
ZigBee 3.0 Devices
User Guide

JN-UG-3114

Revision 1.2

1 December 2016

ZigBee 3.0 Devices
User Guide

2 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Contents

Preface 7
Organisation 7

Conventions 7

Acronyms and Abbreviations 8

Related Documents 8

Support Resources 9

Trademarks 9

Chip Compatibility 9

1. Introduction 11
1.1 ZigBee Device Types 11

1.2 Software Architecture 12

1.3 Shared Device Structure 13

1.4 Device Initialisation 15

1.5 Endpoint Callback Functions 16

1.6 Compile-Time Options 17

2. ZigBee Base Device 19
2.1 Initialising and Starting the ZigBee Base Device 19

2.2 Network Commissioning 21
2.2.1 Touchlink 22

2.2.2 Network Steering 22

2.2.3 Network Formation 24

2.2.4 Finding and Binding 25
2.2.4.1 Initiator Node 25
2.2.4.2 Target Node 26

2.2.5 Out-Of-Band Commissioning 27

2.3 Network Security 28
2.3.1 Centralised Security Networks 28

2.3.2 Distributed Security Networks 30

2.4 ZigBee Base Device Rejoin Handling 30

2.5 Attributes and Constants 31
2.5.1 Attributes 31

2.5.2 Constants 38
2.5.2.1 General Constants 38
2.5.2.2 Touchlink Constants 39
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 3

Contents
2.6 Functions 41
BDB_vInit 42

BDB_vSetKeys 43

BDB_vStart 44

BDB_eNfStartNwkFormation 45

BDB_eNsStartNwkSteering 46

BDB_eFbTriggerAsInitiator 47

BDB_vFbExitAsInitiator 48

BDB_eFbTriggerAsTarget 49

BDB_vFbExitAsTarget 50

BDB_bIsBaseIdle 51

BDB_u8OutOfBandCommissionStartDevice 52

BDB_vOutOfBandCommissionGetData 53

BDB_eOutOfBandCommissionGetDataEncrypted 54

BDB_bOutOfBandCommissionGetKey 55

2.7 Structures 56
2.7.1 BDB_tsBdbEvent 56

2.7.2 BDB_tuBdbEventData 56

2.7.3 BDB_tsZpsAfEvent 57

2.7.4 BDB_tsFindAndBindEvent 57

2.7.5 BDB_tsOobWriteDataToCommission 59

2.7.6 BDB_tsOobReadDataToAuthenticate 60

2.7.7 BDB_tsOobWriteDataToAuthenticate 61

2.8 Enumerations 62
2.8.1 BDB_teStatus 62

2.8.2 BDB_teCommissioningStatus 63

2.9 Events 64

2.10 Compile-time Options 69

3. Lighting and Occupancy Device Types 71
3.1 On/Off Light 72

3.1.1 Supported Clusters 72

3.1.2 Device Structure 73

3.1.3 Registration Function 75

3.2 Dimmable Light 77
3.2.1 Supported Clusters 77

3.2.2 Device Structure 78

3.2.3 Registration Function 80

3.3 Colour Dimmable Light 82
3.3.1 Supported Clusters 82

3.3.2 Device Structure 83

3.3.3 Registration Function 85
4 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.4 On/Off Light Switch 87
3.4.1 Supported Clusters 87

