

i.MX53 System Development
User’s Guide

Supports
i.MX53

MX53UG
Rev. 2

06/2015

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor iii

Contents
Paragraph
Number Title

Page
Number

Contents

About This Guide

Audience .. xvi
Organization... xvi
Essential Reference... xvii
Suggested Reading.. xvii

General Information.. xvii
Related Documentation... xvii

Conventions ... xviii
Signal Conventions .. xviii
Acronyms and Abbreviations... xix

Chapter 1
Design Checklist

1.1 Boot Configuration Bus Isolation Resistors .. 1-8
1.2 DDR Reference Circuit.. 1-8
1.3 Avoiding I2C Conflicts .. 1-9
1.4 JTAG Signal Termination... 1-10

Chapter 2
i.MX53 Layout Recommendations

2.1 Basic Design Recommendations ... 2-1
2.1.1 Fanout .. 2-3
2.2 Stackup... 2-4
2.3 DDR Connection Information ... 2-5
2.4 DDR2 and DDR3 Routing Rules... 2-7
2.5 Routing Topologies .. 2-9
2.5.1 1 Gbyte Topologies .. 2-9
2.5.2 2 Gbyte Topologies .. 2-11
2.5.3 DDR2 Routing Examples .. 2-13
2.5.4 2-Gbyte Routing Examples.. 2-20
2.6 Power Recommendations... 2-27
2.7 TV Encoder Recommendations ... 2-28
2.8 SATA Recommendations ... 2-28
2.9 LVDS Recommendations... 2-28
2.10 Reference Resistors.. 2-29
2.11 ESD and Radiated Emissions Recommendations.. 2-30

i.MX53 System Development User’s Guide, Rev. 2

iv Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 3
Understanding the IBIS Model

3.1 IBIS Structure and Content.. 3-1
3.2 Header Information.. 3-2
3.3 Component and Pin Information.. 3-2
3.4 Model Information... 3-4
3.4.1 Ramp and Waveform Keywords .. 3-5
3.5 Model Golden Waveforms ... 3-7
3.6 Naming Conventions for Model Names and Usage in i.MX53 IBIS File 3-7
3.6.1 [Model Selector] ddr.. 3-8
3.6.2 [Model Selector] gpio .. 3-8
3.6.3 [Model Selector] lvio ... 3-9
3.6.4 [Model Selector] uhvio ... 3-9
3.6.5 List of Pins Not Modeled in the i.MX53 IBIS File ... 3-10
3.7 Quality Assurance for the IBIS Models... 3-10
3.8 References.. 3-11

Chapter 4
Setting up Power Management

4.1 i.MX53 Internal LDOs... 4-1
4.2 Interfacing the i.MX53 Processor with the DA9053 ... 4-3
4.2.1 Connecting Power and Communication Signals ... 4-6
4.3 Interfacing the i.MX53 Processor with LTC3589-1 .. 4-9
4.3.1 Using the I2C Interface .. 4-9
4.3.2 I2C Acknowledge... 4-10
4.4 Interface Table.. 4-10
4.5 Connecting Power and Communication Signals.. 4-12
4.5.1 Powering-up the Interface.. 4-16
4.6 Additional Device Information .. 4-17
4.6.1 DA9053.. 4-17
4.6.2 LTC3589-1... 4-20

Chapter 5
Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

5.1 i.MX53 SDRAM Controller Signals ... 5-1
5.2 i.MX53 Memory Interface ... 5-3
5.3 Configuring the DDR2 JTAG Script .. 5-4
5.4 Configuring the DDR3 JTAG Script .. 5-7

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor v

Contents
Paragraph
Number Title

Page
Number

5.5 Configuring the i.MX53 Registers for the Initialization Script 5-10
5.5.1 Main Control Register ... 5-10
5.5.2 Power Down Register .. 5-11
5.5.3 Timing Configuration 0 Register .. 5-11
5.5.4 Timing Configuration 1 Register .. 5-12
5.5.5 Timing Configuration 2 Register .. 5-13

Chapter 6
Avoiding Board Bring-Up Problems

6.1 Using a Voltage Report to Avoid Power Pitfalls .. 6-1
6.2 Using a Current Monitor to Avoid Power Pitfalls.. 6-2
6.3 Checking for Clock Pitfalls.. 6-2
6.4 Avoiding Reset Pitfalls... 6-2
6.5 Sample Board Bring-Up Checklist .. 6-3

Chapter 7
Using the Clock Connectivity Table

Chapter 8
Configuring JTAG Tools for Debugging

8.1 Accessing Debug with a JTAG Scan Chain (ARM tools) ... 8-1
8.2 Accessing Debug with a JTAG Scan Chain (other JTAG tools) 8-4

Chapter 9
Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

9.1 Supported Components.. 9-1
9.2 Customizing OBDS for Specific Hardware ... 9-2
9.2.1 UART (serial port) Test.. 9-2
9.2.2 DDR Test ... 9-2
9.2.3 Audio Test.. 9-3
9.2.4 IPU Display Test .. 9-3
9.2.5 I2C Test .. 9-3
9.2.6 SD/MMC Test.. 9-3
9.2.7 LED Test .. 9-3
9.2.8 Ethernet (FEC) Loopback Test .. 9-4
9.2.9 SPI-NOR Test .. 9-4

i.MX53 System Development User’s Guide, Rev. 2

vi Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 10
Porting U-Boot from an i.MX53 Reference Board to an i.MX53 Custom Board

10.1 Obtaining the Source Code for the U-Boot ... 10-1
10.2 Preparing the Code... 10-1
10.3 Customizing the i.MX53 Custom Board Code.. 10-2
10.3.1 Changing the DCD Table for i.MX53 DDR3 Initialization....................................... 10-3
10.3.2 Booting with the Modified U-Boot ... 10-3
10.3.3 Further Customization at System Boot.. 10-3
10.3.4 Customizing the Printed Board Name ... 10-4

Chapter 11
Porting the Android Kernel

11.1 Patching the Android Kernel.. 11-1
11.2 Configuring Android Release for Customized Platforms.. 11-1
11.2.1 Enabling and Disabling Default Resources ... 11-2
11.2.2 Changing the Configuration File ... 11-3
11.2.3 Android's Memory Map .. 11-3
11.3 Initializing Android.. 11-4
11.4 Modifying the init.rc Partition Locations... 11-5
11.5 Adding Android Enhancements... 11-5

Chapter 12
Configuring the IOMUX Controller (IOMUXC)

12.1 Information for Setting IOMUX Controller Registers... 12-1
12.2 Setting Up the IOMUXC and U-Boot ... 12-2
12.2.1 Defining the Pads... 12-2
12.2.2 Configuring IOMUX Pins for Initialization Function ... 12-3
12.2.3 Example—Setting a GPIO... 12-3
12.3 Setting Up the IOMUXC in Linux .. 12-4
12.3.1 IOMUX Configuration Definition ... 12-4
12.3.2 Machine Layer File.. 12-5
12.3.3 Example—Setting a GPIO .. 12-5

Chapter 13
Registering a New UART Driver

13.1 Configuring UART Pads on IOMUX .. 13-1
13.2 Enabling UART on Kernel Menuconfig .. 13-2

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor vii

Contents
Paragraph
Number Title

Page
Number

13.3 Testing the UART .. 13-2
13.4 File Names and Locations.. 13-2

Chapter 14
Adding Support for the i.MX53 ESDHC

14.1 Including Support for SD2 and SD4.. 14-1
14.2 Including Support for SD1/SD2/SD3/SD4 .. 14-2
14.2.1 Creating Platform Device Structures for all SD Cards .. 14-2
14.2.2 Configuring Pins for SD Function ... 14-3
14.2.3 Creating the Platform Data Structure... 14-3
14.2.4 Setting Up Card Detection... 14-4
14.3 Additional Reference Information ... 14-5
14.3.1 ESDHC Interface Features... 14-6
14.3.2 ESDHC Operation Modes Supported by the i.MX53.. 14-6
14.3.3 Interface Layouts ... 14-7

Chapter 15
Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

15.1 Source Code Structure ... 15-1
15.2 Configuration Options ... 15-1
15.3 Selecting SPI NOR on the Linux Image.. 15-2
15.4 Changing the SPI Interface Configuration... 15-3
15.4.1 Connecting SPI NOR Flash to Another CSPI Interface .. 15-3
15.4.2 Changing the CSPI Interface ... 15-3
15.4.3 Changing the Chip Select .. 15-4
15.4.4 Changing the External Signals... 15-4
15.5 Hardware Operation... 15-4
15.6 Software Operation .. 15-5

Chapter 16
Setting Up the Keypad Port (KPP)

16.1 Configuring Keypad Pins on IOMUX ... 16-1
16.2 Creating a Custom Keymap ... 16-2
16.3 Configuring the Pads with the Machine Layer File ... 16-2
16.4 Enabling the Keypad.. 16-3
16.5 Testing the Keypad... 16-3
16.5.1 Using cat to Test the Keypad ... 16-3
16.5.2 Using Evtest to Test the Keypad.. 16-3

i.MX53 System Development User’s Guide, Rev. 2

viii Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 17
Supporting the i.MX53 Reference Board DISP0 LCD

17.1 Supported Display Interfaces... 17-2
17.2 Adding Support for an LCD Panel... 17-3
17.3 Modifying Boot Kernel Parameters to Support a New LCD ... 17-5
17.3.1 Setting the Video Kernel Parameter... 17-5
17.3.2 Setting the di1_primary Kernel Parameter .. 17-7
17.3.3 Modifying the Bits per Pixel Setting ... 17-8
17.3.4 Modifying Display Timing for CLAA057VA01CT Using Kernel Parameters 17-8
17.4 Adding Support for a New LCD.. 17-10
17.4.1 Adding a Display Entry in the ltib Catalog.. 17-10
17.4.2 Creating the LCD Panel File (initialization, reset, power settings, backlight) 17-11
17.4.3 Adding the Compilation Flag for the New Display ... 17-12
17.4.4 Configuring LCD Timings and the Display Interface ... 17-13
17.4.5 Adding BSP Support for a New Boot Command to Select CLAA057VA01CT LCD

17-14
17.5 i.MX53 Display Interface Helpful Information ... 17-15

Chapter 18
Connecting an LVDS Panel to an i.MX53 Reference Board

18.1 Connecting an LVDS Panel to the i.MX53 EVK Board.. 18-1
18.2 Enabling an LVDS Channel ... 18-1
18.2.1 Locating Menu Configuration Options.. 18-2
18.2.2 Programming Interface .. 18-2
18.3 LDB Ports .. 18-3
18.3.1 Input Parallel Display Ports ... 18-4
18.3.2 Output LVDS Ports .. 18-4
18.4 Further Reading ... 18-4

Chapter 19
Supporting the i.MX53 Camera Sensor Interface CSI0

19.1 Required Software ... 19-1
19.2 i.MX53 CSI Interfaces Layout... 19-2
19.3 Configuring the CSI Unit in Test Mode... 19-2
19.4 Adding Support for a New CMOS Camera Sensor ... 19-3
19.4.1 Adding a Camera Sensor Entry on the ltib Catalog (Kconfig) 19-3
19.4.2 Creating the Camera Sensor File ... 19-4
19.4.3 Adding a Compilation Flag for the New Camera .. 19-5

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor ix

Contents
Paragraph
Number Title

Page
Number

19.5 Using the I2C Interface .. 19-6
19.6 Loading and Testing the Camera Module.. 19-9
19.7 Additional Reference Information ... 19-9
19.7.1 CMOS Interfaces Supported by the i.MX53.. 19-10
19.7.2 i.MX53 CSI Parallel Interface ... 19-11
19.7.3 Timing Data Mode Protocols... 19-13

Chapter 20
Porting Audio Codecs to a Custom Board

20.1 Common Porting Task ... 20-1
20.2 Porting the Reference BSP to a Custom Board (audio codec is the same as in the reference

design).. 20-2
20.3 Porting the Reference BSP to a Custom Board (audio codec is different than the reference

design).. 20-2

Chapter 21
Porting the Fast Ethernet Controller Driver

21.1 Pin Configuration... 21-1
21.2 Source Code... 21-2
21.3 Ethernet Configuration... 21-2

Chapter 22
Porting USB Host1 and USB OTG

Appendix A
Revision History

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor xi

Figures
Figure
Number Title

Page
Number

Figures

1-1 Boot Configuration Bus Isolation Resistors.. 1-8
2-1 i.MX53 Ball-Grid Array ... 2-1
2-2 i.MX53 Package Information.. 2-2
2-3 i.MX53 Fanouts... 2-3
2-4 Layer Stack ... 2-4
2-5 Stackup Requirements... 2-4
2-6 Connection Between i.MX53 and DDR2 and DDR3 ... 2-5
2-7 Final Placement of Memories and Decoupling Capacitors... 2-6
2-8 Topology for ADDR/CMD/CTRL Signals ... 2-9
2-9 Topology of Data Group, Point-to-Point Connection ... 2-10
2-10 Topology for Data Bus of Two Byte Groups by Memory... 2-10
2-11 Clock Routing Topology ... 2-11
2-12 ADDR/CMD Signal Routing .. 2-11
2-13 CTRL Signal Topology ... 2-12
2-14 Data Bus Routing Topology.. 2-12
2-15 Clock Routing Topology ... 2-12
2-16 Top DDR2 Routing .. 2-13
2-17 Internal 1 DDR2 Routing.. 2-14
2-18 Power Plane 1 DDR2 Routing ... 2-15
2-19 Power Plane 2 DDR2 Routing ... 2-16
2-20 Internal 2 DDR2 Routing ... 2-17
2-21 Bottom DDR2 Routing .. 2-18
2-22 Top 8-DDR3 Routing ... 2-21
2-23 Internal 1 8-DDR3 Routing .. 2-22
2-24 Power Plane 1 8-DDR3 Routing .. 2-23
2-25 Power Plane 2 8-DDR3 Routing ... 2-24
2-26 Internal 2 8-DDR3 Routing .. 2-25
2-27 Bottom 8-DDR3 Routing ... 2-26
2-28 Microstrip and Stripline Differential Pair Dimensions ... 2-29
2-29 Differential Pair Routing... 2-29
3-1 Model IV Keywords’ Structure... 3-4
3-2 Model Data Interpretation... 3-6
3-3 Generic Test Load Network .. 3-7
4-1 Internal LDOs ... 4-2
4-2 Power-up Sequence ... 4-3
4-3 Power Connections.. 4-6
4-4 Communication Signal Connections... 4-7
4-5 Interface Power-up Sequence (DA9053)... 4-8
4-6 Power-up Sequence ... 4-9
4-7 Power Connections Block (LT3481)... 4-12
4-8 Power Connections Block, cont. (LTC3589-1) ... 4-13

i.MX53 System Development User’s Guide, Rev. 2

xii Freescale Semiconductor

Figures
Figure
Number Title

Page
Number

4-9 Communication Signals Connections Block (LTC3589-1) .. 4-14
4-10 Communication Signals Connections Block, cont. (TPS73201, LT3481)............................ 4-15
4-11 Interface Power-Up Sequence (LTC3589-1)... 4-16
4-12 DA9053 Typical Application Block Diagram... 4-18
4-13 LTC3589-1 Typical Application Block Guide .. 4-21
5-1 Connection Between i.MX53 Processor and DDR2 and DDR3... 5-2
5-2 DDR2 Memory Connection .. 5-3
5-3 DDR3 Memory Connection .. 5-4
5-4 Main Control Register... 5-10
5-5 Power Down Register.. 5-11
5-6 Timing Configuration 0 Register .. 5-11
5-7 Timing Configuration 1 Register .. 5-12
8 ESDCTL Timing Configuration Register 2(ESDCFG2) .. 5-13
8-1 Example of Adding a Device .. 8-2
8-2 Updating the CoreSight Base Address.. 8-3
8-3 i.MX/Cortex-A8 RVDS JTAG Scan Chain ... 8-4
11-1 Linux Kernel Configuration Menu.. 11-2
11-2 Android Memory Map (512 Mbyte System) .. 11-4
11-3 Linux Kernel ... 11-5
11-4 Hardware Abstraction Layer ... 11-6
14-1 Example i.MX53 Board SD Interface Layout... 14-7
14-2 Second Example i.MX53 SD Interface Layout... 14-8
15-1 Components of a Flash-Based File System... 15-5
17-1 Available Display Interfaces ... 17-2
17-2 Interface... 17-4
17-3 Graphics Support Options Menu... 17-10
17-4 i.MX53 Board Display Interface Layout .. 17-15
18-1 i.MX53 LVDS Display Bridge (LDB) Block.. 18-3
19-1 Camera Interface Layout... 19-2
19-2 MXC Camera/V4L2 PRP Features Support Window... 19-3
19-3 Chessboard Test .. 19-9
19-4 IPU Block Diagram... 19-11
19-5 Parallel Interface Layout ... 19-12

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor xiii

Tables
Table
Number Title

Page
Number

Tables

i Conditional Tags and Settings Peculiar to this Chapter ..xv
1-1 Design Checklist ... 1-1
1-2 DDR Vref Resistor Sizing Guideline.. 1-8
1-3 I2C Bus Example Spreadsheet .. 1-9
1-4 I2C Port Usage Scenario ... 1-9
1-5 JTAG Interface Summary.. 1-10
1-6 Additional JTAG Signals... 1-10
2-1 DDR2/DDR3 Routing by the Same Length.. 2-7
2-2 DDR2/DDR3 Routing by Byte Group .. 2-8
2-3 Total Signal Etch (DDR2) .. 2-19
2-4 Total Signal Etch (DDR3)... 2-27
3-1 Header Information ... 3-2
3-2 Component and Pin Information... 3-2
3-3 Ramp and Waveform Keywords ... 3-5
3-4 Golden Waveform Keywords .. 3-7
3-5 Unmodeled Analog or Special Interface Pins ... 3-10
3-6 Unmodeled Differential Signals.. 3-10
4-1 i.MX53 Voltage Rails and Associated DA9053 Regulator ... 4-4
4-2 i.MX53 Voltage Rails and Associated LTC3589-1 Regulator .. 4-10
4-3 Generated Supply Domains .. 4-19
4-4 LTC3589-1 Supply Domains .. 4-21
6-1 Sample Voltage Report.. 6-1
6-2 Board Bring-Up Checklist .. 6-3
7-1 Clock Roots... 7-1
11-1 Android Enhancements ... 11-5
12-1 Configuration Files.. 12-2
12-2 IOMUX Configuration Files ... 12-4
13-1 Available Files—First Set ... 13-2
13-2 Available Files—Second Set... 13-3
13-3 Available Files—Third Set.. 13-3
14-1 Structure Descriptions... 14-2
14-2 ESDHC Pins.. 14-6
14-3 ESDHC Operation Modes... 14-7
15-1 Parameter Variables... 15-1
15-2 Device Information ... 15-2
15-3 CSPI Parameters.. 15-3
16-1 Files for Adding/Configuring a New Keypad ... 16-1
17-1 Available Interfaces... 17-2
17-2 Timing Parameters .. 17-4
17-3 Parameter Information .. 17-5
17-4 XGA DVI Monitor Example Variables... 17-6

i.MX53 System Development User’s Guide, Rev. 2

xiv Freescale Semiconductor

Tables
Table
Number Title

Page
Number

17-5 VGA LCD Example Variables .. 17-7
17-6 720P TV Example Variables ... 17-7
17-7 Sample Values ... 17-9
17-8 Required Functions ... 17-11
19-1 Settings for Test Mode .. 19-2
19-2 Required Functions ... 19-4
19-3 CSI0 Parallel Interface Signals ... 19-12
20-1 Required Power Supplies .. 20-2
20-2 Files for sgtl Codec Support.. 20-2
21-1 RMII Signals ... 21-1
21-2 Source Code Files ... 21-2
A-1 i.MX53 System Development User Guide Document Revision History.............................. 22-3

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor xv

About This Guide

The i.MX53 multimedia applications processor (i.MX53) is Freescale Semiconductor, Inc.’s latest addition
to a growing family of multimedia-focused products that offer high performance processing optimized for
the lowest power consumption. The i.MX53 processors feature Freescale’s advanced implementation of
the ARM Cortex-A8™ core which operates at speeds as high as 1.2 GHz. The integrated memory
controller is compatible with DDR2-800, LVDDR2-800, and DDR3-800 DRAM, as well as LPDDR2-800
in the PoP package.

This product is suitable for applications such as:

• Automotive navigation and entertainment

• High-end mobile Internet devices and high-end PDAs

• Tablets

• Smart mobile devices

• High-end portable media players with HD video capability

• Portable navigation devices

• Gaming consoles

• Industrial HMI

Freescale provides a number of tools that facilitate the rapid design-in of the i.MX53 Applications
Processor for consumer, automotive, or industrial products. These tools include the i.MX53 software
developer’s kit (SDK), the i.MX53 Quick Start Board, the SABRE platform for tablets based on the
i.MX53, and the SABRE platform for automotive infotainment. These tools allow the rapid prototyping of
new products prior to commitment to production-level designs. Once you have determined the precise
features, function and physical parameters of your product, these prototyping tools along with this
document, the i.MX53 System Development User’s Guide, aid you in the design, layout, and bring-up of
your design.

Along with tips on designing your custom circuit board, this guide helps you customize Freescale provided
software utilizing the development tools provided in the SDK. This guide assumes that you have access to
generally available software tools (such as compilers, linkers and Make builders) as well as Freescale’s
Linux Target Image Builder (LTIB).

Table i. Conditional Tags and Settings Peculiar to this Chapter

Condition Tag
Name

Definition (Intended
Usage/Target Audience)

Draco
Settings

Dracom
Settings

Which Conditional Tags are
Showing or HIdden

ThisTagName is not hidden: where the
word ‘not’ is big, bold, and
conditionalized with the tag name in
column 1.

About This Guide

i.MX53 System Development User’s Guide, Rev. 2

xvi Freescale Semiconductor

Audience

This document is targeted to software and hardware engineers who desire to port the i.MX53 board support
package (BSP) to customer-specific products. The audience is expected to have a working understanding
of the ARM processor programming model, the C programming language, tools such as compilers and
assemblers, and program build tools such as MAKE. Familiarity with the use of commonly available
hardware test and debug tools such as oscilloscopes and logic analyzers is assumed. An understanding of
the architecture of the i.MX53 application processor is also assumed.

Organization

This guide is a compendium of application notes organized in two parts. The first part covers aspects of
hardware design and bring-up, and the second focuses on software development.

Part I, “Hardware Design and Bring-up” covers topics that aid you in the design of a custom printed circuit
board design utilizing the i.MX53. The following lists the chapters of Part I and provides a quick link to
each:

• Chapter 1, “Design Checklist”—provides a design checklist that contains recommendations for
optimal design for i.MX53-based systems.

• Chapter 2, “i.MX53 Layout Recommendations”—provides recommendations to assist design
engineers with the correct layout of their i.MX53x-based system.

• Chapter 3, “Understanding the IBIS Model”—explains how to use the IBIS (input output buffer
information specification) model.

• Chapter 4, “Setting up Power Management”—discusses how to supply and interface the i.MX53
multimedia applications processor with two different power management integrated circuits
(PMICs): DA9053 and LTC3589.

• Chapter 5, “Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor”—explains the
interface between the i.MX53 processor and DDR2 and DDR3 memories. It includes the routing
guidelines, pictures, and examples.

• Chapter 6, “Avoiding Board Bring-Up Problems”—provides recommendations for avoiding
typical mistakes when bringing up a board for the first time.

• Chapter 7, “Using the Clock Connectivity Table”—explains how to use the i.MX53 clocking
connectivity.

• Chapter 8, “Configuring JTAG Tools for Debugging”—explains how to configure JTAG tools for
debugging.”

Part II, “Software Development” aids you in software development for your product. The first four
chapters are organized in the way a developer might approach the task of porting Freescale's SDK BSP to
support their target product board. The remaining chapters deal with porting selected integrated I/O
devices. The following lists the chapters of Part II and provides a quick link to each:

• Miriam, just continue the chapter numbering from Part I. Chapter 9, “Porting the
On-Board-Diagnostic-Suite (OBDS) to a Custom Board

• Chapter 10, “Porting U-Boot from an i.MX53 Reference Board to an i.MX53 Custom Board”

• Chapter 11, “Porting the Android Kernel”

About This Guide

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor xvii

• Chapter 12, “Configuring the IOMUX Controller (IOMUXC)”

• Chapter 13, “Registering a New UART Driver”

• Chapter 5, “Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor”

• Chapter 14, “Adding Support for the i.MX53 ESDHC”

• Chapter 15, “Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver”

• Chapter 16, “Setting Up the Keypad Port (KPP)”

• Chapter 17, “Supporting the i.MX53 Reference Board DISP0 LCD”

• Chapter 18, “ Connecting an LVDS Panel to an i.MX53 Reference Board”

• Chapter 19, “ Supporting the i.MX53 Camera Sensor Interface CSI0”

• Chapter 20, “Porting Audio Codecs to a Custom Board”

• Chapter 21, “Porting the Fast Ethernet Controller Driver”

• Chapter 22, “Porting USB Host1 and USB OTG”

Essential Reference

You should have access to an electronic copy of the latest version of the i.MX53 Multimedia Applications
Processor Reference Manual (MCIMX53RM) and i.MX53xD Applications Processors for Consumer
Products (IMX53CEC).

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as
general information about the architecture.

General Information

The following documentation provides useful information about the ARM processor architecture and
computer architecture in general:

• For information about the ARM Cortex-A8 processor see
http://www.arm.com/products/processors/cortex-a/cortex-a8.php

• Computer Architecture: A Quantitative Approach, Fourth Edition, by John L. Hennessy and
David A. Patterson

• Computer Organization and Design: The Hardware/Software Interface, Second Edition, by
David A. Patterson and John L. Hennessy

Related Documentation

Freescale documentation is available from the sources listed on the back cover of this manual; the
document order numbers are included in parentheses for ease in ordering:

Additional literature is published as new Freescale products become available. For a current list of
documentation, refer to www.freescale.com.

About This Guide

i.MX53 System Development User’s Guide, Rev. 2

xviii Freescale Semiconductor

Conventions

This document uses the following notational conventions:

Courier Used to indicate commands, command parameters, code examples, and file and
directory names.

Italics Italics indicates command or function parameters

Bold Function names are written in bold.

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of
one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold

Book titles in text are set in italics

sig_name Internal signals are written in all lowercase

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or
ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode
enable bit in the machine state register.

x In some contexts, such as signal encodings, an unitalicized x indicates a don’t
care.

x An italicized x indicates an alphanumeric variable

n, m An italicized n indicates a numeric variable

NOTE

In this guide, notation for all logical, bit-wise, arithmetic, comparison, and
assignment operations follow C Language conventions.

Signal Conventions

PWR_ON_RESET An overbar indicates that a signal is active when low

_b, _B Alternate notation indicating an active-low signal

signal_name Lowercase italics is used to indicate internal signals

About This Guide

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor xix

Acronyms and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and Acronyms

Term Definition

Address
Translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio multiplexer—provides a programmable interconnection for voice, audio, and synchronous data
routing between host serial interfaces and peripheral serial interfaces.

BCD Binary Coded Decimal

Bus A path between several devices through data lines.

Bus load The percentage of time a bus is busy.

CODEC Coder/decoder or compression/decompression algorithm—Used to encode and decode (or compress and
decompress) various types of data.

CPU Central Processing Unit—generic term used to describe a processing core.

CRC Cyclic Redundancy Check—Bit error protection method for data communication.

CSI Camera Sensor Interface

DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers.

DRAM Dynamic Random Access Memory

EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program) from all
the masters in the system.

Endian Refers to byte ordering of data in memory. Little Endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In Big Endian, the order of the bytes is reversed.

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention.

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards published by
the National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards or solutions.

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard 140-2(FIPS
140-2) is a standard that describes US Federal government requirements that IT products should meet for
Sensitive, But Unclassified (SBU) use.

Flash A non-volatile storage device similar to EEPROM, but where erasing can only be done in blocks of the entire
chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application.

About This Guide

i.MX53 System Development User’s Guide, Rev. 2

xx Freescale Semiconductor

Flush A procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command.

GPIO General Purpose Input/Output

Hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and
is generated by a formula in such a way that it is extremely unlikely that some other text will produce the
same hash value.

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property.

IPU Image Processing Unit —supports video and graphics processing functions and provides an interface to
video/still image sensors and displays.

IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted specifications
for infrared wireless communication.

ISR Interrupt Service Routine.

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant
devices on a printed circuit board.

Kill Abort a memory access.

KPP KeyPad Port—a 16-bit peripheral that can be used as a keypad matrix interface or as general purpose
input/output (I/O).

line Refers to a unit of information in the cache that is associated with a tag.

LRU Least Recently Used—a policy for line replacement in the cache.

MMU Memory Management Unit—a component responsible for memory protection and address translation.

MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video compression
and audio. It is also the name of the algorithms used to compress moving pictures and video.

MPEG standards There are several standards of compression for moving pictures and video.
MPEG-1 is optimized for CD-ROM and is the basis for MP3.
MPEG-2 is defined for broadcast quality video in applications such as digital television set-top boxes and
DVD.
MPEG-3 was merged into MPEG-2.
MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web.

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals.

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other being NOR)
used in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offer faster erase, write,
and read capabilities over NOR architecture.

NOR Flash See NAND Flash.

Definitions and Acronyms (continued)

Term Definition

About This Guide

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor xxi

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that has
developed a standard for small, credit card-sized devices, called PC Cards. There are three types of
PCMCIA cards that have the same rectangular size (85.6 by 54 millimeters), but different widths.

Physical address The address by which the memory in the system is physically accessed.

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant phase
angle (a lock) on the frequency of an input, or reference, signal.

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined in
various ways to create other colors. The abbreviation RGB come from the three primary colors in additive
light models.

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and
is unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color you place,
the lighter the picture gets. PNG is the best known image format that uses the RGBA color space.

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit pseudo random
numbers as part of the security module.

ROM Read Only Memory

ROM bootstrap Internal boot code encompassing the main boot flow as well as exception vectors.

RTIC Real-time integrity checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking mechanism.

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting
low-/medium-bandwidth external devices using four wires. SPI devices communicate using a master/slave
relationship over two data lines and two control lines: Also see SS, SCLK, MISO, and MOSI.

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface—standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter—this module provides asynchronous serial communication
to external devices.

UID Unique ID–a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12Mb/s and USB 2.0 has a maximum transfer rate of
480 Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems,
and keyboards. USB also supports Plug-and-Play installation and hot plugging.

Definitions and Acronyms (continued)

Term Definition

About This Guide

i.MX53 System Development User’s Guide, Rev. 2

xxii Freescale Semiconductor

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC.

Word A group of bits comprising 32 bits

Definitions and Acronyms (continued)

Term Definition

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor I-1

Part I

Hardware Design and Bring-up

The chapters that follow cover topics that aid you in the hardware design, bring-up, and debug of your
custom printed circuit board utilizing the i.MX53.

Hardware Design and Bring-up

i.MX53 System Development User’s Guide, Rev. 2

I-2 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 1-1

Chapter 1
Design Checklist

This chapter provides a design checklist for i.MX53-based systems. The design checklist contains
recommendations for optimal design. Where appropriate, the checklist also provides an explanation so that
users have a greater understanding of why certain techniques are recommended. All supplemental tables
referenced by the checklist appear following the design checklist table.

Table 1-1. Design Checklist

Check
Box

Recommendation Explanation/Supplemental Recommendations

DDR Recommendations

1. Tie DDR_VREF to a precision external resistor divider
with a resistor to GND and a resistor to
NVCC_EMI_DRAM.

When using DDR, the nominal reference voltage must be
half of the NVCC_EMI_DRAM supply. The resistors must
be sized to account for the i.MX53 DDR_VREF input
current plus memory input current. This current drawn
from the divider affects the reference voltage. See
Table 1-2.
Also consider:
 • Shunting each resistor with a closely-mounted 0.1 µF

capacitor. The decouple cap connected in parallel with
the resistor connected to NVCC_EMI_DRAM may not
be required. This depends on the layout and the
additional supply.

 • Bypassing Vref at source and destinations.

2. Use the following values for the DRAM calibration
input:
 • For DDR2, connect 300 1% to GND.
 • For DDR3, connect 240 1% to GND.
 • For LPDDR2, connect 240 1% to GND.
 • For LVDDR2, connect 300 1% to GND.

The DRAM_CALIBRATION input requires an external
resistor used as reference during DRAM output buffer
driver calibration. This resistor must be mounted close to
the associated BGA ball.

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

1-2 Freescale Semiconductor

EIM Recommendations

3. When EIM boot signals are used as the system’s EIM
signals or GPIO outputs after boot, use a passive resistor
network to select the desired boot mode for development
boards.

Because only resistors are used, EIM bus loads can
cause current drain, leading to higher (false) supply
current measurements. Each EIM boot signal should
connect to a series resistor to isolate the bus from the
resistors and/or switchers. See Figure 1-1 for the
implementation. Each configured EIM boot signal sees
either a 14.7 k pull-down or a 4.7 k pull-up. For each
switch-enabled pulled-up signal, the supply is presented
with a 10 k current load.
The i.MX53 does not have on-chip keeper circuits on the
external boot inputs, allowing freedom to size boot
resistors larger than some previous i.MX devices.
Production product is booted from the on-chip fuses and
does not employ these external boot mode resistors.

4. To reduce incorrect boot-up mode selections, do one of
the following:
 • Use EIM boot interface lines as processor outputs.
 • If an EIM boot signal must be configured as an input,

isolate the EIM signal from the target driving source
with one analog switch and apply the logic value with a
second analog switch. Alternately, peripheral devices
with three-state outputs may be used. Ensure the
output is high-impedance during the boot up interval.

Using EIM boot interface lines as inputs may result in a
wrong boot up due to the source overcoming the pull
resistor value.
A peripheral device may require the EIM signal to have an
external or on-chip resistor to minimize signal floating. If
the usage of the EIM boot signal affects the peripheral
device, then an analog switch, open collector buffer, or
equivalent should isolate the path. A pull-up or pull-down
resistor at the peripheral device may be required to
maintain the desired logic level. Review the switch or
device data sheet for operating specifications.

5. Ensure EIM boot interface lines used as outputs are
not loaded down such that the level is interpreted as low
during power up, when the intent is to be a high level, or
vice versa.

—

I2C Recommendations

6. Verify the target I2C interface clock rates. Remember the bus can only operate as fast as the
slowest peripheral on the bus.

7. Verify the target I2C address range is supported and
not conflicting with other peripherals. If there is an
unavoidable address conflict, move the offending device
to another I2C port. See Table 1-3.

The i.MX53 supports up to three I2C ports.
If it is undesirable to move a conflicting device to another
I2C port, review the peripheral operation to see if it
supports re-mapping the addresses.

8. Do not place more than one set of pull-up resistors on
the I2C lines.

This can result in excessive loading. Good design
practice is to place a pair of pull-ups only on the
schematic page that has the i.MX53 symbol. Do not place
pull-ups on the pages with the I2C peripherals.

Table 1-1. Design Checklist (continued)

Check
Box

Recommendation Explanation/Supplemental Recommendations

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 1-3

JTAG Recommendations

9. Do not use external pull-up or pull-down resistors on
JTAG_TDO.

JTAG_TDO is configured with an on-chip keeper circuit
such that the floating condition is eliminated if an external
pull resistor is not present. An external pull resistor on
JTAG_TDO is detrimental.
See Table 1-5 for a summary of the JTAG interface.

10.Ensure that the on-chip pull-up/down configuration is
followed If external resistors are used with
non-JTAG_TDO signals. For example, do not use an
external pull-down on an input that has on-chip pull-up.

External resistors can be used with non-JTAG_TDO
signals, but they do not need to be used.
See Table 1-5 for a summary of the JTAG interface.

Clock Amplifier (CAMP) Recommendations

11. After initialization, disable unused clock amplifiers
(CAMPs) within the CCM registers
(CCM_CCR[CAMPx_EN] field).

CKIH1 and CKIH2 are inputs feeding CAMPs (clock
amplifiers) that have on-chip AC coupling, eliminating the
need for external coupling capacitors. The CAMPs are
enabled by default, but the main clocks feeding the
on-chip clock tree are sourced from XTAL/EXTAL upon
power up.
Using low jitter external oscillators to feed CKIH1 or
CKIH2 is not required, but it can advantageous if low jitter
or special frequency clock sources are required by
modules driven by CKIH1 or CKIH2.
See CCM chapter in the i.MX53 Reference Manual for
details on the respective clock trees.

12. Tie CKIH1/CKIH2 to GND if they are unused. If disabled, the on-chip CAMP output is low.

TVDAC Recommendations

13. Tie TVDAC_VREF to an external 1.05 k 1% resistor
to GND.

TVDAC_VREF determines the Triple Video DAC
(TVDAC) reference voltage. This resistor must be
mounted close to the associated BGA ball.

14. Bypass the TVDAC_COMP reference with an
external 0.1 µF capacitor tied to GND.

This capacitor must be mounted close to the associated
BGA ball.
If TV OUT is not used, float the COMP contact and
ensure the DACs are powered down by software.

15. External ESD (electro-static discharge) and EOS
(electrical overstress) protection is required at the
processor device contacts for the following signals:
 • TVDAC_IOB
 • TVDAC_IOG
 • TVDAC_IOR
 • TVCDC_IOB_BACK
 • TVCDC_IOG_BACK
 • TVCDC_IOR_BACK

TVDAC_IOB, TVDAC_IOG, TVDAC_IOR,
TVCDC_IOB_BACK, TVCDC_IOG_BACK, and
TVCDC_IOR_BACK are analog TV outputs.
If the TV outputs are not used, they may be floated or tied
to GND.

Table 1-1. Design Checklist (continued)

Check
Box

Recommendation Explanation/Supplemental Recommendations

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

1-4 Freescale Semiconductor

Miscellaneous Signal Recommendations

16. Tie FASTR_ANA and FASTR_DIG connections to
GND

FASTR_ANA and FASTR_DIG are reserved for
Freescale manufacturing use only.

17. Float TEST_MODE or tie it to GND. TEST_MODE is for Freescale factory use only. This
signal is internally connected to an on-chip pull-down
device.

18. Float the USB_H1_GPANAIO and
USB_OTG_GPANAIO outputs.

USB_H1_GPANAIO and USB_OTG_GPANAIO are
reserved for Freescale manufacturing use.

19. Connect SVCC and SVDDGP to test pads to facilitate
measurement of printed circuit board IR drop from
regulator to load.

The SVCC and SVDDGP sense lines provide the ability
to sense voltage levels at the BGA package on their
respective supplies. SVCC is used to monitor VCC and
SVDDGP for VDDGP.

