
PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase
PMSM and BLDC motors
Rev. 1 — 12 January 2023 User guide

1 Introduction

This user's guide describes the implementation of the sensorless motor-control software
for a 3-phase Permanent Magnet Synchronous Motor (PMSM). The software is intended
for PMSM with sinusoidal Back Electromotive Force (back-EMF) but is also very well
usable for brushless motors (BLDC) with trapezoidal back-EMF.

The software also includes the motor parameters identification algorithm, on NXP 32-
bit Kinetis V and Kinetis E series MCUs. The sensorless control software itself and the
PMSM control theory, in general, are described in DRM148: Sensorless PMSM Field-
Oriented Control.

The Freedom (FRDM-MC-LVPMSM) and High Voltage (HVP-MC3PH) power stages are
used as hardware platforms for the PMSM control reference solution.

The hardware-dependent part of the sensorless control software, including a detailed
peripheral setup and the Motor Control (MC) peripheral drivers, is described as well.

Available motor control examples, supported motors and possible control methods are
listed in Table 1.

The motor parameters identification theory and algorithms are described in this
document.

The last part of the document introduces and explains the user interface represented by
the Motor Control Application Tuning (MCAT) page based on the FreeMASTER run-time
debugging tool. These tools present a simple and user-friendly way for motor parameter
identification, algorithm tuning, software control, debugging, and diagnostics.

Possible control methods in SDK example

Example Supported motor Scalar &
Voltage

Current FOC
(Torque)

Sensorless
Speed FOC

Sensored
Speed FOC

Sensored
Position FOC

pmsm_snsless Linix 45ZWN24-40
(default motor) ✓ ✓ ✓ N/A N/A

pmsm_snsless_
reg_init

Linix 45ZWN24-40
- motor M2 ✓ ✓ ✓ N/A N/A

Table 1. Available examples and control methods

Note: The latest documentation for the motor control SDK is available on http://
www.nxp.com/motorcontrol_pmsm.

https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/DRM148
http://www.nxp.com/motorcontrol_pmsm
http://www.nxp.com/motorcontrol_pmsm

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

2 Hardware setup

The PMSM sensorless application runs on Tower, Freedom, or EVK development
platforms with the 24-V Linix Motor in the default configuration. The HVP platform runs
with the default configuration for the MIGE 60CST-MO1330 motor.

2.1 Linix 45ZWN24-40 motor
The Linix 45ZWN24-40 motor is a low-voltage 3-phase permanent-magnet motor with
hall sensor used in PMSM applications. The motor parameters are listed in Table 2.

Characteristic Symbol Value Units

Rated voltage Vt 24 V

Rated speed - 4000 RPM

Rated torque T 0.0924 Nm

Rated power P 40 W

Continuous current Ics 2.34 A

Number of pole-pairs pp 2 -

Table 2. Linix 45ZWN24-40 motor parameters

Figure 1. Linix 45ZWN24-40 permanent magnet synchronous motor

The motor has two types of connectors (cables). The first cable has three wires and is
designated to power the motor. The second cable has five wires and is designated for the
hall sensors’ signal sensing. For the PMSM sensorless application, only the power input
wires are needed.

2.2 Running PMSM application on Freedom development platform
To run the PMSM application using the NXP Freedom development platform, you need
these Freedom boards:

• Freedom board with a Kinetis V series MCU (FRDM-KV11Z or FRDM-KV31F).

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
2 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• 3-phase low-voltage power Freedom shield (FRDM-MC-LVPMSM) with included Linix
motor.

You can order all Freedom modules from www.nxp.com or from distributors to easily build
the hardware platform for the target application.

2.2.1 FRDM-MC-LVPMSM

This evaluation board, in a shield form factor, effectively turns an NXP Freedom
development board or an evaluation board into a complete motor-control reference
design, compatible with existing NXP Freedom development boards and evaluation
boards. The Freedom motor-control headers are compatible with the Arduino™ R3 pin
layout.

The FRDM-MC-LVPMSM low-voltage, 3-phase Permanent Magnet Synchronous Motor
(PMSM) Freedom development platform board has the power supply input voltage of
24-48 VDC with a reverse polarity protection circuitry. The auxiliary power supply of 5.5
VDC is created to supply the FRDM MCU boards. The output current is up to 5 A RMS.
The inverter itself is realized by a 3-phase bridge inverter (six MOSFETs) and a 3-phase
MOSFET gate driver. The analog quantities (such as the 3-phase motor currents, DC-
bus voltage, and DC-bus current) are sensed on this board. There is also an interface
for speed and position sensors (encoder, hall). The block diagram of this complete NXP
motor-control development kit is shown in Figure 2.

Figure 2. Motor-control development platform block diagram

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
3 / 47

https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
http://www.nxp.com

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 3. FRDM-MC-LVPMSM

The FRDM-MC-LVPMSM board does not require a complicated setup. For more
information about the Freedom development platform, see www.nxp.com.

2.2.2 FRDM-KV11Z board

The FRDM-KV11Z board is a low-cost development tool for the Kinetis V series KV1x
MCU family built upon the Arm Cortex-M0+ processor. The FRDM-KV11Z board
hardware is form-factor compatible with the Arduino R3 pin layout, providing a broad
range of expansion board options. The FRDM-KV11Z platform features OpenSDA, the
open-source hardware embedded serial and debug adapter running an open-source
bootloader.

To begin, configure the jumpers on the FRDM-KV11Z Freedom System module properly.
Table 3 lists the specific jumpers and their settings for the FRDM-KV11Z Freedom
System module.

Jumper Setting

J10 1-2

Table 3. FRDM-K11Z jumper settings

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
4 / 47

http://www.freescale.com

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 4. FRDM-KV11Z Freedom development board

2.2.3 Freedom system assembling

1. Connect the FRDM-MC-LVPMSM shield on top of the FRDM-Kxxxx board (there is
only one possible option).

2. Connect the Linix motor 3-phase wires to the screw terminals on the board.
3. Plug the USB cable from the USB host to the OpenSDA micro USB connector.
4. Plug the 24-V DC power supply to the DC power connector.

Figure 5. Assembled Freedom system

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
5 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

3 MCU features and peripheral settings

The peripherals used for motor control differ among different Kinetis MCUs. The
peripheral settings and application timings for each MCU are described in the following
sections.

3.1 KV1x family
The KV10Z and KV11Z MCU families are highly scalable members of the Kinetis V
series and provide a cost-competitive motor-control solution. Built on the Arm Cortex-M0
core running at 75 MHz with up to 128 KB of flash and up to 16 KB of RAM, it delivers
a platform enabling customers to build a scalable solution portfolio. Additional features
include dual 16-bit ADCs sampling at up to 1.2 MS/s in a 12-bit mode and 20 channels
of flexible motor-control timers (PWMs) across six independent time bases. For more
information, see KV11F Sub-Family Reference Manual (document KV11P64M75RM).

3.1.1 Hardware timing and synchronization

Correct and precise timing is crucial for motor-control applications. Therefore, the motor-
control-dedicated peripherals take care about the timing and synchronization on the
hardware layer. It is also possible to set the PWM frequency as a multiple of the ADC
interrupt (FOC calculation) frequency, in this case FOCfreq = PWMfreq/2. The timing
diagram is in Figure 6.

Figure 6. Hardware timing and synchronization on KV11Z

• The top signal (PWM counter) shows the FTM counter reloads. At the PWM top and
PWM bottom signals, the dead time is emphasized. The FTM_TRIG is generated on
the PWM reload, which triggers the PDB (resets the PDB counter).

• The PDB generates the first pre-trigger for the first ADC (phase current) sample with
approximately Tdeatime/2 delay. This delay ensures correct current sampling at duty
cycles close to 100 %.

• When the conversion of the first ADC sample (phase current) is completed, the ADC
ISR is entered. Firstly, the next FTM_TRIG is disabled (TRIG off). This ensures that the
PDB counter does not reset at the next PWM reload. Then the FOC is calculated.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
6 / 47

https://www.nxp.com/doc/KV11P64M75RM

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• In the middle of the next PWM period (PDB delay), the PDB ISR is called. This
interrupt only enables the FTM_TRIG (TRIG on) in the next PWM reload. The PDB
ISR has lower priority than the ADC ISR. The PDB delay length determines the ratio
between the PWM and FOC frequencies.

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for the
DC-bus voltage measurement) immediately after the first conversion is completed.

3.1.2 Peripheral settings

This chapter describes only the peripherals used for motor control. On KV11Z, a 6-
channel FlexTimer (FTM) is used for 6-channel PWM generation and two 16-bit SAR
ADCs are used for the phase currents and DC-bus voltage measurement. The FTM
and ADC are synchronized via the Programmable Delay Block (PDB). There is also one
channel from another independent FTM used for the slow loop interrupt generation.

3.1.3 PWM generation - FTM0

• The FTM is clocked from the 75-MHz System clock.
• Only six channels are used, the other two are masked in the OUTMASK register.
• Channels 0+1, 2+3, and 4+5 are combined in pairs running in a complementary mode

(each).
• The fault mode is enabled at each combined pair with automatic fault clearing (PWM

outputs are re-enabled the first PWM reload after the fault input returns to zero).
• The PWM period (frequency) is determined as how long it takes the FTM to count from

CNTIN to MOD. By default CNTIN = -MODULO/2 = -3750 and MOD = MODULO/2 -1
= 3749. The FTM is clocked from the System clock (75 MHz) so it takes 0.0001 s (10
KHz).

