
freescale.com

MCF51xx_ACLIB
Rev. 0
04/2009

User Reference Manual

Advanced Control Library

Advanced Control Library, Rev. 0

-2 Freescale Semiconductor

The following revision history table summarizes changes contained in this
document.

Table 0-1. Revision History

Date
Revision

Label
Description

0 Initial release

Advanced Control Library, Rev. 0

Freescale Semiconductor 1-3

Chapter 1 License Agreement

FREESCALE SEMICONDUCTOR SOFTWARE LICENSE AGREEMENT.
This is a legal agreement between you (either as an individual or as an
authorized representative of your employer) and Freescale Semiconductor, Inc.
("Freescale"). It concerns your rights to use this file and any accompanying
written materials (the "Software"). In consideration for Freescale allowing you
to access the Software, you are agreeing to be bound by the terms of this
Agreement. If you do not agree to all of the terms of this Agreement, do not
download the Software. If you change your mind later, stop using the Software
and delete all copies of the Software in your possession or control. Any copies
of the Software that you have already distributed, where permitted, and do not
destroy will continue to be governed by this Agreement. Your prior use will also
continue to be governed by this Agreement.

OBJECT PROVIDED, OBJECT REDISTRIBUTION LICENSE GRANT.
Freescale grants to you, free of charge, the non-exclusive, non-transferable right
(1) to reproduce the Software, (2) to distribute the Software, and (3) to
sublicense to others the right to use the distributed Software. The Software is
provided to you only in object (machine-readable) form. You may exercise the
rights above only with respect to such object form. You may not translate,
reverse engineer, decompile, or disassemble the Software except to the extent
applicable law specifically prohibits such restriction. In addition, you must
prohibit your sublicensees from doing the same. If you violate any of the terms
or restrictions of this Agreement, Freescale may immediately terminate this
Agreement, and require that you stop using and delete all copies of the Software
in your possession or control.

COPYRIGHT. The Software is licensed to you, not sold. Freescale owns the
Software, and United States copyright laws and international treaty provisions
protect the Software. Therefore, you must treat the Software like any other
copyrighted material (e.g. a book or musical recording). You may not use or
copy the Software for any other purpose than what is described in this
Agreement. Except as expressly provided herein, Freescale does not grant to
you any express or implied rights under any Freescale or third-party patents,
copyrights, trademarks, or trade secrets. Additionally, you must reproduce and
apply any copyright or other proprietary rights notices included on or embedded
in the Software to any copies or derivative works made thereof, in whole or in
part, if any.

SUPPORT. Freescale is NOT obligated to provide any support, upgrades or new
releases of the Software. If you wish, you may contact Freescale and report
problems and provide suggestions regarding the Software. Freescale has no
obligation whatsoever to respond in any way to such a problem report or

Advanced Control Library, Rev. 0

1-4 Freescale Semiconductor

suggestion. Freescale may make changes to the Software at any time, without any
obligation to notify or provide updated versions of the Software to you.

NO WARRANTY. TO THE MAXIMUM EXTENT PERMITTED BY LAW,
FREESCALE EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE
SOFTWARE. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. YOU ASSUME THE ENTIRE RISK ARISING OUT
OF THE USE OR PERFORMANCE OF THE SOFTWARE, OR ANY
SYSTEMS YOU DESIGN USING THE SOFTWARE (IF ANY). NOTHING IN
THIS AGREEMENT MAY BE CONSTRUED AS A WARRANTY OR
REPRESENTATION BY FREESCALE THAT THE SOFTWARE OR ANY
DERIVATIVE WORK DEVELOPED WITH OR INCORPORATING THE
SOFTWARE WILL BE FREE FROM INFRINGEMENT OF THE
INTELLECTUAL PROPERTY RIGHTS OF THIRD PARTIES.

INDEMNITY. You agree to fully defend and indemnify Freescale from any and
all claims, liabilities, and costs (including reasonable attorney's fees) related to
(1) your use (including your sublicensee's use, if permitted) of the Software or (2)
your violation of the terms and conditions of this Agreement.

LIMITATION OF LIABILITY. IN NO EVENT WILL FREESCALE BE
LIABLE, WHETHER IN CONTRACT, TORT, OR OTHERWISE, FOR ANY
INCIDENTAL, SPECIAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE
DAMAGES, INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR ANY
LOSS OF USE, LOSS OF TIME, INCONVENIENCE, COMMERCIAL LOSS,
OR LOST PROFITS, SAVINGS, OR REVENUES TO THE FULL EXTENT
SUCH MAY BE DISCLAIMED BY LAW.

COMPLIANCE WITH LAWS; EXPORT RESTRICTIONS. You must use the
Software in accordance with all applicable U.S. laws, regulations and statutes.
You agree that neither you nor your licensees (if any) intend to or will, directly or
indirectly, export or transmit the Software to any country in violation of U.S.
export restrictions.

GOVERNMENT USE. Use of the Software and any corresponding
documentation, if any, is provided with RESTRICTED RIGHTS. Use,
duplication or disclosure by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 or subparagraphs (c)(l) and (2) of the
Commercial Computer Software--Restricted Rights at 48 CFR 52.227-19, as
applicable. Manufacturer is Freescale Semiconductor, Inc., 6501 William
Cannon Drive West, Austin, TX, 78735.