20. For Ethernet access, the MAC address may be stored
in the processor’s fuse bank 1.

—

LVDS Recommendations

21. For the LVDS_BG_RES input:
 • Connect 28 k 1% to GND when the external resistor

option is chosen.
 • If LVDS is not used, this signal can be a no connect.

LVDS_BG_RES functions as reference for the LVDS
band-gap circuit. This resistor must be mounted close to
the associated BGA ball.

22. Connect NVCC_LVDS_BG to a 2.5 V supply though
a series 49.9 1% resistor. Mount this resistor close to
the associated BGA ball. Mount a 0.01 F decoupling
capacitor near the NVCC_LVDS_BG BGA contact.

NVCC_LVDS_BG functions as a source for the LVDS
band-gap circuit.

USB Recommendations

23. USB_H1_RREFEXT and USB_OTG_RREFEXT
require a separate external 6.04 k 1% resistors to GND.

USB_H1_RREFEXT and USB_OTG_RREFEXT
determine reference currents for USB PHY band gap
references that generate driver current. RREFEXT values
are critical as they affect most of transmitter parameters.
Additional recommendations for resistor connection:
 • The connection must be made through a short trace
 • The resistance of the connection line should be as low

as possible (< 1)
 • Both of the RREFEXT resistors and connections

should be placed away from noisy regions; Freescale
recommends 2x to 3x adjacent keep out and GND
plane immediately below the trace to reduce coupling.

24. Do not connect the VBUS contacts on the processor
directly to the VBUS contact on the associated USB
connector.

The user must employ a series 47 resistor followed with
a 1 F capacitor mounted directly at the processor VBUS
BGA ball. In addition, external ESD (electrostatic
discharge) and EOS (electrical overstress) protection is
required at the VBUS BGA ball.

Table 1-1. Design Checklist (continued)

Check
Box

Recommendation Explanation/Supplemental Recommendations

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 1-5

25. USB I/O D+, D–, and UID contacts on the i.MX device
require external ESD (electro-static discharge) damage
protection.

—

Power Recommendations

26. Comply with the power-up and power-down
sequence guidelines as described in the data sheet to
guarantee reliable operation of the device.

Any deviation from these sequences may result in the
following situations:
 • Excessive current during power-up phase
 • Prevention of the device from booting
 • Irreversible damage to the i.MX53 processor

(worst-case scenario)

27. Bypass both VDD_DIG_PLL (sourced from the
on-chip 1.2 V linear regulator) and VDD_ANA_PLL
(sourced from the on-chip 1.8 V linear regulator) with
separate 10 F low-ESR capacitors to GND.

There is no need to drive these supplies externally, and
external supplies are not recommended due to possible
noise introduction, power-up sequence issues, or other
complications. The bypass capacitor must be included
whether VDD_DIG_PLL or VDD_ANA_PLL is sourced
on-chip or driven externally.
Refer to the data sheet for the applicable external supply
levels (if driven externally). A 0.1 f or 0.22 F capacitor
can be added in parallel to each larger capacitor when an
external voltage source is used. The 10 F minimum
value must take into account temperature and expected
capacitor aging.

28. VDD_REG must be decoupled with a 22 F capacitor
to GND. Mount the VDD_REG capacitor close to the
associated BGA ball. If two capacitors are utilized, mount
the smaller capacitor (such as 0.22 F) closer to the
associated ball.

VDD_REG is the power supply input for the on-chip linear
voltage regulators that supply the PLL digital and analog
sections.

29. To configure CKIL and ECKIL as an oscillator, tie a
32.768 kHz crystal with <70 k ESR (equivalent series
resistance) and approximately 9 pF load between CKIL
and ECKIL. Do not use an external biasing resistor.

The capacitors implemented on either side of the crystal
are about twice the crystal load capacitor. To hit the target
oscillation frequency, board capacitors need to be
reduced to compensate for board and chip parasitic
capacitance, so 15–16 pF could be employed. The
integrated oscillation amplifier has an on-chip self-biasing
scheme, but is high-impedance (relatively weak) to
minimize power consumption.
Care must be taken to limit parasitic leakage from CKIL
and ECKIL to either power or ground (> 20 M) as this
negatively affects the amplifier bias and causes a
reduction of startup margin.
Use short traces between the crystal and the processor,
with a ground plane under the crystal, load capacitors,
and associated traces.
Typically CKIL and ECKIL should bias to approximately
0.5 V

Table 1-1. Design Checklist (continued)

Check
Box

Recommendation Explanation/Supplemental Recommendations

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

1-6 Freescale Semiconductor

30. If feeding an external clock into the device, CKIL can
be driven DC-coupled with ECKIL floated.

The logic high level driven into CKIL should be
approximately NVCC_SRTC_POW. Do not exceed
NVCC_SRTC_POW or damage/malfunction may occur.
The CKIL signal should not be driven if the
NVCC_SRTC_POW supply is off. This can lead to
damage or malfunction.
Driving ECKIL is allowed but is not optimum because
ECKIL is the output of the on-chip amplifier.

31. The user should place a 24 MHz fundamental-mode
crystal across XTAL/EXTAL. The crystal must be rated for
a maximum drive level of 100 W or higher. An ESR of
80 or less is recommended. Freescale BSPs (board
support packages) software requires 24 MHz on EXTAL.

If no TV encoding is required, the tolerance limitation is
due to USB and a crystal with tolerance up to ±150 ppm
(includes aging) may be used. For use of standard
definition TV-out, tolerance up to ±50 ppm may be used.

The crystal can be eliminated if an external oscillator is
available. In this case, EXTAL must be directly driven by
the external oscillator and XTAL is floated. The EXTAL
signal level must swing from NVCC_OSC to GND. If the
clock is used for USB, then there are strict jitter
requirements: < 50 ps peak-to-peak below 1.2 MHz and
< 100 ps peak-to-peak above 1.2 MHz for the USB PHY.
The COSC_EN bit in the CCM (Clock Control Module)
must be cleared to put the on-chip oscillator circuit in
bypass mode which allows EXTAL to be externally driven.
COSC_EN is bit 12 in the CCR register of the CCM.

Reset Recommendations

32. A reset switch may be wired to the i.MX53 POR_B,
which is a cold-reset negative-logic input that resets all
modules and logic in the IC.

The POR_B input must be asserted at power-up and
remain asserted until after the last power rail is at its
working voltage.

33. Typically, RESET_IN_B is wired to the JTAG reset
signal.
Alternately, connect POR_B to JTAG reset. In this case
assertion of JTAG reset reboots the processor (see
Table 1-6).

RESET_IN_B is a warm reset negative logic input that
resets all modules and logic except for the following:
 • Test logic (JTAG, IOMUXC, DAP)
 • SRTC
 • Memory repair—Configuration of memory repair per

fuse settings
 • Cold reset logic of WDOG—Some WDOG logic is only

reset by POR_B. See the WDOG chapter in the i.MX53
reference manual for details.

Table 1-1. Design Checklist (continued)

Check
Box

Recommendation Explanation/Supplemental Recommendations

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 1-7

SATA Recommendations

34. The impedance calibration process requires
connecting a 191 1% reference resistor on
SATA_REXT to ground.
Mount this resistor close to the associated BGA ball.

Module calibration consists of learning which internal
resistor calibration register state causes an internal,
digitally trimmed calibration resistor to best match the
impedance applied to the SATA_REXT. This calibration
register value is then supplied to all internal Tx and Rx
termination resistors.
For < 100 s during the calibration process, up to 0.3 mW
can be dissipated in the external SATA_REXT resistor. At
other times, no power is dissipated in the SATA_REXT
resistor.

35. For BOOT_MODE1 and BOOT_MODE0, use one of
the following options:
 • Achieve logic 0 with any of these three options: tie to

GND through any size external resistor, tie directly to
GND, or float.

 • For logic 1, the options are: tie directly to
NVCC_RESET or tie to NVCC_RESET through an
external resistor 10 k. A value of 4.7 k is
preferred in high-noise environments.

 • If switch control is desired, use 4.7 k to 68 k
pull-down resistors and a SPST switch to
NVCC_RESET.

Boot inputs BOOT_MODE1 and BOOT_MODE0 each
have on-chip pull-down devices with a nominal value of
100 kand a projected minimum of 60 k.

Table 1-1. Design Checklist (continued)

Check
Box

Recommendation Explanation/Supplemental Recommendations

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

1-8 Freescale Semiconductor

1.1 Boot Configuration Bus Isolation Resistors

Figure 1-1 shows the boot configuration bus isolation resistors referenced in recommendation 3.

Figure 1-1. Boot Configuration Bus Isolation Resistors

1.2 DDR Reference Circuit

Table 1-2 is a resistor chart (see recommendation 1). The recommendations are appropriate for designs
with DDR memory chips with a maximum Vref input current of 2 A each.

Table 1-2. DDR Vref Resistor Sizing Guideline

Number of DRAM Packages with
2 A Vref Input Current

Resistor Divider Value
(2 resistors)

2 1.21 k 1%

2 1.54 k 0.5%

2 2.32 k 0.1%

4 768 1%

SW4_3V3

SW4_3V3

R
2

0

R
4

0

R
8

0

R
9

0

Bus
Isolation
Resistors

R
1

1

0

R
1

0

D
N

P

R
3

0

D
N

P

R
1

0

0

R
5

0

D
N

P

R
1

3

0

D
N

P

R
1

2

0

D
N

P

R
7

0

D
N

P

BT_C FG1_0

R
6

0

D
N

P

IMX_LDO_1V8

EIM_A21
EIM_A20
EIM_A19
EIM_A18
EIM_A17BT_C FG1_2

BT_C FG1_3

EIM_A16
EIM_LBA

EIM_A22BT_C FG1_7

BT_C FG3_3
BT_C FG3_2

BT_C FG1_6
BT_C FG1_5

BT_C FG2_6
BT_C FG2_5
BT_C FG2_4
BT_C FG2_3
BT_C FG2_2

BT_C FG3_5
BT_C FG3_4

BT_C FG1_4

BT_C FG1_1

BT_C FG2_7

EIM_D A8
EIM_D A9
EIM_D A10

BT_C FG3_7
BT_C FG3_6

R344.7K

BT_C FG3_1

EIM_D A6
EIM_D A7

R264.7K

R144.7K

R364.7K

R174.7K

R204.7K
R214.7K

R154.7K

R184.7K

R314.7K

R234.7K

R254.7K

R334.7K

R354.7K

R274.7K

R194.7K

R164.7K

R304.7K
EIM_D A5

R324.7K

R224.7K

EIM_D A4

EIM_EB1
EIM_D A0
EIM_D A1
EIM_D A2
EIM_D A3

R244.7K

EIM_EB0

EI M_LBA

EIM_DA3
EIM_DA2
EIM_DA1

EIM_DA6

EIM_DA4

EIM_DA0

R291.0K

EIM_DA5

EIM_DA9
EIM_DA8
EIM_DA7

BOOT_MOD E1
R281.0K

EI M_A17

EI M_EB1

EIM_DA10

EI M_A20
EI M_A19
EI M_A18

BOOT_MOD E0

BOOT_MODE1
BOOT_MODE0

EI M_A21
EI M_A22

EI M_A16

EI M_EB0

SW4_3V3

S1

SW _DI P-10/SM

1 2 3 4 5 6 7 8 9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

1
9

2
0

RN 3 10K

1
2
3
4

5

6
7
8
9

10

RN 1 10K

1
2
3
4

5

6
7
8
9

10

RN 2 10K

1
2
3
4

5

6
7
8
9

10

GN D

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 1-9

1.3 Avoiding I2C Conflicts

Table 1-3 shows a spreadsheet for avoiding avoid I2C conflicts (see recommendation 7).

Note that there are no slave address conflicts. However, the shaded cell does call out a potential bus speed
issue. The AM-FM tuner limits the maximum bus rate to 250 kbps, and the bus data rate cannot exceed the
slowest peripheral on the bus, regardless of which peripheral is being accessed.

If the system cannot tolerate the 250 kbps rate for proper operation, the AM-FM tuner must be moved to
another I2C port. If the I2C bus rate exceeds the AM-FM tuner module’s maximum bus rate, the I2C bus
operation may fail or become unpredictable.

Assuming the system can function properly with a reduced bus rate of 250 kbps, Table 1-4 shows a
possible I2C port usage scenario.

4 1 k 0.5%

4 1.5 k 0.1%

Table 1-3. I2C Bus Example Spreadsheet

Peripheral Bus Activity Level Speed (kbps)
Slave Addresses Supported on

the Peripheral
(hex)

Selected System
Address (hex)

PMIC Low 400 68 68

Port Expander Low 400 30, 32, 34 30

AM-FM Tuner Med 250 C0, C2, C4, C6 C0

A/D Converter Med 400 40, 42 40

Audio CODEC Low 400 90, 92, 94, 96 90

Table 1-4. I2C Port Usage Scenario

i.MX53 I2C Ports Ball Name Function Speed (kbps)

Port 1

Port 1

Port 2 KEY_ROW3 I2C2_SDA 250

Port 2 EIM_EB2 I2C2_SCL 250

Port 3

Port 3

Table 1-2. DDR Vref Resistor Sizing Guideline (continued)

Number of DRAM Packages with
2 A Vref Input Current

Resistor Divider Value
(2 resistors)

Design Checklist

i.MX53 System Development User’s Guide, Rev. 2

1-10 Freescale Semiconductor

1.4 JTAG Signal Termination

Table 1-5 is a JTAG termination chart (see recommendation 9 and recommendation 10).

Table 1-6 shows additional JTAG signals that are not required for the processor’s JTAG operation (see
recommendation 33).

Table 1-5. JTAG Interface Summary

JTAG Signal i.MX53 I/O Type
On-Chip Termination

to NVCC_JTAG or GND
External Termination

JTAG_TCK Input 100 k pull-down Not required
Can use 10 k pull down

JTAG_TMS Input 47 k pull-up Not required
Can use 10 k pull up

JTAG_TDI Input 47 k pull-up Not required;
Can use 10 k pull up

JTAG_TDO 3-state output Keeper Do not use pull up or pull down

JTAG_TRSTB Input 47 k pull up Not required
Can use 10 k pull up

JTAG_MOD Input 100 k pull up Required
Use 0 to 6.8 k pull down

Table 1-6. Additional JTAG Signals

JTAG Signal
System/Target

Pin Type
Requirements or Recommendations Discussion

JTAG_RST_B Driven from ARM
emulator

When utilized:
 • Ensure the proper voltage levels.
 • Ensure connection point is an open-drain

or wired-OR (diode-OR) to alleviate
contention.

 • Install pull-up.

This signal allows the emulator to perform
“Target Reset” from the emulator keyboard
commands.

JTAG_DE_B I/O from ARM
emulator

Employ a 10 k pull-up for general emulator
usage because this signal is tagged as
active-low logic.

This signal functions as a “Debug Request”
and “Debug Acknowledge” between the
emulator and target. Consult the emulator
documentation for proper target design
usage.

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-1

Chapter 2
i.MX53 Layout Recommendations

This chapter provides recommendations to assist design engineers with the correct layout of their
i.MX53x-based system. The majority of the chapter discusses the implementation of the DDR interface,
but it also provides recommendation for power, the TV encoder, SATA, LVDS, reference resistors, and
ESD and related emissions.

This chapter uses the i.MX53 Quick Start board as its reference when illustrating the key concepts. Refer
to the existing i.MX53 Quick Start board layout files as a companion to this chapter.

2.1 Basic Design Recommendations

The i.MX53 processor comes in a 19 × 19 mm package with 0.8 mm ball pitch. The ball-grid array
contains 23 rows and 23 columns, making it a 529 ball BGA package. For detailed information about the
package, see the i.MX53 data sheet.

Figure 2-1 provides an illustration of the ball-grid array and Figure 2-2 illustrates additional package
information.

Figure 2-1. i.MX53 Ball-Grid Array

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-2 Freescale Semiconductor

Figure 2-2. i.MX53 Package Information

Maintaining the recommended footprint of a 12 mils pad, which allows an air gap of 19.5-mils between
pads, is critical for ease of fanout.

If using the Allegro tool, optimal practice is to use the footprint as created by Freescale. If not using the
Allegro tool, use the Allegro footprint export feature (supported by many tools). If export is not possible,
create the footprint as per the package mechanical dimensions outlined in the product data sheet.

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-3

2.1.1 Fanout

Figure 2-3 shows the fanouts for the i.MX53 for two different layers.

Figure 2-3. i.MX53 Fanouts

The fanout scheme creates a four quadrant structure that facilitates the placement of decoupling capacitors
on the bottom side of the PCB. This keeps them closer to the power balls, which is critical for minimizing
inductance and ensuring high-speed transient current demand by the processor.

A correct via size is critical for preserving adequate routing space. The recommended geometry for the via
pads is: pad size 16 mils and drill 8 mils.

The constraints for the trace size may depend on a number of factors, such as the board stackup and
associated di-electric and copper thickness, required impedance, and required current (for power traces).
On the Freescale reference design, the minimum trace width of 3 mils is used for the DDR routing.

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-4 Freescale Semiconductor

2.2 Stackup

High-speed design requires a good stackup in order have the right impedances for the critical traces. This
also determines the constraints for routing and spacing.

The recommended stackup is 8-layers, with the layer stack as shown in Figure 2-4:

Figure 2-4. Layer Stack

Figure 2-5 shows a working stack-up implementation:

Figure 2-5. Stackup Requirements

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-5

2.3 DDR Connection Information

The DDR2 and DDR3 interface is one of the most critical for i.MX53 routing. It requires having the
controlled impedance for the single ended traces at 50 and for the differential pairs at 100

Figure 2-6 shows the block diagram of the DDR2/DDR3 interface with the i.MX53 from the reference
design boards.

Figure 2-6. Connection Between i.MX53 and DDR2 and DDR3

Figure 2-7 illustrates the physical connection scheme for both top and bottom placement of the DDR chips.
It is very important to place the memories as close to the processor as possible to reduce trace capacitance

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-6 Freescale Semiconductor

and keep the propagation delay to the minimum. Follow the reference board layout as a guideline for
memory placement and routing.

Figure 2-7 shows the final placement of the memories and the decoupling capacitors. The blue figure
shows the top layer and the red figure shows the bottom layer.

Figure 2-7. Final Placement of Memories and Decoupling Capacitors

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-7

2.4 DDR2 and DDR3 Routing Rules

DDR2 and DDR3 routing can be accomplished two different ways: routing all signals at the same length
or routing by byte group.

Routing all signals at the same length can be more difficult at first because of the tight space between the
DDR and the processor and the large number of required interconnects. However, it is the better way
because it makes signal timing analysis straightforward. Table 2-1 explains how to route the signals by the
same length.

Table 2-1. DDR2/DDR3 Routing by the Same Length

Signals
Absolute Length Limits

Recommendations
Min Max

DRAM_SDCLK[1:0]
DRAM_SDCLK_B[1:0]

— 3 inches Match the differential trace
pairs ± 5 mils. Clock trace
should be as short as
possible.

DRAM_SDQS[3:0]
DRAM_SDQS_B[3:0]

Clock (min) - 50 mils Clock (min) Match the differential trace
pairs ±10 mils, as close
as possible to Clock (min)

Address and Bank Clock (min) - 200 mils Clock (min) For best results, minimum
length for all signals
should be Clock (min) - 50
mils.

Control signals Clock (min) - 200 mils Clock (min)

Data and Buffer Clock (min) - 200 mils Clock (min)

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-8 Freescale Semiconductor

Routing by byte group requires better control of the signals of each group. It is also a little more difficult
for analysis and constraint settings. However, its advantage is that the constraint to match lengths can be
applied to a smaller group of signals. This is often more achievable once the constraints are properly set.
Table 2-2 explains how to route the signals by byte group.

Finally, the impedance for the signals should be 50 for singled ended and 100 for differential pairs.

Table 2-2. DDR2/DDR3 Routing by Byte Group

i.MX53 Signals Group
Absolute Length Limits

Recommendations
Min Max

DRAM_SDCLK[1:0]
DRAM_SDCLK_B[1:0]

Clock — 2.25 inches Match the differential trace pairs ± 5 mils.
Clock trace should be as short as possible.

DRAM_A[15:0]
DRAM_SDBA[2:0]
DRAM_RAS
DRAM_CAS
DRAM_SDWE

Address
and Command

Clock (min) – 200 Clock (min) For best results, minimum length for all
signals should be Clock (min) -50 mils.

DRAM_CS[1:0]
DRAM_SDCKE[1:0]
DRAM_SDODT[1:0]

Control
Signals

Clock (min) - 200
mils

Clock (min) For best results, minimum length for all
signals should be Clock (min) -50 mils.

DRAM_SDQS0
DRAM_SDQS_B0

Byte Lane 0
DQS Strobe

— Clock (min) Match the differential trace pair ± 10 mils,
as short as possible

DRAM_D[7:0]
DRAM_DQM0

Byte Lane 0 DRAM_SDQS0
(min) - 200 mils

DRAM_SDQ
S0 (min)

For best results, minimum length for all
signals should be DRAM_SDQS0 (min) -50
mils.

DRAM_SDQS1
DRAM_SDQS_B1

Byte Lane 1
DQS Strobe

— Clock (min) Match the differential trace pair ± 10 mils,
as short as possible.

DRAM_D[15:8]
DRAM_DQM1

Byte Lane 1 DRAM_SDQS1
(min) -200 mils

DRAM_SDQ
S1 (min)

For best results, minimum length for all
signals should be DRAM_SDQS1(min) -50
mils.

DRAM_SDQS2
DRAM_SDQS_B2

Byte Lane 2
DQS Strobe

— Clock (min) Match the differential trace pair ± 10 mils,
as short as possible.

DRAM_D[23:16]
DRAM_DQM2

Byte Lane 2 DRAM_SDQS2
(min) -200 mils

DRAM_SDQ
S2 (min)

For best results, minimum length for all
signals should be DRAM_SDQS2(min) -50
mils.

DRAM_SDQS3
DRAM_SDQS_B3

Byte Lane 3
DQS Strobe

— Clock (min) Match the differential trace pair ± 10 mils,
as short as possible.

DRAM_D[31:24]
DRAM_DQM3

Byte Lane 3 DRAM_SDQS3
(min) -200 mils

DRAM_SDQ
S3 (min)

For best results, minimum length for all
signals should be DRAM_SDQS3 (min) -50
mils.

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-9

2.5 Routing Topologies

The i.MX53 can handle up to 2 Gbytes of DRAM memory. The i.MX53 DDR routing needs to be
separated into three groups: data, address, and control. Each group has its own method of routing from
i.MX53 to DDR memory. The DDR layout has 1 Gbyte and 2 Gbyte options.

2.5.1 1 Gbyte Topologies

The 1 Gbyte option has four memories.

For good practice, adhere to the following recommendations:

• Have a balanced routing for the “T” connection.

• Avoid having many layer transitions.

• Do not cross split planes during the routing.

Figure 2-8 shows the topology for the ADDR/CMD/CTRL signals. It has a tree topology. Note the
balanced T routing.

Figure 2-8. Topology for ADDR/CMD/CTRL Signals

DDR Top

i.MX53

DDR Top

DDR Bottom

DDR Bottom

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-10 Freescale Semiconductor

The routing for the data groups depend on the bus size. Figure 2-9 shows the point-to-point connection,
with routing by byte group.

Figure 2-9. Topology of Data Group, Point-to-Point Connection

If the data bus is two byte groups by memory, the topology is fly-by, as shown in Figure 2-10.

Figure 2-10. Topology for Data Bus of Two Byte Groups by Memory

i.MX53

DDR Top

DDR Top

DDR Bottom

DDR Bottom

i.MX53

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-11

Figure 2-11 shows the clock routing topology. Clock routing uses a fly-by topology. The i.MX53 provides
two sets of clocks that are identical in timing and drive. This allows the user to select either clock pair to
route to the DDR devices. Thus, routing and clock loading is minimized.

Figure 2-11. Clock Routing Topology

2.5.2 2 Gbyte Topologies

The following diagrams show the 2 Gbyte topologies. This option has eight memories and requires the
addition of a termination resistor.

The ADDR/CMD signals should be routed as shown in Figure 2-12

Figure 2-12. ADDR/CMD Signal Routing

DDR Top

DDR Top

DDR Bottom

DDR Bottom

i.MX53

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-12 Freescale Semiconductor

Figure 2-13 shows the CTRL signals topology:

Figure 2-13. CTRL Signal Topology

Figure 2-14 shows the data bus routing topology.

Figure 2-14. Data Bus Routing Topology

Figure 2-15 shows the clock routing topology.

Figure 2-15. Clock Routing Topology

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-13

2.5.3 DDR2 Routing Examples

Figure 2-16–Figure 2-21 show examples for the routing of DDR2 memories. These figures are a guideline
of the routing by layer.

Figure 2-16. Top DDR2 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals Purple Data Byte Group 1

Soft Blue Data Byte Group 3 White Clocks

Soft Pink Data Byte Group 0 Blue DDR_1V8

Green Data Byte Group 2 Pink DDR_VREF

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-14 Freescale Semiconductor

Figure 2-17. Internal 1 DDR2 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals Purple Data Byte Group 1

Soft Blue Data Byte Group 3 White Clocks

Soft Pink Data Byte Group 0 Blue DDR_1V8

Green Data Byte Group 2 Pink DDR_VREF

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-15

Figure 2-18. Power Plane 1 DDR2 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals Purple Data Byte Group 1

Soft Blue Data Byte Group 3 White Clocks

Soft Pink Data Byte Group 0 Blue DDR_1V8

Green Data Byte Group 2 Pink DDR_VREF

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-16 Freescale Semiconductor

Figure 2-19. Power Plane 2 DDR2 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals Purple Data Byte Group 1

Soft Blue Data Byte Group 3 White Clocks

Soft Pink Data Byte Group 0 Blue DDR_1V8

Green Data Byte Group 2 Pink DDR_VREF

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-17

Figure 2-20. Internal 2 DDR2 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals Purple Data Byte Group 1

Soft Blue Data Byte Group 3 White Clocks

Soft Pink Data Byte Group 0 Blue DDR_1V8

Green Data Byte Group 2 Pink DDR_VREF

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-18 Freescale Semiconductor

Figure 2-21. Bottom DDR2 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals Purple Data Byte Group 1

Soft Blue Data Byte Group 3 White Clocks

Soft Pink Data Byte Group 0 Blue DDR_1V8

Green Data Byte Group 2 Pink DDR_VREF

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-19

Table 2-3 shows the total etch of the signals for the byte 0 and byte 1 groups.

Table 2-3. Total Signal Etch (DDR2) 1

1 Layout is an example, using 1000 mils for the clock.

Signals Length (Mils)

DRAM_D0 667.16

DRAM_D1 663.66

DRAM_D2 666.01

DRAM_D3 663.89

DRAM_D4 662.69

DRAM_D5 663.41

DRAM_D6 668.31

DRAM_D7 664.02

DRAM_DQM0 663.5

DRAM_SDQS0 663.62

DRAM_SDQS0_B 668.24

DRAM_D8 668.57

DRAM_D9 663.69

DRAM_D10 664.28

DRAM_D11 666.39

DRAM_D12 664.75

DRAM_D13 668.45

DRAM_D14 664.65

DRAM_D15 663.07

DRAM_DQM1 664.08

DRAM_SDQS1 667.66

DRAM_SDQS1_B 663.07

DRAM_SDCLK0 1657.15

DRAM_SDCLK0_B 1655.22

DRAM_SDCLK1 1657

DRAM_SDCLK1_B 1658.81

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-20 Freescale Semiconductor

2.5.4 2-Gbyte Routing Examples

Figure 2-22–Figure 2-27 show examples for the routing of 2-Gbyte DDR memories. These figures are a
guideline of the routing by layer.

NOTE

The Quick Start board referenced in the beginning of this chapter does not
use 8 DDR chips. The following screen shots are from the validation board
layout.

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-21

Figure 2-22. Top 8-DDR3 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals White Clocks

Soft Blue Data Byte Group 3 Blue DDR_1.5V

Soft Pink Data Byte Group 0 Pink DDR_VREF

Green Data Byte Group 2 Orange DDRQ_1.5V

Purple Data Byte Group 1 White Clocks

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-22 Freescale Semiconductor

Figure 2-23. Internal 1 8-DDR3 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals White Clocks

Soft Blue Data Byte Group 3 Blue DDR_1.5V

Soft Pink Data Byte Group 0 Pink DDR_VREF

Green Data Byte Group 2 Orange DDRQ_1.5V

Purple Data Byte Group 1 White Clocks

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-23

Figure 2-24. Power Plane 1 8-DDR3 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals White Clocks

Soft Blue Data Byte Group 3 Blue DDR_1.5V

Soft Pink Data Byte Group 0 Pink DDR_VREF

Green Data Byte Group 2 Orange DDRQ_1.5V

Purple Data Byte Group 1 White Clocks

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-24 Freescale Semiconductor

Figure 2-25. Power Plane 2 8-DDR3 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals White Clocks

Soft Blue Data Byte Group 3 Blue DDR_1.5V

Soft Pink Data Byte Group 0 Pink DDR_VREF

Green Data Byte Group 2 Orange DDRQ_1.5V

Purple Data Byte Group 1 White Clocks

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-25

Figure 2-26. Internal 2 8-DDR3 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals White Clocks

Soft Blue Data Byte Group 3 Blue DDR_1.5V

Soft Pink Data Byte Group 0 Pink DDR_VREF

Green Data Byte Group 2 Orange DDRQ_1.5V

Purple Data Byte Group 1 White Clocks

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-26 Freescale Semiconductor

Figure 2-27. Bottom 8-DDR3 Routing

Color Legend

Color Meaning Color Meaning

Yellow ADD/CMD/CTRL Signals White Clocks

Soft Blue Data Byte Group 3 Blue DDR_1.5V

Soft Pink Data Byte Group 0 Pink DDR_VREF

Green Data Byte Group 2 Orange DDRQ_1.5V

Purple Data Byte Group 1 White Clocks

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-27

Table 2-4 shows the total etch of the signals for the byte 0 and byte 1 groups.

2.6 Power Recommendations

The following recommendations apply to the VREF voltage reference plane.

• Use 30 mils trace between de coupling cap and destination.

• Maintain a 25 mils clearance from other nets.

• Isolate VREF and/or shield with ground.

Table 2-4. Total Signal Etch (DDR3)

Signals Length (Mils)

DRAM_D0 616.034

DRAM_D1 612.886

DRAM_D2 613.808

DRAM_D3 612.701

DRAM_D4 617.177

DRAM_D5 614.486

DRAM_D6 614.743

DRAM_D7 613.145

DRAM_DQM0 612.794

DRAM_SDQS0 615.633

DRAM_SDQS0_B 614.36

DRAM_D8 615.063

DRAM_D9 611.525

DRAM_D10 616.758

DRAM_D11 614.928

DRAM_D12 614.521

DRAM_D13 612.822

DRAM_D14 612.794

DRAM_D15 614.369

DRAM_DQM1 614.705

DRAM_SDQS1 610.26

DRAM_SDQS1_B 617.892

DRAM_SDCLK0 1172.235

DRAM_SDCLK0_B 1174.757

DRAM_SDCLK1 1176.5

DRAM_SDCLK1_B 1175.963

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-28 Freescale Semiconductor

• Decouple using distributed 0.01 F and 0.1 F capacitors by the regulator, controller, and devices.

• Place one 0.1 F near the source of VREF, one near the VREF pin on the controller, and two
between the controller and the devices.

The following recommendations apply to the VTT voltage reference plane.

• Place the VTT island on the component side layer at the end of the bus behind the DRAM devices.

• Use a wide-island trace for current capacity.

• Place VTT generator as close to termination resistors as possible to minimize impedance
(inductance).

• Place one or two 0.1 F decoupling capacitor by each termination RPACK on the VTT Island to
minimize the noise on VTT. Other bulk (10–22 F) decoupling is also recommended to be placed
on the VTT Island.

2.7 TV Encoder Recommendations

Use the following recommendations for the TV encoder.

• For the TV/VGA interface, the IOR, IOG, and IOB signals must have 75- imepedance.

2.8 SATA Recommendations

Use the following recommendations for the SATA.

• SATA differential pairs should have a differential impedance of 100.

• Each differential pair should be length matched to ± 5 mils.

• Follow standard high-speed differential routing rules for signal integrity.

2.9 LVDS Recommendations

Use the following recommendations for the LVDS.

• Follow standard high-speed differential routing rules for signal integrity.

• Each differential pair should be length matched to ± 5 mils.

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 2-29

Figure 2-28 shows the dimensions of a stripline and microstrip pair. Figure 2-29 shows the differential pair
routing.

Figure 2-28. Microstrip and Stripline Differential Pair Dimensions

Figure 2-29. Differential Pair Routing

• The space between two adjacent differential pairs should be greater than or equal to twice the space
between the two individual conductors.

• The skew between LVDS pairs should be within the minimum recommendation (± 100 mil).

2.10 Reference Resistors

Freescale reference designs have resistors that are used for reference in the interfaces. These resistors need
to be in the following pins:

• USB_H1_RREFEXT

i.MX53 Layout Recommendations

i.MX53 System Development User’s Guide, Rev. 2

2-30 Freescale Semiconductor

• USB_OTG_RREFEXT

• SATA_REXT

• LVDS_BG_RES

• TVDAC_VREF

• DRAM_CALIBRATION

Freescale recommends the use of a resistor of 1% tolerance or better with a connection that is made
through a short trace. The resistance of the connecting trace should be as low as possible (< 1). The
ground return should be short and direct to the ground plane.

NOTE

The reference resistor and the connection should be placed away from noisy
regions. Noise induced on it may impact the internal circuit and degrade the
interface signals.

2.11 ESD and Radiated Emissions Recommendations

The PCB design should use 6 or more layers, with solid power and ground planes and the
recommendations for ESD immunity and radiated emissions performance are as follows:

• All components with ground chassis shields (USB jack, buttons, etc.) should connect the shield to
the PCB chassis ground ring.

• Ferrite beads should be placed on each signal line connecting to an external cable. These ferrite
beads must be placed as close to the PCB jack as possible.

NOTE

Ferrite beads should have a minimum impedance of 500 at 100 MHz with
the exception of the ferrite on USB_5V.

• Ferrite beads should NOT be placed on the USB D+/D– signal lines as this can cause USB signal
integrity problems. For radiated emissions problems due to USB, a common mode choke may be
placed on the D+/D– signal lines. However, in most cases, it should not be required if the PCB
layout is satisfactory. Ideally, the common mode choke should be approved for high speed USB
use or tested thoroughly to verify there are no signal integrity issues created.

• It is highly recommended that ESD protection devices be used on ports connecting to external
connectors. Refer to the reference schematic (available on the Freescale website) for detailed
information about ESD protection implementation on the USB and TV-E interfaces.

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 3-1

Chapter 3
Understanding the IBIS Model

This chapter explains how to use the IBIS (input output buffer information specification) model, which is
an Electronic Industries Alliance standard for the electronic behavioral specifications of integrated circuit
input/output analog characteristics. The model is generated in ACII text format and consists of multiple
tables that capture current vs. voltage (IV) and voltage vs. time (VT) characteristics of the buffer. IBIS
models are generally used to perform PCB-board-level signal integrity (SI) simulations and timing
analyses.

The IBIS model’s features are as follows:

• Supports fast chip-package-board simulation, with SPICE-level accuracy and faster than any
transistor-level model

• Provides the following for portable model data

— I/O buffers, series elements, terminators

— Package RLC parasitics

— Electrical board description

3.1 IBIS Structure and Content

An IBIS file contains the data required to model a component’s input, output, and I/O buffers behaviorally
in ASCII format. The basic IBIS file contains the following data:

• Header information regarding the file itself being modeled

• Information about the component, the package’s electrical characteristics, and the pin-to-buffer
model mapping (i.e., which pins are connected to which buffer models)

• The data required to model each unique input, output, and I/O buffer design on the component

IBIS models are component-centric, meaning they allow users to model an entire component rather than
only a particular buffer. Therefore, in addition to the electrical characteristics of a component’s buffers, an
IBIS file includes the component’s pin-to-buffer mapping and the electrical parameters of the component’s
package.

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

3-2 Freescale Semiconductor

3.2 Header Information

The first section of an IBIS file provides the basic information about the file and its data. Table 3-1 explains
the header information notation. Example 3-1 shows what header information looks like in an IBIS file.

Example 3-1. Header Information

[IBIS Ver] 4.0
[Comment Char] |_char
[File Name] imx53_19x19_to2_ver03.ibs
[File Rev] 03
[Date] Wed Nov 24 13:15:11 IST 2010
[Source]
[Notes] This model passed check w/t IBISCHK5 V5.0.3 utility.
 No errors were reported.
 8 warnings were reported: 4 of them relate to MIN DC
 endpoints, 2 relate to MIN/MAX VI curves, 2 relate to
 single model defined / model data reuse.
 All these warnings can be waived.

3.3 Component and Pin Information

The second section of an IBIS file is where the data book information regarding the component’s pinout,
pin-to-buffer mapping, and the package and pin electrical parameters is placed. Table 3-2 explains the
component and pin information notation, and Example 3-2 shows what it looks like in an IBIS file.

Table 3-1. Header Information

Keyword Required Description

[IBIS Ver] Yes Version of IBIS Specification this file uses.

[Comment char] No Change the comment character. Defaults to the pipe (|) character

[File Name] Yes Name of this file. All file names must be lower case. The file name extension for an IBIS file is .ibs

[File Rev] Yes The revision level of this file. The specification contains guidelines for assigning revision levels.

[Date] No Date this file was created

[Source] No The source of the data in this file. Is it from a data book? Simulation data? Measurement?

[Notes] No Component or file-specific notes.

[Disclaimer] No May be legally required

[Copyright] No The file’s copyright notice

Table 3-2. Component and Pin Information

Keyword Required Comment

[Component] Yes The name of the component being modeled. Standard practice has been to use the industry
standard part designation. Note that IBIS files may contain multiple [Component]
descriptions.

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 3-3

Example 3-2. Component and Pin Information

[Component] iMX53
[Manufacturer] FREESCALE
[Package]
| variable typ min max
R_pkg 0.2406012 0.0866665 0.3239850
L_pkg 3.72366nH 1.35844nH 6.31610nH
C_pkg 1.08882pF 0.40570pF 1.70556pF
|
[Pin] signal_name model_name R_pin L_pin C_pin
A1 GND GND NA NA NA
A2 GND GND NA NA NA
A3 GPIO_17 uhvio 0.314809 5.06836nH 1.34352pF
A4 GPIO_7 uhvio 0.306893 5.63292nH 1.11136pF
A5 GPIO_5 uhvio 0.295459 4.67265nH 1.18268pF
Model Information
The [Model Selector] keyword is a simple means by which several buffers can be made optionally
available for simulation at the same physical pin of the component.
[Pin] signal_name model_name R_pin L_pin C_pin
AA4 JTAG_TDI gpio 0.307112 5.51128nH 0.40126pF
…
[Model Selector] gpio
gpio_iods0hvf GPIO, 2.7V, Low Drive, Fast SR
gpio_iods0hvs GPIO, 2.7V, Low Drive, Slow SR

[Manufacturer] Yes The name of the component manufacturer

[Package] Yes This keyword contains the range (minimum, typical and maximum values) over which the
packages’ lead resistance, inductance, and capacitance vary (the R_pkg, L_pkg, and
C_pkg parameters).