• Dead-time insertion is enabled at each combined pair. The dead-time length is
calculated as System clock 75 MHz * Tdeadtime. The dead-time varies among
platforms.

• The FTM generates a trigger to the PDB on counter initialization.
• The FTM fault input is enabled but its polarity and source varies among platforms.

3.1.4 Analog sensing – ADC0, ADC1

• The ADCs operate as 12-bit, single-ended converters.
• The clock source for both ADCs is the 25-MHz Bus clock divided by 2 = 12.5 MHz.
• For ADC calibration purposes, the ADC clock is 3.125 MHz and continues the

conversion and averaging with 32 samples enabled in the SC3 register. After the
calibration is done, the SC register is filled with its default values and the clock is set
back to 12.5 MHz.

• Both ADCs are triggered from the PDB pre-triggers.
• There is an interrupt that serves the FOC fast-loop algorithm generated after the first

conversion is completed.

3.1.5 PWM and ADC synchronization – PDB0

• Unlike the FTM, the PDB is clocked from the Bus clock which is three times slower than
the System clock (used for FTM). Therefore, the modulo value at PDB is divided by
three.

• The PDB is triggered from the FTM0_TRIG.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
7 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• The pre-trigger 0 at each channel is generated 0.5 * Tdeadtime after the FTM0_TRIG.
• The pre-trigger 1 at each channel is generated immediately after the first conversion is

completed using the back-to-back mode.
• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain

result register is not read and the same pre-trigger occurs at this ADC.
• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is

reached. This interrupt enables the FTM_TRIG.
• The PDB Sequence Error and PDB Delay interrupts have a common interrupt vector.

Which event generated the interrupt is determined at the beginning of the interrupt
according to the ERR flag.

3.1.6 Over-current detection at FRDM platform – CMP1

• The plus input to the CMP is taken from the analog pin.
• The minus input to the CMP is taken from the 6-bit DAC0 reference. The DAC

reference is set to 3.197 V (62/64*VDD) which corresponds to 7.73 A (for the 8.25 A
scale).

• The CMP filter is enabled and four consecutive samples must agree.

3.1.7 Slow loop interrupt generation – FTM2

• The FTM2 is clocked from the System clock / 16, because the slow loop is usually ten
times slower than the fast loop, so its modulo value can be kept reasonably low.

• The FTM counts from CNTIN = 0 to MOD = MODULO/16 * 10.
• An interrupt is enabled and generated at the counter reload and it serves the slow loop.

3.1.8 Communication with MC33937 MOSFET driver – SPI

• The SPI runs in the master mode.
• The SPI chip select 1 signal is active in logic high.
• The baud rate is 3.12 MHz.

3.1.9 Peripheral settings differences among platforms

There are some differences in peripheral settings among different platforms. Table 4
summarizes these differences.

PlatformPeripheral Feature

FRDM Tower HVP

PWM polarity high sides active high
low sides active high

high sides active low
low sides active high

high sides active high
low sides active high

Fault source FLT0, CMP1 out FLT1, input pin FLT0, input pin

Fault polarity Active high Active high Active low

FTM0

Dead-time 0.5 us 0.5 us 1.5 us

SPI Driver on SPI No Yes No

PDB Pre-trigger 0 delay 0.25 us 0.25 us 0.75 us

Table 4. KV11 platform differences

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
8 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

3.1.10 CPU load and memory usage

The following information apply to the demo application built with IAR IDE. Table 5 shows
the memory usage and the CPU load. The memory usage is calculated from the .map
linker file, including the 2-KB FreeMASTER recorder buffer (allocated in RAM). The CPU
load is measured using the SysTick timer. The CPU load is dependent on the fast-loop
(FOC calculation) and slow-loop (speed loop) frequencies. In this case, it applies for
the fast loop of 10 KHz and the slow loop of 1 KHz. The total CPU load is calculated
according to the following equations.

Where:

CPUfast - the CPU load taken by the fast loop.

cyclesfast - the number of cycles consumed by the fast loop.

ffast - the frequency of the fast-loop calculation (10 KHz).

fCPU - the CPU frequency.

CPUslow - the CPU load taken by the slow loop.

cyclesslow - the number of cycles consumed by the slow loop.

fslow - the frequency of the slow-loop calculation (1 KHz).

CPUtotal - the total CPU load consumed by the motor control.

MKV11Z

CPU load [%] 59.3

Flash usage [B] 73 660

RAM usage [B] 9 504

Table 5. KV11 CPU load and memory usage (pmsm_snsless example debug configuration)

MKV11Z

CPU load [%] 59.3

Flash usage [B] 44 692

RAM usage [B] 9 484

Table 6. KV11 CPU load and memory usage (pmsm_snsless_reg_init example debug configuration)

Note: Memory usage and maximum CPU load can differ depending on the used IDEs
and settings.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
9 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

4 Project file and IDE workspace structure

All the necessary files are included in one package, which simplifies the distribution
and decreases the size of the final package. The directory structure of this package is
simple, easy to use, and organized in a logical manner. The folder structure used in
the IDE is different from the structure of the PMSM package installation, but it uses the
same files. The different organization is chosen due to a better manipulation with folders
and files in workplaces and due to the possibility to add or remove files and directories.
The “pack_motor_board“ project includes all the available functions and routines, MID
functions, scalar and vector control of the motor, FOC control, and FreeMASTER MCAT
project. This project serves for development and testing purposes.

4.1 PMSM project structure
The directory tree of the PMSM project is shown in Figure 7.

Figure 7. Directory tree

In the motor control project are located two examples. The main project folder in the first
example is located in pack_motor_xkxxx\boards\xkxxx\demo_apps\mc_pmsm\pmsm_
snsless\. The example has motor control peripherals set using MC_PMSM middleware

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
10 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

component in MCUXpresso Config Tool. The main project folder in the second example
is located in pack_motor_xkxxx\boards\xkxxx\demo_apps\mc_pmsm\pmsm_snsless_
reg_init\. The example has motor control peripherals set using Register Initialization
component in MCUXpresso Config Tool. In both examples the main project folder
contains these folders and files:

• iar—for the IAR Embedded Workbench IDE.
• armgcc—for the GNU Arm IDE.
• mdk—for the uVision Keil IDE.
• m1_pmsm_appconfig.h—contains the definitions of constants for the application control

processes, parameters of the motor and regulators, and the constants for other vector-
control-related algorithms. When you tailor the application for a different motor using
the Motor Control Application Tuning (MCAT) tool, the tool generates this file at the end
of the tuning process.

• main.c—contains the basic application initialization (enabling interrupts), subroutines
for accessing the MCU peripherals, and interrupt service routines. The FreeMASTER
communication is performed in the background infinite loop.

• board.c—contains the functions for the UART, GPIO, and SysTick initialization.
• board.h—contains the definitions of the board LEDs, buttons, UART instance used for

FreeMASTER, and so on.
• clock_config.c and .h—contains the CPU clock setup functions. These files are going to

be generated by the clock tool in the future.
• mc_periph_init.c—contains the motor-control driver peripherals initialization functions

that are specific for the board and MCU used.
• mc_periph_init.h—header file for mc_periph_init.c. This file contains the macros for

changing the PWM period and the ADC channels assigned to the phase currents and
board voltage.

• freemaster_cfg.h—the FreeMASTER configuration file containing the FreeMASTER
communication and features setup.

• pin_mux.c and .h—port configuration files. It is recommended to generate these files in
the pin tool.

• peripherals.c and .h—MCUXpresso Config Tool configuration files.

The main motor-control folder pack_motor_xkxxx\middleware\motor_control\ contains
these subfolders:

• pmsm—contains main pmsm motor-control functions.
• freemaster—contains the FreeMASTER project file pmsm_float.pmp (pmsm_frac.pmp

for the fraction version of the MCU). Open this file in the FreeMASTER tool and use it
to control the application. The folder also contains the auxiliary files for the MCAT tool.

The pack_motor_xkxxx\middleware\motor_control\pmsm\pmsm_float folder contains
these subfolders common to the other motor-control projects:

(pack_motor_xkxxx\middleware\motor_control\pmsm\pmsm_frac for the fraction version
of the MCU)

• mc_algorithms—contains the main control algorithms used to control the FOC and
speed control loop.

• mc_cfg_template—contains templates for MCUXpresso Config Tool components.
• mc_drivers—contains the source and header files used to initialize and run motor-

control applications.
• mc_identification—contains the source code for the automated parameter-identification

routines of the motor.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
11 / 47

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• mc_state_machine—contains the software routines that are executed when the
application is in a particular state or state transition.

• state_machine—contains the state machine functions for the FAULT, INITIALIZATION,
STOP, and RUN states.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
12 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

5 Tools

Install the FreeMASTER Run-Time Debugging Tool 3.1.4 and one of the following IDEs
on your PC to run and control the PMSM application properly:

• IAR Embedded Workbench IDE v9.32.1 or higher
• MCUXpresso v11.7.0
• ARM-MDK - Keil μVision version 5.37

For pin_mux.c, clock_config.c or peripherals.c modifications is recommended use
MCUXpresso Configuration Tool v13 or higher.

