
© Freescale Semiconductor, Inc., 2006. All rights reserved.

Freescale Semiconductor
User’s Guide

This user’s guide for the SEC1.0 reference device driver
describes the security engine in several members of the
PowerQUICC™ I and PowerQUICC II families of
processors. The SEC 1.0 device driver specifically manages
the operation of the following SEC cores:

• SEC 1.0, on the MPC8248, MPC8272 processors

• SEC 1.2, on the MPC875, MPC885 processors

The SEC 1.x reference driver supports all the crypto
functionality of the SEC 1.0, which is a superset of the SEC
1.2. Consequently, not all the examples of application
interaction with the SEC 1.x core apply to all PowerQUICC
devices. Consult the individual PowerQUICC device
reference manual to determine which SEC core and
functions apply to your environment.

This document assumes familiarity with security engine 1.0
(SEC1) architecture and operation. A review of the SEC
chapter of the MPC8272 PowerQUICC™ II Family
Reference Manual or Part VIII of the MPC885
PowerQUICC™ Family Reference Manual is recommended.

SEC1SWUG
Rev. 0, 5/2006

Contents
1 SEC1 Basics .2
2 Device Driver Components .2
3 User Interface .4
4 Global Definitions .7
5 Individual Request Types .12
6 Sample Code .46
7 Linux Environment .48
8 Driver Operation in Kernel Mode48
9 Driver Operation in User Mode 48

10 VxWorks Environment .49
11 Porting the Driver .50

Security Engine 1.0
Reference Device Driver Version 1.2

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

2 Freescale Semiconductor

SEC1 Basics

1 SEC1 Basics
The SEC1 device driver is coded in ANSI C, and its operating system is designed to be as agnostic as
practical. Where necessary, operating system dependencies are identified, and Section 11, “Porting the
Driver,” addresses them. The SEC1 device driver was tested in VxWorks 5.5 and LinuxPPC using kernel
versions 2.4.29, and 2.6.13.4.

Application interfaces to the SEC1 driver are implemented through the ioctl() function call. Requests
made through this interface can be broken down into specific components, including miscellaneous
requests and process requests. The miscellaneous requests are not related to the direct processing of data
by the SEC1 core. Most SEC1 requests are process requests, and all execute using the same ioctl()
access point. Section 4.6, “Process Request Structures,” describes the structures that compose these
requests.

In this document, the crypto hardware accelerator (CHA) and execution unit (EU) acronyms are used
interchangeably to refer to the device functional block that performs the crypto functions requested. For
details on the device, consult the device reference manual. The design of this driver is a legacy holdover
from two prior generations of security processors. Aspects of the interface for this driver are designed to
maintain source-level application portability with previous versions of the driver/processor. Where
relevant in this document, prior-version compatibility features are indicated.

2 Device Driver Components
Internally, the SEC1 device driver has four basic components (see Figure 1):

• Driver initialization and setup

• Application request processing

• Interrupt service routine

• Deferred service routine

When executing, the main driver code runs in the end-user application context, the interrupt service routine
(ISR) runs in the interrupt context, and the processing complete indicator runs in its own context.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 3

Device Driver Components

Figure 1. Internal Driver Architecture

2.1 Driver Initialization Routine
The driver initialization routine includes both OS-specific and hardware-specific initialization. The driver
initialization routine performs the following steps:

1. Finds the security engine core and sets the device memory map starting address in IOBaseAddress.

2. Initializes the SEC1 registers:

— Controller registers

— Channel registers

— EU registers

3. Initializes the driver internal variables.

4. Initializes the channel assignments table.

The device driver maintains this structure with state information for each channel and user request.
A mutual exclusion semaphore protects this structure so multiple tasks are prevented from
interfering with each other.

5. Initializes the internal request queue, which is a queue that holds requests to be dispatched when
channels are available.

The queue holds up to 16 requests. When the queue is full, the driver rejects requests with an error.

6. ProcessingComplete() is enabled and pends on IsrMsgQId, which serves as the interface
between the interrupt service routine and this deferred task.

• Prepare Descriptors

• Queue Request when Channels are Unavailable

• Start Descriptor Execution in a Channel

• Tracks Requests

Driver
Invoked

Callback Function

Prepare Request
(Non-Blocking)
ioctl ()

Sleeps on Queue

Completes the User Request

Execute Callback Function**

Driver
Returns

End-User Application

ProcessingComplete Task
Operation
Starts

SEC1 Execution

Operation Completed/
Interrupt Generated

ISR

IsrMsgQId

Writing a Message to the Queue Wakes
the ProcessingComplete Task

Driver runs in the context of the end-user task.
If no callback function is defined, no callback occurs.

*
**

Driver Code*

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

4 Freescale Semiconductor

User Interface

2.2 Request Dispatch Routine
The request dispatch routine provides the ioctl() interface to the device driver. It uses the caller request
code to identify which function to execute and dispatches the appropriate routine to process the request.
The driver tracks requests, queues requests when the requested channel is unavailable, prepares data
packet descriptors, and writes the descriptor address to the appropriate channel, in effect giving the
security engine the direction to begin processing the request. The ioctl() function returns to the end-user
application without waiting for the security engine to complete, assuming that when hardware initiates a
data packet descriptor (DPD) for processing, interrupt services can then invoke a handler to provide
completion notification.

2.3 Process Request Routine
The process request routine translates the request into a sequence of one or more DPDs and feeds them to
the security engine core to initiate processing. Dynamic requests are queued if no channels are available.
For static channel requests, if the requested channel is not available or is busy, the requests fail and return
an error.

NOTE
The SEC1.2 does not support static channel requests.

2.4 Interrupt Service Routine
When processing completes in the security engine, an interrupt is generated. The interrupt service routine
handles the interrupt and queues the result of the operation in the IsrMsgQId queue to be processed by the
ProcessingComplete() deferred service routine.

2.5 Deferred Service Routine
The ProcessingComplete() routine completes the request outside the interrupt service routine and runs in
a non-ISR context. This task depends on the IsrMsgQId queue and processes messages written to the queue
by the interrupt service routine. This function determines which request is complete and notifies the
corresponding calling task using any handler specified by that calling task. It then checks the process
request queue and schedules any queued requests.

3 User Interface
In order to make a request of the SEC1 device, the application must populate a request structure with the
appropriate information to pass to the driver for processing. These structures are described in Section 4,
“Global Definitions,” and include such items as the operation ID, channel, callback routines (success and
error), and data.

After the request is prepared, the end-user application calls ioctl() with the prepared request. This
function is a standard system call used by operating system I/O subsystems to implement special-purpose
functions. Its format is typically as follows:

int ioctl

 (int fd,/* file descriptor */

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 5

User Interface

 int function, /* function code */
 int arg/* arbitrary argument (driver dependent) */
)

The function code (second argument) is defined as the I/O control code (see Section 4.1, “I/O Control
Codes”). The third argument is the pointer to the SEC1 user request structure that contains the information
needed by the driver to perform the function requested.

Following is a list of guidelines for the end-user application when a request structure is prepared:

• The first member of every request structure is an operation ID for use by the device driver to
determine the format of the request structure.

• All process request structures have a channel member. For process requests that work in either
dynamic or static mode, the channel can either be cleared to indicate dynamic mode or set to a valid
(non-zero) channel number to indicate static mode. For process requests that work only in static
mode, the channel should be set to a valid (non-zero) channel number.

• All process request structures have a status member. The device driver fills in this value when the
interrupt for the operation occurs, and it reflects the status of the completed operation as
determined by the deferred service routine.

• All process request structures have two notify members, notify and notify_on_error, for use by
the SEC1 device driver to notify the application when its request is completed.

• All process request structures have a next request member so that an application can chain multiple
process requests together.

• The application selects whether to use the callback function or to poll the status member to detect
completion of the request.

3.1 Static Versus Dynamic Channels
Static mode allocates an execution unit (EU) to a specified channel. The EU does not need to reload
internal registers every time. One advantage of static mode is faster internal EU execution. The
disadvantages of static mode are the overhead of assigning and releasing the channel/EU and the fact that
the channel and EU cannot be used by anyone else.

Static mode is appropriate when a single stream is processed—assign (loop on encrypt or decrypt) and
release. Static mode is not appropriate when multiple interleaving streams are processed simultaneously
—loop on (assign, encrypt or decrypt, release).

NOTE

SEC 1.2 does not support static channel requests.

The code to request and release a channel and EU is as follows:

.
if (status = ioctl(device, IOCTL_RESERVE_CHANNEL_STATIC, &channel)) {

printf("IOCTL_RESERVE_CHANNEL_STATIC failed 0x%04x\n", status);
return status;

}
chan_st1 = channel; /* save the channel number */
channel = (channel << 8) | CHA_DES;
if (status = ioctl(device, IOCTL_ASSIGN_CHA, &channel)) {

printf("IOCTL_ASSIGN_CHA failed 0x%04x\n", status);

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

6 Freescale Semiconductor

User Interface

return status;
}

.

.

.
if (status = ioctl(device, IOCTL_RELEASE_CHANNEL, &chan_st1))

printf("IOCTL_RELEASE_CHANNEL failed 0x%04x\n", status);

3.2 Error Handling
The SEC1 device driver is asynchronous, so there are two main sources of errors:

• Syntax or logic. Errors are returned in the status member of the user request argument and as a
return code from ioctl(). Errors of this type are detected by the driver, not by hardware.

• Protocol/procedure. These errors are returned only in the status member of the user request
argument. Errors of this type are detected by hardware in the course of their execution.

Consequently, the end-user application needs two levels of error checking, the first one after the return
from ioctl() and the second after the completion of the request. The second level is possible only if the
request is made with a valid notify_on_error handler. If the handler is not specified, this level of error
is lost. A code example of the two levels of errors follows, using an AES request:

AESA_CRYPT_REQ aesdynReq;
.
.
/* AES with dynamic aescriptor */
aesdynReq.opId = DPD_AESA_CBC_ENCRYPT_CRYPT;
aesdynReq.channel = 0;
aesdynReq.notify = (void *) notifAes;
aesdynReq.notify_on_error = (void *) notifAes;
aesdynReq.status = 0;
aesdynReq.inIvBytes = 16;
aesdynReq.inIvData = iv_in;
aesdynReq.keyBytes = 32;
aesdynReq.keyData = AesKey;
aesdynReq.inBytes = packet_length;
aesdynReq.inData = aesData;
aesdynReq.outData = aesResult;
aesdynReq.outIvBytes = 16;
aesdynReq.outIvData = iv_out;
aesdynReq.nextReq = 0;

status = Ioctl(device, IOCTL_PROC_REQ, &aesdynReq);
if (status != 0) {
printf ("Syntax-Logic Error in dynamic descriptor 0x%x\n", status); .
 .
 .
}
.
/* in callback function notifAes */
if (aesdynReq.status != 0) {
 printf ("Error detected by HW 0x%x\n", aesdynReq.status) ;
.
 .
 }

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 7

Global Definitions

4 Global Definitions
Global definitions for the SEC1 device driver include I/O control codes, channel definitions, request
operation ID masks, return codes, miscellaneous request structures, and process request structures.

4.1 I/O Control Codes
The I/O control code is the second argument to ioctl(). Internally, these values (as shown in Table 1) are
used in conjunction with a base index to create the I/O control codes. The macro for this base index is
defined by the SEC1_IOCTL_INDEX and has a default value of 0x0800.

Table 1. Second and Third Arguments in the ioctl Function

I/O Control Code (Second Argument in ioctl Function) Third Argument in ioctl Function

IOCTL_PROC_REQ Pointer to user’s request structure.

IOCTL_GET_STATUS Pointer to a STATUS_REQ.

IOCTL_RESERVE_CHANNEL_STATIC Dedicate a static channel for use. Parameter
is a pointer to the channel for reservation.

IOCTL_RESERVE_CHANNEL_MANUAL 1

1 This control code is used exclusively in debug/slave mode. The drivers make it available, but the function is not for
general-purpose use.

Manually dedicate a channel for debug.
Parameter is a pointer to SEC1_RESERVE_MANUAL.

IOCTL_ASSIGN_CHA Reserve a CHA for direct use. Parameter is an
unsigned long identifying the CHA for
reservation.

IOCTL_RELEASE_CHA Free a CHA from direct use. Parameter is an
unsigned long identifying the CHA to free.

IOCTL_RELEASE_CHANNEL Free a channel reserved by
IOCTL_RESERVE_CHANNEL_STATIC or
IOCTL_RESERVE_CHANNEL_MANUAL

IOCTL_MALLOC Allocate a contiguous block of kernel memory
for processing a request. Parameter is a
pointer to the allocated block. This argument
is valid only on systems with privileged memory
access.

IOCTL_FREE Free a block of memory allocated by
IOCTL_MALLOC. Parameter is a pointer to the
block to free.

IOCTL_COPYFROM Copy content from a user memory buffer to a
kernel memory block allocated by IOCTL_MALLOC.
Parameter is a pointer to a MALLOC_REQ.

IOCTL_COPYTO Copy content from kernel memory block back to
a user buffer. Parameter is a pointer to a
MALLOC_REQ.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

8 Freescale Semiconductor

Global Definitions

4.2 Channel Definitions
The NUM_CHANNELS define specifies the number of channels in the security engine. For SEC1, the value is
4; for SEC 1.2, the value is 1.

The NUM_CHAS define contains the total number of crypto hardware accelerators (CHAs) in the SEC1 and
in Table 2 is simply defined as the sum of the individual channels. The device used is defined as the macro
vxworksDrvName regardless of whether VxWorks is used and regardless of whether the engine is SEC or
SEC 1.2. It is set to /dev/sec1 by default.

4.3 Request Operation ID (opId) Masks
Operation IDs can have two parts, the group or type of request and the request index or descriptor within
a group or type (see Table 3). Operation IDs are provided to help programmers understand the structure of
the opIds. They are not necessary in a user application.

4.4 Return Codes
Table 4 provides a complete list of the error status results that may be returned to the callback routines.

Table 2. Channel Defines

Define Description
Value For

SEC SEC 1.2

NUM_AFHAS Number of ARC4 CHAs 1 undefined 1

1 Undefined values for the SEC 1.2 reflect both the absence of that type of CHA and the absence of that #define.

NUM_DESAS Number of DES CHAs 1 1

NUM_MDHAS Number of MD CHAs 1 1

NUM_RNGAS Number of RNG CHAs 1 undefined

NUM_PKHAS Number of PK CHAs 1 undefined

NUM_AESAS Number of AESA CHAs 1 1

Table 3. Request Operation ID Mask

Define Description Value

DESC_TYPE_MASK The mask for the group or type of an opId. 0xFF00

DESC_NUM_MASK The mask for the request index or descriptor within that group or type. 0x00FF

Table 4. Callback Error Status Return Code

Define Description Value

SEC1_SUCCESS Successful completion of request 0

SEC1__MEMORY_ALLOCATION Driver cannot obtain memory from host OS 0xE004FFFF

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 9

Global Definitions

SEC1_INVALID_CHANNEL Channel specification out of range 0xE004FFFE

SEC1_INVALID_CHA_TYPE Requested CHA does not exist 0xE004FFFD

SEC1_INVALID_OPERATION_ID Requested opID is out of range for this
request type

0xE004FFFC

SEC1_CHANNEL_NOT_AVAILABLE Requested channel was not available. 0xE004FFFB

SEC1_CHA_NOT_AVAILABLE Requested CHA not available when the
request was processed.