HIGH RISK ACTIVITIES. You acknowledge that the Software is not fault
tolerant and is not designed, manufactured or intended by Freescale for

Advanced Control Library, Rev. 0

Freescale Semiconductor 1-5

incorporation into products intended for use or resale in on-line control
equipment in hazardous, dangerous to life or potentially life-threatening
environments requiring fail-safe performance, such as in the operation of nuclear
facilities, aircraft navigation or communication systems, air traffic control, direct
life support machines or weapons systems, in which the failure of products could
lead directly to death, personal injury or severe physical or environmental damage
("High Risk Activities"). You specifically represent and warrant that you will not
use the Software or any derivative work of the Software for High Risk Activities.

CHOICE OF LAW; VENUE; LIMITATIONS. You agree that the statutes and
laws of the United States and the State of Texas, USA, without regard to conflicts
of laws principles, will apply to all matters relating to this Agreement or the
Software, and you agree that any litigation will be subject to the exclusive
jurisdiction of the state or federal courts in Texas, USA. You agree that regardless
of any statute or law to the contrary, any claim or cause of action arising out of or
related to this Agreement or the Software must be filed within one (1) year after
such claim or cause of action arose or be forever barred.

PRODUCT LABELING. You are not authorized to use any Freescale trademarks,
brand names, or logos.

ENTIRE AGREEMENT. This Agreement constitutes the entire agreement
between you and Freescale regarding the subject matter of this Agreement, and
supersedes all prior communications, negotiations, understandings, agreements
or representations, either written or oral, if any. This Agreement may only be
amended in written form, executed by you and Freescale.

SEVERABILITY. If any provision of this Agreement is held for any reason to be
invalid or unenforceable, then the remaining provisions of this Agreement will be
unimpaired and, unless a modification or replacement of the invalid or
unenforceable provision is further held to deprive you or Freescale of a material
benefit, in which case the Agreement will immediately terminate, the invalid or
unenforceable provision will be replaced with a provision that is valid and
enforceable and that comes closest to the intention underlying the invalid or
unenforceable provision.

NO WAIVER. The waiver by Freescale of any breach of any provision of this
Agreement will not operate or be construed as a waiver of any other or a
subsequent breach of the same or a different provision.

Advanced Control Library, Rev. 0

Freescale Semiconductor 2-6

Chapter 2 INTRODUCTION

2.1 Overview
This reference manual describes Advanced Control Library for MCF51xx
family of microcontrollers. This library contains optimized functions for
ColdFire V1 core. The library is supplied in a binary form, which is unique by
its simplicity to integrate with the user application. For correct functionality of
this library, Motor Control Library (MCLIB) and General Functions Library
(GFLIB) must be installed and included in the application project.

2.2 Supported Compilers
The Advanced Control Library (ACLIB) is written in assembly language with a
C-callable interface. The library was built and tested using the following
compiler:

• CodeWarrior™ Development Studio V6.1 ColdFireV1 AC256 ALPHA
Service Pack

The library is delivered in the ACLIB_MCF51.lib library module. The interfaces
to the algorithms included in this library have been combined into a single
public interface include file, the aclib.h. This was done to reduce the number of
files required for inclusion by the application programs. Refer to the specific
algorithm sections of this document for details on the software application
programming interface (API), defined and functionality provided for the
individual algorithms.

2.3 Installation
If the user wants to fully use this library, the CodeWarrior tools should be
installed prior to the Advanced Control Library. In case that Advanced Control
Library tool is installed while CodeWarrior is not present, users can only browse
the installed software package, but will not be able to build, download, and run
the code. The installation itself consists of copying the required files to
the destination hard drive, checking the presence of CodeWarrior, and creating
the shortcut under the Start->Programs menu.

Each Advanced Control Library release is installed in its own new folder, named
ACLIB_MCF51_rX.X, where X.X denotes the actual release number. This way
of library installation allows the users to maintain older releases and projects
and gives them a free choice to select the active library release.

Library Integration

Advanced Control Library, Rev. 0

Freescale Semiconductor 2-7

To start the installation process, follow the following steps:

1. Execute the ACLIB_MCF51_rXX.exe file.

2. Follow the Advanced Control Library software installation instructions
on your screen.

2.4 Library Integration
The Advanced Control Library is added into a new CodeWarrior project by taking
the following steps:

1. Create a new empty project.

2. Create ACLIB group in your new open project. Note that this step is not
mandatory, it is mentioned here just for the purpose of maintaining file
consistency in the CodeWarrior project window. In the CodeWarrior
menu, choose Project > Create Group..., type ACLIB into the dialog
window that pops up, and click <OK>.

3. Refer the ACLIB_MCF51.lib file in the project window. This can be
achieved by dragging the library file from the proper library subfolder and
dropping it into the ACLIB group in the CodeWarrior project window.
This step will automatically add the ACLIB path into the project access
paths, such as the user can take advantage of the library functions to
achieve flawless project compilation and linking.

4. It is similar with the reference file aclib.h. This file can be dragged from
the proper library subfolder and dropped into the ACLIB group in the
CodeWarrior project window.

5. The following program line must be added into the user-application
source code in order to use the library functions.
#include “aclib.h”

6. Since the Advanced Control Library is not stand-alone, General
Functions Library (GFLIB) and Motor Control Library (MCLIB) must be
installed and included in the application project prior to ACLIB.

7. Create GFLIB group in your new open project. Note that this step is not
mandatory, it is mentioned here just for the purpose of maintaining file
consistency in the CodeWarrior project window. In the CodeWarrior
menu, choose Project > Create Group..., type GFLIB into the dialog
window that pops up, and click <OK>.