[Pin] Yes This keyword contains the pin-to-buffer mapping information. In addition, the model creator
can use this keyword to list the R, L, and C data for each individual pin (R_pin, L_pin, and
C_pin parameters).

[Package Model] No If the component model includes an external package model (or uses the [Define Package
Model] keyword within the IBIS file itself), this keyword indicates the name of that package
model.

[Pin Mapping] No This keyword is used if the model creator wishes to include information on buffer power and
ground connections. This information may be used for simulations involving multiple outputs
switching.

[Diff Pin] No This keyword is used to associate buffers that should be driven in a complementary fashion
as a differential pair.

Table 3-2. Component and Pin Information (continued)

Keyword Required Comment

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

3-4 Freescale Semiconductor

3.4 Model Information

The [Model Selector] keyword provides a simple means by which several buffers can be made optionally
available for simulation at the same physical pin of the component, as shown in Example 3-3.

Example 3-3. Model Selector Keyword Example

[Pin] signal_name model_name R_pin L_pin C_pin
AA4 JTAG_TDI gpio 0.307112 5.51128nH 0.40126pF
…
[Model Selector] gpio
gpio_iods0hvf GPIO, 2.7V, Low Drive, Fast SR
gpio_iods0hvs GPIO, 2.7V, Low Drive, Slow SR
……

The [Model] keyword starts the description of the data for a particular buffer. While a buffer model can
appear quite complex, most buffers can be described using the following parameters and keywords:

• Parameters section

• Reference information

• IV keywords (see Figure 3-1)

• Vt keywords

Figure 3-1. Model IV Keywords’ Structure

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 3-5

3.4.1 Ramp and Waveform Keywords

Table 3-3 defines the keywords that provide the information about an output or I/O buffer, and
Example 3-4 shows what they look like in an IBIS file.

Eqn. 3-1

NOTE

The dV value is the 20% to 80% voltage swing of the buffer when driving
into the specified load, R_load (for [Ramp], this load defaults to 50). For
CMOS drivers or I/O buffers, this load is assumed to be connected to the
voltages defined by the [Voltage Range] keyword for falling edges and to
ground for rising edges.

Example 3-4. Ramp and Waveform Keywords

An example of ramp and waveform table from MX53 IBIS:
[Ramp]
| variable typ min max
dV/dt_r 0.4717/0.2207n 0.4714/0.3252n 0.5647/0.1323n
dV/dt_f 0.4676/0.1382n 0.4749/0.2495n 0.6009/0.1270n
R_load = 50.0000
|
[Rising Waveform]
R_fixture= 50.0000
V_fixture= 0.0
V_fixture_min= 0.0
V_fixture_max= 0.0
|time V(typ) V(min) V(max)
|
0.0S 67.3645uV 17.6030uV 38.0931uV
79.7191pS 67.3645uV 17.6030uV 38.0931uV
0.3871nS 67.3645uV 17.6030uV 38.0931uV
0.4395nS 67.3645uV 17.6030uV 38.0931uV
0.5059nS 67.3645uV 17.6030uV 38.0931uV

The [Ramp] keyword is always required, even if the [Rising Waveform] and [Falling Waveform] keywords
are used. However, the VT tables under [Rising Waveform] and [Falling Waveform] are generally
preferred to [Ramp] for the following reasons:

• VT data may be provided under a variety of loads and termination voltages

• VT tables may be used to describe transition data for devices as they turn on and turn off.

Table 3-3. Ramp and Waveform Keywords

Keyword Required Comment

[Ramp] Yes Basic ramp rate information, given as a dV/dt_r for rising edges and dV/dt_f for falling
edges, see Equation 3-1.

[Rising Waveform] No The actual rising (low to high transition) waveform, provided as a VT table.

[Falling Waveform] No The actual falling (high to low transition) waveform, provided as a VT table.

dV
dt
------- 20 % to 80% voltage swing

time taken to swing above voltage
--=

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

3-6 Freescale Semiconductor

• [Ramp] effectively averages the transitions of the device, without providing any details on the
shapes of the transitions themselves. All detail of the transition ledges would be lost.

The VT data should be included under two [Rising Waveform] and two [Falling Waveform] sections, each
containing data tables for a Vcc-connected load and a Ground-connected load (although other loading
combinations are permitted).

The most appropriate load is a resistive value corresponding to the impedance of the system transmission
lines the buffer will drive (own impedance). For example, a buffer intended for use in a 60 system is
best modeled using a 60 load (R_fixture).

Figure 3-2 shows how to interpret the model data.

Figure 3-2. Model Data Interpretation

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 3-7

3.5 Model Golden Waveforms

Golden waveforms are a set of waveforms simulated using known ideal test loads. They are useful for
verifying the accuracy of behavioral simulation results against the transistor level circuit model from
which the IBIS model parameters originated.

Figure 3-3 shows a generic test load network.

Figure 3-3. Generic Test Load Network

Table 3-4 explains the golden waveform keywords.

3.6 Naming Conventions for Model Names and Usage in i.MX53 IBIS
File

The model names are defined per each [Model selector]. The models may differ from each other by having
different parameters—such as voltage, drive strength, mode of operation, and slew rate. The mode of
operation, drive strength, and slew rate parameters are programmable by software (see Section 3.6.1,
“[Model Selector] ddr,”–Section 3.6.5, “List of Pins Not Modeled in the i.MX53 IBIS File,” for further
details).

Table 3-4. Golden Waveform Keywords

Keyword Required Comment

[Test Data] No • Provides a set of golden waveforms and references the conditions under which they
were derived.

 • Useful for verifying the accuracy of behavioral simulation results against the
transistor level circuit model from which the IBIS model parameters originated.

[Test Load] Yes • Defines a test load network and its associated electrical parameters for reference
by golden waveforms under the [Test Data] keyword.

 • If Test_load_type is Differential, the test load is a pair of the above circuits. If the
R_diff_near or R_diff_far subparameter is used, a resistor is connected between
the near or far nodes of the two circuits.

 • If Test_load_type is Single_ended, R_diff_near and R_diff_far are ignored.

| V_term1
| o-----------o
| | |
| \ \ receiver_model_name
| ______ / / ______
		NEAR Rp1_near \ \ Rp1_far FAR									
		\	/ /		\						
		\	Rs_near Ls_near	_____	Ls_far Rs_far		\				
		>-	---o--/\/\--@@@@--o----o--O_____)--o----o--@@@@--/\/\--o---	-	>						
		/				Td					/
		/		C1_near	\ Zo \	C2_far			/		
	______	=== === / / === ===	______								
	C2_near	\ \	C1_far								
		/ /									
			V_term2								
o--------------o o-----------o o--------------o											
	Rp2_near Rp2_far										

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

3-8 Freescale Semiconductor

3.6.1 [Model Selector] ddr

This model has the following parameters: voltage, mode of operation, drive strength, ODT enable/disable.

Mode of operation Controlled by the IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE[26:25] register
in IOMUXC (IOMUX controller) DDR_SEL bits.

Drive strength Controlled by bits 21–19 (DSE) of the following registers in IOMUXC (IOMUX
controller): IOMUXC_SW_PAD_CTL_GRP_ADDDS,
IOMUXC_SW_PAD_CTL_GRP_B0DS,
IOMUXC_SW_PAD_CTL_GRP_B1DS,
IOMUXC_SW_PAD_CTL_GRP_CTLDS,
IOMUXC_SW_PAD_CTL_GRP_B2DS,
IOMUXC_SW_PAD_CTL_GRP_B3DS,
IOMUXC_SW_PAD_CTL_PAD_DRAM_SDODT0,
IOMUXC_SW_PAD_CTL_PAD_DRAM_SDODT

ODT enable Controlled by bits [18:16], [14:12], [10:8], and [6:4] in ODTCTRL in ESDCTL.

Example 3-5. [Model Selector] ddr in IBIS File

ddr2hs_sel00_ds111_mio DDR, 1.8V, ddr2 mode, 43 Ohm driver impedance

ddr2hs_sel00_ds110_mio DDR, 1.8V, ddr2 mode, 50 Ohm driver impedance

ddr2hs_sel00_ds101_mio DDR, 1.8V, ddr2 mode, 60 Ohm driver impedance

Refer to the register description in the IOMUXC chapter in the i.MX53 reference manual for further details
about this model.

3.6.2 [Model Selector] gpio

This model has the following parameters: voltage, drive strength, slew rate.

Drive strength Controlled by the DSE bits (bits 2–1) in the
IOMUXC_SW_PAD_CTL_PAD_<pad name>.

Slew rate Controlled by the SRE bit (bit 0) in the IOMUXC_SW_PAD_CTL_PAD_<pad
name>.

Example 3-6. [Model Selector] gpio in IBIS File

[Model Selector] gpio
gpio_iods0hvf GPIO, 2.775V, Low Drive, Fast SR
gpio_iods0hvs GPIO, 2.775V, Low Drive, Slow SR
gpio_iods0lvf GPIO, 1.875V, Low Drive, Fast SR
gpio_iods0lvs GPIO, 1.875V, Low Drive, Slow SR

Refer to the register description in the IOMUXC chapter in the i.MX53 reference manual for further details
about this model.

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 3-9

3.6.3 [Model Selector] lvio

This model has no controllable parameters. Its associated pins are used as input only (for boot, reset) and
cannot be configured.

The listed drive strength and slew rate options in the IBIS file have no meaning.

3.6.4 [Model Selector] uhvio

This model has the following parameters: voltage, drive strength, slew rate.

Drive strength Controlled by DSE bits (bits 2-1) in the IOMUXC_SW_PAD_CTL_PAD_<pad
name> in IOMUXC chapter that matches the pin name.

Voltage The pin needs to be configured to match the voltage level that is supplied to it.
There is an automatic voltage detection for these pins, but it is recommended to
use the manual settings.

The voltage parameter is controlled by bit 18 (HVEOVERWRITE) and bit 17
(VDOEN) in the following registers in IOMUXC:

• IOMUXC_SW_PAD_CTL_PAD_NVCC_SD1

• IOMUXC_SW_PAD_CTL_PAD_NVCC_SD2

• IOMUXC_SW_PAD_CTL_PAD_NVCC_GPIO

• IOMUXC_SW_PAD_CTL_PAD_NVCC_PATA__0

• IOMUXC_SW_PAD_CTL_PAD_NVCC_PATA__2

• IOMUXC_SW_PAD_CTL_PAD_NVCC_FEC

• IOMUXC_SW_PAD_CTL_PAD_NVCC_NANDF

• IOMUXC_SW_PAD_CTL_PAD_NVCC_EIM__7

• IOMUXC_SW_PAD_CTL_PAD_NVCC_EIM__4

• IOMUXC_SW_PAD_CTL_PAD_NVCC_EIM__1

• IOMUXC_SW_PAD_CTL_PAD_NVCC_CSI__0

• IOMUXC_SW_PAD_CTL_PAD_NVCC_KEYPAD

Example 3-7. [Model Selector] uhvio in IBIS File

[Model Selector] uhvio

uhvio_iods0hvf UHVIO, 3.3V, Low Drive

uhvio_iods0lvf UHVIO, 1.875V, Low Drive

uhvio_iods1hvf UHVIO, 3.3V, Medium Drive

uhvio_iods1lvf UHVIO, 1.875V, Medium Drive

Refer to the register description in the IOMUXC chapter in the i.MX53 reference manual for further details
about this model.

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

3-10 Freescale Semiconductor

3.6.5 List of Pins Not Modeled in the i.MX53 IBIS File

Table 3-5 provides a list of analog or special interface pins that are not modeled in the i.MX53 IBIS file:

Table 3-6 provides a list of differential signals that are not represented in the current IBIS file. These
signals require special treatment to be considered during PCB design. Complementary signals are shown
in the same row.

3.7 Quality Assurance for the IBIS Models

The IBIS models are validated against the IBIS specification, which provides a way to objectively measure
the correlation of model simulation results with reference transistor-level spice simulation or
measurements.

Correlation The process of making a quantitative comparison between two sets of I/O buffer
characterization data, e.g. lab measurement vs. structural simulation or behavioral
simulation vs. Structural simulation.

Table 3-5. Unmodeled Analog or Special Interface Pins

Pin Name

CKIL TVDAC_COMP

ECKIL TVDAC_IOB

EXTAL TVDAC_IOG

XTAL TVDAC_IOR

CKIH1 TVDAC_VREF

CKIH2 USB_H1_GPANAIO

DRAM_CALIBRATION USB_H1_RREFEXT

FASTR_ANA USB_H1_VBUS

FASTR_DIG USB_OTG_GPANAIO

LVDS_BG_RES USB_OTG_ID

TVCDC_IOB_BACK USB_OTG_RREFEXT

TVCDC_IOG_BACK USB_OTG_VBUS

TVCDC_IOR_BACK SATA_REXT

Table 3-6. Unmodeled Differential Signals

Differential Signal Name

SATA_TXM SATA_TXP

SATA_RXM SATA_RXP

SATA_REFCLKM SATA_REFCLKP

USB_H1_DN USB_H1_DP

USB_OTG_DN USB_OTG_DP

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 3-11

Correlation Level A means for categorizing I/O buffer characterization data based on how much the
modeling engineer knows about the processing conditions of a sample component
and which correlation metric he or she used.

All models (GPIO, LPDDR2, UHVIO, LVDS, LVIO) have passed the following checks:

• Passes IBISCHK without errors or unexplained warnings

• Data for basic simulation checked

• Data for timing analysis checked

• Data for power analysis checked

• Correlated against Spice simulations

Validation reports can be provided upon demand.

3.8 References

Consult the following references for more information about the IBIS model.

• IBIS Open Forum (http://www.eda.org/ibis/)

The IBIS Open Forum consists of EDA vendors, computer manufacturers, semiconductor vendors,
universities, and end-users. It proposes updates and reviews, revises standards, and organizes
summits. It promotes IBIS models and provides useful documentation and tools.

• IBIS specification (http://eda.org/pub/ibis/ver5.0/)

http://www.eda.org/ibis/
http://eda.org/pub/ibis/ver5.0/

Understanding the IBIS Model

i.MX53 System Development User’s Guide, Rev. 2

3-12 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-1

Chapter 4
Setting up Power Management

This chapter discusses how to supply and interface the i.MX53 multimedia applications processor with
two different power management integrated circuits (PMICs): DA9053 from Dialog and LTC3589-1 from
Linear Technology.

The extra components required for the interface are as follows:

• For the DA9053 interface, add an extra regulator RT8010 to supply the 3.3 V USB power domain

• The LTC3589-1 can supply all power rails except DDR. The DDR rail can be supplied by the
LT3481. Both devices are available as automotive grade.

Section 4.6, “Additional Device Information,” provides additional product information about DA9053 and
LTC3589-1. It does not discuss RT8010 and LT3481 due to their simplicity.

4.1 i.MX53 Internal LDOs

The i.MX53 integrates two internal LDOs to supply each of the PLL voltage domains. These LDOs are
supplied from the VDD_REG pin. They deliver 1.3 V for the VDD_DIG_PLL and 1.8 V for the
VDD_ANA_PLL. The 1.3 V regulator outputs its voltage on the VDD_DIG_PLL pin. VDDA, VDDAL1,
and VP can be supplied externally from this pin. Place a ferrite to avoid noise coupling between voltage
domains.

The analog supply LDO can be software configured through the PLL1P8_VREG[4:0] bits for an output
voltage from 1.5 to 2.275 V in 25 mV steps, the default being 1.8 V, and has an output current capability
up to 125 mA. The digital supply LDO can be configured by means of the PLL1P2_VREG[4:0] bits from
0.8 to 1.575 V in 25 mV steps. Its default voltage at power up is 1.2 V and it is able to supply up to
125 mA. This LDO must be programmed to 1.3 V after boot up.

VDD_ANA_PLL can externally supply NVCC_RESET and VDD_DIG_PLL can be connected to
VDDA, VDDAL1, and VP. The latter can also be supplied separately with an external regulator if desired.

eFuses on the i.MX53 control the LDO default state. By default, the following internal LDOs are used.

• LDO_DIS[0]—controls Analog PLL supply.

• LDO_DIS[1]—controls Digital PLL supply.

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-2 Freescale Semiconductor

If either of these bits are cleared, the internal LDO source provides the respective PLL supply. If they are
set, the fuse is blown and PLL power must be provided from the external pad, which is not recommended
due to possible noise injections or other issues.

Figure 4-1 shows the internal LDOs.

Figure 4-1. Internal LDOs

i.MX53

VDD_REG 2.5 V

VDD_ANA_PLL

VDD_DIG_PLL

VDDA

VDDAL1

VP

1.8 V

1.3 V

NVCC_RESET

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-3

4.2 Interfacing the i.MX53 Processor with the DA9053

The power up sequence of the device is one time programmable and must be specified when ordering the
device. Figure 4-2 shows the power-up sequence for this specific interface.

Figure 4-2. Power-up Sequence

 VLDO1 (Always on)

VBUCKPRO

VBUCKPERI
VLDO6
VLDO8

VLDO10

VBUCKMEM
VBUCKPERI/SW

VLDO2
VLDO5

VLDO4
VLDO7

VLDO3
VLDO9
RT8010

VBUCKCORE

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-4 Freescale Semiconductor

Table 4-1 shows the i.MX53 voltage rails, their power requirements, and their associated DA9053
regulator. Most of the supply domains have flexible voltage and can be adjusted or supplied with a different
regulator depending on application needs.

Table 4-1. i.MX53 Voltage Rails and Associated DA9053 Regulator

Voltage Rail Description
Nominal
Voltage

Associated
DA9053

Regulator

Voltage Set
Point of
DA9053

Regulator
(V)

Current
Capability

(mA)

Power up
Sequence
Set at the
DA9053

VDDGP ARM core supply voltage
fARM 400 MHz

 0.95 VBUCKCORE 1.1 2000 3

ARM core supply voltage
fARM 800 MHz

1.1

ARM core supply voltage
fARM 1000 MHz

1.25

ARM core supply voltage
Stop mode

0.85

VCC Peripheral supply voltage 1.3 VBUCKPRO 1.3 1000 1

Peripheral supply voltage—
stop mode

0.95

VDDA Memory arrays voltage 1.3 LDO10 1.3 250 2

Memory arrays voltage—
stop mode

0.95

VDDAL1 L1 cable memory arrays voltage 1.3 LDO6 1.3 150 2

L1 cable memory arrays
voltage—stop mode

0.95

VDD_DIG_PLL PLL digital supplies
External regulator option

1.3 LDO2 1.3 100 4

VDD_ANA_PLL PLL analog supplies
External regulator option

1.8 LDO8 1.8 200 2

NVCC_CKIH ESD protection of the CKIH pins,
Fuse read supply and 1.8 V bias
for the UHVIO pads

1.8 LDO8 1.8 200 2

NVCC_LCD GPIO digital power supplies 1.8 or
2.775

LDO4 2.775 150 5

NVCC_JTAG LDO8 1.8 200 2

NVCC_LVDS LVDS interface supply 2.5 VBUCKPERI_
SW

2.475 1000 4

NVCC_LVDS_BG LVDS band gap supply 2.5

NVCC_EMI_
DRAM

DDR supply DDR2 range 1.8 VBUCKMEM 1.5 1000 4

DDR supply LP-DDR2 range 1.2

DDR supply LV-DDR2 range 1.55

DDR supply DDR3 range 1.5

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-5

VDD_FUSE Fusebox program supply (Write
only)

3.15 Ext DCDC1 3.2 1000 6

NVCC_NANDF Ultra high voltage I/O (UHVIO)
supplies

UHVIO_L

- LDO8 1.8 200 2

NVCC_SD1
NVCC_SD2
NVCC_PATA

NVCC_KEYPAD
NVCC_GPIO
NVCC_FEC
NVCC_EIM_

MAIN
NVCC_EIM_SEC

1.8 LDO3 3.3 200 6

UHVIO_H 2.775

UHVIO_UH 3.3

NVCC_CSI LDO8 1.8 200 2

TVDAC_DHVDD
TVDAC_

AHVDDRGB

TVE digital and analog power
supply, TVE-to-DAC level shifter
supply, cable detector supply,
analog power supply to RGB
channel

2.775

LDO7

2.75

200

5

For GPIO use only, when TVE is
not in use

1.8 or
2.775

NVCC_SRTC_
POW

SRTC Core and I/O supply (LVIO) 1.3 LDO1 1.3 40 0

NVCC_RESET LVIO 1.8 or
2.775

LDO8 1.8 200 2

USB_H1_
VDDA25

USB_OTG_VDD
A25

USB_PHY analog supply,
oscillator amplifier analog supply

2.5 VBUCKPERI_
SW

2.475 1000 4

NVCC_XTAL VBUCKPERI 2.475 1000 2

USB_H1_
VDDA33

USB_OTG_
VDDA33

USB PHY I/O analog supply 3.3 Ext DCDC1 3.2 1000 6

VDD_REG Power supply input for the
integrated linear
regulators

2.5 VBUCKPERI 2.475 1000 2

Table 4-1. i.MX53 Voltage Rails and Associated DA9053 Regulator (continued) (continued)

Voltage Rail Description
Nominal
Voltage

Associated
DA9053

Regulator

Voltage Set
Point of
DA9053

Regulator
(V)

Current
Capability

(mA)

Power up
Sequence
Set at the
DA9053

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-6 Freescale Semiconductor

4.2.1 Connecting Power and Communication Signals

Figure 4-3 shows the power connections required for the interface. Figure 4-4 shows how the
communication signals must be connected between the i.MX53, DA9053, and required extra regulators.

Figure 4-3. Power Connections

VP S-ATA PHY Core power supply 1.3 LDO5 1.3 100 4

VPH S-ATA PHY I/O supply voltage 2.5 VBUCKPERI_
SW

2.475 1000 4

1 External DCDC part number is RT8010

Table 4-1. i.MX53 Voltage Rails and Associated DA9053 Regulator (continued) (continued)

Voltage Rail Description
Nominal
Voltage

Associated
DA9053

Regulator

Voltage Set
Point of
DA9053

Regulator
(V)

Current
Capability

(mA)

Power up
Sequence
Set at the
DA9053

POR_B

i.MX53 DA9053

NRESET

GPIO_5NVDD_FAULT

SK

SO

CSIO_DAT9

CSIO_DAT8

NVCC_RESET

NIRQ GPIO_16

NVCC_CSI

NONKEY PMIC_ON_REQ
NVCC_GPIO

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-7

Figure 4-4. Communication Signal Connections

NVCC_NANDF
NVCC_SD1
NVCC_SD2
NVCC_KEYPAD
NVCC_EIM_MAIN
NVCC_EIM_SEC
NVCC_PATA
NVCC_CSI
NVCC_GPIO
NVCC_FEC

VDDGP

VCC

VDDA

VDD_DIG_PLL

NVCC_SRTC_POW

USB_H1_VDDA25
USB_OTG_VDDA25

USB_H1_VDDA33
USB_OTG_VDDA33

VDD_REG

i.MX53 DA9053

VBUCKCORE

VBUCKPRO

LDO10

LDO3

LDO8

VBUCKPERI

VPH

TVDAC_DHVDD
TVDAC_AHVDDRGB

LDO7

VP

NVCC_LCD

NVCC_LVDS
NVCC_LVDS_BG

VDDAL1 LDO6

NVCC_EIM_DRAM VBUCKMEM

NVCC_RESET
NVCC_CKIH
NVCC_JTAG

VDD_ANA_PLL

LDO2

NVCC_XTAL

LDO4

LDO5

LDO1

RT8010
VOUTEN

PWR_UP_GP_FB2

VBUCKPERI SW

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-8 Freescale Semiconductor

Figure 4-5 shows the power-up sequence of the interface that results from the connections shown in
Figure 4-3 and Figure 4-4.

Figure 4-5. Interface Power-up Sequence (DA9053)

i.MX53 Power Domains PMIC Regulators

VDDA
VDDAL

VDD_ANA_PLL
NVCC_CKIH
NVCC_JTAG

NVCC_LVDS_BG
NVCC_NANDF

NVCC_CSI
NVCC_RESET
NVCC_XTAL

VDD_REG

NVCC_SRTC_POW

VCC

LDO1

VBUCKPRO

LDO10

LDO6

LDO8

VBUCKPERI

VDDGP

VDD_DIG_PLL
NVCC_EMI_DRAM

VP, VPH
NVCC_LVDS

USB_H1_VDDA25
USB_OTG_VDDA25

NVCC_LCD
TVDAC_DHVDD

TVDAC AHVDDRGB

VBUCKCORE

VBUCKMEM
VBUCKPERI_SW

LDO2
LDO5

LDO4

LDO7

LDO3

LDO9

USB_H1_VDDA33

USB_OTG_VDDA33

NVCC_SD1
NVCC_SD2

NVCC_PATA
NVCC_KEYPAD

NVCC_GPIO
NVCC_FEC

NVCC_EIM_MAIN

RT8010

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-9

4.3 Interfacing the i.MX53 Processor with LTC3589-1

The LTC3589-1 has flexible options for enabling and sequencing the regulator enables. The regulators are
enabled using input pins or the I2C serial port. To define a power-on sequence, tie the enable of the first
regulator to be powered up to the wake pin. Connect the first regulator’s output to the enable pin of the
second regulator, and so on. One or more regulators may be started in any sequence. Each enable pin has
a 200 (typical) delay between the pin and the internal enable of the regulator.

Figure 4-6 shows the power-up sequence for connecting the i.MX53 and the LTC3589-1 together as shown
in this chapter, taking into account the required extra regulators (TPS73201 and LT3481). The TPS7320’s
EN pin controls its output voltage, and the LT3481’s RUN/SS pin turns it on. Voltage sources are divided
into four different sets, according to the time they turn on.

Figure 4-6. Power-up Sequence

4.3.1 Using the I2C Interface

The LTC3589-1 uses the standard I2C 2-wire interface for communication with bus masters. The two bus
lines, SDA and SCL, must be high when the bus is not in use. External pull-up resistors or current sources
are required on these lines.

The LTC3589-1 is both a slave receiver and slave transmitter. The I2C control signals, SDA and SCL, are
scaled internally to the DVDD supply. DVDD should be connected to the same power supply as the bus
pull-up resistors.

The I2C port has an under voltage lockout on the DVDD pin. When DVDD is below approximately 1 V,
the I2C serial port is reset to power-on states and registers are set to default values.

Note: i.MX53 internal regulators are turned on at this point

LDO1

SW2

SW3
(Note 1)

SET 1 SET 2 SET 3 SET 4 SET 5

SW1

 LDO2

LT3481

SW4

LDO3

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-10 Freescale Semiconductor

4.3.2 I2C Acknowledge

The acknowledge signal is used for handshaking between the master and the slave. When the LTC3589-1
is written to, the LTC3589-1 acknowledges its write address and subsequent register address and data
bytes. When the LTC3589-1 is read from, it acknowledges its read address and 8-bit status byte.

An acknowledge pulse (active low) generated by the LTC3589-1 lets the master know that the latest byte
of information was transferred. The master generates the clock cycle and releases the SDA line (high)
during the acknowledge clock cycle. The LTC3589-1 pulls down the SDA line during the write
acknowledge clock pulse so that it is a stable low during the high period of this clock pulse.

4.4 Interface Table

Table 4-2 shows the i.MX53 voltage rails, their power requirements, and their associated LTC3589-1
regulator in a typical application. Please note that system needs may vary according to the application, and
voltage rails must be adjusted accordingly.

Table 4-2. i.MX53 Voltage Rails and Associated LTC3589-1 Regulator

Voltage Rail Description
Nominal
Voltage

Associated
LTC3589-1
Regulator

Voltage Set
Point of

LTC3589-1
Regulator

(V)

Current
Capability

(mA)

Power up
Sequence
Set at the
LTC3589-1

VDDGP ARM core supply voltage
fARM 400 MHz

0.95 SW1 1.1 1600 3

ARM core supply voltage
fARM 800 MHz

1.1

ARM core supply voltage
fARM 1000 MHz

1.25

ARM core supply voltage
Stop mode

0.85

VCC Peripheral supply voltage 1.3 SW2 1.3 1200 1

Peripheral supply voltage
Stop mode

0.95

VDDA Memory arrays voltage 1.3 LDO2 1.3 250 3

Memory arrays voltage -
Stop Mode

0.95

VDDAL1 L1 cable memory arrays
voltage

1.3 LDO2 1.3 250 3

L1 cable memory arrays
voltage—stop mode

0.95

VDD_DIG_PLL PLL Digital supplies
External regulator option

1.3 Internal
regulator

1.3 125 2

VDD_ANA_PLL PLL Analog supplies
External regulator option

1.8 Internal
regulator

1.8 125 2

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-11

NVCC_CKIH ESD protection of the
CKIH pins, Fuse read
supply and 1.8 V bias for
the UHVIO pads

1.8 Note 1 1.8 125 2

NVCC_LCD GPIO digital power
supplies

1.8 or 2.775 LDO3 2.8 250 3

NVCC_JTAG LDO3 2.8 250 3

NVCC_LVDS LVDS interface supply 2.5 SW3 2.5 1200 2

NVCC_LVDS_
BG

LVDS Band gap supply 2.5

NVCC_EMI_
DRAM

DDR supply DDR2 range 1.8 Notes 2 and 3 1.8 5000 3

DDR supply LP-DDR2
range

1.2

DDR supply LV-DDR2
range

1.55

DDR supply DDR3 range 1.5

VDD_FUSE FUSEBOX program
supply (Write only)

3.15 LDO4 3.2 250 3

NVCC_NANDF
NVCC_SD1
NVCC_SD2
NVCC_PATA

NVCC_KEYPAD
NVCC_GPIO
NVCC_FEC
NVCC_EIM_

MAIN
NVCC_EIM_

SEC
NVCC_CSI

Ultra High voltage I/O
(UHVIO) supplies

UHVIO_L

— SW4 3.3 1200 4

1.8

UHVIO_H 2.775

UHVIO_UH 3.3

TVDAC_DHVDD
TVDAC_

AHVDDRGB

TVE digital and analog
power supply,
TVE-to-DAC
level shifter supply, cable
detector supply, analog
power supply to RGB
channel

2.75 LDO3

2.8

250

3

 For GPIO use only, when
TVE is not in use

1.8 or 2.775

NVCC_SRTC_
POW

SRTC Core and I/O
supply (LVIO)

1.3 LDO1 1.3 25 0

Table 4-2. i.MX53 Voltage Rails and Associated LTC3589-1 Regulator (continued)

Voltage Rail Description
Nominal
Voltage

Associated
LTC3589-1
Regulator

Voltage Set
Point of

LTC3589-1
Regulator

(V)

Current
Capability

(mA)

Power up
Sequence
Set at the
LTC3589-1

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-12 Freescale Semiconductor

4.5 Connecting Power and Communication Signals

Figure 4-7–Figure 4-10 show the required connections for interfacing LTC3589-1 and LT3481 with the
i.MX53. Both power domains and communication signals blocks are specified for a more complete
understanding of the interface.

Figure 4-7. Power Connections Block (LT3481)

NVCC_RESET LVIO 1.8 or
2.775

Note 1 1.8 125 2

USB_H1_
VDDA25

USB_OTG_
VDDA25

NVCC_XTAL

USB_PHY analog supply,
oscillator amplifier analog
supply

2.5 SW3 2.5 1200 2

USB_H1_
VDDA33

USB_OTG_
VDDA33

USB PHY I/O analog
supply

3.3 SW4 3.3 1200 4

VDD_REG Power supply input for the
integrated linear
regulators

2.5 SW3 2.5 1200 2

VP SATA PHY Core power
supply

1.3 LDO2 1.3 250 3

VPH SATA PHY I/O supply
voltage

2.5 SW3 2.5 1200 2

1 These domains are supplied by the internal regulator of the i.MX at the VDD_ANA_PLL pin.
2 An external DCDC converter is needed to supply these domains.
3 External part regulator number is LT3481.

Table 4-2. i.MX53 Voltage Rails and Associated LTC3589-1 Regulator (continued)

Voltage Rail Description
Nominal
Voltage

Associated
LTC3589-1
Regulator

Voltage Set
Point of

LTC3589-1
Regulator

(V)

Current
Capability

(mA)

Power up
Sequence
Set at the
LTC3589-1

LT3481 i.MX53

NVCC_EIM_DRAM SW

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-13

Figure 4-8. Power Connections Block, cont. (LTC3589-1)

 LDO4

VDDGP

VCC

VDDA, VDDAL1

VDD_DIG_PLL

NVCC_NANDF
NVCC_SD1
NVCC_SD2
NVCC_KEYPAD
NVCC_EIM_MAIN
NVCC_EIM_SEC
NVCC_PATA
NVCC_GPIO
NVCC_FEC
NVCC_CSI

NVCC_SRTC_POW

USB_H1_VDDA25
USB_OTG_VDDA25
NVCC_XTAL

USB_H1_VDDA33
USB_OTG_VDDA33

VDD_REG

i.MX53 LTC3589-1

SW1

SW2

LDO2

SW4

LDO1

SW3

VPH

TVDAC_DHVDD
TVDAC_AHVDDRGB

LDO3

VP

NVCC_LCD

NVCC_LVDS
NVCC_LVDS_BG

VDD_ANA_PLL

NVCC_JTAG

NVCC_CKIH

LDO4

NVCC_RESET

VDD_FUSE

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-14 Freescale Semiconductor

Figure 4-9. Communication Signals Connections Block (LTC3589-1)

GPIO

PMIC_STBY_REQ

i.MX53 LTC3589-1

EN2

EN1

EN3

EN4

EN_LDO2

PGOOD

VSTB

PWR_ON PMIC_ON_REQ

PBSTAT

SCL

SDA

EIM_EB2

KEY_ROW3

IRQ DISP0_DAT14

EN_LDO34

WAKE

VCC

NVCC_EMI_DRAM

VDD_ANA_PLL

Optional

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-15

Figure 4-10. Communication Signals Connections Block, cont. (TPS73201, LT3481)

LT3481

RUN/SS

i.MX53 – VDD_ANA_PLL

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-16 Freescale Semiconductor

4.5.1 Powering-up the Interface

Figure 4-11 shows the interface’s power-up sequence.

Figure 4-11. Interface Power-Up Sequence (LTC3589-1)

i.MX53 Power Domains PMIC Regulators

VDDGP
VDDA

VDDAL1
NVCC_LCD
NVCC_JTAG
VDD_FUSE

TVDAC_DHVDD
TVDAC_AHVDDRGB

VP

NVCC_NANDF
NVCC_SD1
NVCC_SD2

NVCC_PATA
NVCC_KEYPAD

NVCC_GPIO
NVCC_FEC

NVCC_EIM_MAIN
NVCC_EIM_SEC

NVCC_CSI
USB_H1_VDDA33

USB_OTG_VDDA33

NVCC_SRTC_POW

VCC

USB_H1VDDA25
USB_OTG_VDDA25

NVCC_XTAL
VDD_REG

VDD_ANAPLL
VDD_DIG_PLL
NVCC_CKIH

NVCC_RESET
NVCC_LVDS

NVCC_LVDS_BG
VPH

LDO1

SW2

SW1
LDO2
LDO3
LDO4

SW4

SW3

NVCC_EMI_DRAM LT3481

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-17

4.6 Additional Device Information

This section provides additional product information for the DA9053 PMIC subsystem and the LTC3589-1
PMIC subsystem.

4.6.1 DA9053

The DA9053 is a power management IC that includes the necessary sources to supply the i.MX53. That
main features that enable this interface are:

• 4 buck converters and 10 programmable LDOs, capable of supplying all i.MX53 voltage domains

• Battery charger that supports DC and USB charging

• 32 KHz real time clock oscillator

• 10 Channel ADC and touch screen interface

• 3 string white LED driver

• 16 bit GPIO and dual serial control interfaces for communication with the processor

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-18 Freescale Semiconductor

Figure 4-12 shows the DA9053 application block diagram.

Figure 4-12. DA9053 Typical Application Block Diagram

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-19

Table 4-3 shows the generated supply domains.

Table 4-3. Generated Supply Domains

Regulator
Supplied

pins
Supplied
voltage

Supplied
max

current

External
component

Notes

Buckcore VBUCKCO
RE

V0.5–2.075 V
± 3% accuracy
default 1.8 V

2000 mA 2.2/1.0 H DVC, 2 MHz, 25 mV steps
DVC ramp with controlled slew rate; pull-down
resistor switch off

Buckpro VBUCKPR
O

0.5–2.075 V
±3% accuracy
default 1.2 V

1000 mA 2.2/1.0 H DVC, 2 MHz, 25 mV steps
DVC ramp with controlled slew rate; pull-down
resistor switch off

Buckmem VBUCKME
M;
VMEM_S
W

0.925–2.475 V
±3% accuracy
default 2.0 V

1000 mA 2.2/1.0 H DVC, 2 MHz, 25 mV steps
DVC ramp with controlled slew rate; second output
with sequencer controllable switch; pull-down
resistor switch off

Buckperi VBUCKPE
RI_SW

0.925–2.475 V
±3% accuracy
default TBD

1000 mA 2.2/1.0 H 2 MHz, 25 mV steps
second output with sequencer controllable switch

Boost Ext. FET 5–25 V,
regulated via
current
feedback

50 mA 4.7 H Current controlled boost converter for 3 strings of up
to 6 serial white LEDs. Overvoltage protection via a
voltage feedback pin.

