
MCUXpresso SDK 3-Phase PMSM Control
with IEC60730 Safety

NXP Semiconductors Document identifier: MCUXSDK3PPMSMCWSUG
User's Guide Rev. 0, 06/2020

Contents
Chapter 1 Introduction... 3

Chapter 2 Supported development boards for Kinetis V..4

Chapter 3 Motor control vs. SDK peripheral drivers.. 5

Chapter 4 Hardware setup...6

Chapter 5 MCU features and peripheral settings...10

Chapter 6 Project file and IDE workspace structure.. 16

Chapter 7 Safety IEC60730 class B tests..19

Chapter 8 Tools... 23

Chapter 9 Remote control using FreeMASTER...24

Chapter 10 References..50

Chapter 11 Useful links..51

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 2 / 52

Chapter 1
Introduction
This user's guide describes the implementation of the three-phase high-voltage Permanent Magnet Synchronous Motor (PMSM)
sensorless control reference application with IEC60730 class B safety V0.2.0 on NXP 32-bit Kinetis V series MCUs. The high
voltage power stage (HVP-MC3PH) is used as a hardware platform for the PMSM control reference solution.

The first part of the document describes the hardware-dependent part of the sensorless control software, including a detailed
peripheral setup. The second part describes the project file structure and safety tests. The last part describes the application
control via FreeMASTER and the motor parameters identification algorithm.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 3 / 52

Chapter 2
Supported development boards for Kinetis V
The High-Voltage Platform (HVP) is designed to drive high-voltage (115/230 V) applications with up to 1 kW of power. The
supported development boards are shown in Table 1. For more details, see Hardware setup.

Table 1. Supported development boards

Platform Description User's guide / product page

HVP-MC3PH The high-voltage power stage HVPMC3PHUG

HVP-KV11Z75M The MKV11 development high-voltage
daughter card

HVP-KV11Z75M

HVP-KV31F120M The MKV31 development high-voltage
daughter card

HVPKV31F120MUG

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 4 / 52

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/high-voltage-development-platform:HVP-MC3PH
https://www.nxp.com/docs/en/user-guide/HVPMC3PHUG.pdf
https://www.nxp.com/part/HVP-KV11Z75M#/
https://www.nxp.com/docs/en/user-guide/HVPKV31F120MUG.pdf

Chapter 3
Motor control vs. SDK peripheral drivers
All MCU peripherals used by the pmsm_safe example are split into three groups:

• General application peripherals - This group covers all non-safety peripherals used by the application, namely the SysTick
timer for CPU load measurement and the UART for FreeMASTER debug interface. Both these peripherals are initialized in
the app_periph_init.c module. The MCUXpresso SDK peripheral drivers are generally used for peripherals in this group.

• General safety-related peripherals - This group includes generic safety-related peripherals (MCG, PORT, GPIO, CRC16,
LPTMR), which are used or covered by the IEC60730 class B safety routines. These peripherals are initialized in the
safety_periph_init.c module using proprietary drivers to ensure proper safety-related RO, RW, and CODE memory separation
and checking. The general configuration of clocks, pins, and IRQs is easily done via the hardware_cfg.h header.

• Motor-control specific peripherals - The peripherals used by the safety-related motor-control application (FTM, ADC, and
PDB). Motor control is a time-critical application because most control algorithms run in a 100-us loop. To optimize the CPU
load and account for the fact that these peripherals are safety-related, proprietary initialization and driver routines are utilized.
The initialization is done in the mcdrv_periph_init.c module and the drivers are split into the mcdrv_adc_adc16.c,
mcdrv_gpio.c, and mcdrv_pwm3ph_ftm.c modules.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 5 / 52

Chapter 4
Hardware setup
The PMSM sensorless application runs on the HVP platform and it is configured for the MIGE 60CST-MO1330 motor by default.

4.1 MIGE 60CST-MO1330 motor
The MIGE 60CST-MO1330 motor (described in Table 2) is used by the PMSM sensorless application. You can also adapt the
application to other motors just by defining and changing the motor-related parameters. The motor is connected directly to the
high-voltage development board via a flexible cable connected to the three-wire development board connector.

Table 2. MIGE 60CST-MO1330 motor parameters

Characteristic Symbol Value Units

Rated voltage Vt 220 V

Rated speed - 3000 rpm

Rated power P 400 W

Number of pole-pairs Pp 4 -

Figure 1. MIGE 60CST-MO1330 motor

4.2 Running PMSM application on High-Voltage Platform (HVP)
To run the PMSM application on the NXP HVP, you need these components:

• HVP daughter card with a Kinetis V series MCU (HVP-KV11Z75M or HVP-KV31F120M).

• HVP power stage (HVP-MC3PH). The default motor is not included.

You can order all HVP modules from www.nxp.com or from distributors and easily build the hardware platform for the target
application.

4.2.1 HVP-MC3PH
The NXP High-Voltage Platform (HVP) is an evaluation and development solution for Kinetis V and E series MCUs. This platform
enables the development of three-phase PMSM, BLDC, and ACIM motor-control and power-factor-correction solutions in a safe
high-voltage environment. The HVP is a 115/230-V, 1-kW power stage that is an integral part of the NXP embedded motion
control series of development tools. It is supplied in the HVP-MC3PH kit in combination with an HVP daughter card and provides

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 6 / 52

https://www.nxp.com/part/HVP-KV11Z75M#/
https://www.nxp.com/part/HVP-KV31F120M#/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/high-voltage-development-platform:HVP-MC3PH?lang_cd=en
http://www.nxp.com

a ready-made software development platform. The block diagram of a complete high-voltage motor-control development kit is in
Figure 2.

3-ph Inverter

Motor

HVP-MC3PH board

MCU

Daughter card

Isolated Power Supply

90-240V
AC

Current Inrush
EMI Filter

Galvanic Isolated
USB / UART
Converter

Power Supply
15V DC
5V DC

3.3V DC

Encoder / Tacho

USB

Encoder
Tacho

 DCB
Brake

Brake
Resistor

JTAG

5KV Isolation Barrier

Isolated JTAG, Isolated Open SDA

JTAG and Open SDA
 Galvanic Isolation

USB

HVP-MC3PH Parts Daughter Card Parts

Ia,Ib,Ic6xPWM2xPWMUin,Ipfc1,
Ipfc2,Fault Brake

Interleaved PFC

Ua, Ub, Uc
Udcb
Temp

Figure 2. High-voltage motor-control development platform block diagram

The HVP-MC3PH power stage does not require a complicated setup and there is only one way to connect a daughter card to
the HVP. The board works in the default configuration, and you don’t have to set any jumpers to run the attached application. It
is strongly recommended to read the complete High-Voltage Motor Control Platform User's Guide (document HVPMC3PHUG).
Note that due to high-voltage, the HVP platform may represent safety risk when not handled correctly. For more information about
the NXP high-voltage motor-control development platform, see nxp.com.

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 7 / 52

https://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com

Figure 3. HVP-MC3PH high-voltage platform

4.2.2 HVP-KV11Z75M daughter card
The HVP-KV11Z75M MCU daughter card contains a Kinetis KV1x family MCU built around the Arm® Cortex®-M0+ core running
at 75 MHz and containing up to 128 KB of flash memory. This daughter card is developed for use in motor-control applications,
together with the High-Voltage Platform power stage. This daughter card features OpenSDA, the NXP open-source hardware
embedded serial and debug adapter running an open-source bootloader.

Figure 4. HVP-KV11Z75M daughter card

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 8 / 52

4.2.3 HVP-KV31F120M daughter card
The HVP-KV31F120M MCU daughter card contains a Kinetis KV3x family MCU built around the Arm Cortex-CM4F core with a
floating-point unit, running at 120 MHz, and containing up to 512 KB of flash memory. This daughter card is developed for use
in motor-control applications, together with the HVP power stage. This daughter card features OpenSDA, the NXP open-source
hardware embedded serial and debug adapter running an open-source bootloader.