8. Refer the GFLIB_MCF51.lib file in the project window. This can be done
by dragging the library file from the proper library subfolder and dropping
it into the GFLIB group in the CodeWarrior project window. This step will
automatically add the GFLIB path into the project access paths, such as
the user can take advantage of the library functions to achieve flawless
project compilation and linking.

API Definition

Advanced Control Library, Rev. 0

2-8 Freescale Semiconductor

9. It is similar with the reference file gflib.h in the project window. This can
be achieved by dragging the file from the proper library subfolder and
dropping it into the GFLIB group in the CodeWarrior project window.

10. Create MCLIB group in your new open project. Note that this step is not
mandatory, it is mentioned here just for the purpose of maintaining file
consistency in the CodeWarrior project window. In the CodeWarrior
menu, choose Project > Create Group..., type MCLIB into the dialog
window that pops up, and click <OK>.

11. Refer the MCLIB_MCF51.lib file in the project window. This can be done
by dragging the library file from the proper library subfolder and dropping
it into the MCLIB group in the CodeWarrior project window. This step
will automatically add the MCLIB path into the project access paths, such
as the user can take the advantage of the library functions to achieve
flawless project compilation and linking.

12. It is similar with the reference file mclib.h in the project window. This can
be achieved by dragging the file from proper library subfolder and
dropping it into the MCLIB group in the CodeWarrior project window.

13. The following program lines must be added into the user application
source code in order to use the library functions.
#include “gflib.h”
#include “mclib.h”

2.5 API Definition
The description of each function described in this Advanced Control Library user
reference manual consists of a number of subsections:

Synopsis

This subsection gives the header files that should be included within
a source file that references the function or macro. It also shows an
appropriate declaration for the function or for a function that can be
substituted by a macro. This declaration is not included in your
program; only the header file(s) should be included.

Arguments

This optional subsection describes input arguments to a function or
macro.

Description

This subsection is a description of the function or macro. It explains
algorithms being used by functions or macros.

Return
This optional subsection describes the return value (if any) of the
function or macro.

Data Types

Advanced Control Library, Rev. 0

Freescale Semiconductor 2-9

Range Issues

This optional subsection specifies the ranges of input variables.

Special Issues

This optional subsection specifies special assumptions that are
mandatory for correct function calculation; for example saturation,
rounding, and so on.

Implementation

This optional subsection specifies, whether a call of the function
generates a library function call or a macro expansion.
This subsection also consists of one or more examples of the use of
the function. The examples are often fragments of code (not
completed programs) for illustration purposes.

See Also
This optional subsection provides a list of related functions or macros.

Performance

This section specifies the actual requirements of the function or macro
in terms of required code memory, data memory, and number of clock
cycles to execute.

2.6 Data Types
The 32-bit core supports two types of two-complement data formats:

• Signed integer

• Unsigned integer

The signed and unsigned integer data types are useful for general-purpose
computation; they are familiar with the microprocessor and microcontroller
programmers. 2

Nevertheless, two other types of two-complement data formats are used in the
library algorithms with a little software support:

• Signed fractional

• Unsigned fractional

Fractional data types allow powerful numeric and digital-signal-processing
algorithms to be implemented.

2.6.1 Signed Integer (SI)

This format is used for processing data as integers. In this format, the N-bit
operand is represented using the N.0 format (N integer bits). The signed integer
numbers lie in the following range:

Eqn. 2-12 N 1–[] SI 2 N 1–[] 1–[]≤≤–

Data Types

Advanced Control Library, Rev. 0

2-10 Freescale Semiconductor

This data format is available for bytes, words, and longs. The most negative,
signed word that can be represented is –32,768 ($8000), and the most negative,
signed long word is –2,147,483,648 ($80000000).

The most positive, signed word is 32,767 ($7FFF), and the most positive signed
long word is 2,147,483,647 ($7FFFFFFF).

2.6.2 Unsigned Integer (UI)

The unsigned integer numbers are positive only, and they have nearly twice the
magnitude of a signed number of the same size. The unsigned integer numbers lie
in the following range:

Eqn. 2-2

The binary word is interpreted as having a binary point immediately to the right
of the integer’s least significant bit. This data format is available for bytes, words,
and long words. The most positive, 16-bit, unsigned integer is 65,535 ($FFFF),
and the most positive, 32-bit, unsigned integer is 4,294,967,295 ($FFFFFFFF).
The smallest unsigned integer number is zero ($0000), regardless of size.

2.6.3 Signed Fractional (SF)

In this format, the N-bit operand is represented using the 1.[N–1] format (one sign
bit, N–1 fractional bits). The signed fractional numbers lie in the following range:

Eqn. 2-3

This data format is available for words and long words. For both word and
long-word signed fractions, the most negative number that can be represented
is –1.0; its internal representation is $8000 (word) or $80000000 (long word).
The most positive word is $7FFF (1.0 – 2–15); its most positive long word
is $7FFFFFFF (1.0 – 2–31).

2.6.4 Unsigned Fractional (UF)

The unsigned fractional numbers can be positive only, and they have nearly twice
the magnitude of a signed number with the same number of bits. The unsigned
fractional numbers lie in the following range:

Eqn. 2-4

The binary word is interpreted as having a binary point after the MSB. This data
format is available for words and longs. The most positive, 16-bit, unsigned
number is $FFFF, or {1.0 + (1.0 – 2–[N–1])} = 1.99997. The smallest unsigned
fractional number is zero ($0000).