3.4.2 Device Structure 88

3.4.3 Registration Function 90

3.5 Dimmer Switch 92
3.5.1 Supported Clusters 92

3.5.2 Device Structure 93

3.5.3 Registration Function 95

3.6 Colour Dimmer Switch 97
3.6.1 Supported Clusters 97

3.6.2 Device Structure 98

3.6.3 Registration Function 100

3.7 Light Sensor 102
3.7.1 Supported Clusters 102

3.7.2 Device Structure 102

3.7.3 Registration Function 104

3.8 Occupancy Sensor 106
3.8.1 Supported Clusters 106

3.8.2 Device Structure 106

3.8.3 Registration Function 108

3.9 On/Off Ballast 110
3.9.1 Supported Clusters 110

3.9.2 Device Structure 111

3.9.3 Registration Function 114

3.10 Dimmable Ballast 116
3.10.1 Supported Clusters 116

3.10.2 Device Structure 117

3.10.3 Registration Function 120

3.11 On/Off Plug-in Unit 122
3.11.1 Supported Clusters 122

3.11.2 Device Structure 122

3.11.3 Registration Function 124

3.12 Dimmable Plug-in Unit 126
3.12.1 Supported Clusters 126

3.12.2 Device Structure 126

3.12.3 Registration Function 128

3.13 Colour Temperature Light 130
3.13.1 Supported Clusters 130

3.13.2 Device Structure 131

3.13.3 Registration Function 133

3.14 Extended Colour Light 135
3.14.1 Supported Clusters 135

3.14.2 Device Structure 136

3.14.3 Registration Function 138
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 5

Contents
3.15 Light Level Sensor 140
3.15.1 Supported Clusters 140

3.15.2 Device Structure 140

3.15.3 Registration Function 142

3.16 Colour Controller 144
3.16.1 Supported Clusters 144

3.16.2 Device Structure 145

3.16.3 Registration Function 147

3.17 Colour Scene Controller 149
3.17.1 Supported Clusters 149

3.17.2 Device Structure 150

3.17.3 Registration Function 152

3.18 Non-Colour Controller 154
3.18.1 Supported Clusters 154

3.18.2 Device Structure 155

3.18.3 Registration Function 157

3.19 Non-Colour Scene Controller 159
3.19.1 Supported Clusters 159

3.19.2 Device Structure 160

3.19.3 Registration Function 162

3.20 Control Bridge 164
3.20.1 Supported Clusters 164

3.20.2 Device Structure 165

3.20.3 Registration Function 168

3.21 On/Off Sensor 170
3.21.1 Supported Clusters 170

3.21.2 Device Structure 171

3.21.3 Registration Function 173
6 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Preface

This manual provides information on the ZigBee device types for ZigBee 3.0. These
include the ZigBee Base Device (ZBD), which is required by all ZigBee 3.0 nodes.
Other device types supported by NXP for the JN516x and JN517x wireless
microcontrollers are also described, including the ZigBee Lighting and Occupancy
(ZLO) device types. The clusters used by the device types are detailed elsewhere in
the ZigBee Cluster Library (for ZigBee 3.0) User Guide (JN-UG-3115).

Organisation

This manual contains three chapters:

 Chapter 1 introduces ZigBee device types and provides general guidance on
implementing device types in ZigBee application software.

 Chapter 2 details the ZigBee Base Device (ZBD), including the associated
functions and other resources.

 Chapter 3 details the ZigBee Lighting and Occupancy (ZLO) device types,
including the device software structures and functions.

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 7

Preface
Acronyms and Abbreviations

ACE Ancillary Control Equipment

APDU Application Protocol Data Unit

API Application Programming Interface

BDB Base Device Behaviour

CIE Control and Indicating Equipment

DRLC Demand-Response and Load Control

HA Home Automation

IAS Intruder Alarm System

SDK Software Developer’s Kit

SE Smart Energy

WD Warning Device

ZBD ZigBee Base Device

ZCL ZigBee Cluster Library

ZLO ZigBee Lighting and Occupancy

ZPS ZigBee PRO Stack

Related Documents

JN-UG-3113 ZigBee 3.0 Stack User Guide

JN-UG-3115 ZigBee Cluster Library (for ZigBee 3.0) User Guide

JN-UG-3116 JN51xx Core Utilities (JCU) User Guide

JN-UG-3081 JN51xx Encryption Tool (JET) User Guide

13-0402 Base Device Behavior Specification [from ZigBee Alliance]

15-0014 Lighting & Occupancy Device Specification [from ZigBee Alliance]

075123 rev 6 ZigBee Cluster Library Specification [from ZigBee Alliance]
8 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity area of the NXP web site:

www.nxp.com/products/interface-and-connectivity/wireless-connectivity

All NXP resources referred to in this manual can be found at the above address,
unless otherwise stated.

Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The device software described in this manual can be used on the NXP JN516x and
JN517x families of wireless microcontrollers, with the exception of the JN5161 device.