Note: For information on how to build and run the application in your IDE, see the
Getting Started with MCUXpresso SDK document located in the pack_motor_<booard>/
docs folder or find the related documentation at MCUXpresso SDK builder.

5.1 Compiler warnings
Warnings are diagnostic messages that report constructions that are not inherently
erroneous and warn about potential runtime, logic, and performance errors. In some
cases, warnings can be suspended and these warnings do not show during the compiling
process. One of such special cases is the “unused function” warning, where the function
is implemented in the source code with its body, but this function is not used. This case
occurs when you implement the function as a supporting function for better usability, but
you do not use the function for any special purposes for a while.

The IAR Embedded Workbench IDE suppresses these warnings:

• Pa082 - undefined behavior; the order of volatile accesses is not defined in this
statement.

• Pa050 - non-native end of line sequence detected.

The Arm-MDK Keil μVision IDE suppresses these warnings:

• 6314 - No section matches pattern xxx.o (yy).

By default, there are no other warnings shown during the compiling process.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
13 / 47

https://www.nxp.com/freemaster
https://www.iar.com/iar-embedded-workbench/
https://www.nxp.com/mcuxpresso
http://www2.keil.com/mdk5/
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

6 Motor-control peripheral initialization

The motor-control peripherals are initialized by calling the MCDRV_Init_M1() function
during MCU startup and before the peripherals are used. All initialization functions are
in the mc_periph_init.c source file and the mc_periph_init.h header file. The definitions
specified by the user are also in these files. The features provided by the functions are
the 3-phase PWM generation and 3-phase current measurement, as well as the DC-
bus voltage and auxiliary quantity measurement. The principles of both the 3-phase
current measurement and the PWM generation using the Space Vector Modulation
(SVM) technique are described in Sensorless PMSM Field-Oriented Control (document
DRM148).

The motor control project includes two types of examples. The first example mc_pmsm
has motor control peripherals initialized using MC_PMSM middleware component in
MCUXpresso Config Tool. The second example mc_pmsm_reg_init has motor control
peripherals initialized using Register Initialization component in MCUXpresso Config
Tool. Therefore, motor control peripheral initialization files mc_periph_init.c and h differ
for both examples.

6.1 mc_pmsm example:
The mc_periph_init.h header file provides several macros that configure motor control
low-level driver. It is recommended to modify this file using MCUXpresso Config Tools
and MC_PMSM component. Manual modification is possible but some of the driver rules
are checked only when file is generated using MCUXpresso Config Tools.

• M1_PWM_TIMER, M1_PWM_TIMER_FTM0—PWM generation timer instance.
• M1_PWM_FREQ—the value of this definition sets the PWM frequency.
• M1_PWM_MODULO—the value of PWM modulo must correspond with

M1_PWM_FREQ.
• M1_FOC_FREQ_VS_PWM_FREQ—enables you to call the fast loop interrupt at every

first, second, third, or nth PWM reload. This is convenient when the PWM frequency
must be higher than the maximal fast loop interrupt.

• M1_FAST_LOOP_FREQ —the value of this definition sets the speed loop frequency.
• M1_SLOW_LOOP_FREQ —the value of this definition sets the slow loop frequency.
• M1_PWM_MODULO—the value of slow loop modulo must correspond with

M1_SLOW_LOOP_FREQ.
• M1_FAST_LOOP_TS—the value of fast loop period must correspond with

M1_FAST_LOOP_FREQ.
• M1_SLOW_LOOP_TS—the value of slow loop period must correspond with

M1_SLOW_LOOP_FREQ.
• M1_PWM_PAIR_PH[A..C]—these macros enable a simple assignment of the physical

motor phases to the PWM periphery channels (or submodules). Change the order of
the motor phases this way.

• M1_PWM_DEADTIME_ENABLE—enables PWM dead time insertion.
• M1_PWM_DEADTIME_LENGTH_DTPS—PWM dead time length (prescaler part).
• M1_PWM_DEADTIME_LENGTH_DTVAL—PWM dead time length (value part).
• M1_FAULT_ENABLE—enables PWM fault input.
• M1_FAULT_NUM—PWM fault input number.
• M1_FAULT_POL—PWM fault input polarity (0 = active high).
• M1_FAULT_CMP_ENABLE—PWM fault input taken from CMP output.
• M1_FAULT_CMP_INSTANCE—CMP instance used for fault detection.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
14 / 47

https://www.nxp.com/doc/DRM148
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• M1_FAULT_CMP_THRESHOLD—CMP instance used for fault detection.
• M1_BRAKE_SET, M1_BRAKE_CLEAR—macros that control the braking resistor

GPIO.
• M1_PWM_POL_TOP, M1_PWM_POL_BOTTOM—inverter high-side and low-side

polarity.
• M1_SEC[1-6]_PH_[A..C]_[BASE, CHANNEL]—these macros are used to assign the

ADC channels for the phase current measurement. The general rule is that at least
one of the phase currents must be measurable on both ADC converters and the two
remaining phase currents must be measurable on different ADC converters. The
reason for this is that the selection of the phase current pair to measure depends on
the current SVM sector. For more information about the 3-phase current measurement,
see Sensorless PMSM Field-Oriented Control (document DRM148).

• M1_[UDCB, AUX]_[BASE, CHANNEL]—these macros are used to assign the ADC
channels for the DC bus voltage and Auxiliary channel assignment. The general rule is
that each quantity must be measured on different ADC instance.

• ADC0_MUXSEL, ADC1_MUXSEL—switches ADC muxed channels.
• ADC_OFFSET_WINDOW—ADC filter window during phase current offset calibration.
• PDB_PRETRIG_DELAY—PDB pre-trigger delay, should be set to half of the PWM

dead time value.
• M1_INRUSH_ENABLE—enables inrush relay .
• M1_INRUSH_DELAY—inrush relay switch delay.
• M1_INRUSH_SET(),M1_INRUSH_CLEAR()—macros that control the inrush relay

GPIO.

In the mc_pmsm example, these API-serving ADC and PWM peripherals are available:

• The available APIs for the ADC are:
– void M1_MCDRV_CURR_3PH_CHAN_ASSIGN(mcdrv_adc_t*)—this function

assigns ADC instances and channels to the phase-currents and prepares for next
measurement.

– void M1_MCDRV_CURR_3PH_CALIB_INIT(mcdrv_adc_t*)—this function initializes
the phase-current channel-offset measurement.

– void M1_MCDRV_CURR_3PH_CALIB(mcdrv_adc_t*)—this function reads the
current information from the unpowered phases of a stand-still motor and filters them
using moving average filters. The goal is to obtain the value of the measurement
offset. The length of the window for moving the average filters is set to eight samples
by default.

– void M1_MCDRV_CURR_3PH_CALIB_SET(mcdrv_adc_t*)—this function asserts
the phase-current measurement offset values to the internal registers. Call this
function after a sufficient number of M1_MCDRV_CURR_3PH_CALIB() calls.

– void M1_MCDRV_ADC_GET(mcdrv_adc_t*)—this function reads and calculates the
actual values of the 3-phase currents, DC-bus voltage, and auxiliary quantity.

• The available APIs for the PWM are:
– mcdrv_pwma_pwm3ph_t—MCDRV PWM structure data type.
– void M1_MCDRV_PWM3PH_SET(mcdrv_pwma_pwm3ph_t*)—this function updates

the PWM phase duty cycles.
– void M1_MCDRV_PWM3PH_EN(mcdrv_pwma_pwm3ph_t*)—calling this function

enables all PWM channels.
– void M1_MCDRV_PWM3PH_DIS (mcdrv_pwma_pwm3ph_t*)—calling this function

disables all PWM channels.
– void M1_MCDRV_PWM3PH_FLT_GET(mcdrv_pwma_pwm3ph_t*)—this function

returns the state of the over-current fault flags and automatically clears the flags
PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
15 / 47

https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

(if set). This function returns true when an over-current event occurs. Otherwise, it
returns false.

Figure 8. MCUXpresso Config Tool - MC_PMSM middleware component

6.2 mc_pmsm_reg_init example:
The mc_periph_init.h header file provides several macros that must be modified by user
according to actual MC peripheral setting:

• M1_PWM_FREQ—the value of this definition sets the PWM frequency.
• M1_FOC_FREQ_VS_PWM_FREQ—enables you to call the fast loop interrupt at every

first, second, third, or nth PWM reload. This is convenient when the PWM frequency
must be higher than the maximal fast loop interrupt.

• M1_FAST_LOOP_FREQ —the value of this definition sets the speed loop frequency.
• M1_SLOW_LOOP_FREQ —the value of this definition sets the slow loop frequency.
• M1_PWM_PAIR_PH[A..C]—these macros enable a simple assignment of the physical

motor phases to the PWM periphery channels (or submodules). Change the order of
the motor phases this way.

• M1_INRUSH_SET(),M1_INRUSH_CLEAR()—macros that control the inrush relay
GPIO.

