processor Expert Windows

Figure 5.6 Target CPU Window: Package

Target CPU [Cpu:56F8346]

:

|
Y

56FB8346

AL
oy

F o . . s
B a4 TR =
e * — e = ~ 3
B = = S o S ==
- i - =2 B ¥ = M < -z -~ =
51 [WCAPL [vCap1 JvcC |Core Power when the internal voltage regulator is disabled v

Arrows on pins indicate input, output, or bidirectiona signals. Asyou move your cursor
over the processor pins, text boxes at the bottom of this window show the pin numbers and
signal names.

Use the control buttons at the left edge of this window to modify the depiction of the
processor. One button, for example, changes the picture view the CPU package with
peripherals. However, as Figure 5.7 on page 98 shows, it is not always possible for the
picture of a sophisticated processor to display internal peripherals.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 97

PR 4

Processor Expert Interface
Processor Expert Windows

Figure 5.7 Target CPU Window: Package and Peripherals

Target CPU [Cpu:56F8346]

Ha:"lﬁlﬁ 2P| @ml Q
_ ."*!,'.',"

|l'

Huin B R =
~ — SEN _“ = ~
b p o =~ ‘

. W - = g
= ~

| | 4

S

In such acase, you can click the Always show internal peripheral devices control
button. Figure 5.8 on page 99 shows that this expands the picture size, as necessary, to
allow the peripheral representations. This view also includes bean icons (blue circles)
attached to the appropriate processor pins. Use the scroll bars to view other parts of the
processor picture.

98 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows

Figure 5.8 Target CPU Window: Peripherals and Bean Icons

Target CPU [Cpu:DSP56F836]

EmmE sl

[Pt |Prsrastion irame [Pravra, v

Click the Show CPU Block Diagram to change the picture to a block diagram, as Figure
5.9 on page 100 shows. Use the scroll bars to view other parts of the diagram. (Y ou can
bring up the block diagram as you open the Target CPU window, by selecting Pr ocessor
Expert > View > Target CPU Block Diagram, from the main-window menu bar.)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 99

(

Processor Expert Interface
Processor Expert Windows

Figure 5.9 Target CPU Window: Block Diagram

'--.-_-"-Target CPU [Cpu:DSP56F836]

_(o x|
& EHTERE ENT-EE PHASER HOME PHAS—
FORT C PORT D PORTE PORT F DHASEA[NDExl pHASEAl
SPIOCE GPIO GPICE GFPIC ADCAN ADCBE Quad DecOf Quac
ee] o0 99| €] 0] 00 L 4 i
ee)] 0|) 0] 0] €0 A
DAI| Q3| €] 0] 00| 00 deeelée
Q3] ee) ee) 00) 00 00
F N F
v v |
SFI0 THRAD TMRBO TMRCO THAF
L 4 L e L {
/[\ e P g T =
(Jd d J A N AN I I N AN N AN
ree
THRAL TMRE1L TMRC1 THAF
L L L4 {
‘ . N o -..--ﬂ F . W o --b

Other control buttons at the |eft edge of the window let you:
» Show bean icons attached to processor pins.
« Rotate the CPU picture clockwise 90 degrees.
» Toggle default and user-defined names of pins and peripherals.

¢ Print the CPU picture.

NOTE

Asyou move your cursor over bean icons, peripherals, and modules, text boxes

or floating hints show information such as names, descriptions, and the

dlocating beans.

And note these additional mouse control actions for the Target CPU window:

¢ Clicking a bean icon selects the bean in the project window’ s Processor Expert page.

100

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Windows

« Double-clicking a bean icon opens the Bean Inspector, displaying information for
that bean.

« Right-clicking abeanicon, apin, or a peripheral opens the corresponding context
menu.

« Double-clicking an ellipsis (...) bean icon opens a context menu of al beans using
parts of the peripheral. Selecting one bean from this menu opens the Bean Inspector.

« Right-clicking an ellipsis(...) bean icon opens a context menu of all beans using parts
of the peripheral. Selecting one bean from this menu opens the bean context menu.

Memory Map Window

TheMemory Map window (Figure 5.10 on page 102) depicts CPU address space, and the
map of internal and external memory. To open this window, select Processor Expert >
View > Memory Map, from the main-window menu bar.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 101

'
A

Processor Expert Interface
Processor Expert Windows

Figure 5.10 Memory Map Window

»."~Memory Map [56F8346] 16bit access 1ol x|
DT, CODE
FFFFFF 1FFFFF
FFFFO0
FFFEFF

EXTERMAL

EXTERMAL 030000
O2FFFF
010000
OOFFFF L _
O20FFF
O0Fo00
OOEFFF
020000
EXTERNAL 01FFFF
002000 EXTERMAL
001FFF

10000

001000 OOFFFF

O0OFFF

000000 000000

The color key for memory blocksis:
¢ White — Non-usable space
¢ Dark Blue— 1/O space
¢ Medium Blue— RAM
¢ Light Blue— ROM
¢ Cyan — FLASH memory or EEPROM
¢ Black — Externa memory.

102 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Processor Expert Interface
Processor Expert Windows

Pause your cursor over any block of the map to bring up a brief description.

CPU Types Overview

The CPU Types Overview window (Figure 5.11 on page 103) lists supported processors,
in an expandabl e tree structure. To open this window, select Processor Expert > View >
CPU Types Overview, from the main-window menu bar.

Figure 5.11 CPU Types Overview Window

i, CPU Types Dverview 0Ol =l
Bl = Motorala
== 56300

(@ 56853
(@ 56857
@ 56855
i 56954
@ 56853
i 5ea52

(@ 56FE26

(@ 5EFE27

(@ 5EFE07

@ 56Fa05

i 5eFe03

(@ SEFO02TAR0
) SEFB02TARD
(@ SEFE01FASD
(@ SEFSOFARD
(@ 56FE345
(@ 56FE355
(@ SEFE346
@ SEFE356
i SeFe3z2
@ 56FE323

Right-click the window to open a context menu that lets you add the selected CPU to the
project, expand the tree structure, collapse the tree structure, or get help information.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 103

4
A

Processor Expert Interface
Processor Expert Windows

Resource Meter

The Resour ce M eter window (Figure 5.12 on page 104) shows the usage or availability
of processor resources. To open thiswindow, select Processor Expert > View >
Resour ce M eter, from the main-window menu bar.

Figure 5.12 Resource Meter Window

=0l]

Communication: [l 0 00 000 A/D channels: |

Fins usage: |
Port usage: NN~ 000Dl IIIIIaIIIIILIIlln
Compare regs: Capture regs: |

Bars of this window indicate:

The number of pins used

The number of ports used

Allocation of timer compare registers

The number of timer capture registers used
Allocation of serial communication channels
Allocation of A/D converter channels.

Pausing your cursor over some fields of thiswindow brings up details of specific
resources.

Installed Beans Overview

The Installed Beans Overview window (Figure 5.13 on page 105) shows reference
information about the installed beans. To open this window, select Processor Expert >
View > Installed Beans Overview, from the main-window menu bar.

104

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface

Processor Expert Windows

Figure 5.13 Installed Beans Overview Window

“Installed Beans Overview

View Help
BEANS

BytelO

Capture

CIDParzer

CIDTypel

CIDTypel2

CallProgressToneDetection

Bean Info

General Byte Input/Output [8 bits]
Status=encrypted, compressed
Author=Processor Expert/SA
Current version=02.046

Call Frogresz Tone Detection
Status=encrypted, compressed
Author=Processor Expert / Pa
Current version=01.014

Timer capture encapsulation
Status=encrypted, compressed
Author=Processor Expert/AH
Current version=02.082

The Type 1 and 2 Telephany Parser Library
Statug=encrypted, compreszed
Avthar=Processor Expert / ACh

Current version=01.003

The Type 1 Telephony Features Library
Status=encrypted, compreszed
Avthar=Processor Expert / ACh

Current version=01.003

The Type 1 and 2 Telephony Features Library
Status=encrypted, compressed
Avthar=Processor Expert / ACh

Current wersion=01.008

1o x|
|Drivers =
BEE00Bytel 0. dmo
5ES004Eptel 0. dry _I

SEB00NCalProgres:T onel etection. dmo
BEB0MCallPiogressT onel etection.dry

BE200NC apture. dmao
SE80MCapture.dry

BEE0MNCID Parger. dmo
SEB00MCIDParser. dry

SES0MCIDT ppel.dma
SEE0MNCID T ypel . dry

SEE00NCIDT ypel 2 .dma
SEB0MNCIDT ppel 2 dry

=

Thiswindow’s View menu lets you change the display contents, such as showing driver
status and information, restricting the kinds of beans the display covers, and so on.

Peripherals Usage Inspector

The Peripherals Usage window (Figure 5.14 on page 106) shows which bean allocates
each peripheral. To open this window, select Processor Expert > View > Peripherals

Usage I nspector, from the main-window menu bar.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 105

4
A

Processor Expert Interface
Processor Expert Tutorial

Figure 5.14 Peripherals Usage Window

i, Peripheral Usage -0l x|

Wiew Help

I/0 | Interrupts I Timers I Chanrels

-Port GPIOD |
-Pin 0 GRIODO_CS52B
-Pin 1 GRIOD1_CS3B
-Pin 2 GRIODE T=D1
-Pin 3 GRIODT_R=D1

-Port GFIDE Uzed by more beans
-Pin 0 GRIOED T«0oO Uzed by bean: Ak 1:4zpnchio

Alvaayz_OutputDie Cutput Clutput
-Pin 1 GFIOET_R=D0 Uzed by bean: "ak1:Aspnchro
Alwaays_|nputDi | nput Input

-Pin 2 GRIDEZ AR
-Pin 3 GPIOE3 AT
-Pin 4 GRIOE4 SCLED
-Pin & GRIOES _MOSIO
Pin & GRIOEE MISO0
-Pin ¥ GFIOET_SS0B

-Port GRIOF e
-Pin 0 GRIOFO_D7
-Pin 1 GPIOF1_Da
-Pin 2 GPIOF2_DA
Pin 3 GFIOF2 D10 hd

The pages of thiswindow reflect the peripheral categories: I/O, interrupts, timers, and
channdls. The columns of each page list peripheral pins, signal names, and the allocating
beans.

Pausing your cursor over various parts of thiswindow brings up brief descriptions of
items. Thiswindow’s View menu lets you expand or collapse the display.

Processor Expert Tutorial

Thistutorial exercise generates code that flashes the LEDs of a DSP56858 devel opment
board. Follow these steps:

1. Create aproject:
a Start the CodeWarrior IDE, if it is not started already.
b. From the main-window menu bar, select File > New. The New window appears.
c. Inthe Project page, select (highlight) Processor Expert Examples Stationery.

106

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

d. Inthe Project nametext box, enter a name for the project, such as LEDcontrol.

[¢]

Click the OK button. The New Project window replaces the New window.

In the Project Stationery list, select TestApplications> Tools> LED > 56858.
. Click the OK button.

. Click the OK button. The IDE:

Opens the project window, docking it the left of the main window. This project
window includes a Processor Expert page.

e -oOKQ

Opensthe Target CPU window, as Figure 5.15 on page 107 shows. This window
shows the CPU package and peripherals view.

Opens the Bean Selector window, behind the Target CPU window.

Figure 5.15 Project, Target CPU Windows

3o 2 b B TR Cewg P i b
(14 ECRS TP E LT I
— L

mm‘

s ELERLYS

Ths | 5 T s |

& gy

=2 P e
98 Lavizn

BB Crie

BBk

e

e

9 P b

a0
the [da) el

o B8535 " Dot | Otvten [t [Fremnate, Yestore: |08 150
2. Select the sdm external memory target.

a Click the project window’s Targets tab. The Targets page movesto the front of the
window.

b. Click thetarget icon of the sdm external memory entry. The black arrow symbol
moves to thisicon, confirming your selection.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 107

A
4

4
A

Processor Expert Interface
Processor Expert Tutorial

3. Add six BitlO beans to the project.

a. Click the project window’ s Processor Expert tab. The Processor Expert page
moves to the front of the window.

b. Makethe Bean Selector window visible:
e Minimize the Target CPU window.

» Select Processor Expert > View > Bean Selector, from the main-window menu
bar.

In the Bean Categories page, expand the entry M CU internal peripherals.
d. Expand the subentry Port I/O.

e. Double-click the Bitl O bean name six times. (Figure 5.16 on page 108 depictsthis
bean selection.) The IDE adds these beans to your project; new bean icons appear
in the project window’ s Processor Expert page.

Figure 5.16 Bean Selector: BitlO Selection

i
Bean Categories | On Chip Peripherals I Quick help > |

= CPU
= CPU external devices
Bl & CPU intemal perpherals
= Communication
= Converter
= Intermpts
= Measurement
= Memory
= Peripheral beans
EHeEs Part 10
S QIR
5 & sisi0
8 M eu=210
g M BueaD d

Filter: | aljCPU | Licensed 4

-

NOTE If new bean icons do not appear in the Processor Expert page, the system till
may have added them to the project. Close the project, then reopen it. When
you bring the Processor Expert page to the front of the project window, the
page should show the new bean icons.

4. Add two ExtInt beans to the project.

108

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

a. Inthe Bean Categories page of the Bean Selector window, expand the I nterrupts
subentry.

b. Double-click the Extlnt bean name two times. The IDE adds these beans to your
project; new bean icons appear in the Processor Expert page.

¢. You may close the Bean Inspector window.

5. Rename the eight beans GPIO_C0 — GPIO_C3, GPIO_D6, GPIO_D7, IRQA, and
IRQB.

a. Inthe project window’s Processor Expert page, right-click the name of the first
BitlO bean. A context menu appears.

b. Select Rename Bean. A change box appears around the bean name.

c. Typethenew nameGPIO_CO, then pressthe Enter key. The list shows the new
name; as Figure 5.17 on page 109 shows, this name still ends with Bit I0.

Figure 5.17 New Bean Name

LEDcontrol_mcp l

Iﬂ sdm external rmemary j B @ @ % >

Filez I Link, I:Irderl Targets Processor Expert |

(= Configurations
=& CPUs

< (@ CpuDSPSEFE3S
El &= Beans

< @ e

< @ Bit2EiH0

< @ BitzEH0

< @ BitdBi0

< @ Bit5EHO

< @ Bits:BiH0

<+ €@ Elnt1:Extirt

< €@ EntZExtirt

= Documentation

% B PESL

d. Repeat substeps a, b, and c for each of the other BitlO beans, renaming them
GPIO C1,GPIO C2,GPIO_C3,GPIO _D6,and GPIO D7.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 109

y
A

Processor Expert Interface
Processor Expert Tutorial

e. Repeat substeps a, b, and ¢ for the two ExtInt beans, renaming them IRQA and
IRQB. (Figure 5.18 on page 110 shows the Processor Expert page at this point.)

Figure 5.18 New Bean Names

Ixl

LEDconirol mcp l

Iﬂ sdm external memaony j & & @ B >

Files I Lirk. Elrderl Targets Processor Expert |

(= Configurations
=& CPUs

« (@ CpuDSPEEFSI6
B Beans
< @@ GRIO_CO:EHO
< @@ GRIO_C1:EHO
< @@ GRIO_CZEND
< @@ GRIO_CZEND
< @9 GRIO_DEED
< @@ GRIO_D7:EHO
- ﬁ (R Extnt
< € NS
(= Documentation
% B PESL

HEHEHEHBBH

6. Update pin associations for each bean.

a Inthe Processor Expert page, double-click the bean name GPIO_Co0. The Bean
Inspector window opens, displaying information for this bean.

b. Use standard window controls to make the middle column of the Properties page
about 2 inches wide.

c. InthePin for 1/0 line, click the triangle symbol of the middle-column list box.
Thelist box opens.

d. Usethislist box to select GPIOC0_SCLK1 TBO_PHASEA1. (Figure 5.19 on
page 111 depicts this selection.)

110 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Processor Expert Interface
Processor Expert Tutorial

Figure 5.19 New Pin Association

-.,-_'"-Bean Inspector GPIO_CO:BitI0 -0 x|

< Bean Itemnszizibility Help

roperties |Methl:u:|s| Eventsl Comment

Beanname |GPIO_CO

Fir zignal

STl A EN RIS PO C0 SCLE] TBO PHASEA] | GRIOCO_SCLKT_TEO_P

no pull resistor

b

Pull resistor |autoselected pull

1

Open drain~ [no open drain

b

Input/Output

Initialization

Init. direchior Olutput

Init. walue |0

Safe mode |yes

F
'
w
v
'
e
« | Direction Input/0utput
'
'
w
v
'

Optimization fozpeed

e. Inthe project window’s Processor Expert page, select the bean name GPIO C1.

The Bean Inspector information changes accordingly.

f. UsethePin for I/O middle-column list box to select
GPIOC1 MOSI1 TB1 PHASEBL.

0. Repeat substeps e and f, for bean GPTIO 2, to change its associated pin to
GPIOC2_MISO1_TB2_INDEX1.

h. Repeat substeps e and f, for bean GPIO_C3, to change its associated pin to
GPIOC3 SSA_B_TB3 HOMEL

i. Repeat substeps e and f, for bean GPIO_Dé, to change its associated pin to
GPIOD6_TxD1.

j- Repeat substeps e and f, for bean GPIO D7, to change its associated pin to
GPIOD7_RxD1.

k. Inthe project window’s Processor Expert page, select the bean name IRQA. The

Bean Inspector information changes accordingly.
I. Usethe Pin middle-column list box to select IRQA_B.

m. Repeat substeps k and |, for bean TRQB, to change its associated pinto IRQB_B.

n. You may close the Bean Inspector window.
7. Enable BitlO SetDir, ClrVal, and SetVal functions.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

111

y
A

Processor Expert Interface
Processor Expert Tutorial

a Inthe Processor Expert page, click the plus-sign control for the GPIO_CO0 bean.
The function list expands: red X symbolsindicate disabled functions, green check
symbols indicate enabled functions.

b. Double-click function symbols as necessary, so that only SetDir, ClrVal, and
SetVal have green checks. (Figure 5.20 on page 112 shows this configuration.)

Figure 5.20 GPIO_C3 Enabled Functions

[= Beans
= @ ElE
= [GetDir
= [H SetDir
= [Getval
= [Futval
BT [H] Clival
BT [H] Sebfal
= M Megval
= -« @@ GPIO_C1Eit0
B @ GRI0_CZEiD

B -

c. ClicktheGpI0_C0 minus-sign control. The function list collapses.

d. Repeat substeps a, b, and c for beansGPIO C1,GPIO C2,GPIO_C3,
GPIO_Dé6,and GPIO_D7.

8. Enable ExtInt OniInterrupt, GetVal functions.

a. Inthe Processor Expert page, click the plus-sign control for the IRQA bean. The
function list expands.

b. Double-click function symbols as necessary, so that only Onlnterrupt and
GetVal have green check symbols.

c. Click the IRQA minus-sign control. The function list collapses.
d. Repeat substeps a, b, and ¢ for bean TRQB.
9. Design (generate) project code.

a. From the main-window menu bar, select Processor Expert > Code Design
‘LEDcontrol.mcp.’ (This selection shows the actual name of your project.) The
IDE and PEI generate several new files for your project.

b. You may close all windows except the project window.
10. Update file Events.c.

a. Click the project window’ s Files tab. The Files page moves to the front of the
window.

112 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

b. Expand the User Modules folder.

c. Double-click filename Events.c. An editor window opens, displaying thisfile's
text. (Listing 5.1 on page 113, at the end of this tutorial, shows thisfile's contents.)

d. FindthelineIRQB OnInterrupt ().

(0]

Abovethisline, enter thenew lineextern short IRQB On;.

A

Inside IRQB_OnInterrupt (), enter thenew lineIRQB On "= 1;.

—h

Find theline IRQA OnInterrupt ().

0@

Abovethisline, enter the new lineextern short IRQA On;.

A

i. InsideIRQA OnInterrupt (), enter thenew line IRQA On “= 1;.

NOTE Ligting 5.1 on page 113 shows these new lines as bold italics.

j- Saveand closefile Events.c.
11. Update file LEDcontrol.c.

a. Inthe project window’s Files page, double-click filename L EDcontrol.c (or the
actual .c filename of your project). An editor window opens, displaying thisfile's
text.

b. Add custom code, to utilize the beans.

NOTE Listing 5.2 on page 116 shows custom entries as bold italics. Processor Expert
software generated all other code of thefile.

c. Saveand closethefile.
12. Build and debug the project.

a. From the main-window menu bar, select Project > Make. The IDE compiles and
links your project, generating executable code.

b. Debug your project, asyou would any other CodeéWarrior project.

This completes the Processor Expert tutorial exercise. Downloading this codeto a
DSP56836E devel opment board should make the board LEDs flash in a distinctive
pattern.

Listing 5.1 File Events.c

/*

ok HHEHEHEHHEHSH SSRGS S S R
* *

* K Filename : Events.C

* %

* % Project : LEDcontrol

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 113

y
A

Processor Expert Interface
Processor Expert Tutorial

* %

ol Processor : DSP56F836

* %

* Beantype : Events

* %

* % Version : Driver 01.00

* %

* % Compiler : Metrowerks DSP C Compiler
* *

* ok Date/Time : 3/24/2003, 1:18 PM

* %

* % Abstract

* %

* % This is user's event module.

* % Put your event handler code here.
* *

* % Settings

* *

* *

ol Contents

* *

* * IRQB OnInterrupt - void IRQB OnInterrupt (void) ;
* % IRQA OnInterrupt - void IRQA OnInterrupt (void) ;
* *

* *

* % (c) Copyright UNIS, spol. s r.o. 1997-2002
* *

* ok UNIS, spol. s r.o.

* % Jundrovska 33

*x 624 00 Brno

* ok Czech Republic

* *

ikl http : WWW.processorexpert.com

* ok mail : info@processorexpert.com

* %

ok BHAHHEHEHHSHAH A SRS AR A A A A A A H A
*/
/* MODULE Events */

/*Including used modules for compilling procedure*/
#include "Cpu.h"

#include "Events.h"

#include "GPIO_CO.h"

#include "GPIO_C1l.h"

#include "GPIO_C2.h"

#include "GPIO_C3.h"

#include "GPIO_D6.h"

#include "GPIO_D7.h"

114 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Processor Expert Interface
Processor Expert Tutorial

#include "IRQA.h"
#include "IRQB.h"

/*Include shared modules, which are used for whole project*/
#include "PE_ Types.h"

#include "PE_Error.h"

#include "PE_Const.h"

#include "IO_Map.h"

/*

** ——mm——
* % Event : IRQB OnInterrupt (module Events)

* %

* % From bean : IRQB [ExtInt]

* % Description

* ok This event is called when the active signal edge/level
*x occurs.

*x Parameters : None

* ok Returns : Nothing

L R R R i R R R R O A R R R N A R A R R N
*/

#pragma interrupt called
extern short IRQB On;
void IRQB OnInterrupt (void)
{
IRQB On “=1;
/* place your IRQB interrupt procedure body here */

/*

L R R R R R i R A O R R O A R A R

* % Event : IRQA OnInterrupt (module Events)

* %

* % From bean : IRQA [ExtInt]

* % Description

* ok This event is called when the active signal edge/level
*x occurs.

*x Parameters : None

* ok Returns : Nothing

** ———m———
*/

#pragma interrupt called
extern short IRQA On;
void IRQA OnInterrupt (void)
{
IRQA On “= 1;
/* place your IRQA interrupt procedure body here */

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 115

4
A

Processor Expert Interface
Processor Expert Tutorial

}

/* END Events */

/*
* %
* %
* %
* %
* %

* %

*/

FHEHH R

This file was created by UNIS Processor Expert 03.15 for
the Freescale DSP56x series of microcontrollers.

FHEHHHH R

Listing 5.2 File LEDcontrol.c

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* %
* *
* *
* %
* *
* *
* %
* *
* *
* %
* *
* *
* %
* *
* *
* %

FHEHH R

Filename : LEDcontrol.C

Project : LEDcontrol

Processor : DSP56F836

Version : Driver 01.00

Compiler : Metrowerks DSP C Compiler
Date/Time : 3/24/2003, 1:18 PM
Abstract

Main module.
Here is to be placed user's code.

Settings

Contents

No public methods

(c) Copyright UNIS, spol. s r.o. 1997-2002

UNIS, spol. s r.o.
Jundrovska 33

116

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

* 624 00 Brno

* % Czech Republic

* %

*x http : WWWwW.processorexpert.com
* % mail : info@processorexpert.com

* %

ok HHAHSHEHHEHS S H SRS S R R
*/
/* MODULE LEDcontrol */

/* Including used modules for compilling procedure */
#include "Cpu.h"

#include "Events.h"

#include "GPIO_CO.h"

#include "GPIO_C1.h"

#include "GPIO C2.h"

#include "GPIO_C3.h"

#include "GPIO_D6.h"

#include "GPIO D7.h"

#include "IRQA.h"

#include "IRQB.h"

/* Include shared modules, which are used for whole project */
#include "PE Types.h"

#include "PE_Error.h"

#include "PE_ Const.h"

#include "IO_Map.h"

/*

* Application Description:

* LED program for the 56836 EVM.

*

* Pattern: "Count" from 0 to 63, using LEDs to represent the bits of
the number.

*

* Pressing the IRQA button flips LED order: commands that previously
went to LED1 go to LED6, and so forth.

* Pressing the IRQB button reverses the enabled/disabled LED states.

*

*/

/* global used as bitfield, to remember currently active bits, used to
* enable/disable all LEDs. */

long num = 0;

short IRQA On,IRQB On;

/* simple loop makes LED changes visible to the eye */
void wait (int);
voide wait (int count)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 117

y
A

Processor Expert Interface
Processor Expert Tutorial

int i;
for (i=0; i<count; ++1i);

}

/*set the given LED */
void setLED(int);
void setLED(int num)

{
if (!IRQA On)
num = 7-num;
if (!IRQB On)
{
switch (num)
{
case 1: GPIO CO0 ClrVal(); break;
case 2: GPIO Cl ClrVal(); break:
case 3: GPIO C2 ClrVal(); break;
case 4: GPIO C3 ClrVal(); break;
case 5: GPIO D6 ClrVal(); break;
case 6: GPIO D7 ClrVal(); break;
}
}
else
{
switch (num)
{
case 1: GPIO CO0 SetVal(); break;
case 2: GPIO Cl SetvVal(); break;
case 3: GPIO C2 SetVal(); break;
case 4: GPIO C3 SetVal(); break;
case 5: GPIO D6 SetVal(); break;
case 6: GPIO D7 SetVal(); break;
}
}
}

/* clear the given LED */
void clrLED(int);
void clrLED(int num)

{
if (!IRQA On)
{
num = 7-num;
}

if (IRQB On)

118 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Processor Expert Interface
Processor Expert Tutorial

{
switch (num)
{
case 1: GPIO CO Clrval(); break;
case 2: GPIO Cl ClrVal(); break;
case 3: GPIO C2 ClrVal(): break;
case 4: GPIO C3 ClrVal(); break;
case 5: GPIO D6 ClrVal(); break;
case 6: GPIO D7 ClrVal(); break;
}
}
else
{
switch (num)
{
case 1: GPIO CO0 SetvVal(); break;
case 2: GPIO Cl SetVal(); break;
case 3: GPIO C2 SetVal(); break;
case 4: GPIO C3 SetVal(); break;
case 5: GPIO D6 SetVal(); break;
case 6: GPIO D7 SetVal(); break;
}
}

}

#define CLEARLEDS showNumberWithLEDs (0)

/* method to set each LED status to reflect the given number/bitfield
*/

void shwNumberWithLEDs (long) ;

void showNumberWithLEDs (long num)

{
int i;
for (i=0; i<6; ++1)
{
if ((num>>i) & 1
setLED (i+1) ;
else
clrLED(i+1) ;
}
}

/* Pattern: "Count" from 0 to 63 in binary using LEDs to represent
bits of the current number. 1 = enabled LED, 0 = disabled LED. */
void pattern();
void pattern()
{

long 1i;

int iz

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 119

y
A

Processor Expert Interface
Processor Expert Tutorial

for (i=0; i<=0b111111; ++i)

{
showNumberWithLEDs (i) ;
wait (100000) ;

}

void main (void)

/*** Processor Expert internal initialization. DON'T REMOVE THIS
CODE!!! **x/

PE low level init();

/*** End of Processor Expert internal initialization. *k %/

/*Write your code here*/
#pragma warn possunwant off

IRQA On = IRQA GetVal() ? 1 : 0;
IRQB On = IRQB_GetVal () 21 : 0;
for(;;); {

CLEARLEDS;

pattern();

}

#pragma warn possunwant reset

/* END LEDcontrol */
*
i* HHHHHHAH RS R A R
i: This file was created by UNIS Processor Expert 03.15 for
* %k the Freescale DSP56x series of microcontrollers.
* *
:; HHHHHHAHH SRS H AR R R S A A A A A A

120 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

C for DSP56800E

This chapter explains considerations for using C with the DSP56800E processor. Note that
the DSP56800E processor does not support:

¢ The C++ language

« Standard C trigonometric and algebraic floating-point functions (such as sine, cosine,
tangent, and sguare root)

Furthermore, C pointers allow access only to X memory.

NOTE The DSP56800E MSL implements afew trigonometric and algebraic
functions, but these are mere examples that the DSP56800E does not support.

This chapter contains these sections:

« Number Formats on page 121
¢ Calling Conventions and Stack Frames on page 123

¢ User Stack Allocation on page 129
« Data Alignment Requirements on page 133

e Variablesin Program Memory on page 135

¢ Code and Data Storage on page 140

¢ Large Data Model Support on page 141

» Optimizing Code on page 144

» Deadstripping and Link Order on page 145

« _on page 146Working with Peripheral Module Registers on page 146

¢ Generating MAC Instruction Set on page 150

Number Formats

This section explains how the CodeWarrior compiler implements ordinal and floating-
point number types for 56800E processors. For more information, read 1imits.h and
float.h, under the M56800E Support folder.

Table 6.1 on page 122 shows the sizes and ranges of ordinal data types.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 121

y
A

C for DSP56800E
Number Formats

Table 6.1 56800E Ordinal Types

Data Model” is enabled)

Type Option Setting Size Range
(bits)

char Use Unsigned Charsis | 8 -128 to 127

disabled in the C/C++

Language (C Only)

settings panel

Use Unsigned Charsis | 8 0to 255

enabled
signed char n/a 8 -128 to 127
unsigned char n/a 8 0 to 255
short n/a 16 -32,768 to 32,767
unsigned short n/a 16 0 to 65,535
int n/a 16 -32,768 to 32,767
unsigned int n/a 16 0 to 65,535
long n/a 32 -2,147,483,648 to

2,147,483,647

unsigned long n/a 32 0 to 4,294,967,295
pointer small data model (“Large | 16 0 to 65,535

Data Model” is disabled

in the M56800E

Processor settings

panel)

large data model (“Large | 24 0to 16,777,215

Table 6.2 on page 123 shows the sizes and ranges of the floating-point types.

122 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Calling Conventions and Stack Frames

Table 6.2 M56800E Floating-Point Types

Type Size Range

(bits)
float 32 1.17549e-38103.40282e+38
short double 32 1.17549e-38103.40282e+38
double 32 1.17549e-38103.40282e+38
long double 32 1.17549e-38103.40282e+38

Calling Conventions and Stack Frames

The DSP56800E compiler stores data and call functions differently than the DSP56800
compiler does. Advantages of the DSP56800E method include: more registers for
parameters and more efficient byte storage.

Passing Values to Functions

The compiler usesregisters A,B, R1, R2, R3, R4, YO, and Y1 to pass parameter values to
functions. Upon afunction call, the compiler scans the parameter list from left to right,
using registers for these values:

¢ Thefirst two 8/16-bit integer values— YO and Y 1.
« Thefirst two 32-bit integer or float values— A and B.
« Thefirst four pointer parameter values— R2, R3, R4, and R1 (in that order).

¢ Thethird and fourth 8/16-hit integer values— A and B (provided that the compiler
does not use these registers for 32-bit parameter values).

¢ Thethird 8/16-hit integer value — B (provided that the compiler does not use this
register for a 32-bit parameter value).

The compiler passes the remaining parameter values on the stack. The system increments
the stack by the total amount of space required for memory parameters. Thisincrementing
must be an even number of words, as the stack pointer (SP) must be continuously long-
aligned. The system moves parameter values to the stack from left to right, beginning with
the stack location closest to the SP. Because along parameter must begin at an even
address, the compiler introduces one-word gaps before long parameter values, as

appropriate.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 123

A 4
4\

C for DSP56800E
Calling Conventions and Stack Frames

Returning Values From Functions

The compiler returns function resultsin registers A, R0, R2, and YO0:
¢ 8-bit integer values— YO.
¢ 16-bit integer values— Yo0.
e 32-bit integer or float values— A.
« All pointer values— R2.

« Structure results — RO contains a pointer to atemporary space allocated by the
caller. (The pointer is a hidden parameter value.)

Additionally, the compiler:

¢ Reserves R5 for the stack frame pointer when afunction makes adynamic allocation.
(Thisistheoriginal stack pointer before allocations.) Otherwise, the compiler saves
R5 across function cdls.

¢ Savesregisters C10 and D10 across function calls.
« Does not save registers C2 and D2 across function calls.

Volatile and Non-Volatile Registers

Valuesin non-volatile registers can be saved across functions calls. Another term for such
registersis saved over a call registers (SOCs).

Values in volatile registers cannot be saved across functions calls. Another term for such
registersis non-SOC registers.

Table 6.3 on page 124 lists both the volatile and non-volatile registers.

Table 6.3 Volatile and Non-Volatile Registers

Unit Regist Siz Type Comments
er e
Arithmetic Logic Y1 16 Volatile (non-
Unit (ALU) SOC)
YO 16 Volatile (non-
SOC)
Y 32 Volatile (non-
SOC)
X0 16 Volatile (non-
SOC)

124 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

C for DSP56800E
Calling Conventions and Stack Frames

Table 6.3 Volatile and Non-Volatile Registers (continued)

Unit Regist Siz Type Comments
er e
A2 4 Volatile (non-
SOCQC)
Al 16 Volatile (non-
SOC)
A0 16 Volatile (non-
SOCQC)
Arithmetic Logic Al0 32 Volatile (non-
Unit (ALU) SOCQC)
(continued)
A 36 Volatile (non-
SOCQC)
B2 4 Volatile (non-
SOCQC)
B1 16 Volatile (non-
SOCQC)
BO 16 Volatile (non-
SOCQC)
B10 32 Volatile (non-
SOCQC)
B 36 Volatile (non-
SOC)
c2 4 Volatile (non-
SOCQC)
C1 16 Non-Volatile
(SOC)
Cco 16 Non-Volatile
(SOC)
C10 32 Non-Volatile
(SOC)
C 36 Volatile (non- Includes volatile register
SOCQC) C2.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 125

4
A

C for DSP56800E
Calling Conventions and Stack Frames

Table 6.3 Volatile and Non-Volatile Registers (continued)

Unit Regist Siz Type Comments
er e
D2 4 Volatile (non-
SOC)
D1 16 Non-Volatile
(SOC)
DO 16 Non-Volatile
(SOC)
D10 32 Non-Volatile
(SOC)
D 36 Volatile (non- Includes volatile register
SOC) D2.
Address RO 24 Volatile (non-
Generation Unit SOC)
(AGU)
R1 24 Volatile (non-
SOCQC)
R2 24 Volatile (non-
SOC)
R3 24 Volatile (non-
SOC)
R4 24 Volatile (non-
SOCQC)
R5 24 Non-volatile If the compiler uses R5 as
(SOC) a pointer, it becomes a
non-volatile register — its
value can not be saved
over called functions.
N 24 Volatile (non-
SOC)
Address SP 24 Volatile (non-
Generation Unit SOC)
(AGU)
(continued)

126 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E

Calling Conventions and Stack Frames

Table 6.3 Volatile and Non-Volatile Registers (continued)

Unit Regist Siz Type Comments
er e
N3 16 Volatile (non-
SOCQC)
Mo01 16 Volatile (non- Certain registers must
SOC) keep specific values for
proper C execution — set
this register to OXFFFF.
Program PC 21 Volatile (non-
Controller SOC)
LA 24 Volatile (non-
SOCQC)
LA2 24 Volatile (non-
SOCQC)
HWS 24 Volatile (non-
SOC)
FIRA 21 Volatile (non-
SOCQC)
FISR 13 Volatile (non-
SOCQC)
OMR 16 Volatile (non- Certain registers must
SOC) keep specific values for
proper C execution — in
this register, set the CM
bit.
SR 16 Volatile (non-
SOCQC)
LC 16 Volatile (non-
SOCQC)
LC2 16 Volatile (non-
SOC)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 127

'
A

C for DSP56800E
Calling Conventions and Stack Frames

Stack Frame and Alignment

Figure 6.1 on page 128. depicts generation of the stack frame. The stack grows upward, so
pushing data onto the stack increments the stack pointer’s address value.

Figure 6.1 Stack Frame

called function stack space

SP outgoing parameters

user and compiler locals

nonvolatile registers

status register

return address

callee sSP | incoming parameters

calling function stack space

The stack pointer (SP) is a 24-bit register, aways treated as aword pointer. During a
function execution, the stable position for the SPis at the top of the user and compiler
locals. The SPincreases during the call if the stack is used for passed parameters.

The software stack supports structured programming techniques, such as parameter
passing to subroutines and local variables. These techniques are available for both
assembly-language and high-level-language programming. It is possible to support passed
parameters and local variables for a subroutine at the same time within the stack frame.
The compiler storeslocal data by size. It stores smaller data closest to the SP, exploiting
SP addressing modes that have small offsets. This means that the compiler packs al bytes
two per word near the stack pointer. It packsthe block of words next, then blocks of longs.
Aggregates (structs and arrays) are farthest from the stack pointer, not sorted by size.

NOTE When afunction makes adynamic alocation, the compiler reserves R5 as a
stack frame pointer. (Thisis the stack pointer before allocations.)

The compiler always must operate with the stack pointer long aligned. This means that:
e The start-up code in the runtime first initializes the stack pointer to an odd value.
« At all times after that, the stack pointer must point to an odd word address.

* The compiler never generates an instruction that adds or subtracts an odd value from
the stack pointer.

128 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
User Stack Allocation

e The compiler never generatesa MOV E.W or MOVEU.W instruction that uses the
X:(SP)+ or X:(SP)- addressing mode.

User Stack Allocation

The 56800E compilers build frames for hierarchies of function calls using the stack
pointer register (SP) to locate the next available free X memory location in which to locate
afunction call’ s frame information. Thereis usually no explicit frame pointer register.
Normally, the size of aframeisfixed at compiletime. The total amount of stack space
required for incoming arguments, local variables, function return information, register
save locations (including those in pragmainterrupt functions) is calculated and the stack
frameis allocated at the beginning of afunction call.

Sometimes, you may need to modify the SP at runtime to all ocate temporary local storage
using inline assembly calls. Thisinvalidates all the stack frame offsets from the SP used to
accesslocal variables, arguments on the stack, etc. With the User Stack Allocation feature,
you can use inline assembly instructions (with some restrictions) to modify the SP while
maintaining accurate local variable, compiler temps, and argument offsets, i.e., these
variables can still be accessed since the compiler knows you have modified the stack
pointer.

The User Stack Allocation feature is enabled with the #pragma

check inline sp effects [on]|off|reset] pragmasetting. The pragma
may be set on individual functions. By default the pragma s off at the beginning of
compilation of each filein a project.