Figure 5. HVP-KV31F120M daughter card

4.2.4 HVP assembling
1. Check whether the HVP-MC3PH main board is unplugged from the voltage source.

2. Insert the HVP-KVxxx daughter board to the HVP-MC3PH main board (connector J11 is the only option).

3. Connect the PMSM motor three-phase wires into the screw terminals J13 on the board. The order of phases only affects
the rotor spinning direction.

4. Plug the USB cable from the USB host to the OpenSDA micro USB connector on the daughter board.

5. Plug a 230-V power supply to the power connector and switch it on.

NXP Semiconductors
Hardware setup

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 9 / 52

Chapter 5
MCU features and peripheral settings
The peripherals used for motor control differ among different Kinetis V MCUs. The peripheral settings and application timings for
each MCU are described in the following sections.

5.1 KV1x family
The KV10Z and KV11Z MCU families are highly scalable members of the Kinetis V series and provide a cost-competitive motor-
control solution. Built on the Arm Cortex-M0+ core running at a frequency of up to 75 MHz with up to 128 KB of flash and up to
16 KB of RAM, it delivers a platform enabling customers to build a scalable solution portfolio. Additional features include dual 16-
bit ADCs sampling at up to 1.2 MS/s in a 12-bit mode and 20 channels of flexible motor-control timers (PWMs) across six
independent time bases. For more information, see the KV11F Sub-Family Reference Manual (document KV11P64M75RM).

Hardware timing and synchronization

Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated peripherals take care
of the timing and synchronization at the hardware layer. It is also possible to set the PWM frequency as a multiple of the ADC
interrupt (FOC fast control loop execution) frequency and thus lower the CPU load at the cost of longer sampling period. The
FOCfreq = PWMfreq configuration is used by default. The low-priority synchronous tasks are executed in a slow loop interrupt
generated via FTM. The timing diagram is shown in Figure 6.

Figure 6. Hardware timing and synchronization on KV1xZ

• The top signal (PWM counter in Figure 6) shows the FTM counter value and its reloads (marked as PWM reload events).
The FTM generates the PWM top and PWM bottom signals with a PWMfreq frequency. The Tdeadtime is inserted to avoid
the DC-bus shoot-through. The PDB is triggered (its counter is reset) by the FTM_TRIG signal, which is generated
together with the PWM reload event.

• The PDB generates the first pre-trigger to trigger acquisition of the first set of ADC samples (used for phase current
measurement) with approximately Tdeadtime/2 delay. This delay ensures correct current sampling at duty cycles close to
100 %.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 10 / 52

https://www.nxp.com/doc/KV11P64M75RM

• When the conversion of the first set of ADC samples (phase current measurement) is completed, the ADC ISR is
envoked. Firstly, the next FTM_TRIG is disabled (TRIG off). This ensures that the PDB counter does not reset at the next
PWM reload. Then the FOC fast control loop is calculated.

• In the middle of the next PWM period (PDB delay), the PDB ISR is called. This interrupt only enables the FTM_TRIG
(TRIG on) in the next PWM reload. The PDB ISR has a lower priority than the ADC ISR. The PDB delay length determines
the ratio between PWMfreq and FOCfreq.

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for the DC-bus voltage measurement)
immediately after the first conversion is completed.

Peripheral settings

This chapter describes only the peripherals used for motor control. On KV11Z, a six-channel FlexTimer (FTM) is used for six-
channel PWM generation and two 16-bit SAR ADCs are used for the phase currents and DC-bus voltage measurement. The
FTM and ADC are synchronized via the Programmable Delay Block (PDB). There is also one channel from another independent
FTM used for the slow loop interrupt generation.

PWM generation - FTM0

• The FTM is clocked from the 74.71-MHz System clock.

• Only six channels are used, the other two are masked in the OUTMASK register.

• Channels 0+1, 2+3, and 4+5 are combined in pairs running in a complementary mode (each).

• The fault mode is enabled for each combined pair with automatic fault clearing (PWM outputs are re-enabled at the first
PWM reload after the fault input returns to zero).

• The PWM period (frequency) is determined by how long it takes the FTM to count from CNTIN to MOD. By default, CNTIN
= -MODULO/2 = -3735 and MOD = MODULO/2 -1 = 3734. The FTM is clocked from the System clock (74.71 MHz), so it
takes 0.0001 s (10 KHz).

• Dead-time insertion is enabled for each combined pair. The dead-time counter modulo is calculated as the System clock
(74.71 MHz) multiplied by Tdeadtime. The 1.5-us dead time is inserted by default.

• The FTM generates a trigger to the PDB on counter reload.

• The FTM fault input zero is enabled, active low.

Analog sensing – ADC0, ADC1

• Both ADCs operate as 12-bit, single-ended converters.

• The clock source for both ADCs is the 18.67-MHz Alternate clock (ALTCLK).

• For ADC calibration purposes, the ADC is running at 2.33 MHz in a continuous conversion mode and with 32 samples of
hardware averaging. After the calibration is done, the SC register is filled with its default values and the clock is set back
to 18.67 MHz.

• Both ADCs are triggered from the PDB pre-triggers.

• The fast control loop interrupt (ADC ISR in Figure 6) is triggered when the conversion is complete.

PWM and ADC synchronization – PDB0

• Unlike the FTM, the PDB is clocked from the Bus clock which is three times slower than the System clock (used for FTM).
Therefore, the PDB modulo value is divided by three.

• The PDB is triggered from the FTM0_TRIG.

• The pre-trigger 0 at each channel is generated 0.5 × Tdeadtime after the FTM0_TRIG.

• The pre-trigger 1 at each channel is generated immediately after the first conversion is completed using the back-to-back
mode.

NXP Semiconductors
MCU features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 11 / 52

• The PDB Sequence Error interrupt is enabled. This interrupt is generated if a certain result register was not read and the
same pre-trigger occurs at this ADC.

• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached. This interrupt enables the
FTM_TRIG.

• The PDB Sequence Error and PDB Delay interrupts have a common interrupt vector. Which event generated the interrupt
is determined at the beginning of the interrupt (PDB ISR in Figure 6) based on the ERR flag.

Slow loop interrupt generation – FTM2

• The FTM2 is clocked from the System clock / 16, because the slow loop is by default ten times slower than the fast loop,
so its modulo value can be kept reasonably low.

• The FTM counts from CNTIN = 0 to MOD = (MODULO/16) x 10.

• An interrupt is enabled and generated at the counter reload to trigger the slow control loop execution.

CPU load and memory usage

The Table 3 shows the memory usage and the CPU load for an application built with the IAR IDE (see section Tools for the exact
version). The memory usage is calculated from the *.map linker file, including the 2-KB FreeMASTER recorder buffer (allocated
in RAM). The CPU load is dependent on the fast-loop (FOC calculation) frequency (10 KHz in this case). The CPU load is
calculated according to the following equation.

CPU = cyclesffastfCPU100[%]
Equation 1. CPU load

Where:

CPU - the CPU load taken by the fast loop.

cycles - the number of cycles consumed by the fast loop.

ffast - the frequency of the fast-loop calculation (10 KHz).

fCPU - the CPU frequency (System clock frequency).

Table 3. KV11 CPU load and memory usage

Configuration Debug Release

Fast loop load [%] 61.5 51.2

Flash (code + RO data) [B] 29682 + 14312 23064 + 12980

Flash without FreeMASTER (code + RO data) [B] 18700 + 1064 16044 + 932

RAM [B] 3523 3508

RAM without FreeMASTER [B] 924 908

Memory usage and maximum CPU load can differ depending on the used IDEs and settings.