0 UI 2 N 1–[] 1–[]≤≤

1.0 SF 1.0 2 N 1–[]––≤≤–

0.0 UF 2.0 2 N 1–[]––≤≤

User Common Types

Advanced Control Library, Rev. 0

Freescale Semiconductor 2-11

2.7 User Common Types

Table 2-1. User-Defined Typedefs in MCF51_types.h

Mnemonics Size — bits Description

Word8 8 To represent 8-bit signed variable/value.

UWord8 8 To represent 16-bit unsigned variable/value.

Word16 16 To represent 16-bit signed variable/value.

UWord16 16 To represent 16-bit unsigned variable/value.

Word32 32 To represent 32-bit signed variable/value.

UWord32 32 To represent 16-bit unsigned variable/value.

Int8 8 To represent 8-bit signed variable/value.

UInt8 8 To represent 16-bit unsigned variable/value.

Int16 16 To represent 16-bit signed variable/value.

UInt16 16 To represent 16-bit unsigned variable/value.

Int32 32 To represent 32-bit signed variable/value.

UInt32 32 To represent 16-bit unsigned variable/value.

Frac16 16 To represent 16-bit signed variable/value.

Frac32 32 To represent 32-bit signed variable/value.

NULL constant Represents NULL pointer.

bool 16 Boolean variable.

false constant Represents false value.

true constant Represents true value.

FRAC16() macro
Transforms float value from <–1, 1) range into fractional
representation <–32768, 32767>.

FRAC32() macro
Transforms float value from <–1, 1) range into fractional
representation <–2147483648, 2147483648>.

Advanced Control Library, Rev. 0

Freescale Semiconductor 2-12

2.8 Special Issues
All functions in the Advanced Control Library are implemented without storing
any of the volatile registers (D0, D1, D2, A0, A1) used by the respective routine.
Only non-volatile registers (D3, D4, D5, D6, D7, A2, A3, A4, A5) are saved by
pushing the registers on the stack. Therefore, if the particular registers initialized
before the library function call are to be used after the function call, it is necessary
to save them manually.

Table 2-2. User-Defined Typedefs in mclib_types.h

Name Structure Members Description

MCLIB_3_COOR_SYST_T
Frac16 f16A
Frac16 f16B
Frac16 f16C

three phase system

MCLIB_2_COOR_SYST_T
Frac16 f16A
Frac16 f16B

two phase system

MCLIB_2_COOR_SYST_ALPHA_BETA_T
Frac16 f16Alpha
Frac16 f16Beta

two phase system — alpha/beta

MCLIB_2_COOR_SYST_D_Q_T
Frac16 f16D
Frac16 f16Q

two phase system — generic DQ

MCLIB_ANGLE_T
Frac16 f16Sin
Frac16 f16Cos

two phase system — sine and
cosine components

API Summary

Advanced Control Library, Rev. 0

Freescale Semiconductor 3-13

Chapter 3 FUNCTION API

3.1 API Summary
Table 3-1. API Functions Summary

Name Arguments Output Description

ACLIB_AngleTrackObsrv
MCLIB_ANGLE_T *pudtSinCos
ACLIB_ANGLE_TRACK_OBSRV_T *pudtCtrl

void

This function
calculates the
algorithm of velocity
and position-tracking
observer.

ACLIB_PMSMBemfObsrvAB

MCLIB_2_COOR_SYST_ALPHA_BETA_T
*pudtCurrentAlphaBeta
MCLIB_2_COOR_SYST_ALPHA_BETA_T
*pudtVoltageAlphaBeta
Frac16 f16Speed
ACLIB_BEMF_OBSRV_AB_T * const pudtCtrl

void

This function
calculates the
algorithms of finding
permanent-magnet
axis.

ACLIB_AngleTrackObsrv

Advanced Control Library, Rev. 0

3-14 Freescale Semiconductor

3.2 ACLIB_AngleTrackObsrv
The function calculates angle-tracking observer for determination of angular
speed and position of input functional signal. 3

3.2.1 Synopsis
#include”aclib.h”
Frac16 ACLIB_AngleTrackObsrv(MCLIB_ANGLE_T *pudt16SinCos,
ACLIB_ANGLE_TRACK_OBSRV_T * pudtCtrl)

3.2.2 Arguments

Table 3-2. Function Arguments

Name
In/
Out

Format
Valid

Range
Description

*pudtSinCos in
MCLIB_
ANGLE_

T
N/A

Input signal of sine, cosine components to be
filtered.

*pudtCtrl in/out

ACLIB_A
NGLE_T
RACK_O
BSRV_T

N/A

Pointer to an angle-tracking observer
structure
ACLIB_ANGLE_TRACK_OBSRV_T, which
contains algorithm coefficients.

ACLIB_AngleTrackObsrv

Advanced Control Library, Rev. 0

Freescale Semiconductor 3-15

3.2.3 Availability

This library module is available in the C-callable interface assembly format.

This library module is targeted at MCF51xx platform.

Table 3-3. User-Type Definitions

Typedef Name
In/
Out

Format
Valid

Range
Description

MCLIB_ANGLE_T

f16Sin In SF16
$8000...
$7FFF

Sine component to
be estimated.

f16Cos In SF16
$8000...
$7FFF

Cosine component
to be estimated.

ACLIB_ANGLE_TRA
CK_OBSRV_T

f32Speed in/out SF32

0x80000
000...