The User Stack Allocation feature allows you to simply add inline assembly modification
of the SP anywhere in the function. The restrictions are straight-forward:

1. The SP must be modified by the same amount on al paths leading to a control flow
merge point.

2. The SP must be modified by aliteral constant amount. That is, address modes such as
“(SP)+N” and direct writes to SP are not handled.

3. The SP must remain properly aligned.

4. 'You must not overwrite the compiler’s stack allocation by decreasing the SPinto the
compiler alocated stack space.

Point 1 above is required when you think about an if-then-else type statement. If one
branch of a decision point modifies the SP one way and the other branch modifies SP
another way, then the value of the SP is run-time dependent, and the compiler is unable to
determine where stack-based variables are located at run-time. To prevent this from
happening, the User Stack Allocation feature traverses the control flow graph, recording
the inline assembly SP modifications through all program paths. It then checks all control
flow merge points to make sure that the SP has been modified consistently in each branch
converging on the merge point. If not, awarning is emitted citing the inconsistency.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 129

3
4

y
A

C for DSP56800E
User Stack Allocation

Once the compiler determined that inline SP modifications are consistent in the control
flow graph, the SP's offsets used to reference local variables, function arguments, or
temps are fixed up with knowledge of inline assembly modifications of the SP. Note, you
may freely allocate local stack storage:

1. Aslongasitisequally modified along al branches leading to a control flow merge
point.

2. The SPis properly aligned. The SP must be modified by an amount the compiler can
determine at compile time.

A single new pragmais defined. #pragma check inline sp effects

[on|off | reset] will generate awarning if the user specifies an inline assembly
instruction which modifies the SP by a run-time dependent amount. If the pragmais not
specified, then stack offsets used to access stack-based variables will beincorrect. It isthe
user’sresponsibility to enable #pragma check_inline sp effects, if they
desire to modify the SP with inline assembly and access local stack-based variables. Note
this pragma has no effect in function level assembly functions or separate assembly only
sourcefiles (. asm files).

In general, inline assembly may be used to create arbitrary flow graphs and not al can be
detected by the compiler.

For example:

REP #3
ADDA #2,SP

This example would modify the SP by three, but the compiler would only see a
modification of one. Other cases such as these might be created by the user using inline
jumps or branches. These are dangerous constructs and are not detected by the compiler.

In cases where the SP is modified by a run-time dependent amount, awarning is issued.

Listing 6.1 Example 1 — Legal modification of SP Using Inline Assembly

#define EnterCritical() { asm(adda #2,SP);\
asm(move.l SR,X: (SP)+); \
asm(bfset #0x0300,SR); \
asm(nop) ; \
asm(nop) ; }

#define ExitCritical () { asm(deca.l SP);\
asm(move.l x: (SP)-,SR); \
asm(nop) ; \

asm(nop) ; }

#pragma check_inline sp effects on

130 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

C for DSP56800E
User Stack Allocation

int func ()

{
int a=1, b=1, c;
EnterCritical () ;

c = a+b;

ExitCritical() ;

This case will work because there are no control flow merge points. SP is modified
consistently along all paths from the beginning to the end of the function and is properly
aligned.

Listing 6.2 Example 2 — lllegal Modification of SP using Inline Assembly

#define EnterCritical() { asm(adda #2,SP);\
asm(move.l SR,X: (SP)+); \
asm(bfset #0x0300,SR); \
asm(nop) ; \
asm(nop) ; }

#define ExitCritical () { asm(deca.l SP);\
asm(move.l x: (SP)-,SR); \
asm(nop) ; \

asm (nop) ; }

#pragma check_inline_sp effects on

int func ()

{

int a=1, b=1, c;
if (a)
EnterCritical() ;

c = a+b;

}

else {

}

ExitCritical () ;

c b++;

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 131

4
A

C for DSP56800E
User Stack Allocation

return (b+c);

This example will generate the following warning because the SP entering the
‘ExitCritical’ macro is different depending on which branch istaken in theif. Therefore,
accesses to variables a, b, or ¢ may not be correct.

Warning : Inconsistent inline assembly modification of SP in this
function.
M56800E main.c line 29 ExitCritical() ;

Listing 6.3 Example 3 — Modification of SP by a Run-time Dependent Amount

#define EnterCritical() { asm(adda RO, SP) ;)\

(
asm(move,l SR,X:(SP)+); \
asm(bfset #0x0300,SR); \
asm(nop) ; \
asm(nop) ; }

#define ExitCritical () { asm(deca.l SP);\
asm(move.l X:(SP)-,SR); \
asm (nop) ; \
asm(nop) ; }

#pragma check_inline_sp effects on
int func()

{

int a=1, b=1, c;

if (a)

{
EnterCritical () ;
c = a+b;

}

else {
EnterCritical () ;
c = b++;

132 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Data Alignment Requirements

return (b+c);

This example will generate the following warning:

Warning : Cannot determine SP modification value at compile time
M56800E main.c line 20 EnterCritical () ;

This exampleis not legal since the SP is modified by run-time dependent amount.

If al inline assembly modifications to the SP along all branches are equal approaching the
exit of afunction, it isnot necessary to explicitly deallocate theincreased stack space. The
compiler “cleansup” the extrainline assembly stack allocation automatically at the end of
the function.

Listing 6.4 Example 4 — Automatic Deallocation of Inline Assembly Stack Allocation

#pragma check_inline sp effects on
int func()

{

int a=1, b=1, c;

if (a)

{
EnterCritical () ;
c = a+b;

}

else {
EnterCritical () ;
c = b++;

return (b+c);

This example does not need to call the ‘ ExitCritical’ macro because the compiler will
automatically clean up the extrainline assembly stack allocation.

Data Alignment Requirements

The data alignment rules for DSP56800E stack and global memory are:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 133

A 4
4\

C for DSP56800E

Data Alignment Requirements

¢ Bytes— byte boundaries.

Exception: bytes passed on the stack are always word-aligned, residing in the lower
bytes.

¢ Words — word boundaries.

¢ Longs, floats, and doubles — double-word boundaries:

Least significant word is always on an even word address.
Most significant word is always on an odd word address.

Long accesses through pointersin AGU registers (for example, RO through R5 or
N) point to the least significant word. That is, the address is even.

Long accesses through pointers using SP point to the most significant word. That
is, the addressin SPis odd.

 Structures — word boundaries (not byte boundaries).

NOTE

A structure containing only bytesstill isword aligned.

¢ Structures — double-word boundaries if they contain 32-bit elements, or if aninner
structureitself is double-word aligned.

¢ Arrays— the size of one array element.

Word and Byte Pointers

The aignment requirements explained above determine how the compiler uses
DSP56800E byte and word pointers to implement C pointer types. The compiler uses:

« Word pointersfor all structures

¢ The SPto access the stack resident data of al types:

Bytes

Shorts

Longs

Floats

Doubles

Any pointer variables

« Word pointers to access:

Shorts
Longs
Any pointer variables

134

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Variables in Program Memory

« Byte pointersfor:
— Single global or static byte variable, if accessed through a pointer using X:(Rn)
— Global or static array of byte variables

The compiler does not use pointers to access scalar global or static byte variables
directly by their addresses. Instead, it uses an instruction with a .BP suffix:

MOVE [U] .BP X :xxxX,<dest>
MOVE.BP <src>, X: XXXX

Reordering Data for Optimal Usage

The compiler changes data order, for optimal usage. The data reordering follows these
guidelines:

« Reordering is mandatory if local variables are allocated on the stack.

¢ The compiler does not reorder data for parameter values passed in memory (instead
of being passed in registers).

« The compiler does not reorder data when locating fields within a structure.

Variables in Program Memory

This feature allows the programmer full flexibility in deciding the placement of variables
in memory. Variables can be now declared as part of the program memory, using avery
simple and intuitive syntax. For example:

__pmem int c¢; // 'c'isaninteger that will be stored in program memory.

This feature is very useful when data memory is tight, because some or all of the data can
be moved to program memory. It can be handled exactly the same way as normal data.
Thisisamost completely transparent to the programmer, with afew exceptions that will
be presented in the next paragraphs.

The CPU architecture only allows post increment addressing of words (16-bit data) in
program memory. While the compiler circumvents this restriction and allows full access
to all datatypesin program memory, the performance is decreased. If placement of some
variablesin program memory is needed, and at the same time the execution speed is
important, here are some pointers that can be used to organize the code:

e Trytokeep al variables that are used in aloop (the loop counter included) in data
memory. This condition becomes more important as the loop nesting level increases.

« If possible, place only int (16-bit) datain program memory. Datatypes with different
dimensions are accessed via sequences of code rather than singleinstructions. 16-bit
dataisfastest, followed by 32-bit data and 8-bit data.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 135

y
A

C for DSP56800E
Variables in Program Memory

« Datain program memory can be loaded and stored in alimited number of DALU
registers. Because of this, a number of register save/restore sequences can appear if
there are not enough available DALU registers. This could be a problem with
computational intensive code because the operations do not take place only in
registers anymore, and the execution of the code will be slower. This can be avoided
by using as many variables in data memory as possible.

Declaring Program Memory Variables

A program memory variableis declared using the pmem qualifier. Here are some
examples:

typedef struct // simple structure declaration

int 1i;

char *p;

long 1;
} test;

__pmem int ipl = 5; // initialized int in program memory

__pmem int ip2; // uninitialized int in program memory

int * pmem ppxl; // pointer in program memory to int in data memory
__pmem int * pmem pppl; // pointer in program memory to int in
program memory

pmem int parr[100 1; // array in program memory
__pmem test sp; // structure in program memory
pmem int aapl[2 1[2 1; // two dimensional array in program memory

pmem int *pxpl; // pointer in data memory to int in program memory

Using Variables in Program Memory

Variablesin program memory can be used almost exactly like variablesin data memory.
The exceptions are presented below:

« the pmem qualifier can't be used in a structure declaration because a structure can
have all its members either in program memory or in data memory, but not in both
memory spaces. The compiler will issue an error message in this case. For example:

typedef struct // simple structure declaration

int 1i;
char pmem *p; // error, __ pmem not allowed here
long 1;

136 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

C for DSP56800E
Variables in Program Memory

} test;

« the compiler will signal an error when an implicit conversion between a pointer to
datain data memory and a pointer to datain program memory is attempted. For
example, using the previous definitions, the compiler gives an error for this
assignment:

pxpl = ppxl;

Explicit conversions are allowed, but they should be used with care. An explicit
conversion for the previous assignment that is accepted by the compiler is given below:

pxpl = (_ pmem int *)ppxl;

Another consequence of thisrestriction isthat an important part of the MSL functions that
have at least an argument that is a pointer will not work with variablesin program
memory. For example:

char *cl; // pointer in data memory to char in data memory
char _ pmem *c2; // pointer in data memory to char in program
memoryvstrcat (c¢l, c2); // error, the second argument can't be
converted to 'const char *!'

If variable argument lists are used, this problem is generally hidden. The program is
compiled with no errors from the compiler, but it doesn't work as expected. The most
common exampleistheprintf function:

char *cl = "xmem"; // pointer in data memory to char in data
memory

char _ pmem *c2 = "pmem"; // pointer in data memory to char in program
memory

printf ("%$s\n", cl); // works as expected

printf ("$s\n", c2); // doesn't work as expected

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 137

3
4

y
A

C for DSP56800E
Variables in Program Memory

Here, the type of the argumentsislost because print £ usesavariable argument list.
Thus the compiler can not signal atype mismatch and the program will compile without
errors, but it won't work as expected, because print £ assumesthat all the datais stored
in data memory.

Linking with Variables in Program Memory

The compiler creates special sectionsin the output file for variablesin program memory.
Thisisadescription of al datain program memory sections:

¢ .data.pmem (initialized program memory data)
¢ .const.data.pmem (constant program memory data)
¢ bss.pmem (uninitialized program memory data).

The following sections are also generated if you choose to generate separate sections for
char data:

¢ .data.char.pmem (initialized program memory chars)
¢ .const.data.char.pmem (constant program memory chars)
¢ .bss.char.pmem (uninitialized program memory chars)

These sections are used in the linker command file just like normal sections. A typical
linker command file for a program that uses data in program memory looks like this:

MEMORY
.p_RAM (RWX) : ORIGIN = 0x0082, LENGTH = OxFF3E
.p_reserved regs (RWX) : ORIGIN = OxFFCO, LENGTH = 0x003F
.p_RAM2 (RWX) : ORIGIN = OxFFFF, LENGTH = 0x0000
.X RAM (RW) : ORIGIN = 0x0001, LENGTH = Ox7FFE #
SDM xRAM limit is Ox7FFF
SECTIONS
.application code
{v # .text sections
* (.text)
* (rtlib.text)
* (fp_engine.text)
* (user.text)
* (.data.pmem) # program memory initalized data
* (.const.data.pmem) # program memory constant data
* (.bss.pmem) # program memory uninitialized data
} > .p _RAM

138

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

C for DSP56800E
Variables in Program Memory

.data

{

.data sections

* (.const.data.char) # used if "Emit Separate Char Data

Section" enabled
* (.const.data)v * (fp_state.data)
* (rtlib.data)

* (.data.char) # used if "Emit Separate Char Data

Section" enabled
* (.data)

.bss sections
* (rtlib.bss.lo)
* (rtlib.bss)

= ALIGN(1) ;
_START BSS = .;

* (.bss.char) # used if "Emit Separate Char Data

Section" enabled
* (.bss)
_END BSS = .;

setup the heap address

= ALIGN (4) ;

_HEAP ADDR = .;

_HEAP SIZE = 0x100;

_HEAP END = HEAP ADDR + HEAP SIZE;
= HEAP END;

setup the stack address

_min_stack_size = 0x200;

_stack addr = HEAP END;

_stack end = stack addr + min stack size;
= stack_end;

export heap and stack runtime to libraries

F heap addr = HEAP ADDR;
F heap end = HEAP END;
F Lstack addr = _HEAP_END;
F start bss = START BSS;

F end bss = END BSS;
} > .x RAM

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

139

'
A

C for DSP56800E
Code and Data Storage

Code and Data Storage

The DSP56800E processor has adual Harvard architecture with separate CODE (P:
memory) and DATA (X: memory) memory spaces. Table 6.4 on page 140. shows the sizes
and ranges of these spaces, as well as the range of character data within X memory, for
both the small and large memory models. (Y ou may need to use the ELF Linker and
Command Language or M56800E Linker settings panel to specify how the project-
defined sections map to real memory.)

Table 6.4 Code and Data Memory Ranges

Small Model Large Model
Section])

Size Range Size Range

(Word Address) (Word Address)

CODE 128 KB 0 - OXFFFF 1MB 0 - OX7FFFF
(P: memory)
DATA 128 KB 0 - OXFFFF 32 MB 0 - OXFFFFFF
(X: memory)
DATA 64 KB 0 - OX7FFF 16 MB 0 - OX7FFFFF
(X: memory)
character
data

A peculiarity of the DSP56800E architecture is byte addresses for character (1-byte) data,
but word addresses for data of all other types. To calculate a byte address, multiply the
word address by 2. An address cannot exceed the maximum physical address, so placing
character datain the upper half of memory makes the data unaddressable. (Address
registers have a fixed width.)

For example, in the small memory model (maximum data address: 64 KB), placing
character data at 0x8001 requires an access address of 0x10002. But this access address
does not fit into 16-bit storage, as the small data memory model requires. Under your
control, the compiler increases flexibility by placing al character datainto specially-
named sections as described in “Emit separate character data section checkbox.” Y ou can
locate these sections in the lower half of the memory map, making sure that the data can
be addressed.

140

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support

Large Data Model Support

The DSP56800E extends the DSP56800 data addressing range, by providing 24-bit
address capability to some instructions. 24-bit address modes allow user accesses beyond
the 64K -word boundary of 16-bit addressing. To control large data memory model
support, use the M56800E Processor panel (Figure 6.2 on page 141). See “ M 56800E
Processor” on page 64 for explanations of this panel’s elements.

Figure 6.2 M56800E Processor Panel: Large Data Model
!E MBES00E Frocessor

Hardware DO Loopz: (Mo DO Loops j

[Small Program taodel

v Large Data Model
[Globals live in lower memmany

[Zerainitislized globals live in data instead of BSS
[Emit separate data zection

W Pad pipeline for debugger

[T Create azsembly autput

[T Generate cade for profiling

— Pipeling Conflict Detection

[nlife Azm IN:::t Detected _YJ

C Language IN:::t Detected vl

Extended data is data located beyond the 16-bit address boundary — asiif it existsin
extended (upper) memory. Memory located below the 64K boundary is lower memory.

The compiler default arrangement is using 16-bit addresses for all data accesses. This
means that absolute addresses (X:xxxx addressing mode) are limited to 16 bits. Direct
addressing or pointer registers|oad or store 16-bit addresses. Indexed addressing indexes
are 16-bit quantities. The compiler treats data pointers as 16-bit pointers that you may
store in single words of memory.

If the large data memory model is enabled, the compiler accesses all data by 24-bit
addressing modes. It treats data pointers as 24-hit quantities that you may store in two
words of memory. Absolute addressing occurs as 24-bit absolute addresses. Thus, you
may access the entire 24-bit data memory, locating data objects anywhere.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 141

y
A

C for DSP56800E
Large Data Model Support

Y ou do not need to change C source code to take advantage of the large data memory
model.

Examplesin DSP56800E assembly code of extended data addressing are:

Extended Data Addressing Example

Consider the code of Listing 6.5 on page 142:

Listing 6.5 Addressing Extended Data

move.w X:0x123456,A1 ; move int using 24 bit absolute address
tst.1 x: (R0-0x123456) ; test a global long for zero using 24-bit
; pointer indexed addressing
move.l r0,x: (RO)+ ; r0 stored as 24-bit quantity
cmpa r0,rl ; compare pointer registers as 24 bit
; quantities

The large data memory model is convenient because you can place data objects anywhere
in the 24-hit data memory map. But the model is inefficient because extended data
addressing requires more program memory and additional execution cycles.

However, al global and static data of many target applications easily fit within the 64 K
word memory boundary. With thisin mind, you can check the Globalslivein lower
memory checkbox of the M56800E Processor settings panel. This tells the compiler to
access global and static data with 16-bit addresses, but to use 24-bit addressing for al
pointer and stack operations. This arrangement combines the flexibility of the large data
memory model with the efficiency of the small data model’ s access to globals and statics.

NOTE If you check the Globalslive in lower memory checkbox, be sure to store data
in lower memory.

Accessing Data Objects Examples

Table 6.5 on page 143 and Table 6.6 on page 143 show appropriate ways to access a
global integer and a global pointer variable. The first two columns of each table list states
of two checkboxes, L arge Data Model and Globalslivein lower memory. Both
checkboxes are in the M56800E Processor settings panel. Note that the first enables the
second.

Table 6.5 on page 143 lists ways to access aglobal integer stored at address X:0x1234.
int gl;

142

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Large Data Model Support

Table 6.5 Accessing a Global Integer

Large Data Globals live in Instruction Comments
Model lower memory
checkbox checkbox
Clear Clear move.w Default values
X:0x1234,y0
Checked Clear move.w
X:0x001234,y
0
Clear Checked Combination
not allowed
Checked Checked move.w Global accesses
X:0x1234,y0 use 16-bit
addressing

Table 6.6 on page 143 lists waysto load a global pointer variable, at X:0x4567, into an

address register.

int * gpl;

Table 6.6 Loading a Global Pointer Variable

Large Data Globals live in Instruction Comments

Model lower memory

checkbox checkbox

Clear Clear move.w Default 16-bit
X:0x4567,r0 addressing, 16-bit

pointer value

Checked Clear move.| 24-bit addressing,
X:0x004567,r0 pointer value is 24-bit

Clear Checked Combination not
allowed

Checked Checked move.l 16-bit addressing,
X:0x4567,r0 pointer value is 24-bit

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

143

3
4

y
A

C for DSP56800E
Optimizing Code

External Library Compatibility

If you enable the large data model when the compiler builds your main application,
externd libraries written in C also must be built with the large data model enabled. The
linker enforcesthis requirement, catching global objects located out of range for particular
instructions.

A more serious compatibility problem involves pointer parameters. Applications built
with the large data memory model may pass pointer parameter values in two words of the
stack. But libraries built using the small memory model may expect pointer arguments to
occupy asingle word of memory. Thisincompatibility will cause runtime stack
corruption.

Y ou may or may not build external libraries or modules written in assembly with extended
addressing modes. The linker does not enforce any compatibility rules on assembly
language modules or libraries.

The compiler encodes the memory model into the object file. The linker verifiesthat all
objects linked into an executable have compatible memory models. The ELF header’s

e flagsfield includesthe bit fields that contain the encoded data memory model attributes
of the object file:

#define EF_M56800E_LDMM 0x00000001 /* Large data memory model
flag */

Additionally, C language objects are identified by an ELF header flag.

#define EF_M56800E_C 0x00000002 /* Object file generated from
C source */

Optimizing Code

Register coloring is an optimization specific to DSP56800E development. The compiler
assigns two (or more) register variables to the same register, if the code does not use the
variables at the same time. The code of Listing 6.6 on page 144 does not use variables 1
and j at the same time, so the compiler could store them in the same register:

Listing 6.6 Register Coloring Example

short i;
int j;
for (i=0; 1<100; i++) { MyFunc(i); }
for (j=0; j<100; j++) { MyFunc(j); }
However, if the code included the expression MyFunc (i+7), thevariableswould bein
use at the same time. The compiler would store the two variables in different registers.
144 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Deadstripping and Link Order

For DSP56800E development, you can instruct the compiler to:

1. Storeall local variableson the stack. — (That is, do not perform register coloring.)
The compiler loads and storeslocal variables when you read them and write to them.
Y ou may prefer this behavior during debugging, because it guarantees meaningful
valuesfor all variables, from initialization through the end of the function. To havethe
compiler behave this way, specify Optimizations Off, in the Global Optimizations
settings panel.

2. Placeasmany local variables aspossiblein registers. — (That is, do perform
register coloring.) To have the compiler behave thisway, specify optimization Level 1
or higher, in the Global Optimizations settings panel.

NOTE Optimizations Off is best for code that you will debug after compilation.
Other optimization levels include register coloring. If you compile code with
an optimization level greater than 0 and then debug the code, register coloring
could produce unexpected results.

Variables declared volatile (or those that have the address taken) are not kept in
registers and may be useful in the presence of interrupts.

3. Run Peephole Optimization. — The compiler eliminates some compare instructions
and improves branch sequences. Peephole optimizations are small and local
optimizations that eliminate some compare instructions and improve branch
sequences. To have the compiler behave this way, specify optimization Levels 1
through 4, in the Global Optimizations settings panel.

Deadstripping and Link Order

The M56800E Linker deadstrips unused code and data only from files compiled by the
CodeWarrior C compiler. The linker never deadstrips assembler relocatable filesor C
object files built by other compilers.

Libraries built with the CodeWarrior C compiler contribute only the used objects to the
linked program. If alibrary has assembly files or files built with other C compilers, the
only filesthat contribute to the linked program are those that have at least one referenced
object. If you enable deadstripping, the linker completely ignores files without any
referenced objects.

The Link Order page of the project window specifies the order (top to bottom) in which
the DSP56800E linker processes C source files, assembly source files, and archive (.aand
lib) files. If both a source-code file and a library file define a symbol, the linker usesthe
definition of the file that appearsfirst, in the link order. To change the link order, drag the
appropriate filename to a different place, in this page’slist.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 145

y
A

C for DSP56800E

Working with Peripheral Module Registers

Working with Peripheral Module Registers

This section highlights the issues and recommends programming style for using bit fields
to access memory mapped I/0. Memory mapped 1/0 isaway of accessing devicesthat are
not on the system. A part of the normal address space is mapped to I/O ports. A read/write
to that memory location triggers an access to the I/O device, though to the program it

seemslike anormal memory access. Even if one byteiswritten to in the space allocated to

a peripheral register, the whole register is written to. So the other byte of the peripheral
register will not retain its data. This may happen because the compiler generates optimal
bit-field instructions with a read(byte)-mask-writeback(byte) code sequence.

Compiler Generates Bit Instructions
The compiler generates BFSET for |=, BFCLR for &=, and BFCHG for "= operators.

Listing 6.7 on page 146 shows a C source example and the generated sample code.

Listing 6.7 C Source Example

int i;
int *ip;

void main (void)

/* generated codes
P: 00000082: 8054022D0001
*/

(*(ip)) "= 1;

/* generated codes
P:00000085: F87C022C
P:00000087: 84400001
*/

* ((int*) (0x1234)) |=1;
/* generated codes
P:00000089: E4081234

P:0000008B: 82400001
*/

}

bfclr #1,X:0x00022d

moveu.w X:0x00022c,R0

bfchg #1,X: (RO)
move.1l #4660,R0
bfset #1,X: (RO)

146 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

C for DSP56800E
Working with Peripheral Module Registers

/* generated codes
P:0000008D: E708 rts

*/

Note, the following example:

#define word int

union {

word Word;

struct
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word
word

} Bits;
} SCICR;

{

SBK
RWU
RE
TE
REIE
RFIE
TIIE
TEIE
PT
PE
POL
WAKE

RSRC
SWATI
LOOP

PRRPRRERERRERRRRERR

/* Code:*/

SCICR.Bits.TE
SCICR.Bits.PE =

o
PR

/* SCICR content is 0x0800 */
/* SCICR content is 0x0002 ??? */

Explanation of Undesired Behavior

If "SCICR" is mapped to a periphera register, the code that is used to accessthe register is
not portable and might be unsafe, like in DSP56800E at present.

Bit field behavior in C is almost all implementation defined. So generating the following
codeislegal:

SCICR.Bits.TE = 1; /* SCICR content is 0x0800 */

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 147

y
A

C for DSP56800E
Working with Peripheral Module Registers

/* generated codes

P:00000082:874802c¢ moveu.w #SCICR, RO
P:00000084:FOE0000 move.b X: (RO) ,A
P:00000086:8350008 bfset #8,A1
P:00000088:9800 move.b Al,X: (RO)
*/
SCICR.Bits.PE = 1; /* SCICR content is 0x0002 ??? */

/* generated codes

P:00000089:FOE00001 move.b X: (RO+1) ,A
P:0000008B:83500002 bfset #2,A1
P:0000008D:9804 move.b Al,X: (RO+1)
*/

However, since the writes (at P:0x88 and at P:0x8D) are byte instructions and only 16 bits
can be written to the SCICR register, the other bytes look asif they are filled with zeros
before the SCICR is overwritten.

The use of byte accesses is due to a compiler optimization that tries to generate the
smallest possible memory access.

Recommended Programming Style

The use of aunion of amember that can hold the whole register (the "Word" member
above) and a struct that can access the hits of the register (the "Bits" member above) isa
good idea

What is recommended is to read the whole memory mapped register (using the "Word"
union member) into alocal instance of the union, do the bit-manipulation on the local, and
then write the result as awhole word into the memory mapped register. So the C code
would look something like:

#define word int

union SCICR unionf{
word Word;
struct {

word
word
word
word
word
word
word
word
word

SBK
RWU
RE
TE
REIE
RFIE
TIIE
TEIE
PT

PRRRRERRERR

148

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

C for DSP56800E
Working with Peripheral Module Registers

word PE 1
word POL 1
word WAKE :1
word M :1;
word RSRC :1
word SWAI :1
word LOOP :1
} Bits;
} SCICR;

/* Code: */

union SCICR union localSCICR;
localSCICR.Word = SCICR.Word;

[* generated codes

P:00000083:F07C022C move .w
P:00000085:907F move.w
*/

localSCICR.Bits.TE = 1;

[* generated codes

P:00000086 : 8AB4FFFF adda
P:00000088:FOEQ0000 move.b
P:0000008A:83500008 bfset
P:0000008C:9800 move.b
*

/

localSCICR.Bits.PE = 1;

[* generated codes

P:0000008D:FOE00001 move.b
P:0000008F:83500002 bfset
P:00000091:9804 move.b
*/

SCICR.Word = localSCICR.Word;

*/ generated codes
P:00000092:B67F022C move.w
*/

X:#SCICR,A
Al, X: (SP-1)

#-1,SP,R0
X:(RO),A
#8,A1
Al,X: (RO)

X: (RO+1),A
#2,A1
Al,x: (RO+1)

X: (SP-1),X:#SCICR

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

149

y
A

C for DSP56800E
Generating MAC Instruction Set

Generating MAC Instruction Set

The compiler generates the imac . 1 instruction if the C code performs multiplication on
two long operands which are casted to short type; and the product is added to along type.
For example, the following code:

long d = c+((long)a* (long)b) ;

generates the following assembly:

move.w X:0x000000,Y0 ; Fa
move.w X:0x000000,B ; Fb

move.l X:0x000000,A ; Fc

imac.l B1l,Y0,A

150 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

v

High-Speed Simultaneous
Transfer

High-Speed Simultaneous Transfer (HSST) facilitates data transfer between low-level
targets (hardware or simulator) and host-side client applications. The data transfer occurs
without stopping the core.

The host-side client must be an IDE plug-in or a script run through the command-line
debugger.

When the customer links their application to the target side hsst lib, the debugger detects
that the customer wants to use hsst and automatically enables hsst communications.

NOTE TouseHSST, you must launch the target side application through the
debugger.

Host-Side Client Interface

This section describes the API calls for using High-Speed Simultaneous Transfer (HSST)
from your host-side client application.

At the end of this section, an example of a HSST host-side program is given (Listing
7.1 on page 157).

hsst_open

A host-side client application uses this function to open a communication channel with the
low-level target. Opening a channel that has already been opened will result in the same
channel ID being returned.

Prototype

HRESULT hsst open (
const char* channel name,
size t *cid);

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 151

3
4

y
A

High-Speed Simultaneous Transfer
Host-Side Client Interface

Parameters

channel name

Specifies the communication channel name.

cid

Specifies the channel ID associated with the communication channel.
Returns

S_oKif thecall succeedsor s_FALSE if the cdl fails.

hsst_close

A host-side client application usesthis function to close acommunication channel with the
low-level target.

Prototype

HRESULT hsst close (size t channel id) ;

Parameters
channel id

Specifies the channel ID of the communication channel to close.

Returns
S_OKif thecall succeedsor S_FALSE if the cal fails.

hsst_read

A host-side client application uses this function to read data sent by the target application
without stopping the core.

Prototype

HRESULT hsst read (
void *data,
size t size,
size t nmemb,
size t channel id,
size t *read);

152

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface

Parameters

data

Specifies the data buffer into which datais read.

size

Specifies the size of the individual data elementsto read.

nmemb

Specifies the number of data elementsto read.

channel id

Specifies the channel ID of the communication channel from which to read.
read

Contains the number of data elements read.

Returns
S_OoKif thecall succeedsor s_FALSE if the cdl fails.

hsst_write

A host-side client application uses this function to write datathat the target application can
read without stopping the core.

Prototype

HRESULT hsst write (
void *data,
size t size,
size_ t nmemb,
size t channel id,
size t *written);

Parameters

data

Specifies the data buffer that holds the data to write.
size

Specifies the size of the individual data elements to write.
nmemb

Specifies the number of data elementsto write.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 153

3
4

y
A

High-Speed Simultaneous Transfer
Host-Side Client Interface

channel id

Specifies the channel ID of the communication channel to write to.

written

Contains the number of data elements written.

Returns
S_oKif thecall succeedsor s_FALSE if the cdl fails.

hsst_size

A host-side client application uses this function to determine the size of unread data (in
bytes) in the communication channel.
Prototype
HRESULT hsst size (
size t channel id,
size t *unread);
Parameters
channel id

Specifies the channel ID of the applicable communication channel.

unread

Contains the size of unread data in the communication channel.

Returns
S_OKif thecall succeedsor S_FALSE if the cal fails.

hsst_block_mode

A host-side client application uses this function to set acommunication channel in
blocking mode. All callsto read from the specified channel block indefinitely until the
requested amount of datais available. By default, a channel startsin the blocking mode.
Prototype

HRESULT hsst_block mode (size_ t channel id);

154

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface

Parameters
channel id

Specifies the channel ID of the communication channel to set in blocking mode.

Returns
S_oKif thecall succeedsor s_FALSE if the cdl fails.

hsst_noblock_mode

A host-side client application uses this function to set a communication channel in non-
blocking mode. Calls to read from the specified channel do not block for data availability.

Prototype
HRESULT hsst noblock mode (size t channel id);

Parameters
channel id

Specifies the channel ID of the communication channel to set in non-blocking mode.

Returns
S_OKif thecall succeedsor S_FALSE if the cal fails.

hsst_attach_listener

Use this function to attach a host-side client application as a listener to a specified
communication channel. The client application receives a notification whenever datais
available to read from the specified channel.

HSST notifies the client application that datais available to read from the specified
channel. The client must implement this function:

void NotifiableHSSTClient:: Update (size t descriptor, size t
size, size t nmemb) ;

HSST calstheNotifiable HSST Client:: Update function whendatais
availableto read.

Prototype
HRESULT hsst_attach listener (

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 155

3
4

y
A

High-Speed Simultaneous Transfer
Host-Side Client Interface

size t cid,

NotifiableHSSTClient *subscriber) ;
Parameters
cid
Specifies the channel ID of the communication channel to listen to.
subscriber

Specifies the address of the variable of classNotifiable HSST Client.

Returns
S_oKif thecall succeedsor s_FALSE if the cdl fails.

hsst_detach_listener

Use this function to detach a host-side client application that you previously attached as a
listener to the specified communication channdl.

Prototype

HRESULT hsst detach listener (size t cid);

Parameters

cid

Specifiesthe channel 1D of the communication channel from which to detach a previously
specified listener.

Returns

S_oKif thecall succeedsor s_FALSE if the cdl fails.

hsst_set_log_dir

A host-side client application uses this function to set alog directory for the specified
communication channel.

This function allows the host-side client application to use datalogged from a previous
High-Speed Simultaneous Transfer (HSST) session rather than reading directly from the
board.

156

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Host-Side Client Interface

Listing 7.1

After theinitial call tohsst_set_log dir, the CodeWarrior software examines the
specified directory for logged data associated with the relevant channel instead of
communicating with the board to get the data. After all the data has been read from the
file, al future reads are read from the board.

To stop reading logged data, the host-side client application callshsst _set log dir
with NULL asits argument. This call only affects host-side reading.

Prototype
HRESULT hsst_set log dir (
size t cid,
const char* log directory);
Parameters
cid
Specifies the channel ID of the communication channel from which to log data.
log directory

Specifies the path to the directory in which to store temporary log files.

Returns
S_oKif thecall succeedsor s_FALSE if the cdl fails.

HSST Host Program Example

InListing 7.1 on page 157 the host isthe IDE plugin (DLL) to the interface with the HSST
target (DSP56800E) project. This establishes data transfer between the host (your
computer) and the target (the DSP56800E board).

NOTE Before launching the program, the IDE plugin needs to be created and placed
inthefolder: CodeWarrior\bin\Plugins\Com.

Sample HSST Host Program

#include
#include
#include
#include

unsigned

"CodeWarriorCommands.h"
"HSSTInterface.h"
<cstdio>

<cstdlib>

__stdcall HSSTClientMain (void *pArguments) ;

#define buf_size 1000 /* Data

size */

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 157

y
A

High-Speed Simultaneous Transfer
Target Library Interface

/* Assigning name for Plugin and Menu Title */
extern const CWPluginID kToolbarTestPluginID = "HSST host sample";
extern const wchar t* MenuTitle = L"HSST host sample";

unsigned _ stdcall HSSTClientMain (void *pArguments)

{

IMWHSST Client *pHSST = (IMWHSST Client *)pArguments;

long data[buf size];
size_t channel 1, channel 2, read items, written items;

* Opening channel 1 and 2 from HOST side */

HRESULT hr 1 = pHSST->hsst open ("channel 1",
&channel 1);

HRESULT hr_2 = pHSST->hsst _open ("channel 2",
&channel 2);

/* HOST reading data from channel 1 */
PHSST->hsst read (data, sizeof(long), buf size, channel 1,
&read items) ;

/* HOST writing data to channel 2 */
PHSST->hsst write(data, sizeof(long), buf size, channel 2,

&written items) ;

return O;

Target Library Interface

This section describes the API calls for using High-Speed Simultaneous Transfer (HSST)
from your target application.

At the end of this section, an example of a HSST target program is given (Listing 7.2 on
page 165).

158 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface

HSST_open

A target application uses thisfunction to open abidirectional communication channel with
the host. The default setting is for the function to open an output channel in buffered
mode. Opening a channel that has already been opened will result in the same channel 1D
being returned.

Prototype

HSST STREAM* HSST open (const char *stream) ;

Parameters
stream

Passes the communication channel name.

Returns
The stream associated with the opened channel.

HSST close
A target application uses this function to close a communication channel with the host.

Prototype
int HSST close (HSST STREAM *stream) ;

Parameters
stream

Passes a pointer to the communication channel.

Returns
0 if the call was successful or -1 if the call was unsuccessful.

HSST_ setvbuf

A target application can use this function to perform the following actions:
« Set an open channel opened in write mode to use buffered mode

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 159

3
4

y
A

High-Speed Simultaneous Transfer
Target Library Interface

NOTE Thiscan greatly improve performance.

» Resizethe buffer in an existing buffered channel opened in write mode
¢ Provide an external buffer for an existing channel opened in write mode
* Reset buffering to unbuffered mode
Y ou can use this function only after you successfully open the channel.
The contents of a buffer (either internal or external) at any time are indeterminate.

Prototype

int HSST setvbuf (
HSST STREAM *rs,
unsigned char *buf,
int mode,
size t size);

Parameters

rs

Specifies a pointer to the communication channdl.

buf

Passes a pointer to an external buffer.

mode

Passes the buffering mode as either buffered (specified as HSSTFBUF) or unbuffered
(specified as HSSTNBUF).

size

Passes the size of the buffer.

Returns
0 if the call was successful or -1 if the call was unsuccessful.

NOTE Youmust flush the buffers before exiting the program to ensure that all the data
that has been written is sent to the host. For more details, see HSST flush on

page 162.

160

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface

HSST_write

A target application uses this function to write data for the host-side client application to
read.

Prototype

size t HSST write (
void *data,
size t size,
size t nmemb,
HSST STREAM *stream) ;

Parameters

data

Passes a pointer to the data buffer holding the data to write.
size

Passes the size of theindividua data elements to write.
nmemb

Passes the number of data elementsto write.

stream

Passes a pointer to the communication channel.

Returns
The number of data €l ements written.

HSST read

A target application uses this function to read data sent by the host.

Prototype

size t HSST read (
void *data,
size t size,
size_ t nmemb,
HSST STREAM *stream) ;

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 161

3
4

y
A

High-Speed Simultaneous Transfer
Target Library Interface

Parameters

data

Passes a pointer to the data buffer into which to read the data.
size

Passes the size of the individual data elementsto read.
nmemb

Passes the number of data elementsto read.

stream

Passes a pointer to the communication channel.

Returns
The number of data elements read.

HSST flush

A target application uses this function to flush out data buffered in a buffered output
channel.

Prototype

int HSST flush (HSST STREAM *stream) ;

Parameters

stream

Passes a pointer to the communication channel. The High-Speed Simultaneous Transfer
(HSST) feature flushes all open buffered communication channels if this parameter is null.
Returns

0 if the call was successful or -1 if the call was unsuccessful.

HSST size

A target application uses this function to determine the size of unread data (in bytes) for
the specified communication channel.

162

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface

Prototype
size t HSST size (HSST STREAM *stream) ;

Parameters
stream

Passes a pointer to the communication channel.

Returns
The number of bytes of unread data.