0xE004FFFA

SEC1_INVALID_LENGTH Length of requested data item is incompatible
with request type, or data alignment is
incompatible.

0xE004FFF9

SEC1_OUTPUT_BUFFER_ALIGNMENT Output buffer alignment incompatible with
request type.

0xE004FFF8

SEC1_ADDRESS_PROBLEM Driver could not translate argued address into
a physical address.

0xE004FFF6

SEC1_INSUFFICIENT_REQS Request entry pool exhausted at the time of
request processing; try again later.

0xE004FFF5

SEC1_STATIC_CHANNEL_BUSY Requested static channel is already in use. 0xE004FFF3

SEC1_CHA_ERROR CHA flagged an error during request
processing; check the error notification context
if provided in the request

0xE004FFF2

SEC1_NULL_REQUEST Request pointer argued NULL. 0xE004FFF1

SEC1_REQUEST_TIMED_OUT Timeout in request processing. 0xE004FFF0

SEC1_MALLOC_FAILED Direct kernel memory buffer request failed. 0xE004FFEF

SEC1_FREE_FAILED Direct kernel memory free failed. 0xE004FFEE

SEC1_PARITY_SYSTEM_ERROR Parity Error detected on the bus. 0xE004FFED

SEC1_INCOMPLETE_POINTER Error due to partial pointer. 0xE004FFEC

SEC1_TEA_ERROR Transfer error. 0xE004FFEB

SEC1_UNKNOWN_ERROR Any other unrecognized error. 0xE004FFEA

SEC1_INVALID_DATA Error due to invalid request length. 0xE004FFE9

SEC1_IO_MEMORY_ALLOCATE_ERROR Error due to insufficient resources. –1001

SEC1_IO_IO_ERROR Error due to I/O configuration. –1002

SEC1_IO_VXWORKS_DRIVER_TABLE_ADD_ERROR Error because VxWorks could not add driver to
table.

–1003

SEC1_IO_INTERRUPT_ALLOCATE_ERROR Error due to interrupt allocation error. –1004

SEC1_VXWORKS_CANNOT_CREATE_QUEUE Error because VxWorks could not create the
ISR queue in IOInitQs().

–1009

SEC1_CANCELLED_REQUEST Error due to canceled request. –1010

Table 4. Callback Error Status Return Code (continued)

Define Description Value

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

10 Freescale Semiconductor

Global Definitions

4.5 Miscellaneous Request Structures
The miscellaneous request structures discussed in this section are the STATUS_REQ structure and the
SEC1_NOTIFY_ON_ERROR_CTX structure.

4.5.1 STATUS_REQ Structure
In the STATUS_REQ structure, each element is a copy of the contents of the same register in the SEC1
driver. This structure is also known as SEC1_STATUS through a typedef. The SEC version of the
STATUS_REQ structure is as follows:

unsigned long ChaAssignmentStatusRegister[2];
unsigned long InterruptControlRegister[2];
unsigned long InterruptStatusRegister[2];
unsigned long IdRegister;
unsigned long ChannelStatusRegister[NUM_CHANNELS][2];
unsigned long ChannelConfigurationRegister[NUM_CHANNELS][2];
unsigned long CHAInterruptStatusRegister[NUM_CHAS][2];
unsigned long QueueEntryDepth;
unsigned long FreeChannels;
unsigned long FreeRngas;
unsigned long FreeAfhas;
unsigned long FreeDesas;
unsigned long FreeMdhas;
unsigned long FreePkhas;
unsigned long FreeAesas;
unsigned long FreeKeas;
unsigned long BlockSize;

The SEC 1.2 version of the STATUS_REQ structure is as follows:
unsigned long InterruptControlRegister[2];
unsigned long InterruptStatusRegister[2];
unsigned long IdRegister;
unsigned long ChannelStatusRegister[NUM_CHANNELS][2];
unsigned long ChannelConfigurationRegister[NUM_CHANNELS][2];
unsigned long CHAInterruptStatusRegister[NUM_CHAS][2];
unsigned long QueueEntryDepth;
unsigned long FreeChannels;
unsigned long FreeDesas;
unsigned long FreeMdhas;
unsigned long FreeAesas;

SEC1_INVALID_ADDRESS Error due to a NULL request. –1011

SEC1_TASK_ALREADY_INIT A task deferred for completion has already
been started.

–1012

Table 4. Callback Error Status Return Code (continued)

Define Description Value

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 11

Global Definitions

4.5.2 SEC1_NOTIFY_ON_ERROR_CTX Structure
The SEC1_NOTIFY_ON_ERROR_CTX structure is returned to the notify_on_error callback routine set
up in the initial process request. This structure contains the original request structure as well as error and
driver status.

unsigned long errorcode; // Error that the request generated
void *request; // Pointer to original request
STATUS_REQ driverstatus;// Details on the state of the hardware and the

//driver at the time of an error
• errorcode—error that the request generated

• *request—pointer to the original request

• driverstatus—details on the state of the hardware and the driver at the time of an error

4.6 Process Request Structures
All process request structures contain a copy of identical header information, which is defined by the
COMMON_REQ_PREAMBLE structure, though no such structure is explicitly defined.

unsigned long opId;

unsigned char reserved;

unsigned char notifyFlags;

unsigned char reserved2;

unsigned char channel;

PSEC1_NOTIFY_ROUTINE notify;

PSEC1_NOTIFY_CTX pNotifyCtx;

PSEC1_NOTIFY_ON_ERROR_ROUTINE notify_on_error;

SEC1_NOTIFY_ON_ERROR_CTX ctxNotifyOnErr;

int status;

void *nextReq;
• opId—Operation ID to identify the type of the request. It is normally associated with a specific type

of cryptographic operation.

• notifyFlags—If a POSIX-style signal handler handles request completion notification, it can
contain ORed bits of NOTIFY_IS_PID and/or NOTIFY_ERROR_IS_PID, signifying that the notify
or notify_on_error pointers are instead the process IDs (getpid()) of the task requesting a
signal upon request completion.

• channel—Identifies a channel for the request.

• notify—Pointer to a notification callback routine to be called when the request successfully
completes. It may instead be a process ID if a user-state signal handler flags completion. See
notifyFlags.

• pNotifyCtx—Pointer to context area to be passed back through the notification routine.

• notify_on_error—Pointer to the notify on error routine to be called when the request
unsuccessfully completes. It may instead be a process ID if a user-state signal handler flags
completion. See notifyFlags.

• ctxNotifyOnErr—Context area that is filled in by the driver when there is an error.

• status—Contains the returned status of the request.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

12 Freescale Semiconductor

Individual Request Types

• nextReq—Pointer to the next request so that multiple requests can be linked together and sent
through a single ioctl function call.

The additional data in the process request structures is specific to the request; refer to the specific structure.

5 Individual Request Types
The request types covered in this section are random number requests, DES process requests, ARC4
process requests, hash requests, HMAC requests, AES requests, integer public key requests, EEC public
key requests, IPSec requests, and 802.11 protocol requests.

5.1 Random Number Requests
The following structure definition for the random number generation process request is not available in the
SEC 1.2 driver.

5.1.1 RNG_REQ
COMMON_REQ_PREAMBLE
unsigned long rngBytes;
unsigned char* rngData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_RNGA_DESC defines the
number of descriptors in the DPD_RNG_GROUP that use this request. DPD_RNG_GROUP (0x1000) defines the
group for all descriptors within this request.

5.2 DES Process Request Structures
The following sections provide structure definitions for DES process requests.

5.2.1 DES_LOADCTX_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long ivBytes; /* 0 or 8 bytes */
unsigned char* ivData;
unsigned long keyBytes; /* 8, 16, or 24 bytes */
unsigned char* keyData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_DES_LOADCTX_STATIC_DESC defines the number of descriptors in the DPD_DES_SA_LDCTX_GROUP
that use this request. DPD_DES_SA_LDCTX_GROUP (0x2000) defines the group for all descriptors in this
request.

Table 5. RNG_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RNG_GETRN 0x1000 Generate a series of random values

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 13

Individual Request Types

5.2.2 DES_LOADCTX_CRYPT_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long ivBytes; /* 0 or 8 bytes */
unsigned char* ivData;
unsigned long keyBytes; /* 8, 16, or 24 bytes */
unsigned char* keyData;
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char* inData;
unsigned char* outData; /* output length = input length */
unsigned long outCtxBytes; /* 0 or 8 bytes */
unsigned char* outCtxData;/* MPCTEST: added outCtxData */

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_DES_LOADCTX_CRYPT_STATIC_DESC defines the number of descriptors in the
DPD_DES_SA_LDCTX_CRYPT_GROUP that use this request. DPD_DES_SA_LDCTX_CRYPT_GROUP (0x2100)
defines the group for all descriptors in this request.

Table 6. DES_LOADCTX_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SDES_CBC_ENCRYPT_SA_LDCTX 0x2000 Load context from a static channel to encrypt in a single DES
using CBC mode.

DPD_SDES_CBC_DECRYPT_SA_LDCTX 0x2001 Load context from a static channel to decrypt in a single DES
using CBC mode.

DPD_SDES_ECB_ENCRYPT_SA_LDCTX 0x2002 Load context from a static channel to encrypt in a single DES
using ECB mode.

DPD_SDES_ECB_DECRYPT_SA_LDCTX 0x2003 Load context from a static channel to decrypt in a single DES
using ECB mode.

DPD_TDES_CBC_ENCRYPT_SA_LDCTX 0x2004 Load context from a static channel to encrypt in a triple DES
using CBC mode.

DPD_TDES_CBC_DECRYPT_SA_LDCTX 0x2005 Load context from a static channel to decrypt in triple DES
using CBC mode.

DPD_TDES_ECB_ENCRYPT_SA_LDCTX 0x2006 Load context from a static channel to encrypt in triple DES
using ECB mode.

DPD_TDES_ECB_DECRYPT_SA_LDCTX 0x2007 Load context from a static channel to decrypt in triple DES
using ECB mode.

Table 7. DES_LOADCTX_CRYPT_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SDES_CBC_ENCRYPT_SA_LDCTX_CRYPT 0x2100 Load encrypted context from a static channel to encrypt
in single DES using CBC mode.

DPD_SDES_CBC_DECRYPT_SA_LDCTX_CRYPT 0x2101 Load encrypted context from a static channel to decrypt
in single DES using CBC mode.

DPD_SDES_ECB_ENCRYPT_SA_LDCTX_CRYPT 0x2102 Load encrypted context from a static channel to encrypt
in single DES using ECB mode.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

14 Freescale Semiconductor

Individual Request Types

5.2.3 DES_CRYPT_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char* inData;
unsigned char* outData; /* output length = input length */

Dynamic channels are not valid for this request. A channel value of zero is invalid. NUM_DES_STATIC_DESC
defines the number of descriptors in the DPD_DES_SA_CRYPT_GROUP that use this request.
DPD_DES_SA_CRYPT_GROUP (0x2200) defines the group for all descriptors in this request.

5.2.4 DES_CRYPT_GETCTX_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char* inData;
unsigned char* outData; /* output length = input length */
unsigned long outCtxBytes; /* 0 or 8 bytes */
unsigned char* outCtxData;

DPD_SDES_ECB_DECRYPT_SA_LDCTX_CRYPT 0x2103 Load encrypted context from a static channel to decrypt
in single DES using ECB mode.

DPD_TDES_CBC_ENCRYPT_SA_LDCTX_CRYPT 0x2104 Load encrypted context from a static channel to encrypt
in triple DES using CBC mode.

DPD_TDES_CBC_DECRYPT_SA_LDCTX_CRYPT 0x2105 Load encrypted context from a static channel to decrypt
in triple DES using CBC mode.

DPD_TDES_ECB_ENCRYPT_SA_LDCTX_CRYPT 0x2106 Load encrypted context from a static channel to encrypt
in triple DES using ECB mode.

DPD_TDES_ECB_DECRYPT_SA_LDCTX_CRYPT 0x2107 Load encrypted context from a static channel to decrypt
in triple DES using ECB mode.

Table 8. DES_CRYPT_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SDES_CBC_ENCRYPT_SA_CRYPT 0x2200 Encrypt data in a static channel in a single DES using CBC mode.

DPD_SDES_CBC_DECRYPT_SA_CRYPT 0x2201 Decrypt data in a static channel in a single DES using CBC mode.

DPD_SDES_ECB_ENCRYPT_SA_CRYPT 0x2202 Encrypt data in a static channel in a single DES using ECB mode.

DPD_SDES_ECB_DECRYPT_SA_CRYPT 0x2203 Decrypt data in a static channel in a single DES using ECB mode.

DPD_TDES_CBC_ENCRYPT_SA_CRYPT 0x2204 Encrypt data in a static channel in a triple DES using CBC mode.

DPD_TDES_CBC_DECRYPT_SA_CRYPT 0x2205 Decrypt data in a static channel in a triple DES using CBC mode.

DPD_TDES_ECB_ENCRYPT_SA_CRYPT 0x2206 Encrypt data in a static channel in a triple DES using ECB mode.

DPD_TDES_ECB_DECRYPT_SA_CRYPT 0x2207 Decrypt data in a static channel in a triple DES using ECB mode.

Table 7. DES_LOADCTX_CRYPT_STATIC_REQ Valid Descriptors (opId) (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 15

Individual Request Types

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_DES_CRYPT_UNLOADCTX_STATIC_DESC defines the number of descriptors in the
DPD_DES_SA_CRYPT_ULCTX_GROUP that use this request. DPD_DES_SA_CRYPT_ULCTX_GROUP (0x2300)
defines the group for all descriptors within this request.

5.2.5 DES_GETCTX_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long ivBytes;
unsigned char* ivData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_DES_STATIC_ULCTX_DESC defines the number of descriptors in the DPD_DES_SA_ULCTX_GROUP that
use this request. DPD_DES_SA_ULCTX_GROUP (0x2400) defines the group for all descriptors in this request.