• M1_FAULT_NUM—PWM fault input number.
• M1_ADC[1,2]_PH_[A..C]—these macros are used to assign the ADC channels for

the phase current measurement. The general rule is that at least one of the phase
currents must be measurable on both ADC converters and the two remaining phase
currents must be measurable on different ADC converters. The reason for this is that
the selection of the phase current pair to measure depends on the current SVM sector.
If this rule is broken, a preprocessor error is issued. For more information about the 3-
phase current measurement, see Sensorless PMSM Field-Oriented Control (document
DRM148).

• M1_ADC[1,2]_UDCB—this define is used to select the ADC channel for the
measurement of the DC-bus voltage.

• ADC_OFFSET_WINDOW—ADC filter window during phase current offset calibration.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
16 / 47

https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

In the mc_pmsm example, these API-serving ADC and PWM peripherals are available:

• The available APIs for the ADC are:
– mcdrv_adc_t—MCDRV ADC structure data type.
– void M1_MCDRV_ADC_PERIPH_INIT()—this function is by default called during the

ADC peripheral initialization procedure invoked by the MCDRV_Init_M1() function
and should not be called again after the peripheral initialization is done.

– void M1_MCDRV_CURR_3PH_CALIB_INIT(mcdrv_adc_t*)—this function initializes
the phase-current channel-offset measurement. This function always returns true.

– void M1_MCDRV_CURR_3PH_CALIB(mcdrv_adc_t*)—this function reads the
current information from the unpowered phases of a stand-still motor and filters them
using moving average filters. The goal is to obtain the value of the measurement
offset. The length of the window for moving the average filters is set to eight samples
by default. This function always returns true.

– void M1_MCDRV_CURR_3PH_CALIB_SET(mcdrv_adc_t*)—this function asserts
the phase-current measurement offset values to the internal registers. Call this
function after a sufficient number of M1_MCDRV_CURR_3PH_CALIB() calls. This
function always returns true.

– void M1_MCDRV_ADC_GET(mcdrv_adc_t*)—this function reads and calculates the
actual values of the 3-phase currents, DC-bus voltage, and auxiliary quantity. This
function always returns true.

• The available APIs for the PWM are:
– mcdrv_pwma_pwm3ph_t—MCDRV PWM structure data type.
– void M1_MCDRV_PWM3PH_SET(mcdrv_pwma_pwm3ph_t*)—this function updates

the PWM phase duty cycles. This function always returns true.
– void M1_MCDRV_PWM3PH_EN(mcdrv_pwma_pwm3ph_t*)—calling this function

enables all PWM channels. This function always returns true.
– void M1_MCDRV_PWM3PH_DIS (mcdrv_pwma_pwm3ph_t*)—calling this function

disables all PWM channels. This function always returns true.
– void M1_MCDRV_PWM3PH_FLT_GET(mcdrv_pwma_pwm3ph_t*)—this function

returns the state of the over-current fault flags and automatically clears the flags
(if set). This function returns true when an over-current event occurs. Otherwise, it
returns false.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
17 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

7 User interface

The application contains the demo mode to demonstrate motor rotation. You can operate
it either using the user button or using FreeMASTER. The NXP development boards
include a user button associated with a port interrupt (generated whenever one of the
buttons is pressed). At the beginning of the ISR, a simple logic executes and the interrupt
flag clears. When you press the button, the demo mode starts. When you press the same
button again, the application stops and transitions back to the STOP state.

The other way to interact with the demo mode is to use the FreeMASTER tool. The
FreeMASTER application consists of two parts: the PC application used for variable
visualization and the set of software drivers running in the embedded application. Data is
transferred between the PC and the embedded application via the serial interface. This
interface is provided by the OpenSDA debugger included in the boards.

The application can be controlled the using these two interfaces:

• The button on the development board (controlling the demo mode):
– FRDM-KV11Z - SW2

• Remote control using FreeMASTER (chapter Remote control using FreeMASTER):
– Using the Motor Control Application Tuning (MCAT) interface.
– Setting a variable in the FreeMASTER Variable Watch.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
18 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8 Remote control using FreeMASTER

This section provides information about the tools and recommended procedures to
control the sensor/sensorless PMSM Field-Oriented Control (FOC) application using
FreeMASTER. The application contains the embedded-side driver of the FreeMASTER
real-time debug monitor and data visualization tool for communication with the PC.
It supports non-intrusive monitoring, as well as the modification of target variables in
real time, which is very useful for the algorithm tuning. Besides the target-side driver,
the FreeMASTER tool requires the installation of the PC application as well. You can
download FreeMASTER 3.x at www.nxp.com/freemaster. To run the FreeMASTER
application including the MCAT tool, double-click the pmsm_frac.pmpx file located in the
middleware\motor_control\freemaster folder. The FreeMASTER application starts and the
environment is created automatically, as defined in the *.pmpx file.

Note: In MCUXpresso can be FreeMASTER application run directly from IDE in
motor_control/freemaster folder

8.1 Establishing FreeMASTER communication
The remote operation is provided by FreeMASTER via the USB interface. Perform the
following steps to control a PMSM motor using FreeMASTER:

1. Download the project from your chosen IDE to the MCU and run it.
2. Open the FreeMASTER file pmsm_x.pmpx. The PMSM project uses the TSA by

default, so it is not necessary to select a symbol file for FreeMASTER.
3. Click the communication button (the green “GO” button in the top left-hand corner) to

establish the communication.

Figure 9.  Green “GO” button placed in top left-hand corner
4. If the communication is established successfully, the FreeMASTER communication

status in the bottom right-hand corner changes from “Not connected” to “RS232
UART Communication; COMxx; speed=115200”. Otherwise, the FreeMASTER
warning popup window appears.

Figure 10. FreeMASTER—communication is established successfully
5. Press F5 to reload the MCAT HTML page and check the App ID.
6. Control the PMSM motor by writing to a control variables in a variable watch.
7. If you rebuild and download the new code to the target, turn the FreeMASTER

application off and on.

If the communication is not established successfully, perform the following steps:

1. Go to the “Project -> Options -> Comm” tab and make sure that the correct COM port
is selected and the communication speed is set to 115200 bps.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
19 / 47

http://www.nxp.com/freemaster

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 11. FreeMASTER communication setup window
2. Ensure, that your computer is communicating with the plugged board. Unplug and

then plug in the USB cable and reopen the FreeMASTER project.

8.2 TSA replacement with ELF file
The Freemaster project for motor control example uses Target-Side Addressing (TSA)
information about variable objects and types to be retrieved from the target application
by default. With the TSA feature, you can describe the data types and variables directly
in the application source code and make this information available to the FreeMASTER
tool. The tool can then use this information instead of reading symbol data from the
application’s ELF/Dwarf executable file.

FreeMASTER reads the TSA tables and uses the information automatically when an
MCU board is connected. A great benefit of using the TSA are no issues with correct
path to ELF/Dwarf file. The variables described by TSA tables may be read-only, so even
if FreeMASTER attempts to write the variable, the value is actively denied by the target
MCU side. The variables not described by any TSA tables may also become invisible and
protected even for read-only access.

The use of TSA means more memory requirements for the target. If you don't want to use
the TSA feature, you need to modify the example code and Freemaster project. Follow
these steps:

• Open motor control project and rewrite macro FMSTR_USE_TSA from 1 to 0 in
freemaster_cfg.h file.

• Build, download and run motor control project
• Open FreeMASTER project and click to Project → Options (or use shortcut Ctrl+T)
• Click to MAP Files tab and find Default symbol file (ELF/Dwarf executable file) located

in IDE Output folder

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
20 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 12. Default symbol file
• Click to OK and restart FreeMASTER communication.

For more information check FreeMASTER User Guide

8.3 MCAT FreeMASTER interface (Motor Control Application Tuning)
The PMSM sensor/sensorless FOC application can be easily controlled and tuned using
the Motor Control Application Tuning (MCAT) plug-in for PMSM. The MCAT for PMSM is
a user-friendly page, which runs within FreeMASTER. The tool consists of the tab menu,
and workspace shown in Figure 13. Each tab from the tab menu represents one sub-
module which enables tuning or control different aspects of the application. Besides the
MCAT page for PMSM, several scopes, recorders, and variables in the project tree are
predefined in the FreeMASTER project file to further simplify the motor parameter tuning
and debugging.

When the FreeMASTER is not connected to the target, the “Board found” line (2) shows
“Board ID not found”. When the communication with the target MCU is established, the
“Board found” line is read from Board ID variable watch and displayed. If the connection
is established and the board ID is not shown, press F5 to reload the MCAT HTML page.

There are three action buttons in MCAT(3):

• Load data - MCAT input fields (e.g. motor parameters) are loaded from
mX_pmsm_appconfig.h file (JSON formatted comments). Only existing
mX_pmsm_appconfig.h files can be selected for loading. Actually loaded
mX_pmsm_appcofig.h file is displayed in grey field (7).

• Save data - MCAT input fields (JSON formatted comments) and output macros are
saved to mX_pmsm_appconfig.h file. Up to 9 files (m1-9_pmsm_appconfig.h) can be
selected. A pop up window with user motor ID and description appears when a different
mX_pmsm_appcofig.h file is selected. The motor ID and description is also saved in

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
21 / 47

https://www.nxp.com/docs/en/user-guide/FMSTERUG.pdf

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

mX_pmsm_appcofig.h in form of JSON comment. At single motor control application
the embedded code #includes m1_pmsm_appcofig.h only. Therefore, saving to higher
indexed mX_pmsm_appcofig.h files has no effect at compilation stage.