0x7FFFF
FFF

Estimated speed as
output of the first
numerical
integrator.

f32A2 in/out SF32

0x80000
000...

0x7FFFF
FFF

Output of the
second numerical
integrator.

f16Theta in/out SF16
$8000...
$7FFF

Estimated position.

f16SinEstim in SF16
$8000...
$7FFF

Sine signal to be
estimated.

f16CosEstim in SF16
$8000...
$7FFF

Cosine signal to be
estimated.

f16K1Scaled in SF16
$8000...
$7FFF

K1 coefficient
scaled to fractional
range.

i16K1Shift in SI16 –F...F Scaling shift.

f16K2Scaled in SF16
$8000...
$7FFF

K2 coefficient
scaled to fractional
range.

i16K2Shift in SI16 –F...F Scaling shift.

f16A2Scaled in SF16
$8000...
$7FFF

Scaling coefficient
due to numerical
integration.

i16A2Shift in SI16 –F...F Scaling shift.

ACLIB_AngleTrackObsrv

Advanced Control Library, Rev. 0

3-16 Freescale Semiconductor

3.2.4 Dependencies

List of all dependent files:

• MCLIB library

• GFLIB library

• ACLIB_AngleTrackObsrv.h

• MCF51_types.h

3.2.5 Description

This function calculates the angle-tracking observer algorithm. It is
recommended to call this function at every sampling period. It requires two input
arguments as sine and cosine samples. The practical implementation of the
angle-tracking observer algorithm is described below.

The angle-tracking observer compares values of the input signals sin (θ), cos (θ)
with their corresponding estimations sin (θ), cos (θ). As in any common
closed-loop systems, the intention is to minimize observer error towards zero
value. The observer error is given here by subtraction of the estimated resolver
rotor angle θ from the actual rotor angle θ (see Figure 3-1).

Figure 3-1. Block Scheme of the Angle-Tracking Observer

Note that mathematical expression of observer error is known as the formula of
the difference of two angles:

Eqn. 3-1θ θ̂–()sin θ() θ̂()cos×sin θ()cos θ̂()sin×–=

ACLIB_AngleTrackObsrv

Advanced Control Library, Rev. 0

Freescale Semiconductor 3-17

In the case of minimal deviations of the estimated rotor angle compared to the
actual rotor angle, the observer error may be expressed in the following form:

Eqn. 3-2

The primary benefit of the angle-tracking observer utilization, in comparison
with the trigonometric method, is its smoothing capability. This filtering is
achieved by the integrator and proportional and integral controller that are
connected in series and closed by a unit-feedback loop. This block diagram nicely
tracks actual rotor angle and speed and continuously updates their estimations.
The angle-tracking observer transfer function is expressed as follows:

Eqn. 3-3

The characteristic polynomial of the angle-tracking observer corresponds to the
denominator of the transfer function:

Eqn. 3-4

An appropriate dynamic behavior of the angle-tracking observer is achieved by
placement of the poles of the characteristic polynomial. This general method is
based on matching the coefficients of the characteristic polynomial with the
coefficients of the general second-order system.

The analog integrators in Figure 3-1, marked as 1/s, are replaced by an equivalent
of the discrete-time integrator using the backward Euler integration method.
The discrete-time block diagram of the angle-tracking observer is shown
in Figure 3-2.

Figure 3-2. Block Scheme of Discrete-Time Tracking Observer

The essential equations for implementation of the angle-tracking observer,
according to block scheme in Figure 3-2, are as follows:

Eqn. 3-5

Eqn. 3-6

θ θ̂–()sin θ θ̂–≈

θ̂ s()
θ s()

K1 1 K2s+()

s2 K1K2s K1+ +
---------------------------------------=

s2 K1K2s K1+ +

e k() sin(k) θ̂ k()()cos× cos(k) θ̂ k()()sin×–=

ω k() ω k 1–() K1 TS∆× e k()×+=

ACLIB_AngleTrackObsrv

Advanced Control Library, Rev. 0

3-18 Freescale Semiconductor

Eqn. 3-7

Eqn. 3-8

In equations Equation 3-5 to Equation 3-8, there are coefficients and quantities
that might be greater than one (for example, the actual rotor speed ω(k)), or that
are too small to be precisely represented within a 16-bit fractional value. Due to
this fact a special transformation of equations Equation 3-5 to Equation 3-8 has
to be carried out in order to be successfully implemented using fractional
arithmetic.

Eqn. 3-9

Eqn. 3-10

Eqn. 3-11

where the variables of the angle-tracking observer are:

• e(k) — observer error in step k,

• ∆Ts — the sampling period [s],

• ω(k) — the actual rotor speed [rad/s] in step k,

• θ(k) — the actual rotor angle [rad] in step k,

• a2(k) — the actual rotor angle [rad] without scaled addition of speed in
step k.

The scaled coefficients that are suitable for implementation on the core are
as follows:

Eqn. 3-12

Eqn. 3-13

Eqn. 3-14

3.2.6 Return

The function returns an estimation of the actual rotor angle as a 16-bit fractional
value.

a2 k() a2 k 1–() TS∆ ω k()×+=

θ k() K2 ω k() a2 k()+×=

K1FRAC TS∆
K1

ΩMAX
--------------×=

K2FRAC K2
ΩMAX

ΘMAX
--------------×=

A2FRAC TS∆
ΩMAX

ΘMAX
--------------×=

f16K1Scaled K1FRAC 2 i16K1Shift–×=

f16K2Scaled K2FRAC 2 i16K2Shift–×=

f16A2Scaled A2FRAC 2 i16A2Shift–×=

ACLIB_AngleTrackObsrv

Advanced Control Library, Rev. 0

Freescale Semiconductor 3-19

3.2.7 Range Issues

The function works with the signed fractional values in the range <–1, 1).