5.2.6 DES_LOADCTX_CRYPT_REQ
COMMON_REQ_PREAMBLE
unsigned long inIvBytes; /* 0 or 8 bytes */
unsigned char* inIvData;
unsigned long keyBytes; /* 8, 16, or 24 bytes */
unsigned char* keyData;

Table 9. DES_CRYPT_GETCTX_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SDES_CBC_ENCRYPT_SA_CRYPT_ULCTX 0x2300 Get context from a static channel encrypted in a single
DES using CBC mode.

DPD_SDES_CBC_DECRYPT_SA_CRYPT_ULCTX 0x2301 Get context from a static channel decrypted in single
DES using CBC mode.

DPD_SDES_ECB_ENCRYPT_SA_CRYPT_ULCTX 0x2302 Get context from a static channel encrypted in single
DES using ECB mode.

DPD_SDES_ECB_DECRYPT_SA_CRYPT_ULCTX 0x2303 Get context from a static channel decrypted in single
DES using ECB mode.

DPD_TDES_CBC_ENCRYPT_SA_CRYPT_ULCTX 0x2304 Get context from a static channel encrypted in triple DES
using CBC mode.

DPD_TDES_CBC_DECRYPT_SA_CRYPT_ULCTX 0x2305 Get context from a static channel decrypted in triple DES
using CBC mode.

DPD_TDES_ECB_ENCRYPT_SA_CRYPT_ULCTX 0x2306 Get context from a static channel encrypted in triple DES
using ECB mode.

DPD_TDES_ECB_DECRYPT_SA_CRYPT_ULCTX 0x2307 Get context from a static channel decrypted in triple DES
using ECB mode.

Table 10. DES_GETCTX_STATIC_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_DES_SA_ULCTX 0x2400 Get context from a static channel that was encrypted single
DES

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

16 Freescale Semiconductor

Individual Request Types

unsigned long inBytes; /* multiple of 8 bytes */
unsigned char* inData;
unsigned char* outData; /* output length = input length */
unsigned long outIvBytes; /* 0 or 8 bytes */
unsigned char* outIvData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_DES_LOADCTX_DESC
defines the number of descriptors within the DPD_DES_CBC_CTX_GROUP that use this request.
DPD_DES_CBC_CTX_GROUP (0x2500) defines the group for all descriptors within this request.

5.2.7 DES_CRYPT_REQ
COMMON_REQ_PREAMBLE
unsigned long keyBytes; /* 8, 16, or 24 bytes */
unsigned char* keyData;
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char* inData;
unsigned char* outData; /* output length = input length */

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_DES_DESC defines the
number of descriptors within the DPD_DES_ECB_GROUP that use this request. DPD_DES_ECB_GROUP
(0x2600) defines the group for all descriptors within this request.

Table 11. DES_LOADCTX_CRYPT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SDES_CBC_CTX_ENCRYPT 0x2500 Load encrypted context from a dynamic channel to encrypt in
single DES using CBC mode.

DPD_SDES_CBC_CTX_DECRYPT 0x2501 Load encrypted context from a dynamic channel to decrypt in
single DES using CBC mode.

DPD_SDES_CBC_CTX_ENCRYPT 0x2502 Load encrypted context from a dynamic channel to decrypt in
single DES using CBC mode.

DPD_SDES_CBC_CTX_DECRYPT 0x2503 Load encrypted context from a dynamic channel to encrypt in
single DES using CBC mode.

Table 12. DES_CRYPT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SDES_ECB_ENCRYPT 0x2600 Load encrypted context from a dynamic channel to encrypt in
single DES using ECB mode.

DPD_SDES_ECB_DECRYPT 0x2601 Load encrypted context from a dynamic channel to decrypt in
single DES using ECB mode.

DPD_TDES_ECB_ENCRYPT 0x2602 Load encrypted context from a dynamic channel to decrypt in
single DES using ECB mode.

DPD_TDES_ECB_DECRYPT 0x2603 Load encrypted context from a dynamic channel to encrypt in
single DES using ECB mode.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 17

Individual Request Types

5.3 ARC4 Process Request Structures
The following structure definitions for ARC4 process requests are not available in the SEC 1.2 driver.

5.3.1 ARC4_NEWCTX_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long keyBytes;
unsigned char* keyData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_RC4_STATIC_NEWCTX_DESC defines the number of descriptors within the
DPD_RC4_SA_NEWCTX_GROUP that use this request. DPD_RC4_SA_NEWCTX_GROUP (0x3000) defines the
group for all descriptors within this request.

5.3.2 ARC4_LOADCTX_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long ctxBytes; /* 257 bytes */
unsigned char* ctxData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_RC4_STATIC_LOADCTX_DESC defines the number of descriptors within the
DPD_RC4_SA_LDCTX_GROUP that use this request. DPD_RC4_SA_LDCTX_GROUP (0x3100) defines the group
for all descriptors within this request.

5.3.3 ARC4_CRYPT_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long inBytes;
unsigned char* inData;
unsigned char* outData; /* output length = input length */

Dynamic channels are not valid for this request. A channel value of zero is invalid. NUM_RC4_STATIC_DESC
defines the number of descriptors within the DPD_RC4_SA_CRYPT_GROUP that use this request.
DPD_RC4_SA_CRYPT_GROUP (0x3200) defines the group for all descriptors within this request.

Table 13. ARC4_NEWCTX_STATIC_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RC4_SA_NEWCTX 0x3000 Use RC4 on static channel with new context

Table 14. ARC4_LOADCTX_STATIC_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RC4_SA_LDCTX 0x3100 Load context from a static channel to encrypt using RC4.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

18 Freescale Semiconductor

Individual Request Types

5.3.4 ARC4_CRYPT_GETCTX_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long inBytes;
unsigned char* inData;
unsigned char* outData; /* output length = input length */
unsigned long outCtxBytes; /* 257 bytes */
unsigned char* outCtxData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_RC4_STATIC_UNLOADCTX_DESC defines the number of descriptors within the
DPD_RC4_SA_CRYPT_ULCTX_GROUP that use this request. DPD_RC4_SA_CRYPT_ULCTX_GROUP (0x3300)
defines the group for all descriptors within this request.

5.3.5 ARC4_LOADCTX_CRYPT_REQ
COMMON_REQ_PREAMBLE
unsigned long inCtxBytes; /* 257 bytes */
unsigned char* inCtxData;
unsigned long inBytes;
unsigned char* inData;
unsigned char* outData; /* output length = input length */
unsigned long outCtxBytes; /* 257 bytes */
unsigned char* outCtxData;

Dynamic channels are valid for this request. A channel value of zero is valid.
NUM_RC4_LOADCTX_UNLOADCTX_DESC defines the number of descriptors within the
DPD_RC4_LDCTX_CRYPT_ULCTX_GROUP that use this request. DPD_RC4_LDCTX_CRYPT_ULCTX_GROUP
(0x3400) defines the group for all descriptors within this request.

5.3.6 ARC4_LOADKEY_CRYPT_UNLOADCTX_REQ
COMMON_REQ_PREAMBLE
unsigned long keyBytes;

Table 15. ARC4_CRYPTO_STATIC_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RC4_SA_CRYPT 0x3200 Encrypt context from a static channel using RC4.

Table 16. ARC4_CRYPT_GETCTX_STATIC_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RC4_SA_CRYPT_ULCTX 0x3300 Get context from a static channel that was encrypted using RC4

Table 17. ARC4_LOADCTX_CRYPT_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RC4_LDCTX_CRYPT_ULCTX 0x3400 Load context from a dynamic channel to encrypt using RC4 and
get the resulting context

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 19

Individual Request Types

unsigned char* keyData;
unsigned long inBytes;
unsigned char* inData;
unsigned char* outData; /* output length = input length */
unsigned long outCtxBytes; /* 257 bytes */
unsigned char* outCtxData;

Dynamic channels are valid for this request. A channel value of zero is valid.
NUM_RC4_LOADKEY_UNLOADCTX_DESC defines the number of descriptors within the
DPD_RC4_LDKEY_CRYPT_ULCTX_GROUP that use this request. DPD_RC4_LDKEY_CRYPT_ULCTX_GROUP
(0x3500) defines the group for all descriptors within this request.

5.4 Hash Request Structures
The following sections provide structure definitions for hash requests.

5.4.1 HASH_LOADCTX_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long ctxBytes;
unsigned char* ctxData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_MDHA_STATIC_LOADCTX_DESC defines the number of descriptors within the
DPD_HASH_SA_LDCTX_GROUP that use this request. DPD_HASH_SA_LDCTX_GROUP (0x4000) defines the
group for all descriptors within this request.

5.4.2 HASH_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long inBytes;
unsigned char* inData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_MDHA_STATIC_DESC defines the number of descriptors within the DPD_HASH_SA_HASH_GROUP that
use this request. DPD_HASH_SA_HASH_GROUP (0x4100) defines the group for all descriptors in this request.

Table 18. ARC4_LOADKEY_CRYPT_UNLOADCTX_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RC4_LDKEY_CRYPT_ULCTX 0x3500 Load the key to a dynamic channel to encrypt using RC4 and get
the resulting context

Table 19. HASH_LOADCTX_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SHA256_SA_LDCTX 0x4000 Load context into a static channel to use an SHA-256 hash
algorithm.

DPD_MD5_SA_LDCTX 0x4001 Load context into a static channel to use an MD5 hash algorithm.

DPD_SHA_SA_LDCTX 0x4002 Load context into a static channel to use an SHA-1 hash
algorithm.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

20 Freescale Semiconductor

Individual Request Types

NUM_MDHA_STATIC_PAD_DESC defines the number of descriptors within the
DPD_HASH_SA_HASH_PAD_GROUP that use this request. DPD_HASH_SA_HASH_PAD_GROUP (0x4200) defines
the group for all descriptors within this request.

5.4.3 HASH_GETCTX_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long ctxBytes;
unsigned char* ctxData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_MDHA_STATIC_UNLOAD_CTX_DESC defines the number of descriptors within the
DPD_MD_SA_ULCTX_GROUP that use this request. DPD_MD_SA_ULCTX_GROUP (0x4300) defines the group for
all descriptors within this request.

Table 20. HASH_STATIC_REQ Valid Descriptors (0x4100) (opId)

Descriptors Value Function Description

DPD_SHA256_SA_HASH 0x4100 Execute SHA-256 hash algorithm on the loaded context of a
static channel.

DPD_MD5_SA_HASH 0x4101 Execute MD5 hash algorithm on the loaded context of a static
channel.

DPD_SHA_SA_HASH 0x4102 Execute SHA-1 hash algorithm on the loaded context of a static
channel.

DPD_SHA256_SA_IDGS_HASH 0x4103 Execute SHA-256 IDGS hash algorithm on the loaded context of
a static channel.

DPD_MD5_SA_IDGS_HASH 0x4104 Execute MD5 IDGS hash algorithm on the loaded context of a
static channel.

DPD_SHA_SA_IDGS_HASH 0x4105 Execute SHA-1 IDGS hash algorithm on the loaded context of a
static channel.

Table 21. HASH_STATIC_REQ Valid Descriptors (0x4200) (opId)

Descriptors Value Function Description

DPD_SHA256_SA_HASH_PAD 0x4200 Execute SHA-256 hash algorithm on the loaded context of a
static channel using padding.

DPD_MD5_SA_HASH_PAD 0x4201 Execute MD5 hash algorithm on the loaded context of a static
channel using padding.

DPD_SHA_SA_HASH_PAD 0x4202 Execute SHA-1 hash algorithm on the loaded context of a static
channel using padding.

DPD_SHA256_SA_IDGS_HASH_PAD 0x4203 Execute SHA-256 IDGS hash algorithm on the loaded context of
a static channel using padding.

DPD_MD5_SA_IDGS_HASH_PAD 0x4204 Execute MD5 IDGS hash algorithm on the loaded context of a
static channel using padding.

DPD_SHA_SA_IDGS_HASH_PAD 0x4205 Execute SHA-1 IDGS hash algorithm on the loaded context of a
static channel using padding.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 21

Individual Request Types

5.4.4 HASH_REQ
COMMON_REQ_PREAMBLE
unsigned long ctxBytes;
unsigned char* ctxData;
unsigned long inBytes;
unsigned char* inData;
unsigned long outBytes; /* length is fixed by algorithm */
unsigned char* outData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_MDHA_DESC defines the
number of descriptors within the DPD_HASH_LDCTX_HASH_ULCTX_GROUP that use this request.
DPD_HASH_LDCTX_HASH_ULCTX_GROUP (0x4400) defines the group for all descriptors within this request.

NUM_MDHA_PAD_DESC defines the number of descriptors in the
DPD_HASH_LDCTX_HASH_PAD_ULCTX_GROUP that use this request.
DPD_HASH_LDCTX_HASH_PAD_ULCTX_GROUP (0x4500) defines the group for all descriptors in this request.

Table 22. HASH_GETCTX_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SHA256_SA_ULCTX 0x4300 Get context into a static channel that was used with an SHA-256
hash algorithm.

DPD_MD5_SA_ULCTX 0x4301 Get context into a static channel that was used with an MD5
hash algorithm.

DPD_SHA_SA_ULCTX 0x4302 Get context into a static channel that was used with an SHA-1
hash algorithm.

Table 23. HASH_REQ Valid Descriptors (0x4400) (opId)

Descriptors Value Function Description

DPD_SHA256_LDCTX_HASH_ULCTX 0x4400 Load context into a dynamic channel to use an SHA-256 hash
algorithm and get the resulting context.

DPD_MD5_LDCTX_HASH_ULCTX 0x4401 Load context into a dynamic channel to use an MD5 hash
algorithm and get the resulting context.

DPD_SHA_LDCTX_HASH_ULCTX 0x4402 Load context into a dynamic channel to use an SHA-1 hash
algorithm and get the resulting context.

DPD_SHA256_LDCTX_IDGS_HASH_ULCTX 0x4403 Load context into a dynamic channel to use an SHA-256 IDGS
hash algorithm and get the resulting context.

DPD_MD5_LDCTX_IDGS_HASH_ULCTX 0x4404 Load context into a dynamic channel to use an MD5 IDGS hash
algorithm and get the resulting context.

DPD_SHA_LDCTX_IDGS_HASH_ULCTX 0x4405 Load context into a dynamic channel to use an SHA-1 IDGS
hash algorithm and get the resulting context.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

22 Freescale Semiconductor

Individual Request Types

5.5 HMAC Request Structures
The following sections provide structure definitions for HMAC requests.

5.5.1 HMAC_PAD_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long keyBytes;
unsigned char* keyData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_HMAC_STATIC_PAD_DESC defines the number of descriptors in the DPD_HMAC_SA_PAD_GROUP that use
this request. DPD_HMAC_SA_PAD_GROUP (0x4600) defines the group for all descriptors in this request.