Most information in this manual is applicable to both the JN516x and JN517x devices.
The host device is therefore sometimes referred to as JN516x/7x.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 9

Preface
10 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
1. Introduction

The nodes of a ZigBee wireless network are based on device types defined by the
ZigBee Alliance, where a device type is a software entity that determines the
functionality supported by a node. This chapter introduces ZigBee device types and
describes related concepts that are required in programming software applications for
ZigBee nodes.

1.1 ZigBee Device Types

A device type is a software entity which defines the functionality of a ZigBee node. The
device type defines a collection of clusters that make up this functionality. A cluster is
therefore a basic building-block of device functionality. Some clusters are mandatory
and some are optional. For example, the Thermostat device uses the Basic and
Temperature Measurement clusters, and can also use one or more optional clusters.

A device is an instance of a device type.

A network node can support more than one device type. The application for a device
type runs on a software entity called an endpoint and each node can have up to 240
endpoints, numbered from 1.

In addition, every ZigBee 3.0 node must employ the following devices:

 ZigBee Base Device (ZBD): This is a standard device type which handles
fundamental operations such as commissioning. This device does not need an
endpoint. The ZigBee Base Device is fully detailed in Chapter 2.

 ZigBee Device Objects (ZDO): This represents the ZigBee node type
(Co-ordinator, Router or End Device) and has a number of communication
roles. This device occupies endpoint 0.

The relative locations of the different devices are indicated in Section 1.2.

Note: ZigBee device types have previously been
collected together in market-specific application profiles,
such as Home Automation. ZigBee 3.0 allows devices
from different market sectors to exist in the same
network. Therefore, application profiles are not so
prevalent in ZigBee 3.0 but are still supported for
backward compatibility.

Note: The clusters used by a device type are supplied in
the ZigBee Cluster Library (ZCL). The ZCL is detailed in
the ZigBee Cluster Library (for ZigBee 3.0) User Guide
(JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 11

Chapter 1
Introduction

1.2 Software Architecture

The basic ZigBee 3.0 software architecture is shown in Figure 1 below, which
illustrates the locations of the ZigBee devices.

For more detailed software architecture information, refer to the ZigBee 3.0 User
Guide (JN-UG-3113).

Figure 1: Basic Software Architecture

IEEE 802.15.4 MAC layer

Application (APL) layer

IEEE 802.15.4 PHY layer

ZigBee Cluster Library (ZCL)

ZigBee Device(s) ZigBee
Device
Objects
(ZDO)

Network (NWK) layer

ZigBee
Base
Device

Application Support sub‐layer (APS)
12 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
1.3 Shared Device Structure

The basic operations in a ZigBee 3.0 network are concerned with reading and setting
the attribute values of the clusters of a device. In each device, attribute values are
exchanged between the application and the ZigBee Cluster Library (ZCL) by means
of a shared structure. This structure is protected by a mutex (described in the ZCL
User Guide (JN-UG-3115)). The structure for a particular device contains structures
for the clusters supported by that device.

A shared device structure may be used in either of the following ways:

 The local application writes attribute values to the structure, allowing the ZCL to
respond to commands relating to these attributes.

 The ZCL parses incoming commands that write attribute values to the
structure. The written values can then be read by the local application.

Remote read and write operations involving a shared device structure are illustrated
in Figure 2 below. For more detailed descriptions of these operations, refer to the ZCL
User Guide (JN-UG-3115)).

Note: In order to use a cluster which is supported by a
device, the relevant option for the cluster must be
specified at build-time - see Section 1.6.

Note: The shared device structure is located on the
server device, which hosts the cluster server to be
accessed. The client device, which performs the remote
access, hosts the corresponding cluster client.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 13

Chapter 1
Introduction

Figure 2: Operations using Shared Device Structure

Note: Provided that there are no remote attribute writes,
the attributes of a cluster server (in the shared structure)
on a device are maintained by the local application(s).