 NOTE

5.2 KV3x family
The KV31F MCU family is a highly scalable member of the Kinetis V series and provides a high-performance, cost-competitive,
motor-control solution. Built on the Arm Cortex-M4F core running at a frequency of up to 120 MHz, with up to 512 KB of flash
and up to 96 KB of RAM, and combined with a floating-point unit, it delivers a platform enabling customers to build a scalable
solution portfolio. The additional features include dual 16-bit ADCs sampling at up to 1.2 MS/s in a 12-bit mode, 20 channels of

NXP Semiconductors
MCU features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 12 / 52

flexible motor-control timers (PWMs) across four independent time bases, and a large RAM block enabling local execution of fast
control loops at the full clock speed. For more information, see the KV31F Sub-Family Reference Manual (document
KV31P100M120SF7RM).

Hardware timing and synchronization

Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated peripherals take care
of the timing and synchronization at the hardware layer. It is also possible to set the PWM frequency as a multiple of the ADC
interrupt (FOC fast control loop execution) frequency and thus lower the CPU load at the cost of a longer sampling period. The
FOCfreq = PWMfreq configuration is used by default. The low-priority synchronous tasks are executed in a slow loop interrupt
generated via FTM. The timing diagram is shown in Figure 7.

Figure 7. Hardware timing and synchronization on KV31F

• The top signal (PWM counter in Figure 7) shows the FTM counter value and its reloads (marked as PWM reload events).
The FTM generates the PWM top and PWM bottom signals with the PWMfreq frequency. The Tdeadtime is inserted to avoid
the DC-bus shoot-through. The PDB is triggered (its counter is reset) by the FTM_TRIG signal, which is generated
together with the PWM reload event.

• The PDB generates the first pre-trigger to trigger the acquisition of the first set of ADC samples (used for the phase
current measurement) with approximately Tdeatime/2 delay. This delay ensures correct current sampling at duty cycles
close to 100 %.

• When the conversion of the first set of ADC samples (phase current measurement) is completed, the ADC ISR is
envoked. Firstly, the next FTM_TRIG is disabled (TRIG off). This ensures that the PDB counter does not reset at the next
PWM reload. Then the FOC fast control loop is calculated.

• In the middle of the next PWM period (PDB delay), the PDB ISR is called. This interrupt only enables the FTM_TRIG
(TRIG on) in the next PWM reload. The PDB ISR has a lower priority than the ADC ISR. The PDB delay length determines
the ratio between the PWMfreq and FOCfreq.

• The PDB uses the back-to-back mode to automatically generate the pre-trig 1 (for the DC-bus voltage measurement)
immediately after the first conversion is completed.

NXP Semiconductors
MCU features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 13 / 52

https://www.nxp.com/doc/KV31P100M120SF7RM

Peripheral settings

This section describes only the peripherals used for motor control. KV31F contains a six-channel FlexTimer (FTM) used for six-
channel PWM generation and two 16-bit SAR ADCs for the phase currents and DC-bus voltage measurement. The FTM and
ADC are synchronized via the Programmable Delay Block (PDB). One channel from another independent FTM is also used for
the slow-loop interrupt generation.

PWM generation - FTM0

• The FTM is clocked from the 60-MHz Bus clock.

• Only six channels are used, the other two are masked in the OUTMASK register.

• Channels 0+1, 2+3, and 4+5 are combined in pairs running in the complementary mode.

• The fault mode is enabled for each combined pair with the automatic fault clearing (PWM outputs are re-enabled the first
PWM reload after the fault input returns to zero).

• The PWM period (frequency) is determined by how long it takes the FTM to count from CNTIN to MOD. By default, CNTIN
= -MODULO/2 = -3000 and MOD = MODULO/2 -1 = 2999. The FTM is clocked from the System clock (60 MHz), so it
takes 0.0001 s (10 KHz).

• The dead-time insertion is enabled for each combined pair. The dead-time counter modulo is calculated as the System
clock (60 MHz) multiplied by Tdeadtime. The 1.5-us dead-time is inserted by default.

• The FTM generates a trigger to the PDB on counter reload.

• The FTM fault input zero is enabled, active low.

Analog sensing – ADC0, ADC1

• Both ADCs operate as 12-bit, single-ended converters.

• The clock source for both ADCs is the 60-MHz Bus clock clock divided by four, which equals to 15 MHz.

• For the ADC calibration purposes, the ADC is running at 3.75 MHz, in a continuous conversion mode and with 32 samples
hardware averaging. After the calibration is done, the SC register is filled with its default values and the clock is set back
to 15 MHz.

• Both ADCs are triggered from the PDB pre-triggers.

• The fast control loop interrupt (ADC ISR in Figure 7) is triggered when the conversion is complete.

PWM and ADC synchronization – PDB0

• Like the FTM, the PDB is clocked from the 60-MHz Bus clock.

• The PDB is triggered from the FTM0_TRIG.

• The pre-trigger 0 at each channel is generated 0.5 × Tdeadtime after the FTM0_TRIG.

• The pre-trigger 1 at each channel is generated immediately after the first conversion is completed using the back-to-back
mode.

• The PDB Sequence Error interrupt is enabled. This interrupt is generated when a certain result register was not read and
the same pre-trigger occurs at this ADC.

• The PDB Delay interrupt is enabled. This interrupt is generated when the PDB_IDLY is reached. This interrupt enables the
FTM_TRIG.

• The PDB Sequence Error and PDB Delay interrupts have a common interrupt vector. Which event generated the interrupt
is determined at the beginning of the interrupt (PDB ISR in Figure 7), based on the ERR flag.

NXP Semiconductors
MCU features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 14 / 52

Slow loop interrupt generation – FTM2

• The FTM2 is clocked from the System clock / 16, because the slow loop is by default ten times slower than the fast loop
and the modulo value can be kept reasonably low.

• The FTM counts from CNTIN = 0 to MOD = (MODULO/16) x 10.

• An interrupt is enabled and generated at the reload to trigger the slow control loop execution.

CPU load and memory usage

The Table 4 shows the memory usage and the CPU load for application built with the IAR IDE (see Tools for the exact version).
The memory usage is calculated from the *.map linker file, including the 2-KB FreeMASTER recorder buffer (allocated in RAM)
and Motor Identification (MID). The CPU load is measured using the SysTick timer. The CPU load is dependent on the fast-loop
(FOC calculation) frequency (10 KHz in this case). The total CPU calculation is described in CPU load and memory usage.

Table 4. KV31 CPU load and memory usage

Configuration Debug Release

Fast loop load [%] 33.8 32.5

Flash (code + RO data) [B] 39488 + 16724 29692 + 15360

Flash without FreeMASTER (code + RO data) [B] 28608 + 1840 22950 + 1710

Flash without FreeMASTER and MID (code + RO data) [B] 18464 + 1360 14936 + 1228

RAM [B] 4640 4625

RAM without FreeMASTER [B] 2041 2025

RAM without FreeMASTER and MID [B] 924 908

Memory usage and maximum CPU load can differ depending on the IDEs and settings used.

 NOTE

NXP Semiconductors
MCU features and peripheral settings

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 15 / 52

Chapter 6
Project file and IDE workspace structure
All the necessary files are included in one package, which simplifies the distribution and decreases the size of the final package.
The directory structure of this package is simple, easy to use, and organized in a logical manner. The folder structure used in the
IDE is different from the structure of the PMSM package installation, but it uses the same files. The different organization is chosen
due to a better manipulation with folders and files in workplaces and due to the possibility to add or remove files and
directories. The pack_pmsm_safe_hvpkv11 and pack_pmsm_safe_hvpkv31 projects include all the available functions and
routines, MID functions, IEC60730 class B compliant safety routines, scalar and vector control of the motor, FOC control, and
FreeMASTER project. This project serves for development and testing purposes.