LDO1 VLD01 0.6–1.8 V ±3%
accuracy
default 1.2 V

40 mA 1.0 F High PSSR, low noise LDO, 50 mV steps, pull-down
resistor switch off

LDO2 VLD02 0.6–1.8 V ±3%
accuracy
default 1.2 V

100 mA 1.0 F DVC, digital LDO, 25 mV steps, DVC ramp with
controlled slew rater, pull-down resistor switch off

LDO3 VLD03 1.725–3.3 V
±3% accuracy
default 2.85 V

200 mA 2.2 F Digital LDO, 25 mV steps, DVC with controlled slew
rate, common supply with LDO4

LDO4 VLD04 1.725–3.3 V
±3% accuracy
default 2.85 V

150 mA 2.2 F Digital LDO, 25 mV steps, optional hardware control
from GPI1, common supply with LDO3

LDO5 VLD05 1.2–3.6 V ±3%
accuracy
default 3.1 V

100 mA 1.0 F Digital LDO, 50 mV steps, pull-down resistor switch
off, optional hardware control from GPI2

LDO6 VLD06 1.2–3.6 V ±3%
accuracy
default 1.2 V

150 mA 2.2 F High PSSR, low noise, 50 mV steps

LDO7 VLD07 1.2–3.6 V ±3%
accuracy
default 3.1 V

200 mA 2.2 F High PSSR, low noise, 50 mV steps, common supply
with LDO8

LDO8 VLD08 1.2–3.6 V ±3%
accuracy
default 2.85 V

200 mA 2.2 F High PSSR, low noise, 50 mV steps, common supply
with LDO7

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-20 Freescale Semiconductor

4.6.2 LTC3589-1

The LTCR3589 is a complete solution that fulfills the i.MX53 power management needs. It includes:

• 3 buck converters for the core, memory, and SoC rails

• A synchronous buck-boost regulator for I/O

• 3 250mA LDO regulators

• An I2C serial port for communication with processor

• Always Alive LDO regulator for RTC voltage domain

LDO9 VLD09 1.25–3.6 V
±3% accuracy
default 2.5 V

100 mA 1.0 F High PSSR, low noise, 50 mV steps, TOP trimmed,
optional hardware control from GPI12, common
supply with LDO10

LDO10 VLD10 1.2–3.6 V ±3%
accuracy
default 1.8 V

250 mA 2.2 F High PSSR, low noise, 50 mV steps, common supply
with LDO9

Backup VBBAT 1.1–3.1 V ±3%
accuracy
default 3.0 V

6 mA 470 nF 100/200 mV steps, configurable current limit
between 100 and 6000 A, reverse current
protection

LDOCore Internal
PMIC
supply

2.5 V ±2%
accuracy

4 mA 100 nF Not for external use

Table 4-3. Generated Supply Domains (continued)

Regulator
Supplied

pins
Supplied
voltage

Supplied
max

current

External
component

Notes

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 4-21

Figure 4-13 shows a typical application block guide.

Figure 4-13. LTC3589-1 Typical Application Block Guide

Table 4-4 shows the supply domains.

Table 4-4. LTC3589-1 Supply Domains

Source Voltage (V) Current (mA)

LDO1 (Always on) Set with external resistor divider, as low as 0.8 25

LDO2 Set with external resistor divider and internal register configuration 250

LDO3 2.8 (Fixed) 250

LDO4 1.2, 1.8, 2.5, 3.2 (Configured via I2C) 250

SW1 Set with external resistor divider and internal register configuration from 0.6 to 1.2 1600

SW2 Set with external resistor divider and internal register configuration from 0.9 to 1.8 1000

SW3 Set with external resistor divider and internal register configuration from 0.625 to 1.25 1000

SW4 Set with external resistor divider, as low as 0.8 1200

Setting up Power Management

i.MX53 System Development User’s Guide, Rev. 2

4-22 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 5-1

Chapter 5
Interfacing DDR2 and DDR3 Memories with the i.MX53
Processor

This chapter explains the interface between the i.MX53 processor and DDR2 and DDR3 memories. It
includes the routing guidelines, pictures, and examples.

5.1 i.MX53 SDRAM Controller Signals

The SDRAM controller can be interfaced with LPDDR2-S, DDR2, and DDR3 memories. The DDR
controller from the i.MX53 uses the following signals to interface the memories:

• Data bus and its buffer control signals

— DRAM_D0 – DRAM_D31.

— DRAM_DQS0/DQS0_B - DRAM_DQS3/DQS3_B.

— DRAM_DQM0 – DRAM_DQM3.

• Address bus and its bank control signals

— DRAM_A0- DRAM_A15

— DRAM_SDBA0- DRAM_SDBA2

• Control

— DRAM_RAS

— DRAM_CAS

— DRAM_SDWE

— DRAM_RESET

— DRAM_CALIBRATION

— DRAM_SDCKE0 - DRAM_SDCKE1

— DRAM_CS0 – DRAM_CS1

— DRAM_SDODT0 – DRAM_SDODT1

• Clock

— DRAM_SDCLK_0

— DRAM_SDCLK_0_B

— DRAM_SDCLK_1

— DRAM_SDCLK_1_B

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

5-2 Freescale Semiconductor

Figure 5-1 shows the block diagram of the DDR2/DDR3 interfaced with the i.MX53 from the reference
design boards.

Figure 5-1. Connection Between i.MX53 Processor and DDR2 and DDR3

NOTE

Differential pairs DRAM_SDCLK_0/DRAM_SDCKL_0_B and
DRAM_SDCLK_1/DRAM_SDCLK_1_B are driven by the same on-chip
clock source. Two pairs are provided to facilitate printed circuit board layout
and/or to manage fanout especially when eight DRAM chips are utilized.
Either one or both pairs can be used. An unused pair must be floated.

i.MX53

 A[15:0]

 DRAM_D[31:0]

 CS0/CS1

CKE0, SDCLK0,SDCLK0_B
CKE1, SDCLK1,SDCLK1_B

 SDWE…

DDR2/3

A[13:0]

SD[31:0]

CS0

CLK…

WE…

DDR2/3

A[13:0]

SD[31:0]

CS1

CLK…

WE…

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 5-3

5.2 i.MX53 Memory Interface

Figure 5-2 shows the DDR2 connection. The DDR2 device is the H5PS2G83AFR.

Figure 5-2. DDR2 Memory Connection

Figure 5-3 shows the DDR3 memory connections. The DDR3 device is the EDJ2116DASE.

The DDR2 and DDR3 memory connections differ in the following ways:

• RESET and VREF signals.

• DDR3 DQS signals are connected as differential pairs to the memory.

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

5-4 Freescale Semiconductor

Figure 5-3. DDR3 Memory Connection

5.3 Configuring the DDR2 JTAG Script

The following code shows an example of how to configure the DDR2 memory for the i.MX53 processor:

Example 5-1. DDR2 JTAG Script Configuration

//*==
======
//* Copyright (C) 2010, Freescale Semiconductor, Inc. All Rights Reserved
//* THIS SOURCE CODE IS CONFIDENTIAL AND PROPRIETARY AND MAY NOT
//* BE USED OR DISTRIBUTED WITHOUT THE WRITTEN PERMISSION OF
//* Freescale Semiconductor, Inc.
//*==
======
// Initialization script for Rita CPU2 Board
// Version 1.0
//*==
======

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 5-5

wait = on

//*==
======
// init ARM
//*==
======

//*==
======
// Disable WDOG
//*==
======
setmem /16 0x53f98000 = 0x30

//*==
======
// Program PLL2 to 300MHz
//*==
======
setmem /32 0x63f84004 = 0x4 // disable PLL2 automatic restart
setmem /32 0x63f84000 = 0x1222
setmem /32 0x63f8400c = 0x3e7
setmem /32 0x63f84010 = 0xfa
setmem /32 0x63f84008 = 0x60

setmem /32 0x53fd4018 = 0x00015154
setmem /32 0x53fd4014 = 0x03119184 // switch peripherals to PLL3
pause 1
setmem /32 0x63f84000 = 0x1232 // restart PLL2
pause 1
setmem /32 0x53fd4014 = 0x01119184
setmem /32 0x53fd4018 = 0x00016154 // switch peripherals back to PLL2
pause 1
setmem /32 0x63f84004 = 0x6 // re-enable PLL2 automatic restart

//*==
======
// Enable all clocks (they are disabled by ROM code)
//*==
======
setmem /32 0x53fd4068 = 0xffffffff
setmem /32 0x53fd406c = 0xffffffff
setmem /32 0x53fd4070 = 0xffffffff
setmem /32 0x53fd4074 = 0xffffffff
setmem /32 0x53fd4078 = 0xffffffff
setmem /32 0x53fd407c = 0xffffffff
setmem /32 0x53fd4080 = 0xffffffff
setmem /32 0x53fd4084 = 0xffffffff

//*==
======
// Initialization script for 32 bit DDR2 (CS0+CS1)
//*==
======

// DDR2 IOMUX configuration

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

5-6 Freescale Semiconductor

setmem /32 0x53fa8554 = 0x00380000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM3
setmem /32 0x53fa8558 = 0x00380040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3
setmem /32 0x53fa8560 = 0x00380000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM2
setmem /32 0x53fa8564 = 0x00380040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDODT1
setmem /32 0x53fa8568 = 0x00380040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2
setmem /32 0x53fa8570 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_1 - weaker sdclk to
improve EVK DDR max frequency
setmem /32 0x53fa8574 = 0x00380000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_CAS
setmem /32 0x53fa8578 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_0- weaker sdclk to
improve EVK DDR max frequency
setmem /32 0x53fa857c = 0x00380040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0
setmem /32 0x53fa8580 = 0x00380040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDODT0
setmem /32 0x53fa8584 = 0x00380000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM0
setmem /32 0x53fa8588 = 0x00380000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_RAS
setmem /32 0x53fa8590 = 0x00380040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1
setmem /32 0x53fa8594 = 0x00380000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM1
setmem /32 0x53fa86f0 = 0x00380000 //IOMUXC_SW_PAD_CTL_GRP_ADDDS
setmem /32 0x53fa86f4 = 0x00000200 //IOMUXC_SW_PAD_CTL_GRP_DDRMODE_CTL
setmem /32 0x53fa86fc = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRPKE
setmem /32 0x53fa8714 = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRMODE - CMOS mode
setmem /32 0x53fa8718 = 0x00380000 //IOMUXC_SW_PAD_CTL_GRP_B0DS
setmem /32 0x53fa871c = 0x00380000 //IOMUXC_SW_PAD_CTL_GRP_B1DS
setmem /32 0x53fa8720 = 0x00380000 //IOMUXC_SW_PAD_CTL_GRP_CTLDS
setmem /32 0x53fa8724 = 0x06000000 //IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE - DDR_SEL=0
setmem /32 0x53fa8728 = 0x00380000 //IOMUXC_SW_PAD_CTL_GRP_B2DS
setmem /32 0x53fa872c = 0x00380000 //IOMUXC_SW_PAD_CTL_GRP_B3DS

// Initialize DDR2 memory - Hynix H5PS2G83AFR
setmem /32 0x63fd9088 = 0x2b2f3031
setmem /32 0x63fd9090 = 0x40363333
setmem /32 0x63fd9098 = 0x00000f00 //boazp: add 3 logic unit of delay to sdclk to improve EVK
DDR max frequency
setmem /32 0x63fd90F8 = 0x00000800
setmem /32 0x63fd907c = 0x01310132
setmem /32 0x63fd9080 = 0x0133014b
// Enable bank interleaving, RALAT = 0x3, DDR2_EN = 1
setmem /32 0x63fd9018 = 0x000016d0
// Enable CSD0 and CSD1, row width = 15, column width = 10, burst length = 4, data width = 32bit
setmem /32 0x63fd9000 = 0xc4110000
// tRFC = 78 ck, tXS = 82 ck, tXP = 2 ck, tXPDLL(tXARD) = 2 ck, tFAW = 14 ck, CAS latency = 5 ck
setmem /32 0x63fd900C = 0x4d5122d2
// tRCD = 5 ck, tRP = 5 ck, tRC = 23 ck, tRAS = 18 ck, tRPA = 1, tWR = 6 ck, tMRD = 2 ck, tCWL = 4 ck
setmem /32 0x63fd9010 = 0x92d18a22
// tDLLK(tXSRD) = 200 cycles, tRTP = 3 ck, tWTR = 3ck, tRRD = 3ck
setmem /32 0x63fd9014 = 0x00c70092
setmem /32 0x63fd902c = 0x000026d2
setmem /32 0x63fd9030 = 0x009f000e
setmem /32 0x63fd9008 = 0x12272000
setmem /32 0x63fd9004 = 0x00030012
setmem /32 0x63fd901c = 0x04008010
setmem /32 0x63fd901c = 0x00008032
setmem /32 0x63fd901c = 0x00008033
setmem /32 0x63fd901c = 0x00008031
setmem /32 0x63fd901c = 0x0b5280b0
setmem /32 0x63fd901c = 0x04008010
setmem /32 0x63fd901c = 0x00008020
setmem /32 0x63fd901c = 0x00008020

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 5-7

setmem /32 0x63fd901c = 0x0a528030 // BL = 4, CAS latency = 5, write recovery = 6
setmem /32 0x63fd901c = 0x03c68031
setmem /32 0x63fd901c = 0x00468031 // reduced drive strength, enable 50ohm ODT
setmem /32 0x63fd901c = 0x04008018
setmem /32 0x63fd901c = 0x0000803a
setmem /32 0x63fd901c = 0x0000803b
setmem /32 0x63fd901c = 0x00008039
setmem /32 0x63fd901c = 0x0b528138
setmem /32 0x63fd901c = 0x04008018
setmem /32 0x63fd901c = 0x00008028
setmem /32 0x63fd901c = 0x00008028
setmem /32 0x63fd901c = 0x0a528038 // BL = 4, CAS latency = 5, write recovery = 6
setmem /32 0x63fd901c = 0x03c68039
setmem /32 0x63fd901c = 0x00468039 // reduced drive strength, enable 50ohm ODT
setmem /32 0x63fd9020 = 0x00005800
setmem /32 0x63fd9058 = 0x00033337 // Enable 50ohm ODT
setmem /32 0x63fd901c = 0x00000000

5.4 Configuring the DDR3 JTAG Script

The following code shows an example of how to configure DDR3 memory for the i.MX53 processor:

Example 5-2. DDR3 JTAG Script Configuration

//*==
======
//* Copyright (C) 2010, Freescale Semiconductor, Inc. All Rights Reserved
//* THIS SOURCE CODE IS CONFIDENTIAL AND PROPRIETARY AND MAY NOT
//* BE USED OR DISTRIBUTED WITHOUT THE WRITTEN PERMISSION OF
//* Freescale Semiconductor, Inc.
//*==
======
// Initialization script for Rita Quick Silver Board, DDR3
// Version 1.0
//*==
======

wait = on

//*==
======
// init ARM
//*==
======

//*==
======
// Disable WDOG
//*==
======
setmem /16 0x53f98000 = 0x30

//*==
======
// Enable all clocks (they are disabled by ROM code)

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

5-8 Freescale Semiconductor

//*==
======
setmem /32 0x53fd4068 = 0xffffffff
setmem /32 0x53fd406c = 0xffffffff
setmem /32 0x53fd4070 = 0xffffffff
setmem /32 0x53fd4074 = 0xffffffff
setmem /32 0x53fd4078 = 0xffffffff
setmem /32 0x53fd407c = 0xffffffff
setmem /32 0x53fd4080 = 0xffffffff
setmem /32 0x53fd4084 = 0xffffffff

//*==
======
// Initialization script for 32 bit DDR2 (CS0+CS1)
//*==
======

// DDR3 IOMUX configuration
//* Global pad control options */
setmem /32 0x53fa86f4 = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRMODE_CTL for sDQS[3:0], 1=DDR2,
0=CMOS mode
setmem /32 0x53fa8714 = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRMODE for D[31:0], 1=DDR2, 0=CMOS
mode
setmem /32 0x53fa86fc = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRPKE

setmem /32 0x53fa8724 = 0x04000000 //IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE - DDR_SEL=10
// setmem /32 0x53fa8724 = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE - DDR_SEL=00
// setmem /32 0x53fa8724 = 0x02000000 //IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE - DDR_SEL=01
// setmem /32 0x53fa8724 = 0x06000000 //IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE - DDR_SEL=11

//* Data bus byte lane pad drive strength control options */
setmem /32 0x53fa872c = 0x00300000 //IOMUXC_SW_PAD_CTL_GRP_B3DS
setmem /32 0x53fa8554 = 0x00300000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM3
setmem /32 0x53fa8558 = 0x00300040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3

setmem /32 0x53fa8728 = 0x00300000 //IOMUXC_SW_PAD_CTL_GRP_B2DS
setmem /32 0x53fa8560 = 0x00300000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM2
setmem /32 0x53fa8568 = 0x00300040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2

setmem /32 0x53fa871c = 0x00300000 //IOMUXC_SW_PAD_CTL_GRP_B1DS
setmem /32 0x53fa8594 = 0x00300000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM1
setmem /32 0x53fa8590 = 0x00300040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1

setmem /32 0x53fa8718 = 0x00300000 //IOMUXC_SW_PAD_CTL_GRP_B0DS
setmem /32 0x53fa8584 = 0x00300000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM0
setmem /32 0x53fa857c = 0x00300040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0

//* SDCLK pad drive strength control options */
setmem /32 0x53fa8578 = 0x00300000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_0
setmem /32 0x53fa8570 = 0x00300000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_1

//* Control and addr bus pad drive strength control options */
setmem /32 0x53fa8574 = 0x00300000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_CAS
setmem /32 0x53fa8588 = 0x00300000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_RAS
setmem /32 0x53fa86f0 = 0x00300000 //IOMUXC_SW_PAD_CTL_GRP_ADDDS for DDR addr bus
setmem /32 0x53fa8720 = 0x00300000 //IOMUXC_SW_PAD_CTL_GRP_CTLDS for CSD0, CSD1, SDCKE0,
SDCKE1, SDWE

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 5-9

setmem /32 0x53fa8564 = 0x00300040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDODT1
setmem /32 0x53fa8580 = 0x00300040 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDODT0

// Initialize DDR3 memory - Micron MT41J128M16-187E
//** Keep for now, same setting as CPU3 board **//
//setmem /32 0x63fd904c = 0x01680172 //write leveling reg 0
//setmem /32 0x63fd9050 = 0x0021017f //write leveling reg 1
setmem /32 0x63fd9088 = 0x32383535 //read delay lines
setmem /32 0x63fd9090 = 0x40383538 //write delay lines
//setmem /32 0x63fd90F8 = 0x00000800 //Measure unit
setmem /32 0x63fd907c = 0x0136014d //DQS gating 0
setmem /32 0x63fd9080 = 0x01510141 //DQS gating 1

//* CPU3 Board setting
// Enable bank interleaving, Address mirror on, WALAT = 0x1, RALAT = 0x5, DDR2_EN = 0
//setmem /32 0x63fd9018 = 0x00091740 //Misc register:

//* Quick Silver board setting
// Enable bank interleaving, Address mirror off, WALAT = 0x1, RALAT = 0x5, DDR2_EN = 0
setmem /32 0x63fd9018 = 0x00011740 //Misc register

// Enable CSD0 and CSD1, row width = 14, column width = 10, burst length = 8, data width = 32bit
setmem /32 0x63fd9000 = 0xc3190000 //Main control register
// tRFC=64ck;tXS=68;tXP=3;tXPDLL=10;tFAW=15;CAS=6ck
setmem /32 0x63fd900C = 0x555952E3 //timing configuration Reg 0.
// tRCD=6;tRP=6;tRC=21;tRAS=15;tRPA=1;tWR=6;tMRD=4;tCWL=5ck
setmem /32 0x63fd9010 = 0xb68e8b63 //timing configuration Reg 1
// tDLLK(tXSRD)=512 cycles; tRTP=4;tWTR=4;tRRD=4
setmem /32 0x63fd9014 = 0x01ff00db //timing configuration Reg 2
setmem /32 0x63fd902c = 0x000026d2 //command delay (default)
setmem /32 0x63fd9030 = 0x009f0e21 //out of reset delays
// Keep tAOFPD, tAONPD, tANPD, and tAXPD as default since they are bigger than calc values
setmem /32 0x63fd9008 = 0x12273030 //ODT timings
// tCKE=3; tCKSRX=5; tCKSRE=5
setmem /32 0x63fd9004 = 0x0002002d //Power down control

//**********************************
//DDR device configuration:
//**********************************
//**********************************
// CS0:
//**********************************
setmem /32 0x63fd901c = 0x00008032 //write mode reg MR2 with cs0 (see below for settings)
// Full array self refresh
// Rtt_WR disabled (no ODT at IO CMOS operation)
// Manual self refresh
// CWS=5

setmem /32 0x63fd901c = 0x00008033 //write mode reg MR3 with cs0 .
setmem /32 0x63fd901c = 0x00028031 //write mode reg MR1 with cs0. ODS=01: out buff= RZQ/7 (see
below for settings)
// out impedance = RZQ/7
// Rtt_nom disabled (no ODT at IO CMOS operation)
// Aditive latency off
// write leveling disabled
// tdqs (differential?) disabled

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

5-10 Freescale Semiconductor

setmem /32 0x63fd901c = 0x092080b0 //write mode reg MR0 with cs0 , with dll_rst0
setmem /32 0x63fd901c = 0x04008040 //ZQ calibration with cs0 (A10 high indicates ZQ cal long
ZQCL)

//**********************************
// CS1:
//**********************************
setmem /32 0x63fd901c = 0x0000803a //write mode reg MR2 with cs1 .
setmem /32 0x63fd901c = 0x0000803b //write mode reg MR3 with cs1
setmem /32 0x63fd901c = 0x00028039 //write mode reg MR1 with cs1. ODS=01: out buff= RZQ/7
setmem /32 0x63fd901c = 0x09208138 //write mode reg MR0 with cs1
setmem /32 0x63fd901c = 0x04008048 //ZQ calibration with cs1 (A10 high indicates ZQ cal long
ZQCL)
//**********************************

setmem /32 0x63fd9020 = 0x00001800 // Refresh control register
setmem /32 0x63fd9040 = 0x04b80003 // ZQ HW control
setmem /32 0x63fd9058 = 0x00022227 // ODT control register

setmem /32 0x63fd901c = 0x00000000

// CLKO muxing (comment out for now till needed to avoid conflicts with intended usage of
signals)
//setmem /32 0x53FA8314 = 0
//setmem /32 0x53FA8320 = 0x4
//setmem /32 0x53FD4060 = 0x01e900f0

5.5 Configuring the i.MX53 Registers for the Initialization Script

This section explains how to configure the registers of the i.MX53 for the initialization script, using
values taken from the Micron MT41J128M16-187E memory data sheet as the example. Therefore, in this
example CK = 2.5 ns.

5.5.1 Main Control Register

Figure 5-4 shows the main control register’s bit fields, access, and reset values.

The memory values are as follows:
• ROW = 14

• COL = 10

DDR3 only supports a burst length of 8. Therefore, BL = 8 burst length.

Access: Read/Write

 31 30 29 27 26 24 23 22 21 20 19 18 17 16 15 0

R
SDE_0 SDE_1 — ROW — COL BL — DSIZ —

W

Reset 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-4. Main Control Register

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 5-11

The SCh has a 32 bit data bus. Therefore, DSIZ = 32 bit width.

Enable the SDRAM controller as follows:
setmem /32 0x63FD9000 = 0xC3190000

5.5.2 Power Down Register

Figure 5-5 shows the power down register’s bit fields, access, and reset values.

Values are as follows:

• tCKE = 3 CK

• tCKSRE = greater than 5 CK

• tCKSRX = greater than 5 CK

Enable as follows:

setmem /32 0x63FD9004 = 0x0002002D

5.5.3 Timing Configuration 0 Register

Figure 5-6 shows the timing configuration 0 register’s bit fields, access, and reset values.

Values are as follows:

• tRFC = 86 CK

• tXS = tRFC + 10 ns = 90 CK

• tXP = greater of 3 CK

Access: Read/Write

31 28 27 24 23 19 18 16

R
PRCT_1 PRCT_0 — tCKE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

15 12 11 8 7 6 5 3 2 0

R
PWDT_1 PWDT_0

SLOW_
PD

BOTH
CS
PD

tCKSRX tCKSREW

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Figure 5-5. Power Down Register

Access: Read/Write

 31 24 23 16 15 13 12 9 8 4 3 0

R
tRFC tXS tXP tXPDLL tFAW tCL

W

Reset 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1

Figure 5-6. Timing Configuration 0 Register

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

5-12 Freescale Semiconductor

• tXPDLL = greater of 10 CK

• tFAW= 15 CK

• tCL= 6

Enable as follows:

setmem /32 0x63FD900C = 0x555952E3

5.5.4 Timing Configuration 1 Register

Figure 5-7 shows the timing configuration 1 register’s bit fields, access, and reset values.

Values are as follows:

• tRCD = 6 CK

• tRP = 6 CK

• tRC = 21 CK

• tRAS = 15 CK

• tRPA = tRP + 1

• tWR – 15 ns = 6CK

• tMRD = 12CK

• tCWL = 5CK

Enable as follows:

setmem /32 0x63FD9010 = 0xB68E8B63

Access: Read/Write

31 29 28 26 25 21 20 16

R
tRCD tRP tRC tRAS

W

Reset 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 1

15 14 12 11 9 8 5 4 3 2 0

R
tRPA — tWR tMRD — — tCWL

W

Reset 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 1

Figure 5-7. Timing Configuration 1 Register

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 5-13

5.5.5 Timing Configuration 2 Register

Figure 5-7 shows the timing configuration 2 register’s bit fields, access, and reset values.

Values are as follows:
• tDLLK = 512 CK

• tRTP = Greater than 4 CK

• tWTR = Greater than 4 CK

• tRRD = Greater than 4 CK

Enable as follows:

setmem /32 0x63FD9014 = 0x01FF00DB

Access: Read/Write

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
— tDLLK — tRTP tWTR tRRD

W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

Figure 8. ESDCTL Timing Configuration Register 2(ESDCFG2)

Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor

i.MX53 System Development User’s Guide, Rev. 2

5-14 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 6-1

Chapter 6
Avoiding Board Bring-Up Problems

This chapter provides recommendations for avoiding typical mistakes when bringing up a board for the
first time. These recommendations consist of basic techniques that have proven useful in the past for
detecting board issues and address the three most typical bring-up pitfalls: power, clocks, and reset. A
sample bring-up checklist is provided at the end of the chapter.

6.1 Using a Voltage Report to Avoid Power Pitfalls

Using incorrect voltage rails is a common power pitfall. To help avoid this mistake, create a basic table
called a voltage report prior to bringing up your board. This table helps validate that your supplies are
coming to the expected level.

To create a voltage report, list the following:

• Your board voltage sources

• Default power-up values for the board voltage sources

• Best place on the board to measure the voltage level of each supply

Be careful when determining the best place to measure each supply. In some cases, a large voltage drop
(IR drop) on the board may cause you to measure inaccurate levels depending on the location you take
your measurement. The following guidelines help prevent this:

• Measure closest to the load (in this case the i.MX53 processor).

• Make two measurements: the first after initial board power-up and the second while running a
heavy use-case that stresses the i.MX53.

The supplies that are powering the i.MX53 should all meet the DC electrical specifications as listed in the
i.MX53 data sheet.

Table 6-1 shows a sample voltage report table. Blank cells would be filled in after measuring.

Table 6-1. Sample Voltage Report

Regulator
Net Name on
Schematic

Default
Power Up

(V)

Measured
Voltage

(V)

Measurement
Point

Comment

— VBAT 12 J1 pin 1

Wall supply 5V_MAIN 5 J2 pin 4

Switcher 1 1V8_MAIN 1.8 C11 0402, near U3, inch below j37

Switcher 2 3V3_MAIN 3.3 C14 0603, right next to C11

Avoiding Board Bring-Up Problems

i.MX53 System Development User’s Guide, Rev. 2

6-2 Freescale Semiconductor

6.2 Using a Current Monitor to Avoid Power Pitfalls

Excessive current can cause damage to the board. Avoid this problem by using a current-limiting
laboratory supply that has a current read-out to power the main power to the board when bringing up the
board for the first time. This allows the main power to be monitored, which makes it easy to detect any
excessive current.

6.3 Checking for Clock Pitfalls

Problems with the external clocks are another common source of board bring-up issues. Ensure that all of
your clock sources are running as expected.

The EXTAL/XTAL and the ECKIL/CKIL clocks are the main clock sources for 24 MHz and 32 kHz
reference clocks respectively on the i.MX53. Although not required, the use of low jitter external
oscillators to feed CKIH1 or CKIH2 on the i.MX53 can be an advantage if low jitter or special frequency
clock sources are required by modules driven by CKIH1 or CKIH2. See the CCM chapter in the i.MX53
reference manual for details.

When checking crystal frequencies, use an active probe to avoid excessive loading. A parasitic probe
typically inhibits the 32.768 kHz oscillator from starting up. Use the following guidelines:

• CKIL clock should be running at 32.768 kHz (can be generated internally or applied externally)

• EXTAL/EXTAL should be running at 24 MHz (used for the PLL reference)

• CKIH1/CKIH2 can be used as oscillator inputs for low jitter special frequency sources.

• CKIH1 and CKIH2 are optional.

In addition to probing the external input clocks, you can check internal clocks by outputting them at the
debug signals CLKO1 and CLKO2. See the CCM chapter in the i.MX53 reference manual for more details
about which clock sources can be output to those debug signals.

6.4 Avoiding Reset Pitfalls

Follow these guidelines to ensure that you are booting using the correct boot mode.

• During initial power on while asserting the POR_B reset signal, ensure that both your reference
clocks are active before releasing POR_B.

• Follow the recommended power-up sequence specified in the i.MX53 reference manual.

The GPIOs and internal fuses control the i.MX53 boots. For a more detailed description about the different
boot modes, refer to the system boot chapter of the i.MX53 reference manual.

Avoiding Board Bring-Up Problems

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 6-3

6.5 Sample Board Bring-Up Checklist

Table 6-2 provides a sample board bring-up checklist. Note that the checklist incorporates the
recommendations described in the previous sections. Blank cells should be filled in during bring-up as
appropriate.

Table 6-2. Board Bring-Up Checklist

Checklist Item Details Owner
Findings &

Status

Note: The following items must be completed serially.

1. Perform a visual inspection. Check major components to make sure nothing has been
misplaced or rotated before applying power.

2. Verify all i.MX53 voltage rails. Confirm that the voltages match the data sheet’s
requirements. Be sure to check voltages not only at the
voltage source, but also as close to the i.MX53 as possible
(like on a bypass capacitor). This reveals any IR drops on the
board that will cause issues later.
Ideally all of the i.MX53 voltage rails should be checked, but
VDDGP, VCC, and VDDA are particularly important voltages.
These are the core logic voltages and must fall within the
parameters provided in the i.MX53 data sheet.
NVCC_SRTC_POW, NVCC_XTAL, NVCC_CKIH,
NVCC_RESET, NVCC_JTAG, and NVCC_EMI_DRAM are
also critical to the i.MX53 boot up.

3. Verify power up sequence. Verify that power on reset (POR) is de-asserted (high) after
all power rails have come up and are stable. Refer to the
i.MX53 data sheet for details about power up sequencing.
This is an important process as many complex processors
are sensitive to the proper power up sequencing.

4. Measure/probe input clocks (32 kHz,
others).

Without a properly running clock, the i.MX53 will not function
properly. Look for jitter and noise.

5. Check JTAG connectivity (RV-ICE). This is one of the most fundamental and basic access points
to the i.MX53 to allow the debug and execution of low level
code.

Note: The following items may be worked on in parallel with other bring up tasks.

Access internal RAM. Verify basic operation of the i.MX53 in system. The on-chip
internal RAM starts at address 0xF800_0000 and is 128
Kbytes in density. Perform a basic test by performing a
write-read-verify to the internal RAM. No software
initialization is necessary to access internal RAM.

Verify CLKO outputs (measure and
verify default clock frequencies for
desired clock output options) if the board
design supports probing of the CLKO
pin.

This ensures that the corresponding clock is working and
that the PLLs are working.
Note that this step requires chip initialization, for example via
the JTAG debugger, to properly set up the IOMUX to output
CLKO and to set up the clock control module to output the
desired clock. Refer to the reference manual for more details.

Avoiding Board Bring-Up Problems

i.MX53 System Development User’s Guide, Rev. 2

6-4 Freescale Semiconductor

Measure boot mode frequencies. Set
the boot mode switch for each boot
mode and measure the following,
(depending on system availability:
 • NAND (probe CE to verify boot,

measure RE frequency)
 • SPI-NOR (probe slave select and

measure clock frequency)
 • MMC/SD (measure clock frequency)

This verifies the specified signals’ connectivity between the
i.MX53 and boot device and that the boot mode signals are
properly set.
Refer to section “Boot Modes for the i.MX53” for details about
configuring the various boot modes.

Run basic DDR initialization and test
memory.

1 Assuming the use of a JTAG debugger, run the DDR
initialization and open a debugger memory window
pointing to the DDR memory map starting address.

2 Try writing a few words and verify if they can be read
correctly.

3 If not, recheck the DDR initialization sequence and
whether the DDR has been correctly soldered onto the
board.

It is also recommended that users recheck the schematic to
ensure that the DDR memory has been connected to the
i.MX53 correctly.

Table 6-2. Board Bring-Up Checklist (continued)

Checklist Item Details Owner
Findings &

Status

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 7-1

Chapter 7
Using the Clock Connectivity Table

This chapter explains how to use the i.MX53 clocking connectivity. This information can help users save
power by disabling clocks to unused modules.

Table 7-1 describes the available clock sources and lists the maximum frequencies that are supported by
design. In some cases if maximum frequency is used, users need to divide the clock inside the module in
order to meet the protocol requirements. The clock controller module (CCM) generates and drives the
clock sources.

For information about how the root clocks are generated, see the clock generation diagrams in the CCM
chapter of the i.MX53 reference manual. In some cases, the CCM does not generate the clock, and the
clock may come directly from the IO pad.

Table 7-1. Clock Roots

Clock Root Name (from CCM) Description Target Frequency [MHz]

arm_clk_root Root of ARM high frequency 1000

arm_axi_clk_root Root for ARM AXI clock 200

emi_slow_clk_root Root for EMI slow arbitrator 133

debug_apb_clk_root Root for debug busses of ARM 200

ddr_clk_root Root of DDR clock 400

enfc_clk_root Root for NFC controller 66.5

vpu_axi_clk_root Root for VPU AXI clock 200

vpu_rclk_root Root for reference clock for VPU 66.5

spdif0_clk_root Root of SPDIF-0 clock 66.5

spdif1_clk_root Root of SPDIF-1 clock 66.5

ahb_clk_root Root of AHB clock 133

ipg_clk_root Root of IPG clock 66.5

asrc_clk_root — 66.5

perclk_root Root of PERCLK 66.5

usboh3_clk_root Root of USB clock 66.5

esdhc1_clk_root Root clock for ESDHC-1 and MSHC-1 104

esdhc2_clk_root Root clock for ESDHC-2 104

esdhc3_clk_root Root for ESDHC-3 clock 104

esdhc4_clk_root Root for ESDHC-4 clock 104

Using the Clock Connectivity Table

i.MX53 System Development User’s Guide, Rev. 2

7-2 Freescale Semiconductor

Clock connectivity is described in the in the “System Clocks Connectivity” section in the CCM chapter of
the i.MX53 reference manual. This section contains a series of tables that describe the clock inputs of each
module and which clock is connected to it. In most cases, the clocks are CCM root clocks as listed in
Table 7-1. However, some clocks come from IO pins (mainly though IOMUX) and not from CCM.

ssi1_clk_root Root for SSI-1 clock 66.5

ssi2_clk_root Root for SSI-2 clock 66.5

ssi3_clk_root Root for SSI-3 clock 66.5

usb_phy_clk_root Root for USB_PHY (24 Mhz) 24

ieee_cemx_clk_root Root for IEEE RTC clock 66.5

tve_216_54_clk_root Root for TVE (216/54 Mhz) 297

di0_clk_root Root for DI0 clock (for IPU) 170

di1_clk_root Root for DI1 clock (for IPU) 170

ipg_clk_sync_ieee_root Root for sync signal of IEEE RTC
module

66.5

ldb_di0_serial_clk_root Root clock for LDB bridge 595

ldb_di1_serial_clk_root Root clock for LDB bridge 595

ecspi_clk_root Root for CSPI clock 66.5

uart_clk_root Root for UART perclk 66.5

ipu_hsp_clk_root Root for IPU_HSP clock 200

gpu_clk_root Root for GPU clock 200

gpu2d_clk_root Root for GPU2D clock 200

esai_clk_root Root for ESAI serial clock 66.5

can_clk_root Root for FLEXCAN serial clock 66.5

pgc_clk_root Root for PGC clock of GPC 66.5

wrck_clk_root Root for WRCK clock 25

firi_clk_root Root for FIRI clock 66.5

ckil_sync_clk_root Root for CKIL clock after sync 0.032

Table 7-1. Clock Roots (continued)

Clock Root Name (from CCM) Description Target Frequency [MHz]

Using the Clock Connectivity Table

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 7-3

Clock gating is done with the low power clock gating (LPCG) module based on a combination of the clock
enable signals. For more information about how the clock gating signals are logically combined, refer to
the LPCG section in the CCM chapter of the i.MX53 reference manual.

NOTE

In some cases, a clock is part of a protocol and is sourced from a pad (mainly
through IOMUX). Such clocks do not appear in the clock connectivity table.
They are found in the “External Signals and Pin Multiplexing” chapter.

Using the Clock Connectivity Table

i.MX53 System Development User’s Guide, Rev. 2

7-4 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 8-1

Chapter 8
Configuring JTAG Tools for Debugging

This chapter explains how to configure JTAG tools for debugging. The JTAG module is a standard JEDEC
debug peripheral. It provides debug access to important hardware blocks, such as the ARM processor and
the system bus, which can give users access and control over the entire SoC. Because of this, unsecured
JTAG modules are vulnerable to JTAG manipulation, a known hacker’s method of executing unauthorized
program code, getting control over secure applications, and running code in privileged modes. To properly
secure the system, unauthorized JTAG usage must be strictly forbidden.

To prevent JTAG manipulation while allowing access for manufacturing tests and software debugging, the
i.MX53 processor incorporates a secure JTAG controller for regulating JTAG access. The secure JTAG
controller provides four different JTAG security modes, which are selected by an e-fuse configuration. For
more information about the security modes, see the “Security” section in the “System JTAG Controller
(SJC)” chapter of the i.MX53 reference manual.

NOTE

By default all parts are shipped with security disabled.

The JTAG port must be accessible during platform initial validation bring-up and for software debugging.
It is accessible in all development kits from Freescale. Multiple tools are available for accessing the JTAG
port for tests and software debugging. Freescale recommends use of the ARM JTAG tools for
compatibility with the ARM core. However, the JTAG chain described in the following sections should
work for non-ARM JTAG tools. For more information about non-ARM tools, contact the third party tool
vendors for support.

8.1 Accessing Debug with a JTAG Scan Chain (ARM tools)

This section shows how to use the ARM tools to connect to the i.MX53 processor, using a JTAG scan
chain. The example uses the RealView ICE (RVI) and RVDS ARM tools. RVI provides the hardware
interface between the host PC and the JTAG port on the development kit (see http://www.arm.com for
more information). RVDS is the software development kit that runs on the host PC. Its primary
components consist of the ARM compiler, an Eclipse based IDE, and the RealView Debugger (for more
information, see http://www.arm.com/products/tools/software-development-tools.php).