• Update target - writes the MCAT calculated tuning parameters to FreeMASTER
Variables which effectively updates the values on target MCU. These tuning
parameters are updated in MCU's RAM memory. To write these tuning parameters to
MCU's flash memory, m1_pmsm_appcofig.h must be saved, code re-compiled and
downloaded to MCU.

Note: Path to mX_pmsm_appcofig.h file composes also from Board ID value. Therefore,
FreeMASTER must be connected to target and Board ID value read prior using Save/
Load buttons.

Note: Only Update target button updates values on target in real-time. Load/Save
buttons operate with mX_pmsm_appcofig.h file only.

Note: MCAT may require internet connection. If no internet connection is available, CSS
and icons may not be properly loaded.

Figure 13. FreeMASTER + MCAT layout

In the default configuration, the following tabs are available:

• “Application concept”—welcome page with the PMSM sensor/sensorless FOC diagram
and a short description of the application.

• “Parameters”—this page enables you to modify the motor parameters, specification of
hardware and application scales, alignment, and fault limits.

• “Current loop”—current loop PI controller gains and output limits.
• “Speed loop”—this tab contains fields for the specification of the speed controller

proportional and integral gains, as well as the output limits and parameters of the
speed ramp. The position proportional controller constant is also set here.

• “Sensors”—this page contains the encoder parameters and position observer
parameters. Not available for all devices.

• “Sensorless”—this page enables you to tune the parameters of the BEMF observer,
tracking observer, and open-loop startup.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
22 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

• “Output file”—this tab shows all the calculated constants that are required by the
PMSM sensor/sensorless FOC application. It is also possible to generate the
m1_pmsm_appconfig.h file, which is then used to preset all application parameters
permanently at the project rebuild.

• "Online update" — this tab shows actual values of variables on target and new
calculated values, which can be used for update variables on the target.

The following sections provide simple instructions on how to identify the parameters of a
connected PMSM motor and how to appropriately tune the application.

8.4 Motor Control Modes
In the "Project Tree" you can choose between the scalar control and the FOC control
using the appropriate FreeMASTER tabs. The application can be controlled through
the FreeMASTER variables watch which correspond to the control structure selected in
FreeMASTER project tree. This is useful for application tuning and debugging. Required
control structure must be selected in the "M1 MCAT Control" variable. Then use "M1
Application Switch" variable to turn on or off the application. Set/clear "M1 Application
Switch" variable also enables/disables all PWM channels.

8.4.1 Control structure

The scalar control diagram is shown in figure below. It is the simplest type of motor-
control techniques. The ratio between the magnitude of the stator voltage and the
frequency must be kept at the nominal value. Hence, the control method is sometimes
called Volt per Hertz (or V/Hz). The position estimation BEMF observer and tracking
observer algorithms (see Sensorless PMSM Field-Oriented Control (document DRM148)
for more information) run in the background, even if the estimated position information is
not directly used. This is useful for the BEMF observer tuning.

Figure 14. Scalar control mode

The block diagram of the voltage FOC is in figure below. Unlike the scalar control, the
position feedback is closed using the BEMF observer and the stator voltage magnitude
is not dependent on the motor speed. Both the d-axis and q-axis stator voltages can be
specified in the “M1 MCAT Ud Required” and “M1 MCAT Uq Required” fields. This control
method is useful for the BEMF observer functionality check.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
23 / 47

https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 15. Voltage FOC control mode

The current FOC (or torque) control requires the rotor position feedback and the currents
transformed into a d-q reference frame. There are two reference variables (“M1 MCAT
Id Required” and “M1 MCAT Iq Required”) available for the motor control, as shown in
the block diagram in figure below. The d-axis current component "M1 MCAT Id Required"
is responsible for the rotor flux control. The q-axis current component of the current "M1
MCAT Iq Required" generates torque and, by its application, the motor starts running.
By changing the polarity of the current "M1 MCAT Iq Required", the motor changes the
direction of rotation. Supposing that the BEMF observer is tuned correctly, the current PI
controllers can be tuned using the current FOC control structure.

Figure 16. Current (torque) control mode

The speed PMSM sensor/sensorless FOC (its diagram is shown in figure below) is
activated by enabling the speed FOC control structure. Enter the required speed into the
“M1 Speed Required” field. The d-axis current reference is held at 0 during the entire
FOC operation.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
24 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 17. Speed FOC control mode

The position PMSM sensor FOC is shown in figure below (available for sensored/
encoder based applications only). The position control using the P controller can be
tuned in the “Speed loop” menu tab. An encoder sensor is required for the feedback.
Without the sensor, the position control does not work. A braking resistor is missing on
the FRDM-MC-LVPMSM board. Therefore, it is needed to set a soft speed ramp (in the
“Speed loop” menu tab) because the voltage on the DC-bus can rise when braking the
quickly spinning shaft. It may cause the overvoltage fault.

Figure 18. Position FOC control mode

8.5 Switch between Spin and MID
User can switch between two modes of application: Spin and MID (Motor identification).
Spin mode is used for control PMSM (see Section "Motor Control Modes"). MID mode
is used for motor parameters identification (see Section "Identifying parameters of user
motor"). Navigate to Motor Identification subblock in the FreeMASTER project tree.
Actual mode of application is shown in APP: State variable. The mode can be changed
by APP: Switch request Spin/MID variable.The transition between Spin and MID can be
done only if actual mode is in a defined stop state (e.g. MID is not in progress or motor is
stopped). The result of the change mode request is shown in APP: Fault variable. Fault
MID to Spin occurs when parameters identification still runs or MID state machine is in
the fault state. Fault Spin to MID occurs when M1 Application switch variable watch is ON
or M1 Application state variable watch is not STOP.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
25 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.6 Identifying parameters of user motor
Because the model-based control methods of the PMSM drives provide high
performance (e.g. dynamic response, efficiency), obtaining an accurate model of a motor
is an important part of the drive design and control. For the implemented FOC algorithms,
it is necessary to know the value of the stator resistance Rs, direct inductance Ld and
quadrature inductance Lq. Unless the default PMSM motor described above is used,
the motor parameter identification is the first step in the application tuning. This section
shows how to identify user motor parameters using MID. MID is written in fixed-point
arithmetics. Each available MID algorithm is described in Section "MID algorithms". MID
is controlled via the FreeMASTER "Motor Identification" page shown in Figure 19.

Figure 19. MID FreeMASTER control

8.6.1 Motor parameter identification using MID

The whole MID is controlled via the FreeMASTER "Variable Watch". Motor Identification
(MID) sub-block shown in Figure 19. The motor parameter identification workflow is
following:

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
26 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

1. Set the MID: On/Off variable to OFF.
2. Select the measurement type you want to perform via the MID: Measurement Type

variable:
• PP_ASSIST - Pole-pair identification assistant.
• EL_PARAMS - Electrical parameters measurement.

3. Set the measurement configuration paramers in the MID: Config set of variables.
4. Start the measurement by setting MID: On/Off to ON.
5. Observe the MID: Status variable which indicates whether identification runs or not.

Variable MID: State indicates actual state of the MID state machine. Variable MID:
Fault indicates fault captured by estimation algorithm (e.g. incorrect measurement
parameters). Variable is cleared automatically. Variable DIAG: Fault Captured
indicates captured hardware faults (e.g. DC bus undervoltage). Variable is cleared by
setting "On" to DIAG: Fault clear variable.

6. If the measurement finishes successfully, the measured motor parameters are shown
in the MID: Measured set of variables and MID: State goes to STOP.

Fault mask Description Troubleshooting

b#0001 Error during initialization electrical
parameters measurement.

Check whether inputs to the MCAA_
EstimRLInit_F16 are valid.

b#0010 Electrical parameters measurement
fault. Some required value cannot
be reached or wrong measurement
configuration.

Check whether measurement
configuration is valid.

Table 7. MID: Fault variable

Fault mask Description

b#0001 Overcurrent fault occurs.

b#0010 Undervoltage fault occurs.

b#0100 Overvoltage fault occurs.

Table 8. DIAG: Fault Captured variable

8.7 MID algorithms
This section describes how each available MID algorithm works.

8.7.1 Stator resistance measurement

The stator resistance Rs is averaged from the DC steps, which are generated by the
algorithm. The DC step levels are automatically derived from the currents inserted by
user. For more details, please, refer to the documentation of AMCLIB_EstimRL_F32
function from AMMCLib.

8.7.2 Stator inductances measurement

Injection of the AC/DC currents is used for the inductances (Ld, Lq) estimation. Injected
AC/DC currents are automatically derived from the currents inserted by user. The default
AC current frequency is 500 Hz. For more detail, please, refer to the documentation of
AMCLIB_EstimRL_F32 function from AMMCLib.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
27 / 47

https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources
https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8.7.3 Number of pole-pair assistant

The number of pole-pairs cannot be measured without a position sensor. However, there
is a simple assistant to determine the number of pole-pairs (PP_ASSIST). The number
of the pp assistant performs one electrical revolution, stops for a few seconds, and
then repeats. Because the pp value is the ratio between the electrical and mechanical
speeds, it can be determined as the number of stops per one mechanical revolution. It is
recommended not to count the stops during the first mechanical revolution because the
alignment occurs during the first revolution and affects the number of stops. During the
PP_ASSIST measurement, the current loop is enabled and the Id current is controlled
to MID Pp IdReqOpenLoop. The electrical position is generated by integrating the
open-loop frequency MID Pp SpeedElReq. If the rotor does not move after the start of
PP_ASSIST assistant, stop the assistant, increase MID Pp IdReqOpenLoop, and restart
the assistant.