6.1 PMSM project structure
The directory tree of the PMSM project is shown in Figure 8.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 16 / 52

Figure 8. Directory tree

The main project folder pack_pmsm_safe_hvpkvxx/boards/xkxxx/demo_apps/mc_pmsm/pmsm_safe/ contains these folders and
files:

• iar—folder containing project files for the IAR Embedded Workbench IDE.

• armgcc—folder containing project files for the GNU Arm IDE.

• mdk—folder containing project files for the uVision Keil IDE.

• mcux—folder containing project files for the MCUXpresso IDE.

• periph_init—folder with peripheral initilization files.

• m1_pmsm_appconfig.h—contains the definitions of constants for the application control processes, parameters of the motor
and regulators, and the constants for other vector-control-related algorithms.

• main.c and .h—contains the basic application initialization, subroutines for accessing the MCU peripherals, and interrupt
service routines. The FreeMASTER communication is processed in the background infinite loop.

NXP Semiconductors
Project file and IDE workspace structure

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 17 / 52

• m1_mcdrv.h—this file provides the light abstraction layer of the mcdrv_adc_adc16.c, mcdrv_gpio.c, and
mcdrv_pwm3ph_ftm.c drivers.

• freemaster_cfg.h—the FreeMASTER configuration file.

• hardware_cfg.h—the hardware configuration file containing hardware setup like ISRs, clocks, and pin-muxing.

• safety_cfg.h—the safety configuration file containing safety tests setup.

The periph_init folder contains these files:

• app_periph_init.c and .h—these files contain the initialization of non-safety and non-motor-control-related peripherals like
UART and SysTick.

• mcdrv_periph_init.c and .h—these files contains the initialization of motor-control-related peripherals like ADC, PWMs, and
so on. These peripherals are safety-related as well.

• safety_periph_init.c and .h—these files contain the initialization of safety-related peripherals, like LPTMR and others.

The main motor-control folder pack_pmsm_safe_hvpkvxx/middleware/motor_control/ contains these folders:

• freemaster—folder contains also the FreeMASTER project file pmsm_safe_mid.pmp (pmsm_safe.pmp for version HVP-
KV11Z75M without MID). Open this file in the FreeMASTER tool and use it to control the application (see section Remote
control using FreeMASTER for more details).

• pmsm/pmsm_safe—folder containing main motor-control functions.

• tools—folder containing files needed to compute the flash CRC by an external tool.

The pmsm/pmsm_safe folder contains these subfolders and files common to the other motor-control projects:

• mc_drivers—contains the source and header files used to initialize and run motor-control applications.

• mc_identification—contains the source code for the automated parameter-identification routines of the motor (valid for HVP-
KV31F120M).

• mc_state_machine—contains the software routines that are executed when the application is in a particular state or state
transition and the algorithms used to control the FOC and speed control loop.

• safety_routines—contains the safety functions based on the IEC60730 class B safety library (for more information, see Safety
IEC60730 class B tests).

• freemaster_tsa_pmsm.c and .h—TSA table used for reading and writing variables via FreeMASTER.

The pack_pmsm_safe_hvpkvxx/middleware/safety_iec60730b/ folder contains the IEC 60730 Class B Safety Library V3.0 for
Kinetis KV3x MCU and V4.0 for Kinetis KV1x MCU.

The pack_pmsm_safe_hvpkvxx/middleware/rtcesl/ folder contains Real Time Control Embedded Software Motor Control and
Power Conversion Libraries (RTCESL).

NXP Semiconductors
Project file and IDE workspace structure

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 18 / 52

https://www.nxp.com/products/product-information/iec-60730-safety-standard-for-household-appliances:APIEC60730
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/real-time-control-embedded-software-motor-control-and-power-conversion-libraries:RTCESL
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/real-time-control-embedded-software-motor-control-and-power-conversion-libraries:RTCESL

Chapter 7
Safety IEC60730 class B tests
The three-phase high-voltage PMSM sensorless control reference design application with IEC60730 class B safety contains the
following safety tests:

• Clock test

• CPU register test

• Program counter test

• Stack test

• Watchdog test

• Interrupt handling and execution test

• Program flow test

• Variable memory (RAM) test

• Invariable memory (flash) test

If any safety test detects an unsafe condition, the FS_fsErrorHandling() function is called with the error code as a parameter (the
only exception is the watchdog test, which results in the internal FS_fsWatchdogTest_AR() endless loop). For the complete list
of error codes, see the safety_error_handler.h header. The FS_fsErrorHandling() function disables all PWM signals and interrupts
and locks the MCU in an endless loop. Depending on the error code, the red LED (D1 on HVP-KV11Z75M and HVP-KV31F120M)
on the daughter card blinks, where the number of short blinks signals the error code value.

More information about some of the tests can be found in Safety Class B with PMSM Sensorless Drive (document AN5321) and
in the IEC60730B Safety Library Example user's guides.

Only the IEC60730 class B safety libraries V3.0 and V4.0 are certified with respect to the IEC60730 standard. The
overall reference design application is not certified and it is meant to serve as a base for the development of
certified customer applications.

 NOTE

Depending on the IDE, debugger, and activated set of safety tests, it might be necessary to completely reset the
MCU after downloading the application into the MCU flash. Otherwise, some safety tests might be triggered.

 NOTE

Clock test

The clock test procedure tests the oscilator frequency for the CPU core by comparing it to the independent reference LPTMR
timer. The test can be disabled via the FS_CFG_ENABLE_TEST_CLOCK macro (see safety_cfg.h).

It is recommended to disable the clock test during debugging, otherwise the clock test failure condition activation
may occur.

 NOTE

CPU register test

This procedure tests all CPU registers for the stuck-at condition. The only exception is the program counter register test, which
is implemented as a stand-alone safety routine.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 19 / 52

https://www.nxp.com/doc/AN5321

Program counter test

This procedure tests the CPU program counter register for the stuck-at condition. The test is performed both after the reset and
during run-time. The test can be disabled via the FS_CFG_ENABLE_TEST_PC macro (see safety_cfg.h).

The program counter test cannot be interrupted.

 NOTE

Stack test

This test routine is used to test the overflow and underflow conditions of the application stack. The testing of the stuck-at faults
in the memory area occupied by the stack is covered by the variable memory test (see below). The overflow or underflow of the
stack can occur if the stack is incorrectly controlled or by defining a "too-small" stack area for the given application. The test is
performed both after the reset and during run-time.

Watchdog test

The watchdog test tests the watchdog timer functionality. The test is executed only once after the reset. The test causes the
WDOG reset and compares the preset time of the WDOG starvation with the independent timer reference. The test can be
disabled via the FS_CFG_ENABLE_WATCHDOG macro (see safety_cfg.h).

Some debuggers may have issues with the WDOG causing a reset. Therefore, it is recommended to disable the
watchdog test while debugging the application.

 NOTE

Interrupt handling and execution test

This simple test is based on the variables that are incremented in each periodic safety-related interrupt and, in the appropriate
moment, their values are compared to the predefined values. This indicates whether the interrupts occur and whether the time
ratio of their occurrence is correct or not. The test can be disabled via the FS_CFG_ENABLE_TEST_ISR macro (see safety_cfg.h).

Program flow test

The purpose of the program flow check is to test whether the program goes through all important parts (nodes) of the software.
The method used is called Control Flow Checking by Software Signatures (CFCSS). All signatures are available in the
safety_flow_check.h header file. The test can be disabled via the FS_CFG_ENABLE_TEST_FLOW macro (see safety_cfg.h).