NOTE

Users must have the latest recommended ARM firmware installed on their
RVI box to be able to connect to the Cortex-A8 on the i.MX53.

http://www.arm.com/products/tools/rvi-and-rvt2.php
http://www.arm.com/products/tools/software-development-tools.php

Configuring JTAG Tools for Debugging

i.MX53 System Development User’s Guide, Rev. 2

8-2 Freescale Semiconductor

Once the latest firmware is installed, follow these steps to configure the JTAG scan chain on the RVI box:

1. Connect RVI to the i.MX53 board using the JTAG ribbon cable.

2. Using the order shown below, configure the scan chain with the following connections: TDI
Unknown Unknown ARMCS-DP Cortex-A8 (see Figure 8-1).

a) Add Device Custom Device UNKNOWN IR Length = 5

b) Add Device Custom Device UNKNOWN IR Length = 4

c) Add Device Registered Device CoreSight ARMCS-DP

d) Add Device Registered Device Cortex Cortex-A8

Figure 8-1. Example of Adding a Device

Configuring JTAG Tools for Debugging

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 8-3

3. Update the CoreSight base address as follows:

a) Right click on Cortex-A8 Device.

b) Select configuration.

c) Set CoreSight base address to = 0xC0008000.

Figure 8-2. Updating the CoreSight Base Address

4. Save the configuration.

Configuring JTAG Tools for Debugging

i.MX53 System Development User’s Guide, Rev. 2

8-4 Freescale Semiconductor

After following the recommended steps, the RVDS JTAG scan chain should look like Figure 8-3. Note this
screenshot shows the resulting scan chain when using ARM RVDS v3.1 tools.

Figure 8-3. i.MX/Cortex-A8 RVDS JTAG Scan Chain

After setting up the JTAG scan chain, RVI can connect to the i.MX53’s core. This is the only required step;
no initialization scripts are necessary.

Once connected, test code can be loaded immediately into the internal RAM space, which starts at
0xF800_0000 (for more details refer to the i.MX53 memory map in the i.MX53 reference manual).
Additionally, ARM provides “.bcd” files for some i.MX products, which can be used with RVDS to
provide enumerated views of registers and/or peripherals on the target hardware along with the entire
memory map of the target processor. Available “.bcd” configuration files are located at
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0182l/Bjefhigi.html

8.2 Accessing Debug with a JTAG Scan Chain (other JTAG tools)

The JTAG scan chain described in Section 8.1, “Accessing Debug with a JTAG Scan Chain (ARM tools),”
is not specific to ARM tools. It can be used with any JTAG tool to connect to the i.MX53 processor. The
IR lengths of each component in the JTAG scan chain are provided so that the steps can be repeated when
using a different tool.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0182l/Bjefhigi.html

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor II-1

Part II

Software Development

The chapters that follow aid you in software development for your product utilizing the i.MX53 Board
Support Package.

Software Development

i.MX53 System Development User’s Guide, Rev. 2

II-2 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 9-1

Chapter 9
Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom
Board

The on-board diagnostic suite (OBDS) is a set of validation software used during the board bring up phase
and also to validate the boards produced during mass manufacturing for defects. OBDS is run to test out
specific IP blocks of the i.MX53 SoC and the associated hardware on the board.

In a typical scenario, a basic set of the hardware components are tested to be functional, prior to engaging
the software team to bring up the bootloader and the BSP.

Prior to reading this document, be familiar with the following chapters in the i.MX53 Applications
Processor Reference Manual:

• Chapter 1, “Introduction”

• Chapter 9, “Power Management”

• Chapter 4, “External Signals and Pin Multiplexing”

• Chapter 6, “System Debug”

• Chapter 18, “Clock Control Module (CCM)”

• Chapter 43, “IOMUX Controller (IOMUX)”

9.1 Supported Components

The OBDS package for Freescale’s i.MX53 reference board provides support for the following SoC
internal functional blocks:

• Debug UART test

• DDR test

• Audio Out test

• IPU LCD display test

• I2C connectivity test to the PMIC (MC13892 or LTC2495 depending on the EVK version)
MMC/SD test fir SD Slot 2

• LED test

• Ethernet Loopback test

• SPI-NOR test (EVK only)

• USB HUB test (EVK only)

• NAND Flash Device ID test

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX53 System Development User’s Guide, Rev. 2

9-2 Freescale Semiconductor

9.2 Customizing OBDS for Specific Hardware

This section explains how to customize the OBDS for the following hardware modules:

• Section 9.2.1, “UART (serial port) Test”

• Section 9.2.2, “DDR Test”

• Section 9.2.3, “Audio Test”

• Section 9.2.4, “IPU Display Test”

• Section 9.2.5, “I2C Test”

• Section 9.2.6, “SD/MMC Test”

• Section 9.2.7, “LED Test”

• Section 9.2.8, “Ethernet (FEC) Loopback Test”

• Section 9.2.9, “SPI-NOR Test”

9.2.1 UART (serial port) Test

The UART port is the primary communications channel between the reference board and host PC. The
UART test tests the transmission capabilities of the serial port and verifies its receive capabilities by
prompting the user to input a character from the host PC to the serial port. Typing the character “X” exits
this test and moves to the next test.

On the i.MX53 reference boards (with the exception of the ARD), the UART1 TXD and RXD pins are
routed to the CSI0_DAT10 and CSI0_DAT11 pins via the IOMUX (see the
~/diag-obds/src/mx53/hardware.c file). In addition, the file mx53.c defines the “debug_uart” variable to
UART1 as static struct hw_module *debug_uart = &uart1; If a different UART port is used, make the
required IOMUX changes to the routine debug_uart_iomux(), using the following code:
void debug_uart_iomux(void)
{
// UART1 mux'd on CSI0_DAT10 and CSI0_DAT11
writel(0x2, IOMUXC_SW_MUX_CTL_PAD_CSI0_DAT10);
writel(0x2, IOMUXC_SW_MUX_CTL_PAD_CSI0_DAT11); // daisy chain setup
writel(0x1, IOMUXC_UART1_IPP_UART_RXD_MUX_SELECT_INPUT);
}

9.2.2 DDR Test

The DDR test verifies the interface connectivity between the i.MX53 and the DDR memory. This test
should not be confused with a stress test that validates robust signal integrity of the interface. Instead, this
test ensures the proper assembly of the memory and i.MX53 by testing for opens and shorts on the
interface.

Each of the i.MX53 reference boards use a different DDR configuration. If the custom board implements
a DDR that has a different configuration than the reference boards, refer to the data sheet of the specific
DDR and make the necessary changes to the DDR configurations in the
~/diag-obds/src/include/mx53/plat_startup.inc file. The routine sets up the IOMUX and DDR specific
configurations.

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 9-3

9.2.3 Audio Test

The audio test first performs I2C communications between the i.MX53 and the SGTL5000 audio codec.
The test then outputs audio data via the SSI/I2S interface to the audio codec. The
~/diag-obds/src/drivers/audio folder contains the files that implement the audio test.

If a different SSI port is used, make the necessary IOMUX changes to the
~/diag-obds/src/mx53/hardware.c file.

9.2.4 IPU Display Test

This test outputs an image to the WVGA display (Chungwa CLAA070VC01 7-inch WVGA TFT LCD).
The test also gives the user two options to test an LVDS display (either the AUO T150XG01V02 15-Inch
XGA Panel or CHIMEI M216H1-L01 21-Inch HD1080 Panel) and the VGA output.

Refer to the hardware.c file for changes in IOMUX when a different panel is used. In particular, note which
display interface (DI0 or DI1) is being used. The i.MX53 reference board configures the DI0 pins from
D0–D23. To enable a different display, add the display timing information in the di_config() routine in the
~/src/drivers/ipu/ipu_di.c file. The display’s data sheet provides the information for the different
parameters.

9.2.5 I2C Test

This tests performs an I2C communications test with one or more devices on the I2C bus (reads back the
device ID). ~/src/drivers/i2c folder contains the driver for the I2C module. Refer to hardware.c for IOMUX
setup. The IOMUX on the i.MX53 reference boards are configured to route I2C2 signal to the keypad
COL3 and ROW3 pins.

If another I2C port is needed, add a new entry for the other I2C IOMUX settings at hardware.c and change
the I2C device test code depending on the I2C devices on the custom board.

9.2.6 SD/MMC Test

This test performs a read/write test to the MMC/SD card plugged into the SD slot. This test configures and
uses the ESDHCV3-3 module on the i.MX53 reference boards, with the exception of the ARD which uses
ESDHCV2-2. The ~/drivers/src/mmc folder contains the files necessary to test the MMC/SD port.

9.2.7 LED Test

This test verifies the functionality of the on-board debug LED by prompting the user to visually inspect
the LED to verify that the LED has been turned on and then off. The test function is located in
src/mx53/mx53.c.

If another GPIO is used to drive the LED, change the following function inside src/mx53/mx53.c
accordingly:

int gpio_led_test(void)

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX53 System Development User’s Guide, Rev. 2

9-4 Freescale Semiconductor

9.2.8 Ethernet (FEC) Loopback Test

The test requires a loopback Ethernet cable, which is described in the OBDS user guide. There is only one
FEC in the i.MX53 SoC. No customization is required and code from OBDS can be run as-is.

9.2.9 SPI-NOR Test

This test verifies the interface between the i.MX53 ECSPI-1 module and the SPI-NOR flash. The
~/src/driver/spinor folder contains the files necessary to test the SPI-NOR flash available on the
i.MX53 reference board, using the i.MX53 ECSPI-1 module and ECSPI-1 SS1. Change
src/drivers/spinor/imx_spi_nor.c when using a different SPI model. See the following example
implementation for the Atmel AT45DB321D SPI NOR Flash.
struct chip_id AT45DB321D_id =
{ .id0 = 0x01, // Atmel AT45DB321D
 .id1 = 0x27,
 .id2 = 0x1f
}
There are also calls that are specific to the Atmel flash:
• spi_nor_status_atmel
• spi_nor_write_atmel

If another CSPI port is used to connect to the SPI, the calls to ECSPI-1 needs to be created in
src/drivers/spi/imx_ecspi.c. For example:
platform_init()
...
imx_spi_nor.base = ECSPI1_BASE_ADDR;
imx_spi_nor.freq = 25000000;
imx_spi_nor.ss_pol = IMX_SPI_ACTIVE_LOW;
imx_spi_nor.ss = 1;
imx_spi_nor.fifo_sz = 32;
imx_spi_nor.us_delay = 0;
spi_init_flash = imx_ecspi_init;
...

Change this to ECSPI2_BASE_ADDR when connecting the SPI NOR to CSPI-2. The IOMUX settings
for the other CSPI port need to be added in hardware.c.

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 10-1

Chapter 10
Porting U-Boot from an i.MX53 Reference Board to an
i.MX53 Custom Board

This chapter provides a step-by-step guide that explains how to add i.MX53 custom board support to
U-Boot. This developer's guide is based on U-Boot version rel_imx_2.6.35_10.12.01_RC4, which is
present as a package on the LTIB-based Linux BSP at
http://opensource.freescale.com/git?p=imx/uboot-imx.git.

For an introduction to the use of U-Boot firmware with i.MX processors, read AN4173, “U-Boot for
i.MX51 Based Designs,” which is available on the Freescale website.

10.1 Obtaining the Source Code for the U-Boot

The following steps explain how to obtain the source code.

1. Install LTIB as usual. Make sure you deselect U-Boot from compilation.

2. Manually unpack u-boot: ./ltib -m prep -p u-boot.

The U-Boot code is now located at rpm/BUILD/u-boot-<version number>. The guide will now refer to the
U-Boot main directory as <UBOOT_DIR> and assumes that your shell working directory is <UBOOT_DIR>.

10.2 Preparing the Code

The following steps explain how to prepare the code.

1. Make a copy of the board directory, using the following instruction:
$cp -R board/freescale/mx53_<reference board name> board/freescale/mx53_<custom board

name>

2. Copy the existing mx53_<reference board name>.h board configuration file as mx53_<custom board
name>.h, using the following instruction.
$cp include/configs/mx53_<reference board name>.h include/configs/mx53_<custom board

name>.h

3. Create one entry in <UBOOT_DIR>/Makefile for the new i.MX53-based configuration. This file is in
alphabetical order. The instruction to use is as follows:
mx53_<custom board name>_config : unconfig

@$(MKCONFIG) $(@:_config=) arm arm_cortexa8 mx53_<custom board name> freescale mx53

http://opensource.freescale.com/git?p=imx/uboot-imx.git

Porting U-Boot from an i.MX53 Reference Board to an i.MX53 Custom Board

i.MX53 System Development User’s Guide, Rev. 2

10-2 Freescale Semiconductor

NOTE

U-Boot project developers recommend adding any new board to the
MAKEALL script and to run this script in order to validate that the new code
has not broken any other’s platform build. This is a requirement if you plan
to submit a patch back to the U-Boot community. For further information,
consult the U-Boot README file.

4. Rename board/freescale/mx53_<custom board name>/mx53_<reference board name>.c as
board/freescale/mx53_<custom board name>/mx53_<custom board name>.c.

5. Adapt any fixed paths. In this case, the linker script board/freescale/mx53_<custom board
name>/u-boot.lds has at least two paths that must be changed

— Change board/freescale/mx53_<reference board name>/flash_header.o to
board/freescale/mx53_<custom board name>/flash_header.o

— Change board/freescale/mx53_<reference board name>/libmx53_<reference board name>.a
to board/freescale/mx53_<custom board name>/libmx53_<custom board name>.a

6. Change the line COBJS := mx53_<reference board name>.o (inside
board/freescale/mx53_<custom board name>/Makefile) to COBJS := mx53_<custom board
name>.o

NOTE

The remaining instructions build the U-Boot manually and do not use LTIB.

7. Create a shell script under <UBOOT_DIR> named build_u-boot.sh.

The file’s contents are now:
#!/bin/bash
export ARCH=arm
export CROSS_COMPILE=<path to cross compiler/prefix> (e.g.
PATH:/opt/freescale/usr/local/gcc-4.1.2-glibc-2.5-nptl-3/arm-none-linux-gnueabi/b
in/arm-none-linux-gnueabi-
export PATH=$PATH:<path to compiler>

make mx53_<custom board name>_config
make

8. Compile U-Boot using $./build_u-boot.sh

9. If everything is correct, you should now u-boot.bin as proof that your build setup is correct and
ready to be customized.

The new i.MX53 custom board that you have created is an exact copy of the i.MX53 reference board, but
the boards are two independent builds. This allows you to proceed to the next step: customizing the code
to suit the new hardware design.

10.3 Customizing the i.MX53 Custom Board Code

The new i.MX53 custom board is part of the U-Boot source tree, but it is a duplicate of the i.MX53
reference board code and needs to be customized.

The DDR technology is a potential key difference between the two boards. If there is a difference in the
DDR technology between the two boards, the DDR initialization needs to be ported. DDR initialization is

http://wiki.freescale.net/display/MADCPOIMX/MX53+Armadillo+board+code+customization+for+U-boot

Porting U-Boot from an i.MX53 Reference Board to an i.MX53 Custom Board

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 10-3

coded in the DCD table, inside the boot header of the U-Boot image. When porting bootloader, kernel or
driver code, you must have the schematics easily accessible for reference.

10.3.1 Changing the DCD Table for i.MX53 DDR3 Initialization

Initializing the memory interface requires configuring the relevant I/O pins with the right mode and
impedance and initializing the ESDCTL module.

1. To port to the custom board, the appropriate DDR initialization needs to be used. This is the same
initialization as would be used in a JTAG initialization script.

2. Open the file board/freescale/mx53_<custom board name>/flash_header.S

3. Modify all MXC_DCD_ITEM macros to match the memory specifications.

This is the new board/freescale/mx53_<custom board name>/flash_header.S customized for DDR3.

NOTE

If you change the number of MXC_DCD_ITEM lines in the DCD table, you
must update the value of the dcd_hdr and write_dcd_cmd labels according
to the number of items.

10.3.2 Booting with the Modified U-Boot

If the DCD table (board/freescale/mx53_<custom board name>/flash_header.S) was modified
successfully, you can compile and write u-boot.bin to an SD card. To test this, insert the SD card into the
SD card socket of the CPU board and power cycle the board.

A message like this should be printed in the console:
U-Boot 2009.08 (Jul 29 2010 - 15:17:24)

CPU: Freescale i.MX53 family 1.0V at 800 MHz
Board: Unkown board id1:11
Boot Reason: [POR]
Boot Device: SD
I2C: ready
DRAM: 1 GB
MMC: FSL_ESDHC: 0, FSL_ESDHC: 1
Card did not respond to voltage select!
MMC init failed
In: serial
Out: serial
Err: serial
Net: FEC0
<reference board name>: U-Boot >

10.3.3 Further Customization at System Boot

To further customize your U-Boot board project, use the first function that system boot calls on:
start_armboot in "lib_arm/board.c".
board_init()

http://wiki.freescale.net/download/attachments/27004907/flash_header.S?version=2&modificationDate=1280352605000

Porting U-Boot from an i.MX53 Reference Board to an i.MX53 Custom Board

i.MX53 System Development User’s Guide, Rev. 2

10-4 Freescale Semiconductor

All board initialization is executed inside this function. It starts by running through the init_sequence[]
array of function pointers.

The first board dependent function inside init_sequence[] array is board_init(). board_init() is
implemented inside board/freescale/mx53_<custom board name>.c.

At this point the most important tip is the following line of code:
...

gd->bd->bi_arch_number = MACH_TYPE_MX53_<reference board name>; /* board id for Linux */

...

To customize your board ID, go to the registration process at
http://www.arm.linux.org.uk/developer/machines/

This tutorial will continue to use MACH_TYPE_MX53_<reference board name>.

10.3.4 Customizing the Printed Board Name

To customize the printed board name, use the checkboard() function. This function is called from the
init_sequence[] array implemented inside board/freescale/mx53_<custom board name>.c. There are two
ways to use checkboard() to customize the printed board name from Board: Unknown board id1:11 to
Board: MX53 CPU3 on <custom board name>2: the brute force way or by using a more flexible identification
method if implemented on the custom board.

To customize the brute force way, delete the call to identify_board_id() inside checkboard() and replace
printf("Board: "); with printf("Board: MX53 CPU3 on <custom board>\n");

If this replacement is not made, the custom board may use another identification method. The
identification can be detected and printed by implementing the function __print_board_info() according
to the identification method on the custom board.

Alternatively, if the custom board provides a method to detect the board type via an external signal this can
be detected in the identify_board_id() function.

Once this has been done, recompile U-Boot and deploy u-boot.bin to the SD card. The new prompt
message should be as follows:

U-Boot 2009.08 (Jul 30 2010 - 14:44:00)

CPU: Freescale i.MX53 family 1.0V at 800 MHz
Board: MX53 CPU3 on <custom board name>
Boot Reason: [POR]
Boot Device: SD
I2C: ready
DRAM: 1 GB
MMC: FSL_ESDHC: 0, FSL_ESDHC: 1
Card did not respond to voltage select!
MMC init failed
In: serial
Out: serial

http://www.arm.linux.org.uk/developer/machines/

Porting U-Boot from an i.MX53 Reference Board to an i.MX53 Custom Board

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 10-5

Err: serial
Net: FEC0
Reference Board: U-Boot >

Porting U-Boot from an i.MX53 Reference Board to an i.MX53 Custom Board

i.MX53 System Development User’s Guide, Rev. 2

10-6 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 11-1

Chapter 11
Porting the Android Kernel

Android releases for the i.MX53 processor are divided into three main parts: the bootloader (U-Boot or
redboot), the kernel, and the Android framework. This chapter explains how to port an Android kernel to
any platform that is based on the i.MX53 chip. The easiest way to apply kernel modifications to any i.MX
platform is to use an existing Android release either for the i.MX51 or i.MX53 processor.

11.1 Patching the Android Kernel

Before configuring the Android kernel, locate the BSP patches in the imx-android-rX folder. This folder
contains all BSP patches needed for the different i.MX platforms. It also contains patches for some of the
libraries implemented on the hardware abstraction layer. Apply the relevant patches to the kernel.

11.2 Configuring Android Release for Customized Platforms

Once the patches have been applied to the kernel, go to myandroid/kernel_imx/path. Use the option make
imx5_android_defconfig to prepare the configuration for your i.MX53 platform.

Porting the Android Kernel

i.MX53 System Development User’s Guide, Rev. 2

11-2 Freescale Semiconductor

11.2.1 Enabling and Disabling Default Resources

Users can add or remove resources that are enabled by default on the EVK board configuration by entering
make menuconfig under myandroid/kernel_imx. Figure 11-1 shows the menu option screen.

Figure 11-1. Linux Kernel Configuration Menu

This menu allows users to enable or disable drivers that are part of the Android framework’s included
Linux image. Make your selections and exit the menu.

After you exit, the system creates the .config file, which contains the variables used to configure different
interfaces and peripherals on the chip. It also contains variables for libraries and tools that are part of a
Linux image.

Porting the Android Kernel

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 11-3

11.2.2 Changing the Configuration File

After the system has created the .config file, users can change the configuration file to enable the
environment variables required by the Android image. Configuration files for different platforms are
located at: myandroid/kernel-imx/arch/arm/config/

Choose the appropriate configuration file for your platform and double check the .config file for the
following variables:

• CONFIG_PANIC_TIMEOUT=0

• CONFIG_BINDER=y

• CONFIG_LOW_MEMORY_KILLER=y

• CONFIG_ANDROID_PARANOID_NETWORK=y

• CONFIG_ANDROID_LOGGER=y

• CONFIG_ANDROID_PMEM=y

• CONFIG_PMEM_SIZE=24

• CONFIG_ANDROID_RAM_CONSOLE=y

• CONFIG_ANDROID_RAM_CONSOLE_ENABLE_VERBOSE=y

• CONFIG_ANDROID_BINDER_IPC=y

• CONFIG_CRYPTO_DEFLATE=y

• CONFIG_CRYPTO_LZO=y

• CONFIG_DEVMEM=y

• CONFIG_LZO_COMPRESS=y

• CONFIG_LZO_DECOMPRESS=y

• CONFIG_ASHMEM=y

11.2.3 Android's Memory Map

Android's memory map is divided into four main blocks:

• GPU

• PMEM for GPU

• PMEM

• System memory

The total amount of memory is passed through a parameter called mem. This parameter usually contains
all the memory available on the platform, and it is passed on the bootloader as the following configuration
line.

setenv bootargs_android 'setenv bootargs $bootargs init=/init androidboot.console=ttymxc0
di0_primary calibration ip=dhcp mem=512M'

NOTE

By default the i.MX53 EVK board is set with 512 Mbytes.

Porting the Android Kernel

i.MX53 System Development User’s Guide, Rev. 2

11-4 Freescale Semiconductor

Android's memory map hardcodes three of its four main blocks to a specific value. The final block uses
whatever memory remains after the other three blocks have defined their boundaries. This remaining block
of memory is used by the system memory as standard RAM memory for loading the kernel and apps
execution.

Figure 11-2 shows how the Android's memory map is organized on a 512 Mbyte system.

Figure 11-2. Android Memory Map (512 Mbyte System)

This memory map is defined under /myandroid/kernel_imx/arch/arm/mach-mx5/mx53_evk.c on the
function init fixup_mxc_board.

11.3 Initializing Android

After the kernel boots, the init application is the first program executed on the system. The init program
directly mounts all file systems and devices, using either hard-coded file names or device names generated
by probing the sysfs file system. This eliminates the need for a /etc/fstab file in Android.

After the device/system files are mounted, init reads /etc/init.rc, which is a text file that contains
parameters and commands executed by the init program. These commands are executed sequentially and
load some of the main services of Android. The file can also create and mount directories where the
system, cache, and data partitions reside.

Init and init.rc load the following services:

• app_process application—launches Zygote

• rild daemon application—manages all radio GSM support

• mediaserver—handles all media, including audio and video

• ts_calibrator—provides the touch screen calibration app

Porting the Android Kernel

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 11-5

11.4 Modifying the init.rc Partition Locations

The init.rc file mounts the three main partitions—system, cache, and data—on the image. By default, these
partitions are mounted from the SD/MMC controller.

If you have these partitions stored on another Flash source, modify the following lines to choose from the
specific NVM.

• To mount the /system directory:
mount ext3 /dev/block/mmcblk0p2 /system
mount ext3 /dev/block/mmcblk0p2 /system ro remount

• To mount the /data directory:
mount ext3 /dev/block/mmcblk0p5 /data nosuid nodev

• To mounts the /recovery directory:
mount ext3 /dev/block/mmcblk0p6 /cache nosuid nodev

You also can modify the partition number where the directories and files are stored.

11.5 Adding Android Enhancements

Most Android porting is performed on the kernel side, as shown in Figure 11-3.

Figure 11-3. Linux Kernel

Android adds enhancements to the Linux kernel in order to give upper layers services like interprocess
communication and power management policies. Table 11-1 shows the enhancements.

Table 11-1. Android Enhancements

Enhancement Purpose

Alarm Provide timers functionality to wake up and sleep the device

Ashmem Asynchronous shared memory share memory across process.

Binder Ipc binder driver for interprocess communication

Power Management New stack power management to increase performance

Low Memory Killer Provides the functionality for android memory management

Kernel Debugger Debug purposes

Logger Debug purposes

Porting the Android Kernel

i.MX53 System Development User’s Guide, Rev. 2

11-6 Freescale Semiconductor

Most enhancement implementations are located at kernel/drivers/staging/android.

NOTE

Android also handles the hardware abstraction layer (HAL) between the
Linux kernel and the android library stack. These drivers are related to
specific hardware modules such as GPS, Bluetooth, or radio.

Figure 11-4. Hardware Abstraction Layer

This chapter does not cover these implementations. For information about HAL porting, please refer to the
Android developer website at http://source.android.com.

http://source.android.com/

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 12-1

Chapter 12
Configuring the IOMUX Controller (IOMUXC)

Before using the i.MX53 pins (or pads), users must select the desired function and correct values for
characteristics such as voltage level, drive strength, and hysteresis. They do this by configuring a set of
registers from the IOMUXC.

For detailed information about each pin, see the “External Signals and Pin Multiplexing” chapter in the
i.MX53 Applications Processor Reference Manual. For additional information about the IOMUXC block,
see the “IOMUX Controller (IOMUXC)” chapter in the i.MX53 Applications Processor Reference
Manual.

12.1 Information for Setting IOMUX Controller Registers

The IOMUX controller contains four sets of registers that affect the i.MX53 registers, as follows:

• General-purpose registers (IOMUXC_GPRx)—consist of three registers that control PLL
frequency, voltage, and other general purpose sets.

• “Daisy Chain” control registers (IOMUXC_<Instance_port>_SELECT_INPUT)—control the
input path to a module when more than one pad may drive the module’s input

• MUX control registers (changing pad modes):

— Select which of the pad’s 8 different functions (also called ALT modes) is used.

— Can set pad’s functions individually or by group using one of the following registers:

– IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>

– IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>

• Pad control registers (changing pad characteristics):

— Set pad characteristics individually or by group using one of the following registers:

– IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>

– IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>

— Pad characteristics are:

– SRE (1 bit slew rate control)—Slew rate control bit; selects between FAST/SLOW slew rate
output. Fast slew rate is used for high frequency designs.

– DSE (2 bits drive strength control)—Drive strength control bits; select the drive strength
(low, medium, high, or max).

– ODE (1 bit open drain control)—Open drain enable bit; selects open drain or CMOS output.

– HYS (1 bit hysteresis control)—Selects between CMOS or Schmitt Trigger when pad is an
input.

Configuring the IOMUX Controller (IOMUXC)

i.MX53 System Development User’s Guide, Rev. 2

12-2 Freescale Semiconductor

– PUS (2 bits pull up/down configuration value)—Selects between pull up or down and its
value.

– PUE (1 bit pull/keep select)—Selects between pull up or keeper. A keeper circuit help
assure that a pin stays in the last logic state when the pin is no longer being driven.

– PKE (1 bit enable/disable pull up, pull down or keeper capability)—Enable or disable pull
up, pull down, or keeper.

– DDR_MODE_SEL (1 bit ddr_mode control)—Needed when interfacing DDR memories.

– DDR_INPUT (1 bit ddr_input control)—Needed when interfacing DDR memories.

12.2 Setting Up the IOMUXC and U-Boot

To setup the IOMUXC and configure the pads on U-Boot, use the four files described in Table 12-1:

12.2.1 Defining the Pads

The iomux.c file contains each pad’s IOMUXC definitions. Use the following code to see the default
definitions:

enum iomux_pins {
...
...
...
MX53_PIN_GPIO_19 = _MXC_BUILD_GPIO_PIN(3, 5, 1, 0x20, 0x348),
MX53_PIN_KEY_COL0 = _MXC_BUILD_GPIO_PIN(3, 6, 1, 0x24, 0x34C),
MX53_PIN_KEY_ROW0 = _MXC_BUILD_GPIO_PIN(3, 7, 1, 0x28, 0x350),
...
...
...
}

To change the values for each pad according to your hardware configuration, use the following:
MX53_PIN_<PIN NAME> = _MXC_BUILD_GPIO_PIN(gp, gi, ga, mi, pi)

Where:

• gp—IO Pin

• gi—IO Instance

• ga—MUX Mode

• mi—MUX Control Offset

Table 12-1. Configuration Files

Path Filename Description

cpu/arm_cortexa8/mx53/ iomux.c Iomux functions (no need to change)

include/asm-arm/arch-mx53/ iomux.h Iomux definitions (no need to change)

include/asm-arm/arch-mx53/ mx53_pins.h Definition of all processor's pads

board/freescale/mx53_<reference board name>/ mx53<reference board name>.c Board initialization file

Configuring the IOMUX Controller (IOMUXC)

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 12-3

• pi—PAD Control Offset

12.2.2 Configuring IOMUX Pins for Initialization Function

The mx53<reference board name>.c file contains the initialization functions for all peripherals (such as
UART, I2C, and Ethernet). Configure the relevant pins for each initializing function, using the following:
mxc_request_iomux(<pin name>, <iomux config>);
mxc_iomux_set_input(<mux input select>, <mux input config>);
mxc_iomux_set_pad(<pin name>, <iomux pad config>);

Where the following applies:

<pin name> See all pins definitions on file mx53_pins.h

<iomux config> See parameters defined at iomux_config enumeration on file iomux.h

<iomux input select> See parameters defined at iomux_input_select enumeration on file iomux.h

<iomux input config> See parameters defined at iomux_input_config enumeration on file iomux.h

<iomux pad config> See parameters defined at iomux_pad_config enumeration on file iomux.h

12.2.3 Example—Setting a GPIO

For an example, configure and use pin PATA_DA_1 (PIN L3) as a general GPIO and toggle its signal.

Add the following code to the file mx53_<reference board name>.c, function board_init:

// Request ownership for an IO pin.
mxc_request_iomux(MX53_PIN_ATA_DA_1, IOMUX_CONFIG_ALT1);

// Set pin as 0
reg = readl(GPIO7_BASE_ADDR + 0x0);
reg &= ~0x80;
writel(reg, GPIO7_BASE_ADDR + 0x0);

// Set pin direction as output
reg = readl(GPIO7_BASE_ADDR + 0x4);
reg |= 0x80;
writel(reg, GPIO7_BASE_ADDR + 0x4);

// Delay 0.5 seconds
udelay(500000);

// Set pin as 1
reg = readl(GPIO7_BASE_ADDR + 0x0);
reg |= 0x80;
writel(reg, GPIO7_BASE_ADDR + 0x0);

// Delay 0.5 seconds
udelay(500000);

Configuring the IOMUX Controller (IOMUXC)

i.MX53 System Development User’s Guide, Rev. 2

12-4 Freescale Semiconductor

// Set pin as 0
reg = readl(GPIO7_BASE_ADDR + 0x0);
reg &= ~0x80;
writel(reg, GPIO7_BASE_ADDR + 0x0);

If done correctly, the pin PATA_DA_1 on the i.MX53 toggles when booting.

12.3 Setting Up the IOMUXC in Linux

The folder linux/arch/arm/mach-<platform name> contains the specific machine layer file for your custom
board. For example, the machine layer file used on the i.MX53 <reference> boards are
linux/arch/arm/mach-mx5/mx53_<reference board name>.c. This platform is used in the examples in this
section. The machine layer files include the IOMUX configuration information for peripherals used on a
specific board.

To set up the IOMUXC and configure the pads, change the two files described in Table 12-2:

12.3.1 IOMUX Configuration Definition

The iomux-mx53.h file contains definitions for all i.MX53 pins. Pin names are formed according to the
formula <SoC>PAD<Pad Name>_GPIO<Instance name>_<Port name>. Definitions are created with the
following line code.

IOMUX_PAD(PAD Control Offset, MUX Control Offset, MUX Mode, Select Input Offset, Select Input,
Pad Control)

The variables are defined as follows:

PAD Control Offset Address offset to pad control register
(IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>)

MUX Control Offset Address offset to MUX control register
(IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>)

MUX Mode MUX mode data, defined on MUX control registers

Select Input Offset Address offset to MUX control register
(IOMUXC_<Instance_port>_SELECT_INPUT)

Select Input Select Input data, defined on select input registers

Pad Control Pad Control data, defined on Pad control registers

Definitions can be added or changed, as shown in the following example code:
#define MX53_PAD_ATA_CS_1__UART3_RXD IOMUX_PAD (0x620, 0x2A0, 4, 0x888, 3,
MX53_UART_PAD_CTRL)

Table 12-2. IOMUX Configuration Files

Path File name Description

linux/arch/arm/plat-mxc/include/mach/ iomux-mx53.h IOMUX configuration definitions

linux/arch/arm/mach-mx5 mx53_<reference
board name>.c

Machine Layer File. Contains IOMUX configuration
structures

Configuring the IOMUX Controller (IOMUXC)

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 12-5

The variables are as follows:

• 0x620—PAD Control Offset

• 0x2A0—MUX Control Offset

• 4—MUX Mode

• 0x888—Select Input Offset

• 3—Select Input

• MX53_UART_PAD_CTRL—Pad Control

For all addresses and register values, check the IOMUX chapter in the i.MX53 Applications Processor
Reference Manual.

12.3.2 Machine Layer File

The mx53_<reference board name>.c file contains structures for configuring the pads. They are declared
as follows:

static struct pad_desc mx53common_pads[] = {
…
…
…
MX53_PAD_ATA_BUFFER_EN__UART2_RXD,
MX53_PAD_ATA_DMARQ__UART2_TXD,
MX53_PAD_ATA_DIOR__UART2_RTS,
MX53_PAD_ATA_INTRQ__UART2_CTS,

MX53_PAD_ATA_CS_0__UART3_TXD,
MX53_PAD_ATA_CS_1__UART3_RXD,
…
…
…
};

Add the pad's definitions from iomux-mx53.h to the above code.

On init function (in this example “mx53_<reference board name>_io_init” function), set up the pads using
the following function:

mxc_iomux_v3_setup_multiple_pads(mx53common_pads, ARRAY_SIZE(mx53common_pads));

12.3.3 Example—Setting a GPIO

For an example, configure the pin PATA_DA_1 (PIN L3) as a general GPIO and toggle its signal.

On Kernel menuconfig, add sysfs interface support for GPIO with the following code:
Device Drivers --->
 [*] GPIO Support --->
 [*] /sys/class/gpio/... (sysfs interface)

Configuring the IOMUX Controller (IOMUXC)

i.MX53 System Development User’s Guide, Rev. 2

12-6 Freescale Semiconductor

Define the pad on iomux-mx53.h file as follows:

#define MX53_PAD_ATA_DA_1__GPIO_7_7IOMUX_PAD(0x614, 0x294, 1, 0x0, 0, NO_PAD_CTRL)

Parameters:

• 0x614—PAD Control Offset

• 0x294—MUX Control Offset

• 1—MUX Mode

• 0x000—Select Input Offset

• 0—Select Input

• NO_PAD_CTRL—Pad Control

To register the pad, add the previously defined pin to the pad description structure in the mx53_<reference
board name>.c file, as shown in the following code.

static struct pad_desc mx53common_pads[] = {
…
…
…
MX53_PAD_ATA_DA_1__GPIO_7_7,
…
…
…
};

To use the pad as GPIO, go to the i.MX53 Linux command line. On this line, it is possible to test the GPIO
exporting its number on /sys/class/gpio/export.

This number is formed by <GPIO Instance – 1> × 32 + <GPIO Port number>. In this example GPIO7_7
is being used, so its number is (7 – 1) × 32 + 7 = 199.

Export the GPIO7_7:

echo 199 > /sys/class/gpio/export

Set GPIO199 as output:

echo out > /sys/class/gpio/gpio199/direction

Set output as 1 or 0:

echo 1 > /sys/class/gpio/gpio199/value
echo 0 > /sys/class/gpio/gpio199/value

If the steps above were performed correctly, the pin PATA_DA_1 toggles on the i.MX53 reference board
when the board is running the system.

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 13-1

Chapter 13
Registering a New UART Driver

Because Linux already has a UART driver for the i.MX53, configure the UART pads on the IOMUX
registers. This chapter explains how to configure the UART pads, enable the UART driver, and test that the
UART was set up correctly.

13.1 Configuring UART Pads on IOMUX

The IOMUX register must be set up correctly before the UART function can be used. This section provides
example code to show how to do this.

Pads are configured using the file linux/arch/arm/mach-mx5/<platform>.c, with <platform> replaced by
the appropriate platform file name (see Section 13.4, “File Names and Locations,” for the platform file
names). For example, the machine layer file used on the i.MX53 reference boards are
linux/arch/arm/mach-mx5/mx53_<reference board name>.c.

The iomux-mx53.h file contains the definitions for all i.MX53 pads. Configure the UART pads as follows:
/* UART3 */
#define MX53_PAD_ATA_CS_0__UART3_TXD IOMUX_PAD(0x61C, 0x29C, 4, 0x0, 0, MX53_UART_PAD_CTRL)
#define MX53_PAD_ATA_CS_1__UART3_RXD IOMUX_PAD(0x620, 0x2A0, 4, 0x888, 3, MX53_UART_PAD_CTRL)

The structures for configuring the pads are contained in the mx53_<reference board name>.c file. Update
them so that they match the configured pads’ definition as shown above. The code below shows the
non-updated structures:
static struct pad_desc mx53common_pads[] = {
…
…
…

MX53_PAD_ATA_CS_0__UART3_TXD,
MX53_PAD_ATA_CS_1__UART3_RXD,

…
…
…
};

Use the following function to set up the pads on the init function mx53_<reference board name>_io_init
(found in the mx53_<reference board name>.c file).
mxc_iomux_v3_setup_multiple_pads(mx53common_pads, ARRAY_SIZE(mx53common_pads));

The UART driver is now implemented and needs to be enabled.