3.2.8 Special Issues

N/A

3.2.9 Implementation

Example 3-1.

#include <hidef.h> /* for EnableInterrupts macro */
#include "derivative.h" /* include peripheral declarations */

#include "aclib.h"

#define ANGLETRACKOBSRV_K1_SCALED (20589)
#define ANGLETRACKOBSRV_K1_SHIFT (-3)
#define ANGLETRACKOBSRV_K2_SCALED (17732)
#define ANGLETRACKOBSRV_K2_SHIFT (0)
#define ANGLETRACKOBSRV_A2_SCALED (26214)
#define ANGLETRACKOBSRV_A2_SHIFT (-5)

MCLIB_ANGLE_T mudtAngle;
ACLIB_ANGLE_TRACK_OBSRV_T mudtAngleTrackObsrv;
Frac16 f16PositionOut;

void Isr(void);

void main (void)
{

mudtAngleTrackObsrv.f32Speed= FRAC32(0);
mudtAngleTrackObsrv.f32A2= FRAC32(0);
mudtAngleTrackObsrv.f16Theta= FRAC16(0);
mudtAngleTrackObsrv.f16SinEstim= FRAC16(0);
mudtAngleTrackObsrv.f16CosEstim= FRAC16(0);
mudtAngleTrackObsrv.f16K1Scaled =

ANGLETRACKOBSRV_K1_SCALED;
mudtAngleTrackObsrv.i16K1Shift=

ANGLETRACKOBSRV_K1_SHIFT;
mudtAngleTrackObsrv.f16K2Scaled=

ANGLETRACKOBSRV_K2_SCALED;
mudtAngleTrackObsrv.i16K2Shift=

ANGLETRACKOBSRV_K2_SHIFT;
mudtAngleTrackObsrv.f16A2Scaled=

ANGLETRACKOBSRV_A2_SCALED;
mudtAngleTrackObsrv.i16A2Shift=

ANGLETRACKOBSRV_A2_SHIFT;
}

/* Periodical function or interrupt */

ACLIB_AngleTrackObsrv

Advanced Control Library, Rev. 0

3-20 Freescale Semiconductor

void ISR(void)
{

/* Angle tracking observer calculation */
f16PositionOut = ACLIB_AngleTrackObsrv(&mudtAngle,

&mudtAngleTrackObsrv);
}

3.2.10 Performance

Table 3-4. Performance of the ACLIB_AngleTrackObsrv Function

Code Size (bytes) 296 + 90 (GFLIB_SinLut) + 96 (GFLIB_CosLut)

Data Size (bytes) 516 (GFLIB_SinLut)

Execution Clock
Min 203 cycles

Max 226 cycles

ACLIB_PMSMBemfObsrvAB

Advanced Control Library, Rev. 0

Freescale Semiconductor 3-21

3.3 ACLIB_PMSMBemfObsrvAB
The function calculates the algorithm of back electro-motive force observer in
a stationary reference frame. 3

3.3.1 Synopsis
#include”aclib.h”
void ACLIB_PMSMBemfObsrvAB
(

MCLIB_2_COOR_SYST_ALPHA_BETA_T *pudtCurrentAlphaBeta,
MCLIB_2_COOR_SYST_ALPHA_BETA_T *pudtVoltageAlphaBeta,
Frac16 f16Speed,
ACLIB_BEMF_OBSRV_AB_T *const pudtCtrl

)

3.3.2 Arguments

Table 3-5. Function Arguments

Name
In/
Out

Format
Valid

Range
Description

*pudtCurrent
AlphaBeta

in
MCLIB_2_COOR_SYST_ALP

HA_BETA_T
N/A Input signal of alpha/beta current components.

*pudtVoltage
AlphaBeta

in
MCLIB_2_COOR_SYST_ALP

HA_BETA_T
N/A Input signal of alpha/beta voltage components.

f16Speed in SF16
$8000...
$7FFF

Fraction value of electrical speed.

*pudtCtrl in/out ACLIB_BEMF_OBSRV_AB_T N/A
Pointer to an observer structure, which contains
coefficients.

ACLIB_PMSMBemfObsrvAB

Advanced Control Library, Rev. 0

3-22 Freescale Semiconductor

Table 3-6. User Types

Typedef Name Format
Valid

Range
Description

ACLIB_BEMF_OBSRV_AB_T

udtIObsrv.f32Alpha SF32

0x800000
00...

0x7FFFFF
FF

Estimated current in alpha
axis.

udtIObsrv.f32Beta SF32

0x800000
00...

0x7FFFFF
FF

Estimated current in beta
axis.

udtCtrl.f32IAlpha_1 SF32

0x800000
00...

0x7FFFFF
FF

State variable in alpha part
of the observer; integral
part at step k-1.

udtCtrl.f32IBeta_1 SF32

0x800000
00...