8.8 Electrical parameters measurement control
This section describes how to control electrical parameters measurement, which contains
measuring stator resistance Rs, direct inductance Ld and quadrature inductance Lq.
There are available 4 modes of measurement which can be selected by MID: Config El
Mode Estim RL variable.

Function MCAA_EstimRLInit_F16 must be called before the first use of
MCAA_EstimRL_F16. Function MCAA_EstimRL_F16 must be called periodically
with sampling period F_SAMPLING, which can be definied be user. Maximum
sampling frequency F_SAMPLING is 10 kHz. In the scopes under "Motor identification"
FreeMASTER sub-block can be observed measured currents, estimated parameters etc.

8.8.1 Mode 0

This mode is automatic, inductances are measured at a single operating point. Rotor is
not fixed. User has to specify nominal current (MID: Config El I DC nominal variable). The
AC and DC currents are automatically derived from the nominal current. Frequency of the
AC signal set to default 500 Hz.

The function will output stator resistance Rs, direct inductance Ld and quadrature
inductance Lq.

8.8.2 Mode 1

DC stepping is automatic at this mode. Rotor is not fixed. Compared to the Mode 0, there
will be performed an automatic measurement of the inductances for a definied number
(NUM_MEAS) of different DC current levels using positive values of the DC current. The
Ldq dependency map can be seen in the "Inductances (Ld, Lq)" recorder. User has to
specify following parameters before parameters estimation:

• MID: Config El I DC (estim Lq) - Current to determine Lq. In most cases nominal
current.

• MID: Config El I DC positive max - Maximum positive DC current for the Ldq
dependency map measurement.

Injected AC and DC currents are automatically derived from the MID: Config El I DC
(estim Lq) and MID: Config El I DC positive max currents. Frequency of the AC signal set
to default 500 Hz.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
28 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

The function will output stator resistance Rs, direct inductance Ld , quadrature inductance
Lq and Ldq dependency map.

8.8.3 Mode 2

DC stepping is automatic at this mode. Rotor must be mechanically fixed after initial
alignment with the first phase. Compared to the Mode 1, there will be performed an
automatic measurement of the inductances for a definied number (NUM_MEAS) of
different DC current levels using both positive and negative values of the DC current. The
estimated inductances can be seen in the "Inductances (Ld, Lq)" recorder. User has to
specify following parameters before parameters estimation:

• MID: Config El I DC (estim Ld) - Current to determine Ld. In most cases 0 A.
• MID: Config El I DC (estim Lq) - Current to determine Lq. In most cases nominal

current.
• MID: Config El I DC positive max - Maximum positive DC current for the Ldq

dependency map measurement. In most cases nominal current.
• MID: Config El I DC negative max - Maximum negative DC current for the Ldq

dependency map measurement.

Injected AC and DC currents are automatically derived from the MID: Config El I DC
(estim Ld), MID: Config El I DC (estim Lq), MID: Config El I DC positive max and MID:
Config El I DC negative max currents. Frequency of the AC signal set to default 500 Hz.

The function will output stator resistance Rs, direct inductance Ld , quadrature inductance
Lq and Ldq dependency map.

8.8.4 Mode 3

This mode is manual. Rotor must be mechanically fixed after alignment with the first
phase. Rs is not calculated at this mode. The estimated inductances can be observed in
the "Ld" or "Lq" scopes. The following parameters can be changed during the runtime:

• MID: Config El DQ-switch - Axis switch for AC signal injection (0 for injection AC signal
to d-axis, 1 for injection AC signal to q-axis).

• MID: Config El I DC req (d-axis) - Required DC current in d-axis.
• MID: Config El I DC req (q-axis) - Required DC current in q-axis.
• MID: Config El I AC req - Required AC current injected to the d-axis or q-axis.
• MID: Config El I AC frequency - Required frequency of the AC current injected to the d-

axis or q-axis.

8.9 Initial configuration setting and update
1. Open the PMSM control application FreeMASTER project containing the dedicated

MCAT plug-in module.
2. Select the “Parameters” tab.
3. Leave the measured motor parameters or specify the parameters manually.

The motor parameters can be obtained from the motor data sheet or using
the PMSM parameters measurement procedure described in PMSM Electrical
Parameters Measurement (document AN4680). All parameters provided in Table 9
are accessible. The motor inertia J expresses the overall system inertia and can be
obtained using a mechanical measurement. The J parameter is used to calculate the
speed controller constant. However, the manual controller tuning can also be used to
calculate this constant.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
29 / 47

https://www.nxp.com/doc/AN4680

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Parameter Units Description Typical range

pp [-] Motor pole pairs 1-10

Rs [Ω] 1-phase stator resistance 0.3-50

Ld [H] 1-phase direct inductance 0.00001-0.1

Lq [H] 1-phase quadrature
inductance

0.00001-0.1

Ke [V.sec/rad] BEMF constant 0.001-1

J [kg.m2] System inertia 0.00001-0.1

Iph nom [A] Motor nominal phase
current

0.5-8

Uph nom [V] Motor nominal phase
voltage

10-300

N nom [rpm] Motor nominal speed 1000-2000

Table 9. MCAT motor parameters

4. Set the hardware scales—the modification of these two fields is not required when
a reference to the standard power stage board is used. These scales express the
maximum measurable current and voltage analog quantities.

5. Check the fault limits—these fields are calculated using the motor parameters and
hardware scales (see Table 10).

Parameter Units Description Typical range

U DCB trip [V] Voltage value at which the
external braking resistor
switch turns on

U DCB Over ~ U DCB max

U DCB under [V] Trigger value at which
the undervoltage fault is
detected

0 ~ U DCB Over

U DCB over [V] Trigger value at which the
overvoltage fault is detected

U DCB Under ~ U max

N over [rpm] Trigger value at which the
overspeed fault is detected

N nom ~ N max

N min [rpm] Minimal actual speed value
for the sensorless control

(0.05~0.2) *N max

Table 10. Fault limits

6. Check the application scales—these fields are calculated using the motor parameters
and hardware scales.

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1 * N nom

E block [V] BEMF scale ke* Nmax

kt [Nm/A] Motor torque constant -

Table 11. Application scales

7. Check the alignment parameters—these fields are calculated using the motor
parameters and hardware scales. The parameters express the required voltage value
applied to the motor during the rotor alignment and its duration.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
30 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

8. Click the “Store data” button to save the modified parameters into the inner file.

8.10 Control structure modes
1. Select the scalar control in the "M1 MCAT Control" FreeMASTER variable watch.
2. Set the "M1 Application Switch" variable to "ON". The application state changes to

“RUN”.
3. Set the required frequency value in the “M1 Scalar Freq Required” variable; for

example, 15 Hz in the “Scalar & Voltage Control” FreeMASTER project tree. The
motor starts running.

4. Select the “Phase Currents” recorder from the “Scalar & Voltage Control”
FreeMASTER project tree.

5. The optimal ratio for the V/Hz profile can be found by changing the V/Hz factor
directly using the “M1 V/Hz factor” variable. The shape of the motor currents should
be close to a sinusoidal shape (Figure 20). Use the following equation for calculation
V/Hz factor:

where Uphnom is the nominal voltage, kfactor is ratio within range 0-100%, pp is the
number of pole-pairs and Nnom are the nominal revolutions. Changes V/Hz factor
won't be propagated to the m1_pmsm_appconfig.h!

Figure 20. Phase currents
6. Select the “Position” recorder to check the observer functionality. The difference

between the “Position Electrical Scalar” and the “Position Estimated” should be
minimal (see Figure 21) for the Back-EMF position and speed observer to work
properly. The position difference depends on the motor load. The higher the load, the
bigger the difference between the positions due to the load angle.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
31 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 21. Generated and estimated positions
7. If an opposite speed direction is required, set a negative speed value into the “M1

Scalar Freq Required” variable.
8. The proper observer functionality and the measurement of analog quantities is

expected at this step.
9. Enable the voltage FOC mode in the "M1 MCAT Control" variable while the main

application switch "M1 Application Switch" is turned off.
10. Switch the main application switch on and set a non-zero value in the “M1 MCAT Uq

Required” variable. The FOC algorithm uses the estimated position to run the motor.

8.11 Alignment tuning
For the alignment parameters, navigate to the “Parameters” MCAT tab. The alignment
procedure sets the rotor to an accurate initial position and enables you to apply full start-
up torque to the motor. A correct initial position is needed mainly for high start-up loads
(compressors, washers, and so on). The aim of the alignment is to have the rotor in a
stable position, without any oscillations before the startup.

1. The alignment voltage is the value applied to the d-axis during the alignment.
Increase this value for a higher shaft load.

2. The alignment duration expresses the time when the alignment routine is called.
Tune this parameter to eliminate rotor oscillations or movement at the end of the
alignment process.