Table 24. HASH_REQ Valid Descriptors (0x4500) (opId)

Descriptors Value Function Description

DPD_SHA256_LDCTX_HASH_PAD_ULCTX 0x4500 Load context into a dynamic channel to use an SHA-256
hash algorithm and get the resulting padded context.

DPD_MD5_LDCTX_HASH_PAD_ULCTX 0x4501 Load context into a dynamic channel to use an MD5 hash
algorithm and get the resulting padded context.

DPD_SHA_LDCTX_HASH_PAD_ULCTX 0x4502 Load context into a dynamic channel to use an SHA-1 hash
algorithm and get the resulting padded context.

DPD_SHA256_LDCTX_IDGS_HASH_PAD_ULCTX 0x4503 Load context into a dynamic channel to use an SHA-256
IDGS hash algorithm and get the resulting padded context.

DPD_MD5_LDCTX_IDGS_HASH_PAD_ULCTX 0x4504 Load context into a dynamic channel to use an MD5 IDGS
hash algorithm and get the resulting padded context.

DPD_SHA_LDCTX_IDGS_HASH_PAD_ULCTX 0x4505 Load context into a dynamic channel to use an SHA-1 IDGS
hash algorithm and get the resulting padded context.

Table 25. HMAC_PAD_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_HMAC_SA_SHA256_PAD 0x4600 Perform a HMAC operation on a static channel to use an
SHA-256 hash algorithm with padding.

DPD_HMAC_SA_MD5_PAD 0x4601 Perform a HMAC operation on a static channel to use an MD5
hash algorithm with padding.

DPD_HMAC_SA_SHA_PAD 0x4602 Perform a HMAC operation on a static channel to use an SHA-1
hash algorithm with padding.

DPD_HMAC_SA_SHA256_PAD_IDGS 0x4603 Perform a HMAC operation on a static channel to use an
SHA-256 hash algorithm with IDGS padding.

DPD_HMAC_SA_MD5_PAD_IDGS 0x4604 Perform a HMAC operation on a static channel to use an MD5
hash algorithm with IDGS padding.

DPD_HMAC_SA_SHA_PAD_IDGS 0x4605 Perform a HMAC operation on a static channel to use an SHA-1
hash algorithm with IDGS padding.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 23

Individual Request Types

5.5.2 HMAC_PAD_HASH_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long keyBytes;
unsigned char* keyData;
unsigned long inBytes;
unsigned char* inData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_HMAC_STATIC_PAD_HASH_DESC defines the number of descriptors in the
DPD_HMAC_SA_PAD_HASH_GROUP that use this request. DPD_HMAC_SA_PAD_HASH_GROUP (0x4700) defines
the group for all descriptors in this request.

5.5.3 HMAC_PAD_REQ
COMMON_REQ_PREAMBLE
unsigned long keyBytes;
unsigned char* keyData;
unsigned long inBytes;
unsigned char* inData;
unsigned long outBytes; /* length is fixed by algorithm */
unsigned char* outData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_HMAC_PAD_DESC defines
the number of descriptors in the DPD_HASH_LDCTX_HMAC_ULCTX_GROUP that use this request.
DPD_HASH_LDCTX_HMAC_ULCTX_GROUP (0x4A00) defines the group for all descriptors in this request.

Table 26. HMAC_PAD_HASH_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_HMAC_SA_SHA256_PAD_HASH 0x4700 Perform an HMAC operation on a static channel to use an
SHA-256 hash algorithm with padding.

DPD_HMAC_SA_MD5_PAD_HASH 0x4701 Perform an HMAC operation on a static channel to use an MD5
hash algorithm with padding.

DPD_HMAC_SA_SHA_PAD_HASH 0x4702 Perform an HMAC operation on a static channel to use an SHA-1
hash algorithm with padding.

DPD_HMAC_SA_SHA256_PAD_IDGS_HASH 0x4703 Perform an HMAC operation on a static channel to use an
SHA-256 hash algorithm with IDGS padding.

DPD_HMAC_SA_MD5_PAD_IDGS_HASH 0x4704 Perform an HMAC operation on a static channel to use an MD5
hash algorithm with IDGS padding.

DPD_HMAC_SA_SHA_PAD_IDGS_HASH 0x4705 Perform an HMAC operation on a static channel to use an SHA-1
hash algorithm with IDGS padding.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

24 Freescale Semiconductor

Individual Request Types

5.6 AES Request Structures
This section provides structure definitions for AES requests.

5.6.1 AESA_CRYPT_REQ
COMMON_REQ_PREAMBLE
unsigned long keyBytes; /* 16, 24, or 32 bytes */
unsigned char* keyData;
unsigned long inIvBytes; /* 0 or 16 bytes */
unsigned char* inIvData;
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char* inData;
unsigned char* outData; /* output length = input length */
unsigned long outCtxBytes; /* 0 or 8 bytes */
unsigned char* outCtxData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_AESA_CRYPT_DESC
defines the number of descriptors in the DPD_AESA_CRYPT_GROUP that use this request.
DPD_AESA_CRYPT_GROUP (0x6000) defines the group for all descriptors in this request.

Table 27. HMAC_PAD_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SHA256_LDCTX_HMAC_ULCTX 0x4A00 Load context into a dynamic channel to use an SHA-256 hash
algorithm and get the resulting HMAC context.

DPD_MD5_LDCTX_HMAC_ULCTX 0x4A01 Load context into a dynamic channel to use an MD5 hash
algorithm and get the resulting HMAC context.

DPD_SHA_LDCTX_HMAC_ULCTX 0x4A02 Load context into a dynamic channel to use an SHA-1 hash
algorithm and get the resulting HMAC context.

DPD_SHA256_LDCTX_HMAC_PAD_ULCTX 0x4A03 Load context into a dynamic channel to use an SHA-256 IDGS
hash algorithm and get the resulting padded HMAC context.

DPD_MD5_LDCTX_HMAC_PAD_ULCTX 0x4A04 Load context into a dynamic channel to use an MD5 IDGS hash
algorithm and get the resulting padded HMAC context.

DPD_SHA_LDCTX_HMAC_PAD_ULCTX 0x4A05 Load context into a dynamic channel to use an SHA-1 IDGS
hash algorithm and get the resulting padded HMAC context.

Table 28. AESA_CRYPT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_AESA_CBC_ENCRYPT_CRYPT 0x6000 Encrypt in AESA using CBC mode.

DPD_AESA_CBC_DECRYPT_CRYPT 0x6001 Decrypt in AESA using CBC mode.

DPD_AESA_CBC_DECRYPT_CRYPT_RDK 0x6002 Decrypt in AESA using CBC mode with RDK.

DPD_AESA_ECB_ENCRYPT_CRYPT 0x6003 Encrypt in AESA using ECB mode.

DPD_AESA_ECB_DECRYPT_CRYPT 0x6004 Decrypt in AESA using ECB mode.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 25

Individual Request Types

5.7 Integer Public Key Request Structures
The structure definitions for integer public key requests are not available in the SEC 1.2 driver.

5.7.1 MOD_EXP_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long aDataBytes;
unsigned char* aData;
unsigned long expBytes;
unsigned char* expData;
unsigned long outBytes;
unsigned char* outData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_MM_STATIC_EXP_DESC defines the number of descriptors in the DPD_MM_SA_EXP_GROUP that use this
request. DPD_MM_SA_EXP_GROUP (0x5000) defines the group for all descriptors in this request.

5.7.2 MOD_EXP_REQ
COMMON_REQ_PREAMBLE
unsigned long aDataBytes;
unsigned char* aData;
unsigned long expBytes;
unsigned char* expData;
unsigned long modBytes;
unsigned char* modData;
unsigned long outBytes;
unsigned char* outData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_MM_EXP_DESC defines
the number of descriptors in the DPD_MM_LDCTX_EXP_ULCTX_GROUP that use this request.
DPD_MM_LDCTX_EXP_ULCTX_GROUP (0x5100) defines the group for all descriptors in this request.

DPD_AESA_ECB_DECRYPT_CRYPT_RDK 0x6005 Perform decryption in AESA using ECB mode with RDK

DPD_AESA_CTR_CRYPT 0x6006 Perform CTR in AESA

Table 29. MOD_EXP_STATIC_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_SA_EXP 0x5000 Perform a MOD operation on the public key for a static channel.

Table 30. MOD_EXP_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_LDCTX_EXP_ULCTX 0x5100 Load context into a dynamic channel and return the resulting
context from a MOD operation.

Table 28. AESA_CRYPT_REQ Valid Descriptors (opId) (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

26 Freescale Semiconductor

Individual Request Types

5.7.3 MOD_R2MODN_REQ
COMMON_REQ_PREAMBLE
unsigned long modBytes;
unsigned char* modData;
unsigned long outBytes;
unsigned char* outData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_MM_R2MODN_DESC
defines the number of descriptors in the DPD_MM_LDCTX_R2MODN_ULCTX_GROUP that use this request.
DPD_MM_LDCTX_R2MODN_ULCTX_GROUP (0x5200) defines the group for all descriptors in this request.

5.7.4 MOD_RRMODP_REQ
COMMON_REQ_PREAMBLE
unsigned long nBytes;
unsigned long pBytes;
unsigned char* pData;
unsigned long outBytes;
unsigned char* outData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_MM_RRMODP_DESC
defines the number of descriptors in the DPD_MM_LDCTX_RRMODP_ULCTX_GROUP that use this request.
DPD_MM_LDCTX_RRMODP_ULCTX_GROUP (0x5300) defines the group for all descriptors in this request.

5.7.5 MOD_2OP_REQ
COMMON_REQ_PREAMBLE
unsigned long bDataBytes;
unsigned char* bData;
unsigned long aDataBytes;
unsigned char* aData;
unsigned long modBytes;
unsigned char* modData;
unsigned long outBytes;
unsigned char* outData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_MM_2OP_DESC defines
the number of descriptors in the DPD_MM_LDCTX_2OP_ULCTX_GROUP that use this request.
DPD_MM_LDCTX_2OP_ULCTX_GROUP (0x5400) defines the group for all descriptors in this request.

Table 31. MOD_R2MODN_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_LDCTX_R2MODN_ULCTX 0x5200 Perform an R2MOD operation on the public key for a static channel.

Table 32. MOD_RRMODP_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_LDCTX_RRMODP_ULCTX 0x5300 Load context in a dynamic channel and return the resulting context from an
RRMODP operation.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 27

Individual Request Types

Table 33. MOD_2OP_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_MM_LDCTX_MUL1_ULCTX 0x5400 Load context into a dynamic channel and return the resulting
context from a MUL1 operation.

DPD_MM_LDCTX_MUL2_ULCTX 0x5401 Load context into a dynamic channel and return the resulting
context from a MUL2 operation.

DPD_MM_LDCTX_ADD_ULCTX 0x5402 Load context into a dynamic channel and return the resulting
context from a ADD operation.

DPD_MM_LDCTX_SUB_ULCTX 0x5403 Load context into a dynamic channel and return the resulting
context from a SUB operation.

DPD_POLY_LDCTX_A0_B0_MUL1_ULCTX 0x5404 Load context into a dynamic channel and return the resulting
context from a A0-to-B0 MUL1 operation.

DPD_POLY_LDCTX_A0_B0_MUL2_ULCTX 0x5405 Load context into a dynamic channel and return the resulting
context from an A0-to-B0 MUL2 operation.

DPD_POLY_LDCTX_A0_B0_ADD_ULCTX 0x5406 Load context into a dynamic channel and return the resulting
context from an A0-to-B0 ADD operation.

DPD_POLY_LDCTX_A1_B0_MUL1_ULCTX 0x5407 Load context into a dynamic channel and return the resulting
context from an A1-to-B0 MUL1 operation.

DPD_POLY_LDCTX_A1_B0_MUL2_ULCTX 0x5408 Load context into a dynamic channel and return the resulting
context from an A1-to-B0 MUL2 operation.

DPD_POLY_LDCTX_A1_B0_ADD_ULCTX 0x5409 Load context into a dynamic channel and return the resulting
context from an A1-to-B0 ADD operation.

DPD_POLY_LDCTX_A2_B0_MUL1_ULCTX 0x540A Load context into a dynamic channel and return the resulting
context from an A2-to-B0 MUL1 operation.

DPD_POLY_LDCTX_A2_B0_MUL2_ULCTX 0x540B Load context into a dynamic channel and return the resulting
context from an A2-to-B0 MUL2 operation.

DPD_POLY_LDCTX_A2_B0_ADD_ULCTX 0x540C Load context into a dynamic channel and return the resulting
context from an A2-to-B0 ADD operation.

DPD_POLY_LDCTX_A3_B0_MUL1_ULCTX 0x540D Load context into a dynamic channel and return the resulting
context from an A3-to-B0 MUL1 operation.

DPD_POLY_LDCTX_A3_B0_MUL2_ULCTX 0x540E Load context into a dynamic channel and return the resulting
context from an A3-to-B0 MUL2 operation.

DPD_POLY_LDCTX_A3_B0_ADD_ULCTX 0x540F Load context into a dynamic channel and return the resulting
context from an A3-to-B0 ADD operation.

DPD_POLY_LDCTX_A0_B1_MUL1_ULCTX 0x5410 Load context into a dynamic channel and return the resulting
context from an A0-to-B1 MUL1 operation.

DPD_POLY_LDCTX_A0_B1_MUL2_ULCTX 0x5411 Load context into a dynamic channel and return the resulting
context from an A-to-B MUL2 operation.

DPD_POLY_LDCTX_A0_B1_ADD_ULCTX 0x5412 Load context into a dynamic channel and return the resulting
context from an A0-to-B1 ADD operation.

DPD_POLY_LDCTX_A1_B1_MUL1_ULCTX 0x5413 Load context into a dynamic channel and return the resulting
context from an A1-to-B1 MUL1 operation.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

28 Freescale Semiconductor

Individual Request Types

DPD_POLY_LDCTX_A1_B1_MUL2_ULCTX 0x5414 Load context into a dynamic channel and return the resulting
context from an A1-to-B1 MUL2 operation.

DPD_POLY_LDCTX_A1_B1_ADD_ULCTX 0x5415 Load context into a dynamic channel and return the resulting
context from an A1-to-B1 ADD operation.

DPD_POLY_LDCTX_A2_B1_MUL1_ULCTX 0x5416 Load context into a dynamic channel and return the resulting
context from an A2-to-B1 MUL1 operation.

DPD_POLY_LDCTX_A2_B1_MUL2_ULCTX 0x5417 Load context into a dynamic channel and return the resulting
context from an A2-to-B1 MUL2 operation.

DPD_POLY_LDCTX_A2_B1_ADD_ULCTX 0x5418 Load context into a dynamic channel and return the resulting
context from an A2-to-B1 ADD operation.

DPD_POLY_LDCTX_A3_B1_MUL1_ULCTX 0x5419 Load context into a dynamic channel and return the resulting
context from an A3-to-B1 MUL1 operation.