Variable memory (RAM) test

The variable memory on the supported MCU is an on-chip RAM. Both stack and safety-related RW data memories are checked
using the MarchC or MarchX tests after the reset and during runtime. The test copies a block of memory to the backup area
defined by the linker and restores the tested memory when the test finishes.

This test cannot be interupted.

 NOTE

Invariable memory (flash) test

The invariable (flash) memory test provides a CRC check of a dedicated safety-related part of memory and restores the tested
memory after the test finishes. The test is performed after the reset and during run-time by calculating the safety-related flash
CRC and comparing it to the value calculated during the post-build operation. Both the flash test and the CRC post-build
calculations are disabled by default. To enable the flash test, see the safety_cfg.h file and set the
FS_CFG_ENABLE_TEST_FLASH macro value to 1. The activation of the post-build CRC calculation depends on the IDE:

1. In the IAR IDE, the CRC is calculated by the IDE directly (see "Options → Build Action"). Therefore, the flash test is fully
integrated to the example project in the IAR IDE by default.

2. In the Arm Keil IDE, it is necessary to use a third-party tool (Srecord v1.64):

NXP Semiconductors
Safety IEC60730 class B tests

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 20 / 52

• The Srecord tool is part of the package by default. See the middleware/motor_control/tools/srec folder.

• In the Arm Keil IDE, go to the project options and select the "User" tab.

• Select the "Run #1 " checkbox and, depending on the selected configuration, copy the command within quotation
marks below to "Option → User → AfterBuild".

Debug: "crc_hex.bat -debug\mc_pmsm_safe.hex -debug\mc_pmsm_safe_crc.hex -..\..\..\..\..\..\middleware
\motor_control\tools\srec\srec_cat "

Release: "crc_hex.bat -release\mc_pmsm_safe.hex -debug\mc_pmsm_safe_crc.hex -..\..\..\..\..\..\middleware
\motor_control\tools\srec\srec_cat "

Figure 9. Post-build settings in Arm Keil IDE

• The final post-processed image can be downloaded to the ROM memory by clicking the "Download" button.

• For more information on using Srecord in the Arm Keil IDE, see Calculating Post-Build CRC in Arm® Keil® (document
AN12520).

3. In the MCUXpresso IDE:

• Go to "Properties → C/C++ Build → Settings → Build steps → Post-build steps" and fill the "Command" window with two
lines within quotation marks below (avoid any additional linebreaks).

The first line: "arm-none-eabi-objcopy -v -O ihex "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.hex" "

The second line: "${ProjDirPath}/linker/crc_hex.bat -..\\\\${ConfigName}\\hvpkv31f120m_mc_pmsm_safe.hex -..\\\\$
{ConfigName}\\hvpkv31f120m_mc_pmsm_safe_crc.hex -..\\motor_control\\tools\\srec\\srec_cat $
{BuildArtifactFileBaseName} "

NXP Semiconductors
Safety IEC60730 class B tests

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 21 / 52

https://www.nxp.com/doc/AN12520

Figure 10. Post-build settings in MCUXpresso IDE

• Build the project

• The final post-processed image can be downloaded to the ROM memory using the GUI Flash Tool (choose the
<board>_mc_pmsm_safe_crc.hex file in the Debug/Release folders).

• The "Attach only" option must be set if you want to debug the application.

When you debug your application with the flash test turned on, be careful with using breakpoints. The software
breakpoint usually changes the CRC result and causes a safety error.

 NOTE

NXP Semiconductors
Safety IEC60730 class B tests

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 22 / 52

Chapter 8
Tools
Install the FreeMASTER Run-Time Debugging Tool 3.0 and one of the following IDEs on your PC to run and control the PMSM
application properly:

• IAR Embedded Workbench IDE v8.50.1 or higher

• MCUXpresso v11.2.0

• ARM-MDK - Keil μVision version 5.30

For information on how to build and run the application in your IDE, see the Getting Started with MCUXpresso
SDK document located in the pack_motor_<booard>/docs folder or find the related documentation at MCUXpresso
SDK builder.

 NOTE

8.1 Compiler warnings
Warnings are diagnostic messages that report constructions that are not inherently erroneous and warn about potential runtime,
logic, and performance errors. In some cases, warnings can be suspended and these warnings do not show during the compiling
process. One of such special cases is the “unused function” warning, where the function is implemented in the source code with
its body, but this function is not used. This case occurs when you implement the function as a supporting function for better
usability, but you do not use the function for any special purposes for a while.

The IAR Embedded Workbench IDE suppresses these warnings:

• Pa082 - undefined behavior; the order of volatile accesses is not defined in this statement.

• Pa050 - non-native end of line sequence detected.

The Arm-MDK Keil μVision IDE suppresses these warnings:

• 6314 - No section matches pattern xxx.o (yy).

By default, there are no other warnings shown during the compiling process.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 23 / 52

https://www.nxp.com/freemaster
https://www.iar.com/iar-embedded-workbench/
https://www.nxp.com/mcuxpresso
http://www2.keil.com/mdk5/
https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome

Chapter 9
Remote control using FreeMASTER
This section provides information about the tools and recommended control procedures of the sensorless PMSM Field-Oriented
Control (FOC) application using FreeMASTER. The application contains the embedded-side driver of the FreeMASTER real-time
debug monitor and data visualization tool for communication with the PC. The FreeMASTER supports non-intrusive monitoring,
as well as the modification of target variables in real time, which is very useful for the algorithm tuning. Besides the target-side
driver, the FreeMASTER tool requires the installation of the PC application as well. You can download FreeMASTER 3.0 at
www.nxp.com/freemaster. Based on your package, you can run the FreeMASTER application by double-clicking the
pmsm_safe.pmp file in the pack_pmsm_safe_hvpkv11/middleware/motor_control/freemaster folder or the pmsm_safe_mid.pmp
file in the pack_pmsm_safe_hvpkv31/middleware/motor_control/freemaster folder. When the FreeMASTER application starts,
the user interface environment is created automatically.

9.1 Establishing FreeMASTER communication
The remote operation is provided by FreeMASTER via the USB interface. Perform the following steps to control the MCU
application using FreeMASTER:

1. Download the project from your chosen IDE to the MCU and run it.

2. Open the FreeMASTER file pmsm_safe.pmp (pmsm_safe_mid.pmp for the HVP-KV31F120M board). The pmsm_safe
project uses the TSA by default, so it is not necessary to select any symbol file in FreeMASTER.

3. Click the "Start communication" button (the green “GO” button in the top left-hand corner) to establish the communication.

Figure 11. Green “GO” button in top left-hand corner

4. If the communication is established successfully, the FreeMASTER communication status in the bottom right-hand corner
changes from “Not connected” to “RS232 UART Communication; COMxx; speed=19200”. Otherwise, the FreeMASTER
warning popup window appears.

Figure 12. FreeMASTER—communication is established successfully

5. Control the MCU application directly by writing to the selected FreeMASTER variable in the variable watch window.

6. If you rebuild and download a new code to the target, reload the symbol file (Ctrl + M).

If the communication is not established successfully, perform the following steps:

1. Go to the “Project → Options → Comm” tab and make sure that a correct RS232 port is selected and the communication
speed is set to 19200 bps.

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 24 / 52

http://www.nxp.com/freemaster

Figure 13. FreeMASTER communication setup window

Make sure to supply your development board with a sufficient energy source. Sometimes the PC USB port is not sufficient to
supply the development board.

9.2 FreeMASTER interface
This section descibes the FreeMASTER interface used for application control. The attached FreeMASTER page does not offer
any tools for the algorithm (controller, observer, ramp, and so on) parameter calculation. This means that all motor-control
parameters accessible from FreeMASTER must be tuned manually. You can use the non-safety pmsm_snsless application
which features the MCAT (Motor Control Application Tuning) tool (pack_motor_<booard>/boards/hvpkvxxx/demo_apps/
mc_pmsm/pmsm_snsless). See the RTCESL user's guides at www.nxp.com/rtcesl for more detailed information about the
motor-control algorithm parameters calculation.