HSST raw_read

A target application uses this function to read raw data from a communication channel
(without any automatic conversion for endianness while communicating).

Prototype
size t HSST raw read (
void *ptr,
size t length,
HSST STREAM *rs);
Parameters
ptr
Specifies the pointer that points to the buffer into which datais read.
length
Specifies the size of the buffer in bytes.
rs

Specifies a pointer to the communication channdl.

Returns
The number of bytes of raw dataread.

NOTE Thisfunction is useful for sending data structures (e.g., C-type structures).

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 163

y
A

High-Speed Simultaneous Transfer
Target Library Interface

HSST_raw_write

A target application uses this function to write raw data to a communication channel
(without any automatic conversion for endianness while communicating).
Prototype
size t HSST raw write (
void *ptr,
size t length,
HSST_STREAM *rs);
Parameters
ptr
Specifies the pointer that points to the buffer that holds the data to write.
length
Specifies the size of the buffer in bytes.
rs

Specifies a pointer to the communication channdl.

Returns
The number of data el ements written.

NOTE Thisfunction is useful for sending data structures (e.g., C-type structures).

HSST_set_log_dir

A target application uses this function to set the host-side directory for storing temporary
log files. Old logs that existed prior to the call toHSST set log _dir () areover-
written. Logging stops when the channel is closed or when HSST set log_dir() is
called with anull argument. These logs can be used by the host-side function

HSST set_log_dir.

Prototype

int HSST set_log_dir (
HSST_STREAM *stream,
char *dir name);

164

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

High-Speed Simultaneous Transfer
Target Library Interface

Parameters

stream

Passes a pointer to the communication channel.
dir name

Passes a pointer to the path to the directory in which to store temporary log files.

Returns
0 if the call was successful or -1 if the call was unsuccessful.

HSST Target Program Example

In Listing 7.2 on page 165 the HSST target program runs in parallel with the host plugin.
The target communi cates with the host-side (your computer).

NOTE Torestart the program after execution, click on Restart HSST as shownin
Figure 7.1 on page 166.

Listing 7.2 Sample HSST Target Program

#include <stdio.h>
#include <stdlib.h>
#include "HSST.h"

#define buf size 1000 /* Data size */

long i, test buffer[buf size];

int main ()

{

HSST STREAM *channel 1, *channel 2;
int written items=0;
int read items=0;

for (i =0; 1i < buf size; ++ i)

{
}

test buffer[i] = 1i;

/* Opening channel 1 and 2 from TARGET side */
channel 1 = HSST open ("channel 1");
channel 2 = HSST open ("channel 2");

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 165

3
4

y
A

High-Speed Simultaneous Transfer
Target Library Interface

/* TARGET writing data to channel 1 */
written items = HSST write(test buffer, sizeof (long),
buf size, channel 1);

/* TARGET reading data from channel 2 */
read items = HSST read(test buffer, sizeof (long), buf size,

channel 2);

return O0;

Figure 7.1 Restart HSST

i Metrowerks CodeWw arrior
File Edit ¥“iew Search Project

Debug Data EDORCE Trace Butfer Window Help

55T
RO S H % BA AN E § G FestatHSsTClnian |

NOTE For an HSST example, see the HSST example in this path:
{CodeWarrior path} (CodeWarrior Examples)\
DSP56800E_hsst client-to-client

166 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Data Visualization

Data visualization lets you graph variables, registers, regions of memory, and HSST data
streams as they change over time.

The Data Visualization tools can plot memory data, register data, global variable data, and
HSST data.

¢ Starting Data Visualization on page 167

« DataTarget Dialog Boxes on page 168
¢ Graph Window Properties on page 172

Starting Data Visualization

To start the Data Visualization tool:
1. Start adebug session
2. Select Data Visualization > Configurator.

The Data Types window (Figure 8.1 on page 167) appears. Select a data target type
and click the Next button.

Figure 8.1 Data Types Window

Data Types

Select a target data type for which the data iz to be wisualized.

EMN 1 oy
D Registers
abe ‘ariables

Sia HSST

< Back I Mext I Cancel Help

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 167

4
A

Data Visualization
Data Target Dialog Boxes

3. Configure the data target dialog box and filter dialog box.
4. Run your program to display the data (Figure 8.2 on page 168).

Figure 8.2 Graph Window
{ mshort DataOut[10] [_ O]
R
5943
943
4943 \‘
2943 \ —— /
945 \ \ /’/
-1052 \
-3052
-5052 \ \ /
-7052 /
-8052

Walue

0os 1 15 2 25 3 35 4 45 5 55 B BS5 7 765 8 85 9
Tirme

Data Target Dialog Boxes

There are four possible data targets. Each target has its own configuration dialog.
* Memory on page 168

* Registers on page 170
¢ Variables on page 170

e HSST on page 171

Memory

The Target Memory dialog box lets you graph memory contentsin real-time.

168 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Data Target Dialog Boxes

Figure 8.3 Target Memory Dialog Box

Target Memory Data Ed

Select the way the memary iz bo be vizualized.

Data Type: I unsigned 32-b vI D ata Urits: I'I 0

— Memony Wizsualization

{* Single location changing owver time:

Address Ox IEIEIDEIEFSEI

" Mermom Begion chaning over time

¥ #twis s 02 I

| e I

¢ Back I Mext » I Cancel Help

Data Type

The Data Type list box lets you select the type of datato be plotted.

Data Unit

The Data Unitstext field lets you enter avalue for number of data unitsto be plotted. This
option is only available when you select Memory Region Changing Over Time.

Single Location Changing Over Time

The Single Location Changing Over Time option lets you graph the value of asingle
memory address. Enter this memory address in the Address text field.

Memory Region Changing Over Time

The Memory Region Changing Over Time options lets you graph the values of a memory
region. Enter the memory addresses for the region in the X-Axis and Y-Axis text fields.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 169

y
A

Data Visualization
Data Target Dialog Boxes

Registers
The Target Registers dialog box lets you graph the vaue of registersin real-time.

Figure 8.4 Target Registers Dialog Box

Target Registers Ed

Select regizters for which the data iz to be visualized.

E----H General Purpoze Hegisﬂ EI----H General Purpoze Registers
..... [e= D0 i

----- [e= DOL

----- t= DOH _|'>
----- [e= DOE i
----- = La ;l
----- = DL o
----- T= D1.H —|

..... T MiF -
<] | 1] |]

< Back I Mest » I Cancel | Help |

Select registers from the left column, and click the -> button to add them to the list of
registersto be plotted.

Variables

The Target Globals dialog box lets you graph the value of global variablesin real-time.
(See Figure 8.5 on page 171.)

170 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Data Visualization
Data Target Dialog Boxes

Figure 8.5 Target Globals Dialog Box

Target Globals x|

Select globals which are to be visualized.

----- B long __ mem_limit

----- E long __ receive —

----- H long __ send _>|
----- H long __ sendmreceive L|

----- H long __ size

----- B long _ stack_safety e |

----- E lang zyzcall
----- B lonn alreadn renichers
1| | B

¢ Back I Mest » I Cancel Help

Select global variables from the left column, and click the -> button to add them to the list
of variablesto be plotted.

HSST

The Target HSST dialog box lets you graph the value of an HSST stream in real-time.
(See Figure 8.6 on page 172.)

NOTE To plot HSST data, the data visualization tool needs its own HSST channel.
Make sure your program opens a separate channel exclusively for the data
visualization window. Thiswill avoid impacting data transmissions on other
channels.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 171

y
A

Data Visualization
Graph Window Properties

Figure 8.6 Target HSST Dialog Box

Target Memory Data E

Select the channel name and data zize to be visualized.

—HSS5T Wizsualization

Channel Mame: IHSST Data Type |sigred 3261t =

zigned 16-bit -
unzigned 3-bit
unzigned 16-bit |
unzighed 32-bit —
Floating-Point i

¢ Back I Mext » I Cancel Help

Channel Name

The Channel Name text field lets you specify the name of the HSST stream to be plotted.
Data Type

The Data Type list box lets you select the type of datato be plotted.

Graph Window Properties

]
To change the look of the graph window, click the graph properties button to open
the Format Axis dialog box.

172 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Data Visualization
Graph Window Properties

Figure 8.7 Format Axis Dialog Box

Format Axis |

—#-butis Scale [auto when checked)

Iv Minimum; I I tdaijor unit;
v b aximum: I ¥ | tinar unit

[T Logarithmic scale

— 1Az Scale [auto when checked]

I—
I—

v Mimimum: I v ajor unit; I

v Ma:-cimum:l ¥ | bdirar rit: I

[~ Loganthmic scale

— Dizplay

[hits: I vI [T Showe dizplay units o label
Ma af Paintz: I‘I o

ak. I Cancel

Scaling
The default scaling settings of the data visualization tools automatically scale the graph
window to fit the existing data points.

To override the automatic scaling, uncheck a scaling checkbox to enable the text field and
enter your own value.

To scale either axis logarithmically, enable the Logarithmic Scale option of the
corresponding axis.

Display

The Display settings let you change the maximum number of data points that are plotted
on the graph.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 173

A 4
4\

Data Visualization
Graph Window Properties

NOTE For adatavisualization example that uses HSST, see the data visualization
examplein this path:
{CodeWarrior path} (CodeWarrior Examples)\
hsst_Data Visualization

174 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

9

Debugging for DSP56800E

This chapter, which explains the generic features of the CodeWarrior™ debugger, consists
of these sections:

Using Remote Connections on page 175

Command Converter Server on page 187
Launching and Operating the Debugger

L oad/Save Memory

Fill Memory on page 205

Save/Restore Registers on page 207
EONCE Debugger Features on page 209
Using the DSP56800E Simul ator

Register Details Window

Loading a .elf File without a Project on page 220
Using the Command Window on page 221
System-Level Connect on page 221

Debugging in the Flash Memory
on page 225Notes for Debugging on Hardware on page 225

Using Remote Connections

Remote connections are settings that describe how the CodeWarrior IDE should connect
to and control program execution on target boards or systems, such as the debugger
protocol, connection type, and connection parameters the | DE should use when it connects
to the target system. This section shows you how to access remote connectionsin the
CodeWarrior IDE, and describes the various debugger protocols and connection types the
I DE supports.

NOTE Wehaveincluded several types of remote connections in the default

CodeWarrior installation. Y ou can modify these default remote connectionsto
suit your particular needs.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 175

A 4
4\

Debugging for DSP56800E
Using Remote Connections

NOTE When you import a Makefile into the CodeWarrior IDE to create a
CodeWarrior project, the IDE asks you to specify the type of debugger
interface (remote connection) you want to use. To debug the generated

CodeWarrior project, you must properly configure the remote connection you
selected when you created the project.

Accessing Remote Connections

Y ou access remote connections in the CodeWarrior | DE Prefer ences window. Remote

connections listed in the preferences window are available for usein all CodeWarrior
projects and build targets.

To access remote connections:
1. From the CodeWarrior menu bar, select Edit > Preferences.
The IDE Preferences window (Figure 9.1 on page 176) appears.

Figure 9.1 IDE Preferences Window

2.

i @ IDE Preferences

2 x|
|E |DE Preference Panels | E Build Settings
= General ﬂ .
R " — Settings
- IDE Ewxtras Build before running: IAIwayg vI ¥ Save open files before buid
- Flugin Settings I Show message after building up-to-date project
- Shielded Folders .
- Sourss Tress Campiler thread stack. (kb): |325
= Editar .
. Code Campletion —I Use Local Project Data Starag
- Code Formatting |{Eompiler}LocaI_Data_Storage LChoose... |
- Editar Settings .
. Fant 4 Tahs Used when the project data folder cannat be created on read-only volumes.
- Text Colors
=~ Debugger
- Digplay Settings
- wiindow Settings
- [lobal Settings
- Remote Connections
Facton Settings Frewert Import Panel... | Export Panel... I
Ok I Cancel | Ll I

In the | DE Preference Panelslist, select Remote Connections.

The Remote Connections preference panel (Figure 9.2 on page 177) appears.

176

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections

Figure 9.2 Remote Connections Preference Panel

i mIDE Preferences j 2x|
E IDE Preference Panels | E Remote Connections
- Build Settings J IEName TS |
- |DE Eutras
- Plugin Settings BEB00 Local Hardware Connection CCS Aemote Connection ﬂ
. Shielded Folders 56800 Local USBTAP Connection USE TAP Connection
S oe Traas 56800 Simulator . Sirnulator .
B Editor BE800E Local Hardware Connection | CCS Remate Connection
- Code Camplation SEB00E chal USBTAP Connection U.SB TAP Connection
- Code Fomatting BE300E Simulator Simulator
- Editor Settings
- Font & Tabs
- Tewt Colors
= Debugger
- Digplay Settings
- Window Settings
- [Global Settings
ol P =mote Connet ﬂ
= RaD Tools I Add. | Change.. | Femave |
e Layout Editor -
Factony Settings Fewert Impart Panel... | Expart Panel... I
Ok I Cancel I Appli I
NOTE The specific remote connections that appear in the Remote Connections list

differ between CodeWarrior products and hosts.

The Remote Connections preference panel lists all of the remote connections of which
the CodeWarrior IDE is aware. Y ou use this preference panel to add your own remote
connections, remove remote connections, and configure existing remote connections to
suit your needs.

To add a new remote connection, click Add.
To configure an existing remote connection, select it and click Change.
To remove an existing remote connection, select it and click Remove.

NOTE To specify aremote connection for a particular build target in a CodeWarrior
project, you select the remote connection from the Connection list box in the
Remote Debugging target settings panel. For an overview of the Remote

Debugging settings panel, see the CodeWarrior IDE User’s Guide.

Understanding Remote Connections

Every remote connection specifies a debugger protocol and a connection type.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 177

'
A

Debugging for DSP56800E
Using Remote Connections

A debugger protocol isthe protocol the IDE uses to debug the target system. This setting
generally relates specifically to the particular device you use to physically connect to the
target system.

A connection type is the type of connection (such as CCS, USBTAP, or Simulator) the
CodeWarrior IDE uses to communicate with and control the target system.

Table 9.1 on page 178 describes each of the supported debugger protocols.

Table 9.1 Debugger Protocols

Debugger Protocol Description

CCS 56800E Protocol Plugin Select to use a CCS hardware target system.

56800E Simulator Select to use the Simulator on the host computer.

Each of these protocols supports one or more types of connections (CCS, USBTAP, and
Simulator). “Editing Remote Connections’ on page 178 describes each supported
connection type and how to configure them.

Editing Remote Connections

Based on the specified debugger protocol and connection type, the IDE makes different
settings available to you. For example, if you specify a Serial connection type, the IDE
presents settings for baud rate, stop bits, flow control, and so on. Table 9.2 on page 178
describes the supported connection types for each debugger protocol.

Table 9.2 Supported Connection Types

Debugger Protocol Supported Connection Types

CCS 56800E Protocol Plugin CCS Remote Connection on page 179, USBTAP on
page 181

56800E Simulator on page 183Simulator on page 183

To configure aremote connection to correspond to your particular setup, you must edit the
connection settings. Y ou access the settings with the Edit Connection dialog box. You
can view this dialog box in one of these ways:

« Inthe Remote Connections IDE preference panel, select a connection from the list,
and click Edit. The Edit Connection dialog box appears.

¢ Inthe Remote Connections | DE preference panel, click Add to create anew remote
connection. The New Connection dialog box appears.

178

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections

« Inthe Remote Debugging target settings panel, select a connection from the
Connection list box, then click the Edit Connection button. The Edit Connection
dialog box appears.

This section describes the settings for each connection type:

» CCS Remote Connection on page 179

« USBTAP on page 181

¢ Simulator on page 183

CCS Remote Connection

Use this connection type to configure how the IDE uses the Command Converter Server
(CCS) protocal to connect with the target system. This connection type is available only
when the CCS 56800E Protocol Plugin debugger protocol is selected.

Figure 9.3 on page 180 shows the settings that are available to you when you select CCS
Remote Connection from the Connection Typelist box in the Edit Connection dialog
box.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 179

4
A

Debugging for DSP56800E
Using Remote Connections

Figure 9.3 CCS Remote Connection Settings

56800E Local Hardware Connection i ﬂ

M ame: IEEBEIEIE Local Hardware Connection

DebuElger:|EES BE200E Protocal Plugin j [Show in processes list
— Connection T_l,lpe:IEES Femote Connection j
—[I " Use Remoate CCS Port f:
Server |P Address: |1 27.0.01 ’7 |4'| 475
—[Specify CCS Executable
| Chooze... |
—[Multi-Core D'ebugaing
JTAG Configuration File:
I Ehoose... |
—CCS Timeout
IED zeconds
Factony Sethings I Revert Panel Cancel Ok

Table 9.3 on page 180 describes the options in this dialog box.

Table 9.3 CCS Remote Connection Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800E Protocol Plugin.
Connection Type Select CCS Remote Connection.
Use Remote CCS Check to debug code on a target system when the system

already has CCS running and connected.

180 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections

Table 9.3 CCS Remote Connection Options (continued)

Option

Description

Server IP Address

Enter the Internet Protocol (IP) address assigned to the
target system.

Port #

Enter the port number on the target system to which the IDE
should connect for CCS operations. The default port number
for CCS hardware connections is 41475. Enter 41476 for the
CCS Simulator.

Specify CCS Executable

Check to use another CCS executable file rather than the
default CCS executable file:
CwInstall\ccs\bin\ccs.exe

Multi-Core Debugging

Check to debug code on a target system with multiple cores
where you need to specify the JTAG chain for debugging.
Click Choose to specify the JTAG initialization file. A JTAG
initialization file contains the names and order of the boards /
cores you want to debug.

Note: this option has no effect for the 56800E Digital Signal
Controller.

CCS Timeout Enter the duration (in seconds) after which the CCS should
attempt to reconnect to the target system if a connection
attempt fails.

Use this connection type to configure how the IDE uses CodeWarrior USB TAP deviceto
connect with the target system. This connection typeis available only when the CCS
56800E Protocol Plugin debugger protocol is selected.

Figure 9.4 on page 182 shows the settings that are available to you when you select
USBTAP from the Connection Type list box in the Edit Connection dialog box.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 181

4
A

Debugging for DSP56800E
Using Remote Connections

Figure 9.4 USBTAP Connection Settings

S56800E Local USBETAP Connection

M ame: IEEBEIEIE Local USBTAP Connection

DebuElger:|EES BES00E Protocaol Plugin j [Show in processes list

— Connection T_l,lpe:ILISE TAP Connection j

CCS Timeaut: IEEI

[~ Muli-Core Debugging
JTAG Configuration File:

I Choose. |

v Reset Target On Launch

Factory Settings Fevert Fanel Cancel Ok

Table 9.4 on page 182 describes the options in this dialog box.

Table 9.4 UBTAP Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800E Protocol Plugin.

Connection Type Select USBTAP Connection.

182

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using Remote Connections

Table 9.4 UBTAP Options (continued)

Option

Description

CCS Timeout

Enter the maximum number of seconds the debugger should
wait for a response from CCS. By default, the debugger
waits up to 10 seconds for responses.

Multi-Core Debugging

Check to debug code on a target system with multiple cores
where you need to specify the JTAG chain for debugging.
Click Choose to specify the JTAG initialization file. A JTAG
initialization file contains the names and order of the boards /
cores you want to debug.

Note: this option has no effect for the 56800E Digital Signal
Controller.

Reset Target on Launch

Check to have the debugger send a reset signal to the target
system when you start debugging.

Clear to prevent the debugger from resetting the target
device when you start debugging.

Simulator

Use this connection type to configure the behavior of the simulator. This connection type
isavailable only when the 56800E Simulator Protocol Plugin debugger protocol is

selected.

Figure 9.5 on page 184 shows the setting that are available to you when you select
Simulator from the Connection Type list box in the Edit Connection dialog box.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 183

y
A

Debugging for DSP56800E
Using Remote Connections

Figure 9.5 Simulator Connection Settings

S6800E Simulator _ x|

M arne: IEEBEIEIE Simulator

DEbuggEFZISim BE200E Pratocal Plugin j [Show in processes list

— Connection T_l,lpe:lSimuIath vI
Simulation Bandwidth IMedium vI

Details

Medium B andwidth: Fecommended for most systems. Simulatar runzs many cycles
while GUI iz idle.

Factony Sethings Fevert Fanel Cancel Ok

Table 9.5 on page 184 describes the options in this dialog box.

Table 9.5 Simulator Options

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select SIM 56800E Protocol Plugin.
Connection Type Select Simulator.
Simulation Bandwidth Select the simulator bandwidth (low, medium, or high).

184 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Target Settings for Debugging

Target Settings for Debugging

Table 9.6 Target Settings for Debugging

Option Description

Name Enter the name you want to use to refer to this remote
connection within the CodeWarrior IDE.

Debugger Select CCS 56800E Protocol Plugin.

Connection Type

Select USBTAP.

Use default serial
number

Check if you only have one USB TAP device connected to
the host computer.

Clear if you have more than one USB TAP device connected
to the host computer. When this checkbox is checked, the
USB TAP Serial Number text box is available.

USB TAP Serial Number

If you have more than one USB TAP connected to the host
computer, enter the serial number of the USB TAP you want
to use for debugging.

Note: The USB TAP serial number is located on a label on
the bottom of the device.

CCS Timeout

Enter the maximum number of seconds the debugger should
wait for a response from CCS. By default, the debugger
waits up to 10 seconds for responses.

Interface Clock
Frequency

Select the clock frequency for the Ethernet TAP device. We
recommended you set this to 4 MHz.

Mem Read Delay

Enter the number of additional processor cycles (in the
range: 0 through 65024) the debugger should insert as a
delay for completion of memory read operations. By default,
the debugger delays for 350 cycles.

Mem Write Delay

Enter the number of additional processor cycles (in the
range: 0 through 65024) the debugger should insert as a
delay for completion of memory write operations. By default,
the debugger does not delay.

Reset Target on Launch

Check to have the debugger send a reset signal to the target
system when you start debugging.

Clear to prevent the debugger from resetting the target
device when you start debugging.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 185

y
A

Debugging for DSP56800E
Target Settings for Debugging

Table 9.6 Target Settings for Debugging (continued)

Option Description

Force Shell Download Check to have the debugger start the Ethernet TAP shell
when you start debugging.

Clear to prevent the debugger from starting the Ethernet
TAP shell when you start debugging.

Do not use fast Check to have the debugger use a standard (slow)
download procedure to write to memory on the target system.

Clear to have the debugger use an optimized (fast)
download procedure to write to memory on the target
system.

Enable Logging Check to have the IDE display a log of all debugger
transactions during the debug session. If this checkbox is
checked, a protocol logging window appears when you
connect the debugger to the target system.

Note: If you set the AMCTAP LOG_FILE environment
variable, the IDE directs log messages to the specified file.

This section explains how to control the debugger by modifying the appropriate settings
panels.

To properly debug DSP56800E software, you must set certain preferencesin the Target
Settings window. The M56800E Target panel is specific to DSP56800E
development. The remaining settings panels are generic to al build targets.

Other settings panels can affect debugging. Table 9.7 on page 186 lists these panels.

Table 9.7 Setting Panels that Affect Debugging

This panel... Affects... Refer to...

M56800E Linker symbolics, linker “Deadstripping and Link Order” on
warnings page 145

M56800E Processor | optimizations “Optimizing Code” on page 144

Debugger Settings Debugging options

186 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Command Converter Server

Table 9.7 Setting Panels that Affect Debugging (continued)

This panel... Affects... Refer to...
Remote Debugging Debugging “Remote Debugging” on page 76
communication
protocol
Remote Debug Debugging options “Remote Debug Options” on page 82
Options

The M56800E Target panel is unique to DSP56800E debugging. The available
optionsin this panel depend on the DSP56800E hardware you are using and are described
in detail in the section on “Remote Debug Options’ on page 82.

Command Converter Server

The command converter server (CCS) handles communication between the CodeWarrior
debugger and the target board. Aniconin the status bar indicates the CCSisrunning. The
CCSisautomatically launched by your project when you start a CCS debug session if you
are debugging atarget board using alocal machine. However, when debugging atarget
board connected to a remote machine, see “ Setting Up a Remote Connection.”

NOTE Projects are set to debug locally by default. The protocol the debugger uses to
communicate with the target board, for example, PCl, is determined by how
you installed the CodeWarrior software. To modify the protocol, make changes
in the Freescale Command Converter Server window ().

Essential Target Settings for Command
Converter Server

Before you can download programs to atarget board for debugging, you must specify the
target settings for the command converter server:

¢ Local Settings

If you specify that the CodeWarrior IDE start the command converter server locally,
the command converter server uses the connection port (for example, LPT1) that you
specified when you installed CodeWarrior Development Studio for Freescale 56800/
E Digital Signal Controllers.

* Remote Settings

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 187

3
4

y
A

Debugging for DSP56800E
Command Converter Server

If you specify that the CodeWarrior IDE start the command converter server on a
remote machine, specify the | P address of the remote machine on your network (as
described in “ Setting Up a Remote Connection.”)

» Default Settings

By default, the command converter server listens on port 41475. Y ou can specify a
different port number for the debugger to connect to if needed (as described in
“Setting Up a Remote Connection.”) Thisis necessary if the CCSisconfigured to a
port other than 41475.

After you have specified the correct settings for the command converter server (or verified
that the default settings are correct), you can download programs to a target board for
debugging.

The CodeWarrior |DE starts the command converter server at the appropriate time if you
are debugging on alocal target.

Before debugging on a board connected to a remote machine, ensure the following:
« The command converter server isrunning on the remote host machine.
« Nobody is debugging the board connected to the remote host machine.

Changing the Command Converter Server
Protocol to Parallel Port

If you specified the wrong parallel port for the command converter server when you
installed CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers, you can change the port.

Change the parallel port:
1. Click the command converter server icon.

While the command converter server isrunning, locate the command converter server
icon on the status bar. Right-click on the command converter server icon (Figure

9.6 on page 188):

Figure 9.6 Command Converter Server Icon

L&

A menu appears (Figure 9.7 on page 189):

188

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Debugging for DSP56800E
Command Converter Server

Figure 9.7 Command Converter Server Menu

Show console
Hide console
Ahout CCS

ik CCS
2. Select Show console from the menu.
The Freescale Command Converter Server window appears ().

Figure 9.8 Command Converter Server Window

Metrowerks Command Converter Server _|Of x|

File Edit 3Show History Debug Help

i3

Metrowerks Command Converter Server console display actiwve

0: Parallel Port (LPT:1) CC software wer. {3.0}

Serwver listening on port: 41475

Zerver listening on port: 41475

Clients accepted from all hosts

Comnection #1 accepted from PETERAHN.mtwk.sps.mot.com at Wed Feb 04 12:34:34 200
4

Connection #1 from PETERAHN.wtwk.sps.mot.con closed at Wed Feb 04 12:35:25 2004
{bin) 1 %

[«]

3. On the console command line, type the following command:
delete all
Press Enter.

5. Type the following command, substituting the number of the parallel port to use (for
example, 1 for LPT1):

config cc parallel:1
Press Enter.

7. Type the following command to save the configuration:
config save

8. PressEnter.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 189

3
4

y
A

Debugging for DSP56800E
Command Converter Server

Changing the Command Converter Server
Protocol to HTI

To change the command converter server to an HTI Connection:

1

While the command converter server is running, right-click on the command converter
server icon shown in Figure 9.6 on page 188 or double click onit.

2. From the menu shown in Figure 9.7 on page 189, select Show Console.

3. At the console command linein the Freescale Command Converter Server

window, type the following command:
delete all

4. PressEnter.

5. Type the following command:

config cc: address

(substituting for address the name of the | P address of your CodeWarrior HTI)

NOTE If the software regjects this command, your CodeWarrior HTI may be an earlier

version. Try instead the command: config cc nhti:address, or the
command: config cc Panther:address, substituting for address
the IP address of the HTI.

6. PressEnter.

7. Typethe following command to save the configuration:

config save

Press Enter.

Changing the Command Converter Server
Protocol to PCI

To change the command converter server to a PCl Connection:

1.

While the command converter server is running, right-click on the command converter
server icon shown in Figure 9.6 on page 188 or double click on it.

2. From the menu shown in Figure 9.7 on page 189, select Show Console.

3. At the console command linein the Freescale Command Converter Server

window, type the following command:
delete all
Press Enter.

190

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Debugging for DSP56800E
Command Converter Server

5. Type the following command:
config cc pci
Press Enter.

7. Type the following command to save the configuration:
config save

8. Press Enter.

Setting Up a Remote Connection

A remote connection is a type of connection to use for debugging along with any
preferences that connection may need. To change the preferences for aremote connection
or to create a new remote connection:

1. Onthe main menu, select Edit > Preferences.
The IDE Preferences Window appears.
2. Click Remote Connectionsin the left column.

The Remote Connections panel shown in Figure 9.9 on page 191 appears.

Figure 9.9 Remote Connections Panel

IE IDE Prefersnce Panels IE Remote Connections

- General =
- Build Settings [Eame | Type |
. |DE Extras 56800 Local Hardware Connection CCS Remate Connection ;I
- Plugin Settings REE00 Sirnulatar Simulator
- Shielded Folders 56800E Local Hardware Cornection CCS Remate Connection
- Source Trees SEB00E Sirmulatar Simulatar

= Editar

- Code Completion
- Code Formatting
- Editor Settings
- Font & Tabs

- Text Colors

= Debugger

- Digplay Settings
- wiindow Settings

- Global Settings 'I

Add... Chiarige. I Femove I

= _F!AD Toolz LI

Factan Settings Resert | Impoart Panel... | Export Panel... I

Ok, I Cancel | Aol I

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 191

4
A

Debugging for DSP56800E
Command Converter Server

To Add a New Remote Connection

To add a new remate connection:
1. Click the Add button.

The New Connection window appears as shown in Figure 9.10 on page 192.

Figure 9.10 New Connection Window

Mame: IHelee Connection

Debugger:|CCS SGE00E Pratocal Plugin = |

— Connection T_l,lpe:IEES Remate Cannection j

[Show in processes list

" UEH Port #
Server P Address: [127.0.0.1 [a1a75
—[Specify CCS Executable
I Ehoase;,. |
—I Multi-Care Debugging
JTAG Configuration File:
I Choose;.. I
—CCS Timeout
IED seconds
Factony Seftings I Revert Panel Cancel 0k

2. Inthe Name edit box, type in the connection name.

3. Check Use Remote CCS checkbox.

Select this checkbox to specify that the CodeWarrior IDE is connected to aremote
command converter server. Otherwise, the IDE starts the command converter server

locally

4, Enter the Server |P address or host machine name.

Usethistext box to specify the | P address where the command converter server resides
when running the command converter server from alocation on the network.

192 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger

5. Enter the Port # to which the command converter server listens or use the default port,
which is 41475.

6. Click the OK button.

To Change an Existing Remote Connection

To change an existing remote connection:
Double click on the connection name that you want to change, or click once on the
connection name and click the Change button (shown in Figure 9.9 on page 191 in
grey).

To Remove an Existing Remote Connection

To remove an existing remote connection:

Click once on the connection name and click the Remove button (shown in Figure
9.9 on page 191 in grey).

Debugging a Remote Target Board

For debugging atarget board connected to a remote machine with Code Warrior IDE
installed, perform the following steps:

1. Connect the target board to the remote machine.

2. Launch the command converter server (CCS) on the remote machine with the local
settings configuration using instructions described in the section “ Essential Target
Settings for Command Converter Server” on page 187.

3. Inthe Target Settings>Remote Debugging panel for your project, make sure the proper
remote connection is selected.

4. Launch the debugger.

Launching and Operating the Debugger

NOTE CodeWarrior IDE automatically enables the debugger and sets debugger-
related settings within the project.

1. Set debugger preferences.

Select Edit >sdm Settings from the menu bar of the Freescale CodeWarrior
window.

The IDE displaysthe Remote Debugging window.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 193

y
A

Debugging for DSP56800E
Launching and Operating the Debugger

Figure 9.11 Remote Debugging Panel

i @ sdm Settings

IE Target Settings Panels J B Femate Debugging
> Source Trees -

... MEGSO0E Target .) -
= Language Seftings Connection:|56800E Local Hardware Cornection v | Edit Cannection...
’ C/C++ Language Femate download path
i CAC++ Preprocessor |
i CAC++ Wamings

o MEBBO0E Assembler
= Code Generation

> ELF Disazsembler |

i MBBSO0E Processor

‘o Global Optimizations JTAG Clack Speed
= Linker 500

‘. MBBBO0E Linker
= Editor

i Cugtomn Keywards
= Debugger

> Debugger Settings

[l F crrote Debuaging R

Connection Settings

™ Launch remate host application

Factar Settings Revert Import Panel... | Export Panel... |

Ok, | Cancel | Apply |

. Select the Connection.

For example, select 56800E Local Hardware Connection (CCS).

. Click OK button.
4. Debug the project.

Use either of the following options:
» From the Freescale CodeWarrior window, select Project > Debug.
« Click the Debug button in the project window.

This command resets the board (if Always reset on download ischecked in the
Debugger’s M56800E Target panel shown in Figure 4.14 on page 79) and the
download process begins.

When the download to the board is complete, the IDE displays the Program window
(sdm.elf in sample) shown in Figure 9.12 on page 195.

NOTE Source codeisshown only for filesthat are in the project folder or that have

been added to the project in the project manager, and for which the IDE has
created debug information. Y ou must navigate the file system in order to locate
sources that are outside the project folder and not in the project manager, such
aslibrary sourcefiles.

194

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Debugging for DSP56800E
Launching and Operating the Debugger

Figure 9.12 Program Window

Step Out

Step Into Breakpoint
Ki”Step Qver Watchpoint
Break Symbolics

Run

R E x Gh O/ OEE

=o)X

IE Stack % @ Vaniables: Al | Value | Location %
init_M5E800_ “| | |=- ar Ox3221 0x3221 -
i 0 $MR3
i 0 $MRE
= e
-

SDUICEZ Civmy_projects foldersnew projectimain.c

< prototypes
vold swap (int *a, int =b):
wvoid print_arravi{int arr[]. int length):

int main{void)
-
= int arr[SIZE] = {4.6.7.1.2.3.4.12.4 5}:
int 1.73:

printf{"~nn~n
printf("
printf("

] Line 27 Coll | Souce 4] |

1>

5. Navigate through your code.
The Program window has three panes:
« Stack pane
The Stack pane shows the function calling stack.
* Variables pane
The Variables pane displays local variables.
e Source pane

The Sour ce pane displays source or assembly code.

The toolbar at the top of the window has buttons that allows you access to the

execution commands in the Debug menu.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

195

A 4
4\

Debugging for DSP56800E
Launching and Operating the Debugger

Setting Breakpoints and Watchpoints

1. Locate the codeline.

Scroll through the code in the Sour ce pane of the Program window until you come
acrossthemain () function.

2. Select the codeline.

Click the gray dash in the far left-hand column of the window, next to the first line of
codeinthemain () function. A red dot appears (Figure 9.13 on page 196),
confirming you have set your breakpoint.

Figure 9.13 Breakpoint in the Program Window

N =T
wE x i DEE

[FStack | Walue | Location =]
init_SES00_ 03221 03221 =

main o FMR3

o $MRE
=l

~

IE Source: Ci\my_projects foldersnew projectimain.c E}

int main{wvoid)

int arr[SIZE] = {4.6.7.1,.2,3.4,12.4,5%};

int i.3:
printf("SnSn n======================================\n"};
printf{" Are wvou ready to be a DSFP Warrior?

printf('======================================
print_arrav(arr.SIZE):
for (i=0:i<SIZE-1:i++)

for {(j=i: j<SIZE: Jj++)

1f {arr[i]rarr[]il)
Breakpoht swap(éarr[i].&arr[i]):
Setting —ppte print_sarray(arr,SIZE);

printf{"“nn... program done. n"):

-
i . ;I_I
£ Line 27 Coll | Source SRA| | i

NOTE Toremove the breakpoint, click the red dot. The red dot disappears.

For more details on how to set breakpoints and use watchpoints, seethe CodeWarrior IDE
User’s Guide.

NOTE For the DSP56800E only one watchpoint is available. This watchpoint is only
available on hardware targets.

196 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Debugging for DSP56800E
Launching and Operating the Debugger

Viewing and Editing Register Values

Registers are platform-specific. Different chip architectures have different registers.

1. Access the Register s window.
From the menu bar of the Freescale CodeWarrior window, select View >
Registers.
Expand the General Purpose Register s tree control to view the registersasin Figure
9.14 on page 197, or double-click on General Purpose Registersto view the registers
asin Figure 9.15 on page 198.

Figure 9.14 General Purpose Registers for DSP56800E

=k
R Fegister | alue
= isimulator -
£ sdm.elf
& Thread oxo
& General Furpose Registers

A 0x0000000000

- AD 00000

S oAl 00000 b
Az 0x00

B 00000000000

. BO 00000

-1 0000

. B2 ox00

s 00000000000

- Co 00000

Sl 00000

N) 000 ;|
D 0x0000000000 >

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 197

y
A

Debugging for DSP56800E
Launching and Operating the Debugger

Figure 9.15 General Purpose Registers Window

! @mGeneral Purpose Registers Windo - |EI|5|

zdm.elf [Thread 0x0]

A
Al
Al
A2
E
EO
Bl
B2
C
o
1l
2
u]
oo
01
oz
LA
LAz
LiZ
LZz
MOl

O=0a0o0o00ao
= 0000
0oon

=00
Q=000o000o0on
0oon
0oon

=00
0000000000
0oon
=000on

0o
0000000000
Q=00a0
=0o0on

=00
O=0oooao
000000
0oon
Q=00a0
=FFFF

M2

M
OME.
Pz
RO
R1
R.2
R2
R4
R.5
SP
SR
Hw'=0
HnS1
FIRA
FISR
i}

0
Tl

0x0000 ;|

Q=000000
Ox0003
O=000052
0=000368
Ox0008&5
Ox0o00000
0=000000
Ox000000
Ox0o00000
O=000527
Ox0314
Ox0o00000
O=0000a0
Ox000000
00000
0=FFFF
0«03 1E0O000O
00000
0=031E

2. Edit register values.

o

o

To edit values in the register window, double-click aregister value. Change the value
asyou wish.

3. Exit the window.

The modified register values are saved.

NOTE

To view periphera registers, select the appropriate processor form the
processor list box in the M56800E Target Settings Panel.

198 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Launching and Operating the Debugger

Viewing X: Memory

Y ou can view X memory space val ues as hexadecimal values with ASCII equivalents.
Y ou can edit these values at debug time.

NOTE Ontargetsthat have Flash ROM, you cannot edit those values in the memory
window that reside in Flash memory.

1. Locate aparticular address in program memory.

From the menu bar of the Freescale CodeWarrior window, select Data > View
Memory.

NOTE The Source panein the Program window needs to be the active one in order
for the Data > View Memory to be activated.

The Memory window appears (Figure 9.16 on page 199).

Figure 9.16 View X:Memory Window

i gsdm.elf Memory 1 101 =l
Dizplay: |IZI:<D View:lFlaw data j

H Address Hewx: 00000000:00001000 Ascii

aooooono 30320 30320 3030 3030 3030 303D —_———====

aooooons 3030 3030 30320 303D 303D 303D 303D 303D | |mm—m—m=m—=—=—=— a

aooooolo 3030 3030 0A00 4172 6520 796F FE20 7265 | |==1r=s Ar & yoO U re-—

oooono1s 6led4 7920 F46F 2062 6520 €120 4453 5020| |[ady to be a DSP
oooonozo 576l 7272 696F F23F 0AQD 2030 3030 3030| (Warr jor? s ===
oooonoze 2030 3020 2020 3030 23030 203D 203D 203D | ===

0ooo0no30 2030 3020 2020 3030 2030 2030 0A0A 004 | === ====== 1 sj
0ooono3s 7272 6175 203D 2000 2564 2000 0QAQD 2043 | [rray = =%d = »e -T o
0ooo0o40 4E4& 0020 696E 6600 434E 4600 696E 6600| [NF =— in f= INFs in T 3

wiord Size:|1 3 vl PEQEZE &

2. Select type of memory.

Locatethe Page list box at the bottom of the View Memory window. Select X for
X Memory.

3. Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter ahexadecimal address, use standard C hex notation, for example, 0x0.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 199

3
4

y
A

Debugging for DSP56800E
Launching and Operating the Debugger

NOTE Youaso can enter the symbolic name whose value you want to view by typing

itsnamein the Display field of the M emory window.

NOTE Theother view options (Disassembly, Source and Mixed) do not apply when

viewing X memory.

Viewing P: Memory

Y ou can view P memory space and edit the opcode hexadecimal values at debug time.

NOTE Ontargetsthat have Flash ROM, you cannot edit those values in the memory

window that reside in Flash memory.

. Locate aparticular addressin program memory.

To view program memory, from the menu bar of the Freescale CodeWarrior
window, select Data > View Memory.

The Memory window appears (Figure 9.16 on page 199).

. Select type of memory.

Locatethe Page list box at the bottom of the View Memory window. Select P for
P Memory.

. Enter memory address.

Type the memory address in the Display field located at the top of the Memory
window.

To enter ahexadecimal address, use standard C hex notation, for example: 0x82.

. Select how you want to view P memory.

Using the View list box, you have the option to view P Memory in four different
ways.
» Raw Data (Figure 9.17 on page 201).

200

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Debugging for DSP56800E
Launching and Operating the Debugger

Figure 9.17 View P:Memory (Raw Data) Window

=101

Display: |42 Wiew: [Raw data =]

H Address H Hex=: 00DO00Z:00001 002 H Asci

00000052 | [FESC BSSA FSFF 4857 7800 SAED OOF1 0L10L| [{= =« == He x= =z =a =«
00000084 | [0BFO 7CAG DOE7 FES2 4887 0200 1FDS 54E2| |=p |« == {« He =x =a T»
00000052 | [9A14 FESF 7BS2 4857 2600 1FDE S4E2 SA14| |=e ~r {= He fen =x Ta =s
000000354 | [FESF 7BE2 4857 4A00 1FDS 54E2 SA14 FESF| |~= {« He Ju =a Te au s
00000042 | [BESSA FEFF SAES S4E2 DEOD 4BDF 0000 27A3| |=e =x as Te sa ke =a ‘s
00000044 | [1FFO 7FS0 1049 1FFO 28ED BE6SA FEFF 2283 |== =
000000E2 | [FFEO 29ED E45A FEFF 2485 14F0 564C ODA4| |== Jx =e se §o ax YL =»
000000EA | [OOE7 1FFO 28ED BESA FEFF 2289 FFEO 28ED| |== =

0000002 | [BFSA FSFF 2389 S4E2 0501 FFED 0144 FFS0| |=e se #= Te =a ax 2l =n3g

Wwiord Size:|1 [vl F'EEIEIE 7

¢ Disassembly (Figure 9.18 on page 201).

Figure 9.18 View P:Memory (Disassembly) Window

{ @M56300E.elf Memory 1 oy] 4
Dizplay: |D:<1DDD Yiew: |Dizaszembly j
R Source:
Y
- ®P:00001000: 5005 move w YO, A
- DP:00001001: 4440FFFF add #-1.4 —
- P:00001003: 30TA wove.w AL, X: (SD-&)
- P:00001004: 46C0FFFF add #-1.v0
- P:00001006: SFOS tst _w ¥
- D:00001007: A402 k=ye floatZztr+0xzkd (0x100a)
- D:0000100&: DF4EFFFA clr.w X:(SP-6)
- P:00001004: SAB4FFL adda #-26.5P.R0
- P:0000100C: BOZO move w A: (RO+4), A
-~ P:00001000: 48TA o W X-(SP-6), A
- D:0000100E: AdZl keye floatZotr+0xzdf (0x1030)
- P:0000100F: SABSFFES adda #-24,5P.R2
- P:00001011: B1TA move . w A: (SP-6),B
-
£ Line 1 Coll 4] | _,I_I
4

« Source (Figure 9.19 on page 202).

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 201

4
A

Debugging for DSP56800E
Launching and Operating the Debugger

Figure 9.19 View P:Memory (Source) Window

{ EM56800E.elf Memory 1

=10l x|

Digplay: |D:<1 non Yiew: |Source

=

m Source: C:\Program Files\Metrowerks\Code arior 5E200E_1.1M5E200E Suppor.. \printf.c

- brealk;
case '£':
case 'F':
£ formmt:
- frac_digits = 0:

- if (frac_digits > formmt precision)

i

£ Line 1350 Col3 4| |

- 1f {((frac_digits = -dec ey + dec.sig. length - 1) < 0

|

- round_decimal ($dec, dec.sig.length - (frac_digits

-

Y
¢ Mixed (Figure 9.20 on page 202).
Figure 9.20 View P:Memory (Mixed) Window
=10l x|

Dizplay: ID:ﬂDDD Wigw | bimed j
m Source: C:\Program Files\Metrowerks\Code arior 5E200E_1.1M5E200E Suppor.. \printf.c
Y
case '£':
case 'F':
£_formmt:
1f {(frac_digits = -dec emp + dec.sig_ length - 1) < 0
— P:00000FF7: SAB4FFES sl #-24.5F. RO
— P:00000FF%: BlO4 TOCE W X:(RO+1).B
- P:00000FFA: 7TC8F hat=x =)
— P:00000FFE: BAB4FFES adda #-24,.8D,. RO =
- P:00000FFD: EBE8ZO moren .l K- (RO+4) A
— P:00000FFE: TEZZ zxt ks A W0
— P:00000FFF: Ta30 addd BE.¥0
- pP-00001000: 2005 OO S W Yo, A
-
£ Line 1350 Col3 4| | 3|
4

202 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Debugging for DSP56800E
Load/Save Memory

Load/Save Memory

From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E >
Load/Save Memory to display the Load/Save Memory dialog box (Figure

9.21 on page 203).

Figure 9.21 Load/Save Memory Dialog Box

oo save vemory x
Hiztory | LI

— Parameters

"DpEIatian

% Load Memory " Save Memary

Memory Type: |P: Memary |
Address [hes) || Canicel |

[ffzet (hesdnteger]: I

Size [hexdinteger): I

File name: I Erowsze |

™| Evensrite Existing

File: farmat; IEina[_l,.l Raw LI

— Progress

Use this dialog box to load and save memory at a specified location and size with a user-
specified file. Y ou can associate akey binding with this dialog box for quick access. Press
the T ab key to cycle through the dialog box displays, which lets you quickly make
changes without using the mouse.

History Combo Box

The History combo box displays alist of recent loads and saves. If thisisthe first time
you load or save, the History combo box isempty. If you load/save more than once, the
combo box fillswith the memory address of the start of the load or save and the size of the
fill, to a maximum of ten sessions.

If you enter information for an item that already existsin the history list, that item moves
up to the top of thelist. If you perform another operation, that item appears first.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 203

3
4

y
A

Debugging for DSP56800E
Load/Save Memory

NOTE By default, the History combo box displays the most recent settings on
subsequent viewings.

Radio Buttons

The Load/Save Memory diaog box hastwo radio buttons:
¢ Load Memory
* Save Memory

The defaultisLoad Memory.

Memory Type Combo Box

The memory types that appear in the Memory Type Combo box are:
¢ P: Memory (Program Memory)
¢ X: Memory (DataMemary)

Address Text Field

Specify the address where you want to write the memory. If you want your entry to be
interpreted as hex, prefix it with 0x; otherwise, it isinterpreted as decimal.

Size Text Field

Specify the number of wordsto write to the target. If you want your entry to beinterpreted
as hex, prefix it with 0x; otherwise, it isinterpreted as decimal.

Dialog Box Controls

Cancel, Esc, and OK

In Load and Save operations, al controls are disabled except Cancel for the duration of
the load or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the ESc key is same as clicking
the Cancel button.

With the Load Memory radio button selected, clicking OK |oads the memory from the
specified file and writes it to memory until the end of the file or the size specified is
reached. If the file does not exist, an error message appears.

204

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Debugging for DSP56800E
Fill Memory

With the Save Memory radio button selected, clicking OK reads the memory from the
target piece by piece and writes it to the specified file. The status field is updated with the
current progress of the operation.

Browse Button

Clicking the Browse button displays OPENFILENAME or SAVEFILENAME,
depending on whether you selected the Load Memory or Save Memory radio
button.

Fill Memory

From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E >
Fill Memory to display the Fill Memory dialog box (Figure 9.22 on page 205).

Figure 9.22 Fill Memory Dialog Box

il emory x
Histary I j
— Parameters
hemory Type : | P: Memery | Ok

Address [hex) : I Cancel |

Size [hexdnteger): I

Fill E=pr. [herdinteger]: I
— Progress

Usethisdialog box to fill memory at a specified location and size with user- specified raw
memory data. Y ou can associate akey binding with this dialog box for quick access. Press
the Tab key to cycle through the dialog box display, which lets you quickly make
changes without using the mouse.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 205

3
4

'
A

Debugging for DSP56800E

Fill Memory

NOTE Fill Memory does not support Flash Memory.

History Combo Box

The History combo box displays alist of recent fill operations. If thisisthe first time
you perform afill operation, the History combo box is empty. If you do more than one
fill, then the combo box populates with the memory address of that fill, to a maximum of
ten sessions.

If you enter information for an item that already existsin the history list, that item moves
up to the top of thelist. If you do another fill, then thisitem is the first one that appears.

NOTE By default, the History combo box displays the most recent settings on
subsequent viewings.

Memory Type Combo Box

The memory types that can appear in the Memory Type Combo box are:
¢ P:Memory (Program Memory)
¢ X:Memory (Data Memory)

Address Text Field

Specify the address where you want to write the memory. If you want it to be interpreted
as hex, prefix it with 0x; otherwise, it isinterpreted as decimal.

Size Text Field

Specify the number of words to write to the target. If you want it to be interpreted as hex,
prefix your entry with 0x; otherwise, it isinterpreted as decimal.

Fill Expression Text Field

Fill writes a set of charactersto alocation specified by the address field on the target,
repeatedly copying the characters until the user-supplied fill size has been reached. Size
isthe total words written, not the number of times to write the string.

Interpretation of the Fill Expression

Thefill string is interpreted differently depending on how it is entered in the Fill String
field. Any words prefixed with 0x isinterpreted as hex bytes. Thus, 0xBE 0xEF would

206

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Save/Restore Registers

actually write 0xBEEF on the target. Optionally, the string could have been set to
0xBEEF and this would do the same thing. Integers are interpreted so that the equivalent
signed integer iswritten to the target.

ASCII Strings

ASCII strings can be quoted to have literal interpretation of spaces inside the quotes.
Otherwise, spaces in the string are ignored. Note that if the ASCII strings are not quoted
and they are numbers, it is possible to create illegal numbers. If the number isillegal, an
error message is displayed.

Dialog Box Controls

OK, Cancel, and Esc

Clicking OK writes the memory piece by piece until the target memory isfilledin. The
Status field is updated with the current progress of the operation. When thisisin
progress, the entire dialog box grays out except the Cancel button, so the user cannot
change any information. Clicking the Cancel button halts the fill operation, and re-
enables the controls on the dialog box. Clicking the Cancel button again closes the
dialog box. Pressing the ESc key is same as pressing the Cancel button.

Save/Restore Registers

From the menu bar of the Freescale CodeWarrior window, select Debug > 56800E >
Save/Restore Registers to display the Save/Restore Registers dialog box
(Figure 9.23 on page 208).

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 207

y
A

Debugging for DSP56800E
Save/Restore Registers

Figure 9.23 Save/Restore Registers Dialog Box

Save/Restore Registers i[
Histary : I j

— Parameters
— Operation

{* SaveFegisterz { Festore Registers

General Purpose Registers o

Cancel

i

Eilename : Broveze

i

[Owerwrite Existing

— Progress

Use this dialog box to save and restore register groups to and from a user-specified file.

History Combo Box

TheHistory combo box displaysalist of recent saves and restores. If thisisthefirst time
you have saved or restored, the History combo box is empty. If you saved or restored
before, the combo box remembers your last ten sessions. The most recent session will
appear a the top of thelist.

Radio Buttons

The Save/Restore Registers dialog box has two radio buttons:
* Save Registers
* Restore Registers

The default is Save Registers.

208

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EONCE Debugger Features

Register Group List

Thislist is only available when you have selected Save Registers. If you have
selected Restore Registers, theitemsin thelist are greyed out. Select the register
group that you wish to save.

Dialog Box Controls

Cancel, Esc, and OK

In Save and Restore operations, all controls are disabled except Cancel for the duration
of theload or save. The status field is updated with the current progress of the operation.
Clicking Cancel halts the operation, and re-enables the controls on the dialog box.
Clicking Cancel again closes the dialog box. Pressing the Esc key is same as clicking
the Cancel button.

With the Restore Registers radio button selected, clicking OK restores the registers
from the specified file and writes it to the registers until the end of the file or the size
specified is reached. If the file does not exist, an error message appears.

With the Save Register radio button selected, clicking OK reads the registers from
the target piece by piece and writes it to the specified file. The status field is updated with
the current progress of the operation.

Browse Button

Clicking the Browse button displays OPENFILENAME or SAVEFILENAME,
depending on whether you selected the Restore Registers or Save Registers
radio button.

EONnCE Debugger Features

The following EONCE Debugger features are discussed in this section:
¢ Set Hardware Breakpoint Panel on page 210
 Special Counters on page 210

* Trace Buffer on page 212
¢ Set Trigger Panel on page 215

NOTE Thesefeatures are only available when debugging with a hardware target.

For more information on the debugging capabilities of the EONCE, see the EOnCE
chapter of your processor’s user manual.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 209

A
4

4
A

Debugging for DSP56800E
EONCE Debugger Features

Set Hardware Breakpoint Panel

The Set Har dwar e BreakPoint panel (Figure 9.24 on page 210) lets you set atrigger to
do one of the following: halt the processor, cause an interrupt, or start or stop trace buffer

capture.

To open this pand:

1. From the menu bar, select DSP56800E > Set Breakpoint Trigger(s).
To clear triggers set with this panel:

1. From the menu bar, select DSP56800E > Clear Triggers.

Figure 9.24 Set Hardware Breakpoint Panel

Set Hardware Breakpoint x|

Set tigger | Actior: I j

ok |

The Set Hardwar e BreakPoint panel options are:
e Set trigger

Select this button to open the Set Trigger panel (Figure 9.28 on page 216). For more
information on using this panel, see “ Set Trigger Panel.”

« Action
This pull down list lets you select the resulting action caused by the trigger.
— Halt core

Stops the processor.

— Interrupt

Causes an interrupt and uses the vector for the EOnCE hardware breakpoint (unit
0).

Special Counters

This feature lets you use the special counting function of the EOnCE unit.

210

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EONCE Debugger Features

To open the EONCE Special Counter panel (Figure 9.25 on page 211):
1. From the menu bar, select DSP56800E > Special Counter.
This panel is non-modal and will update itself whenever the processor stops.

Figure 9.25 EONCE Special Counter Panel

: mEONCE Special Counter X
Uze I‘IE-l:.it vl counter bo count Ipn::lk clock cycles j

Mate: Uzing the 40-bit counter will dizable stepping in the debugger.

Set tigger(z) |

Ferform action: IHaIt core j

O condition: In:n:uunter reaches zero befare stop trigger accurs j

Counter walue: |1 |

Set | Cloze |

The EONCE Special Counter panel options are:
e Counter size

This pull down list gives you the option to use a 16 or 40-bit counter.
NOTE Using the 40-bit counter will disable stepping in the debugger.

» Counter function
This pull down list allows you to choose which counting function to use.
e Set trigger(s)

Pushing this button opens the Set Trigger panel. For more information on using
this panel, see “ Set Trigger Panel.”.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 211

3
4

y
A

Debugging for DSP56800E
EONCE Debugger Features

¢ Perform action
This pull down list lets you select the action that occurs when the correct conditions
are met, as set in the Set Trigger panel and the On condition pull down list.

¢ On condition
This pull down list lets you set the order in which atrigger and counter reaching zero
must occur to perform the action specified in Perform action.

¢ Counter value
This edit box should be preloaded with a non-zero counter value when setting the

counter. The counter will proceed backward until a stop condition occurs. The edit

box will contain the value of the counter and will be updated whenever the processor
stops.

Trace Buffer

The trace buffer lets you view the target addresses of change-of-flow instructions that the
program executes. The trace buffer is configured with the Trace Buffer Setup panel
(Figure 9.26 on page 213).

To open this pandl:

212

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Debugging for DSP56800E
EONCE Debugger Features

1. From the IDE menu bar, select DSP56800E > Setup Trace Buffer.

Figure 9.26 Trace Buffer Setup Panel

Trace Buffer Setup x|

— Capture Events

[~ Change of flow not taken

v Intermpt

¥ Subroutine

¥ Fanward branches and JCC backward branches

¥ Backward branches excluding JCC backward branches

Set trigger(s) ™| Capture initially halted, started by trigger

Bufter full action: INn:u action [oldest entries avenaritien) j

] Cancel |

To view the contents of the trace buffer (Figure 9.27 on page 214):

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 213

y
A

Debugging for DSP56800E
EONCE Debugger Features

1.

From the IDE menu bar, select DSP56800E > Dump Trace Buffer.

Figure 9.27 Contents of Trace Buffer

=10l x|
| 2 | Trace Buffer il zl

Eﬁ address: P:0x00000000
wector.c line 42

I address: P:ox00000000

wector.c line 42

=

b1} M- - o' - Path |E:\SDK‘m:l3|:|5E838e\-'m_\nns\c:onfig‘wector.c: <

#include "configdefines . h" %
#fundef CFG_SECTIOHN ISE DECLARATION
Ir

- 1sr archStart s# JP 0=x00,31 RESET#A
- j=r SDE_Interruptl <% JP:0=02. 3} COF Reset
- j=r SDE_illegal s# fP:0=x04,3} Illegal In
- j=r SDE_Interrupts <% JP:0=06,3} Software I
- Jj=r SDE_HUSOverf low s# fP:.0=x08,3} Hardware S
Lined43 Coll |4] | M.

To clear triggers set with the Trace Buffer Setup panel (Figure 9.26 on page 213):

1

From the menu bar, select DSP56800E > Clear Triggers.
The Trace Buffer Setup panel options are:
Capture Events

Select this set of checkboxes to specify which instructions get captured by the trace
buffer.

— Change of flow not taken

Select this checkbox to capture target addresses of conditional branches and
jumps that are not taken.

— Interrupt

Select this checkbox to capture addresses of interrupt vector fetches and target
addresses of RTI instructions.

— Subroutine

Select this checkbox to capture target addresses of JSR, BSR, and RTS
instructions.

214

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
EONCE Debugger Features

— Forward branches and JCC Backward branches

Select this checkbox to capture target addresses of the following taken
instructions:

BCC forward branch
BRSET forward branch
BRCLR forward branch
JCC forward and backward branches
— Backward branches excluding JCC backward branches

Select this checkbox to capture target addresses of the following taken
instructions:

BCC backward branch

BRSET backward branch

BRCLR backward branch
e Set trigger(s)

Select this button to open the Set Trigger panel (Figure 9.28 on page 216). For
more information on using this panel, see “ Set Trigger Panel.”. The resulting trigger
halts trace buffer capture.

e Captureinitially halted, started by trigger
When this option is checked, the trace buffer starts off halted.

« Buffer full action

This pull down list lets you select the resulting action caused by the trace buffer
filling.

Set Trigger Panel

The Set Trigger panel (Figure 9.28 on page 216) lets you set triggersfor all the EOnCE
functions. It can be accessed from the panels used to configure those functions. The
options avail able change depending on the function being configured.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 215

y
A

Debugging for DSP56800E
EONCE Debugger Features

Figure 9.28 Set Trigger Panel

Set Trigger ll
Primary trigger type: IProgram trigger j Advanced trigger: IPrimary trigger || core event j
Primary trigger: | # Py -
I Togram access J Core events
[V DEBUGEY trigger enabled
I 0+0 Program address

v Overflow trigger enabled

0x0

[rata compare length [~ Use step counter to execute

= Bohit I 0:1 instructions after trigger

B Mote: Using the step counter will dizable single
22kt stepping in the debugger

I 0xFFFFFFFF Data mask

I~ | Invert data compare

I 0«1 Breakpoint counter

ok I Cancel

The Set Trigger panel options are:
e Primary trigger type
This pull down list contains the general categories of triggers that can be set.
e Primary trigger

This pull down list contains the specific forms of the triggersthat can be set. Thislist
changes depending on the selection made in the Primary trigger type option. The #
symbol contained in some of the triggers' descriptions specifies that the sub-trigger
that it precedes must occur the number of times specified in the Breakpoint counter
option to cause atrigger. The - > symbol specifies that the first sub-trigger must
occur, then the second sub-trigger must occur to cause atrigger.

« Valueoptions

There are two edit boxes used to specify addresses and data values. The descriptions
next to the boxes change according to the selection in Primary trigger type and
Primary trigger. According to these options, only one value may be available.

« Datacomparelength

When the data trigger (address and data) compare trigger is selected, this set of radio
buttons becomes available. These options allow you to specify the length of data
being compared at that address.

216 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using the DSP56800E Simulator

¢ Datamask

When a data compare trigger is selected, this edit box becomes available. Thisvaue
specifies which bits of the data value are compared.

¢ Invert data compare

When a data compare trigger is selected, this checkbox becomes available. When
checked, the comparison result of the datavaueisinverted (logical NOT).

« Breakpoint counter

This edit box specifies the number of times a sub-trigger preceded by a # (see above)
must occur to cause atrigger.

¢ Advanced trigger

This pull down list contains options for combining triggers. Thetypes of triggers that
can be combined are triggers set in this panel and core events.

« Coreevents

This set of checkboxes specify which core events are allowed to enter the breakpoint
logic and cause atrigger.

— DEBUGEYV trigger enabled
When this checkbox is selected, the DEBUGEYV instruction causes a core event.
— Overflow trigger enabled

When this checkbox is selected, overflow and saturation conditionsin the
PProcessor cause core events.

e Usestep counter to execute

When this checkbox is selected, the processor steps through additional
instructions after atrigger is signalled. The number of instructions to be stepped
is specified in the edit box that is enabled when this checkbox is checked.

Using the DSP56800E Simulator

The CodeWarrior Development Studio for Freescale 56800/E Digital Signal Controllers
includes the Freescale DSP56800E Simulator. This software lets you run and debug code
on asimulated DSP56800E architecture without installing any additional hardware.

The simulator simulates the DSP56800E processor, not the peripherals. In order to use the
simulator, you must select a connection that uses the simulator as your debugging protocol
from the Remote Debugging panel.

NOTE Thesimulator also enables the DSP56800E menu for retrieving the machine
cycle count and machine instruction count when debugging.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 217

3
4

y
A

Debugging for DSP56800E
Using the DSP56800E Simulator

NOTE Thedata memory of the 56800E simulator is read-only from X:0xFF80 to
X:OxFFFF.

Cycle/lnstruction Count

From the menu bar of the Freescale CodeWarrior window, select 56800E > Display
Cyclel/lnstruction count. Thefollowing window appears (Figure 9.29 on

page 218):
Figure 9.29 Simulator Cycle/lnstruction Count

i DSP568 Simulator Cycle,/Instruc x|

Machine cycles simulated: 92

Machine instructions simulated: 24

Reset |

NOTE Cyclecounting isnot accurate while single stepping through source code in the
debugger. It isonly accurate while running. Thus, the cycle counter is more of
aprofiling tool than an interactive tool.

Press the Reset button to zero out the current machine-cycle and machine-instruction
readings.

218 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Register Details Window

Memory Map
Figure 9.30 Simulator Memory Map
1FFFFF $FFFFFF
Reserved
$FFCO
Program
Memory
Space
X Data
Memory
Space
$7F
Interrupt
Vectors
$0 $0
P: X:

NOTE Figure 9.30 on page 219 is the memory map configuration for the simulator.
Therefore, the simulator does not simulate each DSP568xx device's specific
memory map, but assumes the memory map of the DSP56824.

Register Details Window

From the menu bar of the Freescale CodeWarrior window, select View > Register Details
or in the Registers window (Figure 9.14 on page 197) double-click on the register. The
Register Details window appears (Figure 9.31 on page 220).

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 219

y
A

Debugging for DSP56800E
Loading a .elf File without a Project

Figure 9.31 Register Details Window

: mRegister Details x|
Description File:l Browsze... |
Register Mame: Format:IDefauIt j

e EEEE EE EEREEE R G EEREEEEEEREERE

| ==

Type the name of a register or a full path to a description file in the ;I
'Description File:' field.

I

4

Revert I Fead I ifrite I He&et\faluel Text\a’iew:l.&uto vl

Inthe Register Details window, type the name of the register (e.g., OMR, SR, IPR,
etc.) in the Description File field. The applicable register and its values appears.

By default, the CodeWarrior IDE looks in the following path when searching for register
description files.

\CodeWarrior\bin\Plugins\support\Regi sters\M 56800E\GPR

Register description files must end with the . xm1 extension. Alternatively, you can use
the Browse button to locate the register description files.

Using the Format list box inthe Register Details window, you can change the format in
which the CodeWarrior IDE displaysthe registers.

Using the Text View list box in the Register Details window, you can change the text
information the CodeWarrior IDE displays.

Loading a .elf File without a Project

You can load and debug a . e1 £ file without an associated project. Toload a . e1£ filefor
debugging without an associated project:

1. Launch the CodeWarrior IDE.

2. Choose File > Open and specify thefile to load in the standard dialog box that
appears.

Alternatively, you can drag and drop a . e1 £ file onto the IDE.

220

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Using the Command Window

3. You may have to add additional access paths in the Access Path preference panel in
order to see all of the source code.

4. Choose Project > Debug to begin debugging the application.

NOTE Whenyoudebug a .elf filewithout a project, the IDE sets the Build before
running setting on the Build Settings panel of the IDE Preference panelsto
Never. Consequently, if you open another project to debug after debugging a
.elf file, you must change the Build befor e running setting before you can
build the project.

The project that the CodeWarrior tools uses to create anew project for the given .e1£ file
iIS56800E_Default Project.xml,whichisinthedirectory located in the path:

CodeWarrior\bin\plugins\support

Y ou can create your own version of thisfile to use as a default setting when opening a
.elffile

1. Create anew project with the default setting you want.
2. Export the project to xml format.

3. Rename the xml format of the project to 56800E_Default_Project.xml and placeit in
the support directory.

NOTE Back up or rename the origina version of the default xml project before
overwriting it with your own customized version.

Using the Command Window

In addition to using the regular CodeWarrior IDE debugger windows, you also can debug
using Tcl scripts or the Command Window.

For more information on Tcl scripts and the Command Window, please see the
CodeWarrior Development Studio IDE 5.6 W ndows® Automation Guide.

System-Level Connect

The CodeWarrior DSP56800E debugger lets you connect to aloaded target board and
view system registers and memory. A system-level connect does not let you view
symbolic information during a connection.

NOTE Thefollowing procedure explains how to connect in the context of developing
and debugging code on atarget board. However, you can select the Debug >

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 221

y
A

Debugging for DSP56800E
Debugging in the Flash Memory

Connect command anytime you have a project window open, even if you
have not yet downloaded afile to your target board.

To perform a system-level connect:

1. Select the Project window for the program you downl oaded.

2. From the menu bar, select Debug > Connect.

The debugger connects to the board. Y ou can now examine registers and the contents
of memory on the board.

Debugging in the Flash Memory

The debugger is capable of programming flash memory. The programming occurs at
launch, during download. The flash programming option is turned on and the parameters
aresetintheinitialization file. Thisfileis specified in the Debugger >M 56800E T ar get
preference panel. A list of flash memory commandsis given in the next section.

The stationery provides an example of how to specify adefault initialization file, how to
write alinker command file for flash memory, and how to copy initialized datafrom ROM
to RAM using provided library functions.

NOTE If you use the phaselocked loop (PLL) to change the system speed and you are
using software or automatic breakpoints, you will need to enable the alternate
flash download sequence, as described by the “target_code_sets hfmclkd”
command in the following section.

Flash Memory Commands

Thefollowingisalist of flash memory commands that can be included in your
initialization file.

For more information on flash memory commmands and initialization of the flash, see
“M56800E Target (Debugaing).”

set_hfmclkd <value>

This command writes the value which represents the clock divider for the flash memory
to the hfmclkd register.

Thevaluefor the set_hfmclkd command depends on the frequency of the clock. If
you are using asupported EVM, this value should not be changed from the value provided

222

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Debugging in the Flash Memory

in the default initialization file. However, if you are using an unsupported board and the
clock frequency is different from that of the supported EVM, a new value must be
calculated as described in the user’s manual of the particular processor that you are using.

NOTE The set_hfmclkd, set_hfm base, and at least one add_hfm _unit
command must exist to enable flash programming. All other flash
memory commands are optional.

set_hfm_base <address>

This command sets the address of hfm_base, which is where the flash control registers
are mapped in X: memory.

NOTE The set_hfm baseand add _hfm unit commands should not be
changed for a particular processor. Their values will always be the
same.

set_hfm_config _base <address>

This command sets the address of hfm _config base, which iswhere the flash
security values are written in program flash memory. If this command is present, the
debugger used the address to mimic part of the hardware reset behavior by copying the
protection values from the configuration field to the appropriate flash control registers.

add_hfm_unit <startAddr> <endAddr> <bank> <numSectors>
<pageSize> <progMem> <boot> <interleaved>

This command adds a flash unit to the list and sets its parameters.

NOTE The set_hfm base and add_hfm_unit commands should not be
changed for a particular processor. Their values will always be the
same.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 223

y
A

Debugging for DSP56800E
Debugging in the Flash Memory

set_hfm_erase_mode units | pages | all

This command setsthe erase mode asunits, pages or all. If you set thistounits,
the unitsthat are programmed are mass erased. If set thisto pages, the pages that are
programmed are erased. If you set thisto al1, al units are mass erased including those
that have not been programmed. If you omit this command, the erase mode defaults to the
unit mode.

set_hfm_verify_erase 1|0

If you set thisto 1, the debugger verifies that the flash memory has been erased, and alerts
you if the erase failed. If this command is omitted, the flash eraseis not verified.

set_hfm_verify_program 1|0

If you set thisto 1, the debugger verifies that the flash has been programmed correctly,
and aertsyou if the programming failed. If you omit this command, flash programming is
not verified.

target_code_sets_hfmclkd 1|0

If you set thisto 1, the debugger uses an aternate launch sequence. First, the flash
memory is loaded. Next, the processor is reset to clear the hfmclkd register to allow the
correct divider to be set for the new system speed (as set by the PLL). Finaly, if needed,
the RAM isloaded.

When this option is enabled, the hfmclkd register needs to be loaded in the startup code.
For more details on setting the hfmclkd register, see the chapter “Flash Memory” in the
MC56F8300 Peripheral User Manual. For ademo of the proper use of thisfeature, seethe
example code.

Flash Lock/Unlock

The Flash Lock and Flash Unlock commands let you control the Flash security state.

The Flash Lock command enables the Flash security state. In this state, you can not read
the memory or the registers.

224

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Debugging for DSP56800E
Notes for Debugging on Hardware

The Flash Unlock command disables the Flash security. Thisresultsin all the Flash
memory being erased.

NOTE TheFlash Lock and Flash Unlock commands can only be enabled if the

To
L
2.

debugger session is not running.

use the Flash L ock or Flash Unlock command:
Kill any open debugger sessions.
Select a DSP56800E project with a Flash target.

NOTE A Flashtargetisatarget using an initialization file containing Flash

3.
4.

commands.

Select a Flash target.

Select either Debug > 56800E > Flash L ock or Debug > 56800E > Flash Unlock
command.

Notes for Debugging on Hardware

Below are some tips and some things to be aware of when debugging on ahardware target:

Ensure your Flash data size fits into Flash memory.

The linker command file specifies where datais written to. There is no bounds
checking for Flash programming.

The standard library 1/0 function such asprintf useslarge amount of memory
and may not fit into flash targets.

Use the Flash stationery when creating a new project intended for ROM.

The default stationery contains the Flash configuration file and debugger settings
required to use the Flash programmer.

Thereisonly one hardware breakpoint available, which is shared by | DE breakpoints
(when the Breakpoint Mode is set to hardware in the M56800E Target panel),
watchpoints, and EONCE triggers. Only one of these may be set at atime.

When a hardware breakpoint trigger is set to react to an instruction fetch (IDE
hardware breakpoint or EOnCE trigger) be aware that the hardware will react to the
fetch whether or not the fetched instruction is executed. For example, if a hardware
breakpoint is set just after aloop, the processor will stop with the execution point
inside the loop. This is because the target instruction will be fetched while the
program isin the loop due to the large pipeline. A branch will occur to facilitate the
loop; however, the processor will stop because the target instruction has already been
fetched.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 225

3
4

y
A

Debugging for DSP56800E
Notes for Debugging on Hardware

* The M56800E cannot single step over certain two and three-word uninterrupted
sequences. However, the debugger compensates using software breakpoints and the
trace buffer to allow single stepping in these situations. But, if these techniques
cannot be used (e.g., debugging in ROM or the trace buffer in use) single stepping
over these sequences results in the processor executing each instruction in the
sequence before stopping. The execution will be correct. Just be aware of this"dide"
in these situations.

« Debugging an application involves single-stepping through code. But if you don't
modify interruptsthat are part of normal code execution, the debugger could jump to
interrupt-handler code, instead of stepping to the next instruction. By default, The
CodeWarrior debugger for DSC automatically masks all interrupt levels when the
user single steps over an instruction or a function and unmasks them afterwards.
Therefore, the user is advised to be aware of the temporary interrupt mask enable
valuesin Status Register (SR) when stepping over an inline assembly instruction that
copies the value of SR to another location.

226

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

10

Profiler

The profiler is arun-time feature that collects information about your program. It records
the minimum, maximum, and total number of clock cycles spent in each function. The
profiler alows you to evaluate your code and determine which functions require
optimization.

When profiling is enabled, the compiler adds codeto call the entry functionsin the profiler
library. These profiler library functions do all of the data collection. The profiler library,
with the help of the debugger create abinary output file, which is opened and displayed by
the CodeWarrior IDE.

NOTE For moreinformation on the profiler library and its usage, see the CodeWarrior
Development Sudio IDE 5.5 User’s Guide Profiler Supplement.

To enable your project for profiling:

1. Add thefollowing path to your list of user paths in the Access Paths settings panel:
{Compiler}M56800x Support\profiler

2. Add thefollowing line to the file that contains the function main():
#include "Profiler.h"

3. Add the profiler library file to your project. Select the library that matches your target
from this path:

{CodeWarrior path}M56800x Support\profiler\lib
4. Add thefollowing function callsto main():

ProfilerInit ()

ProfilerClear ()

ProfilerSetStatus()

ProfilerDump ()

ProfilerTerm()

For more details of these functions, see the CodeWarrior Development Sudio IDE 5.5
User’s Guide Profiler Supplement.

5. It may be necessary to increase the heap size to accommodate the profiler data
collection. This can be set in the linker command file by changing the value of
__heap _size.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 227

Profiler

6. Enable profiling by setting the Gener ate code for profiling option in the M 56800E
Processor settings panel or by using the profile on | off pragmato select individual
functions to profile.

NOTE For aprofiler example, see the profiler examplein this path:
{CodeWarrior path} (CodeWarrior Examples)\
SimpleProfiler

228 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

11

Inline Assembly Language
and Intrinsics

The CodeWarrior™ compiler supports inline assembly language and intrinsic functions.
This chapter explains the IDE implementation of Freescale assembly language, with
regard to DSP56800E development. It also explains the relevant intrinsic functions.

This chapter contains these sections:

¢ Inline Assembly L anguage on page 229
¢ |ntrinsic Functions on page 234

Inline Assembly Language

This section explains how to use inline assembly language. It contains these sections:

¢ |nline Assembly Overview on page 229

¢ Assembly L anguage Quick Guide on page 230

¢ Calling Assembly L anguage Functions from C Code on page 232
¢ Calling Functions from Assembly L anguage on page 234

Inline Assembly Overview

To specify assembly-language interpretation for ablock of codein your file, usethe asm
keyword and standard DSP56800E instruction mnemonics.

NOTE To make sure that the C compiler recognizes the asm keyword, you must clear
the ANSI Keywor ds Only checkbox of the C/C++ Language (C Only)
settings panel.

Differences in calling conventions mean that you cannot re-use DSP56800
assembly code in the DSP56800E compiler.

Listing 11.1 on page 230 shows how to use the asm keyword with braces, to specify that
an entire function is in assembly language.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 229

y
A

Inline Assembly Language and Intrinsics
Inline Assembly Language

Listing 11.1 Function-Level Syntax

asm <function headers>

{
}

<assembly instructionss>

The function header can be any valid C function header; the local declarations are any
valid C local declarations.

Listing 11.2 on page 230 shows how to use the asm keyword with braces, to specify that a
block of statements or a single statement is in assembly language.

Listing 11.2 Statement-Level Syntax

asm { inline assembly statement

}

inline assembly statement

asm {inline assembly statement)

Theinline assembly statement is any valid assembly-language statement.

Listing 11.3 on page 230 shows how to use the asm keyword with parentheses, to specify
that asingle statement is in assembly language. Note that a semicolon must follow the
close parenthesis.

Listing 11.3 Alternate Single-Statement Syntax

asm

(inline assembly statement) ;

NOTE If you apply the asm keyword to one statement or a block of statements within
a function, you must not define local variables within any of theinline-
assembly statements.

Assembly Language Quick Guide

Keep these rules in mind as you write assembly language functions:

230

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language

1. Each statement must be alabel or afunction.
2. A label can be any identifier not already declared as alocal variable.
3. All labels must follow the syntax:

[LocalLabel:]

Listing 11.4 on page 231 illustrates the use of |abels.

Labels in M56800E Assembly

Listing 11.4
x1l: add
X2

add
x3 add

x0,vy1l,a

x0,v1l,a
x0,yv1l,a //ERROR, MISSING COLON

4. All instructions must follow the syntax:
((instruction) [operands])
5. Each statement must end with anew line

6. Assembly language directives, instructions, and registers are not case-sensitive. The
following two statements are the same:

add x0,vy0
ADD X0,Y0

7. Comments must have the form of C or C++ comments; they must not begin with the ;
or # characters. _on page 231Listing 11.5 on page 231 shows the valid syntax for
comments.

Listing 11.5 Valid Comment Syntax

move.w x:(r3),y0 # ERROR
add.w x0,vy0 // OK
move .w r2,x: (sp) ; ERROR
adda ro,rl,n /* OK */

8. To optimize ablock of inline assembly source code, use the inline assembly directive
.optimize iasm on beforethe code block. Then usethe directive
.optimize iasm off attheend of the block. (Omitting .optimize iasm
of £ means that optimizations continue to the end of the function.)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 231

y
A

Inline Assembly Language and Intrinsics
Inline Assembly Language

Listing 11.6

Calling Assembly Language Functions
from C Code

Y ou can call assembly language functions from C just as you would call any standard C
function, using standard C syntax.