DPD_POLY_LDCTX_A3_B1_MUL2_ULCTX 0x541A Load context into a dynamic channel and return the resulting
context from an A3-to-B1 MUL2 operation.

DPD_POLY_LDCTX_A3_B1_ADD_ULCTX 0x541B Load context into a dynamic channel and return the resulting
context from an A3-to-B1 ADD operation.

DPD_POLY_LDCTX_A0_B2_MUL1_ULCTX 0x541C Load context into a dynamic channel and return the resulting
context from an A0-to-B2 MUL1 operation.

DPD_POLY_LDCTX_A0_B2_MUL2_ULCTX 0x541D Load context into a dynamic channel and return the resulting
context from an A0-to-B2 MUL2 operation.

DPD_POLY_LDCTX_A0_B2_ADD_ULCTX 0x541E Load context into a dynamic channel and return the resulting
context from an A0-to-B2ADD operation.

DPD_POLY_LDCTX_A1_B2_MUL1_ULCTX 0x541F Load context into a dynamic channel and return the resulting
context from an A1-to-B2 MUL1 operation.

DPD_POLY_LDCTX_A1_B2_MUL2_ULCTX 0x5420 Load context into a dynamic channel and return the resulting
context from an A1-to-B2 MUL2 operation.

DPD_POLY_LDCTX_A1_B2_ADD_ULCTX 0x5421 Load context into a dynamic channel and return the resulting
context from an A1-to-B2 ADD operation.

DPD_POLY_LDCTX_A2_B2_MUL1_ULCTX 0x5422 Load context into a dynamic channel and return the resulting
context from an A2-to-B2 MUL1 operation.

DPD_POLY_LDCTX_A2_B2_MUL2_ULCTX 0x5423 Load context into a dynamic channel and return the resulting
context from an A2-to-B2 MUL2 operation.

DPD_POLY_LDCTX_A2_B2_ADD_ULCTX 0x5424 Load context into a dynamic channel and return the resulting
context from an A2-to-B2 ADD operation.

DPD_POLY_LDCTX_A3_B2_MUL1_ULCTX 0x5425 Load context into a dynamic channel and return the resulting
context from an A3-to-B2 MUL1 operation.

DPD_POLY_LDCTX_A3_B2_MUL2_ULCTX 0x5426 Load context into a dynamic channel and return the resulting
context from an A3-to-B2 MUL2 operation.

DPD_POLY_LDCTX_A3_B2_ADD_ULCTX 0x5427 Load context into a dynamic channel and return the resulting
context from an A3-to-B2 ADD operation.

Table 33. MOD_2OP_REQ Valid Descriptors (opId) (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 29

Individual Request Types

5.7.6 MOD_CLR_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long aDataBytes;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_MM_STATIC_CLR_DESC defines the number of descriptors in the DPD_MM_SA_CLR_GROUP that use this
request. DPD_MM_SA_CLR_GROUP (0x5A00) defines the group for all descriptors in this request.

5.8 ECC Public Key Request Structures
The structure definitions for ECC public key requests are not available in the SEC 1.2 driver.

DPD_POLY_LDCTX_A0_B3_MUL1_ULCTX 0x5428 Load context into a dynamic channel and return the resulting
context from an A0-to-B3 MUL1 operation.

DPD_POLY_LDCTX_A0_B3_MUL2_ULCTX 0x5429 Load context into a dynamic channel and return the resulting
context from an A0-to-B3 MUL2 operation.

DPD_POLY_LDCTX_A0_B3_ADD_ULCTX 0x542A Load context into a dynamic channel and return the resulting
context from an A0-to-B3 ADD operation.

DPD_POLY_LDCTX_A1_B3_MUL1_ULCTX 0x542B Load context into a dynamic channel and return the resulting
context from an A1-to-B3 MUL1 operation.

DPD_POLY_LDCTX_A1_B3_MUL2_ULCTX 0x542C Load context into a dynamic channel and return the resulting
context from an A1-to-B3 MUL2 operation.

DPD_POLY_LDCTX_A1_B3_ADD_ULCTX 0x542D Load context into a dynamic channel and return the resulting
context from an A1-to-B3 ADD operation.

DPD_POLY_LDCTX_A2_B3_MUL1_ULCTX 0x542E Load context into a dynamic channel and return the resulting
context from an A2-to-B3 MUL1 operation.

DPD_POLY_LDCTX_A2_B3_MUL2_ULCTX 0x542F Load context into a dynamic channel and return the resulting
context from an A2-to-B3 MUL2 operation.

DPD_POLY_LDCTX_A2_B3_ADD_ULCTX 0x5430 Load context into a dynamic channel and return the resulting
context from an A2-to-B3 ADD operation.

DPD_POLY_LDCTX_A3_B3_MUL1_ULCTX 0x5431 Load context into a dynamic channel and return the resulting
context from an A3-to-B3 MUL1 operation.

DPD_POLY_LDCTX_A3_B3_MUL2_ULCTX 0x5432 Load context into a dynamic channel and return the resulting
context from an A3-to-B3 MUL2 operation.

DPD_POLY_LDCTX_A3_B3_ADD_ULCTX 0x5433 Load context into a dynamic channel and return the resulting
context from an A3-to-B3 ADD operation.

Table 34. MOD_CLR_STATIC_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_SA_CLR 0x5A00 Clear the MOD context in a static channel.

Table 33. MOD_2OP_REQ Valid Descriptors (opId) (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

30 Freescale Semiconductor

Individual Request Types

5.8.1 ECC_LOADPOINTK_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long x1DataBytes;
unsigned char* x1Data;
unsigned long y1DataBytes;
unsigned char* y1Data;
unsigned long z1DataBytes;
unsigned char* z1Data;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_EC_STATIC_LOADCTX_DESC defines the number of descriptors in the DPD_EC_SA_LOADCTX_GROUP
that use this request. DPD_EC_SA_LOADCTX_GROUP (0x5500) defines the group for all descriptors in this
request.

5.8.2 ECC_LOADPARAM_PMULT_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long aDataBytes;
unsigned char* aData;
unsigned long bDataBytes;
unsigned char* bData;
unsigned long r2DataBytes;
unsigned char* r2Data;
unsigned long kDataBytes;
unsigned char* kData;
unsigned long pDataBytes;
unsigned char* pData;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_EC_STATIC_kP_DESC defines the number of descriptors in the DPD_EC_SA_kP_GROUP that use this
request. DPD_EC_SA_kP_GROUP (0x5600) defines the group for all descriptors in this request.

V

Table 35. ECC_LOADPOINTK_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_EC_SA_FP_AFF_LDCTX 0x5500 Load the context of a static channel for an electronic codebook
for the FP AFF.

DPD_EC_SA_FP_PROJ_LDCTX 0x5501 Load the context of a static channel for an electronic codebook
for the FP project.

DPD_EC_SA_F2M_AFF_LDCTX 0x5502 Load the context of a static channel for an electronic codebook
for the F2M AFF.

DPD_EC_SA_F2M_PROJ_LDCTX 0x5503 Load the context of a static channel for an electronic codebook
for the F2M project.

Table 36. ECC_LOADPARAM_PMULT_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_EC_SA_FP_AFF_kP 0x5600 Load the context of a static channel for an electronic codebook for the FP
AFF with a P multiplier.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 31

Individual Request Types

5.8.3 ECC_GETRESULT_STATIC_REQ
COMMON_REQ_PREAMBLE
unsigned long x2DataBytes;
unsigned char* x2Data;
unsigned long y2DataBytes;
unsigned char* y2Data;
unsigned long z2DataBytes;
unsigned char* z2Data;
unsigned long z_2DataBytes;
unsigned char* z_2Data;
unsigned long z_3DataBytes;
unsigned char* z_3Data;

Dynamic channels are not valid for this request. A channel value of zero is invalid.
NUM_EC_STATIC_UNLOAD_CTX_DESC defines the number of descriptors in the DPD_EC_SA_ULCTX_GROUP
that use this request. DPD_EC_SA_ULCTX_GROUP (0x5700) defines the group for all descriptors in this
request.

DPD_EC_SA_FP_PROJ_kP 0x5601 Load the context of a static channel for an electronic codebook for the FP
project with a P multiplier.

DPD_EC_SA_F2M_AFF_kP 0x5602 Load the context of a static channel for an electronic codebook for the F2M
AFF with a P multiplier.

DPD_EC_SA_F2M_PROJ_kP 0x5603 Load the context of a static channel for an electronic codebook for the F2M
project with a P multiplier.

Table 37. ECC_GETRESULT_STATIC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_EC_SA_FP_AFF_ULCTX 0x5700 Get the context from a static channel for an electronic codebook for the FP
AFF.

DPD_EC_SA_FP_PROJ_ULCTX 0x5701 Get the context from a static channel for an electronic codebook for the FP
project.

DPD_EC_SA_F2M_AFF_ULCTX 0x5702 Get the context from a static channel for an electronic codebook for the F2M
AFF.

DPD_EC_SA_F2M_PROJ_ULCTX 0x5703 Get the context from a static channel for an electronic codebook for the F2M
project.

Table 36. ECC_LOADPARAM_PMULT_STATIC_REQ Valid Descriptors (opId) (continued)

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

32 Freescale Semiconductor

Individual Request Types

5.8.4 ECC_POINT_REQ
COMMON_REQ_PREAMBLE
unsigned long par2DataBytes;
unsigned char* par2Data;
unsigned long par1DataBytes;
unsigned char* par1Data;
unsigned long expDataBytes;
unsigned char* expData;
unsigned long pDataBytes;
unsigned char* pData;
unsigned long pOutDataBytes;
unsigned char* pOutData;

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_EC_POINT_DESC defines
the number of descriptors in the DPD_EC_LDCTX_kP_ULCTX_GROUP that use this request.
DPD_EC_LDCTX_kP_ULCTX_GROUP (0x5800) defines the group for all descriptors in this request.

5.8.5 ECC_2OP_REQ
COMMON_REQ_PREAMBLE
unsigned long bDataBytes;
unsigned char* bData;
unsigned long aDataBytes;
unsigned char* aData;
unsigned long modBytes;
unsigned char* modData;
unsigned long outBytes;
unsigned char* outData;

Table 38. ECC_POINT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_EC_FP_AFF_LDCTX_kP_ULCTX 0x5800 Load context into a dynamic channel to use an electronic codebook for
the FP AFF and get the resulting P multiplier context

DPD_EC_FP_PROJ_LDCTX_kP_ULCTX 0x5801 Load context into a dynamic channel to use an electronic codebook for
the FP project and get the resulting P multiplier context

DPD_EC_F2M_AFF_LDCTX_kP_ULCT 0x5802 Load context into a dynamic channel to use an electronic codebook for
the F2M AFF and get the resulting P multiplier context

DPD_EC_F2M_PROJ_LDCTX_kP_ULCTX 0x5803 Load context into a dynamic channel to use an electronic codebook for
the F2M project and get the resulting P multiplier context

DPD_EC_FP_LDCTX_ADD_ULCT 0x5804 Load context into a dynamic channel to use an electronic codebook for
the FP and get the resulting context from an add operation

DPD_EC_FP_LDCTX_DOUBLE_ULCTX 0x5805 Load context into a dynamic channel to use an electronic codebook for
the FP and get the resulting context from a double operation

DPD_EC_F2M_LDCTX_ADD_ULCTX 0x5806 Load context into a dynamic channel to use an electronic codebook for
the F2M and get the resulting context from an add operation

DPD_EC_F2M_LDCTX_DOUBLE_ULCTX 0x5807 Load context into a dynamic channel to use an electronic codebook for
the F2M and get the resulting context from a double operation

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 33

Individual Request Types

Dynamic channels are valid for this request. A channel value of zero is valid. NUM_EC_2OP_DESC defines
the number of descriptors within the DPD_EC_2OP_GROUP that use this request. DPD_EC_2OP_GROUP
(0x5900) defines the group for all descriptors within this request.

5.9 IPSec Request Structures
The following sections provide structure definitions for IPSec requests.

5.9.1 IPSEC_CBC_REQ
COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char* hashKeyData;
unsigned long cryptKeyBytes;
unsigned char* cryptKeyData;
unsigned long cryptCtxInBytes;
unsigned char* cryptCtxInData;
unsigned long hashInDataBytes;
unsigned char* hashInData;
unsigned long inDataBytes;
unsigned char* inData;
unsigned char* cryptDataOut;
unsigned long hashDataOutBytes;
unsigned char* hashDataOut;

Dynamic and static channels are valid for this request. NUM_IPSEC_CBC_DESC defines the number of
descriptors in the DPD_IPSEC_CBC_GROUP that use this request. DPD_IPSEC_CBC_GROUP (0x7000) defines
the group for all descriptors in this request.

Table 39. ECC_2OP_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_EC_F2M_LDCTX_MUL1_ULCTX 0x5900 Load context into a dynamic channel to use an electronic codebook for
the F2M and get the resulting context from a MULT1 operation

Table 40. IPSec_CBC_REQ Valid Descriptors (opId) for Dynamic Requests

Descriptors Value Function Description

DPD_IPSEC_CBC_SDES_ENCRYPT_MD5_PAD 0x7000 Perform IPSec encryption in single DES using CBC mode with
MD5 padding.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA_PAD 0x7001 Perform IPSec encryption in single DES using CBC mode with
SHA-1 padding.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA256_PAD 0x7002 Perform IPSec encryption in single DES using CBC mode with
SHA-256 padding.

DPD_IPSEC_CBC_SDES_DECRYPT_MD5_PAD 0x7003 Perform IPSec decryption in single DES using CBC mode with
MD5 padding.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA_PAD 0x7004 Perform IPSec decryption in single DES using CBC mode with
SHA-1 padding.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

34 Freescale Semiconductor

Individual Request Types

DPD_IPSEC_CBC_SDES_DECRYPT_SHA256_PAD 0x7005 Perform IPSec decryption in single DES using CBC mode with
SHA-256 padding.

DPD_IPSEC_CBC_TDES_ENCRYPT_MD5_PAD 0x7006 Perform IPSec encryption in triple DES using CBC mode with
MD5 padding.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA_PAD 0x7007 Perform IPSec encryption in triple DES using CBC mode with
SHA-1 padding.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA256_PAD 0x7008 Perform IPSec encryption in triple DES using CBC mode with
SHA-256 padding.

DPD_IPSEC_CBC_TDES_DECRYPT_MD5_PAD 0x7009 Perform IPSec decryption in triple DES using CBC mode with
MD5 padding.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA_PAD 0x700A Perform IPSec decryption in triple DES using CBC mode with
SHA-1 padding.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA256_PAD 0x700B Perform IPSec decryption in triple DES using CBC mode with
SHA-256 padding.