FreeMASTER layout

When FreeMASTER successfuly connects to the target, the "PMSM FOC Sensorless" page appears. The default FreeMASTER
layout is shown in Figure 14 and it consists of the following windows:

• The "Welcome" page contains all essential information about the reference design. The debug "Console" window that shows
logs from the program flow is at the right-hand side of the "Welcome" page. The "Console" window can be turned on and off
using the nearby button.

• The "Project Tree" window is at the left-hand side, where various sub-blocks, scopes, and recorders can be selected. The
individual sub-blocks are described in the following sections.

• The "Variable Watch" window at the bottom is used for editing and visualization of selected FreeMASTER and MCU variables.

• The content of the "Variable Watch" window varies according to the selected sub-block in the "Project Tree" window. Most
variables are color-coded and grouped by their prefix (see the "Welcome" page for more details).

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 25 / 52

http://www.nxp.com/rtcesl

Figure 14. Default FreeMASTER layout

PMSM FOC Sensorless sub-block

Figure 15 shows the "Variable Watch" window content of the "PMSM FOC Sensorless" root item in the "Project Tree" window.
Besides the set of basic control variables, it also contains application information.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 26 / 52

Figure 15. FreeMASTER PMSM FOC Sensorless sub-block

MCU Safety Diagnostics sub-block

The actual status of safety tests is in the "Variable Watch" window of the "MCU Safety Diagnostics" sub-block (see Figure 16).

This section is only informative and useful in specific cases where the safety error violation does not lead to a loss
of communication between FreeMASTER and MCU.

 NOTE

Some variables (for example FS: Duration FLASH Test) are available only in the debug configuration of the
example application.

 NOTE

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 27 / 52

Figure 16. FreeMASTER MCU Safety Diagnostics sub-block

Motor-Control sub-block

The "Motor-Control" sub-block groups motor-control-related scopes, recorders, and "Variable Watch" window sets based on the
affiliation to the measurement (Meas), estimation (EST), diagnostics (DIAG), control (FOC), and actuator (ACT) parts of the motor-
control software. See Figure 17 for the description of the root "Variable Watch" sub-block.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 28 / 52

Figure 17. FreeMASTER Motor-Control sub-block

Measure (Meas) sub-block

All the ADC measurements are in the "Variable Watch" window of the "Measure (Meas)" sub-block (see Figure 18). The
measurement filters can be configured here as well.

Figure 18. FreeMASTER Measure sub-block

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 29 / 52

Estimate (EST) sub-block

All the rotor position and speed estimation algorithms can be configured in the "Variable Watch" window of the "Estimate (EST)"
sub-block (see Figure 19). Multiple algorithms are implemented, each used in the given ALIGN, LOSPD, MISPD, and HISPD
state-machine states (matches the zero-, low-, medium-, and high-speed regions).

Figure 19. FreeMASTER Estimate sub-block

Diagnose Faults (DIAG) sub-block

The motor-control-related fault diagnostics can be configured in the "Variable Watch" window of the "Diagnose Faults (DIAG)"
sub-block (see Figure 20).

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 30 / 52

Figure 20. FreeMASTER Diagnose Faults sub-block

Control (FOC) sub-block

The control part of the motor-control software can be visualized and configured in the "Variable Watch" window of the "Control
(FOC)" sub-block (see Figure 21). Multiple algorithms are implemented and used based on the state-machine state and the
control mode selected (see Motor-control modes).

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 31 / 52

Figure 21. FreeMASTER Control sub-block

Open-Loop Control sub-block

Besides the default Field-Oriented Control (FOC), which allows for full decoupled speed and torque control, other and simpler
control modes are implemented as well (scalar control, open-loop current control, and so on) to allow for easier debugging and
tuning. See Motor-control modes for more information. To control and configure these algorithms, see the "Variable Watch"
window of the "Open-Loop Control" sub-block (shown in Figure 22).

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 32 / 52

Figure 22. FreeMASTER Open-Loop Control sub-block

PWM Generation (ACT) sub-block

All the PWM generation (actuator) variables are in the "Variable Watch" window of the "PWM Generation (ACT)" sub-block (see
Figure 23).

Figure 23. FreeMASTER PWM Generation sub-block

Motor Identification (MID) sub-block

For detailed information about the "Motor Identification (MID)" sub-block, see Motor Identification (MID).

9.3 Motor-control modes
The application provides six control modes. The control mode selection is done via the APP Control Mode variable. The application
must be in the STOP state (APP MC.SM State value) when the control mode is being changed.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 33 / 52

Speed FOC control mode

The Speed FOC control mode engages both current controllers and the speed controller. The position feedback is closed and
the FOC position and speed are estimated by the BEMF and Tracking observers. The Speed FOC control scheme is depicted
in Figure 25. To enable the Speed FOC control, perform the following steps (see also Figure 24):

1. Stop the MC state-machine (APP Command = STOP).

2. Select the Speed FOC (APP Control Mode = CL_SPEED_FOC).

3. Set the required speed (set the required rotor speed value in the APP Cmd Speed FOC variable).

4. Start the MC state-machine (APP Command = RUN).

Figure 24. Speed FOC control mode variables

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 34 / 52

Figure 25. Speed FOC control mode block diagram

Current FOC control mode

The Current FOC control mode engages only the current controllers. The position feedback is closed, so the FOC position and
speed are estimated by the BEMF and Tracking observers. The Current FOC can be used for torque control or if the user has
not tuned the speed controller yet. The Current FOC control scheme is shown in Figure 27. To enable the Current FOC control,
perform the following steps (see also Figure 26):

1. Stop the MC state-machine (APP Command = STOP).

2. Select "Current FOC" (APP Control Mode = CL_CURRENT_FOC).

3. Set the required DQ currents (set the required value in the APP Cmd Curr Id and APP Cmd Curr Iq variables).

4. Start the MC state-machine (APP Command = RUN).

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 35 / 52

Figure 26. Current FOC control mode variables

Figure 27. Current FOC control mode block diagram

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 36 / 52

Scalar Control mode

The Scalar Control mode requires only few parameters to be configured. It is a very simple method useful for application tuning
and debugging. The Scalar Control mode block diagram is shown in Figure 28. A rotating magnetic field is generated by the
voltage vector, where amplitude and rotating frequency are proportional via the V/Hz coefficient (CTRL OL: V/HZ Scalar Gain
variable). The voltage vector position is obtained via the sum of integration of the required frequency APP Cmd Freq and the
static position bias APP Cmd PosEl. The BEMF and Tracking observers are still running in the background, so the Scalar Control
mode can be used to debug them. To enable the Scalar Control mode, perform the following steps (see also Figure 28):

1. Stop the MC state-machine (APP Command = STOP).

2. Select the scalar control (APP Control Mode = OL_SCALAR).

3. Set the required frequency (set the required value in the APP Cmd Freq variable).

4. Start the MC state-machine (APP Command = RUN).

Figure 28. Scalar Control mode variables

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 37 / 52

Figure 29. Scalar Control mode block diagram

Open Loop Current control mode variables

The current controllers are engaged in this mode. Set the required amplitude of DQ currents, the current vector rotation frequency,
and the position bias. The BEMF and Tracking observers are running in the background, so this control mode can be used for
the parameter tuning of observers and current controllers. The Open Loop Current control scheme is shown in Figure 31. To
enable the Open Loop Current control, perform the following steps (see also Figure 30):

1. Stop the MC state-machine (APP Command = STOP).

2. Select the scalar control (APP Control Mode = OL_CURRENT).

3. Set the required amplitude of the DQ currents (APP Cmd Curr Id and APP Cmd Curr Iq variables), the current vector open-
loop frequency (APP Cmd Freq variable), and the position bias (APP Cmd PosEl variable).