Calling Inline Assembly Language Functions

Listing 11.6 on page 232 demonstrates how to create an inline assembly language function
in aC sourcefile. This example adds two 16-bit integers and returns the result.

Notice that you are passing two 16-bit addressestotheadd_int function. You pick up
those addresses in R2 and R3, passing the sum back in YO.

Sample Code - Creating an Inline Assembly Language Function

asm int add int(int * i, int * j)

{

move.w
move.w

x:(r3),x0

add x0,vy0
// int result returned in yo0

rts
}
Listing 11.7 on page 232 shows the C calling statement for this inline-assembly-language
function.
Listing 11.7 Sample Code - Calling an Inline Assembly Language Function
int x = 4, vy = 2;
y = add_int(&x, &y); /* Returns 6 */
Calling Pure Assembly Language Functions
If you want C codeto call assembly languagefiles, you must specify a SECTION mapping
for your code, for appropriate linking. Y ou must also specify a memory space location.
Usually, this means that the ORG directive specifies code to program memory (P) space.
In the definition of an assembly language function, the GLOBAL directive must specify the
current-section symbols that need to be accessible by other sections.
232 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Inline Assembly Language

Listing 11.8 on page 233 is an example of acomplete assembly language function. This

function writestwo 16-bit integersto program memory. A separate function isrequired for
writing to P: memory, because C pointer variables allow access only to X: data memory.

Thefirst parameter is a short value and the second parameter isthe 16-bit address.

Listing 11.8 Sample Code - Creating an Assembly Language Function

SECTION user

ORG P:

GLOBAL

Fpmemwrite

Fpmemwrite:

MOVE
NOP
MOVE

rts

ENDSEC
END

Y1l,RO

YO0,P: (RO) +

;"my_asm.asm”

;map to user defined section in CODE
;put the following program in P
;memory

;This symbol is defined within the
;current section and should be
;accessible by all sections

;Set up pointer to address
;Pipeline delay for RO

;Write 16-bit value to address
;pointed to by RO in P: memory and
;post-increment RO

;return to calling function

;End of section
;End of source program

Listing 11.9 on page 233 shows the C calling statement for this assembly language

function.

Listing 11.9 Sample Code - Calling an Assembly Language Function from C

void pmemwrite (short,

void main(void)

{

// ...other code

short);/* Write a value into P: memory */

// Write the value given in the first parameter to the address
// of the second parameter in P: memory

pmemwrite (

// other code...

(short) OxXE9CS8,

(short) 0x0010) ;

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 233

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Calling Functions from Assembly
Language
Assembly language programs can call functions written in either C or assembly language.

« From within assembly language instructions, you can call C functions. For example,
if the C function definition is:

void foot (void) {
/* Do something */
!

Y our assembly language calling statement is:
jsr Ffoot

« From within assembly language instructions, you can call assembly language
functions. For example, if pmemwrite isan assembly language function, the
assembly language calling statement is:

jsr Fpmemwrite

Intrinsic Functions

This section explains CodeWarrior intrinsic functions. It consists of these sections:
¢ Implementation on page 234
« Fractional Arithmetic on page 235

* [ntrinsic Functions for Math Support on page 236

* Modulo Addressing Intrinsic Functions on page 267

Implementation

The CodeWarrior IDE for DSP56800E has intrinsic functions to generate inline-assembly-
language instructions. These intrinsic functions are a CodeWarrior extension to ANSI C.

Useintrinsic functions to target specific processor instructions. For example:

« Intrinsic functions let you passin data for specific optimized computations. For
example, ANSI C data-representation rules may make certain calculations
inefficient, forcing the program to jump to runtime math routines. Such calculations
would be coded more efficiently as assembly language instructions and intrinsic
functions.

« Intrinsic functions can control small tasks, such as enabling saturation. One method
is using inline assembly language syntax, specifying the operation in an asm block,

234 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

every time that the operation is required. But intrinsic functions let you merely set
the appropriate bit of the operating mode register.

The IDE implements intrinsic functions asinline C functionsin file
intrinsics 56800E.h, inthe MSL directory tree. These inline functions contain
mostly inline assembly language code. An exampleisthe abs s intrinsic, defined as:

Listing 11.10 Example Code - Definition of Intrinsic Function: abs_s

#define

abs_s(a) _ abs_s(a)
/* BBS S */

inline Wordlé __ abs s(register Wordlé svarl)

{
/

% %k X o F 3k %k X X X X

Defn: Absolute value of a 16-bit integer or fractional value

returning a 16-bit result.
Returns $7fff for an input of $8000

DSP56800E instruction syntax: abs FFF

Allowed src regs: FFF
Allowed dst regs: (same)

Assumptions: OMR's SA bit was set to 1 at least 3 cycles
before this code.

asm(abs svarl) ;
return svarl;

Fractional Arithmetic

Many of the intrinsic functions use fractional arithmetic with implied fractional values.
Animplied fractional value is a symbol declared as an integer type, but calculated as a
fractional type. Datain amemory location or register can be interpreted as fractional or
integer, depending on program needs.

All intrinsic functions that generate multiply or divide instructions perform fractional
arithmetic on implied fractional values. (Theseintrinsic functions are DIV, MPY, MAC,
MPY R, and MACR) The relationship between a 16-bit integer and a fractiona vaueis:

Fractional Value = Integer Value/ (21°)
The relationship between a 32-bit integer and afractional value is similar:
Fractional Value = Long Integer Value / (2°1)

Table 11.1 on page 236 on page 236 shows how 16- and 32-bit values can be interpreted
as either fractiona or integer values.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 235

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Table 11.1 Interpretation of 16- and 32-bit Values

Type Hex Integer Value | Fixed-point Value
short int 0x2000 8192 0.25
short int 0xEO00 -8192 -0.25
long int 0x20000000 536870912 0.25
long int 0xE0000000 -536870912 -0.25

NOTE Intrinsic functions us these macros:

Word16. — A macro for signed short.
Word32. — A macro for signed long.

Intrinsic Functions for Math Support

Table 11.2 on page 237 lists the math intrinsic functions. See section “Modulo Addressing
Intrinsic Functions.” for explanations of the remaining intrinsic functions.

For the latest information about intrinsic functions, refer to file
intrinsics 56800E.h.

236 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics

Intrinsic Functions

Table 11.2 Intrinsic Functions for DSP56800E

Category Function Category (cont.) | Function (cont.)
Absolute/ abs_s on page 239 Multiplication/ mac_r on
Negate on MAC on page 250 page 250
page 239
negate on page 239 msu_r on
page 251
L_abs on page 240 mult on page 252
L_negate on mult_r on
page 240 page 252
Addition/ add on page 241 L_mac on
Subtraction on page 253
page 241
sub on page 241 L_msu on
page 253
L_add on page 242 L_mult on
page 254
L_sub on page 243 L_mult_Is on
page 255

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 237

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Table 11.2 Intrinsic Functions for DSP56800E (continued)

Category Function Category (cont.) | Function (cont.)
Control on stop on page 243 Normalization on ffs_s on page 255
page 243 page 255
wait on page 244 norm_s on.
page 256
turn_off conv_rndg ffs_l on page 256
on page 244
turn_off sat on norm_|l on
page 245 page 257
turn_on_conv_rndg | Rounding on. round on page 258
on page 245 page 258
turn_on_sat on. Shifting on. shl on page 259
page 245 page 258
Deposit/ extract_h on shlftNs on
Extract on page 246 page 260
page 245
extract | on shifts on page 260
page 246
L_deposit_h on shr on page 261
page 247
L_deposit_| on shr_r on page 262
page 247
Division on div_s on page 248 shrtNs on
page 247 page 263

div_s4g on
page 248

div_lIs on page 249

div_Is4qg on
page 249

L_shl on page 263

L_shlftNs on
page 264

L_shlfts on
page 265

L_shr on page 265

L_shr ron
page 266

L_shrtNs on
page 267

238

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

Absolute/Negate
The intrinsic functions of the absolute-value/negate group are:
« abs son page 239
* negate on page 239
e L_abson page 240
e L_negate on page 240

abs_s

Absolute value of a 16-hit integer or fractional value returning a 16-bit result. Returns
Ox7FFF for an input of 0x8000.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé abs s (Wordlé svarl)

Example
int result, sl = 0xXE000; /* - 0.25 */
result = abs s(sl);

// Expected value of result: 0x2000 = 0.25

negate

Negates a 16-hit integer or fractional value returning a 16-bit result. Returns Ox7FFF for
an input of 0x8000.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé negate (Wordlé svarl)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 239

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Example
int result, sl = 0xXE000; /* - 0.25 */
result = negate(sl);

// Expected value of result: 0x2000 = 0.25

L _abs

Absolute value of a 32-hit integer or fractional value returning a 32-bit result. Returns
Ox7FFFFFFF for an input of 0x80000000.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_abs (Word32 lvarl)

Example

long result, 1 = 0xE0000000; /* - 0.25 */
result = L abs(sl);

// Expected value of result: 0x20000000 = 0.25

L_negate

Negates a 32-bit integer or fractional value returning a 32-bit result. Returns Ox7FFFFFFF
for an input of 0x80000000.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L negate(Word32 lvarl)

Example

long result, 1 = 0xE0000000; /* - 0.25 */

240 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

result = L negate(sl);

// Expected value of result: 0x20000000 = 0.25

Addition/Subtraction
Theintrinsic functions of the addition/subtraction group are:
 add on page 241
e sub on page 241
« L_add on page 242
e L_sub on page 243

add
Addition of two 16-bit integer or fractional values, returning a 16-bit result.
Assumptions
OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Wordlé add(Wordlé src_dst, Wordlé src2)
Example
short sl = 0x4000; /* 0.5 */
short s2 = 0x2000; /* 0.25 */
short result;
result = add(sl,s2);
// Expected value of result: 0x6000 = 0.75
sub

Subtraction of two 16-bit integer or fractional values, returning a 16-bit result.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 241

A 4
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé sub (Wordlé src _dst, Wordlé src2)

Example
short s1 = 0x4000; /* 0.5 */
short s2 = 0xE000; /* -0.25 */

short result;

result = sub(sl,s2);

// Expected value of result: 0x6000 = 0.75

L_add
Addition of two 32-hit integer or fractional values, returning a 32-hit result.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L add(Word32 src dst, Word32 src2)

Example
long la = 0x40000000; /* 0.5 =/
long lb = 0x20000000; /* 0.25 */

long result;

result = L add(la,lb);
// Expected value of result: 0x60000000 = 0.75

242 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

L_sub
Subtraction of two 32-bit integer or fractional values, returning a 32-bit result.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Word32 L sub(Word32 src dst, Word32 src2)

Example
long la = 0x40000000; /* 0.5 */

long 1b

0xE0000000; /* -0.25 */

long result;

result = L sub(la,lb);
// Expected value of result: 0x60000000 = 0.75

Control
The intrinsic functions of the control group are:

* stop on page 243
* wait on page 244
« turn_off _conv_rndg on page 244

 turn_off_sat on page 245
e turn_on_conv_rndg on page 245

e turn_on_sat on page 245

stop

Generates a STOP instruction which places the processor in the low power STOP mode.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 243

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Prototype

void stop(void)

Usage

stop () ;

wait

Generates a WAIT instruction which places the processor in the low power WAIT mode.

Prototype

void wait (void)

Usage

wait () ;

turn_off_conv_rndg

Generates a sequence for disabling convergent rounding by setting the R bit in the OMR
register and waiting for the enabling to take effect.

NOTE

NOTE If convergent rounding is disabled, the assembler performs 2's complement
rounding.

Prototype

void turn off conv_rndg(void)

Usage

turn off conv_rndg() ;

244

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

turn_off_sat

Generates a sequence for disabling automatic saturation in the MAC Output Limiter by
clearing the SA bit in the OMR register and waiting for the disabling to take effect.

Prototype

void turn off sat (void)

Usage

turn off sat();

turn_on_conv_rndg

Generates a sequence for enabling convergent rounding by clearingthe R hitinthe OMR
register and waiting for the enabling to take effect.

Prototype

void turn on conv_rndg(void)

Usage

turn _on_conv_rndg () ;

turn_on_sat

Generates a sequence for enabling automatic saturation in the MAC Output Limiter by
setting the SA hit in the OMR register and waiting for the enabling to take effect.

Prototype

void turn_on sat (void)
Usage

turn on_sat () ;

Deposit/Extract

Theintrinsic functions of the deposit/extract group are:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 245

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

e extract_h on page 246

e extract | on page 246
L_deposit_h on page 247

e L_deposit_| on page 247

extract_h

Extracts the 16 MSBs of a 32-hit integer or fractional value. Returns a 16-bit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion. Corresponds to truncation when applied to fractional values.

Prototype

Wordlé extract h(Word32 lsrc)

Example
long 1 = 0x87654321;

short result;

result = extract h(l);

// Expected value of result: 0x8765

extract_|

Extracts the 16 L SBs of a 32-hit integer or fractional value. Returns a 16-hit value. Does
not perform saturation. When an accumulator is the destination, zeroes out the LSP
portion.

Prototype

Wordlé extract 1 (Word32 lsrc)

Example
long 1 = 0x87654321;

short result;

result = extract 1(1);

246

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

// Expected value of result: 0x4321

L _deposit_h

Deposits the 16-bit integer or fractional value into the upper 16 bits of a 32-bit value, and
zeroes out the lower 16 bits of a 32-bit value.

Prototype

Word32 L _deposit h(Wordlé ssrc)

Example
short sl = Ox3FFF;

long result;

result = L deposit h(sl);
// Expected value of result: 0x3f£f£f0000

L _deposit_|

Deposits the 16-bit integer or fractional value into the lower 16 bits of a 32- bit value, and
sign extends the upper 16 bits of a 32-bit value.

Prototype
Word32 L _deposit 1 (Wordlé ssrc)

Example
short sl = O0x7FFF;

long result;

result = L deposit 1(sl);
// Expected value of result: 0x00007FFF

Division

Theintrinsic functions of the division group are:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 247

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

e div_son page 248
e div_s4g on page 248
e div_Ison page 249

e div_ls4q on page 249

div_s
Single quadrant division, that is, both operands are of positive 16-hit fractional values,
returning a 16-bit result. If both operands are equal, returns Ox7FFF (occurs naturally).
NOTE Does not check for division overflow or division by zero.
Prototype
Wordlé div_s(Wordlé s numerator, Wordlé s denominator)
Example
short s1=0x2000; /* 0.25 */
short s2=0x4000; /* 0.5 */
short result;
result = div_s(sl,s2);
// Expected value of result: 0.25/0.5 = 0.5 = 0x4000
div_s4q
Four quadrant division of two 16-hit fractional values, returning a 16-bit result.
NOTE Does not check for division overflow or division by zero.
Prototype
Wordlé div_s4g(Wordlé s numerator, Wordlé s denominator)
Example
short s1=0xE000;/* -0.25 */
248 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

short s2=0xC000;/* -0.5 */

short result;

result = div_s4qg(sl,s2);
// Expected value of result: -0.25/-0.5 = 0.5 = 0x4000

div_Is
Single quadrant division, that is, both operands are positive two 16-bit fractional values,
returning a 16-bit result. If both operands are equal, returns Ox7FFF (occurs naturally).
NOTE Does not check for division overflow or division by zero.
Prototype
Wordlé div_1ls(Word32 1 _numerator, Wordlé s_denominator)
Example
long 1 =0x20000000;/* 0.25 */
short s2=0x4000;/* 0.5 */
short result;
result = div_1s(1,s2);
// Expected value of result: 0.25/0.5 = 0.5 = 0x4000
div_Is4q

Four quadrant division of a 32-bit fractional dividend and a 16-bit fractional divisor,
returning a 16-hit result.

NOTE Does not check for division overflow or division by zero.

Prototype

Wordlé div_1ls4g(Word32 1 numerator, Wordlé s_denominator)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 249

3
4

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Example
long 1 =0xE0000000;/* -0.25 */
short s2=0xC000;/* -0.5 */

short result;

result = div_1ls4qg(sl,s2);
// Expected value of result: -0.25/-0.5 = 0.5 = 0x4000

Multiplication/MAC

Theintrinsic functions of the multiplication/MAC group are:
e mac r on page 250
* msu_r on page 251
¢ mult on page 252
e mult_r on page 252
e L_mac on page 253
e L_msu on page 253

¢ L_mult on page 254
L_mult_|son page 255

mac_r

Multiply two 16-bit fractional values and add to 32-bit fractional value. Round into a 16-

bit result, saturating if necessary. When an accumulator is the destination, zeroes out the
L SP portion.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’'sR bit was set to 1 at least 3 cycles before this code, that is, 2’ s complement
rounding, not convergent rounding.

Prototype

Wordlé mac_r (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

250

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

Example
short sl1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */
short result;

long Acc = 0x0000FFFF;

result = mac_r(Acc,sl,s2);

// Expected value of result: 0xE001

msu_r

Multiply two 16-hit fractional values and subtract this product from a 32-hit fractional
value. Round into a 16-hit result, saturating if necessary. When an accumulator is the
destination, zeroes out the L SP portion.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

OMR’'sR bit was set to 1 at least 3 cycles before this code, that is, 2’ s complement
rounding, not convergent rounding.

Prototype

Wordlé msu_r (Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example
short s1 = 0xC000;/* - 0.5 */

short s2 = 0x4000;/* 0.5 */

short result;

long Acc = 0x20000000;

result = msu r(Acc,sl,s2);

// Expected value of result: 0x4000

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 251

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

mult
Multiply two 16-bit fractional values and truncate into a 16-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out
the LSP portion.
Assumptions
OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Wordlé mult (Wordlé sinpl, Wordlé sinp2)
Example
short sl = 0x2000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */
short result;
result = mult(sl,s2);
// Expected value of result: 0.625 = 0x0800
mult_r
Multiply two 16-hit fractional values, round into a 16-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000. When an accumulator is the destination, zeroes out
the LSP portion.
Assumptions
OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
OMR’'sR bit was set to 1 at least 3 cycles before this code, that is, 2’ s complement
rounding, not convergent rounding.
Prototype
Wordlé mult r (Wordlé sinpl, Wordlé sinp2)
252 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

Example
short sl = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

short result;

result = mult r(sl,s2);

// Expected value of result: 0.0625 = 0x0800

L_mac
Multiply two 16-bit fractional values and add to 32-bit fractional value, generating a 32-
bit result, saturating if necessary.
Assumptions
OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Word32 L mac (Word32 laccum, Wordlé sinpl, Wordlé sinp2)
Example
short sl1 = 0xC000;/* - 0.5 */
short s2 = 0x4000;/* 0.5 */
long result, Acc = 0x20000000;/* 0.25 */
result = L mac(Acc,sl,s2);
// Expected value of result: 0
L _msu

Multiply two 16-bit fractional values and subtract this product from a 32-bit fractional
value, saturating if necessary. Generates a 32-bit resullt.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 253

A 4
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L msu(Word32 laccum, Wordlé sinpl, Wordlé sinp2)

Example
short s1 = 0xC000;/* - 0.5 */
short s2 = 0xC000;/* - 0.5 */

long result, Acc = 0;

result = L msu(Acc,sl,s2);

// Expected value of result: 0.25

L_mult

Multiply two 16-bit fractional values generating asigned 32-bit fractional result. Saturates
only for the case of 0x8000 x 0x8000.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L mult (Wordlé sinpl, Wordlé sinp2)

Example
short sl1 = 0x2000;/* 0.25 */

short s2 = 0x2000;/* 0.25 */

long result;

result = L mult(sl,s2);
// Expected value of result: 0.0625 = 0x08000000

254 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

L_mult_Is

Multiply one 32-bit and one-16-bit fractional value, generating a signed 32-bit fractional
result. Saturates only for the case of 0x80000000 x 0x8000.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L mult 1ls(Word32 linpl, Wordlé sinp2)

Example
long 11 = 0x20000000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */

long result;

result = L mult(1ll,s2);
// Expected value of result: 0.625 = 0x08000000

Normalization
Theintrinsic functions of the normalization group are:
« ffs son page 255
e norm_son page 256
« ffs | on page 256
e norm_| on page 257

ffs_s

Computes the number of |eft shifts required to normalize a 16-bit value, returning a 16-bit
result (finds 1st sign bit). Returns a shift count of 31 for an input of 0x0000.

NOTE Does not actually normalize the value! Also seethe intrinsic norm_son
page 256 which handles the case where the input == 0x0000 differently.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 255

A 4
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

Prototype
Wordlé ffs s(Wordlé ssrc)

Example
short s1 = 0x2000;/* .25 */

short result;

result = ffs s(sl);

// Expected value of result: 1

norm_s

Computes the number of |eft shifts required to normalize a 16-bit value, returning a 16-bit
result. Returns a shift count of 0 for an input of 0x0000.

NOTE Does not actualy normalize the value! This operation is not optimal on the
DSP56800E because of the case of returning O for an input of 0x0000. See the
intrinsic ffs_s on page 255 which is more optimal but generates a different
value for the case where the input == 0x0000.

Prototype

Wordlé norm_ s (Wordlé ssrc)

Example
short sl = 0x2000;/* .25 */

short result;

result = norm s(sl);

// Expected value of result: 1

ffs_|

Computes the number of |eft shifts required to normalize a 32-bit value, returning a 16-bit
result (finds 1st sign bit). Returns a shift count of 31 for an input of 0x00000000.

256

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

NOTE Does not actualy normalize the value! Also, seetheintrinsic norm_| on
page 257 which handles the case where the input == 0x00000000 differently.

Prototype
Wordlée ffs 1(Word32 lsrc)

Example
long 11 = 0x20000000;/* .25 */

short result;

result = ffs 1(11);
// Expected value of result: 1

norm_|

Computes the number of |eft shifts required to normalize a 32-bit value, returning a 16-bit
result. Returns a shift count of 0 for an input of 0x00000000.

NOTE Does not actualy normalize the value! This operation is not optimal on the
DSP56800E because of the case of returning O for an input of 0x00000000. See
theintrinsic ffs_| on page 256 which is more optimal but generates a different
value for the case where the input == 0x00000000.

Prototype
Wordlé norm 1 (Word32 lsrc)

Example
long 11 = 0x20000000;/* .25 */

short result;

result = norm 1(11);

// Expected value of result: 1

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 257

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Rounding

Theintrinsic function of the rounding group is:
« round on page 258

round

Rounds a 32-hit fractional value into a 16-bit result. When an accumulator is the
destination, zeroes out the L SP portion.
Assumptions

OMR’'sR bit was set to 1 at least 3 cycles before this code, that is, 2’'s complement
rounding, not convergent rounding.

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé round (Word32 lvarl)

Example

long 1 = 0x12348002;/*if low 16 bits = OXFFFF > 0x8000 then
add 1 */

short result;

result = round(1l);

// Expected value of result: 0x1235

Shifting
Theintrinsic functions of the shifting group are:
« shl on page 259
 shiftNs on page 260
« shifts on page 260
¢ shr on page 261
« shr_r on page 262
« shrtNson page 263

258

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

e L_shl on page 263
L_shiftNs on page 264
e L_shlftson page 265
L_shr on page 265
L_shr_r on page 266

L_shrtNs on page 267

shl

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
|eft shift is performed. Otherwise, aright shift is performed. Saturation may occur during a
left shift. When an accumulator is the destination, zeroes out the L SP portion.

NOTE Thisoperationis not optimal on the DSP56800E because of the saturation
reguirements and the bidirectional capability. See the intrinsic shiftNs on
page 260 or shifts on page 260 which are more optimal.

Assumptions

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Wordlé shl (Wordlé sval2shft, Wordlé s shftamount)

Example

short result;
short sl = 0x1234;
short s2 = 1;

result = shl(sl,s2);
// Expected value of result: 0x2468

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 259

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

shiftNs

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, aright shift is performed. Saturation does not occur
during aleft shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

If s shftamount is positive and the value in the
lower 5 bitsof s_shftamount isgreater than 15, the
result isO.

If s _shftamount is negative and the absolute value
in the lower 5 bits of s_shftamount is greater than
15, theresult is O if sval2shft is positive, and
OXFFFF if sval2shft is negative.

Prototype

Wordlé shlftNs (Wordlé sval2shft, Wordlé s_shftamount)

Example

short result;
short sl = 0x1234;
short s2 = 1;

result = shlftNs(sl,s2);
// Expected value of result: 0x2468

shlfts

Arithmetic left shift of 16-bit value by a specified shift amount. Saturation does occur
during aleft shift if required. When an accumulator is the destination, zeroes out the LSP
portion.

260

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

NOTE Thisisnot abidirectional shift.

Assumptions
Assumed s_shftamount is positive.
OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data

ALU results enabled.

Prototype
Wordlé shlfts(Wordlé sval2shft, Wordlé s shftamount)

Example

short result;
short sl = 0x1234;
short s2 = 3;

result = shlfts(sl,s2);
// Expected value of result: 0x91a0

shr

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. Saturation may occur during a
|eft shift. When an accumulator is the destination, zeroes out the L SP portion.

NOTE Thisoperationisnot optima on the DSP56800E because of the saturation
requirements and the bidirectional capability. See theintrinsic shrtNs on
page 263 which is more optimal.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype
Wordlé shr (Wordlé sval2shft, Wordlé s_shftamount)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 261

A 4
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

Example

short result;
short s1 = 0x2468;
short s2= 1;

result = shr(sl,s2);

// Expected value of result: 0x1234

shr_r
Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. If aright shift is performed,
then rounding performed on result. Saturation may occur during a left shift. When an
accumulator is the destination, zeroes out the L SP portion.
NOTE Thisoperationis not optimal on the DSP56800E because of the saturation
requirements and the bidirectional capability. See the intrinsic shrtNs on
page 263 which is more optimal.
Assumptions
OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.
Prototype
Wordlé shr r(Wordlé s _val2shft, Wordlé s shftamount)
Example
short result;
short sl = 0x2468;
short s2= 1;
result = shr(sl,s2);
// Expected value of result: 0x1234
262 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

shrtNs

Arithmetic shift of 16-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. Saturation does not occur
during aleft shift. When an accumulator is the destination, zeroes out the LSP portion.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

If s _shftamount is positive and the value in the
lower 5 bitsof s_shftamount isgreater than 15, the
result is O if sval2shft is positive, and OXFFFF is
sval2shft is negative.

If s _shftamount is negative and the absolute value
in the lower 5 bits of s_shftamount is greater than
15, theresult isO.

Prototype
Wordlé shrtNs (Wordlé sval2shft, Wordlé s shftamount)

Example
short result;
short sl = 0x2468;

short s2= 1;

result = shrtNs(sl,s2);
// Expected value of result: 0x1234

L _shl

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
|eft shift is performed. Otherwise, aright shift is performed. Saturation may occur during a
|eft shift. When an accumulator is the destination, zeroes out the L SP portion.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 263

A 4
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

NOTE Thisoperationis not optimal on the DSP56800E because of the saturation
reguirements and the bidirectional capability. See the intrinsic L_shiftNs on
page 264 or L_shifts on page 265 which are more optimal.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L_shl (Word32 lval2shft, Wordlée s_shftamount)

Example
long result, 1 = 0x12345678;
short s2 = 1;

result = L shl(1l,s2);

// Expected value of result: 0x2468ACF0

L_shlftNs

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
left shift is performed. Otherwise, aright shift is performed. Saturation does not occur
during aleft shift.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

Prototype

Word32 L _shlftNs (Word32 lval2shft, Wordlé s_shftamount)

Example
long result, 1 = 0x12345678;
short s2= 1;

result = L shlftNs(1l,s2);
// Expected value of result: 0x2468ACFO0

264

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

L_shlfts

Arithmetic left shift of 32-bit value by a specified shift amount. Saturation does occur
during aleft shift if required.

NOTE Thisisnot abidirectiona shift.

Assumptions

Assumed s_shftamount is positive.

OMR’s SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L shlfts(Word32 lval2shft, Wordlé s shftamount)

Example
long result, 1 = 0x12345678;
short sl = 3;

result = shlfts(l, s1);
// Expected value of result: 0x91A259E0

L _shr

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. Saturation may occur during a
|eft shift. When an accumulator is the destination, zeroes out the L SP portion.

NOTE Thisoperationisnot optimal on the DSP56800E because of the saturation
reguirements and the bidirectional capability. See theintrinsic L_shrtNson
page 267 which is more optimal.

Assumptions

OMR's SA hit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 265

A 4
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

Prototype
Word32 L_shr (Word32 lval2shft, Wordlée s_shftamount)

Example
long result, 1 = 0x24680000;
short s2= 1;

result = L shrtNs(l,s2);
// Expected value of result: 0x12340000

L shrr

Arithmetic shift of 32-bit value by a specified shift amount. If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. If aright shift is performed,
then rounding performed on result. Saturation may occur during aleft shift.
Assumptions

OMR's SA bit was set to 1 at least 3 cycles before this code, that is, saturation on data
ALU results enabled.

Prototype

Word32 L _shr r(Word32 lval2shft, Wordlé s_shftamount)

Example
long 11 = 0x41111111;
short s2 = 1;

long result;

result = L shr r(l1,s2);

// Expected value of result: 0x20888889

266 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

L_shrtNs

Arithmetic shift of 32-bit value by a specified shift amount.If the shift count is positive, a
right shift is performed. Otherwise, aleft shift is performed. Saturation does not occur
during aleft shift.

NOTE Ignores upper N-5 bits of s_shftamount except the sign bit (MSB).

Prototype
Word32 L shrtNs(Word32 lval2shft, Wordlé s shftamount)

Example
long result, 1 = 0x24680000;

short s2= 1;

result = L shrtNs(1l,s2);
// Expected value of result: 0x12340000

Modulo Addressing Intrinsic Functions

A modulo buffer is a buffer in which the data pointer loops back to the beginning of the
buffer once the pointer address value exceeds a specified limit.

Figure 11.1 on page 268 depicts a modulo buffer with the limit six. Increasing the pointer
address value to 0x106 makesit point to the same datait would point to if its address value
were 0x100.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 267

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Figure 11.1 Example of a Modulo Buffer

Address | Data
0x100 0.68
0x101 0.73
0x102 0.81
0x103 0.86
0x104 0.90
0x105 0.95

The CodeWarrior C compiler for DSP56800E uses intrinsic functions to create and
manipulate modulo buffers. Normally, a modulo operation, such as the % operator,
requires aruntime function call to the arithmetic library. For normally timed critical DSP
loops, this binary operation imposes a large execution-time overhead.

The CodeWarrior implementation, however, replaces the runtime call with an efficient
implementation of circular-address modification, either by using hardware resources or by
manipulating the address mathematically.

Processors such as the DSP56800E have on-chip hardware support for modulo buffers.
Modulo control registers work with the DSP pointer update addressing modes to access a
range of addresses instead of a continuous, linear address space. But hardware support
imposes strict requirements on buffer address alignment, pointer register resources, and
limited modulo addressing instructions. For example, RO and R1 are the only registers
available for modulo buffers.

Accordingly, the CodeWarrior C compiler uses awell-defined set of instrinsic APIsto
implement modulo buffers.

Modulo Addressing Intrinsic Functions

The intrinsic functions for modulo addressing are:
e __mod_init on page 269

. mod_initint16 on page 269

. mod_start on page 270

¢ __mod_access on page 270

. mod_update on page 271

« __mod_stop on page 271

. mod_getint16 on page 271
¢ _ mod_setintl6 on page 272

268

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

. mod_error on page 272

__mod_init

Initialize amodul o buffer pointer with arbitrary data using the address specified by the
<addr_expr>. This function expects a byte address. <addr_expr> isan arbitrary C
expression which normally evaluates the address at the beginning of the modulo buffer,
athough it may be any legal buffer address. The <mod_desc> evaluates to acompile time
constant of either 0 or 1, represented by the modulo pointers RO or R1, respectively. The
<mod_sz> is acompile time integer constant representing the size of the modulo buffer in
bytes. The <data_sz>isacompiletimeinteger constant representing the size of data being
stored in the buffer in bytes. <data_sz> is usually derived from the sizeof() operator.

The_mod_init function may be called independently for each modulo pointer register.
If __mod_error has not been previously called, no record of __mod_init errors are saved.

If __mod_error has been previously caled, __mod_init may set one of the error condition
in the static memory location defined by __mod_error. (See__mod_error description for a
complete list of error conditions).

Prototype

void _ mod init (
int <mod descs>,
void * <addr_ exprs,
int <mod sz>,

int <data_sz>);

Example

Initialize amodulo buffer pointer with a buffer size of 3 and where each elementisa
structure:

~ _mod _init (0, (void *)&struct buf[0], 3, sizeof (struct
mystruct));

__mod_initint16

Initialize modulo buffer pointer with integer data. The __mod_initint16 function behaves
similarly tothe __mod_init function, except that word addresses are used to initialize the
modulo pointer register.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 269

A 4
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

Prototype

void mod initintlé(
int <mod_descs>,

int * <addr exprs>,

int <mod sz>);

Example
Initialize an integer modulo buffer pointer with a buffer size of 10.
~_mod initintl6(0, &int buf[9], 10);

__mod_start

Write the modulo control register. The __mod_start function simply writes the modulo
control register (M01) for each modulo pointer register which has been previously
initialized. The values written to MO1 depends on the size of the modulo buffer and which
pointers have been initialized.

Prototype

void _ mod start(void);

__mod_access

Retrieve the modulo pointer. The__mod_access function returns the modul o pointer value
specified by <mod_desc> in the R2 register, as per caling conventions. The value
returned is a byte address. The datain the modulo buffer may be read or written by a cast
and dereference of the resulting pointer.

Prototype

void *_ mod access(int <mod_desc>) ;

Example
Assign avalue to the modulo buffer at the current pointer.

*((char *) mod access(0)) = (char)i;

270

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

__mod_update

Update the modulo pointer. The___mod_update function updates the modulo pointer by
the number of data type units specified in <amount>. <amount> may be negative. Of
course, the pointer will wrap to the beginning of the modulo buffer if the pointer is
advanced beyond the modulo boundaries. <amount> must be a compile time constant.

Prototype

void _ mod update(int <mod_desc>, int <amounts) ;

Example
Advance the modulo pointer by 2 units.

__mod_update (0, 2);

__mod_stop

Reset modulo addressing to linear addressing. This function writes the modulo control
register with avalue which restore linear addressing to the RO and R1 pointer registers.

Prototype

void mod stop(int <mod desc);

__mod_getintl6

Retrieve a 16-bit signed value from the modul o buffer and update the modulo pointer. This
function returns an integer value from the location pointed to by the modulo pointer. The
function then updates the modulo pointer by <amount> integer units (<amount>*2 bytes).
<amount> must be a compile time constant.

Prototype

int _ mod getintlé(int <mod desc>, int <amount>);

Example

Retrieve an integer value from a modulo buffer and update the modulo buffer pointer by
one word.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 271

A 4
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

int y;
y = __mod getintle (0, 1);

__mod_setintl6

Write a 16-bit signed integer to the modulo buffer and update the pointer. This function

evaluates <int_expr> and copies the value to the location pointed to by the modulo

pointer. The modulo pointer is then updated by <amount>. <amount> must be a compile

time constant.

Prototype

int _ mod_setintlé6(int <mod_desc>, int <int_ exprs>, int
<amount>) ;

Example

Write the modulo buffer with avalue derived from an expression, do not update modulo
pointer.

__mod_setintlé6(0, getrandomint(), 0);

__mod_error

Set up amodulo error variable. This function registers a static integer address to hold the
error results from any of the modulo buffer API calls. The function returns Q if it is
successful, 1 otherwise. The argument must be the address of a static, global integer
variable. Thisvariable holds the result of calling each of the previously defined API
functions. This allows the user to monitor the status of the error variable and take action if
the error variable is non-zero. Typically, the user would use __mod_error during
development and remove it once debugging is complete. __mod_error generates no code,
athough the error variable may occupy aword of memory. A non-zero value in the error
variableindicates a misuse of the one of the API functions. Once the error variableis set it
isreset when __mod_stop is called. The error variable contains the error number of the
last error. A successful call to an API function will not reset the error variable; only
__mod_stop will reset the error variable.

Prototype

int _ mod error(int * <static_object_ addrs>);

272

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

Example
Register the error number variable

static int myerrno;

assert (_ mod error (&myerrno) == 0) ;

Modulo Buffer Examples

Listing 11.11 on page 273 and Listing 11.12 on page 274.are two modulo buffer
examples.

Listing 11.11 Modulo Buffer Example 1

#pragma define_section DATA INT_MODULO ".data_int_modulo"

/* Place the buffer object in a unique section so the it can be aligned
properly in the linker control file. */

#pragma section DATA INT MODULO begin

int int buf[10];
#pragma section DATA INT MODULO end

/* Convenient
defines for modulo descriptors */

#define MO O
#define M1 1

int main (void)
{
int 1i;

/* Modulo buffer will be initialized. RO will be the modulo pointer
register. The buffer size is 10 units. The unit size is ‘sizeof (int)’.
*/

~ _mod _init (MO, (void *)&int buf[0], 10, sizeof (int));
/* Write the modulo control register */

~_mod_start () ;

/* Write int buf [0] through int buf[9]. RO initially points at

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 273

4
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

int buf [0] and wraps when the pointer value exceeds int buf[9]. The
pointer is updated by 1 unit each time through the loop */

for (i=0;

{

* ((int

1<100; i++)

*) mod access(MO0)) = i;
__mod_update (MO,
1);

}

/* Reset modulo control register to linear addressing mode */

~_mod_stop () ;
}
Listing 11.12 Modulo Buffer Example 2
/* Set up a static location to save error codes */
if (! _ mod error(&err codes)) {
printf

(*__mod_error set up failed\n”);

}

/* Initialize a modulo buffer pointer, pointing to an array of 10 ints.

*/
__mod initintl6 (MO, &int buf[9], 10);
/* Check for success of previous call */

if (err_code) {
printf (“_ mod initintlé failed\n”) };

__mod_start () ;

/* Write modulo buffer with the result of the expression “i”.
Decrement the buffer pointer for each execution of the loop.

The modulo buffer wraps from index 0 to 9 through the entire execution
of the loop. */

for (1=100;

274 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

_ _mod_setintleé (MO, 1, -1);

~_mod_stop () ;

Points to Remember

As you use modulo buffer intrinsic functions, keep these points in mind:

1.

Y ou must align modulo buffers properly, per the constraints that the M56800E User’s
Manual explains. Thereis no run-time validation of alignment. Using the modulo
buffer API on unaligned buffers will cause erratic, unpredictable behavior during data
accesses.

Caling __mod_start () towriteto the modulo control register effectively changes
the hardware’ s global-address-generation state. This change of state affects all user
function calls, run-time supporting function calls, standard library calls, and interrupts.

Y ou must account for any side-effects of enabling modulo addressing. Such aside-
effect isthat RO and R1lupdate in a modulo way.

If you need just one modulo pointer isrequired, use the RO address register. Enabling
the R1 address register for modulo use also enables the RO address register for modulo
use. Thisistrueevenif _ mod _init () or __mod initint16 () havenot
explicitly initialized RO.

A successful API call does not clear the error code from the error variable. Only
function __mod_stop clearsthe error code.

Modulo Addressing Error Codes

If you want to register a static variable for error-code storage, use . mod_error (). In
case of an error occur, this static variable will contain one of the values Table 11.3 on
page 275 explains. Table 11.4 on page 276. lists the error codes possible for each modulo
addressing intrinsic function.

Table 11.3 Modulo Addressing Error Codes

Code Meaning

11 <mod_desc> parameter must be zero or one.