8.12 Current loop tuning
The parameters for the current D, Q, and PI controllers are fully calculated using
the motor parameters and no action is required in this mode. If the calculated loop
parameters do not correspond to the required response, the bandwidth and attenuation
parameters can be tuned.

1. Lock the motor shaft.
2. Set the required loop bandwidth and attenuation and click the “Update target” button

in the “Current loop” tab. The tuning loop bandwidth parameter defines how fast
the loop response is whilst the tuning loop attenuation parameter defines the actual
quantity overshoot magnitude.

3. Select the “Current Controller Id” recorder.
4. Select the “Current Control” in the FreeMASTER project tree, select

"CURRENT_FOC" in "M1 MCAT Control" variable. Set the “M1 MCAT Iq required”

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
32 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

variable to a very low value (for example 0.01), and set the required step in “M1
MCAT Id required”. The control loop response is shown in the recorder.

5. Tune the loop bandwidth and attenuation until you achieve the required response.
The example waveforms show the correct and incorrect settings of the current loop
parameters:
• The loop bandwidth is low (110 Hz) and the settling time of the Id current is long

(Figure 22).

Figure 22. Slow step response of the Id current controller
• The loop bandwidth (400 Hz) is optimal and the response time of the Id current is

sufficient (see Figure 23).

Figure 23. Optimal step response of the Id current controller
• The loop bandwidth is high (700 Hz) and the response time of the Id current is very

fast, but with oscillation and overshoot (see Figure 24).

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
33 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 24. Fast step response of the Id current controller

8.13 Speed ramp tuning
1. The speed command is applied to the speed controller through a speed ramp. The

ramp function contains two increments (up and down) which express the motor
acceleration and deceleration per second. If the increments are very high, they
can cause an overcurrent fault during acceleration and an overvoltage fault during
deceleration. In the “Speed” scope, you can see whether the “Speed Actual Filtered”
waveform shape equals the “Speed Ramp” profile.

2. The increments are common for the scalar and speed control. The increment fields
are in the “Speed loop” tab and accessible in both tuning modes. Clicking the
“Update target” button applies the changes to the MCU. An example speed profile
is shown in Figure 25. The ramp increment down is set to 500 rpm/sec and the
increment up is set to 3000 rpm/sec.

3. The start-up ramp increment is in the “Sensorless” tab and its value is usually higher
than that of the speed loop ramp.

Figure 25. Speed profile

8.14 Open loop startup
1. The start-up process can be tuned by a set of parameters located in the “Sensorless”

tab. Two of them (ramp increment and current) are accessible in both tuning modes.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
34 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

The start-up tuning can be processed in all control modes besides the scalar control.
Setting the optimal values results in a proper motor startup. An example start-up
state of low-dynamic drives (fans, pumps) is shown in Figure 26.

2. Select the “Startup” recorder from the FreeMASTER project tree.
3. Set the start-up ramp increment typically to a higher value than the speed-loop ramp

increment.
4. Set the start-up current according to the required start-up torque. For drives such

as fans or pumps, the start-up torque is not very high and can be set to 15 % of the
nominal current.

5. Set the required merging speed—when the open-loop and estimated position
merging starts, the threshold is mostly set in the range of 5 % ~ 10 % of the nominal
speed.

6. Set the merging coefficient—in the position merging process duration, 100 %
corresponds to a half of an electrical revolution. The higher the value, the faster the
merge. Values close to 1 % are set for the drives where a high start-up torque and
smooth transitions between the open loop and the closed loop are required.

7. Click the “Update Target” button to apply the changes to the MCU.
8. Select “SPEED_FOC” in the "M1 MCAT Control" variable.
9. Set the required speed higher than the merging speed.

10. Check the start-up response in the recorder.
11. Tune the start-up parameters until you achieve an optimal response.
12. If the rotor does not start running, increase the start-up current.
13. If the merging process fails (the rotor is stuck or stopped), decrease the start-up ramp

increment, increase the merging speed, and set the merging coefficient to 5 %.

Figure 26. Motor startup

8.15 BEMF observer tuning
1. The bandwidth and attenuation parameters of the BEMF observer and the tracking

observer can be tuned. Navigate to the "Sensorless" MCAT tab.
2. Set the required bandwidth and attenuation of the BEMF observer—the bandwidth is

typically set to a value close to the current loop bandwidth.
3. Set the required bandwidth and attenuation of the tracking observer—the bandwidth

is typically set in the range of 10 – 20 Hz for most low-dynamic drives (fans, pumps).
4. Click the “Update target” button to apply the changes to the MCU.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
35 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

5. Select the “Observer” recorder from the FreeMASTER project tree and check the
observer response in the "Observer" recorder.

8.16 Speed PI controller tuning
The motor speed control loop is a first-order function with a mechanical time constant
that depends on the motor inertia and friction. If the mechanical constant is available,
the PI controller constants can be tuned using the loop bandwidth and attenuation.
Otherwise, the manual tuning of the P and I portions of the speed controllers is available
to obtain the required speed response (see the example response in Figure 27). There
are dozens of approaches to tune the PI controller constants. The following steps provide
an approach to set and tune the speed PI controller for a PM synchronous motor:

1. Select the “Speed Controller” option from the FreeMASTER project tree.
2. Select the “Speed loop” tab.
3. Check the “Manual Constant Tuning” option—that is, the “Bandwidth” and

“Attenuation” fields are disabled and the “SL_Kp” and “SL_Ki” fields are enabled.
4. Tune the proportional gain:

• Set the “SL_Ki” integral gain to 0.
• Set the speed ramp to 1000 rpm/sec (or higher).
• Run the motor at a convenient speed (about 30 % of the nominal speed).
• Set a step in the required speed to 40 % of Nnom.
• Adjust the proportional gain “SL_Kp” until the system responds to the required

value properly and without any oscillations or excessive overshoot:
– If the “SL_Kp” field is set low, the system response is slow.
– If the “SL_Kp” field is set high, the system response is tighter.
– When the “SL_Ki” field is 0, the system most probably does not achieve the

required speed.
– Click the “Update Target” button to apply the changes to the MCU.

5. Tune the integral gain:
• Increase the “SL_Ki” field slowly to minimize the difference between the required

and actual speeds to 0.
• Adjust the “SL_Ki” field such that you do not see any oscillation or large overshoot

of the actual speed value while the required speed step is applied.
• Click the “Update target” button to apply the changes to the MCU.

6. Tune the loop bandwidth and attenuation until the required response is received.
The example waveforms with the correct and incorrect settings of the speed loop
parameters are shown in the following figures:
• The “SL_Ki” value is low and the “Speed Actual Filtered” does not achieve the

“Speed Ramp” (see Figure 27).

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
36 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 27. Speed controller response—SL_Ki value is low, Speed Ramp is not
achieved

• The “SL_Kp” value is low, the “Speed Actual Filtered” greatly overshoots, and the
long settling time is unwanted (see Figure 28).

Figure 28. Speed controller response—SL_Kp value is low, Speed Actual Filtered
greatly overshoots

• The speed loop response has a small overshoot and the “Speed Actual Filtered”
settling time is sufficient. Such response can be considered optimal (see
Figure 29).

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
37 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figure 29. Speed controller response—speed loop response with a small overshoot

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
38 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

9 Conclusion

This application note describes the implementation of a sensorless field-oriented
control of the 3-phase PMSM using 32-bit Kinetis V series devices and the Freedom
development platform. The hardware-dependent part of the control software is described
in Section "Hardware setup". The motor control application timing is described in Section
"MCU features and peripheral settings" and the peripheral initialization in Section
"Motor-control peripheral initialization". The motor user interface and remote control
using FreeMASTER are as follows. The motor parameters identification theory and the
identification algorithms are described in Section "Identifying parameters of user motor".

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
39 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

10 Acronyms and abbreviations

Acronym Meaning

ADC Analog-to-Digital Converter

ACIM Asynchronous Induction Motor

ADC_ETC ADC External Trigger Control

AN Application Note

BLDC Brushless DC motor

CCM Clock Controller Module

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

ENC Encoder

FOC Field-Oriented Control

GPIO General-Purpose Input/Output

LPIT Low-power Periodic Interrupt Timer

LPUART Low-power Universal Asynchronous Receiver/Transmitter

MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

PDB Programmable Delay Block

PI Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Machine

PWM Pulse-Width Modulation

QD Quadrature Decoder

TMR Quad Timer

USB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

IOPAMP Internal operational amplifier

Table 12. Acronyms and abbreviations

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
40 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

11 References

These references are available on www.nxp.com:

1. Sensorless PMSM Field-Oriented Control (document DRM148).
2. Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document

AN4642).
3. Sensorless PMSM Field-Oriented Control on Kinetis KV (document AN5237).
4. PMSM Sensorless Application Package User's Guide (document PMSMSAPUG)

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
41 / 47

http://www.nxp.com
https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/AN4642
https://www.nxp.com/doc/AN5237
https://www.nxp.com/docs/en/user-guide/PMSMSAPUG.pdf

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

12 Useful links

1. MCUXpresso SDK for Motor Control www.nxp.com/motorcontrol
2. FRDM-MC-PMSM Freedome Development Platform
3. TWR-MC-LV3PH Tower Development Platform
4. HVP-MC3PH High-Voltage Platform
5. MCUXpresso IDE - Importing MCUXpresso SDK
6. MCUXpresso Config Tool
7. MCUXpresso SDK Builder (SDK examples in several IDEs) https://mcuxpresso.nxp.

com/en/welcome

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
42 / 47

https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/design/development-boards/tower-development-boards/peripheral-modules/low-voltage-3-phase-motor-control-tower-system-module:TWR-MC-LV3PH
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/high-voltage-development-platform:HVP-MC3PH?lang_cd=en
https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

13 Revision history

Table 13 summarizes the changes done to this document since the initial release.