Registering a New UART Driver

i.MX53 System Development User’s Guide, Rev. 2

13-2 Freescale Semiconductor

13.2 Enabling UART on Kernel Menuconfig

Enable the UART driver on Linux menuconfig. This option is located at:

-> Device Drivers
 -> Character devices
 -> Serial drivers
 <*> MXC Internal serial port support

 [*] Support for console on a MXC/MX27/MX21 Internal serial port

After enabling the UART driver, build the Linux kernel and boot the board.

13.3 Testing the UART

By default, the UART is configured as follows:

• Baud Rate: 9600

• Data bits: 8

• Parity: None

• Stop bits: 1

• Flow Control: None

If the user used a different UART configuration for a device that needs to connect to the i.MX53 processor,
connection and communication will fail. There is a simple way to test whether the UART is properly
configured and enabled.

On the i.MX53 Linux command line, type the following:

echo “test” > /dev/ttymxc2

UART3 (J2 on the i.MX53 expansion board) sends the string “test”.

13.4 File Names and Locations

There are three Linux source code directories that contain relevant UART files.

Table 13-1 lists the UART files that are available on the directory <linux source code
directory>/drivers/serial/

Table 13-1. Available Files—First Set

File Description

mxc_uart.c Low level driver

serial_core.c Core driver that is included as part of standard Linux

mxc_uart_reg.h Register values

mxc_uart_early.c Source file to support early serial console for UART

Registering a New UART Driver

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 13-3

Table 13-2 lists the UART files that are available on the directory <linux source code
directory>/arch/arm/plat-mxc/include/mach/

Table 13-3 lists the UART files that are available on the directory <linux source code
directory>/arch/arm/mach-mx5/

Table 13-2. Available Files—Second Set

File Description

mxc_uart.h UART header containing UART configuration and data structures

iomux-<platform>.h IOMUX pads definitions

Table 13-3. Available Files—Third Set

File Description

serial.c UART configuration data and calls

serial.h Serial header file

<platform>.c Machine Layer file

Registering a New UART Driver

i.MX53 System Development User’s Guide, Rev. 2

13-4 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 14-1

Chapter 14
Adding Support for the i.MX53 ESDHC

This chapter explains how to add support for the i.MX53 ESDHCV2-1/2/4 and ESDHCV3-3 controller.

The multimedia card (MMC)/secure digital (SD)/secure digital input output (SDIO) host driver
implements a standard Linux driver interface for the enhanced MMC/SD host controller (ESDHC). The
host driver is part of the Linux kernel MMC framework.

The MMC driver has the following features:

• 1-bit or 4-bit operation for SD and SDIO cards

• Supports card insertion and removal detections

• Supports the standard MMC commands

• PIO and DMA data transfers

• Power management

• Supports 1/4/8-bit operations for MMC cards

• Support eMMC4.4 SDR and DDR mode

14.1 Including Support for SD2 and SD4

The following features are required for SD card support in the i.MX53 BSP.

• Card detection.

• Write protection

• Max clock frequency

• Min clock frequency

These settings are configured with the mxc_mmc_platform_data structure defined at
/<ltib>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach/mmc.h. The structure is shown below
struct mxc_mmc_platform_data {
 unsigned int ocr_mask; /* available voltages */
 unsigned int vendor_ver;
 unsigned int caps;
 unsigned int min_clk;
 unsigned int max_clk;
 unsigned int clk_flg; /* 1 clock enable, 0 not */
 unsigned int reserved:16;
 unsigned int card_fixed:1;
 unsigned int card_inserted_state:1;
 unsigned int (*status) (struct device *);
 int (*wp_status) (struct device *);
 char *power_mmc;
 char *clock_mmc;
};

Adding Support for the i.MX53 ESDHC

i.MX53 System Development User’s Guide, Rev. 2

14-2 Freescale Semiconductor

14.2 Including Support for SD1/SD2/SD3/SD4

For hardware that includes connectivity for any SD interface, include SD support from the BSP. Make the
required changes in the mach-mx5 folder at <ltib>/linux/arch/arm/mach-mx5 and follow the steps below.

1. Create the platform_device struct for all SD cards.

2. Configure the SD card pins.

3. Create struct mxc_mmc_platform_data.

4. Set up card detection.

These steps are discussed in detail in the following subsections.

14.2.1 Creating Platform Device Structures for all SD Cards

To create required platform device structures, open <ltib>/linux/arch/arm/mach-mx5/devices.c. Use the
following code to ensure that your BSP include all required SD platform devices.
static struct resource mxcsdhcXX_resources[] = {
 {
 .start = MMC_SDHCXX_BASE_ADDR,
 .end = MMC_SDHCXX_BASE_ADDR + SZ_4K - 1,
 .flags = IORESOURCE_MEM,
 },
 {
 .start = MXC_INT_MMC_SDHCXX,
 .end = MXC_INT_MMC_SDHCXX,
 .flags = IORESOURCE_IRQ,
 },

Table 14-1. Structure Descriptions

Struct member Description

ocr_mask Control the voltage on SD pads to be high voltage (around 3.0 V) or low voltage (around
1.8 V). ‘0’ stands for low voltage range Optional output

vendor_ver Vendor version

caps Modes of operation - data transfer modes

min_clk Minimum SD operating frequency in Hz.

max_clk Maximum SD operating frequency in Hz.

clk_flg 0 clock disabled, 1 Clock enabled.

reserved reserved (unused)

card_fixed 0 Read Only Memory (ROM) cards, 1 Read/Write (RW) cards.

card_inserted_state 1 SD card inserted in the slot, 0 there is no SD card attached to the socket.

status Function pointer to the card detection status routine.

wp_status Function pointer to the card write protection routine.

power_mmc power supply for ESDHC

clock_mmc Current MMC clock

Adding Support for the i.MX53 ESDHC

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 14-3

 {
 .flags = IORESOURCE_IRQ,
 },
};

struct platform_device mxcsdhcXX_device = {
 .name = "mxsdhci",
 .id = YY,
 .num_resources = ARRAY_SIZE(mxcsdhcXX_resources),
 .resource = mxcsdhcXX_resources,
};

Variables have values as follows:

• XX can be 1, 2, 3 or 4 depending on the SD port.

• YY can have a value between 0 and 3.

• SD1’s ID is 0; SD2's ID is 1; SD3's ID is 2; and SD4's ID is 3.

Declare the structures as externs in <ltib>/linux/arch/arm/mach-mx5/devices.h with the following code.
extern struct platform_device mxcsdhc1_device;
extern struct platform_device mxcsdhc2_device;
extern struct platform_device mxcsdhc3_device;
extern struct platform_device mxcsdhc4_device;

14.2.2 Configuring Pins for SD Function

IOMUX allows several configurations, each with slight variances in the pins. The iomux-mx53.h file
contains the definitions for all i.MX53 pads. Add entries in this file to define the configuration for the SD
function. See Chapter 12, “Configuring the IOMUX Controller (IOMUXC),” for a description of how to
set up the IOMUX and pads for routing signals as desired.

14.2.3 Creating the Platform Data Structure

After pin out configuration, SD card characteristics need to be described in an mxc_mmc_platform_data
structure. Create one structure per SD in the system: mmc1_data, mmc2_data, mmc3_data, and/or
mmc4_data. These structures must be placed in <ltib>/linux/arch/arm/mach-mx5/mx53_<board name>.c.
static struct mxc_mmc_platform_data mmc4_data = {
 .ocr_mask = MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | MMC_VDD_31_32,
 .caps = MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA | MMC_CAP_DATA_DDR,
 .min_clk = 400000,
 .max_clk = 50000000,
 .card_inserted_state = 0,
 .status = sdhc_get_card_det_status,
 .wp_status = sdhc_write_protect,
 .clock_mmc = "esdhc_clk",
 .power_mmc = NULL,
};

The preceding example shows the an example of an SD4 structure for a custom board. The SD4 interface
supports either 4 bit or 8 bit data transfers (SD4_DAT[7:0]). Clock frequency can be set to a value between

Adding Support for the i.MX53 ESDHC

i.MX53 System Development User’s Guide, Rev. 2

14-4 Freescale Semiconductor

400 KHz and 50 MHz. sdhc_get_card_det_status() and sdhc_write_protect() functions are used for card
detection and write protection.

14.2.4 Setting Up Card Detection

The SD connector includes an output pin (CD) that changes its state according to the card insertion status.
In some cases, CD is not connected to the processor. In those cases, the function should return true to signal
that the card is always connected. When CD is connected, the SD card connector triggers the load of the
SD into the available devices. After insertion, the system detects the SD and loads the MMC device under
/dev folder (/dev/mmcblk*).

To set up card detection, first modify sdhc_get_card_det_status() function by adding an entry for your SD
device for detecting when the SD card has been inserted in the slot. This function is located under your
platform at <ltib>/linux/arch/arm/mach-mx5/mx53_<board name>.c
static unsigned int sdhc_get_card_det_status(struct device *dev){
 int ret;
 // SD's Card support for i.MX53 <custom board name>
 if (board_is_mx53_<custom board>()) { // SD1 Card support for i.MX53 <custom board name>
 if (to_platform_device(dev)->id == 0) {
 ret = gpio_get_value(IOMUX_TO_GPIO(MX53_PIN_GPIO_1));
 }
 // SD2 Card support for i.MX53 <custom board name>
 else if(to_platform_device(dev)->id == 1) {
 ret = gpio_get_value(IOMUX_TO_GPIO(MX53_PIN_GPIO_4));
 }
 // SD3 Card support for i.MX53 <custom board name>
 else if(to_platform_device(dev)->id == 2) {
 ret = 1;
 }
 // SD4 Card support for i.MX53 <custom board name>
 else if(to_platform_device(dev)->id == 3) {
 ret = 1;
 }
 else {
 ret = 1;
 } // SD's Card support for i.MX53 Default Board
 } else {
 if (to_platform_device(dev)->id == 0) {
 ret = gpio_get_value(IOMUX_TO_GPIO(MX53_PIN_EIM_DA13));
 } else{ /* config the det pin for SDHC3 */
 ret = gpio_get_value(IOMUX_TO_GPIO(MX53_PIN_EIM_DA11));
 }
 }
 return ret;
}

Next, configure the pin as a general purpose input in the platform GPIO file located at
<ltib>/linux/arch/arm/mach-mx5/mx53_<board name>_gpio.c.
static struct mxc_iomux_pin_cfg __initdata mx53_<board name>_iomux_pins[] = {
...
 { /* SDHC2 SD_CD */
 MX53_PIN_GPIO_4, IOMUX_CONFIG_GPIO,
 },

Adding Support for the i.MX53 ESDHC

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 14-5

...
};

Then link GPIO interrupts with start and end functions in the resource structure of the SD interface in the
mx53_<board name>.c file located at <ltib>/linux/arch/arm/mach-mx5/mx53_<board name>.c
static void __init mxc_board_init(void)
{
...
 /* SD card detect irqs */
 if (board_is_mx53_<board name>()) {
 ...
 // SD2 Card support for i.MX53 custom board
 mxcsdhc2_device.resource[2].start = IOMUX_TO_IRQ(MX53_PIN_GPIO_4);
 mxcsdhc2_device.resource[2].end = IOMUX_TO_IRQ(MX53_PIN_GPIO_4);
 mmc2_data.wp_status = NULL;
 ...
 }
...
}

Interfaces without card detection pins do not require any GPIO configuration. However, they need card
detection forced to the kernel by setting the card_inserted_state field. An example is shown below:
static void __init mxc_board_init(void)
{
...
 /* SD card detect irqs */
 if (board_is_mx53_<custom board name>()) {
 ...
 // SDHC4 Card support for i.MX53 custom board
 mmc4_data.card_inserted_state = 1;
 mmc4_data.status = NULL;
 mmc4_data.wp_status = NULL;
 ...
 }
...
}

NOTE

SD interfaces without card detection are intended to be used as a soldered
device, such as the MovieNAND. For this reason, SD without card_detect is
only loaded during driver load (boot up time) if they are present. Be sure that
you have inserted the card prior to the ESDHC driver initialization.

14.3 Additional Reference Information

This section describes the ESDHC interface features, explains the i.MX53 support for ESDHC, and shows
the interface layouts.

Adding Support for the i.MX53 ESDHC

i.MX53 System Development User’s Guide, Rev. 2

14-6 Freescale Semiconductor

14.3.1 ESDHC Interface Features

The ESDHC has 15 associate I/O signals with the following functions.

• The SD_CLK is an internally generated clock used to drive the MMC, SD, SDIO cards.

• The CMD I/O is used to send commands and receive responses to/from the card. Eight data lines
(DAT7–DAT0) are used to perform data transfers between the ESDHC and the card.

• The SD_CD# and SD_WP are card detection and write protection signals directly routed from the
socket. A low on SD_CD# means that a card is inserted and a high on SD_WP means that the write
protect switch is active.

• SD_OD is an output signal generated in SoC level outside ESDHC and is used to select the external
open drain resistor.

• SD_LCTL is an output signal used to drive an external LED to indicate that the SD interface is
busy.

SD_CD#, SD_WP, SD_OD, SD_LCTL are all optional for system implementation. If the ESDHC is
configured to support a 4-bit data transfer, DAT7–DAT4 can also be optional and tied to high.

14.3.2 ESDHC Operation Modes Supported by the i.MX53

The ESDHC acts as a bridge, passing host bus transactions to the SD/SDIO/MMC cards by sending
commands and performing data accesses to/from the cards. It handles the SD/SDIO/MMC protocols at the

Table 14-2. ESDHC Pins

Pin Function

SD_CLK Clock for MMC/SD/SDIO card

SD_CMD CMD line connect to card

SD_DAT7 DAT7 line in 8-bit mode - Not used in other modes

SD_DAT6 DAT6 line in 8-bit mode - Not used in other modes

SD_DAT5 DAT5 line in 8-bit mode - Not used in other modes

SD_DAT4 DAT4 line in 8-bit mode - Not used in other modes

SD_DAT3 DAT3 line in 4/8-bit mode or configured as card detection pin. May be configured as card detection pin
in 1-bit mode

SD_DAT2 DAT2 line or Read Wait in 4-bit mode. Read Wait in 1-bit mode

SD_DAT1 DAT1 line in 4/8-bit mode. Also used to detect interrupt in 1/4-bit mode

SD_DAT0 DAT0 line in all modes. Also used to detect busy state

SD_CD# Card detection pin. If not used tie high

SD_WP Card write protect detect. If not used tie low

SD_OD Open drain select (not generated within the ESDHC). Optional output

SD_LCTL LED control used to drive an external LED. Active high. Fully controlled by the driver. Optional output

SD_VS Control the voltage on SD pads to be high voltage (around 3.0V) or low voltage (around 1.8 V). 0 stands
for low voltage range optional output.

http://wiki.freescale.net/download/attachments/30967044/mx53_evk_gpio.c?version=1&modificationDate=1288912519000

Adding Support for the i.MX53 ESDHC

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 14-7

transmission level. The i.MX53 ESDHC includes three instances of the Enhanced Secured Digital Host
Controller Version 2 (ESDHCv2) within the ports 1, 2 and 4. ESDHC port 3 on the i.MX53 can be
configured to work either as ESDHCv3 or ESDHCv2.

Table 14-3 shows the supported operation modes.

SD Memory Cards support at least the two bus modes 1-bit or 4-bit width. The SD host sends a command
to the SD card to request a bus width change.

14.3.3 Interface Layouts

Figure 14-1 shows an example of an i.MX53 SD interface layout.

Figure 14-1. Example i.MX53 Board SD Interface Layout

Table 14-3. ESDHC Operation Modes

Modes of Operation Data Transfer Modes Frequency

MMC 1-bit, 4-bits or 8-bits full-speed (up to 20 MHz) high-speed (up to 52 MHz)

SD/SDIO 1-bit or 4-bit full-speed (up to 25 MHz) high-speed (up to 50 MHz)

CE-ATA 1-bit, 4-bit, or 8-bit —

Identification Mode — up to 400 kHz

Adding Support for the i.MX53 ESDHC

i.MX53 System Development User’s Guide, Rev. 2

14-8 Freescale Semiconductor

Figure 14-2 shows another example i.MX53 SD interface layout.

Figure 14-2. Second Example i.MX53 SD Interface Layout

Note that some SD interface card detection and write protection pins are not propagated from the SD card
to the i.MX53 in all hardware implementations. Also note that SD4 is shared with PATA pins. The second
example board provides the connection to the four SD interfaces provided by the ESDHC in the i.MX53.

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 15-1

Chapter 15
Configuring the SPI NOR Flash Memory Technology Device
(MTD) Driver

This chapter explains how to set up the SPI NOR Flash memory technology device (MTD) driver. This
driver uses the SPI interface to support Atmel data Flash. By default, the SPI NOR Flash MTD driver
creates static MTD partitions to support Atmel data Flash.

The NOR MTD implementation provides necessary information for the upper layer MTD driver.

15.1 Source Code Structure

The SPI NOR MTD driver is implemented in the following directory:
<ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/mxc_dataflash.c

15.2 Configuration Options

BSP freescale supports the following ATMEL SPI NOR Flash models:

• "AT45DB011B" "at45db011d"

• "AT45DB021B" "at45db021d"

• "AT45DB041x" "at45db041d"

• "AT45DB081B" "at45db081d"

• "AT45DB161x" "at45db161d"

• "AT45DB321x" "at45db321d"

• "AT45DB642x" "at45db642d"

Those models are defined in the structure static struct flash_info __devinitdata dataflash_data[],
located at <ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/mxc_dataflash.c.

The parameters are as follows:
"at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS

Table 15-1 defines the variables.

Table 15-1. Parameter Variables

Variable Definition

"at45db011d" Flash Name model

 0x1F_2200 [5:4]Manufacter ID, [3:2]Device ID

 512 Number of pages

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX53 System Development User’s Guide, Rev. 2

15-2 Freescale Semiconductor

NOTE

If you want to use another data flash model, add it on the last structure. Be
sure the flash models are compatible with the Atmel data flashes.

15.3 Selecting SPI NOR on the Linux Image

Table 15-2 provides information for each supported device.

Follow these steps to select the desired data flash from Table 15-2.

1. Open the mx53_<board name>.c file (located at arch/arm/mach-mx5/mx53_<board name>.c) and
modify the structure called static struct flash_platform_data mxc_spi_flash_data[]

2. Write the name of the data flash desired on the .type variable of this structure. This name must be
exactly the same as it appears on the dataflash_data[]_ structure.

3. Set the number of partitions you want to use on the SPI NOR Flash. On the mx53_<board name>.c
file, go to the structure called static struct mtd_partition mxc_dataflash_partitions[]

Each partition has three elements: the name of the partition, the offset, and the size. By default,
these elements are partitioned into a bootloader section and a kernel section, and defined as:

 .name = "bootloader",
 .offset = 0,
 .size = 0x000100000,

 .name = "kernel",
 .offset = MTDPART_OFS_APPEND,
 .size = MTDPART_SIZ_FULL,

 256 Number of bytes per page

 8 Offset

Table 15-2. Device Information

Device Density ID Code #Pages PageSize Offset

AT45DB011B 1 Mbit (128K) xx0011xx (0x0C) 512 264 9

AT45DB021B 2 Mbit (256K) xx0101xx (0x14) 1024 264 9

AT45DB041B 4 Mbit (512K) xx0111xx (0x1C) 2048 264 9

AT45DB081B 8 Mbit (1M) xx1001xx (0x24) 4096 264 9

AT45DB0161B 16 Mbit (2M) xx1011xx (0x2C) 4096 528 10

AT45DB0321B 32 Mbit (4M) xx1101xx (0x34) 8192 528 10

AT45DB0642 64 Mbit (8M) xx111xxx (0x3C) 8192 1056 11

AT45DB1282 128 Mbit (16M) xx0100xx (0x10) 16384 1056 11

Table 15-1. Parameter Variables (continued)

Variable Definition

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 15-3

Bootloader starts from address 0 and has a size of 1 Mbyte. Kernel starts from address 1 Mbyte and
has a size of 3 Mbytes.

NOTE

You may create more partitions or modify the size and names of these ones.
To add more partitions, define another structure on the
mxc_dataflash_partitions variable.

4. To get to the SPI NOR MTD driver, use the command ./ltib -c when located in the <ltib dir>.

5. On the screen displayed, select Configure the kernel and exit.

6. When the next screen appears, select the following option to enable the SPI NOR MTD driver:

CONFIG_MTD_MXC_DATAFLASH

This config enables access to the Atmel DataFlash chips, using FSL SPI. In menuconfig, this option
is available under Device Drivers > Memory Technology Device (MTD) support > Self-contained
MTD device drivers > Support for AT DataFlash via FSL SPI interface

15.4 Changing the SPI Interface Configuration

The i.MX53 chip has three CSPI interfaces: one CSPI and two ECSPI. By default, the i.MX53 BSP
configures ECSPI-1 interface in the master mode to connect to the SPI NOR Flash. It also uses
chip select 1 from this ECSPI interface (SS1).

The main difference between CSPI and ECSPI is the supported baud rate. CSPI supports up to 26 Mbps
in master mode and ECSPI supports up to 52 Mbps.

15.4.1 Connecting SPI NOR Flash to Another CSPI Interface

Before connecting SPI NOR Flash to another CSPI, define the three things listed below:

• CSPI interface (between CSPI, ECSPI-1 or ECSPI-2).

• Chip select (between SS[3:0]).

• External signals

15.4.2 Changing the CSPI Interface

To change the CSPI interface used, use the following procedure:

1. Locate the file at arch/arm/mach-mx5/mx53_<board name>.c

2. Look for the line mxc_register_device(&mxcspi1_device, &mxcspi1_data);

3. Use the function static void __init mxc_board_init(void) to register the CSPI-1 interface. To
enable the other CSPI interface, replace the first parameter as shown in Table 15-3:

Table 15-3. CSPI Parameters

CSPI Parameter Name

ECSPI-1 &mxcspi1_device

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX53 System Development User’s Guide, Rev. 2

15-4 Freescale Semiconductor

15.4.3 Changing the Chip Select

To change the chip select used, locate the file at arch/arm/mach-mx5/mx53_<board name>.c and use the
static struct spi_board_info mxc_dataflash_device[] __initdata structure.

Replace the value of ".chip_select" variable with the desired chip select value. For example,
.chip_select = 3 sets the chip select to number 3 on the CSPI interface.

15.4.4 Changing the External Signals

The iomux-mx53.h file contains the definitions for all i.MX53 pads. Add entries in this file to define the
configuration for the CSPI function. See Chapter 12, “Configuring the IOMUX Controller (IOMUXC),”
for a description of how to set up the IOMUX and pads for routing signals as desired.

NOTE

Check the mxc_iomux_pins structure to ensure that the chosen signal
chosen is not used by another interface before configuration.

15.5 Hardware Operation

SPI NOR Flash is SPI compatible with frequencies up to 66 MHz. The memory is organized in pages of
512 bytes or 528 bytes. SPI NOR Flash also contains two SRAM buffers of 512/528 bytes each, which
allows data reception while a page in the main memory is being reprogrammed as well as the writing of a
continuous data stream.

Unlike conventional Flash memories that are accessed randomly, the SPI NOR Flash accesses data
sequentially. It operates from a single 2.7–3.6 V power supply for program and read operations.

SPI NOR Flashes are enabled through a chip select pin and accessed through a three-wire interface: serial
input, serial output, and serial clock.

ECSPI-2 &mxcspi2_device

CSPI &mxcspi3_device

Table 15-3. CSPI Parameters (continued)

CSPI Parameter Name

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 15-5

15.6 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together to implement a
file system. Figure 15-1 illustrates the relationships between standard components.

Figure 15-1. Components of a Flash-Based File System

The MTD subsystem for Linux is a generic interface to memory devices, such as Flash and RAM, which
provides simple read, write, and erase access to physical memory devices. Devices called mtdblock
devices can be mounted by JFFS, JFFS2, and CRAMFS file systems. The SPI NOR MTD driver is based
on the MTD data Flash driver in the kernel by adding SPI accesses.

In the initialization phase, the SPI NOR MTD driver detects a data Flash by reading the JEDEC ID. The
driver then adds the MTD device. The SPI NOR MTD driver also provides the interfaces to read, write,
erase NOR Flash.

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX53 System Development User’s Guide, Rev. 2

15-6 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 16-1

Chapter 16
Setting Up the Keypad Port (KPP)

The KPP is designed to interface with the keypad matrix with 2-point contact or 3-point contact keys. The
KPP is designed to simplify the software task of scanning a keypad matrix. With appropriate software
support, the KPP is capable of detecting, debouncing, and decoding one or multiple keys pressed
simultaneously on the keypad.

Because Linux already contains a driver for the i.MX53 keypad, all users must do to add and configure a
new custom keypad is to configure the keypad pins on the IOMUX registers and register the driver in the
platform file located at linux/arch/arm/mach-mx5/<your_platform>.c

Table 16-1 lists the files used in the setup process:

16.1 Configuring Keypad Pins on IOMUX

To use the keypad function, users must first set up the keypad pins on the IOMUX registers. The pad pins
can be configured on file linux/arch/arm/mach-mx5/<platform>.c, where <platform> is replaced by the
appropriate platform file name. For example, the machine layer file used on the i.MX53 reference boards
is linux/arch/arm/mach-mx5/mx53_<reference board name>.c. This platform is used in the example
procedure in this section.

The iomux-mx53.h file contains definitions for all i.MX53 pins. Configure the keypad pins as follows:

#define MX53_PAD_KEY_COL0__GPIO_4_6IOMUX_PAD(0x34C, 0x24, 1, 0x0, 0, NO_PAD_CTRL)
#define MX53_PAD_KEY_ROW0__GPIO_4_7IOMUX_PAD(0x350, 0x28, 1, 0x0, 0, NO_PAD_CTRL)
#define MX53_PAD_KEY_COL1__GPIO_4_8IOMUX_PAD(0x354, 0x2C, 1, 0x0, 0, NO_PAD_CTRL)
#define MX53_PAD_KEY_ROW1__GPIO_4_9IOMUX_PAD(0x358, 0x30, 1, 0x0, 0, NO_PAD_CTRL)
#define MX53_PAD_KEY_COL2__GPIO_4_10IOMUX_PAD(0x35C, 0x34, 1, 0x0, 0, NO_PAD_CTRL)
#define MX53_PAD_KEY_ROW2__GPIO_4_11IOMUX_PAD(0x360, 0x38, 1, 0x0, 0, NO_PAD_CTRL)
#define MX53_PAD_KEY_COL3__GPIO_4_12IOMUX_PAD(0x364, 0x3C, 1, 0x0, 0, NO_PAD_CTRL)
#define MX53_PAD_KEY_ROW3__GPIO_4_13IOMUX_PAD(0x368, 0x40, 1, 0x0, 0, NO_PAD_CTRL)
#define MX53_PAD_KEY_COL4__GPIO_4_14IOMUX_PAD(0x36C, 0x44, 1, 0x0, 0, NO_PAD_CTRL)

#define MX53_PAD_KEY_ROW4__GPIO_4_15IOMUX_PAD(0x370, 0x48, 1, 0x0, 0, NO_PAD_CTRL)

Table 16-1. Files for Adding/Configuring a New Keypad

File Location Description

linux/drivers/input/keyboard/mxc_keyb.c Device driver file

linux/arch/arm/mach-mx5/devices.c Implements the driver registries

linux/arch/arm/mach-mx5/<platform>.c Machine Layer file

linux/include/usr/include/linux/input.h Input key codes include file

linux/arch/arm/plat-mxc/include/mach/iomux-<platform>.h IOMUX pads definitions

Setting Up the Keypad Port (KPP)

i.MX53 System Development User’s Guide, Rev. 2

16-2 Freescale Semiconductor

16.2 Creating a Custom Keymap

The input.h file defines codes for general keyboards, as follows.
...
#define KEY_HOME 102
#define KEY_UP 103
#define KEY_PAGEUP 104
#define KEY_LEFT 105
#define KEY_RIGHT 106
#define KEY_END 107
#define KEY_DOWN 108
#define KEY_PAGEDOWN 109
#define KEY_INSERT 110
#define KEY_DELETE 111
...

Use these labels or add new ones to create your custom keymap.

16.3 Configuring the Pads with the Machine Layer File

The mx53_<board name>.c file contains the structures to configure the pads. They are as follows:
static struct pad_desc mx53common_pads[] = {
…
…
…
/* Keypad */

MX53_PAD_KEY_COL0__KEY_COL0,
MX53_PAD_KEY_ROW0__KEY_ROW0,
MX53_PAD_KEY_COL1__KEY_COL1,
MX53_PAD_KEY_ROW1__KEY_ROW1,
MX53_PAD_KEY_COL2__KEY_COL2,
MX53_PAD_KEY_ROW2__KEY_ROW2,
MX53_PAD_KEY_COL3__KEY_COL3,
MX53_PAD_KEY_ROW3__KEY_ROW3,
MX53_PAD_KEY_COL4__KEY_COL4,
MX53_PAD_KEY_ROW4__KEY_ROW4,

…
…
…
};

Use the following procedure to configure the pads:

1. Add the configured pin's definitions from the iomux-mx53.h files to the structures in the
mx53_<board name>.c file.

NOTE

Remove any entry that can cause pin conflict. i.e.
MX53_PAD_KEY_COL2_KEY_COL2 conflicts with
MX53_PAD_KEY_COL2_TXCAN1.

2. On init function, set up the pads using the function below:
mxc_iomux_v3_setup_multiple_pads(mx53common_pads, ARRAY_SIZE(mx53common_pads));

Setting Up the Keypad Port (KPP)

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 16-3

3. Add the keymapping matrix as follows:
static u16 keymapping[16] = {

KEY_UP, KEY_DOWN, KEY_MENU, KEY_BACK,
KEY_RIGHT, KEY_LEFT, KEY_SELECT, KEY_ENTER,
KEY_F1, KEY_F3, KEY_1, KEY_3,
KEY_F2, KEY_F4, KEY_2, KEY_4,

};

4. Change the KEYS according to input.h labels and your keypad layout.

5. Add the following structure to configure the keypad:
static struct keypad_data keypad_plat_data = {

.rowmax = 4,

.colmax = 4,

.learning = 0,

.delay = 2,

.matrix = keymapping,
};

6. Register the keypad device. On the same machine layer file, add the following line on function
mxc_board_init:

mxc_register_device(&mxc_keypad_device, &keypad_plat_data);

The new keypad is now implemented.

16.4 Enabling the Keypad

Select the keypad on Linux menuconfig. This option is located at:

---> Device Drivers
 ---> Input device support
 ---> Keyboards
 ---> MXC Keypad Driver

Build the Linux kernel and boot the board.

16.5 Testing the Keypad

There are two simple ways to test the keypad: using cat and using Evtest.

16.5.1 Using cat to Test the Keypad

On the i.MX53 Linux command line, type the following:
cat /dev/input/keyboard0

ASCII characters are displayed when keys are pressed.

16.5.2 Using Evtest to Test the Keypad

Evtest is a simple software to test inputs. Build it by selecting the respective package on the ltib package
list.

On the i.MX53 Linux command line, type the following:
evtest /dev/input/keyboard0

Setting Up the Keypad Port (KPP)

i.MX53 System Development User’s Guide, Rev. 2

16-4 Freescale Semiconductor

Evtest displays the information of every key event.

Event: time 862.980003, type 1 (Key), code 106 (Right), value 1
Event: time 863.110002, type 1 (Key), code 106 (Right), value 0
Event: time 863.620003, type 1 (Key), code 158 (Back), value 1
Event: time 863.750002, type 1 (Key), code 158 (Back), value 0
Event: time 865.560003, type 1 (Key), code 139 (Menu), value 1
Event: time 865.730002, type 1 (Key), code 139 (Menu), value 0
Event: time 866.150003, type 1 (Key), code 28 (Enter), value 1
Event: time 866.350002, type 1 (Key), code 28 (Enter), value 0

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 17-1

Chapter 17
Supporting the i.MX53 Reference Board DISP0 LCD

This chapter explains how to support a new LCD on an i.MX53-based board, using display port 0. There
are two options for adding support for a new LCD panel without modifying the BSP: letting the BSP
calculate the timings using VESA defaults or reducing the blanking time. VESA and reduced blanking
work for many LCDs but fail for some devices because of timing configuration constraints. For those
devices, we need to modify the BSP and set the proper timing values. Modifying the boot arguments also
allows us to include support for the new driver from LTIB device driver menu, call initialization routines,
and load the driver by using the boot arguments.

This chapter focuses on the synchronous Parallel0 RGB interface. Common display cards can be attached
to this interface. It provides connectivity for the Chunghwa CLAA057VA01CT VGA LCD and the
Chunghwa CLAA070VC01 WVGA LCD panel.

Be aware that the DI RGB interface is multiplexed with all other asynchronous parallel interfaces.
Therefore, users cannot send data to a synchronous display and another asynchronous parallel display
device at the same time in the same DI. Instead, the i.MX53 sends data to the asynchronous panel (smart
display) while the synchronous interface is inactive (during horizontal and vertical back porch and front
porches). For this reason, the smart display’s frame rate can be affected when multiple displays are
attached to the i.MX53.

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

17-2 Freescale Semiconductor

17.1 Supported Display Interfaces

The i.MX53 processor supports the display interfaces shown in Figure 17-1.

Figure 17-1. Available Display Interfaces

Table 17-1 describes the available interfaces.

Table 17-1. Available Interfaces

Feature IPU (in i.MX53)

Number of ports Two: Full dual-display support

Legacy I/F Parallel and serial.
Synchronous (for display refresh) and asynchronous (to memory)
Very flexible—glue-less connection to RAM-less displays, display controllers, and TV
encoders.

MIPI/DSI high-speed I/F Full Support
Up to 2 lanes, 800 Mbps per lane

Analog TV-out
(composite, S-video, component)

Driven by TVE (Not supported on TO1)
Up to 720p at 60 fps or 1080i at 30 fps
(720p: 1280x720, 1080i: 1920x1080)

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 17-3

17.2 Adding Support for an LCD Panel

To provide an example for how to add support for an LCD panel, this section shows the code and
commands used for adding the support for the CLAA057VA01CT LCD. CLAA057VA01CT is a 5.7" color
TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. It is composed of an LCD panel, driver
ICs, control circuit, touch screen, and LED backlight. The 5.7" screen produces a high resolution image
that is composed of 640 × 480 pixel elements in a stripe arrangement. It uses a 16 bit RGB signal input to
display 262K colors.

VGA output Driven by TVE (Not supported in TO1)
Up to WSXGA+ @ 60 Hz, 24 bpp
(WSXGA+: 1680x1050)

LVDS I/F Up to UXGA or 2xWXGA @ 60 Hz, 24 bpp
(UXGA: 1600x1200, WXGA: 1366x768

Note: VGA output is not supported on i.MX53 TO1 processors

Table 17-1. Available Interfaces

Feature IPU (in i.MX53)

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

17-4 Freescale Semiconductor

Figure 17-2 shows the interface between an i.MX53-based board and Chunghwa CLAA057VA01CT 5.7”
VGA LCD.

Figure 17-2. Interface

The LCD panel requires HSYNC, VSYNC, DE, PIXCLK, and part of the RGB data interface
(DISPB_DATA[17:0]). No additional signals, such as a reset signal or serial interface initialization routine
commands (SPI or I2C), are required. The backlight unit is controlled by a GPIO signal generated by the
i.MX53 (PWM), and the PMIC controls the touch panel interface. The display card includes a connection
for this panel.

Table 17-2 shows the timing parameters.

Table 17-2. Timing Parameters

Parameter Symbol Min Typ Max Unit

Screen Height or vertical period VP 515 525 560 Line

VSYNC pulse width VSW 1 1 1 Line

Vertical back porch VBP 34 34 34 Line

Vertical front porch VFP 1 11 46 Line

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 17-5

17.3 Modifying Boot Kernel Parameters to Support a New LCD

Users can use the video and di1_primary kernel parameters to change all timing and interface aspect ratios
without writing a single line of code by changing the settings through the default driver.

17.3.1 Setting the Video Kernel Parameter

The video kernel parameter is a multipurpose parameter used to configure display features in either display
port 0 or display port 1. It controls the following features:

• Display resolution

• Pixel color depth

• Refresh rate

• IPU display output interface format

See the modedb.txt file located at Documentation/fb/modedb.txt for specific parameter information.

To set the parameter information for the video argument, use the following format. Variables between
square brackets are optional.
<interface_id>:<ipu_out_fmt>,<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m]<name>[-<bpp>][@
<refresh>]

Table 17-3 defines the variables.

Active frame height VDISP — 480 — Line

Vertical refresh rate FV 55 60 65 Hz

Screen width or horizontal cycle HP 750 800 900 PIXCLK

HSYNC pulse width HSW 1 1 1 PIXCLK

Horizontal back porch HBP 46 46 46 PIXCLK

Horizontal front porch HFP 64 114 214 PIXCLK

Active frame width HDISP — 640 — PIXCLK

Table 17-3. Parameter Information

Argument Name Definition Units Values

interface_id Display interface id (DI0/DI1) NA mxcdi0fb, mxcdi1fb

interface_pix_fmt Display Interface output format NA RGB565, RGB666, RGB24, YUV444

name Video mode name NA String name

xres Horizontal resolution pixels Decimal value

yres Vertical resolution lines Decimal value

Table 17-2. Timing Parameters (continued)

Parameter Symbol Min Typ Max Unit

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

17-6 Freescale Semiconductor

When <name> is included in the mode_option argument parameters, the timing is not calculated. Instead,
it is extracted from BSP code. Valid default modes can be found at linux/drivers/video/modedb.c and in
files placed at linux/drivers/video/mxc folder.

Example 17-1. DVI Monitor Connected to Display Port 0

For a DVI monitor connected to display port 0, the kernel command is
video=mxcdi0fb:RGB24,1024x768M-16@60

Table 17-4 shows how the values in this example correspond to the argument names defined in Table 17-3.

Example 17-2. VGA LCD Connected to Display Port 0

For a VGA LCD connected to display port 0, the kernel command is
video=mxcdi0fb:RGB565,800x480M-16@55

M Timing calculated using VESA(TM) NA M

R Timing using reduced blanking NA R

bpp Bits per pixel on frame buffer bits Decimal value (16 or 24)

refresh LCD refresh rate Hz Decimal value

Table 17-4. XGA DVI Monitor Example Variables

Argument Name Value Definition

interface_id mxcdi0fb Display interface 0 settings

interface_pix_fmt RGB24 RGB bus is 24 bits width DISP0_DAT[23:0]- RGB888

name Not used in this command —

xres 1024 1024 pixels (Horizontal)

yres 768 768 lines (vertical)

M M Timings calculated using VESA(TM)

R Not used in this command —

bpp 16 Frame buffer is 16 bits per pixel

refresh 60 60 Hz

Table 17-3. Parameter Information

Argument Name Definition Units Values

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 17-7

Table 17-5 shows how the values in this example correspond to the argument names defined in Table 17-3.