DPD_IPSEC_CBC_SDES_ENCRYPT_MD5 0x700C Perform IPSec encryption in single DES using CBC mode with
MD5.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA 0x700D Perform IPSec encryption in single DES using CBC mode with
SHA-1.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA256 0x700E Perform IPSec encryption in single DES using CBC mode with
SHA-256.

DPD_IPSEC_CBC_SDES_DECRYPT_MD5 0x700F Perform IPSec decryption in single DES using CBC mode with
MD5.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA 0x7010 Perform IPSec decryption in single DES using CBC mode with
SHA-1.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA256 0x7011 Perform IPSec decryption in single DES using CBC mode with
SHA-256.

DPD_IPSEC_CBC_TDES_ENCRYPT_MD5 0x7012 Perform IPSec encryption in triple DES using CBC mode with
MD5.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA 0x7013 Perform IPSec encryption in triple DES using CBC mode with
SHA-1.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA256 0x7014 Perform IPSec encryption in triple DES using CBC mode with
SHA-256.

DPD_IPSEC_CBC_TDES_DECRYPT_MD5 0x7015 Perform IPSec decryption in triple DES using CBC mode with
MD5.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA 0x7016 Perform IPSec decryption in triple DES using CBC mode with
SHA-1.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA256 0x7017 Perform IPSec decryption in triple DES using CBC mode with
SHA-256.

Table 40. IPSec_CBC_REQ Valid Descriptors (opId) for Dynamic Requests (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 35

Individual Request Types

NUM_IPSEC_STATIC_CBC_DESC defines the number of descriptors in the DPD_IPSEC_STATIC_CBC_GROUP
that use this request. DPD_IPSEC_STATIC_CBC_GROUP (0x7A00) defines the group for all descriptors in this
request.

Table 41. IPSec_CBC_REQ Valid Descriptors (opId) for Static Requests

Descriptors Value Function Description

DPD_IPSEC_CBC_SDES_ENCRYPT_MD5_INIT 0x7A00 Perform the IPSec initialization for encrypting in
single DES using CBC mode with MD5.

DPD_IPSEC_CBC_SDES_ENCRYPT_MD5_UPDATE 0x7A01 Perform the IPSec update for encrypting in single
DES using CBC mode with MD5.

DPD_IPSEC_CBC_SDES_ENCRYPT_MD5_APAD_FINAL 0x7A02 Perform the IPSec APAD finalization for encrypting
in single DES using CBC mode with MD5.

DPD_IPSEC_CBC_SDES_ENCRYPT_MD5_FINAL 0x7A03 Perform the IPSec finalization for encrypting in
single DES using CBC mode with MD5.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA_INIT 0x7A04 Perform the IPSec initialization for encrypting in
single DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA_UPDATE 0x7A05 Perform the IPSec update for encrypting in single
DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA_APAD_FINAL 0x7A06 Perform the IPSec APAD finalization for encrypting
in single DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA_FINAL 0x7A07 Perform the IPSec finalization for encrypting in
single DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA256_INIT 0x7A08 Perform the IPSec initialization for encrypting in
single DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA256_UPDATE 0x7A09 Perform the IPSec update for encrypting in single
DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA256_APAD_FINAL 0x7A0A Perform the IPSec APAD finalization for encrypting
in single DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA256_FINAL 0x7A0B Perform the IPSec finalization for encrypting in
single DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_SDES_DECRYPT_MD5_INIT 0x7A0C Perform the IPSec initialization for decrypting in
single DES using CBC mode with MD5.

DPD_IPSEC_CBC_SDES_DECRYPT_MD5_UPDATE 0x7A0D Perform the IPSec update for decrypting in single
DES using CBC mode with MD5.

DPD_IPSEC_CBC_SDES_DECRYPT_MD5_APAD_FINAL 0x7A0E Perform the IPSec APAD finalization for decrypting
in single DES using CBC mode with MD5.

DPD_IPSEC_CBC_SDES_DECRYPT_MD5_FINAL 0x7A0F Perform the IPSec finalization for decrypting in
single DES using CBC mode with MD5.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA_INIT 0x7A10 Perform the IPSec initialization for decrypting in
single DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA_UPDATE 0x7A11 Perform the IPSec update for decrypting in single
DES using CBC mode with SHA-1.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

36 Freescale Semiconductor

Individual Request Types

DPD_IPSEC_CBC_SDES_DECRYPT_SHA_APAD_FINAL 0x7A12 Perform the IPSec APAD finalization for decrypting
in single DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA_FINAL 0x7A13 Perform the IPSec finalization for decrypting in
single DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA256_INIT 0x7A14 Perform the IPSec initialization for decrypting in
single DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA256_UPDATE 0x7A15 Perform the IPSec update for decrypting in single
DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA256_APAD_FINAL 0x7A16 Perform the IPSec APAD finalization for decrypting
in single DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA256_FINAL 0x7A17 Perform the IPSec finalization for decrypting in
single DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_TDES_ENCRYPT_MD5_INIT 0x7A18 Perform the IPSec initialization for encrypting in
triple DES using CBC mode with MD5.

DPD_IPSEC_CBC_TDES_ENCRYPT_MD5_UPDATE 0x7A19 Perform the IPSec update for encrypting in triple
DES using CBC mode with MD5.

DPD_IPSEC_CBC_TDES_ENCRYPT_MD5_APAD_FINAL 0x7A1A Perform the IPSec APAD finalization for encrypting
in triple DES using CBC mode with MD5.

DPD_IPSEC_CBC_TDES_ENCRYPT_MD5_FINAL 0x7A1B Perform the IPSec finalization for encrypting in triple
DES using CBC mode with MD5.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA_INIT 0x7A1C Perform the IPSec initialization for encrypting in
triple DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA_UPDATE 0x7A1D Perform the IPSec update for encrypting in triple
DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA_APAD_FINAL 0x7A1E Perform the IPSec APAD finalization for encrypting
in triple DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA_FINAL 0x7A1F Perform the IPSec finalization for encrypting in triple
DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA256_INIT 0x7A20 Perform the IPSec initialization for encrypting in
triple DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA256_UPDATE 0x7A21 Perform the IPSec update for encrypting in triple
DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA256_APAD_FINAL 0x7A22 Perform the IPSec APAD finalization for encrypting
in triple DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA256_FINAL 0x7A23 Perform the IPSec finalization for encrypting in triple
DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_TDES_DECRYPT_MD5_INIT 0x7A24 Perform the IPSec initialization for decrypting in
triple DES using CBC mode with MD5.

DPD_IPSEC_CBC_TDES_DECRYPT_MD5_UPDATE 0x7A25 Perform the IPSec update for decrypting in triple
DES using CBC mode with MD5.

Table 41. IPSec_CBC_REQ Valid Descriptors (opId) for Static Requests (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 37

Individual Request Types

5.9.2 IPSEC_ECB_REQ
COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char* hashKeyData;
unsigned long cryptKeyBytes;
unsigned char* cryptKeyData;
unsigned long hashInDataBytes;
unsigned char* hashInData;
unsigned long inDataBytes;
unsigned char* inData;
unsigned long hashDataOutBytes;
unsigned char* hashDataOut;
unsigned char* cryptDataOut;

Dynamic and static channels are valid for this request. NUM_IPSEC_ECB_DESC defines the number of
descriptors in the DPD_IPSEC_ECB_GROUP that use this request. DPD_IPSEC_ECB_GROUP (0x7100) defines
the group for all descriptors in this request.

DPD_IPSEC_CBC_TDES_DECRYPT_MD5_APAD_FINAL 0x7A26 Perform the IPSec APAD finalization for decrypting
in triple DES using CBC mode with MD5.

DPD_IPSEC_CBC_TDES_DECRYPT_MD5_FINAL 0x7A27 Perform the IPSec finalization for decrypting in triple
DES using CBC mode with MD5.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA_INIT 0x7A28 Perform the IPSec initialization for decrypting in
triple DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA_UPDATE 0x7A29 Perform the IPSec update for decrypting in triple
DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA_APAD_FINAL 0x7A2A Perform the IPSec APAD finalization for decrypting
in triple DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA_FINAL 0x7A2B Perform the IPSec finalization for decrypting in triple
DES using CBC mode with SHA-1.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA256_

INIT

0x7A2C Perform the IPSec initialization for decrypting in
triple DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA256_

UPDATE

0x7A2D Perform the IPSec update for decrypting in triple
DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA256_

APAD_FINAL

0x7A2E Perform the IPSec APAD finalization for decrypting
in triple DES using CBC mode with SHA-256.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA256_

FINAL

0x7A2F Perform the IPSec finalization for decrypting in triple
DES using CBC mode with SHA-256.

Table 41. IPSec_CBC_REQ Valid Descriptors (opId) for Static Requests (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

38 Freescale Semiconductor

Individual Request Types

Table 42. IPSec_ECB_REQ Valid Descriptors (opId) for Dynamic Requests

Descriptors Value Function Description

DPD_IPSEC_ECB_SDES_ENCRYPT_MD5_PAD 0x7100 Perform IPSec encryption in single DES using ECB mode
with MD5 padding.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA_PAD 0x7101 Perform IPSec encryption in single DES using ECB mode
with SHA-1 padding.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA256_PAD 0x7102 Perform IPSec encryption in single DES using ECB mode
with SHA-256 padding.

DPD_IPSEC_ECB_SDES_DECRYPT_MD5_PAD 0x7103 Perform IPSec process of decrypting in single DES using
ECB mode with MD5 padding.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA_PAD 0x7104 Perform IPSec decryption in single DES using ECB mode
with SHA-1 padding.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA256_PAD 0x7105 Perform IPSec decryption in single DES using ECB mode
with SHA-256 padding.

DPD_IPSEC_ECB_TDES_ENCRYPT_MD5_PAD 0x7106 Perform IPSec encryption in triple DES using ECB mode
with MD5 padding.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA_PAD 0x7107 Perform IPSec encryption in triple DES using ECB mode
with SHA-1 padding.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA256_PAD 0x7108 Perform IPSec encryption in triple DES using ECB mode
with SHA-256 padding.

DPD_IPSEC_ECB_TDES_DECRYPT_MD5_PAD 0x7109 Perform IPSec decryption in triple DES using ECB mode
with MD5 padding.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA_PAD 0x710A Perform IPSec decryption in triple DES using ECB mode
with SHA-1 padding.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA256_PAD 0x710B Perform IPSec decryption in triple DES using ECB mode
with SHA-256 padding.

DPD_IPSEC_ECB_SDES_ENCRYPT_MD5 0x710C Perform IPSec encryption in single DES using ECB mode
with MD5.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA 0x710D Perform IPSec encryption in single DES using ECB mode
with SHA-1.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA256 0x710E Perform IPSec encryption in single DES using ECB mode
with SHA-256.

DPD_IPSEC_ECB_SDES_DECRYPT_MD5 0x710F Perform IPSec decryption in single DES using ECB mode
with MD5.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA 0x7110 Perform IPSec decryption in single DES using ECB mode
with SHA-1.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA256 0x7111 Perform IPSec decryption in single DES using ECB mode
with SHA-256.

DPD_IPSEC_ECB_TDES_ENCRYPT_MD5 0x7112 Perform IPSec encryption in triple DES using ECB mode
with MD5.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA 0x7113 Perform IPSec encryption in triple DES using ECB mode
with SHA-1.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 39

Individual Request Types

NUM_IPSEC_STATIC_ECB_DESC defines the number of descriptors in the DPD_IPSEC_STATIC_ECB_GROUP
that use this request. DPD_IPSEC_STATIC_ECB_GROUP (0x7B00) defines the group for all descriptors in this
request.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA256 0x7114 Perform IPSec encryption in triple DES using ECB mode
with SHA-256.

DPD_IPSEC_ECB_TDES_DECRYPT_MD5 0x7115 Perform IPSec decryption in triple DES using ECB mode
with MD5.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA 0x7116 Perform IPSec decryption in triple DES using ECB mode
with SHA-1.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA256 0x7117 Perform IPSec decryption in triple DES using ECB mode
with SHA-256.

Table 43. IPSec_ECB_REQ Valid Descriptors (opId) for Static Requests

Descriptors Value Function Description

DPD_IPSEC_ECB_SDES_ENCRYPT_MD5_INIT 0x7B00 Perform the IPSec initialization for encrypting in
single DES using ECB mode with MD5.

DPD_IPSEC_ECB_SDES_ENCRYPT_MD5_UPDATE 0x7B01 Perform the IPSec update for encrypting in single
DES using ECB mode with MD5.

DPD_IPSEC_ECB_SDES_ENCRYPT_MD5_APAD_FINAL 0x7B02 Perform the IPSec APAD finalization for encrypting
in single DES using ECB mode with MD5

DPD_IPSEC_ECB_SDES_ENCRYPT_MD5_FINAL 0x7B03 Perform the IPSec finalization for encrypting in
single DES using ECB mode with MD5.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA_INIT 0x7B04 Perform the IPSec initialization for encrypting in
single DES using ECB mode with SHA-1

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA_UPDATE 0x7B05 Perform the IPSec update for encrypting in single
DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA_APAD_FINAL 0x7B06 Perform the IPSec APAD finalization for encrypting
in single DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA_FINAL 0x7B07 Perform the IPSec finalization for encrypting in
single DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA256_INIT 0x7B08 Perform the IPSec initialization for encrypting in
single DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA256_UPDATE 0x7B09 Perform the IPSec update for encrypting in single
DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA256_APAD_FINAL 0x7B0A Perform the IPSec APAD finalization for encrypting
in single DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA256_

FINAL

0x7B0B Perform the IPSec finalization for encrypting in
single DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_SDES_DECRYPT_MD5_INIT 0x7B0C Perform the IPSec initialization for decrypting in
single DES using ECB mode with MD5.

Table 42. IPSec_ECB_REQ Valid Descriptors (opId) for Dynamic Requests (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

40 Freescale Semiconductor

Individual Request Types

DPD_IPSEC_ECB_SDES_DECRYPT_MD5_UPDATE 0x7B0D Perform the IPSec update for decrypting in single
DES using ECB mode with MD5.

DPD_IPSEC_ECB_SDES_DECRYPT_MD5_APAD_FINAL 0x7B0E Perform the IPSec APAD finalization for decrypting
in single DES using ECB mode with MD5.