Revision number Date Substantive changes

0 01/2022 Initial release

1 01/2023 HVP-KV11Z75 not supported
New MCAT (for fractional application)
New MID (includes Pp assist and
electrical parameters estimation)

Table 13. Revision history

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
43 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

14 Copyright and permission

How To Reach Us
Home Page:
nxp.com
Web Support:
nxp.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products
herein.
NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not
convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which
can be found at the following address: nxp.com/SalesTermsandConditi
ons.
While NXP has implemented advanced security features, all products may
be subject to unidentified vulnerabilities. Customers are responsible for
the design and operation of their applications and products to reduce the
effect of these vulnerabilities on customer’s applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to
minimize the risks associated with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C
BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale,
the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior, ColdFire, Cold
Fire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape,
MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis,
MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9,
Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, Design
Start, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or
registered trademarks of Arm Limited (or its subsidiaries) in the US and/
or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.
org logos and related marks are trademarks and service marks licensed
by Power.org.

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
44 / 47

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Tables
Tab. 1. Available examples and control methods 1
Tab. 2. Linix 45ZWN24-40 motor parameters 2
Tab. 3. FRDM-K11Z jumper settings 4
Tab. 4. KV11 platform differences 8
Tab. 5. KV11 CPU load and memory

usage (pmsm_snsless example debug
configuration) ...9

Tab. 6. KV11 CPU load and memory usage
(pmsm_snsless_reg_init example debug
configuration) ...9

Tab. 7. MID: Fault variable ..27
Tab. 8. DIAG: Fault Captured variable 27
Tab. 9. MCAT motor parameters30
Tab. 10. Fault limits ... 30
Tab. 11. Application scales ... 30
Tab. 12. Acronyms and abbreviations40
Tab. 13. Revision history ...43

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
45 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Figures
Fig. 1. Linix 45ZWN24-40 permanent magnet

synchronous motor ..2
Fig. 2. Motor-control development platform block

diagram ..3
Fig. 3. FRDM-MC-LVPMSM ... 4
Fig. 4. FRDM-KV11Z Freedom development

board ... 5
Fig. 5. Assembled Freedom system5
Fig. 6. Hardware timing and synchronization on

KV11Z ..6
Fig. 7. Directory tree ...10
Fig. 8. MCUXpresso Config Tool - MC_PMSM

middleware component 16
Fig. 9. Green “GO” button placed in top left-hand

corner .. 19
Fig. 10. FreeMASTER—communication is

established successfully19
Fig. 11. FreeMASTER communication setup

window ...20
Fig. 12. Default symbol file ...21
Fig. 13. FreeMASTER + MCAT layout 22
Fig. 14. Scalar control mode .. 23

Fig. 15. Voltage FOC control mode24
Fig. 16. Current (torque) control mode24
Fig. 17. Speed FOC control mode 25
Fig. 18. Position FOC control mode25
Fig. 19. MID FreeMASTER control 26
Fig. 20. Phase currents .. 31
Fig. 21. Generated and estimated positions32
Fig. 22. Slow step response of the Id current

controller ..33
Fig. 23. Optimal step response of the Id current

controller ..33
Fig. 24. Fast step response of the Id current

controller ..34
Fig. 25. Speed profile ... 34
Fig. 26. Motor startup ... 35
Fig. 27. Speed controller response—SL_Ki value is

low, Speed Ramp is not achieved 37
Fig. 28. Speed controller response—SL_Kp value

is low, Speed Actual Filtered greatly
overshoots ...37

Fig. 29. Speed controller response—speed loop
response with a small overshoot38

PMSMMKV11 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 1 — 12 January 2023
46 / 47

NXP Semiconductors PMSMMKV11
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC motors

Contents
1 Introduction ... 1
2 Hardware setup ... 2
2.1 Linix 45ZWN24-40 motor2
2.2 Running PMSM application on Freedom

development platform .. 2
2.2.1 FRDM-MC-LVPMSM ..3
2.2.2 FRDM-KV11Z board .. 4
2.2.3 Freedom system assembling5
3 MCU features and peripheral settings6
3.1 KV1x family ..6
3.1.1 Hardware timing and synchronization6
3.1.2 Peripheral settings ...7
3.1.3 PWM generation - FTM0 7
3.1.4 Analog sensing – ADC0, ADC17
3.1.5 PWM and ADC synchronization – PDB0 7
3.1.6 Over-current detection at FRDM platform –

CMP1 ...8
3.1.7 Slow loop interrupt generation – FTM28
3.1.8 Communication with MC33937 MOSFET

driver – SPI ... 8
3.1.9 Peripheral settings differences among

platforms .. 8
3.1.10 CPU load and memory usage 9
4 Project file and IDE workspace structure10
4.1 PMSM project structure 10
5 Tools ... 13
5.1 Compiler warnings ...13
6 Motor-control peripheral initialization14
6.1 mc_pmsm example: ...14
6.2 mc_pmsm_reg_init example:16
7 User interface .. 18
8 Remote control using FreeMASTER19
8.1 Establishing FreeMASTER communication 19
8.2 TSA replacement with ELF file 20
8.3 MCAT FreeMASTER interface (Motor

Control Application Tuning) 21
8.4 Motor Control Modes23
8.4.1 Control structure .. 23
8.5 Switch between Spin and MID25
8.6 Identifying parameters of user motor 26
8.6.1 Motor parameter identification using MID 26
8.7 MID algorithms .. 27
8.7.1 Stator resistance measurement27
8.7.2 Stator inductances measurement 27
8.7.3 Number of pole-pair assistant28
8.8 Electrical parameters measurement control28
8.8.1 Mode 0 .. 28
8.8.2 Mode 1 .. 28
8.8.3 Mode 2 .. 29
8.8.4 Mode 3 .. 29
8.9 Initial configuration setting and update 29
8.10 Control structure modes 31
8.11 Alignment tuning ..32

8.12 Current loop tuning ..32
8.13 Speed ramp tuning .. 34
8.14 Open loop startup ..34
8.15 BEMF observer tuning35
8.16 Speed PI controller tuning 36
9 Conclusion ...39
10 Acronyms and abbreviations40
11 References ... 41
12 Useful links ..42
13 Revision history .. 43
14 Copyright and permission44

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 12 January 2023
Document identifier: PMSMMKV11

	1 Introduction
	2 Hardware setup
	2.1 Linix 45ZWN24-40 motor
	2.2 Running PMSM application on Freedom development platform
	2.2.1 FRDM-MC-LVPMSM
	2.2.2 FRDM-KV11Z board
	2.2.3 Freedom system assembling

	3 MCU features and peripheral settings
	3.1 KV1x family
	3.1.1 Hardware timing and synchronization
	3.1.2 Peripheral settings
	3.1.3 PWM generation - FTM0
	3.1.4 Analog sensing – ADC0, ADC1
	3.1.5 PWM and ADC synchronization – PDB0
	3.1.6 Over-current detection at FRDM platform – CMP1
	3.1.7 Slow loop interrupt generation – FTM2
	3.1.8 Communication with MC33937 MOSFET driver – SPI
	3.1.9 Peripheral settings differences among platforms
	3.1.10 CPU load and memory usage

	4 Project file and IDE workspace structure
	4.1 PMSM project structure

	5 Tools
	5.1 Compiler warnings

	6 Motor-control peripheral initialization
	6.1 mc_pmsm example:
	6.2 mc_pmsm_reg_init example:

	7 User interface
	8 Remote control using FreeMASTER
	8.1 Establishing FreeMASTER communication
	8.2 TSA replacement with ELF file
	8.3 MCAT FreeMASTER interface (Motor Control Application Tuning)
	8.4 Motor Control Modes
	8.4.1 Control structure

	8.5 Switch between Spin and MID
	8.6 Identifying parameters of user motor
	8.6.1 Motor parameter identification using MID

	8.7 MID algorithms
	8.7.1 Stator resistance measurement
	8.7.2 Stator inductances measurement
	8.7.3 Number of pole-pair assistant

	8.8 Electrical parameters measurement control
	8.8.1 Mode 0
	8.8.2 Mode 1
	8.8.3 Mode 2
	8.8.4 Mode 3

	8.9 Initial configuration setting and update
	8.10 Control structure modes
	8.11 Alignment tuning
	8.12 Current loop tuning
	8.13 Speed ramp tuning
	8.14 Open loop startup
	8.15 BEMF observer tuning
	8.16 Speed PI controller tuning

	9 Conclusion
	10 Acronyms and abbreviations
	11 References
	12 Useful links
	13 Revision history
	14 Copyright and permission
	Tables
	Figures
	Contents