Example 17-3. 720P TV Connected to Display Port 1

For a 720P TV connected to display port 1, the kernel command is video=mxcdi1fb:YUV444,720P60

Table 17-6 shows how the values in this example correspond to the argument names defined in Table 17-3.

17.3.2 Setting the di1_primary Kernel Parameter

The di1_primary kernel parameter informs the kernel/driver that DI1 is the primary display interface
instead of DI0, which is the default setting. Set this kernel parameter by adding the label di1_primary to
the boot kernel arguments.

Table 17-5. VGA LCD Example Variables

Argument Name Value Definition

interface_id mxcdi0fb Display interface 0 settings

interface_pix_fmt RGB565 RGB bus is 16 bits width DISP0_DAT[16:0]- RGB565

name Not used in this command —

xres 800 800 pixels (Horizontal)

yres 480 480 lines (vertical)

M M Timing calculated using VESA (TM)

R Not used in this command —

bpp 16 Frame buffer is 16 bits per pixel

refresh 55 55 Hz

Table 17-6. 720P TV Example Variables

Argument Name Value Definition

interface_id mxcdi1fb display interface 1 settings

interface_pix_fmt YUV444 YUV444 output

name 720P60 Defined in linux/drivers/video/mxc/tve.c

xres Not used in this command From tve.c: 1280

yres Not used in this command From tve.c: 720

M Not used in this command —

R Not used in this command —

bpp Not used in this command —

refresh Not used in this command —

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

17-8 Freescale Semiconductor

For example, the kernel command for an XGA LVDS connected to LVDS0 using DI1 as the primary
display interface is as follows:

video=mxcdi0fb:RGB24,LDB-XGA di1_primary

17.3.3 Modifying the Bits per Pixel Setting

The default bits per pixel setting is 16 bits. To change the default value to another depth, modify the
relevant lines in the mxc_ipuv3_fb.c file located at
<ltib dir>/rpm/BUILD/linux/drivers/video/mxc/mxc_ipuv3_fb.c

Example 17-4. Changing the Frame Buffer to 32 bpp

The following example code shows how to change the frame buffer from 16 bpp to 32 bpp.
static int mxcfb_probe(struct platform_device *pdev)
{
 ...

 if (!mxcfbi->default_bpp)
 mxcfbi->default_bpp = 16;
 // Change Default BPP to 32 bpp
 printk(KERN_INFO "mxcfb_probe() - default_bpp = 32\r\n");
 mxcfbi->default_bpp = 32;
 ...
 return ret;
}

Check the frame buffer bpp and other settings in the /sys/class folder. The output should look like the
following:
root@freescale ~$ cd /sys/class/graphics/fb0/
root@freescale /sys/devices/platform/mxc_sdc_fb.1/graphics/fb0$ ls
bits_per_pixel device pan subsystem
blank fsl_disp_property power uevent
console mode rotate virtual_size
cursor modes state
dev name stride
root@freescale /sys/devices/platform/mxc_sdc_fb.1/graphics/fb0$ cat bits_per_pixel
32

Note that the final line shows the bits per pixel to be 32, reflecting our change from the default of 16 bpp.

17.3.4 Modifying Display Timing for CLAA057VA01CT Using Kernel
Parameters

By using the video and di1_primary kernel parameters, the frame buffer driver is able to change all timing
and interface aspect ratios. Timing is calculated using the VESA standard.

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 17-9

The video parameter format is
<interface_id>:<ipu_out_fmt>,<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m]<name>[-<bpp>][@<re

fresh>] with variables between square brackets optional.

Table 17-7 provides sample values for an interface.

For these sample values, the video parameter is video=mxcdi0fb:RGB666,640x480M-16@55

Example 17-5. Kernel Image Stored in the SD; file system from NFS

The following commands are for a kernel image stored in the SD with a file system loaded from NFS. All
commands are executed on U-Boot:

To configure the network, use the following:
EVK U-Boot > setenv serverip 10.112.98.65
EVK U-Boot > setenv fec_addr 00:04:9f:00:ea:d3
EVK U-Boot > setenv ethaddr 00:04:9f:00:ea:d3
EVK U-Boot > setenv bootfile uImage
EVK U-Boot > saveenv
EVK U-Boot > reset

To load uImage from server, use the following:
EVK U-Boot > bootp $ {loadaddr} ernesto/53/uImage

To write uImage to SD, use the following:
EVK U-Boot > mmc write 0 ${loadaddr} 0x800 0x1800
Set NFS file system path
EVK U-Boot > setenv nfsroot /tftpboot/ernesto/ltib

To configure boot arguments to use NFS and CLAA057VA01CT LCD panel, use the following:
EVK U-Boot > setenv bootargs_mmc 'setenv bootargs ${bootargs} root=/dev/nfs ip=dhcp
video=mxcdi0fb:RGB666,640x480M-16@55 nfsroot=${serverip}:${nfsroot},v3,tcp'
Launch OS image
EVK U-Boot > run bootcmd_mmc

Table 17-7. Sample Values

Argument Name Value Definition

interface_id mxcdi0fb display interface 0 settings

interface_pix_fmt RGB666 RGB bus is 18 bits width DISP0_DAT[17:0]- RGB565

name Not used in this command —

xres 640 640 pixels (Horizontal)

yres 480 480 lines (vertical)

bpp 16 Frame buffer is 16 bits per pixel

refresh 55 55 Hz

M M Timing calculated using VESA(TM)

R Not used in this command —

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

17-10 Freescale Semiconductor

17.4 Adding Support for a New LCD

If neither VESA nor reducing the blanking calculation works for your LCD or if you need a special
function, add the support for the new LCD in the BSP.

Perform the following steps to modify the i.MX53 BSP to add the support for synchronous panels:

1. Add a display entry in the ltib catalog.

2. Create the madglobal LCD panel file.

3. Add compilation flag for the new display.

4. Configure LCD timings and display interface.

5. Use boot command to select the new LCD.

The following subsections describe these steps in detail.

17.4.1 Adding a Display Entry in the ltib Catalog

Select specific display drivers in Device Drivers > Graphics support.

Figure 17-3. Graphics Support Options Menu

To add an entry for a new LCD, perform the following steps:

1. Enter the i.MX53 display specific folder as follows.
$ cd <ltib dir>/rpm/BUILD/linux/drivers/video/mxc

2. Open the Kconfig file with the command gedit Kconfig &

3. Use the following code to add the entry where you want it to appear.

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 17-11

 config FB_MXC_CLAA057VA01CT_SYNC_PANEL
 depends on FB_MXC_SYNC_PANEL
 tristate "CLAA CLAA057VA01CT Panel"

17.4.2 Creating the LCD Panel File (initialization, reset, power settings,
backlight)

Because power settings are handled by the ATLAS APL PMIC and other voltage regulators, the display
driver must configure the APL PMIC during initialization to set up the power voltage configuration if this
has not already been done. Also, the reset waveform and initialization routine must be included. To do
these tasks, create an LCD file with panel-specific functions at the following location:
<ltib dir>/rpm/BUILD/linux/drivers/video/mxc/mxcfb_CLAA057VA01CT.c

WARNING

Before connecting an LCD panel to the i.MX53 board, check whether the
LCD is powered with the proper supply voltages and whether the display
data interface has the correct VIO value. Incorrect voltages and values may
harm the device.

The LCD file must include the definition of four basic functions described in Table 17-8 and can include
other functions and macros as needed.

Next, create a platform device that can be loaded and unloaded. This example declares the new platform
device using the devices.h and devices.c files located at:
<ltib dir>//rpm/BUILD/linux/arch/arm/mach-mx5/

1. Declare the plaform device on madglobal:devices.h using the following:
extern struct platform_device mxc_disp_devices[];

2. Add a new entry on madglobal:devices.c using the following:
struct platform_device mxc_disp_devices[] = {
 {
 .name = "lcd_CHUNGHWA_CLAA057VA01CT",
 .id = 0,

Table 17-8. Required Functions

Function Name Function Declaration Description

lcd_probe static int __devinit lcd_probe(struct
platform_device *pdev)

Called when the LCD module is loaded. It should contain, pmic
configuration, reset, power on sequence and the initialization
routine.

lcd_remove static int __devexit lcd_remove(struct
platform_device *pdev)

Called when the LCD module is removed. It should contain power
off pmic configuration, power off sequence and the
de-initialization routine.

lcd_suspend static int lcd_suspend(struct
platform_device *pdev, pm_message_t
state)

Not always implemented, but used for enhance low power modes
on the device. Usually called when system goes to suspend
mode.

lcd_resume static int lcd_resume(struct
platform_device *pdev)

Not always implemented, but used for enhance low power modes
on the device. Usually called when system returns from suspend
mode.

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

17-12 Freescale Semiconductor

 },
};

Be careful to use the same name for the new platform device entry as the name included in
madglobal:mxcfb_CLAA057VA01CT.c for the driver.
static struct platform_driver lcd_driver = {
 .driver = {
 .name = "lcd_CHUNGHWA_CLAA057VA01CT"},
 .probe = lcd_probe,
 .remove = __devexit_p(lcd_remove),
 .suspend = lcd_suspend,
 .resume = lcd_resume,
};

3. Register the device at <ltib
dir>//rpm/BUILD/linux/arch/arm/mach-mx5/madglobal:mxc53_<reference board name>.c by
using the following code:
static int __init mxc_init_fb(void)
{

 mxc_register_device(&mxc_disp_devices[0], NULL);

 return 0;
}

17.4.3 Adding the Compilation Flag for the New Display

After the LCD file has been created and the entry has been added to the Kconfig file, modify the makefile
to include the LCD file in the compilation by using the code shown below. The makefile is in the same
folder as the new LCD file: <ltib dir>/rpm/BUILD/linux/drivers/video/mxc/makefile
ifeq ($(CONFIG_ARCH_MX21)$(CONFIG_ARCH_MX27)$(CONFIG_ARCH_MX25),y)

obj-$(CONFIG_FB_MXC_TVOUT) += fs453.o
obj-$(CONFIG_FB_MXC_SYNC_PANEL) += mx2fb.o mxcfb_modedb.o
obj-$(CONFIG_FB_MXC_EPSON_PANEL) += mx2fb_epson.o

else
ifeq ($(CONFIG_MXC_IPU_V1),y)
 obj-$(CONFIG_FB_MXC_SYNC_PANEL) += mxcfb.o mxcfb_modedb.o
else
 obj-$(CONFIG_FB_MXC_SYNC_PANEL) += mxc_ipuv3_fb.o
endif

obj-$(CONFIG_FB_MXC_EPSON_PANEL) += mxcfb_epson.o
obj-$(CONFIG_FB_MXC_EPSON_QVGA_PANEL) += mxcfb_epson_qvga.o
obj-$(CONFIG_FB_MXC_TOSHIBA_QVGA_PANEL) += mxcfb_toshiba_qvga.o
obj-$(CONFIG_FB_MXC_SHARP_128_PANEL) += mxcfb_sharp_128x128.o

endif
obj-$(CONFIG_FB_MXC_EPSON_VGA_SYNC_PANEL) += mxcfb_epson_vga.o
obj-$(CONFIG_FB_MXC_CLAA_WVGA_SYNC_PANEL) += mxcfb_claa_wvga.o
obj-$(CONFIG_FB_MXC_CLAA057VA01CT_SYNC_PANEL) += mxcfb_CLAA057VA01CT.o
obj-$(CONFIG_FB_MXC_TVOUT_CH7024) += ch7024.o
obj-$(CONFIG_FB_MXC_TVOUT_TVE) += tve.o
obj-$(CONFIG_FB_MXC_LDB) += ldb.o
obj-$(CONFIG_FB_MXC_CH7026) += mxcfb_ch7026.o
#obj-$(CONFIG_FB_MODE_HELPERS) += mxc_edid.o

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 17-13

Note that a new object, mxcfb_CLAA057VA01CT.o, is created when
CONFIG_FB_MXC_CLAA057VA01CT_SYNC_PANEL flag is set. The LCD module with the
initialization and de-initialization routines is only available to the kernel after this object has been created.
If the LCD does not need a particular configuration, you may omit the usage of the LCD file and discard
any changes on Kconfig and Makefile.

17.4.4 Configuring LCD Timings and the Display Interface

To support the new LCD, include the specification for the following LCD characteristics in the
madglobal:mxc53_<reference board name>.c file (located at
<ltib dir>//rpm/BUILD/linux/arch/arm/mach-mx5/madglobal:mxc53_<board name>.c):

• Display resolution

• Pixel color depth

• Refresh rate

• RGB display waveform description.

• IPU display output interface format

For the display, resolution, refresh rate, and RGB display waveform descriptions, add a new fb_videomode
struct into the video_modes[] array based on the LCD timing and waveforms. See the CLAA-VGA entry
on the following example code.
static struct fb_videomode video_modes[] = {
 {
 /* NTSC TV output */
 "TV-NTSC", 60, 720, 480, 74074,
 122, 15,
 18, 26,
 1, 1,
 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT | FB_SYNC_EXT,
 FB_VMODE_INTERLACED,
 0,},

 {
 /* 640x480 @ 60 Hz */
 "CLAA-VGA", 60, 640, 480, 39683, 45, 114, 33, 11, 1, 1,
 FB_SYNC_CLK_LAT_FALL,
 FB_VMODE_NONINTERLACED,
 0,},
};

After including the new entry for the CLAA057VA01CT into the video_modes[] array, point the DISP0
configuration to this new fb_videomode. The link can be done by using an mxc_fb_platform_data struct
when the frame buffer device is registered, as follows.
static struct mxc_fb_platform_data CLAA057VA01CT_fb_data =
{
 .interface_pix_fmt = IPU_PIX_FMT_RGB666,
 .mode_str = "CLAA-VGA",
 .mode = video_modes,
 .num_modes = ARRAY_SIZE(video_modes),

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

17-14 Freescale Semiconductor

};

Use this new mxc_fb_platform_data struct to register DISP0 in the mxc_init_fb() function, as follows.
static int __init mxc_init_fb(void)
{
 ...
 memcpy(&fb_data[0], &CLAA057VA01CT_fb_data, sizeof(struct mxc_fb_platform_data));
 mxc_register_device(&mxc_disp_devices[0], NULL);
 ...
 return 0;
}

This code replaces the default WVGA panel settings with the new LCD entry.

17.4.5 Adding BSP Support for a New Boot Command to Select
CLAA057VA01CT LCD

To take advantage of the kernel boot process, use the kernel boot arguments to select the new LCD. Do this
by using the following steps to add extra code to the mxc53_<board name>.c file located at
<ltib dir>//rpm/BUILD/linux/arch/arm/mach-mx5/mxc53_<board name>.c

1. Select a new flag; this example code uses CLAA057VA01CT.

2. Create a variable to save if the CLAA057VA01CT flag has been included in the command line. In
this case 0 is the initial value and it means that flag is not present.
static int __initdata enable_CLAA057VA01CT = { 0 };

3. Use the following code to set the enable_CLAA057VA01CT variable if “CLAA057VA01CT” is
included on the command line.
static int __init CLAA057VA01CT_setup(char *__unused)
{
 printk(KERN_INFO "CLAA057VA01CT flag\r\n");
 enable_CLAA057VA01CT = 1;
 return 1;
}
__setup("CLAA057VA01CT", CLAA057VA01CT_setup);

Once the enable_CLAA057VA01CT variable is set, it is easy to distinguish which LCD should be
used on DISP0 interface. The code looks like the following:
static int __init mxc_init_fb(void)
{
 ...

 if(enable_CLAA057VA01CT)
 {
 memcpy(&fb_data[0], &CLAA057VA01CT_fb_data, sizeof(struct mxc_fb_platform_data));
 mxc_register_device(&mxc_disp_devices[0], NULL);
 printk(KERN_INFO "DI0 driving CLAA057VA01CT\n");
 }
 else
 {
 printk(KERN_INFO "DI0 driving CLAA-WVGA\n");
 }
 ...

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 17-15

 return 0;
}

4. Modify the boot command with the following code.
EVK U-Boot > setenv bootargs_mmc 'setenv bootargs ${bootargs} root=/dev/nfs ip=dhcp
CLAA057VA01CT nfsroot=${serverip}:${nfsroot},v3,tcp'

EVK U-Boot > run bootcmd_mmc

17.5 i.MX53 Display Interface Helpful Information

TFT panels are handled by the i.MX53 IPU legacy interface, which enables the display port to use different
types of display interfaces that conform to the following features and restrictions.

• The IPU supports four displays in total.

• The display port has two DI interfaces.

• Each interface can handle up to three displays.

• Each DI can handle up to two asynchronous interfaces (e.g. Smart LCD, Graphic accelerator).

• Only one asynchronous interface per DI can be serial.

• Each DI can handle one synchronous interface (e.g. TV, dumb LCD).

• Asynchronous displays that are accessed in synchronous mode are considered a synchronous
interface (dual_mode).

Each DI in the i.MX53 can handle one synchronous (dumb display).

Figure 17-4 shows an example i.MX53 board display interface layout.

Figure 17-4. i.MX53 Board Display Interface Layout

Supporting the i.MX53 Reference Board DISP0 LCD

i.MX53 System Development User’s Guide, Rev. 2

17-16 Freescale Semiconductor

The example board’s two display interface (DI) modules are each configured to handle one or more
different kind of panels. The DI module is responsible for the timing waveforms for each signal in its
display’s interface. It is composed of the following:

• 8 sets of waveform generators (PIN1–PIN8) that control signals associated with the DI’s clock,
such as VSYNC and HSYNC.

• 12 sets of waveform generators (PIN11–PIN17 + 2 CS), controlling signals associated with data,
such as DRDY/DE, CS, or RS

The DI also generates the display’s clock based on IPU HSP_CLK or from an external clock (PLL or pin).

The IPU provides the flexibility to select from a range of pins to use as an output for the synchronization
signals. Therefore, there is no unique pin for VSYNC, HSYNC and DE. However, the i.MX51 reference
boards have been assigned a specific pin for each signal, which is reflected in the schematics and BSP
support.

To develop a system with a new LCD panel that does not have a driver already implemented, it is necessary
to implement the new driver into the Linux's kernel and do it taking the advantage of all processor's
hardware designed to the respective task, like the IPU from the i.MX53 in order to enhance the processor's
performance.

For additional details about timing and TFT signals, see AN3977, AN3978, and AN4041 (available on the
Freescale website).

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 18-1

Chapter 18
Connecting an LVDS Panel to an i.MX53 Reference Board

This chapter explains how to connect the LVDS panel to an i.MX53 reference board. The i.MX53
processor has an LVDS display bridge (LDB) block that drives LVDS panels without external bridges. The
LDB supports the flow of synchronous RGB data from the IPU to external display devices through the
LVDS interface. This support covers the following activities:

• Connectivity to relevant devices—display with an LVDS receiver.

• Arranging the data as required by the external display receiver and by LVDS display standards.

• Synchronization and control capabilities.

18.1 Connecting an LVDS Panel to the i.MX53 EVK Board

The following LVDS panels were tested on the i.MX53 reference boards:

• LG display (model number: LB150X02)

• 150XG01

• 1080p LVDS panel (model number: M216H1-L01)

• Sharp (model number: LQ084S3LG01)

The kernel command line for 24-bit LVDS panels (4 pairs of LVDSdata signals) displays the following
lines if the panel is properly connected.

DI0 (LDB0 CON2 on top of board): video=mxcdi0fb:RGB24,XGA ldb

DI1 (LDB1 CON3 on bottom of board): video=mxcdi1fb:RGB24,XGA di1_primary ldb

The kernel command line for 18-bit LVDS panels (3 pairs of LVDS data signals) displays the following
lines if the panel is properly connected.

DI0 (LDB0 CON2 on top of board): video=mxcdi0fb:RGB666,XGA ldb

DI1 (LDB1 CON3 on bottom of board): video=mxcdi1fb:RGB666,XGA di1_primary ldb

18.2 Enabling an LVDS Channel

The LDB driver source code is available at <ltib_dir>/rpm/BUILD/linux/drivers/video/mxc/ldb.c. To
make a built-in LDB driver functional, add the ‘ldb’ option to the kernel command line. The driver
configures the LDB when the device is probed.

When the LDB device is probed properly, the driver uses platform data information to configure the LDB’s
reference resistor mode and regulator. The LDB driver probe function also tries to match video modes for
external display devices with an LVDS interface. The display signal polarities and LDB control bits are set
according to the matched video modes.

 Connecting an LVDS Panel to an i.MX53 Reference Board

i.MX53 System Development User’s Guide, Rev. 2

18-2 Freescale Semiconductor

The LVDS channel mapping mode and the LDB bit mapping mode of LDB are set according to the boot
up LDB option chosen by the user. If the user has not specified an option but the video mode can be found
in the local video mode database, the driver chooses an appropriate LDB setting. If no video mode is
matched, nothing is done in probe function. Users can set up the LDB later by using ioctrls. The LDB will
be fully enabled in probe function if the driver finds that the primary display device is a single display
device with an LVDS interface.

The steps the driver takes to enable a LVDS channel are as follows:

1. Set ldb_di_clk’s parent clock and the parent clock’s rate.

2. Set ldb_di_clk’s rate.

3. Enable both ldb_di_clk and its parent clock.

4. Set the LDB in a proper mode, including display signals’ polarities, LVDS channel mapping mode,
bit mapping mode, reference resistor mode.

18.2.1 Locating Menu Configuration Options

Linux kernel configuration options are provided for the build-in status to enable this module. To locate
these options, use the following procedure.

1. Go to <ltib dir>.

2. Use the ./ltib -c command.

3. Select Configure the Kernel on the screen displayed and exit.

4. When the next screen appears, follow this sequence: Device Drivers > Graphics support > MXC
Framebuffer support > Synchronous Panel Framebuffer > MXC LDB

18.2.2 Programming Interface

The APIs in the mxc_ldb_ioctl() function control every other LDB unit setting. The user may call these
these APIs to set LDB modes or to enable and disable the LDB.

 Connecting an LVDS Panel to an i.MX53 Reference Board

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 18-3

18.3 LDB Ports

Figure 18-1 shows the LDB block.

Figure 18-1. i.MX53 LVDS Display Bridge (LDB) Block

The LDB has the following ports:

• Two input parallel display ports.

• Two output LVDS channels

• Control signals to configure LVDS parameters and operations.

• Clocks from the SoC PLLs.

 Connecting an LVDS Panel to an i.MX53 Reference Board

i.MX53 System Development User’s Guide, Rev. 2

18-4 Freescale Semiconductor

18.3.1 Input Parallel Display Ports

The LDB is configurable to support either one or two (DI0, DI1) parallel RGB input ports. The LDB only
supports synchronous access mode.

Each RGB data interface contains the following:

• RGB data of 18 or 24 bits

• Pixel clock

• Control signals

— HSYNC, VSYNC, DE, and one additional optional general purpose control

— Transfers a total of up to 28 bits per data interface per pixel clock cycle

The LVDS supports the following data rates:

• For dual-channel output: up to 170 MHz pixel clock (e.g. UXGA—1600 × 1200 at 60 Hz + 35%
blanking)

• For single-channel output: up to 85 MHz per interface. (e.g. WXGA—1366 × 768 at 60 Hz + 35%
blanking).

18.3.2 Output LVDS Ports

The LDB has two LVDS channels, which are used to communicate RGB data and controls to external LCD
displays either through the LVDS interface or through LVDS receivers. Each channel consists of four data
pair and one clock pair, with a pair meaning an LVDS pad that contains PadP and PadM.

The LVDS ports may be used as follows:

• One single-channel output

• One dual channel output: single input, split to two output channels

• Two identical outputs: single input sent to both output channels

• Two independent outputs: two inputs sent, each to a different output channel

18.4 Further Reading

Please consult the following reference materials for additional information:

• i.MX53 Multimedia Applications Processor Reference Manual

• i.MX53 START Linux Reference Manual, included as part of the Linux BSP

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 19-1

Chapter 19
Supporting the i.MX53 Camera Sensor Interface CSI0

This chapter provides information about how to use the expansion connector to include support for a new
camera sensor on an i.MX53 reference board. It explains how to do the following:

• Configure the CSI unit in test mode (Section 19.3, “Configuring the CSI Unit in Test Mode”)

• Add support for a new CMOS sensor in the i.MX53 BSP (L2.6.31_10.07.11) (Section 19.4,
“Adding Support for a New CMOS Camera Sensor”)

• Set up and use the I2C interface to handle your camera bus (Section 19.5, “Using the I2C Interface)

• Load and test the camera module (Section 19.6, “Loading and Testing the Camera Module”)

It also provides reference information about the following:

• Required software and hardware

• i.MX53 reference CSI interfaces layout (Section 19.2, “i.MX53 CSI Interfaces Layout”)

• CMOS sensor interfaces (CSI) supported by the i.MX53 (IPU) (Section 19.7.1, “CMOS Interfaces
Supported by the i.MX53)

• i.MX53 EVK CSI parallel interface (Section 19.7.2, “i.MX53 CSI Parallel Interface”)

• i.MX53 CSI test mode (Section 19.7.3, “Timing Data Mode Protocols”)

19.1 Required Software

In Freescale BSPs, all capture devices are based on the V4L2 standard. Therefore, only the
CMOS-dependent layer needs to be modified to include a new CMOS sensor; all other layers have been
developed to work with V4L2.

Required development tools are as follows:

• Linux host with i.MX53 Linux L2.6.31_10.07.11 or newer

• Serial port terminal (such as Hyperterminal, TeraTerm, Minicom).

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

19-2 Freescale Semiconductor

19.2 i.MX53 CSI Interfaces Layout

Figure 19-1 shows the camera interface layout on an i.MX53-based board.

Figure 19-1. Camera Interface Layout

Only CSI0 is used for the purpose of this document. The usage of CSI1 depends on its availability on the
board being used.

19.3 Configuring the CSI Unit in Test Mode

This chapter uses the test mode for its example scenario of a new camera driver that generates a chess
board. Setting the TEST_GEN_MODE register places the device in test mode, which is used for
debugging. The CSI generates a frame by itself and sends it to one of the destination units. The sent frame
is a chess board composed of black and configured color squares. The configured color is set with the
registers PG_B_VALUE, PG_G_VALUE and PG_R_VALUE. The data can be sent in different
frequencies according to the configuration of DIV_RATIO register.

When CSI is in test mode, configure the CSI unit with a similar configuration to the described settings in
Table 19-1. Call ipu_csi_init_interface() to configure the CSI interface protocol, formats and features.

Table 19-1. Settings for Test Mode

Bit Field Value Description

CSI0_DATA_DEST 0x4 Destination is IDMAC via SMFC

CSI0_DIV_RATIO 0x0 SENSB_MCLK rate = HSP_CLK rate

CSI0_EXT_VSYNC 0x1 External VSYNC mode

CSI0_DATA_WIDTH 0x1 8 bits per color

CSI0_SENS_DATA_FORMAT 0x0 Full RGB or YUV444

CSI0_PACK_TIGHT 0x0 Each component is written as a 16 bit word where the MSB is written to
bit #15, color extension is done for the remaining least significant bits.

CSI0_SENS_PRTCL 0x1 Non-gated clock sensor timing/data mode

CSI0_SENS_PIX_CLK_POL 0x1 Pixel clock is inverted before applied to internal circuitry

CSI0_DATA_POL 0x0 Data lines are directly applied to internal circuitry.

CSI0_HSYNC_POL 0x0 HSYNC is directly applied to internal circuitry

CSI0_VSYNC_POL 0x0 VSYNC is directly applied to internal circuitry

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 19-3

19.4 Adding Support for a New CMOS Camera Sensor

To add support for a new CMOS camera sensor to your BSP, first create a device driver for supporting it.
This device driver is the optimal location for implementing initialization routines, the power up sequence,
power supply settings, the reset signal, and other desired features for your CMOS sensor. It is also the
optimal location to implement the CSI configuration for the parallel protocol used between the camera and
the i.MX53.

Perform the following three steps on the i.MX53 BSP to create the device driver:

1. Add a camera sensor entry on the ltib catalog.

2. Create the camera file.

3. Add compilation flag for the new camera sensor.

These steps are discussed in detail in the following subsections.

19.4.1 Adding a Camera Sensor Entry on the ltib Catalog (Kconfig)

Select specific camera drivers in the following location (as shown in Figure 19-2):
Device Drivers > Multimedia support > Video capture adapters > MXC Camera/V4L2 PRP Features
support

Figure 19-2. MXC Camera/V4L2 PRP Features Support Window

To add a new camera sensor entry on the Kconfig camera file, perform the following steps:

1. Enter the following into the i.MX53 display specific folder:
$ cd <ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture

2. Open Kconfig file:

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

19-4 Freescale Semiconductor

$ gedit Kconfig &

3. Add the entry where you want it to appear:
config MXC_IPUV3_CSI0_TEST_MODE

tristate "IPUv3 CSI0 test mode camera support"
depends on !VIDEO_MXC_EMMA_CAMERA
---help---
If you plan to use the IPUv3 CSI0 in test mode with your MXC system, say Y here.

19.4.2 Creating the Camera Sensor File

The camera sensor file enables camera initialization, reset signal generation, power settings, CSI
configuration and all sensor-specific code. Because power settings are handled by the PMIC among other
voltage regulators, camera drivers must configure the PMIC during its initialization in order to set up the
power voltage configuration unless this has already been done. The reset waveform and the initialization
routine must also be included somewhere, usually on the probe function.

WARNING

Before connecting a camera sensor to the i.MX53 board, you must check
whether the sensor is powered with the proper supply voltages and also
whether the sensor data interface has the correct VIO value. Power supply
mismatches can damage either the CMOS or the i.MX53.

Create a file with the required panel-specific functions in the following path:
<ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/

The camera file—ipuv3_csi0_chess.c—must include the functions described in Table 19-2 and may
include additional functions and macros required for your driver.

Table 19-2. Required Functions

Function name Function declaration Description

ioctl_g_ifparm static int ioctl_g_ifparm(struct
v4l2_int_device *s, struct v4l2_ifparm
*p)

V4L2 sensor interface handler for VIDIOC_G_PARM ioctl

ioctl_s_power static int ioctl_s_power(struct
v4l2_int_device *s, int on)

V4L2 sensor interface handler for VIDIOC_S_POWER ioctl. Sets
sensor module power mode (on or off)

ioctl_g_parm static int ioctl_g_parm(struct
v4l2_int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_G_PARM ioctl. Get
streaming parameters.

ioctl_s_parm static int ioctl_s_parm(struct
v4l2_int_device *s, struct
v4l2_streamparm *a)

V4L2 sensor interface handler for VIDIOC_S_PARM ioctl. Set
streaming parameters.

ioctl_g_fmt_cap static int ioctl_g_fmt_cap(struct
v4l2_int_device *s, struct v4l2_format *f)

Returns the sensor's current pixel format in the v4l2_format
parameter.

ioctl_g_ctrl static int ioctl_g_ctrl(struct
v4l2_int_device *s, struct v4l2_control
*vc)

V4L2 sensor interface handler for VIDIOC_G_CTRL. If the
requested control is supported, returns the control's current value
from the video_control[] array. Otherwise, returns -EINVAL if the
control is not supported.

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 19-5

After the functions have been created, you need to add additional information to ipuv3_csi0_chess_slave
and ipuv3_csi0_chess_int_device. The device uses this information to register as a V4L2 device

The following ioctl function references are included:
static struct v4l2_int_slave ipuv3_csi0_chess_slave = {
 .ioctls = ipuv3_csi0_chess_ioctl_desc,
 .num_ioctls = ARRAY_SIZE(ipuv3_csi0_chess_ioctl_desc),
};

static struct v4l2_int_device ipuv3_csi0_chess_int_device = {
 ...
 .type = v4l2_int_type_slave,
 ...
};

static int ipuv3_csi0_chess_probe(struct i2c_client *client,const struct i2c_device_id *id)
{
 ...
 retval = v4l2_int_device_register(&ipuv3_csi0_chess_int_device);
 ...
}

It is also necessary to modify other files to prepare the BSP for CSI test mode. Change the sensor pixel
format from YUV to RGB565 in the ipu_prp_vf_sdc_bg.c file so that the image converter will not perform
color space conversion and the input received from the CSI test mode generator will be sent directly to the
memory. Also, modify mxc_v4l2_capture.c to preserve CSI test mode settings, which are set by the
ipuv3_csi0_chess_init_mode() function in the ipuv3_csi0_chess.c file.

19.4.3 Adding a Compilation Flag for the New Camera

After camera files have been created and the Kconfig file has the entry for your new camera, modify the
Makefile to create the new camera module during compilation. The Makefile is located in the same folder
as your new camera file and Kconfig: <ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture.

1. Enter the following into the i.MX53 camera support folder
$ cd <ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture

ioctl_s_ctrl static int ioctl_s_ctrl(struct
v4l2_int_device *s, struct v4l2_control
*vc)

V4L2 sensor interface handler for VIDIOC_S_CTRL. If the
requested control is supported, sets the control's current value in
HW (and updates the video_control[] array). Otherwise, returns
-EINVAL if the control is not supported.

ioctl_init static int ioctl_init(struct v4l2_int_device
*s)

V4L2 sensor interface handler for VIDIOC_INT_INIT. Initialize
sensor interface.

ioctl_dev_init static int ioctl_dev_init(struct
v4l2_int_device *s)

Initialize the device when slave attaches to the master.

ioctl_dev_exit static int ioctl_dev_exit(struct
v4l2_int_device *s)

Deinitialize the device when slave detaches to the master.

Table 19-2. Required Functions (continued)

Function name Function declaration Description

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

19-6 Freescale Semiconductor

2. Open the i.MX53 camera support Makefile
$ gedit Makefile &

3. Add the cmos driver compilation entry to the end of the Makefile.
ipuv3_csi0_chess_camera-objs := ipuv3_csi0_chess.o sensor_clock.o

obj-$(CONFIG_MXC_IPUV3_CSI0_TEST_MODE) += ipuv3_csi0_chess_camera.o

The kernel object is created using the ipuv3_csi0_chess.c file. You should have the following files as
output:

• ipuv3_csi0_chess_camera.mod.c

• ipuv3_csi0_chess.o

• ipuv3_csi0_chess_camera.o

• ipuv3_csi0_chess_camera.mod.o

• ipuv3_csi0_chess_camera.ko

19.5 Using the I2C Interface

Many camera sensor modules require a synchronous serial interface for initialization and configuration.
This section uses the <ltib dir>/rpm/BUILD/linux/drivers/media/video/mxc/capture/ov3640.c file for
its example code. This file contains a driver that uses the I2C interface for sensor configuration.

After the I2C interface is running, create a new I2C device to handle your camera bus. If the camera sensor
file (called mycamera.c in the following example code) is located in the same folder as ov3640.c, the code
is as follows:
struct i2c_client * mycamera_i2c_client;

static s32 mycamera_read_reg(u16 reg, u8 *val);
static s32 mycamera_write_reg(u16 reg, u8 val);

static const struct i2c_device_id mycamera_id[] = {
 {"mycamera", 0},
 {},
};

MODULE_DEVICE_TABLE(i2c, mycamera_id);

static struct i2c_driver mycamera_i2c_driver = {
 .driver = {
 .owner = THIS_MODULE,
 .name = "mycamera",
 },
 .probe = mycamera_probe,
 .remove = mycamera_remove,
 .id_table = mycamera_id,
};

static s32 ipuv3_csi0_chess_write_reg(u16 reg, u8 val)
{
 u8 au8Buf[3] = {0};
 au8Buf[0] = reg >> 8;
 au8Buf[1] = reg & 0xff;

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 19-7

 au8Buf[2] = val;
 if (i2c_master_send(my_camera_i2c_client, au8Buf, 3) < 0) {
 pr_err("%s:write reg error:reg=%x,val=%x\n",__func__, reg, val);
 return -1;
 }
 return 0;
}

static s32 my_camera_read_reg(u16 reg, u8 *val)
{
 u8 au8RegBuf[2] = {0};
 u8 u8RdVal = 0;
 au8RegBuf[0] = reg >> 8;
 au8RegBuf[1] = reg & 0xff;

 if (2 != i2c_master_send(my_camera_i2c_client, au8RegBuf, 2)) {
 pr_err("%s:write reg error:reg=%x\n",__func__, reg);
 return -1;
 }

 if (1 != i2c_master_recv(my_camera_i2c_client, &u8RdVal, 1)) {// @ECA
 pr_err("%s:read reg error:reg=%x,val=%x\n",__func__, reg, u8RdVal);
 return -1;
 }

 *val = u8RdVal;
 return u8RdVal;
}

static int my_camera_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
 ...
 my_camera_i2c_client = client;
 ...
}

static __init int mycamera_init(void)
{
 u8 err;
 err = i2c_add_driver(&mycamera_i2c_driver);
 if (err != 0)
 pr_err("%s:driver registration failed, error=%d \n",__func__, err);
 return err;
}

static void __exit mycamera_clean(void)
{
 i2c_del_driver(&mycamera_i2c_driver);
}

module_init(mycamera_init);
module_exit(mycamera_clean);

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

19-8 Freescale Semiconductor

Check ov3640.c for the complete example code.

After creating the new I2C device, add the following lines to your platform file (located at <ltib
dir>/rpm/BUILD/linux/arch/arm/mach-mx5/mx53_<board name>.c).
static struct mxc_camera_platform_data camera_data = {
 .analog_regulator = "VSD",
 .mclk = 24000000,
 .csi = 0,
 .pwdn = camera_pwdn,
};

static struct i2c_board_info mxc_i2c0_board_info[] __initdata = {
 {
 .type = "ov3640",
 .addr = 0x3C,
 .platform_data = (void *)&camera_data,
 },
 {
 .type = "adv7180", .addr = 0x21, .platform_data = (void *)&adv7180_data, },
{ .type = "cs42888",
 .addr = 0x48,
 },
 {
 .type = "mycamera",
 .addr = 0x2E,
 .platform_data = (void *)&camera_data,
 },
};

static void __init mxc_board_init(void)
{
 ...
 i2c_register_board_info(0, mxc_i2c0_board_info,ARRAY_SIZE(mxc_i2c0_board_info));
 ...
}

You may modify the platform file at this point to specify features about your camera such as the CSI
interface used (CSI0 or CSI1), the MCLK frequency, and some power supply settings related to the
module. Notice that “.addr” is used to specify the I2C address of the camera sensor module.

NOTE

It is mandatory that “.type” be equal to the i2c_device_id on your camera
sensor file (mycamera.c).