Read
Command

Response

Server Device

Device
Structure

Application

WriteRead

Client Device

Application

Read Request

ZCLZCL

Reading Remote Attributes

Write
Command

Server Device

Device
Structure

Application

Read
Write

Client Device

Application

Write Request

ZCLZCL

Writing Remote Attributes

Response

Application requests read of attribute values from device
structure on remote server and ZCL sends request .
ZCL receives response and generates events (which can
prompt application to read attributes from structure).

1.

4.

If necessary, application first updates attribute values in
device structure.
ZCL reads requested attribute values from device structure
and then returns them to requesting client .

2.

3.

ZCL sends 'write attributes' request to remote server.
ZCL can receive optional response and generate events
for the application (that indicate any unsuccessful writes).

1.
5.

ZCL writes received attribute values to device structure and
optionally sends response to client.
If required, application can then read new attribute values
from device structure.
ZCL can optionally generate a ‘write attributes’ response .

2.

3.

4.

Event (s)

Event (s)
14 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
1.4 Device Initialisation

A ZigBee 3.0 application is initialised as described in the section “Forming and Joining
a Network” of the ZigBee 3.0 Stack User Guide (JN-UG-3113). In addition, some
device initialisation must be performed.

The initialisation of ZigBee devices must be performed in the following places and
order:

1. In the header file zcl_options.h, enable the required compile-time options.
These options include the clusters to be used by the device, the client/server
status of each cluster and the optional attributes for each cluster. For more
information on compile-time options, refer to Section 1.6.

2. In the application, create an instance of the device structure by declaring a file
scope variable - for example:

tsZLO_DimmableLightDevice sDevice;

3. In the initialisation part of the application, set up the device(s) handled by your
code, as follows:

a) Set the initial values of the cluster attributes to be used by the device - for
example:

sDevice.sBasicCluster.u8StackVersion = 1;

sDevice.sBasicCluster....

b) After calling eZCL_Initialise() and before calling ZPS_eAplAfInit(),
register the device by calling the relevant device registration function - for
example, eZLO_RegisterDimmableLightEndPoint(). In this function call,
the device must be allocated a unique endpoint (in the range 1-240). In
addition, its device structure must be specified as well as a user-defined
callback function that will be invoked when an event occurs relating to the
endpoint (see Section 1.5). As soon as this function has been called, the
shared device structure can be read by another device.

c) After calling ZPS_eAplAfInit(), initialise and start the ZigBee Base Device
(ZBD) by calling BDB_vInit() and then BDB_vStart() - refer to Section 2.1
for more details of ZigBee Base Device initialisation.

Note 1: The set of endpoint registration functions for the
different device types are detailed in the device type
descriptions - for example, in Chapter 3 for Lighting and
Occupancy devices.

Note 2: The device registration functions create
instances of all the clusters used by the device, so there
is no need to explicitly call the individual cluster creation
functions, e.g. eCLD_IdentifyCreateIdentify() for the
Identify cluster.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 15

Chapter 1
Introduction

1.5 Endpoint Callback Functions

A user-defined callback function must be provided for each endpoint used, where this
callback function will be invoked when an event occurs (such as an incoming
message) relating to the endpoint. The callback function is registered when the
endpoint is registered using the registration function for the device type that the
endpoint supports (see Section 1.4) - for example, using the function
eZLO_RegisterOnOffLightEndPoint() for an On/Off Light device (see Section 3.1).

The endpoint callback function has the type definition given below:

typedef void (* tfpZCL_ZCLCallBackFunction)
(tsZCL_CallBackEvent *pCallBackEvent);

where pCallBackEvent is a pointer the event.

Note: Events that do not have an associated endpoint
are delivered via the general stack-supplied callback
function APP_vGenCallback(). For example, stack
leave and join events can be received by the application
through this callback function. Stack events are
described in the ZigBee 3.0 Stack User Guide
(JN-UG-3113).
16 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
1.6 Compile-Time Options

Before a ZigBee 3.0 application can be built, compile-time options must be configured
in the header file zcl_options.h for the application.