12 RO modulo pointer is already initialized. An extraneous call to
__mod_init or __mod_initint16 to initialize RO has been made.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 275

y
A

Inline Assembly Language and Intrinsics
Intrinsic Functions

Table 11.3 Modulo Addressing Error Codes (continued)

Code Meaning

13 R1 modulo pointer is already initialized. An extraneous call to
__mod_init or __mod_initint16 to initialize R1 has been made.

14 Modulo buffer size must be a compile time constant.

15 Modulo buffer size must be greater than one.

16 Modulo buffer size is too big.

17 Modulo buffer size for RO and R1 must be the same.

18 Modulo buffer data types for RO and R1 must be the same.

19 Modulo buffer has not been initialized.

20 Modulo buffer has not been started.

21 Parameter is not a compile time constant.

22 Attempt to use word pointer functions with byte pointer initialization.

__mod_getintlé and mod setintlé6 were called but mod init
was used for initialization. _ mod_initint16 is required for pointer

initialization.

23 Modulo increment value exceeds modulo buffer size.

24 Attempted use of R1 as a modulo pointer without initializing RO for modulo
use.

Table 11.4 Possible Error Codes

Function Possible Error Code
__mod_init 11, 12, 13, 14, 15, 16, 17, 18, 21
__mod_stop none

__mod_getintle 11, 14, 20, 22, 24
__mod_setintle 11, 14, 20, 22, 24

_ _mod_start none

__mod_access 11, 19, 20, 24

276 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Inline Assembly Language and Intrinsics
Intrinsic Functions

Table 11.4 Possible Error Codes (continued)

Function

Possible Error Code

__mod_update

11, 14, 20, 23, 24

~_mod_initintle

11,12, 13, 14, 15, 16, 17

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 277

wr
4\

Inline Assembly Language and Intrinsics
Intrinsic Functions

278 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

12
ELF Linker

The CodeWarrior™ Executable and Linking Format (ELF) Linker makes a program file
out of the object files of your project. The linker also allows you to manipulate codein
different ways. Y ou can define variables during linking, control the link order to the
granularity of asingle function, change the alignment, and even compress code and data
segments so that they occupy less space in the output file.

All of these functions are accessed through commands in the linker command file (LCF).
The linker command file has its own language complete with keywords, directives, and
expressions, that are used to create the specifications for your output code. The syntax and
structure of the linker command fileis similar to that of a programming language.

This chapter contains the following sections:

¢ Structure of Linker Command Files on page 279
¢ Linker Command File Syntax on page 282

¢ Linker Command File Keyword Listing on page 291

Structure of Linker Command Files

Linker command files contain three main segments:

¢ Memory Segment on page 279
¢ Closure Blocks on page 280
¢ Sections Segment on page 281

A command file must contain a memory segment and a sections segment. Closure
segments are optional.

Memory Segment

In the memory segment, available memory isdivided into segments. The memory segment
format looks like Listing 12.1 on page 279.

Listing 12.1 Sample MEMORY Segment

MEMORY
segment 1 (RWX): ORIGIN 0x8000, LENGTH = 0x1000
segment 2 (RWX): ORIGIN = AFTER(segment 1), LENGTH = 0

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 279

y
A

ELF Linker
Structure of Linker Command Files

data (RW) : ORIGIN = 0x2000, LENGTH = 0x0000
#segment name (RW) : ORIGIN = memory address, LENGTH = segment
#length

#and so on...

}

The first memory segment definition (segment_ 1) can be broken down as follows:

« the (RwWX) portion of the segment definition pertains to the ELF access permission of
the segment. The (RWX) flagsimply read, write, and execute access.

¢ ORIGIN representsthe start address of the memory segment (in this case 0x8000).
¢ LENGTH represents the size of the memory segment (in this case 0x1000).

Memory segments with RWX attributes are placed into P. memory while RW attributes
are placed into X: memory.

If you cannot predict how much space a segment will occupy, you can use the function
AFTER and LENGTH = 0 (unlimited length) to fill in the unknown values.

Closure Blocks

Thelinker is very good at deadstripping unused code and data. Sometimes, however,
symbols need to be kept in the output file even if they are never directly referenced.
Interrupt handlers, for example, are usually linked at special addresses, without any
explicit jJumps to transfer control to these places.

Closure blocks provide away to make symbolsimmune from deadstripping. The closure
istransitive, meaning that symbols referenced by the symbol being closed are also forced
into closure, as are any symbols referenced by those symbols, and so on.

NOTE The closure blocks need to be in place before the SECTIONS definition in the
linker command file.

The two types of closure blocks available are:
¢ Symbol-level
Use FORCE_ACTIVE toinclude asymbol into the link that would not be otherwise
included. An exampleis shownin Listing 12.2 on page 280.

Listing 12.2 Sample Symbol-level Closure Block

FORCE ACTIVE {break handler, interrupt handler, my function}

¢ Section-level

280 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Structure of Linker Command Files

Use KEEP_SECTION when you want to keep a section (usually a user-defined
section) in the link. Listing 12.3 on page 281 shows an example.

Listing 12.3 Sample Section-level Closure Block

KEEP SECTION {.interruptl, .interrupt2}

A variant iISREF_INCLUDE. It keeps asection in thelink, but only if the file whereitis
coming fromisreferenced. Thisisvery useful to include version numbers. Listing 12.4 on
page 281 shows an example of this.

Listing 12.4 Sample Section-level Closure Block With File Dependency

REF_INCLUDE {.version}

Sections Segment

Inside the sections segment, you define the contents of your memory segments, and define
any globa symbolsto be used in the output file.

The format of atypical sections block looks like Listing 12.5 on page 281.

NOTE Asshownin Listing 12.5 on page 281, the . bss section always needs to be
put at the end of a segment or in a standal one segment, because it is not a
loadable section.

Listing 12.5 Sample SECTIONS Segment

SECTIONS ({
.section name

{

}

#the section name is for your reference
#the section name must begin with a '.'

filename.c (.text) #put the .text section from filename.c
filename2.c (.text) #then the .text section from filename2.c
filename.c (.data)
filename2.c (.data)
filename.c (.bss)
filename2.c (.bss)

= ALIGN (0x10); #align next section on 16-byte boundary.

> segment 1

#this means "map these contents to segment 1"

.next_section_ name:

{

more content descriptions

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 281

y
A

ELF Linker
Linker Command File Syntax

} > segment x # end of .next section name definition
end of the sections block

Linker Command File Syntax

This section explains some practical ways in which to use the commands of the linker
command file to perform common tasks.

Alignment

To align data on a specific word-boundary, use the ALIGN on page 293 and

ALIGNALL on page 293 commands to bump the location counter to the preferred
boundary. For example, the following fragment uses ALIGN to bump the location counter
to the next 16-byte boundary. An exampleisgivenin Listing 12.6 on page 282.

Listing 12.6 Sample ALIGN Command Usage

file.c (.text)
= ALIGN (0x10) ;
file.c (.data) # aligned on a word boundary.

Y ou can aso align data on a specific word-boundary with ALIGNALL, as shown in
Listing 12.7 on page 282.

Listing 12.7 Sample ALIGNALL Command Usage

file.c (.text)

ALIGNALL (0x10); #everything past this point aligned on word boundary
file.c (.data)

Arithmetic Operations

Standard C arithmetic and logical operations may be used to define and use symbolsin the

linker command file. Table 12.1 on page 283 shows the order of precedence for each
operator. All operators are | eft-associative.

282 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax

Table 12.1 Arithmetic Operators

Precedence Operators

highest (1) - T

2 /%

3 . -

4 >> <<

5 == = > < <= >=
6 &

7

8 &&

9 Il

NOTE The shift operator shifts two-bits for each shift operation. The divide operator
performs division and rounding.

Comments

Comments may be added by using the pound character (#) or C++ style double-slashes (/
/). C-style comments are not accepted by the L CF parser. Listing 12.8 on page 283 shows
examples of valid comments.

Listing 12.8 Sample Comments

This is a one-line comment
* (.text) // This is a partial-line comment

Deadstrip Prevention

The M56800E linker removes unused code and data from the output file. This processis
called deadstripping. To prevent the linker from deadstripping unreferenced code and

data, use the FORCE_ACTIVE on page 294, KEEP_SECTION on page 295, and
REF_INCLUDE on page 297 directives to preserve them in the output file.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 283

A 4
4\

ELF Linker
Linker Command File Syntax

Variables, Expressions, and Integral Types

This section explains variables, expressions, and integral types.

Variables and Symbols

All symbol names within a Linker Command File (LCF) start with the underscore
character (), followed by letters, digits, or underscore characters. Listing 12.9 on
page 284 shows examples of valid lines for acommand file:

Listing 12.9 Valid Command File Lines

_dec_num = 99999999;
hex num = 0x9011276;

Variables that are defined within a SECTIONS section can only be used within a
SECTIONS sectionin alinker command file.

Global Variables

Global variables are accessed in alinker command filewith an ‘F prepended to the
symbol name. Thisis because the compiler addsan ‘F prefix to externally defined
symbols.

Listing 12.10 on page 284 shows an example of using aglobal variable in alinker
command file. This example sets the global variable foot, declared in C with the
extern keyword, to the location of the address location current counter.

Listing 12.10 Using a Global Variable in the LCF

F foot = .;

If you use aglobal symbol inan LCF, asin Listing 12.10 on page 284, you can access it
from C program sources as shown in Listing 12.11 on page 284.

Listing 12.11 Accessing a Global Symbol From C Program Sources

extern unsigned long foot;
void main(void) {
unsigned long i;
/] ...
i = foot; // _foot value determined in LCF

/] ...

284 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax

Expressions and Assignments

Y ou can create symbols and assign addresses to those symbols by using the standard
assignment operator. An assignment may only be used at the start of an expression, and a
semicolon isrequired at the end of an assignment statement. An example of standard
assignment operator usage is shown in Listing 12.12 on page 285.

Listing 12.12 Standard Assignment Operator Usage

_symbolicname
_syml + _sym2

some expression; # Legal
_sym3; # ILLEGAL!

When an expression is evaluated and assigned to avariable, it is given either an absolute
or arelocatable type. An absolute expression type is one in which the symbol containsthe
valuethat it will havein the output file. A relocatable expression is one in which the value
is expressed as a fixed offset from the base of a section.

Integral Types

The syntax for linker command file expressionsis very similar to the syntax of the C
programming language. All integer types are 1ong or unsigned long.

Octdl integers (commonly know as base eight integers) are specified with aleading zero,
followed by numeral in the range of zero through seven. Listing 12.13 on page 285 shows
valid octal patternsthat you can put into your linker command file.

Listing 12.13 Sample Octal Patterns

octal number =
_octal number2 = 03245;

012;

Decimal integers are specified as a non-zero numeral, followed by numeralsin the range
of zero through nine. To create a negative integer, use the minus sign (-) in front of the
number. Listing 12.14 on page 285 shows examples of valid decimal integers that you can
writeinto your linker command file.

Listing 12.14 Sample Decimal Integers

dec_num

:decimalNumber

9999;
-1234;

Hexadecimal (base sixteen) integers are specified as 0x or 0X (azero with an X),
followed by numerals in the range of zero through nine, and/or characters A through F.
Examples of valid hexadecimal integers that you can put in your linker command file
appesar in Listing 12.15 on page 286.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 285

y
A

ELF Linker

Linker Command File Syntax

Listing 12.15 Sample Hex Integers

__somenumber = 0x0F21;
_fudgefactorspace = 0XFO00D;
__hexonyou = Oxcafe;

NOTE When assigning avalue to a pointer variable, the value isin byte units despite
that in the linked map (.xMAPfile), the variable value appears in word units.

File Selection

When defining the contents of a SECTION block, specify the source filesthat are
contributing to their sections.

In alarge project, the list can become very long. For this reason, you have to use the
asterisk (*) keyword. The* keyword represents the filenames of every filein your project.
Note that since you have already added the . text sectionsfrom themain. c,
file2.c,andfile3.c files,the * keyword doesnot includethe . text sections
from those files again.

Function Selection

The OBJECT on page 297 keyword allows precise control over how functions are placed
within a section. For example, if the functions pad and foot are to be placed before
anything else in a section, use the code as shown in the examplein Listing 12.16 on

page 286.

Listing 12.16 Sample Function Selection Using OBJECT Keyword

SECTIONS ({

.program_section :

OBJECT (Fpad, main.c)
OBJECT (Ffoot, main.c)

* (.

text)

} > ROOT

NOTE If an object iswritten once using the OBJECT function selection keyword, the
same object will not be written again if you use the '+' file selection keyword.

286

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax

ROM to RAM Copying

In embedded programming, it is common to copy a portion of a program resident in ROM
into RAM at runtime. For example, program variables cannot be accessed until they are
copied to RAM.

Toindicate data or code that is meant to be copied from ROM to RAM, the dataor codeis
assigned two addresses. One addressisits resident location in ROM (whereitis
downloaded). The other isitsintended location in RAM (whereit is later copiedin C
code).

Use the MEMORY segment to specify theintended RAM location, and the AT (address)
parameter to specify the resident ROM address.

For example, you have a program and you want to copy all your initialized datainto RAM
at runtime. Listing 12.17 on page 287 shows the L CF you use to set up for writing data to
ROM.

Listing 12.17 LCF to Setup for ROM to RAM Copy

MEMORY
.text
.data

RAM

}

SECTIONS({

{

#

*
*(
*(
* (

(RWX) : ORIGIN = 0x8000, LENGTH = 0x0 # code (p:)
(RW) : ORIGIN = 0x3000, LENGTH = 0x0 # data (x:)->

.main application :
.text sections

text)
rtlib.text)

fp engine.txt)
user.text)

} > .text

__ROM _Address = 0x2000

{

.data :

AT(__ROM Address) # ROM Address definition

.data sections

F__Begin Data = .; # Start location for RAM (0x3000)
* (.data) # Write data to the section (ROM)
* (fp state.data);

* (rtlib.data) ;

F__End Data = .; # Get end location for RAM

.bss sections

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 287

y
A

ELF Linker
Linker Command File Syntax

* (rtlib.bss.lo)

* (.bss)
F_ ROM_Address = __ ROM Address
} > .data

}

To make the runtime copy from ROM to RAM, you need to know where the data startsin
ROM (__ROM_Address) and the size of the block in ROM you want to copy to RAM.
In the following example (Listing 12.18 on page 288), copy al variablesin the data
section from ROM to RAM in C code.

Listing 12.18 ROM to RAM Copy From C After Writing Data Flash

#include <stdio.h>
#include <string.h>

int GlobalFlash = 6;

// From linker command file
extern _ Begin Data, _ ROMAddress, _ End Data;

void main(void)

{

unsigned short a = 0, b = 0, ¢ = 0;
unsigned long datalen = 0x0;
unsigned short _ myArray[] = { Oxdead, Oxbeef, Oxcafe };

// Calculate the data length of the X: memory written to Flash
datalen = (unsigned long)& End Data -
unsigned long) & Begin Data;

// Block move from ROM to RAM
memcpy ((unsigned long *)& Begin Data,
(const unsigned long *)& ROMAddress,datalen) ;

a = GlobalFlash;

return;

}

288 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Syntax

Utilizing Program Flash and Data RAM for
Constant Data in C

There are many advantages and one disadvantage if constant datain C is flashed to
program flash memory (pROM) and copied to data flash memory (xRAM) at startup, with
the usual pPROM-to-xRAM initialization.

The advantages are:
« constant datais defined and addressed conventionally via C language
* pPROM flash spaceis used for constant data (pROM is usually larger than xROM)
« the pROM flash is now freed up or available

The disadvantage is that the xRAM is consumed for constant data at run-time.

If you wish to store constant datain program flash memory and have it handled by the
pROM-to-xRAM startup process, a simple change is necessary to the pPROM-to-xRAM
LCF. Simply, place the constant data referencesinto the data_in_p_flash_ROM section
after the_ XRAM_data start variable like the other data references and remove the "data
in xROM" section. Please see Listing 12.19 on page 289.

Listing 12.19 Using the Typical pROM-to-xRAM LCF

.data_in p flash ROM : AT(__ pROM data_ start)

{

__xRAM data_start = .;

(
(

(
(

etc.

.const.data.char) # move constant data references here
.const.char)

.data.char)
.data)

Utilizing Program Flash for User-Defined
Constant Section in Assembler

There are many advantages and one disadvantage in writing specific datato pROM with
linker commands and accessing this datain assembly,

The advantages are:

* pROM flash spaceis used for user-specified constant data (pPROM is usually larger
than xROM), where the constant data is defined and addressed by assembly
language

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 289

3
4

y
A

ELF Linker

Linker Command File Syntax

e part of the pROM flash is now freed up or available

The disadvantage is that datais not defined or accessed conventionally via C language;
datais specifically flashed to pROM viathelinker command file and fetched from pROM
with assembly.

If you want to keep specific constant datain pROM and accessit from there, you can use
the linker commands to explicitly store the datain pROM and then later accessthe datain
pROM with assembly.

The next two sections describe putting data in the pROM flash at build and run-time.

Putting Data in pROM Flash at Build-time

The linker commands have specific instructions which set values in the binary image at
the build time (Listing 12.20 on page 290). For example, WRITEH inserts two bytes of
data at the current address of a section. These commands are placed in the LCF, which
tellsthe linker at build time to place datain P or X memory. Optionally, you can a so set
the current location prior to the write command to ensure a specific location address for
easier reference later. The location within the section is not important.

For more information, please see the L CF section in this document.

Listing 12.20 LCF write example using MC56F832x for build-time

.executing code

{

#

case

.text sections

0x00A4; # optionally set the location -- we use 0x00A4 in this

WRITEH (0XABCD) ; # now set some value here; location within the
section is not important

*

* % X X

etc

(.text)

(interrupt routines.text)
(rtlib.text)
(fp_engine.text)
(user.text)

} > .p_flash ROM

Putting Datain pPROM Flash at Run-time

The assembly examplein Listing 12.21 on page 291 fetches the pPROM-flashed value at
run-timein Listing 12.20 on page 290.

290

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker

Linker Command File Keyword Listing

Listing 12.21 LCF write example using MC56F832x for run-time

move.l #$00A4, rl ; move the pROM address into r3
move.w p: (r3)+, x0 ; fetch data from pROM at address rl into

x0

Stack and Heap

To reserve space for the stack and heap, arithmetic operations are performed to set the

values of the symbols used by the runtime.

The Linker Command File (LCF) performs all the necessary stack and heap initialization.
When Stationery is used to create a new project, the appropriate L CFs are added to the

new project.

See any Stationery-generated L CFsfor examples of how stack and heap are initiaized.

Writing Data Directly to Memory

Y ou can write data directly to memory using the WRITEx command in the linker
command file. The WRITEB command writes abyte, the WRITEH command writestwo
bytes, and the WRITEW command writes four bytes. Y ou insert the data at the section’s

current address.

Listing 12.22 Embedding Data Directly Into Output

.example data section :

WRITEB 0x48; // 'H'
WRITEB 0x69; // 'i!'
WRITEB 0x21; // '

Linker Command File Keyword Listing

This section explains the keywords available for use when creating CodeWarrior
Development Studio for Freescale 56800/E Digital Signal Controllers application objects
with the linker command file. Valid linker command file functions, keywords, directives,

and commands are:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

201

y
A

ELF Linker

Linker Command File Keyword Listing

. (location counter)

The period character (.) always maintains the current position of the output location.
Since the period alwaysrefersto alocationinaSECTIONS on page 297 block, it
can not be used outside a section definition.

A period may appear anywhere a symbol is allowed. Assigning avalue to period that is
greater than its current val ue causes the location counter to move, but the location counter
can never be decremented.

This effect can be used to create empty space in an output section. In the example below,
the location counter is moved to aposition that is 0x1 000 words past the symbol
FSTART .

Example
.data :
{
* (.data)
*(.bss)
FSTART = .;
= FSTART + 0x1000;
_end = .;

} > DATA

ADDR
The ADDR function returns the address of the named section or memory segment.
Prototype
ADDR (sectionName | segmentName | symbol)
In the example below, ADDR is used to assign the address of ROOT to the symbol
___rootbasecode.
Example
MEMORY {
ROOT (RWX) : ORIGIN = 0x8000, LENGTH = 0
}
292 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing

SECTIONS({
.code
{
__rootbasecode = ADDR (ROOT) ;
* (.text) ;
} > ROOT

}

NOTE Inorder to use ssgmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, asisthe case with sectionName.

ALIGN

The ALIGN function returns the value of the location counter aligned on a boundary
specified by the value of alignvalue. Thealignvalue must be a power of two.
Prototype

ALIGN (alignValue)

Note that AL IGN does not update the |ocation counter; it only performs arithmetic. To
update the location counter, use an assignment such as:

Example

= ALIGN (0x10) ; #update location counter to 16
#byte alignment

ALIGNALL

ALIGNALL isthe command version of the AL IGN function. It forces the minimum
alignment for al the objects in the current segment to the value of alignvalue. The
alignValue must be apower of two.

Prototype

ALIGNALL (alignValue) ;

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 293

y
A

ELF Linker
Linker Command File Keyword Listing

Unlikeits counterpart ALIGN on page 293, AL IGNALL is an actual command. It updates
the location counter as each object is written to the output.

Example
.code
{

ALIGNALL(16); // Align code on 16 byte boundary
* (.init)

* (.text)

ALIGNALL(16); //align data on 16 byte boundary
* (.rodata)

} > .text

FORCE_ACTIVE

The FORCE_ACTIVE directive allows you to specify symbols that you do not want the
linker to deadstrip. Y ou must specify the symbol(s) you want to keep before you use the
SECTIONS on page 297 keyword.

Prototype
FORCE_ACTIVE{ symboll, symbol]l }

INCLUDE

The INCLUDE command let you include a binary file in the output file.

Prototype
INCLUDE filename

294 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing

KEEP_SECTION

The KEEP_SECTION directive allows you to specify sections that you do not want the
linker to deadstrip. Y ou must specify the section(s) you want to keep before you use the
SECTIONS on page 297 keyword.

Prototype
KEEP_ SECTION{ sectionTypel, sectionTypel }

MEMORY

The MEMORY directive allows you to describe the location and size of memory segment
blocks in the target. This directive specifies the linker the memory areasto avoid, and the
memory areas into which it links the code and date.

The linker command file may only contain one MEMORY directive. However, within the
confines of the MEMORY directive, you may define as many memory segments as you
wish.

Prototype

MEMORY { memory spec }

Thememory speciis:

segmentName (accessFlags) : ORIGIN = address, LENGTH = length, [COMPRESS] [>
fileName]

segmentName can include a phanumeric characters and underscore' ' characters.

accessFlags are passed into the output ELF file (Phdr.p flags). The
accessFlags canbe

¢ R-read

o W-write

« X-executable (for P: memory placement)
ORIGIN address isone of thefollowing:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 295

y
A

ELF Linker
Linker Command File Keyword Listing

Table 12.2 Origin Address

a memory address Specify a hex address, such as 0x8000.

an AFTER command Use the AFTER(name [,name]) command to tell the linker to
place the memory segment after the specified segment. In
the example below, overlayl and overlay2 are placed after
the code segment. When multiple memory segments are
specified as parameters for AFTER, the highest memory
address is used.

Example
memory {
code (RWX) : ORIGIN = 0x8000, LENGTH = 0
overlayl (RWX) : ORIGIN = AFTER (code), LENGTH = 0
overlay2 (RWX) : ORIGIN = AFTER(code), LENGTH = 0
data (RW) : ORIGIN = 0x1000, LENGTH = 0
ORIGIN is the assigned address.
LENGTH isone of thefollowing:

Table 12.3 Length
a value greater than If you try to put more code and data into a memory segment
zero than your specified length allows, the linker stops with an

error.

autolength by specifying | When the length is 0, the linker lets you put as much code
zero and data into a memory segment as you want.

NOTE Thereisno overflow checking with autolength. The linker can produce an
unexpected result if you use the autolength feature without leaving enough free
memory space to contain the memory segment. For this reason, when you use
autolength, use the AFTER keyword to specify origin addresses.

> fileName isan option to write the segment to abinary file on disk instead of an ELF
program header. The binary fileis put in the same folder as the ELF output file. This
option has two variants:

296 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing

Table 12.4 Option Choices

>fileName Writes the segment to a new file.

>>fileName Appends the segment to an existing file.

OBJECT

The 0BJECT keyword allows control over the order in which functions are placed in the
output file.

Prototype

OBJECT (function, sourcefile.c)

It isimportant to note that if you write an object to the output file using the OBJECT

keyword, the same object will not be written again by either the GROUP keyword or the *'
wildcard.

REF_INCLUDE

TheREF _INCLUDE directive allows you to specify sections that you do not want the
linker to deadstrip, but only if they satisfy a certain condition: the file that contains the
section must be referenced. Thisis useful if you want to include version information from

your source file components. Y ou must specify the section(s) you want to keep before you
use the SECTIONS on page 297 keyword.

Prototype

REF_INCLUDE{ sectionType [, sectionTypel}

SECTIONS
A basic SECTIONS directive has the following form:

Prototype
SECTIONS { <section specs> }

section_spec isone of the following:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 297

y
A

ELF Linker
Linker Command File Keyword Listing

« sectionName: [AT (loadAddress)] { contents} > segmentName
¢ sectionName: [AT (loadAddress]] { contents} >> segmentName

sectionName isthe section name for the output section. It must start with a period
character. For example, " .mysection".

AT (loadAddress) isanoptiona parameter that specifies the address of the section.
The default (if not specified) isto make the load address the same as the relocation
address.

contents are made up of statements. These statements can:
« Assign avalueto asymbol.

« Describe the placement of an output section, including which input sections are
placed into it.

segmentName is the predefined memory segment into which you want to put the
contents of the section. The two variants are:

Table 12.5 Option Choices

>segmentName Places the section contents at the beginning of the memory
segment segmentName.

>>segmentName Appends the section contents to the memory segment
segmentName.
Example
SECTIONS ({
.text : |

F_textSegmentStart = .;
footpad.c (.text)

= ALIGN (0x10) ;
padfoot.c (.text)

F _textSegmentEnd = .;

} > TEXT
.data : { *(.data) } > DATA
.bss : { *(.bss) > BSS

* (COMMON)

298 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

ELF Linker
Linker Command File Keyword Listing

SIZEOF

The s1ZEOF function returns the size of the given segment or section. Thereturn valueis
the sizein bytes.

Prototype
SIZEOF (sectionName | segmentName | symbol)

NOTE Inorder to use segmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, asisthe case with sectionName.

SIZEOFW

The STZEOFW function returns the size of the given segment or section. The return value
isthe sizein words.

Prototype
SIZEOFW (sectionName | segmentName | symbol)

NOTE Inorder to use segmentName with this command, the segmentName must start
with the period character even though segmentNames are not required to start
with the period character by the linker, asisthe case with sectionName.

WRITEB

The WRITEB command inserts a byte of data at the current address of a section.

Prototype
WRITEB (expression);
expression isany expression that returnsavalue 0x00 to 0xFF.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 299

y
A

ELF Linker
Linker Command File Keyword Listing

WRITEH

The WRITEH command inserts two bytes of data at the current address of a section.

Prototype
WRITEH (expression) ;

expression isany expression that returnsavalue 0x0000 to OXFFFF.

WRITEW

The WRITEW command inserts 4 bytes of data at the current address of a section.

Prototype
WRITEW (expression) ;

expression isany expression that returnsavalue 0x00000000 t0 OXFFFFFFFF.

300 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

13

Command-Line Tools

This chapter contains the following sections:
. e on page 301

¢ Response File on page 302

e Sample Build Script on page 303
¢ Arguments on page 303

Usage

To call the command-line tools, use the following format:

Table 13.1 Format

Tools File Names Format

Compiler mwcc56800e.exe compiler-options [linker-options] file-list
Linker mwld56800e.exe linker-options file-list

Assemble mwasm56800e.exe assembler-options file-list

r

The compiler automatically callsthe linker by default and any options from the linker is
passed on by the compiler to the assembler. However, you may choose to only compile
with the - c flag. In this case, the assembler will only assemble and will not call the linker.

Also, available are environment variables. These are used to provide path information for
includes or libraries, and to specify which libraries are to be included. Y ou can specify the
variableslisted in Table 13.2 on page 302.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 301

y
A

Command-Line Tools
Response File

Table 13.2 Environment Variables

Tool Library Description

Compiler MWC56800EIncludes Similar to Access Paths panel; separate
paths with *;" and prefix a path with '+’ to
specify a recursive path

Linker MW56800ELibraries Similar to MWC56800EIncludes

List of library names to link with project;

MW56800ELibraryFiles separate with

Assembler MWAsm56800EIncludes (similar to MWC56800EIncludes)

These are the target-specific variables, and will only work with the DSP56800E tools. The
generic variablesMWClncludes, MWLibraries, MWLibraryFiles, and

MW Asmlncludes apply to al target tools on your system (such as Windows). If you only
have the DSP56800E tools installed, then you may use the generic variablesif you prefer.

Response File

In addition to specifying commands in the argument list, you may also specify a“response
file". A responsefile’ sfilename beginswithan ‘@’ (for example, @file), and the contents
of the response file are commands to be inserted into the argument list. The response file
supports standard UNIX-style comments. For example, the response file @file, contain
the following:

Response file efile
-o out.elf # change output file name to ‘out.elf’

-9

generate debugging symbols

The above response file can used in acommand such as:
mwcc56800e @file main.c

It would be the same as using the following command:
mwcc56800e —o out.elf —g main.c

302

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Sample Build Script

Sample Build Script

Thisfollowing is a sample of a DOS batch (BAT) file. The sample demonstrates:
¢ Setting of the environmental variables.
¢ Using the compiler to compile and link a set of files.

REM *** get GUI compiler path ***
set COMPILER={path to compiler)}

REM *** get includes path **x*

set MWCIncludes=+%COMPILER%\M56800E Support

set MWLibraries=+%COMPILER%\M56800E Support

set MWLibraryFiles=Runtime 56800E.Lib;MSL C 56800E.lib

REM *** add CLT directory to PATH ***

set
PATH=%PATHS% ; ¥COMPILER%\DSP56800E_EABI Tools\Command Line Tools\

REM *** compile options and files ***
set COPTIONS=-03

set CFILELIST=filel.c file2.c

set LOPTIONS=-m FSTART -o output.elf -g
set LCF=linker.cmd

REM *** compile, assemble and link ***
mwcc56800e %$COPTIONS% %CFILELISTS®
mwasm56800e %AFILELIST%

mwld56800e %LOPTIONS% S%LFILELIST% $%LCF%

Arguments

General Command-Line Options

General Command-Line Options
All the options are passed to the linker unless otherwise noted.

Please see '-help usage' for details about the meaning of this help.

-help [keyword[,...]] # global; for this tool;
display help

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 303

y
A

Command-Line Tools
Arguments

usage
[no] spaces

all

[nolnormal

[no] obsolete
[no] ignored
[no]l deprecated
[nolmeaningless

[no] compatible
opt [ion] =name

'name’',

search=keyword
help

for
group=keyword
'keyword'
tool=keywordl[, ...]

all
this

other | skipped
both

-version

date
-timing
-progress
-v [erbose]

-search
files

specify

- [nolwraplines
-maxerrors max

#

H H HF

#

global;

#

#
#

FHoH o HHF

#

#

#

#

#

H H HF

H HF HF H

object code and libraries as well;
option provides the IDE's

#
#

show usage information
insert blank lines between options in
printout
show all standard options
show only standard options
show obsolete options
show ignored options
show deprecated options
show options meaningless for this

show compatibility options
show help for a given option; for
maximum length 63 chars
show help for an option whose name or
contains 'keyword' (case-sensitive);
'keyword', maximum length 63 chars
show help for groups whose names contain
'keyword' (case-sensitive); for

maximum length 63 chars
categorize groups of options by tool;
default
show all options available in this tool
show options executed by this tool

default
show options passed to another tool
show options used in all tools
global; for this tool;

show version, configuration, and build

global; collect timing statistics

global; show progress and version

global; verbose information; cumulative;
implies -progress

search access paths for source

specified on the command line; may

this
'access paths'
functionality

global; word wrap messages; default

specify maximum number of errors to print,

304

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools

Arguments
Zero
means no maximum; default is 0
-maxwarnings max # specify maximum number of warnings to print,
zero means no maximum; default is 0
-msgstyle keyword # global; set error/warning message style
mpw # use MPW message style
std # use standard message style; default
gcc # use GCC-like message style
IDE # use CW IDE-like message style
parseable # use context-free machine-parseable
message
style
#
- [no] stderr # global; use separate stderr and stdout
streams;
if using -nostderr, stderr goes to
stdout

Compiler

Preprocessing, Precompiling, and Input File Control Options

-c # global; compile only, do not link
- [no] codegen # global; generate object code
- [no] convertpaths # global; interpret #include filepaths
specified
for a foreign operating system; i.e.,
<sys/stat.h> or <:sys:stat.h>; when
enabled,
'/' and ':' will separate directories and
cannot be used in filenames (note: this is
not a problem on Win32, since these
characters are already disallowed in
filenames; it is safe to leave the option
'on'); default
-cwd keyword # specify #include searching semantics: Dbefore
searching any access paths, the path
specified by this option will be searched
proj # begin search in current working directory;
default
source # begin search in directory of source file
explicit # no implicit directory; only search '-I' or
'-ir' paths
include # begin search in directory of referencing

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 305

y
A

Command-Line Tools
Arguments

-D+ | -d[efine
name [=value]

- [noldefaults

-dis[assemble]

-E

-EP

#line

-ext extension

-gccinc [ludes]

-i- | -I-
-I+ | -ip
-ir path

- [no] keepobj [ects]

after

-MM
system

-MD

-MMD
system

H H H FH

H H H H H H

H

file
#
cased; define symbol 'name' to 'value' if
specified, else '1'
global; passed to linker;
same as '-[nolstdinc'; default
global; passed to all tools;
disassemble files to stdout
global; cased; preprocess source files
global; cased; preprocess and strip out
directives
global; specify extension for generated object
files; with a leading period ('.'), appends
extension; without, replaces source file's
extension; for 'extension',K maximum length 14
chars; default is none

global; adopt GCC #include semantics: add '-I'
paths to system list if '-I-' is not
specified, and search directory of
referencing file first for #includes (same as
'-cwd include')
global; change target for '-I' access paths to
the system list; implies '-cwd explicit';
while compiling, user paths then system paths
are searched when using '#include "..."; only
system paths are searched with '#include
<. ..

global; cased; append access path to current
#include list (see '-gccincludes' and '-I-')
global; append a recursive access path to
current #include list
global; keep object files generated after
invoking linker; if disabled, intermediate
object files are temporary and deleted

link stage; objects are always kept when
compiling
global; cased; scan source files for
dependencies and emit Makefile, do not
generate object code
global; cased; like -M, but do not list

include files
global; cased; like -M, but write dependency
map to a file and generate object code
global; cased; like -MD, but do not list

306 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments

-make
and

code -nofail
files
-nolink
-noprecompile
-nosyspath

-o fileldir
object

-P

-precompile filel|di

write
header

to

is
-preprocess
-prefix file
all
-S

- [no]l stdinc

-U+ | -ulndefine] name

-ansi keyword

include files
global; scan source files for dependencies

emit Makefile, do not generate object
continue working after errors in earlier

global; compile only, do not link
do not precompile any files based on the

filename extension
global; treat #include <...> like #include
"..."; always search both user and system

path lists
specify output filename or directory for

file(s) or text output, or output filename
for linker if called

global; cased; preprocess and send output to
file; do not generate code

generate precompiled header from source;

header to 'file' if specified, or put

+H

in 'dir'; if argument is "", write header

source-specified location; if neither is
defined, header filename is derived from
source filename; note: the driver can tell
whether to precompile a file based on its
extension; '-precompile file source' then

H H H HFH

the same as '-c¢ -o file source'
global; preprocess source files
prefix text file or precompiled header onto

source files
global; cased; passed to all tools;
disassemble and send output to file
global; use standard system include paths
(specified by the environment variable
$MWCIncludes%); added after all system '-

paths; default
cased; undefine symbol 'name'

specify ANSI conformance options, overriding

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 307

y
A

Command-Line Tools
Arguments

off
and

on|relaxed

strict

-ARM on|off
-bool on|off
-char keyword

signed
unsigned

-Cpp_exceptions on|off

the given settings

same as '-stdkeywords off', '-enum min',

'-strict off'; default

same as '-stdkeywords on', '-enum min', and
'-strict on'

same as '-stdkeywords on', '-enum int', and
'-strict on'

#

check code for ARM (Annotated C++ Reference

enable C++ 'bool' type,

Manual) conformance; default is off
'true' and 'false!’

constants; default is off
set sign of 'char'

chars are signed; default

chars are unsigned

#

passed to linker;

enable or disable C++ exceptions; default
is
on
-dialect | -lang keyword # passed to linker;
specify source language
c # treat source as C always
C++ # treat source as C++ always
ec++ generate warnings for use of C++ features
outside Embedded C++ subset (implies
'dialect cplus')
‘dialect cplus’)
-enum keyword # specify word size for enumeration types
min # use minimum sized enums; default
int # use int-sized enums
#
-inline keywordl[, ...] # specify inline options
on|smart # turn on inlining for 'inline' functions;
default
none | off # turn off inlining
auto # auto-inline small functions (without
'inline' explicitly specified)
noauto # do not auto-inline; default
all # turn on aggressive inlining: same as
'-inline on, auto'
deferred # defer inlining until end of compilation
unit; this allows inlining of functions
in
both directions
level=n # cased; inline functions up to 'n' levels
deep; level 0 is the same as '-inline

308 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools

Arguments
on';
for 'n', range 0 - 8
#
-iso_templates on|off # enable ISO C++ template parser (note:
this
requires a different MSL C++ library) ;
default is off
- [no]l mapcr # reverse mapping of '\n' and '\r' so that
'"\n'==13 and '\r'==10 (for Macintosh
MPW
compatability)
-msext keyword # [dislallow Microsoft VC++ extensions
on # enable extensions: redefining macros,
allowing XXX::yyy syntax when
declaring
method yyy of class XXX,
allowing extra commas,
ignoring casts to the same type,
treating function types with
equivalent
parameter lists but different return
types
as equal,
allowing pointer-to-integer conversions,
and various syntactical differences
off # disable extensions; default on non-
x86
targets
#
- [nolmultibyte [aware] # enable multi-byte character encodings
for
source text, comments, and strings
-once # prevent header files from being processed
more
than once
-pragma # define a pragma for the compiler such as
"#pragma ..."
-r [equireprotos] # require prototypes
-relax pointers # relax pointer type-checking rules
-RTTI on|off # select run-time typing information (for
C++) ;
default is on
-som # enable Apple's Direct-to-SOM
implementation
-som_env_check # enables automatic SOM environment and
new
allocation checking; implies -som
-stdkeywords on|off # allow only standard keywords; default is

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 309

y
A

Command-Line Tools

Arguments
off
-str[ings] keywordl[,...] # specify string constant options
[no] reuse # reuse strings; equivalent strings are
the
same object; default
[no]l pool # pool strings into a single data
object
[no] readonly # make all string constants read-only
#
-strict on|off # specify ANSI strictness checking; default
is
off

-trigraphs on|off # enable recognition of trigraphs; default is
off
-wchar t on|off # enable wchar t as a built-in C++ type;
default
is on

Optimizer Options

Note that all options besides '-opt
off|on|all|space|speed|level=...' are

for backwards compatibility; other optimization options may be
superceded

by use of '-opt level=xxx'.