You can now read and write from/to the sensor in the camera sensor file by using the following:
retval = mycamera_write_reg(RegAddr, Val);
retval = mycamera_read_reg(RegAddr, &RegVal);

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 19-9

19.6 Loading and Testing the Camera Module

If your camera driver has been created as a kernel module, as in the example in this chapter, the module
must be loaded prior any camera request attempt. According to the Makefile information, the camera
module is named ipuv3_csi0_chess_camera.ko.

To load the V4L2 camera interface and CSI in test mode, execute the following commands:
root@freescale /unit_tests$ modprobe ipuv3_csi0_chess_camera
root@freescale /unit_tests$ modprobe mxc_v4l2_capture

To test the video0 input (camera), an mxc_v4l2_overlay test is included in the BSP. If the imx-test package
has also been included, open the unit test folder and execute the test.
root@freescale ~$ cd /unit_tests/
root@freescale /unit_tests$./mxc_v4l2_overlay.out

If the imx-test package has not been built, select it from the LTIB package menu:
Package List > imx-test

The chessboard appears in a rectangle located on the left top side of the WVGA panel, as shown in
Figure 19-3. The colors of the chessboard toggle between red, green, and blue every time you run the test.

Figure 19-3. Chessboard Test

19.7 Additional Reference Information

This section provides reference information about the following:

• CMOS interfaces supported by the i.MX53

• i.MX53 CSI parallel interface

• Timing data mode protocols

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

19-10 Freescale Semiconductor

19.7.1 CMOS Interfaces Supported by the i.MX53

The camera sensor interface, which is part of the image processing unit (IPU) module on the i.MX53,
handles CMOS sensor interfaces. The i.MX53 is able to handle two camera devices through its CSI ports,
one connected to the CSI0 port and the other to the CSI1 port. Both CSI ports are identical and provide
glueless connectivity to a wide variety of raw/smart sensors and TV decoders.

Each of the camera ports includes the following features:

• Parallel interface

— Up to 20-bit input data bus.

— A single value in each cycle.

— Programmable polarity.

• Multiple data formats

— Interleaved color components, up to 16 bits per value (component)

— Input Bayer RGB, Full RGB, or YUV 4:4:4, YUV 4:2:2 Component order:UY1VY2 or
Y1UY2V, grayscale and generic data.

• Scan order: progressive or interlaced

• Frame size: up to 8192 × 4096 pixels

• Synchronization—video mode

— The sensor is the master of the pixel clock (PIXCLK) and synchronization signals

— Synchronization signals are received using either of the following methods:

– Dedicated control signals—VSYNC, HSYNC—with programmable pulse width and
polarity

– Controls embedded in the data stream, following loosely the BT.656 protocol, with
flexibility in code values and location.

— The image capture is triggered by the MCU or by an external signal (e.g. a mechanical shutter)

— Synchronized strobes are generated for up to 6 outputs—the sensor and camera peripherals
(flash, mechanical shutter...)

• Frame rate reduction by periodic skipping of frames

• Window-of-interest selection

• Pre-flash for red-eye reduction and for measurements (e.g. focus) in low-light conditions.

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 19-11

For details, refer to the “Image Processing Unit (IPU)” chapter in the i.MX53 Applications Processor
Reference Manual. Figure 19-4 shows the block diagram.

Figure 19-4. IPU Block Diagram

Several sensors can be connected to each of the CSIs. Simultaneous functionality (for sending data) is
supported as follows:

• Two sensors can send data independently, each through a different port.

• One stream can be transferred to the VDI or IC for on-the-fly processing while the other one is sent
directly to system memory.

The input rate supported by the camera port is as follows:

• Peak: up to 180 MHz (values/sec)

• Average (assuming 35% blanking overhead), for YUV 4:2:2

— Pixel in one cycle (BT.1120): up to 135 MP/sec, e.g. 9 Mpixels at 15 fps

— Pixel on two cycles (BT.656): up to 67 MP/sec, e.g. 4.5 Mpixels at 15 fps.

• On-the-fly processing may be restricted to a lower input rate.

If required, additional cameras can be connected though the USB port.

19.7.2 i.MX53 CSI Parallel Interface

The CSI obtains data from the sensor, synchronizes the data and the control signals to the IPU clock
(HSP_CLK), and transfers the data to the IC and/or SMFC.

The CSI parallel interface (shown in Figure 19-5) provides a clock output (MCLK), which is used by the
sensor as a clock input reference. The i.MX53 requests either video or still images through a different
interface between the processor and the camera module. In most cases, the interface is a synchronous serial

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

19-12 Freescale Semiconductor

interface such as the I2C. After the frame has been requested, the camera module takes control of the CSI
bus, and uses synchronization signals VSYNC, HSYNC, DATA_EN and PIXCLK to send the image frame
to the i.MX53. The camera sensor creates PIXCLK based on MCLK input.

Figure 19-5. Parallel Interface Layout

In parallel interface, a single value arrives in each clock—except in BT.1120 mode when two values arrive
per cycle. Each value can be 8–16 bits wide according to the configuration of DATA_WIDTH. If
DATA_WIDTH is configured to N, then 20-N LSB bits are ignored.

Therefore, you never need CSI0_DAT[3:0], unless you are using BT.1120 mode, because the maximum
pixel width is 16 (CSI0_DAT[19:4]). The expansion port 2 includes CSI0_DAT[19:4], but only
CSI0_DAT[19:10] are used for the CSI data bus (10-bit wide data). CSI0_DAT[9:4] are shared with other
interfaces and are used for audio and I2C.

CSI can supports several data formats according to SENS_DATA_FORMAT configuration. When the data
format is YUV, the output of the CSI is always YUV444—even if the data arrives in YUV422 format.

The polarity of the inputs can be configured using the following registers:

• SENS_PIX_CLK_POL

• DATA_POL

• HSYNC_POL

• VSYNC_POL

The camera parallel interface provided by the i.MX53 is a 15 line interface, as described in Table 19-3:

Table 19-3. CSI0 Parallel Interface Signals

Signal IPU Pin Description

MCLK CSI0_MCLK Master Clock (Output)

PIXCLK CSI0_PIXCLK Pixel Clock

VSYNC CSI0_VSYNC Vertical Synchronization signal

HSYNC CSI0_HSYNC Horizontal Synchronization signal

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 19-13

The signal "DATA_EN", when used by a sensor, is used for enabling the clock from the sensor. If the sensor
does not support this feature, use alt mode 1 (GPIO[20]) to provide a constant high as an input to this
signal.

Section 19.7.3, “Timing Data Mode Protocols,” explains how the timing data mode protocols use these
signals. Not all signals are used in each timing data mode protocol.

19.7.3 Timing Data Mode Protocols

The CSI interface supports the following four timing/data protocols:

• Gated mode

• Non-gated mode

• BT.656 (Progressive and interlaced)

• BT.1120 (Progressive and interlaced)

In gated mode, VSYNC is used to indicate beginning of a frame, and HSYNC is used to indicate the
beginning of a row. The sensor clock is always ticking.

In non-gated mode, VSYNC is used to indicate beginning of a frame, and HSYNC is not used. The sensor
clock only ticks when data is valid.

In BT.656 mode, the CSI works according to recommendation ITU-R BT.656. The timing reference
signals (frame start, frame end, line start, line end) are embedded in the data bus input.

In BT1120 mode, the CSI works according to recommendation ITU-R BT.1120. The timing reference
signals (frame start, frame end, line start, line end) are embedded in the data bus input.

For details, refer to the i.MX53 Applications Processor Reference Manual.

DATA_EN CSI0_DATA_EN Data Enable or Data ready

DATA[19:10] CSI0_DAT [19:10] Pixel data bus, optional to [19:4]

Table 19-3. CSI0 Parallel Interface Signals (continued)

Signal IPU Pin Description

 Supporting the i.MX53 Camera Sensor Interface CSI0

i.MX53 System Development User’s Guide, Rev. 2

19-14 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 20-1

Chapter 20
Porting Audio Codecs to a Custom Board

This chapter explains how to port audio drivers from the Freescale reference BSP to a custom board. This
procedure varies depending on whether the audio codec on the custom board is the same as or different
than the audio codec on the Freescale reference design. This chapter first explains the common porting task
and then the different porting tasks.

20.1 Common Porting Task

The mxc_audio_platform_data structure must be defined and filled appropriately for the custom board
before doing any other porting tasks. An example of a filled structure can be found in the file located at
linux/arch/arm/mach-mx5/mx53_<board name>.c

static struct mxc_audio_platform_data sgtl5000_data = {
.ssi_num = 1,
.src_port = 2,
.ext_port = 5,
.hp_irq = IOMUX_TO_IRQ(MX53_PIN_ATA_DATA5),
.hp_status = headphone_det_status,
.amp_enable = mxc_sgtl5000_amp_enable,
.init = mxc_sgtl5000_init,

};

Customize the structure according to the following definitions:

ssi_num The ssi used for this codec

src_port The digital audio mux (DAM) port used for the internal SSI interface
(for details about the internal functionality of the DAM please refer to the
AUDMUX chapter of the i.MX53 Applications Processor Reference Manual)

ext_port The digital audio mux (DAM) port used for the external device audio interface (for
details about the internal functionality of the DAM please refer to the AUDMUX
chapter of the i.MX53 Applications Processor Reference Manual)

hp_irq The IRQ line used for headphone detection

hp_status A pointer to a function that returns the current headphone detect status. If a
different mechanism or GPIO is used for headphone detect in the custom board,
this function must be modified to accurately reflect the headphone presence.

amp_enable A pointer to a function that enables/disables the audio codec. For example, this
function can be used to turn on or turn off the regulator supplying the audio codec.

init The initialization routine for the audio codec. Any setup necessary for the audio
codec should be implemented in this function.

Porting Audio Codecs to a Custom Board

i.MX53 System Development User’s Guide, Rev. 2

20-2 Freescale Semiconductor

20.2 Porting the Reference BSP to a Custom Board (audio codec is
the same as in the reference design)

When the audio codec is the same in the reference design and the custom board, users must ensure that the
I/O signals and the power supplies to the codec are properly initialized in order to port the reference BSP
to the custom board.

The iomux-mx53.h file contains the definitions for all i.MX53 pads. Add entries in this file to define the
configuration for the audio codec signals. See Chapter 12, “Configuring the IOMUX Controller
(IOMUXC),” for a description of how to set up the IOMUX and pads for routing signals as desired.

The necessary signals for the sgtl5000 codec, which is used on the i.MX53 reference board, are as follows:

• I2C interface signals

• I2S interface signals

• SSI external clock input to i.MX53

Table 20-1 shows the required power supplies for the sgtl5000 codec.

20.3 Porting the Reference BSP to a Custom Board (audio codec is
different than the reference design)

When adding support for an audio codec that is different than the one on the Freescale reference design,
users must create new ALSA drivers in order to port the reference BSP to a custom board. The ALSA
drivers plug into the ALSA sound framework, which allows the standard ALSA interface to be used to
control the codec. Details about the ALSA infrastructure and developing ALSA drivers can be found at
http://www.alsa-project.org/main/index.php/ASoC.

The source code for the ALSA driver is located in the Linux kernel source tree at linux/sound/soc.
Table 20-2 shows the files used for the sgtl codec support:

Table 20-1. Required Power Supplies

Power Supply Name Definition Value

VDDD Digital voltage 1.98 V

VDDIO Digital IO voltage 3.6 V

VDDA Analog voltage 3.6 V

Table 20-2. Files for sgtl Codec Support

File Name Definition

imx-pcm.c • Shared by the stereo ALSA SoC driver, the 5.1 ALSA SoC driver, and the Bluetooth codec driver.
 • Responsible for preallocating DMA buffers and managing DMA channels.

imx-ssi.c • Registers the CPU DAI driver for the stereo ALSA SoC
 • Configures the on-chip SSI interfaces

http://www.alsa-project.org/main/index.php/ASoC

Porting Audio Codecs to a Custom Board

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 20-3

NOTE

If using a different codec, adapt the driver architecture shown in Table 20-2
accordingly. The exact adaptation will depend on the codec chosen. Obtain
the codec-specific software from the codec vendor.

sgtl5000.c • Registers the stereo codec and Hi-Fi DAI drivers.
 • Responsible for all direct hardware operations on the stereo codec.

imx-3stack-sgtl5000.c • Machine layer code
 • Creates the driver device
 • Registers the stereo sound card.

Table 20-2. Files for sgtl Codec Support

File Name Definition

Porting Audio Codecs to a Custom Board

i.MX53 System Development User’s Guide, Rev. 2

20-4 Freescale Semiconductor

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 21-1

Chapter 21
Porting the Fast Ethernet Controller Driver

This chapter explains how to port the fast Ethernet controller (FEC) driver to the i.MX53 processor. Using
Freescale’s standard (FEC) driver makes porting to the i.MX53 simple. Porting needs to address the
following three areas:

• Pin configuration

• Source code

• Ethernet connection configuration

21.1 Pin Configuration

The FEC supports three different standard physical media interfaces: a reduced media independent
interface (RMII), a media independent interface (MII), and a 7-wire serial interface.

The Freescale hardware reference platform directly supports RMII, which has a reduced pin-count
compared to MII. Therefore, RMII is the recommended interface.

Table 21-1 shows the signals used by the RMII interface.

Because the i.MX53 has more functionality than it has physical I/O pins, it uses I/O pin multiplexing. The
general-purpose I/O pins (gpio1 GPIO[22–31]) default to ALT1.

The FEC_PHY_RESET_B signal comes up by default as gpio2 (pin #0), which is ALT function 1. This
particular signal/pin is used as a simple GPIO to reset the FEC PHY. To use the pins as FEC signals
mentioned above, configure them as the ALT0 function in the I/O multiplexer, except for
FEC_PHY_RESET_B.

Table 21-1. RMII Signals

Signal Name Definition

 FEC_TX_CLK (In, Synchronous clock reference)

 FEC_TX_EN (Out, Transmit Enable)

 FEC_TXD[0:1] (Out, Transmit Data)

 FEC_RX_DV (In, Carrier Sense/Receive Data Valid)

 FEC_RXD[0:1] (In, Receive Data)

 FEC_RX_ER (In, Receive Error)

 FEC_MDC (Out, Management Data Clock)

 FEC_MDIO (In/Out, Management Data Input/Output)

 FEC_PHY_RESET_B (In, PHY reset)

Porting the Fast Ethernet Controller Driver

i.MX53 System Development User’s Guide, Rev. 2

21-2 Freescale Semiconductor

21.2 Source Code

The source code for the Freescale FEC Linux environment is located under the
../ltib/rpm/BUILD/linux/drivers/net directory. It contains the following files:

Of those files, only the FEC low-level Ethernet driver code (fec.[ch]) constitutes the Linux i.MX53 FEC
driver.

The driver uses the following compile definitions:

CONFIG_FEC_1588 Set for IEEE 1588 network time synchronization.

CONFIG_M5272 PowerPC information. Can be safely ignored and should not be set.

CONFIG_MXC IMXxx parts. Should be defined.

CONFIG_MXS Legacy MXS part. Should generally not be defined.

21.3 Ethernet Configuration

This section covers aspects such as duplex and speed configurations.

The two most common issues are as follows:

• MAC address is missing or invalid

• Ethernet connection (duplex, speed)

By default, the Ethernet driver reads the burned-in MAC address, which is found in code from the fec.c
file located in the function fec_get_mac(). If no MAC address exists in the hardware, the MAC is read as
all zeros, which creates problems. If this occurs, modify the code to read the MAC address from Flash or
elsewhere.

The FEC driver and hardware are designed to comply to the IEEE standards for Ethernet auto-negotiation.
See the FEC chapter in the i.MX53 Applications Processor Reference Manual for a description of using
flow control in full duplex and more.

Table 21-2. Source Code Files

File Names

FEC low-level Ethernet driver: • fec.h
 • fec.c

MAC Switch software • fec_switch.h
 • fec_switch.c

IEEE 1588 PTP (network time sync) • fec_1588.h
 • fec_1588.c

MPC52xx PowerPC Ethernet Driver • fec_mpc52xx.h
 • fec_mpc52xx.c
 • fec_mpc52xx_phy.c

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor 22-1

Chapter 22
Porting USB Host1 and USB OTG

The USB Host1 and the USB OTG signals do not multiplex with other pins on the i.MX53. Therefore, it
is not necessary to port IOMUX settings for these interfaces when moving to a new platform.

The only required setup is as follows:

• For the USB Host1 PHY

— Supply USB_H1_VDDA33 with 3.3 V

— Supply USB_H1_VDDA25 with 2.5 V

• For the USB OTG PHY

— Supply USB_OTG_VDDA33 with 3.3 V

— Supply USB_OTG_VDDA25 with 2.5 V

The USB Host1 PHY uses the following signals:

• USB_H1_GPANAIO

• USB_H1_RREFEXT

• USB_H1_DP

• USB_H1_VDDA33

• USB_H1_DN

• USB_H1_VDDA25

• USB_H1_VBUS

The USB OTG PHY uses the following signals:

• USB_OTG_VBUS

• USB_OTG_ID

• USB_OTG_VDDA25

• USB_OTG_DN

• USB_OTG_VDDA33

• USB_OTG_DP

• USB_OTG_RREFEXT

• USB_OTG_GPANAIO

i.MX53 System Development User’s Guide, Rev. 2

Freescale Semiconductor A-3

Appendix A
Revision History

Table A-1 provides a revision history for this user guide.
Table A-1. i.MX53 System Development User Guide Document Revision History

Rev.
Number

Date Substantive Change(s)

Rev.2 06/2015 • Updates to Table 1-1, "Design Checklist,".
 • Replaced Table 2-1, "DDR2/DDR3 Routing by the Same Length," and Table 2-2, "DDR2/DDR3 Routing

by Byte Group,".
 • Added note to Section 5.1, “i.MX53 SDRAM Controller Signals”.
 • Updated code in Section 5.3, “Configuring the DDR2 JTAG Script”.
 • Added information about DATA_EN signal to Section 19.7.2, “i.MX53 CSI Parallel Interface”.

Revision History

i.MX53 System Development User’s Guide, Rev. 2

A-4 Freescale Semiconductor

Rev.1 3/2011 • In Table 1-1, "Design Checklist," changed “CCR CAMPx_EN” to “CCM_CCR[CAMPx_EN],” under the
recommendation 11 and EMI to EIM under the recommendations 3, 4 and 5.

 • In Section 4.2, “IOMUX Tool Walkthrough,” the following introductory text was added to the first
paragraph: “The i.MX35 example shown is for illustration only. The steps in the process apply to all i.MX
products in the preceding bullet list.”

 • In Table 4-1, "i.MX53 Voltage Rails and Associated DA9053 Regulator," the following updates were done:

— VDDGP voltages changed from 1.05 to 1.1 and 1.2 to 1.25

— NVCC_LCD changed from 1.87 to 1.8 and 2.77 to 2.775

— NVCC_NANDF changed from 1.87 to 1.8

— TVDAC_DHVDD changed from 2.75 to 2.775, 1.87 to 1.8, and 2.77 to 2.775

— NVCC_RESET changed from 1.87 to 1.8 and 2.77 to 2.775

— VDD_REG changed from 1.6 to 2.475
 • In Table 4-2, "i.MX53 Voltage Rails and Associated LTC3589-1 Regulator," the following updates were

done:
— VDDGP voltages changed from 1.05 to 1.1 and 1.2 to 1.25

— NVCC_LCD changed from 1.87 to 1.8 and 2.77 to 2.775

— NVCC_NANDF changed from 1.87 to 1.8

— TVDAC_DHVDD changed from 1.87 to 1.8 and 2.77 to 2.775

— NVCC_RESET changed from 1.87 to 1.8 and 2.77 to 2.775
 • In Table 4-2, "i.MX53 Voltage Rails and Associated LTC3589-1 Regulator," the Current Capability for

VCC, NVCC_LVDS, USB_H1_VDDA25, VDD_REG, and VPH changed from 1000 to 1200.
 • In Table 4-2, "i.MX53 Voltage Rails and Associated LTC3589-1 Regulator," changed Fusebox to

FUSEBOX, S-ATA to SATA, and in the table’s introduction, changed i.MX to i.MX53.
 • In Table 7-1, "Clock Roots," changed all the block mnemonics to upper case in the Description column.
 • In Table 7-1, "Clock Roots," changed LVDS to LDB.
 • In Section 9.2.6, “SD/MMC Test,” changed SDHC3 to ESDHCV3-3 and SDHC2 to ESDHCV2-2.
 • In Section 10.3.1, “Changing the DCD Table for i.MX53 DDR3 Initialization,” changed ESDCTLv2.5 to

ESDCTL.
 • In Chapter 12, “Configuring the IOMUX Controller (IOMUXC), changed “IOMUX Controller” to IOMUXC.
 • In Chapter 14, “Adding Support for the i.MX53 ESDHC,” changed “eSDHC1/2/3/4” to “ESDHCV2-1/2/4

and ESDHCV3-3.”
 • Changed eCSPI to ECSPI and eSDHC to ESDHC, throughout the document.
 • In Section 14.3.3, “Interface Layouts,” changed i.MX35 to i.MX53 in the title and description of

Figure 14-2.
 • In Figure 17-2, replaced MCIMX53 with i.MX53.
 • In Section 19.7.1, “CMOS Interfaces Supported by the i.MX53,” replaced the term IPUv3M with IPU.
 • Replaced the term IPUv3M with IPU in Figure 19-1, Figure 19-5, Figure 17-1, Figure 17-4, and

Section 17.5, “i.MX53 Display Interface Helpful Information.”
 • In Table 19-3, "CSI0 Parallel Interface Signals," changed the column heading “IPUv3 Pin” to “IPU Pin.”
 • In Section 20.1, “Common Porting Task,” replaced AUDIOMUX with AUDMUX.

Rev 0 02/2011 Initial release.

Table A-1. i.MX53 System Development User Guide Document Revision History (continued)

Rev.
Number

Date Substantive Change(s)

Document Number: MX53UG
Rev. 2

06/2015

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their

respective owners. ARM, the ARM Powered logo, and Cortex are registered

trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights

reserved.

© 2015 Freescale Semiconductor, Inc.

	i.MX53 System Development User’s Guide
	Contents
	Figures
	Tables
	About This Guide
	Table i. Conditional Tags and Settings Peculiar to this Chapter
	Audience
	Organization
	Essential Reference
	Suggested Reading
	General Information
	Related Documentation

	Conventions
	Signal Conventions
	Acronyms and Abbreviations

	Part I Hardware Design and Bring-up
	Chapter 1 Design Checklist
	Table 1-1. Design Checklist
	1.1 Boot Configuration Bus Isolation Resistors
	Figure 1-1. Boot Configuration Bus Isolation Resistors

	1.2 DDR Reference Circuit
	Table 1-2. DDR Vref Resistor Sizing Guideline

	1.3 Avoiding I2C Conflicts
	Table 1-3. I2C Bus Example Spreadsheet
	Table 1-4. I2C Port Usage Scenario

	1.4 JTAG Signal Termination
	Table 1-5. JTAG Interface Summary
	Table 1-6. Additional JTAG Signals

	Chapter 2 i.MX53 Layout Recommendations
	2.1 Basic Design Recommendations
	Figure 2-1. i.MX53 Ball-Grid Array
	Figure 2-2. i.MX53 Package Information
	2.1.1 Fanout
	Figure 2-3. i.MX53 Fanouts

	2.2 Stackup
	Figure 2-4. Layer Stack
	Figure 2-5. Stackup Requirements

	2.3 DDR Connection Information
	Figure 2-6. Connection Between i.MX53 and DDR2 and DDR3
	Figure 2-7. Final Placement of Memories and Decoupling Capacitors

	2.4 DDR2 and DDR3 Routing Rules
	Table 2-1. DDR2/DDR3 Routing by the Same Length
	Table 2-2. DDR2/DDR3 Routing by Byte Group

	2.5 Routing Topologies
	2.5.1 1 Gbyte Topologies
	Figure 2-8. Topology for ADDR/CMD/CTRL Signals
	Figure 2-9. Topology of Data Group, Point-to-Point Connection
	Figure 2-10. Topology for Data Bus of Two Byte Groups by Memory
	Figure 2-11. Clock Routing Topology

	2.5.2 2 Gbyte Topologies
	Figure 2-12. ADDR/CMD Signal Routing
	Figure 2-13. CTRL Signal Topology
	Figure 2-14. Data Bus Routing Topology
	Figure 2-15. Clock Routing Topology

	2.5.3 DDR2 Routing Examples
	Figure 2-16. Top DDR2 Routing
	Figure 2-17. Internal 1 DDR2 Routing
	Figure 2-18. Power Plane 1 DDR2 Routing
	Figure 2-19. Power Plane 2 DDR2 Routing
	Figure 2-20. Internal 2 DDR2 Routing
	Figure 2-21. Bottom DDR2 Routing
	Table 2-3. Total Signal Etch (DDR2)

	2.5.4 2-Gbyte Routing Examples
	Figure 2-22. Top 8-DDR3 Routing
	Figure 2-23. Internal 1 8-DDR3 Routing
	Figure 2-24. Power Plane 1 8-DDR3 Routing
	Figure 2-25. Power Plane 2 8-DDR3 Routing
	Figure 2-26. Internal 2 8-DDR3 Routing
	Figure 2-27. Bottom 8-DDR3 Routing
	Table 2-4. Total Signal Etch (DDR3)

	2.6 Power Recommendations
	2.7 TV Encoder Recommendations
	2.8 SATA Recommendations
	2.9 LVDS Recommendations
	Figure 2-28. Microstrip and Stripline Differential Pair Dimensions
	Figure 2-29. Differential Pair Routing

	2.10 Reference Resistors
	2.11 ESD and Radiated Emissions Recommendations

	Chapter 3 Understanding the IBIS Model
	3.1 IBIS Structure and Content
	3.2 Header Information
	Table 3-1. Header Information

	3.3 Component and Pin Information
	Table 3-2. Component and Pin Information

	3.4 Model Information
	Figure 3-1. Model IV Keywords’ Structure
	3.4.1 Ramp and Waveform Keywords
	Table 3-3. Ramp and Waveform Keywords
	Figure 3-2. Model Data Interpretation

	3.5 Model Golden Waveforms
	Figure 3-3. Generic Test Load Network
	Table 3-4. Golden Waveform Keywords

	3.6 Naming Conventions for Model Names and Usage in i.MX53 IBIS File
	3.6.1 [Model Selector] ddr
	3.6.2 [Model Selector] gpio
	3.6.3 [Model Selector] lvio
	3.6.4 [Model Selector] uhvio
	3.6.5 List of Pins Not Modeled in the i.MX53 IBIS File
	Table 3-5. Unmodeled Analog or Special Interface Pins
	Table 3-6. Unmodeled Differential Signals

	3.7 Quality Assurance for the IBIS Models
	3.8 References

	Chapter 4 Setting up Power Management
	4.1 i.MX53 Internal LDOs
	Figure 4-1. Internal LDOs

	4.2 Interfacing the i.MX53 Processor with the DA9053
	Figure 4-2. Power-up Sequence
	Table 4-1. i.MX53 Voltage Rails and Associated DA9053 Regulator
	4.2.1 Connecting Power and Communication Signals
	Figure 4-3. Power Connections
	Figure 4-4. Communication Signal Connections
	Figure 4-5. Interface Power-up Sequence (DA9053)

	4.3 Interfacing the i.MX53 Processor with LTC3589-1
	Figure 4-6. Power-up Sequence
	4.3.1 Using the I2C Interface
	4.3.2 I2C Acknowledge

	4.4 Interface Table
	Table 4-2. i.MX53 Voltage Rails and Associated LTC3589-1 Regulator

	4.5 Connecting Power and Communication Signals
	Figure 4-7. Power Connections Block (LT3481)
	Figure 4-8. Power Connections Block, cont. (LTC3589-1)
	Figure 4-9. Communication Signals Connections Block (LTC3589-1)
	Figure 4-10. Communication Signals Connections Block, cont. (TPS73201, LT3481)
	4.5.1 Powering-up the Interface
	Figure 4-11. Interface Power-Up Sequence (LTC3589-1)

	4.6 Additional Device Information
	4.6.1 DA9053
	Figure 4-12. DA9053 Typical Application Block Diagram
	Table 4-3. Generated Supply Domains

	4.6.2 LTC3589-1
	Figure 4-13. LTC3589-1 Typical Application Block Guide
	Table 4-4. LTC3589-1 Supply Domains

	Chapter 5 Interfacing DDR2 and DDR3 Memories with the i.MX53 Processor
	5.1 i.MX53 SDRAM Controller Signals
	Figure 5-1. Connection Between i.MX53 Processor and DDR2 and DDR3

	5.2 i.MX53 Memory Interface
	Figure 5-2. DDR2 Memory Connection
	Figure 5-3. DDR3 Memory Connection

	5.3 Configuring the DDR2 JTAG Script
	5.4 Configuring the DDR3 JTAG Script
	5.5 Configuring the i.MX53 Registers for the Initialization Script
	5.5.1 Main Control Register
	Figure 5-4. Main Control Register

	5.5.2 Power Down Register
	Figure 5-5. Power Down Register

	5.5.3 Timing Configuration 0 Register
	Figure 5-6. Timing Configuration 0 Register

	5.5.4 Timing Configuration 1 Register
	Figure 5-7. Timing Configuration 1 Register

	5.5.5 Timing Configuration 2 Register
	Figure 8. ESDCTL Timing Configuration Register 2(ESDCFG2)

	Chapter 6 Avoiding Board Bring-Up Problems
	6.1 Using a Voltage Report to Avoid Power Pitfalls
	Table 6-1. Sample Voltage Report

	6.2 Using a Current Monitor to Avoid Power Pitfalls
	6.3 Checking for Clock Pitfalls
	6.4 Avoiding Reset Pitfalls
	6.5 Sample Board Bring-Up Checklist
	Table 6-2. Board Bring-Up Checklist

	Chapter 7 Using the Clock Connectivity Table
	Table 7-1. Clock Roots

	Chapter 8 Configuring JTAG Tools for Debugging
	8.1 Accessing Debug with a JTAG Scan Chain (ARM tools)
	Figure 8-1. Example of Adding a Device
	Figure 8-2. Updating the CoreSight Base Address
	Figure 8-3. i.MX/Cortex-A8 RVDS JTAG Scan Chain

	8.2 Accessing Debug with a JTAG Scan Chain (other JTAG tools)

	Part II Software Development
	Chapter 9 Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board
	9.1 Supported Components
	9.2 Customizing OBDS for Specific Hardware
	9.2.1 UART (serial port) Test
	9.2.2 DDR Test
	9.2.3 Audio Test
	9.2.4 IPU Display Test
	9.2.5 I2C Test
	9.2.6 SD/MMC Test
	9.2.7 LED Test
	9.2.8 Ethernet (FEC) Loopback Test
	9.2.9 SPI-NOR Test

	Chapter 10 Porting U-Boot from an i.MX53 Reference Board to an i.MX53 Custom Board
	10.1 Obtaining the Source Code for the U-Boot
	10.2 Preparing the Code
	10.3 Customizing the i.MX53 Custom Board Code
	10.3.1 Changing the DCD Table for i.MX53 DDR3 Initialization
	10.3.2 Booting with the Modified U-Boot
	10.3.3 Further Customization at System Boot
	10.3.4 Customizing the Printed Board Name

	Chapter 11 Porting the Android Kernel
	11.1 Patching the Android Kernel
	11.2 Configuring Android Release for Customized Platforms
	11.2.1 Enabling and Disabling Default Resources
	Figure 11-1. Linux Kernel Configuration Menu

	11.2.2 Changing the Configuration File
	11.2.3 Android's Memory Map
	Figure 11-2. Android Memory Map (512 Mbyte System)

	11.3 Initializing Android
	11.4 Modifying the init.rc Partition Locations
	11.5 Adding Android Enhancements
	Figure 11-3. Linux Kernel
	Table 11-1. Android Enhancements
	Figure 11-4. Hardware Abstraction Layer

	Chapter 12 Configuring the IOMUX Controller (IOMUXC)
	12.1 Information for Setting IOMUX Controller Registers
	12.2 Setting Up the IOMUXC and U-Boot
	Table 12-1. Configuration Files
	12.2.1 Defining the Pads
	12.2.2 Configuring IOMUX Pins for Initialization Function
	12.2.3 Example-Setting a GPIO

	12.3 Setting Up the IOMUXC in Linux
	Table 12-2. IOMUX Configuration Files
	12.3.1 IOMUX Configuration Definition
	12.3.2 Machine Layer File
	12.3.3 Example -Setting a GPIO

	Chapter 13 Registering a New UART Driver
	13.1 Configuring UART Pads on IOMUX
	13.2 Enabling UART on Kernel Menuconfig
	13.3 Testing the UART
	13.4 File Names and Locations
	Table 13-1. Available Files-First Set
	Table 13-2. Available Files-Second Set
	Table 13-3. Available Files-Third Set

	Chapter 14 Adding Support for the i.MX53 ESDHC
	14.1 Including Support for SD2 and SD4
	Table 14-1. Structure Descriptions

	14.2 Including Support for SD1/SD2/SD3/SD4
	14.2.1 Creating Platform Device Structures for all SD Cards
	14.2.2 Configuring Pins for SD Function
	14.2.3 Creating the Platform Data Structure
	14.2.4 Setting Up Card Detection

	14.3 Additional Reference Information
	14.3.1 ESDHC Interface Features
	Table 14-2. ESDHC Pins

	14.3.2 ESDHC Operation Modes Supported by the i.MX53
	Table 14-3. ESDHC Operation Modes

	14.3.3 Interface Layouts
	Figure 14-1. Example i.MX53 Board SD Interface Layout
	Figure 14-2. Second Example i.MX53 SD Interface Layout

	Chapter 15 Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver
	15.1 Source Code Structure
	15.2 Configuration Options
	Table 15-1. Parameter Variables

	15.3 Selecting SPI NOR on the Linux Image
	Table 15-2. Device Information

	15.4 Changing the SPI Interface Configuration
	15.4.1 Connecting SPI NOR Flash to Another CSPI Interface
	15.4.2 Changing the CSPI Interface
	Table 15-3. CSPI Parameters

	15.4.3 Changing the Chip Select
	15.4.4 Changing the External Signals

	15.5 Hardware Operation
	15.6 Software Operation
	Figure 15-1. Components of a Flash-Based File System

	Chapter 16 Setting Up the Keypad Port (KPP)
	Table 16-1. Files for Adding/Configuring a New Keypad
	16.1 Configuring Keypad Pins on IOMUX
	16.2 Creating a Custom Keymap
	16.3 Configuring the Pads with the Machine Layer File
	16.4 Enabling the Keypad
	16.5 Testing the Keypad
	16.5.1 Using cat to Test the Keypad
	16.5.2 Using Evtest to Test the Keypad

	Chapter 17 Supporting the i.MX53 Reference Board DISP0 LCD
	17.1 Supported Display Interfaces
	Figure 17-1. Available Display Interfaces
	Table 17-1. Available Interfaces

	17.2 Adding Support for an LCD Panel
	Figure 17-2. Interface
	Table 17-2. Timing Parameters

	17.3 Modifying Boot Kernel Parameters to Support a New LCD
	17.3.1 Setting the Video Kernel Parameter
	Table 17-3. Parameter Information
	Table 17-4. XGA DVI Monitor Example Variables
	Table 17-5. VGA LCD Example Variables
	Table 17-6. 720P TV Example Variables

	17.3.2 Setting the di1_primary Kernel Parameter
	17.3.3 Modifying the Bits per Pixel Setting
	17.3.4 Modifying Display Timing for CLAA057VA01CT Using Kernel Parameters
	Table 17-7. Sample Values

	17.4 Adding Support for a New LCD
	17.4.1 Adding a Display Entry in the ltib Catalog
	Figure 17-3. Graphics Support Options Menu

	17.4.2 Creating the LCD Panel File (initialization, reset, power settings, backlight)
	Table 17-8. Required Functions

	17.4.3 Adding the Compilation Flag for the New Display
	17.4.4 Configuring LCD Timings and the Display Interface
	17.4.5 Adding BSP Support for a New Boot Command to Select CLAA057VA01CT LCD

	17.5 i.MX53 Display Interface Helpful Information
	Figure 17-4. i.MX53 Board Display Interface Layout

	Chapter 18 Connecting an LVDS Panel to an i.MX53 Reference Board
	18.1 Connecting an LVDS Panel to the i.MX53 EVK Board
	18.2 Enabling an LVDS Channel
	18.2.1 Locating Menu Configuration Options
	18.2.2 Programming Interface

	18.3 LDB Ports
	Figure 18-1. i.MX53 LVDS Display Bridge (LDB) Block
	18.3.1 Input Parallel Display Ports
	18.3.2 Output LVDS Ports

	18.4 Further Reading

	Chapter 19 Supporting the i.MX53 Camera Sensor Interface CSI0
	19.1 Required Software
	19.2 i.MX53 CSI Interfaces Layout
	Figure 19-1. Camera Interface Layout

	19.3 Configuring the CSI Unit in Test Mode
	Table 19-1. Settings for Test Mode

	19.4 Adding Support for a New CMOS Camera Sensor
	19.4.1 Adding a Camera Sensor Entry on the ltib Catalog (Kconfig)
	Figure 19-2. MXC Camera/V4L2 PRP Features Support Window

	19.4.2 Creating the Camera Sensor File
	Table 19-2. Required Functions

	19.4.3 Adding a Compilation Flag for the New Camera

	19.5 Using the I2C Interface
	19.6 Loading and Testing the Camera Module
	Figure 19-3. Chessboard Test

	19.7 Additional Reference Information
	19.7.1 CMOS Interfaces Supported by the i.MX53
	Figure 19-4. IPU Block Diagram

	19.7.2 i.MX53 CSI Parallel Interface
	Figure 19-5. Parallel Interface Layout
	Table 19-3. CSI0 Parallel Interface Signals

	19.7.3 Timing Data Mode Protocols

	Chapter 20 Porting Audio Codecs to a Custom Board
	20.1 Common Porting Task
	20.2 Porting the Reference BSP to a Custom Board (audio codec is the same as in the reference design)
	Table 20-1. Required Power Supplies

	20.3 Porting the Reference BSP to a Custom Board (audio codec is different than the reference design)
	Table 20-2. Files for sgtl Codec Support

	Chapter 21 Porting the Fast Ethernet Controller Driver
	21.1 Pin Configuration
	Table 21-1. RMII Signals

	21.2 Source Code
	Table 21-2. Source Code Files

	21.3 Ethernet Configuration

	Chapter 22 Porting USB Host1 and USB OTG
	Appendix A Revision History
	Table A-1. i.MX53 System Development User Guide Document Revision History