4. Start the MC state-machine (APP Command = RUN).

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 38 / 52

Figure 30. Open Loop Current control selection

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 39 / 52

Figure 31. Open Loop Current control mode block diagram

Open Loop Voltage control mode
The current controllers are disabled in this mode and the stator voltage is controlled directly. Set the required amplitude of DQ
voltages, the voltage vector rotation frequency, and the position bias. The BEMF and Tracking observers are running in the
background, so this control mode can be used for parameter tuning of observers and basic debugging for the PWM
generation. The Open Loop Voltage control scheme is shown in Figure 33. To enable the Open Loop Voltage control, perform
the following steps (see also Figure 32):

1. Stop the MC state machine (APP Command = STOP).

2. Select the scalar control (APP Control Mode = OL_VOLTAGE).

3. Set the required amplitude of DQ voltages (APP Cmd Volt Ud and APP Cmd Volt Uq variables), the voltage vector
open-loop frequency (APP Cmd Freq variable), and the position bias (APP Cmd PosEl variable).

4. Start the MC state machine (APP Command = RUN).

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 40 / 52

Figure 32. Open Loop Voltage control mode variables

Figure 33. Open Loop Voltage control mode block diagram

Open Loop MID control mode

This control mode is designed for MID operation and it is not intended for user tuning or debugging purposes. The superior MID
state machine uses this control mode to actuate during motor identification. MID is more complex and Motor Identification (MID)
guides you on how to run MID.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 41 / 52

9.4 Motor Identification (MID)
Because the model-based control methods of the PMSM drives provide high performance (dynamic response, efficiency, and so
on), obtaining an accurate model of a motor is an important part of the drive design and control. For the implemented FOC
algorithms, it is necessary to know the value of the stator resistance Rs, direct inductance Ld, quadrature inductance Lq, and
BEMF constant Ke. Unless the default PMSM motor described in Hardware setup is used, the motor parameter identification is
the first step in the application tuning. This section shows how to identify user motor parameters using MID. MID is written in
floating-point arithmetics, so it is available for the HVP-KV31F120M application example only. Each MID algorithm is described
in detail in MID algorithms. MID is controlled via the FreeMASTER "Motor Identification (MID)" page shown in Figure 34.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 42 / 52

Figure 34. MID FreeMASTER control

Motor parameter identification using MID

The whole MID is controlled via the FreeMASTER "Variable Watch" "Motor Identification (MID) sub-block shown in Figure 34.
The motor parameter identification is as follows:

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 43 / 52

1. Set the APP Command variable to STOP.

2. Select the OL_MID value in the APP Control Mode variable to switch to the motor-identification mode.

3. Select the measurement type you want to perform via the MID: Measurement Type variable:

• HW_CALIB - Power stage hardware characterization.

• PP_ASSIST - Pole-pair identification assistant.

• EL_PARAMS - Electrical parameters measurement.

• MECH_PARAMS - Mechanical parameters measurement.

4. In case of EL_PARAMS, schedule the desired electrical parameters, which should be measured using the MID: Schedule
Rs, MID: Schedule Ld, MID: Schedule Lq, and MID: Schedule Ke variables.

5. Insert the known motor parameters via the MID: Known Param set of variables. All parameters with a non-zero known
value are not measured again and they are used to infer other parameters (if necessary).

6. Set the measurement configuration paramers in the MID: Config set of variables.

7. Start the measurement by setting APP Command to RUN.

8. Observe the MID Start Result variable for the MID measurement plan validity (see Table 7) and the actual MID: State,
MID: Faults (see Table 5), and MID: Warnings (see Table 6) variables.

9. When the measurement is successfully finished, the measured motor parameters are in the MID: Measured set of variables.

MID faults and warnings

The MID faults and warnings are saved in the format of masks in the MID: Faults and MID: Warnings variables. Faults and
warnings are cleared by automatically starting a new measurement. If a MID fault appears, the measurement process
immeadiatelly stops and brings the MID state machine safely to the STOP state. If a MID warning appears, the measurement
process continues. Warnings report minor issues during the measurement process. See Table 5 and Table 6 for more details on
individual faults and warnings.

Table 5. Measurement faults

Fault mask Fault description Fault reason Troubleshooting

b#0010 Motor is not connected. Is > 50 mA cannot be reached
with the available DC-bus

voltage.

Check that the motor is
connected.

b#0100 Rs is too high for calibration. The calibration cannot be
done with the available DC-

bus voltage.

Use a motor with a lower Rs
for the power stage

characterization.

b#1000 Mechanical measurement
timeout.

Some part of the mechanical
measurement (acceleartion,
deceleration) took too long
and exceeded 10 seconds.

Raise the MID: Config Mech
Iq Accelerate or lower the

MID: Config Mech Iq
Decelerate.

Table 6. Measurement warnings

Warning mask Warning description Warning reason Troubleshooting

b#00001 The measurement DC current
Is could not be reached.

The user-defined MID: Config
Rs Id Meas was not reached,

so the measurement was
taken with a lower Is DC

current.

Raise the DC-bus voltage to
reach the Is DC current or

lower the MID: Config Rs Id
Meas to avoid this warning.

Table continues on the next page...

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 44 / 52

Table 6. Measurement warnings (continued)

Warning mask Warning description Warning reason Troubleshooting

b#00010 The AC current amplitude
measurement Is could not be

reached.

The user-defined MID: Config
Ls Id Meas was not reached,

so the measurement was
taken with a lower Is AC

current.

Raise the DC-bus voltage or
lower the Fmin to reach the Is
AC or lower the Is AC current

to avoid this warning.

b#00100 Rs is out of range. The measured Rs is negative.
The characterization data

may be wrong.

Repeat the hardware
characterization process.

b#01000 Ls is out of range. The measured Ls is negative. Repeat the Ls identification
with different MID: Config Ls

parameters.

b#10000 Ke is out of range. The measured Ke is negative. Visualy check whether the
motor was spinning properly
during the Ke measurement.

The MID measurement plan is checked after starting the measurement process. If a necessary parameter is not scheduled for
the measurement and not set manually, the MID is not started and an error is reported via the MID Start Result variable.

Table 7. MID Start Result variable

MID Start Result mask Description Troubleshooting

b#00001 The Rs value is missing. Schedule Rs for measurement or enter its
value manually.

b#00010 The Ld value is missing. Schedule Ld for measurement or enter its
value manually.

b#00100 The Lq value is missing. Schedule Lq for measurement or enter its
value manually.

b#01000 The Ke value is missing. Schedule Ke for measurement or enter its
value manually.

b#10000 The Pp value is missing. Enter the Pp value manually.