-0 # same as '-02'
-O+keywordl[, ...] # cased; control optimization; you may
combine
options as in '-04,p'
0 # same as '-opt off'
1 # same as '-opt level=1'
2 # same as '-opt level=2'
3 # same as '-opt level=3'
4 # same as '-opt level=4'
P # same as '-opt speed'’
s # same as '-opt space'
#
-opt keywordl[,...] # specify optimization options
of f |none # suppress all optimizations; default
on # same as '-opt level=2'
all|full # same as '-opt speed, level=4'
[no] space # optimize for space
[no] speed # optimize for speed
1[evel] =num # set optimization level:
level 0: no optimizations
#

310 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Command-Line Tools
Arguments

+H

level 1: global register
allocation,
peephole, dead code elimination

level 2: adds common subexpression
elimination and copy propagation

H H HHHH

level 3: adds loop transformations,
strength reduction, loop-invariant code
motion

level 4: adds repeated common
subexpression elimination and
loop-invariant code motion

; for 'mum', range 0 - 4; default is 0
common subexpression elimination

H H H HH

[no] cse

[no] commonsubs
no] deadcode removal of dead code
no]deadstore removal of dead assignments

[
[
[nollifetimes computation of variable lifetimes
[
[

FH o H

nol loop [invariants] removal of loop invariants
nol prop [agation] # propagation of constant and copy

assignments
[no]l strength # strength reduction; reducing
multiplication
by an index variable into addition
[nol dead # same as '-opt [no]ldeadcode' and '-opt
[no] deadstore'
display |dump # display complete list of active
optimizations
#
DSP M56800E CodeGen Options
-DO keyword # for this tool;
specify hardware DO loops
off # no hardware DO loops; default
nonested # hardware DO loops but no nested ones
nested # nested hardware DO loops
#
-padpipe # for this tool;
pad pipeline for debugger
-ldata | -largedata # for this tool;
data space not limited to 64K

-globalsInLowerMemory # for this tool;
globals live in lower memory; implies '-
large

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 311

y
A

Command-Line Tools
Arguments

data model'
-sprog | -smallprog # for this tool;
program space limited to 64K

-g # global; cased; generate debugging
information;
same as '-sym full'
-sym keyword[, ...] # global; specify debugging options
#

off do not generate debugging
information;
default
on # turn on debugging information
full [path] # store full paths to source files
#
C/C++ Warning Options
-wl[arn[ings]] # global; for this tool;
keyword[, ...] # warning options
off # passed to all tools;
turn off all warnings
on # passed to all tools;
turn on most warnings
[no] cmdline # passed to all tools;
command-line driver/parser warnings
[no] err [or] | # passed to all tools;
[no]liserr[or] # treat warnings as errors
all # turn on all warnings, require
prototypes
[nolpragmas | # illegal #pragmas
[no] illpragmas #
[no]l empty [decl] # empty declarations
[nolpossible | # possible unwanted effects
[no] unwanted #
[no]unusedarg # unused arguments
[no] unusedvar # unused variables
[no]unused # same as -w
[no]lunusedarg, [no] unusedvar
[nol extracomma | # extra commas
[no] comma #
[nolpedantic | # pedantic error checking
[no] extended #
[nolhidevirtual | # hidden virtual functions
[nolhidden [virtuall #
[no]limplicit [conv] # implicit arithmetic conversions

312 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Command-Line Tools

Arguments
[no]lnotinlined # 'inline' functions not inlined
[no]l largeargs # passing large arguments to
unprototyped
functions
[nol structclass # inconsistent use of 'class' and
'struct’
[no] padding # padding added between struct members
[nolnotused # result of non-void-returning function
not
used
[no] unusedexpr # use of expressions as statements
without
side effects
[nol ptrintconv # conversions from pointers to integers,
and
vice versa
display | dump # display list of active warnings
#
Linker
Command-Line Linker Options
-dis[assemble] # global; disassemble object code and do

not
link; implies '-nostdlib’'

-L+ | -1 path # global; cased; add library search path; default
is to search current working directory and
then system directories (see '-defaults');
search paths have global scope over the
command line and are searched in the order
given
-1lr path # global; like '-1', but add recursive library
search path
-1l+file # cased; add a library by searching access paths
for file named lib<file>.<ext> where <exts>
is
a typical library extension; added before
system libraries (see '-defaults')
- [no]defaults # global; same as -[no]lstdlib; default
-nofail # continue importing or disassembling
after

errors in earlier files

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 313

y
A

Command-Line Tools
Arguments

- [no]l stdlib

$MWLibraryFiles%) ;

- [noldead[strip]
default

-force active
useful

symbol [, ...]
-keep[local] on|off
link;

-m[ain]
shared

symbol

chars;

-map [keyword[,...]]
closure
unused

-sortbyaddr
-srec

-sreceol keyword
file;

global;

global; use system library access paths
(specified by $MWLibraries%) and add system
libraries (specified by

default
cased; disassemble and send output to
file; do not link; implies '-nostdlib'

enable dead-stripping of unused code;
specify a list of symbols as undefined;

to force linking of static libraries
#
keep local symbols (such as relocations and
output segment names) generated during

default is on
set main entry point for application or

library; use
point; for

'-main ""' to specify no entry
'symbol', maximum length 63

default is 'FSTART '
generate link map file

calculate symbol closures
list unused symbols
#

sort S-records by address; implies '-srec'
generate an S-record file; ignored when
generating static libraries
set end-of-line separator for S-record

implies '-srec'
mac # Macintosh ('\r')
dos # DOS ('\r\n'); default
unix # Unix ('\n')
#
-sreclength length # specify length of S-records (should be a
multiple of 4); implies '-srec'; for
'length', range 8 - 252; default is 64
-usebyteaddr # use byte address in S-record file;
implies
'-srec'
-o file # specify output filename
314 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Command-Line Tools

Arguments
DSP M56800E Project Options
-application # global; generate an application; default
-library # global; generate a static library

-Cpp_exceptions on|off # enable or disable C++ exceptions; default
is on

-dialect | -lang keyword # specify source language
c # treat source as C++ unless its extension
is
'.c', '.h', or '.pch'; default
C++ # treat source as C++ always
#

-g # global; cased; generate debugging
information;
same as '-sym full'
-sym keywordl[, ...] # global; specify debugging options
#

off do not generate debugging
information;
default
on # turn on debugging information
full [pathl # store full paths to source files
#
Warning Options
-wl[arn[ings]] # global; warning options
keyword[, ...] #
off # turn off all warnings

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 315

y
A

Command-Line Tools

Arguments
on # turn on all warnings
[nol cmdline # command-line parser warnings
[nolerr [or] | # treat warnings as errors
[no] iserr [or] #
display | dump # display list of active warnings
#
ELF Disassembler Options
-show keywordl[, ...] # specify disassembly options
only|none # as in '-show none' or, e.g.,
'-show only, code,data’
all # show everything; default
[no] code | [noltext # show disassembly of code sections;
default
[no] comments # show comment field in code; implies '-
show
code'; default
[no] extended # show extended mnemonics; implies '-
show
code'; default
[no]data # show data; with '-show verbose', show
hex
dumps of sections; default
[noldebug | [nolsym # show symbolics information; default
[no] exceptions # show exception tables; implies '-show
data';
default
[no] headers # show ELF headers; default
[no] hex # show addresses and opcodes in code
disassembly; implies '-show code';
default
[no]l names # show symbol table; default
[nolrelocs # show resolved relocations in code and
relocation tables; default
[no] source # show source in disassembly; implies '-
show
code'; with '-show verbose', displays
entire source file in output, else
shows
only four lines around each function;
default
[no] xtables # show exception tables; default
[no] verbose # show verbose information, including hex
dump
of program segments in
applications;

316 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Command-Line Tools

Arguments
default
#
Assembler
Assembler Control Options
- [no] case # identifiers are case-sensitive; default
- [no] debug # generate debug information
- [nolmacro_expand # expand macro in listin output
- [no]assert nop # add nop to resolve pipeline dependency;
default
- [nolwarn nop # emit warning when there is a pipeline
dependency
- [nolwarn_stall # emit warning when there is a hardware stall
- [no] legacy # allow legacy DSP56800 instructions (imply
data/prog 16)
- [no] debug workaround # Pad nop workaround debuggin issue in
some
implementation; default
-data keyword # data memory compatibility
16 # 16 bit; default
24 # 24 bit
#
-prog keyword # program memory compatibility
16 # 16 bit; default
19 # 19 bit
21 # 21 bit

#

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 317

wr
4\

Command-Line Tools
Arguments

318 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

14

Libraries and Runtime Code

You can use avariety of libraries with the CodeWarrior™ IDE. The libraries include
ANSI-standard libraries for C, runtime libraries, and other codes. This chapter explains
how to use these libraries for DSP56800E devel opment.

With respect to the Metrowerks Standard Library (MSL) for C, this chapter is an extension
of the MSL C Reference. Consult that manual for general details on the standard libraries
and their functions.

This chapter contains the following sections:
« MSL for DSP56800E on page 319

« Runtime Initialization on page 323
¢ EONCE Library on page 326

MSL for DSP56800E

This section explains the Metrowerks Standard Library (MSL) that has been modified for
use with DSP56800E.

Using MSL for DSP56800E

CodeWarrior Development Studio for Freescale 56800/E Digital Signal Controllers
includes a version of the Metrowerks Standard Library (MSL). MSL isacomplete C
library for use in embedded projects. All of the sources necessary to build MSL are
included in CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers, along with the project files for different configurations of MSL. If you already
have a version of the CodeWarrior IDE installed on your computer, the CodeWarrior
installer adds the new files needed for building versions of MSL for DSP56800E.

The project directory for the DSP56800E MSL is:

CodeWarrior\M56800E Support\msl\MSL C\DSP 56800E\projects\MSL C
56800E.mcp

Do not modify any of the source filesincluded with MSL. If you need to make changes
based on your memory configuration, make changes to the runtime libraries.

Ensure that you include one or more of the header files|ocated in the following directory:

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 319

y
A

Libraries and Runtime Code
MSL for DSP56800E

CodeWarrior\M56800E Support\msl\MSL_ C\DSP 56800E\inc

When you add the relative-to-compiler path to your project, the appropriate MSL and
runtime fileswill be found by your project. If you create your project from Stationery, the
new project will have the proper support access path.

Console and File I/O

DSP56800E Support provides standard C calls for I/O functionality with full ANSI/ISO
standard 1/0O support with host machine console and file I/O for debugging sessions (Host
1/0) through the JTAG port or HSST in addition to such standard C calls such as memory
functions malloc() and free().

A minimal "thin" printf via"console_write" and "fflush_console" is provided in addition
to standard 1/O.

See the MSL C Reference manual (Metrowerks Standard Library).

Library Configurations

There are Large Data Model and Small Data Model versions of al libraries. (Small
Program Model default is off for all library and Stationery targets.)

Metrowerks Standard Library (MSL) provides standard C library support.

The Runtime libraries provide the target-specific low-level functions below the high-level
MSL functions. There are two types of Runtime libraries:

e JTAG-based Host I/0O
¢ HSST-based Host 1/0.

For each project requiring standard C library support, a matched pair of MSL and
Runtime libraries are required (SDM or LDM pairs).

The HSST library is added to HSST client-to-client DSP56800E targets. For more
information see “High-Speed Simultaneous Transfer” on page 151.

NOTE DSP56800E stationery creates new projects with LDM and SDM targets and
the appropriate libraries.

Below isalist of the DSP56800E libraries:
¢ Metrowerks Standard Libraries (MSL)
- MSL C 56800E.1lib
Standard C library support for Small Data Model.
- MSL C 56800E lmm.lib

320 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
MSL for DSP56800E

Standard C library support for Large Data Model.

¢ RuntimeLibraries

- runtime 56800E.1lib

Low-level functions for MSL support for Small Data Model with Host I/0O via

JTAG port.

- runtime 56800E 1lmm.lib
Low-level functions for MSL support for Large Data Model with Host I/0O via

JTAG port.

- runtime hsst 56800E.1lib
Low-level functions for MSL support for Small Data Model with Host 1/0O via

HSST.

- runtime hsst 56800E_lmm.lib
Low-level functions for MSL support for Large Data Model with Host 1/0O via

HSST.
e HSST Libraries

There are debug and release targets for SDM and LDM. The release targets have
maximum optimization settings and debug info turned off. For more information see
“High-Speed Simultaneous Transfer” on page 151.

- hsst_56800E.1lib

DSP 56800E HSST client functions for Small Data Model.

- hsst_56800E_lmm.lib

DSP56800E HSST client functions for Large Data Model.

Host File Location

Files are created with fopen on the host machine as shown in Table 14.1 on page 321.

Table 14.1 Host File Creation Location

fopen Filename Parameter

Host Creation Location

filename with no path

target project file folder

full path

location of full path

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 321

3
4

y
A

Libraries and Runtime Code
MSL for DSP56800E

Allocating Stacks and Heaps for the
DSP56800E

Stationery linker command files (LCF) define heap, stack, and bss locations. LCFs are
specific to each target board. When you use M56800E stationery to create a new project,
CodeWarrior automatically adds the L CF to the new project.

See“ELF Linker,” for general LCF information. See each specific target LCF in
Stationery for specific LCF information.

See Table 14.2 on page 322 for the variables defined in each Stationery LCF.

Table 14.2 LCF Variables and Address

Variables Address

_stack_addr the start address of the stack

_heap_size the size of the heap

_heap_addr the start address of the heap

_heap_end the end address of the heap

_bss_start start address of memory reserved for uninitialized variables
_bss_end end address of bss

To change the locations of these default values, modify the linker command file in your
DSP56800E project.

NOTE Ensurethat the stack and heap memories reside in data memory.

Definitions

Stack

The stack is alast-in-first-out (L1FO) data structure. Items are pushed on the stack and
popped off the stack. The most recently added item is on top of the stack. Previously
added items are under the top, the oldest item at the bottom. The "top" of the stack may be
in low memory or high memory, depending on stack design and use. M56800E uses a 16-
bit-wide stack.

322

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
Runtime Initialization

Heap

Heap is an area of memory reserved for temporary dynamic memory allocation and
access. MSL usesthis space to provide heap operations such as malloc. M56800E does not
have an operating system (OS), but MSL effectively synthesizes some OS services such as
heap operations.

BSS

BSS isthe memory space reserved for uninitialized data. The compiler will put all
uninitialized data here. If the Zero initialized globalslive in data instead of BSS
checkbox in the M56800E Processor Panel is checked, the globals that areinitiaized to
zeroresideinthe . data section instead of the .bss section. The stationery init code
zeroesthis area at startup. See the M56852 init (startup) code in this chapter for genera
information and the stationery init code files for specific target implementation details.

NOTE Instead of accessing the origina Stationery files themselves (in the Stationery
folder), create a new project using Stationery which will make copies of the
specific target board files such as the LCF.

Runtime Initialization

The default init function is the bootstrap or glue code that sets up the DSP56800E
environment before your code executes. This function isin theinit file for each board-
specific stationery project. The routines defined in theinit file performs other tasks such as
clearing the hardware stack, creating an interrupt table, and retrieving the stack start and
exception handler addresses.

Thefinal task performed by the init function isto call themain () function.

The starting point for aprogram is set in the Entry Point field in the M56800E
Linker on page 71 settings panel.

The project for the DSP56800E runtimeis:

CodeWarrior\M56800E Support\runtime 56800E\projects\Runtime 56800E.mcp

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 323

y
A

Libraries and Runtime Code
Runtime Initialization

Table 14.3 Library Names and Locations

Library Name Location

Large Memory Model CodeWarrior\M56800E

RUNtime 56800E lmm.lib Support\runtime_56800E\lib

Small Memory Model CodeWarrior\M56800E

, , Support\runtime_56800E\lib
Runtime 56800E.Lib

When creating a project from R1.1 or later Stationery, the associated init code is specific
to the DSP56800E board. See the startup folder in the new project folder for the init code.

Listing 14.1 Sample Initialization File (DSP56852EVM)

#

CM_MODE
XP_MODE
R_MODE

SA_MODE

56852_init.asm

sample

description: main entry point to C code.
setup runtime for C and call main

EQU $8000
EQU $0100
EQU $0080
EQU $0020
EQU $0010

section rtlib

XREF F_stack_addr
org p:

GLOBAL Finit M56852

324

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
Runtime Initialization

SUBROUTINE "Finit M56852 ",Finit M56852 ,Finit M56852END-
Finit M56852

Finit M56852 :

; setup the OMr with the values required by C
bfset #NL_MODE, omr ; ensure NL=1 (enables nsted DO
loops)
nop
nop
bfclr #(CM_MODE|XP MODE|R MODE|SA MODE),omr ; ensure CM=0
(optional for Q)
; ensure XP=0 to enable harvard architecture
; ensure R=0 (required for Q)
; ensure SA=0 (required for C)

; Setup the m0l register for linear addressing
move.w #-1,x0

moveu.w x0,m01 ; Set the m register to linear
addressing

moveu.w hws, la ; Clear the hardware stack

moveu.w hws, la

nop

nop
CALLMAIN: ; Initialize compiler environment

;Initialize the Stack
move.l #>>F Lstack addr,r0
bftsth #$0001,r0
bce noinc

adda #1,r0

noinc:
tfra r0, sp ; set stack pointer too
move.w #0,rl
nop
move.w rl,x:(sp)
adda #1,sp

jsr F__init sections

; Call main()

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 325

y
A

Libraries and Runtime Code
EONCE Library

7
I
7

7

move.w #0,y0
move.w #0,R2
move.w #0,R3

; Pass parameters to main()

jsr Fmain ; Call the Users program

The fflush calls where removed because they added code
growth in cases where the user is not using any debugger IO.
Users should now make these calls at the end of main if they use

debugger IO

7
7
I

7

move.w #0,r2
jsr Ffflush ; Flush File IO
jsr Ffflush console ; Flush Console IO

end of program; halt CPU
debughlt
rts

Finit M56852END:

endsec

EONCE Library

The EOnCE (Enhanced On Chip Emulator) library provides functions, which allows your
program to control the EOnCE. The library lets you set and clear triggers for breakpoints,
watchpoints, program traces, and counters. With several option enumerations, the library
greatly simplifies using the EOnCE from within the core, and thus eliminates the need for
a DSP56800E User Manud. The library and the debugger are coordinated so that the
debugger does not overwrite atrigger set by the library, and vice versa.

To use the EOnCE library, you must include it in your project. The name of thefileis
eonce 56800E lmm.lib anditislocated at:

CodeWarrior\M56800ESupport\eonce\lib

The Large Data Model option must be enabled in the M56800E Processor
preference panel. Any source file that contains code that calls any of the EOnCE Library
functionsmust #include eonceLib.h. Thisheader fileislocated at:

CodeWarrior\M56800E Support\eonce\include
Thelibrary functions are listed below:
¢ _eonce Initialize on page 327

e _eonce SetTrigger on page 328
* _eonce_ SetCounterTrigger on page 329

326

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Libraries and Runtime Code

EONCE Library

¢ _eonce ClearTrigger on page 330

e _eonce GetCounters on page 331

* _eonce GetCounterStatus on page 331
e _eonce SetupTraceBuffer on page 332
e _eonce GetTraceBuffer on page 332

« _eonce ClearTraceBuffer on page 333
e _eonce_ StartTraceBuffer on page 334

e _eonce HaltTraceBuffer on page 334
¢ _eonce EnableDEBUGEV on page 334

e _eonce EnablelimitTrigger on page 335
The sub-section “Definitions’ on page 336 defines:

¢ Return Codes on page 336
¢ Normal Trigger Modes on page 337

¢ Counter Trigger Modes on page 338
¢ Data Selection Modes on page 340

¢ _on page 340Counter Function Modes on page 340
¢ Normal Unit Action Options on page 341

¢ Counter Unit Action Options on page 341
« Accumulating Trigger Options on page 342

« Miscellaneous Trigger Options on page 343
¢ Trace Buffer Capture Options on page 343

« Trace Buffer Full Options on page 344
» Miscellaneous Trace Buffer Option on page 345

_eonce_Initialize

Initializes the library by setting the necessary variables.

Prototype

void _eonce_Initialize(unsigned long baseAddr, unsigned int

units)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

327

3
4

y
A

Libraries and Runtime Code
EONCE Library

Parameters

baseAddrunsigned long

Specifies the location in X: memory where the EOnCE registers are located.
unitsunsigned int

Specifies the number of EOnCE breakpoint units available.

Remarks

This function must be called before any other library functionis called. Its parameters are
dependent on the processor being used. Instead of calling this function directly, one of the
defined macros can be called in its place. These include _eonce_| nitialize56838E(),
eonce|nitialize56852E(), and _eonce_| nitialize56858E(). These macros call
eonce|nitialize with the correct parameters for the 56838, 56852, and 56858,
respectively.

Returns
Nothing.

_eonce_SetTrigger

Setsatrigger condition used to halt the processor, cause an interrupt, or start and stop the
trace buffer. This function does not set triggers for special counting functions.

Prototype

int eonce SetTrigger(unsigned int unit, unsigned long
options, unsigned long valuel, unsigned long value2,
unsigned long mask, unsigned int counter)

Parameters

unitunsigned int

Specifies which breakpoint unit to use.
optionsunsigned long

Describes the behavior of the trigger. For more information on the identifiersfor this
parameter, please see the sub-section “Definitions’ on page 322.

valuelunsigned long

Specifies the address or data value to compare as defined by the options parameter.

328

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EONCE Library

value2unsigned long

Specifies the address or data value to compare as defined by the options parameter.
maskunsigned long

Specifies which bits of value2 to compare.

counterunsigned int

Specifies the number of successful comparison matches to count before completing trigger
sequence as defined by the options parameter

Remarks

This function sets al triggers, except those used to define the special counting function
behavior. Carefully read the list of defined identifiers that can be OR’ ed into the options
parameter.

Returns
Error code as defined in the sub-section " Definitions.”

_eonce_SetCounterTrigger

Setsatrigger condition used for special counting functions.

Prototype

int eonce_ SetCounterTrigger (unsigned int unit, unsigned
long options, unsigned long valuel, unsigned long value2,
unsigned long mask, unsigned int counter, unsigned long
counter2)

Parameters

unitunsigned int

Specifies which breakpoint unit to use.
optionsunsigned long

Describes the behavior of the trigger. For more information on the identifiers for this
parameter, please see the sub-section “Definitions’ on page 322.

valuelunsigned long
Specifies the address or data value to compare as defined by the options parameter.
value2unsigned long

Specifies the address or data value to compare as defined by the options parameter.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 329

3
4

y
A

Libraries and Runtime Code
EONCE Library

maskunsigned long
Specifies which bit of value2 to compare.
counterunsigned int

Specifies the value used to pre-load the counter, which proceeds backward when
EXTEND_COUNTER is OR’ed into the options parameter. counter contains the least
significant 16-bits.

counter2unsigned long

Specifies the value used to pre-load the counter, which proceeds backward. When
EXTEND COUNTER is OR'ed into the options parameter. counter?2 contains the most
significant 24-bits. However, when EXTEND COUNTER isnot OR’ed counter?2 should
besetto o.

Remarks

This function is used to set special counting function triggers. The specia counting
options are defined in the sub-section " Definitions.” Carefully read the list of defined
identifiers that can be OR’ ed into the options parameter.

Returns

Error code as defined in the sub-section “ Definitions.”

_eonce_ClearTrigger

Clears aprevioudly set trigger.

Prototype

int eonce ClearTrigger(unsigned int unit)

Parameters
unitunsigned int

Specifies which breakpoint unit to use.

Remarks

This function clears atrigger set with the _eonce_SetTrigger or
_eonce_SetCounter Trigger functions.

Returns

Error code as defined in the sub-section “ Definitions.”

330

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EONCE Library

_eonce_GetCounters

Retrieves the values in the two counter registers.

Prototype

int eonce GetCounters(unsigned int unit, unsigned int
*counter, unsigned long *counter2)

Parameters

unitunsigned int

Specifies which breakpoint unit to use.
counterunsigned int *

Holds the value of the counter, or the least significant 16-bits, if the counter has been
extended to 40-bits.

counter2unsigned long *

Holds the most significant 24-hits if the counter has been extended to 40-bits. This
parameter must be avalid pointer even if the counter has not been extended.

Remarks

This function retrieves the value of the counter of the specified breakpoint unit. This
function is most useful when using the special counting function of the breakpoint, but can
also be used to retrieve the trigger occurrence counter.

Returns
Error code as defined in the sub-section " Definitions.”

_eonce_GetCounterStatus

Retrieves the status of the breakpoint counter.

Prototype

int eonce GetCounters(char *counterIsZero, char
*counterIsStopped)

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 331

3
4

y
A

Libraries and Runtime Code
EONCE Library

Parameters

counterIsZero char *

Returnsa 1 if the breakpoint counter has reached zero.
counterIsStopped char *

Returnsa 1 if the breakpoint counter has been stopped by a Counter Stop Trigger.

Remarks

This function returns the state of the breakpoint counter when using the specia counting
function.

Returns

Error code as defined in the sub-section " Definitions.”

_eonce_SetupTraceBuffer

Configures the behavior of the trace buffer.

Prototype

int eonce SetupTraceBuffer(unsigned int options)

Parameters

optionsunsigned int

Describes the behavior of the trace buffer. Please see the section Definitions for more
information on the identifiers for this parameter.

Remarks

Sets the behavior of the trace buffer. Triggers can also be set to start and stop trace buffer
capture using the _eonce_SetTrigger function.

Returns

Error code as defined in the sub-section “ Definitions.”

_eonce_GetTraceBuffer

Retrieves the contents of the trace buffer.

332

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EONCE Library

Prototype

int eonce GetTraceBuffer(unsigned int *count, unsigned long
*buffer)

Parameters
countunsigned int *

Passes in the size of the buffer; if 0is passed in, the contents of the trace buffer are not
retrieved, instead the number of entriesin the trace buffer are returned in count.

bufferunsigned long *

Points to an array in which the contents of the trace buffer are returned starting with the
oldest entry.

Remarks

Thisfunction retrieves the addresses contained in the trace buffer. The addresses represent
the program execution point when certain change-of-flow events occur. The trace buffer
behavior, including capture events, can be configured using _eonce_SetupTraceBuffer.

Returns
Error code as defined in the sub-section “ Definitions.”

_eonce_ClearTraceBuffer

Clears the contents of the trace buffer.

Prototype

int eonce ClearTraceBuffer()

Parameters

None.

Remarks

This function clears the trace buffer and is useful when you want a fresh set of data. It is
necessary to resume capturing when the trace buffer is full and configured to stop

capturing.

Returns
Error code as defined in the sub-section “ Definitions.”

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 333

3
4

y
A

Libraries and Runtime Code
EONCE Library

_eonce_StartTraceBuffer

Resumes trace buffer capturing.

Prototype

int eonce StartTraceBuffer()

Parameters
None.

Remarks
This function causes the trace buffer to immediately start capturing.

Returns
Error code as defined in the sub-section “ Definitions.”

_eonce_HaltTraceBuffer

Halts trace buffer capturing.

Prototype

int eonce HaltTraceBuffer()

Parameters
None.

Remarks
Causes the trace buffer to immediately stop capturing.

Returns
Error code as defined in the sub-section " Definitions.”

_eonce_EnableDEBUGEV

Allows or disallows aDEBUGEYV instruction to cause a core event in breakpoint unit O.

334

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EONCE Library

Prototype
int eonce EnableDEBUGEV(char enable)

Parameters
enablechar

If anon-zero vaue, allows the DEBUGEYV instruction to cause a core event. If azero
value, prevents the DEBUGEV instruction from causing a core event.

Remarks

This function configures the behavior for the DEBUGEYV instructions. For a core event to
occur, breakpoint unit 0 must be activated by setting atrigger using the
_eonce_SetTrigger or _eonce_SetCounter Trigger functions.

Returns
Error code as defined in the sub-section “ Definitions.”

_eonce_EnableLimitTrigger

Allows or disallows a limit trigger to cause a core event in breakpoint unit O.

Prototype

int eonce EnableLimitTrigger (char enable)

Parameters
enablechar

If anon-zero value, allows thisinstruction to cause a core event. If azero value, prevents
this instruction from causing a core event.

Remarks

This function configures the behavior for overflow and saturation conditionsin the
processor core. For a core event to occur, breakpoint unit O must be activated by setting a
trigger using the _eonce_SetTrigger or _eonce SetCounter Trigger functions.

Returns
Error code as defined in the sub-section “ Definitions.”

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 335

A 4
4\

Libraries and Runtime Code
EONCE Library

Definitions

This sub-section defines:
« Return Codes on page 336
¢ Normal Trigger Modes on page 337
» Counter Trigger Modes on page 338
« Data Selection Modes on page 340
¢ _on page 340Counter Function Modes on page 340
¢ Normal Unit Action Options on page 341
« Counter Unit Action Options on page 341
¢ Accumulating Trigger Options on page 342
» Miscellaneous Trigger Options on page 343
» Trace Buffer Capture Options on page 343
« Trace Buffer Full Options on page 344

« Miscellaneous Trace Buffer Option on page 345

Return Codes

Every function except _eonce_|nitialize returns one of the error codesin Table 14.4 on
page 336.

Table 14.4 Error Codes

Error Code Description

EONCE_ERR_NONE No error.

EONCE_ERR_NOT_INITIALIZED The _eonce_lInitialize function has not been
called before the current function.

EONCE_ERR_UNIT_OUT_OF_RA | The unit parameter is greater than or equal to the
NGE number of units specified in _eonce_Initialize.

EONCE_ERR_LOCKED_OUT The core cannot access the EOnCE registers
because the debugger has locked out the core.
This occurs when a trigger has been set using
the EOnCE GUI panels or through an IDE
breakpoint or watchpoint.

336 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Libraries and Runtime Code
EONCE Library

Normal Trigger Modes

One of the defined identifierslisted in Listing 14.2 on page 337 must be OR’ed into the
options parameter of the _eonce_SetTrigger function. A key for the defined identifiers
listed in Listing 14.2 on page 337 isgiven in Table 14.5 on page 338 on page 337.

Listing 14.2 Normal Trigger Modes

B1PA_N
B1PR_N

B1PW N

B2PF_N
B1XA _OR B2PF_N
B1XA N OR_B2PF
B1PF_OR B2PF_N
B1PA_OR B2PF N
B1PA N OR_B2PF
B1PF_OR N B2PF
B1PA_OR N B2PF
B1XR_AND N B2DR
B1XW_AND N _B2DW
B1XA_AND N_B2DRW
B1PF_N THEN B2PF
B2PF_THEN B1PF N
B1PA_N_THEN_ B2PF
B1PA THEN B2PF N
B2PF_N_THEN_B1PA
B2PF_THEN B1PA N
B1XA N THEN B2PF
B1XA THEN B2PF N
B2PF_N_THEN_ B1XA
B2PF_THEN B1XA N
B1XW_N_THEN B2PF
B1XW_THEN B2PF N
B2PF_N THEN B1XW
B2PF_THEN BIXW N
B1XR_N_THEN_ B2PF
B1XR_THEN B2PF N
B2PF_N_THEN_ B1XR
B2PF_THEN BI1XR N
B1PF_STB B2PF HTB
B1PA_STB B2PF HTB
B2PF_STB_B1PA HTB

Defined Identifier Key for Normal Trigger Modes

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 337

y
A

Libraries and Runtime Code
EONCE Library

Table 14.5 Defined Identifier Key: Normal Trigger Modes

Identifier Fragments Description

B1 breakpoint 1; value set in valuel

B2 breakpoint 2; value set in value2

P p-memory address; this is followed by a type of access

X x-memory address; this is followed by a type of access

D value being read from or written to x-memory

A memory access

R memory read

w memory write

F memory fetch; only follows a P

OR links two sub-triggers by a logical or

AND links two sub-triggers by a logical and

THEN creates a sequence; first sub-trigger must occur, then
second sub-trigger must occur to complete the trigger

N the sub-trigger it follows must occur N times as set in
the count parameter; if N follows an operation, then the
combination of the sub-triggers must occur N times;
(count - 1) will be written to the BCNTR register

STB sub-trigger starts the trace buffer

HTB sub-trigger halts the trace buffer

Counter Trigger Modes

Thefollowing triggers generate a Counter Stop Trigger. The exceptions are the modes that
generate both start and stop triggers.

The defined identifierslisted in Listing 14.3 on page 339 must be OR'’ ed into the options
parameter of the _eonce_SetCounter Trigger function. A key for the defined identifiers
listed in Listing 14.3 on page 339 is given in Table 14.6 on page 339

338 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

Libraries and Runtime Code
EONCE Library

Listing 14.3 Counter Trigger Modes

B1PA
B1PR
B1PW
B2PF
B1XA OR_B2PF
B1PF_OR _B2PF
B1PA OR B2PF

B1XR AND B2DR
B1XW_AND_ B2DW
B1XA AND_B2DRW
B1PF_THEN B2PF
B1PA_THEN B2PF
B2PF_THEN B1PA
B1XA THEN B2PF
B2PF_THEN B1XA
B1XW_THEN B2PF
B2PF_THEN B1XW
B1XR_THEN B2PF
B2PF_THEN B1XR
B1PF_SC B2PF_HC
B1PA_SC_B2PF_HC
B2PF_SC_B1PA_HC

Table 14.6 Defined Identifier Key: Counter Trigger Modes

Identifier Fragments Description

B1 breakpoint 1; value set in valuel

B2 breakpoint 2; value set in value2

P p-memory address; this is followed by a type of access
X x-memory address; this is followed by a type of access.
D value being read from or written to x-memory

A memory access

R memory read

w memory write

F memory fetch; only follows a P

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 339

'
A

Libraries and Runtime Code
EONCE Library

Table 14.6 Defined Identifier Key: Counter Trigger Modes (continued)

Identifier Fragments Description

OR links two sub-triggers by a logical or

AND links two sub-triggers by a logical and

THEN creates a sequence; first sub-trigger must occur, then

second sub-trigger must occur to complete the trigger

SC sub-trigger starts the counter

HC sub-trigger halts the counter

Data Selection Modes

If the trigger mode being set includes a data value compare (contains B2D from the list
Normal Trigger Modes or Counter Trigger Modes), then one of the defined identifiersin
Table 14.7 on page 340 must be OR' ed into the options parameter of the
_eonce_SetTrigger or _eonce SetCounter Trigger function. If not, then donot OR in
any of these identifiers.

Table 14.7 Data Selection Modes

Defined Description

Identifiers

B2D_BYTE makes a comparison when the data being moved is of byte-length
B2D_WORD makes a comparison when the data being moved is of word-length
B2D_LONG makes a comparison when the data being moved is of long-length

Counter Function Modes

One of the defined identifiersin Table 14.8 on page 340 must be OR’ ed into the options
parameter of the _eonce_SetCounter Trigger function.

Table 14.8 Counter Function Modes

Defined Identifiers Description
PCLK_CLOCK_CYCLES count pclk cycles
CLK_CLOCK_CYCLES count clk cycles

340 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EONCE Library

Table 14.8 Counter Function Modes (continued)

Defined Identifiers Description
INSTRUCTIONS_EXECUTED count instructions executed
TRACE_BUFFER_WRITES count writes to the trace buffer

COUNTER_START_TRIGGERS | count Counter Start Triggers

PCLK_CLOCK_CYCLES count pclk cycles

Normal Unit Action Options

Thislist of options describes the action taken when a non-counter trigger is generated.
One of the defined identifiersin Table 14.9 on page 341 must be OR' ed into the options
parameter of the _eonce_SetTrigger function.

Table 14.9 Normal Unit Actions Options Mode

Defined Identifiers Description

UNIT_ACTION enters debug mode is unit 0, else passes signal on
to next unit

INTERRUPT_CORE interrupts to vector set for this unit

HALT_TRACE_BUFFER trace buffer capture is halted

START_TRACE_BUFFER trace buffer capture is started

UNIT_ACTION enters debug mode is unit 0, else passes signal on
to next unit

Counter Unit Action Options

Thislist of options describes the action taken when a counter trigger is generated. One of
the defined identifiersin Table 14.10 on page 342 must be OR’ ed into the options
parameter of the _eonce _SetCounter Trigger function. Identifiers that include
ZERO_BEFORE_TRIGGER only perform the action when the counter counts down to
zero before the Counter Stop Trigger occurs. ldentifiers that include
TRIGGER_BEFORE_ZERO only perform the action when the Counter Stop Trigger
occurs before the counter counts down to zero.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 341

y
A

Libraries and Runtime Code
EONCE Library

Table 14.10 Counter Unit Actions Options Mode

Defined Identifiers

Description

NO_ACTION

counter status bits still get set

UNIT_ACTION_ZERO_BEFORE_TRIGGE
R

enters debug mode is unit 0, else passes
signal on to next unit

INTERRUPT_CORE_ZERO_BEFORE_TR
IGGER

interrupts to vector set for this unit

UNIT_ACTION_TRIGGER_BEFORE_ZER
o)

enters debug mode is unit 0, else passes
signal on to next unit

INTERRUPT_CORE_TRIGGER_BEFORE
_ZERO

interrupts to vector set for this unit

Accumulating Trigger Options
One of the defined identifiersin Table 14.11 on page 342 must be OR'’ ed into the options

parameter of the _eonce SetTrigger function when breakpoint unit O is being configured.

Table 14.11 Accumulating Trigger Options Mode with Breakpoint Unit O

Defined Identifiers

Description

PREV_UNIT_OR_THIS_TRIGGER_OR_
CORE_EVENT

a trigger is generated if the previous
breakpoint unit passes in a trigger signal
or this breakpoint unit creates a trigger
signal or if a core event occurs

PREV_UNIT_THEN_THIS_TRIGGER_OR
_CORE_EVENT

a trigger is generated if the previous
breakpoint unit passes in a trigger signal
followed by either this breakpoint unit
creating a trigger signal or a core event
occurring

THIS_TRIGGER_THEN_CORE_EVENT

a trigger is generated if this breakpoint
unit creates a trigger signal followed by a
core event occurring

PREV_UNIT_THEN_THIS_TRIGGER_
THEN_CORE_EVENT

a trigger is generated if the previous
breakpoint unit passes in a trigger signal
followed by this breakpoint unit creating a
trigger signal followed by a core event
occurring

342

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EONCE Library

One of the defined identifiersin Table 14.12 on page 343 must be OR'’ ed into the options
parameter of the _eonce _SetTrigger function when a breakpoint unit other than unit 0 is

being configured.

Table 14.12 Accumulating Trigger Options Mode, Non-0 Breakpoint Unit

Defined Identifiers

Description

PREV_UNIT_OR_THIS_TRIGGER a trigger is generated if the previous

breakpoint unit passes in a trigger signal
or this breakpoint unit creates a trigger
signal

PREV_UNIT_THEN_THIS_TRIGGER a trigger is generated if the previous

breakpoint unit passes in a trigger signal
followed by this breakpoint unit creating a
trigger signal

Miscellaneous Trigger Options
The defined identifiersin Table 14.13 on page 343 are optional.