DPD_IPSEC_ECB_SDES_DECRYPT_MD5_FINAL 0x7B0F Perform the IPSec finalization for decrypting in
single DES using ECB mode with MD5.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA_INIT 0x7B10 Perform the IPSec initialization for decrypting in
single DES using ECB mode with SHA-1

DPD_IPSEC_ECB_SDES_DECRYPT_SHA_UPDATE 0x7B11 Perform the IPSec update for decrypting in single
DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA_APAD_FINAL 0x7B12 Perform the IPSec APAD finalization for decrypting
in single DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA_FINAL 0x7B13 Perform the IPSec finalization for decrypting in
single DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA256_INIT 0x7B14 Perform the IPSec initialization for decrypting in
single DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA256_UPDATE 0x7B15 Perform the IPSec update for decrypting in single
DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA256_APAD_FINAL 0x7B16 Perform the IPSec APAD finalization for decrypting
in single DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA256_FINAL 0x7B17 Perform the IPSec finalization for decrypting in
single DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_TDES_ENCRYPT_MD5_INIT 0x7B18 Perform the IPSec initialization for encrypting in
triple DES using ECB mode with MD5.

DPD_IPSEC_ECB_TDES_ENCRYPT_MD5_UPDATE 0x7B19 Perform the IPSec update for encrypting in triple
DES using ECB mode with MD5.

DPD_IPSEC_ECB_TDES_ENCRYPT_MD5_APAD_FINAL 0x7B1A Perform the IPSec APAD finalization for encrypting
in triple DES using ECB mode with MD5.

DPD_IPSEC_ECB_TDES_ENCRYPT_MD5_FINAL 0x7B1B Perform the IPSec finalization for encrypting in triple
DES using ECB mode with MD5.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA_INIT 0x7B1C Perform the IPSec initialization for encrypting in
triple DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA_UPDATE 0x7B1D Perform the IPSec update for encrypting in triple
DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA_APAD_FINAL 0x7B1E Perform the IPSec APAD finalization for encrypting
in triple DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA_FINAL 0x7B1F Perform the IPSec finalization for encrypting in triple
DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA256_INIT 0x7B20 Perform the IPSec initialization for encrypting in
triple DES using ECB mode with SHA-256.

Table 43. IPSec_ECB_REQ Valid Descriptors (opId) for Static Requests (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 41

Individual Request Types

5.9.3 IPSEC_AES_CBC_REQ
COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char* hashKeyData;
unsigned long cryptKeyBytes;
unsigned char* cryptKeyData;
unsigned long cryptCtxInBytes;
unsigned char* cryptCtxInData;
unsigned long hashInDataBytes;
unsigned char* hashInData;
unsigned long inDataBytes;
unsigned char* inData;

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA256_UPDATE 0x7B21 Perform the IPSec update for encrypting in triple
DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA256_APAD_FINAL 0x7B22 Perform the IPSec APAD finalization for encrypting
in triple DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA256_FINAL 0x7B23 Perform the IPSec finalization for encrypting in triple
DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_TDES_DECRYPT_MD5_INIT 0x7B24 Perform the IPSec initialization for decrypting in
triple DES using ECB mode with MD5.

DPD_IPSEC_ECB_TDES_DECRYPT_MD5_UPDATE 0x7B25 Perform the IPSec update for decrypting in triple
DES using ECB mode with MD5.

DPD_IPSEC_ECB_TDES_DECRYPT_MD5_APAD_FINAL 0x7B26 Perform the IPSec APAD finalization for decrypting
in triple DES using ECB mode with MD5.

DPD_IPSEC_ECB_TDES_DECRYPT_MD5_FINAL 0x7B27 Perform the IPSec finalization for decrypting in triple
DES using ECB mode with MD5.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA_INIT 0x7B28 Perform the IPSec initialization for decrypting in
triple DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA_UPDATE 0x7B29 Perform the IPSec update for decrypting in triple
DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA_APAD_FINAL 0x7B2A Perform the IPSec APAD finalization for decrypting
in triple DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA_FINAL 0x7B2B Perform the IPSec finalization for decrypting in triple
DES using ECB mode with SHA-1.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA256_INIT 0x7B2C Perform the IPSec initialization for decrypting in
triple DES using ECB mode with SHA-256

DPD_IPSEC_ECB_TDES_DECRYPT_SHA256_UPDATE 0x7B2D Perform the IPSec update for decrypting in triple
DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA256_APAD_FINAL 0x7B2E Perform the IPSec APAD finalization for decrypting
in triple DES using ECB mode with SHA-256.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA256_FINAL 0x7B2F Perform the IPSec finalization for decrypting in triple
DES using ECB mode with SHA-256.

Table 43. IPSec_ECB_REQ Valid Descriptors (opId) for Static Requests (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

42 Freescale Semiconductor

Individual Request Types

unsigned char* cryptDataOut;
unsigned long hashDataOutBytes;
unsigned char* hashDataOut;

Dynamic channels are valid for this request. NUM_IPSEC_AES_CBC_DESC defines the number of descriptors
within the DPD_IPSEC_AES_CBC_GROUP that use this request. DPD_IPSEC_AES_CBC_GROUP (0x8000)
defines the group for all descriptors within this request.

Table 44. IPSec_AES_CBC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_IPSEC_AES_CBC_ENCRYPT_MD5_APAD 0x8000 Perform IPSec encryption in AES using CBC mode with MD5
auto padding.

DPD_IPSEC_AES_CBC_ENCRYPT_SHA_APAD 0x8001 Perform IPSec encryption in AES using CBC mode with
SHA-1 auto padding.

DPD_IPSEC_AES_CBC_ENCRYPT_SHA256_APAD 0x8002 Perform IPSec encryption in AES using CBC mode with
SHA-256 auto padding.

DPD_IPSEC_AES_CBC_ENCRYPT_MD5 0x8003 Perform IPSec encryption in AES using CBC mode with MD5

DPD_IPSEC_AES_CBC_ENCRYPT_SHA 0x8004 Perform IPSec encryption in AES using CBC mode with
SHA-1.

DPD_IPSEC_AES_CBC_ENCRYPT_SHA256 0x8005 Perform IPSec encryption in AES using CBC mode with
SHA-256.

DPD_IPSEC_AES_CBC_DECRYPT_MD5_APAD 0x8006 Perform IPSec decryption in AES using CBC mode with MD5
auto padding.

DPD_IPSEC_AES_CBC_DECRYPT_SHA_APAD 0x8007 Perform IPSec decryption in AES using CBC mode with
SHA-1 auto padding.

DPD_IPSEC_AES_CBC_DECRYPT_SHA256_APAD 0x8008 Perform IPSec decryption in AES using CBC mode with
SHA-256 auto padding.

DPD_IPSEC_AES_CBC_DECRYPT_MD5 0x8009 Perform IPSec decryption in AES using CBC mode with MD5

DPD_IPSEC_AES_CBC_DECRYPT_SHA 0x800A Perform IPSec decryption in AES using CBC mode with
SHA-1.

DPD_IPSEC_AES_CBC_DECRYPT_SHA256 0x800B Perform IPSec decryption in AES using CBC mode with
SHA-256.

DPD_IPSEC_AES_CBC_DECRYPT_MD5_APAD_

RESTK

0x800C Perform IPSec decryption in AES using CBC mode with MD5
auto padding and restacking.

DPD_IPSEC_AES_CBC_DECRYPT_SHA_APAD_

RESTK

0x800D Perform IPSec decryption in AES using CBC mode with
SHA-1 auto padding and restacking.

DPD_IPSEC_AES_CBC_DECRYPT_SHA256_

APAD_RESTK

0x800E Perform IPSec decryption in AES using CBC mode with
SHA-256 auto padding and restacking.

DPD_IPSEC_AES_CBC_DECRYPT_MD5_RESTK 0x800F Perform IPSec decryption in AES using CBC mode with MD5
and restacking.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 43

Individual Request Types

5.9.4 IPSEC_AES_ECB_REQ
COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char* hashKeyData;
unsigned long cryptKeyBytes;
unsigned char* cryptKeyData;
unsigned long hashInDataBytes;
unsigned char* hashInData;
unsigned long inDataBytes;
unsigned char* inData;
unsigned char* cryptDataOut;
unsigned long hashDataOutBytes;
unsigned char* hashDataOut;

Dynamic channels are valid for this request. NUM_IPSEC_AES_ECB_DESC defines the number of descriptors
in the DPD_IPSEC_AES_ECB_GROUP that use this request. DPD_IPSEC_AES_ECB_GROUP (0x8100) defines
the group for all descriptors in this request.

DPD_IPSEC_AES_CBC_DECRYPT_SHA_RESTK 0x8010 Perform IPSec decryption in AES using CBC mode with
SHA-1 and restacking.

DPD_IPSEC_AES_CBC_DECRYPT_SHA256_

RESTK

0x8011 Perform IPSec decryption in AES using CBC mode with
SHA-256 and restacking.

Table 45. IPSec_AES_ECB_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_IPSEC_AES_ECB_ENCRYPT_MD5_APAD 0x8100 Perform IPSec encryption in AES using ECB mode
with MD5 auto padding.

DPD_IPSEC_AES_ECB_ENCRYPT_SHA_APAD 0x8101 Perform IPSec encryption in AES using ECB mode
with SHA-1 auto padding.

DPD_IPSEC_AES_ECB_ENCRYPT_SHA256_APAD 0x8102 Perform IPSec encryption in AES using ECB mode
with SHA-256 auto padding.

DPD_IPSEC_AES_ECB_ENCRYPT_MD5 0x8103 Perform IPSec encryption in AES using ECB mode
with MD5

DPD_IPSEC_AES_ECB_ENCRYPT_SHA 0x8104 Perform IPSec encryption in AES using ECB mode
with SHA-1.

DPD_IPSEC_AES_ECB_ENCRYPT_SHA256 0x8105 Perform IPSec encryption in AES using ECB mode
with SHA-256.

DPD_IPSEC_AES_ECB_DECRYPT_MD5_APAD 0x8106 Perform IPSec decryption in AES using ECB mode
with MD5 auto padding.

DPD_IPSEC_AES_ECB_DECRYPT_SHA_APAD 0x8107 Perform IPSec decryption in AES using ECB mode
with SHA-1 auto padding.

DPD_IPSEC_AES_ECB_DECRYPT_SHA256_APAD 0x8108 Perform IPSec decryption in AES using ECB mode
with SHA-256 auto padding.

Table 44. IPSec_AES_CBC_REQ Valid Descriptors (opId) (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

44 Freescale Semiconductor

Individual Request Types

5.10 802.11 Protocol Requests

5.10.1 CCMP_REQ

COMMON_REQ_PREAMBLE

unsigned long keyBytes;

unsigned char *keyData;

unsigned long ctxBytes;

unsigned char *context;

unsigned long FrameDataBytes;

unsigned char *FrameData;

unsigned long cryptDataBytes;

unsigned char *cryptDataOut;

unsigned long MICBytes;

unsigned char *MICData;

NUM_CCMP_DESC defines the number of descriptors within the DPD_CCMP_GROUP that use this request.
DPD_CCMP_GROUP (0x6500) defines the group for all descriptors in this request.

DPD_IPSEC_AES_ECB_DECRYPT_MD5 0x8109 Perform IPSec decryption in AES using ECB mode
with MD5.

DPD_IPSEC_AES_ECB_DECRYPT_SHA 0x810A Perform IPSec decryption in AES using ECB mode
with SHA-1.

DPD_IPSEC_AES_ECB_DECRYPT_SHA256 0x810B Perform IPSec decryption in AES using ECB mode
with SHA-256.

DPD_IPSEC_AES_ECB_DECRYPT_MD5_APAD_RESTK 0x810C Perform IPSec decryption in AES using ECB mode
with MD5 auto padding and restacking.

DPD_IPSEC_AES_ECB_DECRYPT_SHA_APAD_RESTK 0x810D Perform IPSec decryption in AES using ECB mode
with SHA-1 auto padding and restacking.

DPD_IPSEC_AES_ECB_DECRYPT_SHA256_APAD_RESTK 0x810E Perform IPSec decryption in AES using ECB mode
with SHA-256 auto padding and restacking.

DPD_IPSEC_AES_ECB_DECRYPT_MD5_RESTK 0x810F Perform IPSec decryption in AES using ECB mode
with MD5 and restacking.

DPD_IPSEC_AES_ECB_DECRYPT_SHA_RESTK 0x8110 Perform IPSec decryption in AES using ECB mode
with SHA-1 and restacking.

DPD_IPSEC_AES_ECB_DECRYPT_SHA256_RESTK 0x8111 Perform IPSec decryption in AES using ECB mode
with SHA-256 and restacking.

Table 45. IPSec_AES_ECB_REQ Valid Descriptors (opId) (continued)

Descriptors Value Function Description

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 45

Individual Request Types

CCMP_REQ on SEC1 differs slightly from CCMP_REQ for SEC2 in that the latter can support a separate
packet header and thus has an extra member to point to that header. Note this critical difference if you are
porting code between the two platforms.

Table 46. CCMP_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_802_11_CCMP_OUTBOUND 0x6500 Process an outbound CCMP packet

DPD_802_11_CCMP_INBOUND 0x8101 Process an inbound CCMP packet

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

46 Freescale Semiconductor

Sample Code

6 Sample Code
The following sections provide sample codes for DES and IPSec.

6.1 DES Sample

/* define the User Structure */
DES_LOADCTX_CRYPT_REQ desencReq;
.
.
.
/* fill the User Request structure with appropriate pointers */
desencReq.opId = DPD_TDES_CBC_ENCRYPT_SA_LDCTX_CRYPT ;
desencReq.channel = 0; /* dynamic channel */
desencReq.notify = (void*) notifyDes; /* callback function */
desencReq.notify_on_error = (void*) notifyDes; /* callback in case of
 errors only */
desencReq.status = 0;
desencReq.ivBytes = 8; /* input iv length */
desencReq.ivData = iv_in; /* pointer to input iv */
desencReq.keyBytes = 24; /* key length */
desencReq.keyData = DesKey; /* pointer to key */
desencReq.inBytes = packet_length; /* data length */
desencReq.inData = DesData; /* pointer to data */
desencReq.outData = desEncResult; /* pointer to results */
desencReq.nextReq = 0; /* no descriptor chained */

/* call the driver */
status = Ioctl(device, IOCTL_PROC_REQ, &desencReq);

/* First Level Error Checking */
if (status != 0) {

.

.
 }
.
.
.

void notifyDes (void)
{
/* Second Level Error Checking */
if (desencReq.status != 0) {

.

.
 }
.
.
)

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 47

Sample Code

6.2 IPSec Sample

/* define User Requests structures */
IPSEC_CBC_REQ ipsecReq;
.
.
.
.