Number of Endpoints

The highest numbered endpoint used by the application must be specified - for
example:

#define BDB_FB_NUMBER_OF_ENDPOINTS 3

Normally, the endpoints starting at endpoint 1 are for application use, so in the above
case endpoints 1 to 3 will be used. It is possible, however, to use the lower numbered
endpoints for non-application purposes, e.g. to run other protocols on endpoints 1 and
2, and the application on endpoint 3. With BDB_FB_NUMBER_OF_ENDPOINTS set
to 3, some storage will be statically allocated for endpoints 1 and 2 but never used.
Note that this define applies only to local endpoints - the application can refer to
remote endpoints with numbers beyond the locally defined value of
BDB_FB_NUMBER_OF_ENDPOINTS.

Manufacturer Code

The ZCL allows a manufacturer code to be defined for devices developed by a certain
manufacturer. This is a 16-bit value allocated to a manufacturer by the ZigBee Alliance
and is set as follows:

#define ZCL_MANUFACTURER_CODE 0x1037

The above example sets the manufacturer code to the default value of 0x1037 (which
belongs to NXP) but manufacturers should set their own allocated value.

Enabled Clusters

All required clusters must be enabled in the options header file. For example, an
application for an On/Off Light device that uses all the possible clusters will require the
following definitions:

#define CLD_BASIC

#define CLD_IDENTIFY

#define CLD_GROUPS

#define CLD_SCENES

#define CLD_ONOFF

Note 1: Cluster-specific compile-time options are
detailed in the cluster descriptions in the ZCL User
Guide (JN-UG-3115).

Note 2: In addition, compile-time options for the ZigBee
Base Device must be set in the file bdb_options.h - see
Section 2.10.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 17

Chapter 1
Introduction

Server and Client Options

Many clusters have options that indicate whether the cluster will act as a server or a
client on the local device. If the cluster has been enabled using one of the above
definitions, the server/client status of the cluster must be defined. For example, to
employ the Groups cluster as a server, include the following in the header file:

#define GROUPS_SERVER

Support for Attribute Read/Write

Read/write access to cluster attributes must be explicitly compiled into the application,
and must be enabled separately for the server and client sides of a cluster using the
following macros in the options header file:

#define ZCL_ATTRIBUTE_READ_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_READ_CLIENT_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_CLIENT_SUPPORTED

Note that each of the above definitions will apply to all clusters used in the application.

Optional Attributes

Many clusters have optional attributes that may be enabled at compile-time via the
options header file - for example, the Basic cluster ‘application version’ attribute is
enabled as follows:

#define CLD_BAS_ATTR_APPLICATION_VERSION
18 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2. ZigBee Base Device

The ZigBee Base Device (ZBD) is a mandatory device on all nodes of a ZigBee 3.0
network. It exists alongside one or more other ZigBee device types on a node, but
does not require an endpoint. The ZigBee Base Device provides a framework for the
use of ZigBee device types. It implements basic functionality that may be required by
all nodes and ensures consistent behaviour across all nodes, particularly regarding
network creation and joining as well as network security.

The network commissioning and security functionality of the ZigBee Base Device is
described in this chapter, as well as the NXP resources needed to implement these
features in ZigBee 3.0 applications on JN516x and JN517x devices. Detailed
information about the ZigBee Base Device is provided in the ZigBee Base Device
Behavior Specification (13-0402), available from the ZigBee Alliance.

2.1 Initialising and Starting the ZigBee Base Device

The ZigBee Base Device must be initialised in the application code using the function
BDB_vInit(). This function must be called after initialising the ZigBee PRO stack and
after restoring the ZigBee Base Device attribute bbdbNodeIsOnANetwork from
persistent storage.

The ZigBee Base Device can then be started by calling the function BDB_vStart().
Depending on the node type and whether the node was previously a member of a
network, this function may or may not perform an action, as described below. In either
case, the function will finally invoke the callback function APP_vBdbCallback() with
a suitable event.

Note 1: BDB_vInit() internally calls the function
BDB_vSetKeys(), which loads into memory the pre-
configured link key(s) from the file bdb_link_keys.c.
Network security and the pre-configured link keys are
described in Section 2.3.