Table 14.13 Miscellaneous Trigger Options

Defined Identifiers

Description

INVERT_B2_COMPARE

the signal from breakpoint 2 is inverted before entering the
combination logic; this can be OR’ed into the options
parameter of the _eonce_SetTrigger or
_eonce_SetCounterTrigger function

EXTEND_COUNTER

the counter, when using the special counting function, is
extended to 40-bits by using the OSCNTR as the most
significant 24-bits; this can be OR’ed into the options
parameter of the _eonce_SetCounterTrigger function
when configuring breakpoint unit 0; WARNING: It is not
recommended that this option be used if the processor will
enter debug mode (breakpoint, console or file I/0O) before
the counter is read, because the OSCNTR is needed for
stepping and would corrupt the counter

Trace Buffer Capture Options
The optionsin Table 14.14 on page 344 determine which kind of changes-of-flow will be

captured. OR in as many of the following defined identifiersinto the options parameter of
the _eonce_SetupTraceBuffer function.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 343

'
A

Libraries and Runtime Code
EONCE Library

Table 14.14 Trace Buffer Capture Options

Defined Identifiers Description

CAPTURE_CHANGE_OF_FLOW _ saves target addresses of conditional branches

NOT_TAKEN and jumps that are not taken to the trace buffer

CAPTURE_CHANGE_OF_FLOW _ saves addresses of interrupt vector fetches and

INTERRUPT target addresses of RTI instructions to the trace
buffer

CAPTURE_CHANGE_OF_FLOW _ saves the target addresses of JSR, BSR, and
SUBROUTINE RTS instructions to the trace buffer

CAPTURE_CHANGE_OF_FLOW _ saves the target addresses of the following taken
0 instructions to the trace buffer:

BCC forward branch
BRSET forward branch
BRCLR forward branch

JCC forward and backward branches

CAPTURE_CHANGE_OF_FLOW_ saves the target addresses of the following taken
1 instructions to the trace buffer:

BCC backward branch
BRSET backward branch
BRCLR backward branch

Trace Buffer Full Options

Theoptionsin Table 14.15 on page 344 describe what action to take when the trace buffer
isfull. One of the following defined identifiers must be OR'’ ed into the options parameter
of the _eonce_SetupTraceBuffer function.

Table 14.15 Trace Buffer Full Options

Defined Identifiers Description

TB_FULL_NO_ACTION capture continues, overwriting previous
entries

TB_FULL_HALT_CAPTURE capture is halted

344 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Libraries and Runtime Code
EONCE Library

Table 14.15 Trace Buffer Full Options (continued)

Defined Identifiers Description

TB_FULL_DEBUG processor enters debug mode

TB_FULL_INTERRUPT processor interrupts to vector specified
as Trace Buffer Interrupt

Miscellaneous Trace Buffer Option

The TRACE_BUFFER_HALTED option may be OR'’ ed into the options parameter of the
_eonce_SetupTraceBuffer function. This option puts the trace buffer in a halted state
when leaving _eonce_SetupTraceBuffer function. Thisismost useful when setting a
trigger, by calling _eonce SetTrigger, to start the trace buffer when a specific condition

ismet.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 345

wr
4\

Libraries and Runtime Code
EONCE Library

346 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

A

Porting Issues

This appendix explains issues relating to successfully porting code to the most current
version of the CodeWarrior Development Studio for Freescale 56800/E Digital Signal
Controllers.

This appendix contains the following sections:
* Converting the DSP56800E Projects from Previous Versions on page 347

« Removing "illegal object_c on pragmadirective" Warning on page 348

Converting the DSP56800E Projects from
Previous Versions

When you open older projects in the CodeWarrior IDE, the IDE automatically prompts
you to convert your existing project (Figure A.1 on page 347). Y our old project will be
backed up if you need to access that project file at alater time. The CodeWarrior IDE
cannot open older projectsif you do not convert them.

Figure A.1 Project Conversion Dialog

Convert Projeck EI

Project "'zample.mep!’ needs to be converted. Some target zeftings need
to be updated ko the cument version,

Some preference panel: have changed and the target zettings need to
be updated to the new format. The project will be backed up az
"zample.old. mep'. Do vou want to canvert the project?

[T Usze For &l Femaining Projects

0k, I Cancel

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 347

y
A

Porting Issues
Removing "illegal object_c on pragma directive" Warning

Removing "illegal object _c on pragma
directive" Warning

If after porting a project to DSP56800E 7.x, you get awarning that says i1legal

object ¢ on pragma directive, youneedtoremoveit. To removethis
warning:

1. Open the project preference and go to the C/C++ Preprocessor.

2. Removetheline #pragma objective_ con from the prefix text field.

348 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project

Wizard

This appendix explains the high-level design of the new project wizard.

Overview

The DSP56800x New Project Wizard supports the DSP56800x processors listed in Table
B.1 on page 349.

Table B.1 Supported DSP56800x Processors for the New Project Wizard

DSP56800 DSP56800E
DSP56F801 (60 MHz) DSP56852
DSP56F801 (80 MHz) DSP56853
DSP56F802 DSP56854
DSP56F803 DSP56855
DSP56F805 DSP56857
DSP56F807 DSP56858
DSP56F826 MC56F8013
DSP56F827 MC56F8014
MC56F8023
MC56F8025
MC56F8036
MC56F8037
MC56F8122
MC56F8123

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

349

'
A

DSP56800x New Project Wizard
Overview

Table B.1 Supported DSP56800x Processors for the New Project Wizard (continued)

DSP56800 DSP56800E

MC56F8145

MC56F8146

MC56F8147

MC56F8155

MC56F8156

MC56F8157

MC56F8165

MC56F8166

MC56F8167

MC56F8322

MC56F8323

MC56F8335

MC56F8345

MC56F8346

MC56F8356

MC56F8357

MC56F8365

MC56F8366

MC56F8367

Wizard rules for the DSP56800x New Project Wizard are described in the following sub-
sections:

« Page Rules on page 351

* Resulting Target Rules on page 352

« _on page 353Rule Notes on page 353

Click on the following link for details about the DSP56800x New Project Wizard
Graphical User Interface:

350 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard
Overview

* DSP56800x New Project Wizard Graphical User Interface on page 354

Page Rules

The page rules governing the wizard page flow for the simulator and the different
processors are shown in the Table B.2 on page 351, Table B.3 on page 351, Table B.4 on
page 352, and Table B.5 on page 352.

Table B.2 Page Rules for the Simulator, DSP56F801 (60 and 80 MHz), DSP56F802,
MC56F801x, MC56F802x, MC56F803x, MC56F812x, and MC56F832x

Target Selection Page | Next Page Next Page

any simulator Program Choice Page Finish Page

DSP56F801 60 MHz

DSP56F801 80 MHz

DSP56F802

MC56F801x

MC56F802x

MC56F803x

MC56F812x

MC56F832x

Table B.3 Page Rules for the DSP56F803, DSP56F805, DSP56F807, DSP56F826, and
DSP56F827

Target Selection Next Page Next Page Next Page
Page

DSP56F803 Program External/Internal Finish Page
Choice Page Memory Page

DSP56F805

DSP56F807

DSP56F826

DSP56F827

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 351

'
A

DSP56800x New Project Wizard
Overview

Table B.4 Page Rules for the DSP56852, DSP56853, DSP56854, DSP56855, DSP56857,
and DSP56858

Target Selection Page Next Page Next Page

DSP56852 Program Choice Finish Page
Page

DSP56853

DSP56854

DSP56855

DSP56857

DSP56858

Table B.5 Page Rules for the MC56F814x, MC56F815x, MC56F816x, MC56F833x,
MC56F834x, MC56F835x, and MC56F836x

Target Next Page Next Page Next Page if Next Page
Selection Processor

Page Expert Not

Selected
MC56F814x | Program Data Memory | External/lnternal Finish Page
Choice Page Model Page Memory Page

MC56F815x

MC56F816x

MC56F833x

MC56F834x

MC56F835x

MC56F836x

Resulting Target Rules

The rules governing possible final project configurations are shown in Table B.6 on
page 353.

352 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

DSP56800x New Project Wizard

Overview
Table B.6 Resulting Target Rules

Target Possible Targets

56800 Simulator Target with Non-HostlO Library and Target with Host 10
Library

56800E Simulator Small Data Model and Large Data Model

DSP5680x External Memory and/or Internal Memory with pROM-to-
XRAM Copy

DSP5682x External Memory and/or Internal Memory with pROM-to-
XRAM Copy

DSP5685x (Small Data Model and Small Data Model with HSST) or
(Large Data Model and Large Data Model with HSST)

MC56F801x Small Data Model Internal Memory with pROM-to-xRAM

MC56F802x copy

MC56F803x

MC56F812x Small Data Model or Large Data Model Internal Memory

MC56E832x with pPROM-to XRAM Copy

MC56F814x (Small Data Memory External and/or Small Data Memory

MC56FB15 Momory Extemal andlor Large Data Memary Itermal it

MC56F816x pROM-to-xRAM Copy)

MC56F833x

MC56F834x

MC56F835x

MC56F836x

Rule Notes

Additional notes for the DSP56800x New Project Wizard rules are:

« The DSP56800x New Project Wizard uses the DSP56800x EABI Stationery for all
projects. Anything that is in the DSP56800x EABI
Stationery will be in the wizard-created projects depending on the wizard choices.

¢ The DSP56800x EABI Stationery has all possible targets, streamlined and tuned
with the DSP56800x New Project Wizard in mind.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 353

y
A

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

* The DSP56800x New Project Wizard creates the entire simulator project with all the
available targets in context of “ Stationery as documentation and example.”

DSP56800x New Project Wizard Graphical
User Interface

This section describe the DSP56800x New Project Wizard graphical user interface.
The subsections in this section are:
« Invoking the New Project Wizard on page 354

* New Project Dialog Box on page 355

e Target Pages on page 356

« Program Choice Page on page 365

« DataMemory Model Page on page 366

« External/lnternal Memory Page on page 367

« Finish Page on page 368

Invoking the New Project Wizard

To invoke the New Project dialog box, from the Freescale CodeWarrior menu bar, select
File>New (Figure B.1 on page 355).

354 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

h o
g |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.1 Invoking the DSP56800x New Project Wizard

=icix
E Edit VWiew Search Project Debug Processor Expert Window Help
Chrl+Shif -+ .

e M a2 ¥ ¢ Qs EE N

Find and Cpen File... Ckrl+D

Close]

Save CEHHES

Save A e +Shift+5

SavEBS, .

Saye & Copy A, .

Rewerk,, .

Open Worksparce
Close Warkspace
Save Workspace
Save Workspace As...

Imnport Components. ..
Close Catalog)

Impork Project...
Export Project.,

Page Setup...
Brint... CEHHR

Open Recent (3

Exit

New Project Dialog Box

After selecting File>New from the Freescale CodeWarrior menu bar, the New project
Diaog Box (Figure B.2 on page 356) appears. Inthelist of stationeries, you can select
either the “DSP56800x New Project Wizard” or any of the other regular stationery.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 355

4
A

DSP56800x New Project Wizard

DSP56800x New Project Wizard Graphical User Interface

Figure B.2 New Project Dialog Box

N
Project | File | Object |

B DSPEE300x EABI Stationery Project name:
Fﬁ DSP5E8DE EVM Bxamples Stationeny 1[hEJJ|‘DjBCt
5 DSP56B0: New Project Wizard
ﬁ Empty Project Location:
@ Makefile Importer Wizard o —Y .
4 “my_projects‘the_project Set..
ﬁ Processor Expert Examples Stationery 1 L_I
i Processor Expert Stationary 1 Add Targets to Project:

Project:

0K Cancel

Target Pages

When invoked, the New Project Wizard first shows adynamically created list of
supported target families and processors or simulators. Each DSP56800x family is
associated with a subset of supported processors and asimulator (Figure B.3 on page 357,
Figure B.4 on page 358, Figure B.5 on page 359, Figure B.6 on page 360, Figure B.7 on

page 361, Figure B.8 on page 362, Figure B.9 on page 363, Figure B.10 on page 364, and

Figure B.11 on page 365).

356 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

h
L |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.3 DSP56800x New Project Wizard Target Dialog Box (DSP56F80x)

DSP56800x New Project Wizard - Target

-,

Select family and then processor for this project...

DSP56300¢ Family | Processor
DISP56FS0e DSPSEFS01_60MHz
DSPREFS2: DSPEEFS01_S0MHz
DSPEEa5: DSPS6FS02
MCEEF201x DSPSEFS03
MCEEF202¢ DSPEEFS05
MCEEFE0%e DSPGEFS07
MC5EFS Tiox
MC5EFS %0
Simulators

< Back MNext = Cancel

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

357

(

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.4 DSP56800x New Project Wizard Target Dialog Box (DSP56F82x)

DSP56800x New Project Wizard - Target
Select family and then processor for this project...
DSP56200« Family | Processor
DSP5EFE DSPhGFB26
DSP56FE2 DSPhBGFBZT
DSP56Em
MC56FE01x
MCBEFE02x
MCHEFE03
MCHEFE T
MCHEFE 3o
Simulators
< Back Mext = Cancel

358 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

h
L |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.5 DSP56800x New Project Wizard Target Dialog Box (DSP5685x)

DSP56800x New Project Wizard - Target

-,

Select family and then processor for this project...

DSP56300¢ Family | Processor
DSPEEFSM: DSP56A52
DSPEEFS2: DSP5Ga53
DISP5625¢ DSP56a54
MCSEF201x DSP56255
MCEEF202¢ DSP5EA5T
MCEEFE0%e DSP5Ga5S
MC5EFS Tiox

MC5EFS %0

Simulators

< Back MNext = Cancel

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

359

(

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.6 DSP56800x New Project Wizard Target Dialog Box (MC56F801x)

DSP56800x New Project Wizard - Target
Select family and then processor for this project...
DSP56800« Family | Processor
DSPEEFEH MCH&FB011
DSPHEFE2 MCH&FB013
DSPHEEm MCH&FB014
MC56FE01x
MCEEFE02x
MCBEFE0G
MCHEFE 1o
MCHEF8 3o
Simulators
< Back MNext = Cancel

360 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

h

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.7 DSP56800x New Project Wizard Target Dialog Box (MC56F802x)

D5P56800x New Project Wizard - Target

-,

Select family and then processor for this project ...

DSP56800k: Famity

Processor

DSP56F30
DSP5GEFE2
DSP568m
MCH6F80Tx
MCSEFB02y
MC56F303
MC56F8 T
MC56F 830
Simulators

MC56F3023
MCE6FE025

< Back Mext =

Cancel

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

361

(

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.8 DSP56800x New Project Wizard Target Dialog Box (MC56F803x)

DSP56800x New Project Wizard - Target
Select family and then processar for this project ...
DSP56800¢ Family | Processor
DSPREFE0 MC56F8036
DSPREFE2 MC56FB037
DSP5655m
MCE6F801x
MCHEF 802
MCHEFE03
MCHEFS T
MC56FS 3o
Simulators
¢ Back Mead = Cancel

362 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

h

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.9 DSP56800x New Project Wizard Target Dialog Box (MC56F81xx)

D5P56800x New Project Wizard - Target

-,

Select family and then processor for this project...

DSP56300¢ Famity | Processor
DSP56Fa: MCEEF3122
DSP5EFE2: MCEEF2123
DSP5625: MCEEF2135
MC56F201x MCEEF2145
MC5EF202¢ MCEEF2146
MC56F20% MCEEF2147
MC56FS hee MCEEFE155
MC56F2 3 MCEEF2156
Simulatars MCSEF2157
MCSEFE165
MCEEF2166
MCEEFE167
< Back Mext =

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

363

(

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.10 DSP56800x New Project Wizard Target Dialog Box (MC56F8xxx)

DSP56800x Mew Project Wizard - Target
Select family and then processor for this project...
DSP56200« Family | Processor
DSPBEFE MC56FE322
DSPBEFEH: MCE6FE323
DSP5ESa MCE6FE335
MCEEF801x MC56FE345
MCEEF802: MCE56F8346
MCEEF803 MCE6FE347
MCEEFS T MCE6FE355
MCHEFE 3o MCE6FE356
Simulators MCE6FE357
MC56F8365
MCE56F8366
MCE6FE367
< Back Mext = Cancel

364 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.11 DSP56800x New Project Wizard Target Dialog Box (Simulators)

-,

DSP56800x New Project Wizard - Target

Select family and then processor for this project ...

DSP5E200: Famiby Processar
DSPEEFE0x DSP56200_simulator
DSPREFE2 DSPRERD0E_simulator

DSP5685m

MCH6F801x
MCH6F802x
MC56FB03x
MCE6F8 T
MC56F8 3o
Simulators

Mext = Cancel

Onetarget family and onetarget processor or simulator must be selected before continuing
to the next wizard page.

NOTE Depending on which processor you select, different screens will appear
according to the “Page Rules’ on page 351.

If you choose the simulator, then the DSP56800x New Project Wizard - Program Choice
page appears (see “ Program Choice Page” on page 365.)

Program Choice Page

If you chose either of the simulators, then Figure B.12 on page 366 appears and you can
now choose what sort of main() program to include in the project.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 365

4
A

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.12 DSP56800x New Project Wizard - Program Choice

DSP56800x New Project Wizard - Program Choice

Select the starter main() program faor this project ...

Program

{* Simple C

(" Simple Mixed Assembly and C
" Simple Assembly

" Blank C

< Back Mest = Cancel

When you click Next, the Wizard jumps to the appropriate page determined by the “ Page
Rules’ on page 351.

Data Memory Model Page

If you select a DSP56800E processor (56F83xx or 5685x family), then the Data Memory

Model page appears (Figure B.13 on page 367) and you must select either the Small Data
Model (SDM) or Large Data Model (LDM).

366 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

g |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.13 DSP56800x New Project Wizard - 56800E Data Memory Model Page

=,

DSP56800x New Project Wizard - 56800E Data Memory Model

Select the data memony model for this 6800E project...
Memory

* Smal Data Mode! (SDM)
(" Large Data Model (LDM)

< Back Mext = Cancel

When you click Next, the Wizard jumps to the appropriate page determined by the “Page
Rules’ on page 351.

External/Internal Memory Page

Depending on the processor that you select, the External/Internal Memory page may
appear (Figure B.14 on page 368) and you must select either external or internal memory.

NOTE Multiple memory targets can be checked.

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 367

4
A

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.14 DSP56800x New Project Wizard - External/Internal Memory Page

DSP568004 New Project Wizard - External/Internal Me x|

Select one or more memory configurations faor thiz project...

¥ Esternal Memary

W Internal Memary with pROM-to-<Fiéb copy

¢ Back

Cancel |

When you click Next, the Wizard jumps to the appropriate page determined by the “ Page
Rules’ on page 351.

Finish Page

When you click the Finish button on the Finish Page (Figure B.15 on page 369), the
project creation process start.

NOTE All target choices end on this page.

368 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

h o
g |

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

Figure B.15 DSP56800x New Project Wizard - Finish Page

DSP56800x New Project Wizard - Finish

Click Finish to create the project...

< Back I Finish I

Cancel

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

369

A 4
4\

DSP56800x New Project Wizard
DSP56800x New Project Wizard Graphical User Interface

370 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

Index

Symbols
. (location counter) linker keyword 292
df file, loading 220
__mod_accessintrinsic function 270
__mod_error intrinsic function 272
__mod_getint16 intrinsic function 271
__mod_initintrinsic function 269
__mod_init16 intrinsic function 269
__mod_setint16 intrinsic function 272
__mod_start intrinsic function 270
__mod_stop intrinsic function 271
__mod_updateintrinsic function 271
_eonce_ClearTraceBuffer library function 333
_eonce_ClearTrigger library function 330
_eonce_EnableDEBUGEV library function 334
_eonce_EnableLimitTrigger library function 335
_eonce_GetCounters library function 331
_eonce_GetCounterStatus library function 331,
332
_eonce_GetTraceBuffer library function 332
_eonce_HaltTraceBuffer library function 334
_eonce_Initidize library function 327
_eonce_SetCounterTrigger library function 329,
330
_eonce_SetTrigger library function 328, 329
_eonce_SetupTraceBuffer library function 332
_eonce_StartTraceBuffer library function 334

A

abs sintrinsic function 239

Access Paths panel 48

add intrinsic function 241

add_hfm_unit flash debugger command 223

ADDR linker keyword 292, 293

ALIGN linker keyword 293

ALIGNALL linker keyword 293, 294

Auto-clear previous breakpoint on new
breakpoint release 78

B
bean inspector window 89, 94, 96

bean selector window 88, 93-94
breakpoints 196
Build Extras panel 48

C
C for DSP56800E 121-145
C/C++ language panel 51
C/C++ warnings panel 57-61
caling conventions 123-127
Changing Target Settings 45
child windows 32
code storage 140
CodeWarrior IDE 13, 14, 35, 36
installing 24
installing and registering 19
CodeWarrior IDE Target Settings Panels 47
command converter server 187-193
command window 221
connection type 178
conventions, calling 123-127
converting CodeWarrior projects 347
CPU types overview window 103
creating aproject 29, 33
Custom Keywords settings panel 48
Cycle/Instruction Count 218

D

data alignment 133, 135

data storage 140

deadstripping 145

debugger
command converter server 187-193
EONCE features 209-217
fill memory 205-207
|oad/save memory 203-205
operating 193-198
savelrestore registers 207-209
system level connect 221, 222

debugger protocol 178

Debugger Settings panel 48

debugging 175-226

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 371

flash memory 222

notes for hardware 225

supported remote connections 175-183

target settings 185, 187
development process 36-42

building (compling and linking) 40-42

debugging 42

editing code 39, 40

project files 38, 39
development studio overview 35-42
diaog boxes

fill memory 205-207

|oad/save memory 203-205

save/restore registers 207-209
directories, installation 24
div_Isintrinsic function 249
div_IsAqintrinsic function 249
div_sintrinsic function 248
div_sAqintrinsic function 248
docking windows 32
DSP56800E simulator 217

E

ELF disassembler panel 68-70

EONCE debugger features 209-217

EONCE library
definitions 336-345

EONCE library functions 326-335
_eonce_ClearTraceBuffer 333
_eonce ClearTrigger 330
_eonce_EnableDEBUGEV 334
_eonce_EnableLimitTrigger 335
_eonce_GetCounters 331
_eonce_GetCounterStatus 331, 332
_eonce_GetTraceBuffer 332
_eonce_HaltTraceBuffer 334
_eonce_Initialize 327
_eonce_SetCounterTrigger 329, 330
_eonce_SetTrigger 328, 329
_eonce_SetupTraceBuffer 332
_eonce_StartTraceBuffer 334

EONCE panels
set hardware breakpoint 210
set trigger 215-217

specia counters 210-212

trace buffer 212-215
example HSST host program 157-158
example HSST target program 165, 166
Exporting and importing panel optionsto XML

Files 46

extract_hintrinsic function 246
extract_| intrinsic function 246, 247

F

ffs_| intrinsic function 256, 257

ffs_sintrinsic function 255

File Mappings panel 48

fill memory dialog box 205-207

flash debugger commands
add_hfm_unit 223
set_hfm_base 223
set_hfm_config_base 223
set_hfm_erase_ mode 224
set_hfm_verify_erase 224
set_hfm_verify_program 224
set_hfmclkd 222, 223
target_code sets hfmclkd 224

flash memory debugging 222

Flash ROM
programming tips 225

floating windows 32

FORCE_ACTIVE linker keyword 294

formats, number 121, 123

G
getting started 19, 29, 33
Global Optimizations settings panel 48

H

hardware debugging notes 225
high-speed simultaneous transfer 151-166
host program example, HSST 157-158
host-side API hsst functions 151-157
HSST 151-166
host-side API functions 151-157
target library API functions 158-165
visualization 167

372 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

HSST functions

hsst_attach listener 155, 156

hsst_block_mode 154, 155

HSST_close 159

hsst_close 152

hsst_detach_listener 156

HSST_flush 162

hsst_noblock_mode 155

HSST_open 159

hsst_open 151

HSST _raw_read 163

HSST_raw_write 164

HSST_read 161

hsst_read 152

HSST_set_log_dir 164, 165

hsst_set log_dir 156

HSST_setvbuf 159, 160

HSST_size 162

hsst_size 154

HSST_write 161

hsst_write 153
HSST host program example 157-158
HSST target program example 165, 166
hsst_attach_listener function 155, 156
hsst_block_mode function 154, 155
HSST_close function 159
hsst_close function 152
hsst_detach_listener function 156
HSST _flush function 162
hsst_noblock_mode function 155
HSST_open function 159
hsst_open function 151
HSST_raw_read function 163
HSST_raw_write function 164
HSST _read function 161
hsst_read function 152
HSST_set_log_dir function 164, 165
hsst_set log_dir function 156
HSST_setvbuf function 159, 160
HSST_sizefunction 162
hsst_size function 154
HSST_write function 161
hsst_write function 153

I
IDE, CodeWarrior 13, 14, 35, 36
IDE, ingtalling 24
IDE, installing and registering 19
INCLUDE linker keyword 294
initidization, runtime 323-326
inline assembly
caling functions 232-234
overview 229, 230
quick guide 230, 231
inline assembly language 229-234
installation directories 24
installed beans overview window 104
installing and registering the CodeWarrior
IDE 19
installing the CodeWarrior IDE 24
intrinsic functions 234-277
__mod_access 270
__mod_error 272
__mod_getintl6 271
__mod_init 269
__mod_initl6 269
__mod_setint16 272
__mod_start 270
__mod_stop 271
__mod_update 271
abs s 239
add 241
div_Is 249
div_lsAg 249
div_s 248
div_s4q 248
extract_h 246
extract_| 246, 247
ffs | 256, 257
ffs s 255
fractional arithmetic 235, 236
implementation 234, 235
L_abs 240
L_add 242
L_deposit_h 247
L_deposit_| 247
L_mac 253
L_msu 253

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 373

L_mult 254
L_mult_Is 255
L_negate 241
L_shl 263,264
L_shiftNs 264
L_shifts 265
L_shr 265, 266
L_shr_r 266
L_shrtNs 267
L_sub 243
mac_r 250, 251
msu_r 251
mult 252
mult_r 252, 253
negate 239, 240
norm_| 257
norm_s 256
round 258
shl 259
shiftNs 260
shifts 260, 261
shr 261
shr_r 262
shrtNs 263
stop 243
sub 241
turn_off_coonv_rndg 244
turn_off_sat 245
turn_on_conv_rndg 245
wait 244
introduction 13-17

K
KEEP_SECTION linker keyword 295

L

L_absintrinsic function 240
L_add intrinsic function 242
L_deposit_hintrinsic function 247
L_deposit_| intrinsic function 247
L_mac intrinsic function 253
L_msu intrinsic function 253
L_mult intrinsic function 254
L_mult_Isintrinsic function 255

L_negate intrinsic function 241
L_shl intrinsic function 263, 264
L_shiftNsintrinsic function 264
L_shiftsintrinsic function 265
L_shrintrinsic function 265, 266
L_shr_rintrinsic function 266
L_shrtNsintrinsic function 267
L_subintrinsic function 243
large data model support 141-144
libraries and runtime code 319-345
link order 145
linker command files
keywords 291-300
structure 279-282
syntax 282-291
linker keywords
. (location counter) 292
ADDR 292, 293
ALIGN 293
ALIGNALL 293,294
FORCE_ACTIVE 294
INCLUDE 294
KEEP_SECTION 295
MEMORY 295, 297
OBJECT 297
REF_INCLUDE 297
SECTIONS 297,298
SIZEOF 299
SIZEOFW 299
WRITEB 299
WRITEH 300
WRITEW 300
load/save memory dialog box 203-205
loading .elf file 220

M

M5600E target pandl 50, 51

M56800E assembler panel 62, 64
M56800E linker panel 71-75

M56800E processor panel 64

M56800E target (debugging) panel 77-82
mac_r intrinsic function 250, 251

math support intrinsic functions 236-267
MEMORY linker keyword 295, 297

374 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

memory map window 101, 103
memory, viewing 199-202
Metrowerks Standard Library (MSL) 319-323
modulo addressing
error codes 275, 277
intrinsic functions 267-277
points to remember 275
modulo buffer examples 273-275
msu_r intrinsic function 251
mult intrinsic function 252
mult_r intrinsic function 252, 253

N

negate intrinsic function 239, 240
norm_| intrinsic function 257
norm_sintrinsic function 256
number formats 121, 123

@)

OBJECT linker keyword 297
operating the debugger 193-198
optimizing code 144, 145

overview, development studio 35-42
overview, target settings 45

P

P memory, viewing 200-202
panels
C/C++ language 51
C/C++ warnings 57-61
ELF disassembler 68-70
M56800E assembler 62, 64
M56800E linker 71-75
M56800E processor 64
M56800E target 50, 51
M56800E target (debugging) 77-82
remote debug options 82-84
remote debugging 76-77
target settings 49-50
panels, settings 48-84
Peripheral Module Registers 146
peripherals usage inspector window 105
porting issues 347

Processor Expert
beans 87-89
code generation 86-87
menu 89-93
overview 85-93
page 87
tutorial 106-120
Processor Expert interface 85-120
Processor Expert windows 93-106
bean inspector 94, 96
bean selector 93-94
CPU types overview 103
installed beans overview 104
memory map 101, 103
peripherals usage inspector 105
resource meter 104
target CPU 96-101
project
creating 29, 33

R

REF_INCLUDE linker keyword 297
references 17

register detailswindow 202, 219
register values 197-198

Registers, peripheral module 146
remote debug options panel 82-84
remote debugging panel 76-77
requirements, system 19

resource meter window 104
Restoring Target Settings 47
round intrinsic function 258
runtime code 319-345

runtime initialization 323-326

S
savelrestore registers dialog box 207-209
Saving new target settings

stationery files 47
SECTIONS linker keyword 297, 298
set hardware breakpoint EOnCE pandl 210
set trigger EONCE panel 215-217
set_hflkd flash debugger command 222, 223
set_hfm_base flash debugger command 223

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 375

set_hfm_config_base flash debugger
command 223
set_hfm_erase_mode flash debugger
command 224
set_hfm_verify_erase flash debugger
command 224
set_hfm_verify program flash debugger
command 224
settings panels 48-84
Access Paths 48
Build Extras 48
C/C++ language 51
C/C++ warnings 57-61
Custom Keywords 48
Debugger Settings 48
ELF disassembler 68-70
File Mappings 48
Global Optimizations 48
M56800E assembler 62, 64
M56800E linker 71-75
M56800E processor 64
M56800E target 50, 51
M56800E target (debugging) 77-82
remote debug options 82-84
remote debugging 76-77
Source Trees 48
target settings 49-50
settings, target 43-84
shlintrinsic function 259
shiftNsintrinsic function 260
shiftsintrinsic function 260, 261
shrintrinsic function 261
shr_r intrinsic function 262
shrtNsintrinsic function 263
simulator 217
simultaneous transfer, high speed 151-166
SIZEOF linker keyword 299
SIZEOFW linker keyword 299
Source Trees settings panel 48
specia counters EONCE panel 210-212
stack frames 128, 129
stationery
saving new target settings 47
stop intrinsic function 243

storage, code and data 140
sub intrinsic function 241
system level connect 221, 222
system requirements 19

T
target CPU window 96-101
target library API hsst functions 158-165
target program example, HSST 165, 166
target settings 43-84

overview 45
target settings panel 49-50
Target Settings panels

Access Paths 48

Build Extras 48

Custom Keywords 48

Debugger Settings 48

File Mappings 48

Global Optimizations 48

Source Trees 48
Target Settingswindow 46
target_code_sets hfmclkd flash debugger

command 224

trace buffer EOnCE panel 212-215
turn_off_conv_rndg intrinsic function 244
turn_off_sat intrinsic function 245
turn_on_conv_rndg intrinsic function 245
tutorial, Processor Expert 106-120

U

undocking windows 32

\%
values, register 197-198
viewing memory 199-202

w

wait intrinsic function 244
windows
bean inspector 89, 94, 96
bean selector 88, 93-94
CPU typesoverview 103
installed beans overview 104

376 56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

memory map 101, 103
peripherals usage inspector 105
Processor Expert 93-106
register details 202, 219
resource meter 104
target CPU 96-101
WRITEB linker keyword 299
WRITEH linker keyword 300
WRITEW linker keyword 300

X

X memory, viewing 199-200
XML files
exporting and importing panel options 46

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual 377

g |

378

56800/E Digital Signal Controllers: MC56F8xxx/DSP5685x Targeting Manual

	Introduction
	CodeWarrior IDE
	Freescale 56800/E Digital Signal Controllers
	References

	Getting Started
	System Requirements
	Installing and Registering the CodeWarrior IDE
	Creating a Project

	Development Studio Overview
	CodeWarrior IDE
	Development Process
	Project Files
	Editing Code
	Building: Compiling and Linking
	Debugging

	Target Settings
	Target Settings Overview
	Target Setting Panels
	Changing Target Settings
	Exporting and Importing Panel Options to XML Files
	Restoring Target Settings

	CodeWarrior IDE Target Settings Panels
	DSP56800E-Specific Target Settings Panels
	Target Settings
	M56800E Target
	C/C++ Language (C Only)
	C/C++ Preprocessor
	C/C++ Warnings
	M56800E Assembler
	M56800E Processor
	ELF Disassembler
	M56800E Linker
	Remote Debugging
	M56800E Target (Debugging)
	Remote Debug Options

	Processor Expert Interface
	Processor Expert Overview
	Processor Expert Code Generation
	Processor Expert Beans
	Processor Expert Menu

	Processor Expert Windows
	Bean Selector
	Bean Inspector
	Target CPU Window
	Memory Map Window
	CPU Types Overview
	Resource Meter
	Installed Beans Overview
	Peripherals Usage Inspector

	Processor Expert Tutorial

	C for DSP56800E
	Number Formats
	Calling Conventions and Stack Frames
	Passing Values to Functions
	Returning Values From Functions
	Volatile and Non-Volatile Registers
	Stack Frame and Alignment

	User Stack Allocation
	Data Alignment Requirements
	Word and Byte Pointers
	Reordering Data for Optimal Usage

	Variables in Program Memory
	Declaring Program Memory Variables
	Using Variables in Program Memory
	Linking with Variables in Program Memory

	Code and Data Storage
	Large Data Model Support
	Extended Data Addressing Example
	Accessing Data Objects Examples
	External Library Compatibility

	Optimizing Code
	Deadstripping and Link Order
	Working with Peripheral Module Registers
	Compiler Generates Bit Instructions
	Explanation of Undesired Behavior
	Recommended Programming Style

	Generating MAC Instruction Set

	High-Speed Simultaneous Transfer
	Host-Side Client Interface
	hsst_open
	hsst_close
	hsst_read
	hsst_write
	hsst_size
	hsst_block_mode
	hsst_noblock_mode
	hsst_attach_listener
	hsst_detach_listener
	hsst_set_log_dir
	HSST Host Program Example

	Target Library Interface
	HSST_open
	HSST_close
	HSST_setvbuf
	HSST_write
	HSST_read
	HSST_flush
	HSST_size
	HSST_raw_read
	HSST_raw_write
	HSST_set_log_dir
	HSST Target Program Example

	Data Visualization
	Starting Data Visualization
	Data Target Dialog Boxes
	Memory
	Registers
	Variables
	HSST

	Graph Window Properties

	Debugging for DSP56800E
	Using Remote Connections
	Accessing Remote Connections
	Understanding Remote Connections
	Editing Remote Connections

	Target Settings for Debugging
	Command Converter Server
	Essential Target Settings for Command Converter Server
	Changing the Command Converter Server Protocol to Parallel Port
	Changing the Command Converter Server Protocol to HTI
	Changing the Command Converter Server Protocol to PCI
	Setting Up a Remote Connection
	Debugging a Remote Target Board

	Launching and Operating the Debugger
	Setting Breakpoints and Watchpoints
	Viewing and Editing Register Values
	Viewing X: Memory
	Viewing P: Memory

	Load/Save Memory
	Fill Memory
	Save/Restore Registers
	EOnCE Debugger Features
	Set Hardware Breakpoint Panel
	Special Counters
	Trace Buffer
	Set Trigger Panel

	Using the DSP56800E Simulator
	Cycle/Instruction Count
	Memory Map

	Register Details Window
	Loading a .elf File without a Project
	Using the Command Window
	System-Level Connect
	Debugging in the Flash Memory
	Flash Memory Commands
	set_hfmclkd <value>
	set_hfm_base <address>
	set_hfm_config_base <address>
	add_hfm_unit <startAddr> <endAddr> <bank> <numSectors> <pageSize> <progMem> <boot> <interleaved>
	set_hfm_erase_mode units | pages | all
	set_hfm_verify_erase 1 | 0
	set_hfm_verify_program 1 | 0
	target_code_sets_hfmclkd 1 | 0
	Flash Lock/Unlock

	Notes for Debugging on Hardware

	Profiler
	Inline Assembly Language and Intrinsics
	Inline Assembly Language
	Inline Assembly Overview
	Assembly Language Quick Guide
	Calling Assembly Language Functions from C Code
	Calling Functions from Assembly Language

	Intrinsic Functions
	Implementation
	Fractional Arithmetic
	Intrinsic Functions for Math Support
	abs_s
	negate
	L_abs
	L_negate
	add
	sub
	L_add
	L_sub
	stop
	wait
	turn_off_conv_rndg
	turn_off_sat
	turn_on_conv_rndg
	turn_on_sat
	extract_h
	extract_l
	L_deposit_h
	L_deposit_l
	div_s
	div_s4q
	div_ls
	div_ls4q
	mac_r
	msu_r
	mult
	mult_r
	L_mac
	L_msu
	L_mult
	L_mult_ls
	ffs_s
	norm_s
	ffs_l
	norm_l
	round
	shl
	shlftNs
	shlfts
	shr
	shr_r
	shrtNs
	L_shl
	L_shlftNs
	L_shlfts
	L_shr
	L_shr_r
	L_shrtNs
	Modulo Addressing Intrinsic Functions
	__mod_init
	__mod_initint16
	__mod_start
	__mod_access
	__mod_update
	__mod_stop
	__mod_getint16
	__mod_setint16
	__mod_error

	ELF Linker
	Structure of Linker Command Files
	Memory Segment
	Closure Blocks
	Sections Segment

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Deadstrip Prevention
	Variables, Expressions, and Integral Types
	File Selection
	Function Selection
	ROM to RAM Copying
	Utilizing Program Flash and Data RAM for Constant Data in C
	Utilizing Program Flash for User-Defined Constant Section in Assembler
	Stack and Heap
	Writing Data Directly to Memory

	Linker Command File Keyword Listing
	. (location counter)
	ADDR
	ALIGN
	ALIGNALL
	FORCE_ACTIVE
	INCLUDE
	KEEP_SECTION
	MEMORY
	OBJECT
	REF_INCLUDE
	SECTIONS
	SIZEOF
	SIZEOFW
	WRITEB
	WRITEH
	WRITEW

	Command-Line Tools
	Usage
	Response File
	Sample Build Script
	Arguments
	General Command-Line Options
	Compiler
	Linker
	Assembler

	Libraries and Runtime Code
	MSL for DSP56800E
	Using MSL for DSP56800E
	Allocating Stacks and Heaps for the DSP56800E

	Runtime Initialization
	EOnCE Library
	_eonce_Initialize
	_eonce_SetTrigger
	_eonce_SetCounterTrigger
	_eonce_ClearTrigger
	_eonce_GetCounters
	_eonce_GetCounterStatus
	_eonce_SetupTraceBuffer
	_eonce_GetTraceBuffer
	_eonce_ClearTraceBuffer
	_eonce_StartTraceBuffer
	_eonce_HaltTraceBuffer
	_eonce_EnableDEBUGEV
	_eonce_EnableLimitTrigger
	Definitions

	Porting Issues
	Converting the DSP56800E Projects from Previous Versions
	Removing "illegal object_c on pragma directive" Warning

	DSP56800x New Project Wizard
	Overview
	Page Rules
	Resulting Target Rules
	Rule Notes

	DSP56800x New Project Wizard Graphical User Interface
	Invoking the New Project Wizard
	New Project Dialog Box
	Target Pages
	Program Choice Page
	Data Memory Model Page
	External/Internal Memory Page
	Finish Page

	Index