9.5 MID algorithms
This section describes how each MID algorithm works.

Power stage hardware characterization

Each inverter introduces the total error voltage Uerror, which is caused by the dead time, current clamping effect, and transistor
voltage drop. The actual inverter output voltage is lower than the voltage required by the Uerror. The total error voltage Uerror
depends on the actual phase current is and this dependency is measured during the power stage characterization process. An
example of the inverter error characteristic is shown in Figure 35. To perform the characterization, a motor with a known stator
resistance MID: Config PwrStg Rs Calib must be connected and its known value must be set. The calibration range (range of the
stator current is, in which the measurement of Uerror is performed) can be set manually in MID: Config PwrStg Id Calib. The
characterization gradually performs 65 is current steps (from is = -MID: Config PwrStg Id Calib to is = +MID: Config PwrStg Id
Calib) with each taking 300 ms, so the characterization process takes about 20 seconds and the motor must withstand this load.
The acquired characterization data is saved to an array and used later for the phase voltage correction during the Rs measurement
process. The following Rs measurement can be done with the maximum MID: Config PwrStg Id Calib current. It is recommended
to use a motor with the Rs ranging from 1 Ω to 30 Ω for characterization purposes.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 45 / 52

Figure 35. Example power stage characteristic

Stator resistance measurement

The stator resistance Rs is measured using the DC current MID: Config Rs Id Meas value, which is applied to the motor for
1200 ms. The corresponding DC voltage UDC is found using the current controllers. The current controller parameters are selected
conservatively to ensure stability. The stator resistance Rs is calculated using the Ohm’s law as follows:

Stator inductance

The stator inductance Ls is measured with an AC signal. Sinusoidal measurement voltage is applied to the motor. The frequency
and amplitude of the sinusoidal voltage are obtained before the actual measurement, during the tuning process. The tuning
process begins with a 0 V amplitude and the MID: Config Ls Freq Start frequency, which are applied to the motor. The amplitude
is gradually increased by the MID: Config Ls Ud Increment step up to a half of the DC-bus voltage (DCbus/2), until the MID:
Config Ls Id Meas amplitude is reached. If MID: Config Ls Id Meas is not reached even with DCbus/2 and MID: Config Ls Freq
Start, the frequency of the measuring signal is gradually decreased by MID: Config Ls Freq Decrement down to MID: Config Ls
Freq Min again, until MID: Config Ls Id Meas is reached. If MID: Config Ls Id Meas is still not reached, the measurement continues
with DCbus/2 and MID: Config Ls Freq Min. The tuning process is shown in Figure 36.

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 46 / 52

Figure 36. Tuning of Ls measuring signal

When the tuning process is complete, the sinusoidal measurement signal (with the amplitude and frequency obtained during the
tuning process) is applied to the motor. The total impedance of the RL circuit is then calculated from the voltage and current
amplitudes and Ls is calculated from the total impedance of the RL circuit.

The direct inductance Ld and quadrature inductance Lq measurements are done in the same way as Ls. Before the Ld and Lq
measurement is made, DC current is applied to the D-axis and the rotor is aligned to zero electrical degrees. For the Ld
measurement, the sinusoidal voltage is applied in the D-axis. For the Lq measurement, the sinusoidal voltage is applied in the
Q-axis.

BEMF constant measurement

Before the actual BEMF constant Ke measurement, the BEMF and Tracking observers parameters are recalculated from the
previously measured or manually set Rs, Ld, and Lq parameters. To measure Ke, the motor must spin. During the measurement,
the motor is open-loop driven at the user-defined frequency MID: Config Ke Freq El. Required with the current is controlled to
the MID: Config Ke Id Required value. When the motor reaches the required speed, the BEMF voltages obtained by the BEMF
observer are filtered and Ke is calculated:

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 47 / 52

When Ke is being measured, you have to visually check to determine whether the motor was spinning properly. If the motor is
not spinning as expected, perform these steps:

• Increase MID: Config Ke Id Required to produce higher torque when spinning during the open loop.

• Decrease MID: Config Ke Freq El. Required to decrease the required speed for the Ke measurement.

Number of pole-pair assistant

The number of pole-pairs Pp cannot be measured without a position sensor. However, there is a simple assistant called
PP_ASSIST, which can help you to determine the number of pole-pairs Pp. When PP_ASSIST is started, it performs one electrical
revolution and stops for a few seconds. This repeats until the PP_ASSIST is not manually stopped. Because the Pp value is the
ratio between the electrical and mechanical speeds, it can be determined as the number of observed rotor stops per one
mechanical revolution. It is recommended not to count the rotor stops during the first mechanical revolution because the alignment
occurs there and it might affect the number of observed stops. During the Pp measurement, the current control loop is enabled
and the Id current is controlled to MID: Config Pp Id Meas. The electrical position is generated by integrating the open-loop
frequency MID: Config Pp Freq El. Required. If the rotor does not move after the start of the PP_ASSIST, stop the assistant,
increase MID: Config Pp Id Meas, and restart the process.

Mechanical parameters measurement

The moment of inertia J and the viscous friction B can be identified using a test with the known generated torque T and the loading
torque Tload.

The ωm character in the equation is the mechanical speed. The mechanical parameter identification algorithm uses the torque
profile (see Figure 37). The loading torque is (for simplicity reasons) said to be zero during the whole measurement. Only the
friction and the motor-generated torques are considered. During the first phase of measurement, the constant torque Tmeas is
applied and the motor accelerates to 50 % of its nominal speed in time t1. These integrals are calculated during the period from
t0 (the speed estimation starts to be accurate enough) to t1:

During the second phase, the rotor decelerates freely with no generated torque, only by friction. This enables you to simply
measure the mechanical time constant τm=J/B as the time in which the rotor decelerates from its original value by 63 %. The final
mechanical parameter estimation can be calculated using integration as follows:

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 48 / 52

The moment of inertia is as follows:

The viscous friction is then derived from the relation between the mechanical time constant and the moment of inertia.

Figure 37. Mechanical parameter identification torque and speed profile

NXP Semiconductors
Remote control using FreeMASTER

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 49 / 52

Chapter 10
References
The following references are available on www.nxp.com:

1. MCUXpresso SDK 3-Phase PMSM Control (KV) (document 3PPMSMCKVUG)

2. IEC60730B Safety Library Example User's Guide

3. Safety Class B with PMSM Sensorless Drive (document AN5321)

4. Calculating Post-Build CRC in Arm® Keil® (document AN12520)

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 50 / 52

http://www.nxp.com
https://www.nxp.com/doc/3PPMSMCKVUG
https://www.nxp.com/doc/AN5321
https://www.nxp.com/doc/AN12520

Chapter 11
Useful links

1. 3-Phase PMSM Control home page

2. IEC 60730 Safety Standard for Household Appliances

3. RTCESL - Real-Time Control Embedded Software Motor Control and Power Conversion Libraries

4. MCUXpresso IDE - Importing MCUXpresso SDK

5. MCUXpresso SDK Builder - SDK examples in several IDEs

NXP Semiconductors

MCUXpresso SDK 3-Phase PMSM Control with IEC60730 Safety, Rev. 0, 06/2020
User's Guide 51 / 52

http://www.nxp.com/motorcontrol_pmsm
https://www.nxp.com/products/product-information/iec-60730-safety-standard-for-household-appliances:APIEC60730
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kv-series-cortex-m4-m0-plus-m7/real-time-control-embedded-software-motor-control-and-power-conversion-libraries:RTCESL
https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK
https://mcuxpresso.nxp.com/en/welcome

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or
all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 06/2020
Document identifier: MCUXSDK3PPMSMCWSUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Supported development boards for Kinetis V
	3 Motor control vs. SDK peripheral drivers
	4 Hardware setup
	4.1 MIGE 60CST-MO1330 motor
	4.2 Running PMSM application on High-Voltage Platform (HVP)
	4.2.1 HVP-MC3PH
	4.2.2 HVP-KV11Z75M daughter card
	4.2.3 HVP-KV31F120M daughter card
	4.2.4 HVP assembling

	5 MCU features and peripheral settings
	5.1 KV1x family
	5.2 KV3x family

	6 Project file and IDE workspace structure
	6.1 PMSM project structure

	7 Safety IEC60730 class B tests
	8 Tools
	8.1 Compiler warnings

	9 Remote control using FreeMASTER
	9.1 Establishing FreeMASTER communication
	9.2 FreeMASTER interface
	9.3 Motor-control modes
	9.4 Motor Identification (MID)
	9.5 MID algorithms

	10 References
	11 Useful links