/* Ipsec dynamic descriptor triple DES with SHA-1 authentication */
ipsecReq.opId = DPD_IPSEC_CBC_TDES_ENCRYPT_SHA_PAD;
ipsecReq.channel = 0;
ipsecReq.notify = (void *) notifyFunc;
ipsecReq.notify_on_error = (void *) notifyFunc;
ipsecReq.status = 0;
ipsecReq.hashKeyBytes = 16; /* key length for HMAC SHA-1 */
ipsecReq.hashKeyData = authKey; /* pointer to HMAC Key */
ipsecReq.cryptCtxInBytes = 8; /* length of input iv */
ipsecReq.cryptCtxInData = in_iv; /* pointer to input iv */
ipsecReq.cryptKeyBytes = 24; /* DES key length */
ipsecReq.cryptKeyData = EncKey; /* pointer to DES key */
ipsecReq.hashInDataBytes = 8; /* length of data to be hashed only */
ipsecReq.hashInData = PlainText; /* pointer to data to be

 hashed only */
ipsecReq.inDataBytes = packet_length-8; /* length of data to be

 hashed and encrypted */
ipsecReq.inData = &PlainText[8]; /* pointer to data to be

hashed and encrypted */
ipsecReq.cryptDataOut = Result; /* pointer to encrypted results */
ipsecReq.hashDataOutBytes = 20; /* length of output digest */
ipsecReq.hashDataOut = digest; /* pointer to output digest */
ipsecReq.nextReq = 0; /* no chained requests */

/* call the driver */
status = Ioctl(device, IOCTL_PROC_REQ, &ipsecReq);

/* First Level Error Checking */
if (status != 0) {

.

.

.
 }
.
.
.

void notifyFunc (void)
{
/* Second Level Error Checking */
if (ipsecReq.status != 0) {

.

.

.
 }
.
.
)

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

48 Freescale Semiconductor

Linux Environment

7 Linux Environment
This section describes the driver adaptation to and interaction with the Linux operating system as applied
to PowerPC processors.

7.1 Installation
The SEC1 driver installs into Linux as a loadable module. To build the driver as a module, it must be
installed into the kernel source tree for inclusion in the kernel build process. The makefile with the
distribution assumes this inclusion. As delivered, this directory is defined as
[kernelroot]/drivers/sec1

After the driver source is installed and the kernel source (and modules) are built, module dependency lists
updated, and the built objects are installed in the target file system, the driver, (named sec1drv.o) is ready
for loading. Kernel processes can directly call the driver functionality. In contrast, user processes must use
the kernel I/O interface to issue driver requests. User processes open the device as a file with the open()
system call to get a file descriptor, and then they make requests through ioctl(). Thus, the system needs
a device file created to assign a name to the device.

The driver functions as a char device in the target system. As shipped, the driver assumes that the device
major number is assigned dynamically and that the minor number is always zero because only one instance
of the driver is supported. The device naming inode can be created manually in a development setting, or
it can be driven by a script that runs after the driver module loads and before a user attempts to open a path
to the driver. If the module is loaded with a dynamically assigned major number of 254 (look for sec1 in
/proc/devices), the shell command to accomplish this normally appears as follows:

$ mknod c 254 0 /dev/sec1

With this task accomplished, user tasks can make requests to the driver under the device name /dev/sec1.

8 Driver Operation in Kernel Mode
Operation of the SEC1 device in kernel mode is relatively straightforward. After the driver module is
loaded, which initializes the device, direct calls to the ioctl() entry (named SEC1_ioctl in the driver)
can be made. The first two arguments can effectively be ignored. In kernel mode, request completion can
be handled through the standard use of notification callbacks in the request. The example suite available
with the driver shows how this is accomplished with a mutex that the callback releases to allow the request
to complete. However, the caller can use any other type of event mechanism as preferred. Logical to
physical memory space translation is handled internally to the driver.

9 Driver Operation in User Mode
Operation of the SEC1 device in user mode is slightly more complex than in kernel mode. The transition
from user to kernel memory space creates two complications for user mode operation:

1. User memory buffers cannot be passed directly to the driver; instead, the user must allocate and
place data into a kernel memory buffer through SEC1_MALLOC, SEC1_FREE, SEC1_COPYFROM, and
SEC1_COPYTO requests (see Section 4.1, “I/O Control Codes).

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 49

VxWorks Environment

Use extreme caution in transferring memory this way; the caller can easily corrupt kernel memory
space, causing instability in the target system.

2. Standard notification callbacks cannot work because the routines to perform the callback are in
user memory space and cannot safely execute from kernel mode. In their place, standard POSIX
signals can be used to indicate I/O completion by placing the process ID of the user task in the
notification members of the request and flagging NOTIFY_IS_PID in the notifyFlags member.
The driver uses SIGUSR1 to indicate normal request completions and SIGUSR2 to indicate error
completions.

The example suite available with the driver illustrates the contrast between the two different application
environments. Within the testAll.c file is a set of functions that shows the difference between the two
operations. Building the example testing application with __KERNEL__ on (building a kernel mode test)
shows the installation and usage of standard completion callbacks and a mutex for interlock. Conversely,
building the example testing application with USERMODE turned on shows the installation of signal handlers
and their proper setup. In USERMODE, this example also shows one way to handle the user-to-kernel memory
transition through the use of three functions for transferring user buffers to and from kernel memory.

10 VxWorks Environment
This section describes the installation of the SEC1 security engine software drivers, BSP integration, and
distribution archives.

10.1 Installing the Software Drivers
To install the software drivers, extract the archive containing the driver source files into a suitable
installation directory. If the driver and tests are to be part of a standard VxWorks source tree, place them
was follows:

After the modules are installed, the driver image can be built.

10.2 Building the Interface Modules
In the installation instructions that follow, the variables listed here are used:

Driver: $(WIND_BASE)/target/src/drv/crypto

Tests: $(WIND_BASE)/target/src/drv/crypto/test

VxWorks Interface Module Variables

Variable Definition

CpuFamily Specifies the target CPU family, such as PPC603

ToolChain Specifies the tools, such as gnu

SecurityProcessor Specifies the target security engine, which should be SEC1 for this driver

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

50 Freescale Semiconductor

Porting the Driver

If you are building code for the MPC855 processor, the name DUET must be defined and passed to the
compiler with a –D option. The following steps are used to build drivers and/or the driver test and exercise
code:

1. Go to the command prompt or shell.

2. Execute torVars to set up the Tornado command line build environment, as follows:
Run make in the driver or test installation directory by use of the following command:
make CPU=cpuFamily TOOL=toolChain SP=securityProcessor
(example: make CPU=PPC603 TOOL=gnu SP=SEC1)

10.3 Integrating the BSP
After the modules are built, they should be linked directly with the user board support package (BSP), to
become integral part of the board image. In VxWorks, the sysLib.c file contains the initialization
functions, the memory/address space functions, and the bus interrupt functions. Call the function
SEC1DriverInit directly from sysLib.c. The security processor is then initialized at board startup with
all the other devices present on the board.

11 Porting the Driver
This section describes how to port the driver to other operating systems or environments. This driver has
been ported to both VxWorks and the Linux operating systems. Most internal functionality is independent
of the constructs of a specific operating system, but there are interface boundaries that must be addressed.
Only the following files in the driver source distribution contain dependencies on operating system
components:

• Sec1Driver.h

• sec1_init.c

• sec1_io.c

11.1 Header Files

The Sec1Driver.h header file is meant to be local (private) to the driver itself, and it includes all needed
operating system header files and casts a series of macros for specific system calls. Of particular interest,
this header casts local equivalent macros for:

malloc Allocate a block of system memory with the operating system’s heap allocation mechanism.

free Return a block of memory to the system heap

semGive Release a mutex semaphore

semTake Capture and hold a mutex semaphore

__vpa Translate a logical address to a physical address for hardware DMA (if both are equivalent,
does nothing).

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 51

Porting the Driver

11.2 C Source Files
• sec1_init.c. Performs the basic initialization of the device and the driver, finds the base address

of the hardware, and saves it in IOBaseAddress for later reference.

For Linux, this file also contains references to register/unregister the driver as a kernel module and
to manage its usage/link count.

• sec1_io.c. Contains functions to establish:

— Channel interlock semaphores (IOInitSemaphores)

— ISR message queue (IOInitQs)

— Driver service function registration with the operating system (IORegisterDriver)

— ISR connection/disconnection (IOConnectInterrupt)

11.3 Interrupt Service Routine (ISR)
The ISR queues processing completion result messages onto the IsrMsgQId queue.
ProcessingComplete() pends on this message queue. When a message is received, the completion task
executes the appropriate callback routine based on the result of the processing. When the end-user
application prepares the request for execution, callback functions can be defined for nominal processing
as well as error case processing. If the callback function is set to NULL when the request is prepared, no
callback function executes. These routines execute as part of the device driver, so any constraints on the
device driver are also placed on the callback routines.

11.4 Conditional Compilation
See the makefile for specifics on the default build of the driver.

11.5 Debug Messaging
The driver includes a DBG define that allows for debug message output to the developer console. If defined
in the driver build, debug messages are sent from various components in the driver to the console.
Messages come from various sections of the driver, and a bitmask is kept in a driver global variable so that
the developer can turn message sources on or off as required. This variable is named SEC1DebugLevel,
and it contains an ORed combination of any of the following bits:

DBGTXT_SETRQ Messages from request setup operations (new requests inbound from
the application).

DBGTXT_SVCRQ Messages from servicing device responses (ISR/deferred service
routine handlers) outbound to the application.

DBGTXT_INITDEV Messages from the device/driver initialization process.

DBGTXT_DPDSHOW Shows the content of a constructed DPD before it is handed to the
security core.

DBGTXT_INFO Shows a short banner at device initialization describing the driver and
hardware version.

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

52 Freescale Semiconductor

Porting the Driver

In normal driver operation (not in a development setting), the DBG definition should be left undefined for
best performance.

11.6 Distribution Archive
For this release, the distribution archive consists of the source files listed in Table 47. You may wish to
reorganize header file locations to make them consistent with the file location conventions appropriate for
their system configuration.

Table 47. Distribution Archive Source Files

Header Description

Sec1.h Primary public header file for all users of the driver

Sec1Driver.h Driver/Hardware interfaces, private to the driver itself

Sec1_Descriptors.h DPD type definitions

Sec1Notify.h Structures for ISR/main thread communication

sec1_dpd_Table.h DPD construction constants

sec1_cha.c CHA mapping and management

sec1_dpd.c DPD construction functionality

sec1_init.c Device/driver initialization code

sec1_io.c Basic register I/O primitives

sec1_ioctl.c Operating system interfaces

sec1_request.c Request/response management

sec1isr.c Interrupt service routine

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 53

Porting the Driver

THIS PAGE INTENTIONALLY LEFT BLANK

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

54 Freescale Semiconductor

Porting the Driver

THIS PAGE INTENTIONALLY LEFT BLANK

Security Engine 1.0 Reference Device Driver Version 1.2, Rev. 0

Freescale Semiconductor 55

Porting the Driver

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: SEC1SWUG
Rev. 0
5/2006

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
The described product contains a PowerPC processor core. The PowerPC name is a
trademark of IBM Corp. and used under license. All other product or service names are
the property of their respective owners.

© Freescale Semiconductor, Inc., 2006.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	1 SEC1 Basics
	2 Device Driver Components
	2.1 Driver Initialization Routine
	2.2 Request Dispatch Routine
	2.3 Process Request Routine
	2.4 Interrupt Service Routine
	2.5 Deferred Service Routine

	3 User Interface
	3.1 Static Versus Dynamic Channels
	3.2 Error Handling

	4 Global Definitions
	4.1 I/O Control Codes
	4.2 Channel Definitions
	4.3 Request Operation ID (opId) Masks
	4.4 Return Codes
	4.5 Miscellaneous Request Structures
	4.5.1 STATUS_REQ Structure
	4.5.2 SEC1_NOTIFY_ON_ERROR_CTX Structure

	4.6 Process Request Structures

	5 Individual Request Types
	5.1 Random Number Requests
	5.1.1 RNG_REQ

	5.2 DES Process Request Structures
	5.2.1 DES_LOADCTX_STATIC_REQ
	5.2.2 DES_LOADCTX_CRYPT_STATIC_REQ
	5.2.3 DES_CRYPT_STATIC_REQ
	5.2.4 DES_CRYPT_GETCTX_STATIC_REQ
	5.2.5 DES_GETCTX_STATIC_REQ
	5.2.6 DES_LOADCTX_CRYPT_REQ
	5.2.7 DES_CRYPT_REQ

	5.3 ARC4 Process Request Structures
	5.3.1 ARC4_NEWCTX_STATIC_REQ
	5.3.2 ARC4_LOADCTX_STATIC_REQ
	5.3.3 ARC4_CRYPT_STATIC_REQ
	5.3.4 ARC4_CRYPT_GETCTX_STATIC_REQ
	5.3.5 ARC4_LOADCTX_CRYPT_REQ
	5.3.6 ARC4_LOADKEY_CRYPT_UNLOADCTX_REQ

	5.4 Hash Request Structures
	5.4.1 HASH_LOADCTX_STATIC_REQ
	5.4.2 HASH_STATIC_REQ
	5.4.3 HASH_GETCTX_STATIC_REQ
	5.4.4 HASH_REQ

	5.5 HMAC Request Structures
	5.5.1 HMAC_PAD_STATIC_REQ
	5.5.2 HMAC_PAD_HASH_STATIC_REQ
	5.5.3 HMAC_PAD_REQ

	5.6 AES Request Structures
	5.6.1 AESA_CRYPT_REQ

	5.7 Integer Public Key Request Structures
	5.7.1 MOD_EXP_STATIC_REQ
	5.7.2 MOD_EXP_REQ
	5.7.3 MOD_R2MODN_REQ
	5.7.4 MOD_RRMODP_REQ
	5.7.5 MOD_2OP_REQ
	5.7.6 MOD_CLR_STATIC_REQ

	5.8 ECC Public Key Request Structures
	5.8.1 ECC_LOADPOINTK_STATIC_REQ
	5.8.2 ECC_LOADPARAM_PMULT_STATIC_REQ
	5.8.3 ECC_GETRESULT_STATIC_REQ
	5.8.4 ECC_POINT_REQ
	5.8.5 ECC_2OP_REQ

	5.9 IPSec Request Structures
	5.9.1 IPSEC_CBC_REQ
	5.9.2 IPSEC_ECB_REQ
	5.9.3 IPSEC_AES_CBC_REQ
	5.9.4 IPSEC_AES_ECB_REQ

	5.10 802.11 Protocol Requests
	5.10.1 CCMP_REQ

	6 Sample Code
	6.1 DES Sample
	6.2 IPSec Sample

	7 Linux Environment
	7.1 Installation

	8 Driver Operation in Kernel Mode
	9 Driver Operation in User Mode
	10 VxWorks Environment
	10.1 Installing the Software Drivers
	10.2 Building the Interface Modules
	10.3 Integrating the BSP

	11 Porting the Driver
	11.1 Header Files
	11.2 C Source Files
	11.3 Interrupt Service Routine (ISR)
	11.4 Conditional Compilation
	11.5 Debug Messaging
	11.6 Distribution Archive