0x7FFFFF
FF

State variable in beta part
of the observer; integral
part at step k-1.

udtCtrl.f16PropScaled SF16
$8000...
$7FFF

Observer proportional
gain.

udtCtrl.i16PropShift SI16
-F...F Observer proportional gain

shift.

udtCtrl.f16IntegScaled SF16
$8000...
$7FFF

Observer integral gain.

udtCtrl.i16IntegShift SI16 -F...F
Observer integral gain
shift.

udtUnityVctr.f16Sin
MCLIB_A
NGLE_T

$8000...
$7FFF

Sine component of
estimated unity vector.

udtUnityVctr.f16Cos
MCLIB_A
NGLE_T

$8000...
$7FFF

Cosine component of
estimated unity vector.

f16IScaled SF16
$8000...
$7FFF

Scaling coefficient for
current IFRAC.

f16UScaled SF16
$8000...
$7FFF

Scaling coefficient for
voltage UFRAC.

f16WIScaled SF16
$8000...
$7FFF

Scaling coefficient for
angular speed WIFRAC.

f16EScaled SF16
$8000...
$7FFF

Scaling coefficient for
back-EMF EFRAC.

ACLIB_PMSMBemfObsrvAB

Advanced Control Library, Rev. 0

Freescale Semiconductor 3-23

3.3.3 Availability

This library module is available in the C-callable interface assembly format. 3

This library module is targeted at MCF51xx platform. 3

3.3.4 Dependencies

List of all dependent files: 3

• MCLIB library

• GFLIB library

• ACLIB_PMSMBemfObsrvABAsm.h

• MCF51_types.h

3.3.5 Description

This back-emf observer is realized within stationary α,β reference frame. 3

Eqn. 3-15

where
• RS — stator resistance

• Ld, Lq— D-axis and Q-axis inductance

• ke — back-emf constant

• ωe — rotor angular speed

• uα, uβ — components of stator voltage vector

• iα, iβ — components of stator current vector

• s — operator of derivative

• iQ’ — first derivative of iq current

• ∆L = (LD – LQ) — motor saliency

This extended back-emf model includes both position information from the
conventionally defined back-emf and the stator inductance as well. This allows to
extract the rotor position and velocity information by estimating the extended
back-emf only. 3

Both alpha and beta-axis consist of the stator-current observer based on RL motor
circuit, which requires motor parameters. 3

The current observer is fed by the sum of the actual applied motor voltage,
cross-coupled rotational term, which corresponds to the motor saliency (LD – LQ)

uα

uβ
RS
iα
iβ

sLD Lωr∆

LDωr∆– sLD

iα
iβ

L∆ ωeiD iQ'–()× keωr+()
θr()sin–

θr()cos
×+×+=

ACLIB_PMSMBemfObsrvAB

Advanced Control Library, Rev. 0

3-24 Freescale Semiconductor

and compensator corrective output. The observer provides back-EMF signals as
disturbance because back-EMF is not included in observer model. 3

Figure 3-3. Block Diagram of Back-emf Observer

It is obvious that the accuracy of the back-emf estimates is determined by the
correctness of used motor parameters (R, L), by fidelity of the reference stator
voltage, and by quality of compensator such as bandwidth, phase lag, and so on.3

Appropriate dynamic behavior of the back-emf observer is achieved by
placement of the poles of the stator-current observer characteristic polynomial.
This general method is based on matching the coefficients of the characteristic
polynomial with the coefficients of the general second-order system. 3

Eqn. 3-16

Back-emf observer is a Luenberger-type observer with motor model, which is
realized in fixed-point arithmetic transformed using backward
Euler transformation. 3

Eqn. 3-17

where 3

• is a fractional representation of stator-current vector,

• is a fractional representation of stator-voltage vector,

• is a fractional representation of stator back-emf voltage
vector,

• is a fractional representation of complementary
stator-current vector,

• is a fractional representation of angular speed.

Scaling coefficients relating to maximal values are expressed as: 3

Êαβ s() Eαβ s()
Fc s()

sLD RS FC s()+ +
--×–=

iFRFAC k() UFRAC uFRAC k() EFRAC e× FRAC k() WIFRAC ω× eFRAC k()i'FRAC k()–+×=

IFRAC iFRAC× k 1–()

iFRFAC k() iα iβ,[]=

uFRAC k() uα uβ,[]=

eFRAC k() eα eβ,[]=

i'FRFAC k() iβ i–, α[]=

ωFRFAC k()

ACLIB_PMSMBemfObsrvAB

Advanced Control Library, Rev. 0

Freescale Semiconductor 3-25

Eqn. 3-18

Eqn. 3-19

Eqn. 3-20

Eqn. 3-21

where: 3

• ∆TS — sampling time in [sec]

• IMAX — maximal peak current in [A]

• EMAX — maximal peak back-emf voltage in [V]

• UMAX — maximal peak stator voltage in [V]

• ΩMAX — maximal angular speed in [rad/sec]

If a Luenberger-type stator-current observer is properly designed in the stationary
reference frame, the back-emf can be estimated as a disturbance, produced by the
observer controller. This is only valid if the back-emf term is not included in the
observer model. The observer is actually a closed-loop current observer, so it acts
as a state filter for the back-emf term. 3

The estimate of extended-emf term can be derived from Equation 3-16 as follows:3

Eqn. 3-22

The observer controller can be designed by comparing the closed-loop
characteristic polynomial with that of a standard second-order system as: 3

Eqn. 3-23

where 3

• ω0 is the natural frequency of the closed-loop system (loop bandwidth),

• ξ is the loop attenuation.

3.3.6 Return

The function returns a unity vector representing the estimated value of sine and
cosine values of back-emf. 3

UFRAC
TS∆

Ld TSRS∆+

UMAX
IMAX
-------------×=

EFRAC
TS∆

Ld TSRS∆+
---------------------------=

EMAX
IMAX
-------------×

WIFRAC
∆L TS∆×
Ld TSRS∆+
--------------------------- ΩMAX×=

IFRAC
Ld

Ld TSRS∆+
---------------------------=

Êαβ s()
Eαβ s()
----------------–

sKP KI+

s2LD sRS sKP KI+ + +
--=

s2
KP RS+

LD

 s
KI
LD
------+ + s2 2ξω0s ω0

2+ +=

ACLIB_PMSMBemfObsrvAB

Advanced Control Library, Rev. 0

3-26 Freescale Semiconductor

3.3.7 Range Issues

The function works with the signed fractional values in the range <–1, 1). 3

3.3.8 Special Issues

N/A 3

3.3.9 Implementation

Example 3-2.

#include <hidef.h> /* for EnableInterrupts macro */
#include "derivative.h" /* include peripheral declarations */

#include "aclib.h"

#define BEMFOBSRV_AB_PROP_GAIN_SCALED (16719)
#define BEMFOBSRV_AB_PROP_GAIN_SHIFT (-2)
#define BEMFOBSRV_AB_INTEG_GAIN_SCALED (31737)
#define BEMFOBSRV_AB_INTEG_GAIN_SHIFT (-5)
#define BEMFOBSRV_AB_I_SCALED (28174)
#define BEMFOBSRV_AB_U_SCALED (31964)
#define BEMFOBSRV_AB_E_SCALED (22968)
#define BEMFOBSRV_AB_WI_SCALED (0)
#define BEMFOBSRV_AB_MAX_CURRENT (8.0)

MCLIB_2_COOR_SYST_ALPHA_BETA_T mudtI, mudtU;
ACLIB_BEMF_OBSRV_AB_T mudtBemfObsrv;
Frac16 f16Speed;

void Isr(void);

void main(void)
{
mudtBemfObsrv.udtIObsrv.f32Alpha = FRAC32(0.0);
mudtBemfObsrv.udtIObsrv.f32Beta = FRAC32(0.0);
mudtBemfObsrv.udtCtrl.f32IAlpha_1 = FRAC32(0.0);
mudtBemfObsrv.udtCtrl.f32IBeta_1 = FRAC32(0.0);
mudtBemfObsrv.udtCtrl.f16PropScaled =

BEMFOBSRV_AB_PROP_GAIN_SCALED;
mudtBemfObsrv.udtCtrl.i16PropShift =

BEMFOBSRV_AB_PROP_GAIN_SHIFT;
mudtBemfObsrv.udtCtrl.f16IntegScaled =

BEMFOBSRV_AB_INTEG_GAIN_SCALED;
mudtBemfObsrv.udtCtrl.i16IntegShift =

BEMFOBSRV_AB_INTEG_GAIN_SHIFT;
mudtBemfObsrv.f16IScaled = BEMFOBSRV_AB_I_SCALED;
mudtBemfObsrv.f16UScaled = BEMFOBSRV_AB_U_SCALED;
mudtBemfObsrv.f16EScaled = BEMFOBSRV_AB_E_SCALED;
mudtBemfObsrv.f16WIScaled = BEMFOBSRV_AB_WI_SCALED;

ACLIB_PMSMBemfObsrvAB

Advanced Control Library, Rev. 0

Freescale Semiconductor 3-27

}

/* Periodical function or interrupt */
void Isr(void)
{
/* Observer calculation */
ACLIB_PMSMBemfObsrvAB(&mudtI, &mudtU, f16Speed,

&mudtBemfObsrv);
}

3.3.10 Performance

Table 3-7. Performance of the ACLIB_PMSMBemfObsrvAB Function

Code Size (bytes) 540 + 156 (GFLIB_DivsLSS) + 172 (GFLIB_SqrtPoly)

Data Size (bytes) 72 (GFLIB_SqrtPoly)

Execution Clock
Min 489 cycles

Max 628 cycles

ACLIB_PMSMBemfObsrvAB

Advanced Control Library, Rev. 0

3-28 Freescale Semiconductor

	Chapter 1 License Agreement
	Chapter 2 INTRODUCTION
	2.1 Overview
	2.2 Supported Compilers
	2.3 Installation
	2.4 Library Integration
	2.5 API Definition
	2.6 Data Types
	2.6.1 Signed Integer (SI)
	2.6.2 Unsigned Integer (UI)
	2.6.3 Signed Fractional (SF)
	2.6.4 Unsigned Fractional (UF)

	2.7 User Common Types
	2.8 Special Issues

	Chapter 3 FUNCTION API
	3.1 API Summary
	3.2 ACLIB_AngleTrackObsrv
	3.2.1 Synopsis
	3.2.2 Arguments
	3.2.3 Availability
	3.2.4 Dependencies
	3.2.5 Description
	3.2.6 Return
	3.2.7 Range Issues
	3.2.8 Special Issues
	3.2.9 Implementation
	3.2.10 Performance

	3.3 ACLIB_PMSMBemfObsrvAB
	3.3.1 Synopsis
	3.3.2 Arguments
	3.3.3 Availability
	3.3.4 Dependencies
	3.3.5 Description
	3.3.6 Return
	3.3.7 Range Issues
	3.3.8 Special Issues
	3.3.9 Implementation
	3.3.10 Performance