Note 2: The ZigBee Base Device requires a number of
internal software times, the number defined by the
macro BDB_ZTIMER_STORAGE. Therefore, when the
application calls ZTIMER_eInit() to initialise the required
software timers and allocate storage (array elements)
for them, it must add BDB_ZTIMER_STORAGE timers
for use by the ZigBee Base Device. This function must
be called before BDB_vInit(). Software timers and their
associated functions are described in the ZigBee 3.0
Stack User Guide (JN-UG-3113).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 19

Chapter 2
ZigBee Base Device

If the node was not in a network:

For a Router node that supports Touchlink commissioning (see Section 2.2.1), the
function selects a radio channel for the node from the set of primary channels for
Touchlink specified in the BDBC_TL_PRIMARY_CHANNEL_SET bitmap (see
Section 2.5.2.2). Either the first channel of the specified set will be selected or, if the
macro RAND_CHANNEL is set to TRUE (in the file bdb_options.h), a channel will be
selected from the set at random.

For the Co-ordinator and other Router and End Device nodes, no action will be taken
and the application will subsequently need to either form a network (Co-ordinator or
Router) or join the node to a network using one of the commissioning methods
described in Section 2.2 (End Device or Router).

In the above cases, the function will generate a BDB_EVENT_INIT_SUCCESS event.

If the node was in a network:

For Co-ordinator and Router nodes, no action is taken and the function generates a
BDB_EVENT_INIT_SUCCESS event.

For an End Device node, the function will attempt to rejoin the node to the network. It
will perform a series of rejoin cycles, where each cycle comprises the following three
rejoin attempts:

1. First attempt with the previously used network parameters (without network
discovery)

2. Second attempt with network discovery on the set of primary channels
specified in the u32bdbPrimaryChannelSet bitmap (attribute)

3. Third attempt with network discovery on the set of secondary channels
specified in the u32bdbSecondaryChannelSet bitmap (attribute)

The channel bitmaps are ZigBee Base Device attributes, described in Section 2.5.1.

The above rejoin cycle will be performed up to a maximum of
BDBC_IMP_MAX_REJOIN_CYCLES times, which is an implementation-specific
ZigBee Base Device constant (see Section 2.5.2).

If a rejoin attempt is successful, the function will generate the event
BDB_EVENT_REJOIN_SUCCESS.

If all the rejoin attempts were unsuccessful, the function will generate the event
BDB_EVENT_REJOIN_FAILURE unless unsecured joins are enabled through the
APS attribute apsUseInsecureJoin, in which case the function will attempt a join
through Network Steering (described in Section 2.2.2). The nature of the join depends
on the value of the Extended PAN ID (EPID) set in the APS attribute
ApsUseExtendedPanid:

 For a non-zero EPID, the node will attempt to join the network with this EPID

 For a zero EPID, the function will attempt to join any available network

This join will be attempted with an automatic call to the function
BDB_eNsStartNwkSteering().
20 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.2 Network Commissioning

Network commissioning covers the following activities:

 Creating a network

 Allowing devices to join the network (through the local node)

 Joining a network

 Binding a local endpoint to an endpoint on a remote node

 Adding a remote node to a group

The commissioning activities that can be performed by an individual node depend on
the ZigBee node type (Co-ordinator, Router, End Device) and the commissioning
modes that are enabled for the node. A number of different commissioning modes are
available through the ZigBee Base Device. These modes are listed in Table 2 along
with the commissioning activities that they support.

The commissioning modes are individually enabled/disabled via the attribute
u8bdbCommissioningMode, as indicated in Table 2 below. This attribute is a bitmap
with a bit for each of four commissioning mode - a bit is to ‘1’ to enable or ‘0’ to disable
the corresponding commissioning mode. Enumerations are available to enable the
individual modes (set their bits to ‘1’).

The current commissioning state on a node is reflected in the attribute
ebdbCommissioningStatus.

Commissioning Mode Functionality

Touchlink • Creating a new network

• Allowing other devices to join an existing network

• Joining local device to an existing network

Network Steering • Allowing other devices to join an existing network

• Joining local device to an existing network

Network Formation • Creating a new network

Finding and Binding • Binding a local endpoint to an endpoint on a remote node

• Adding a remote node to a group

Table 1: Functionality of Commissioning Modes

Bit Commissioning Mode Enumeration

0 Touchlink BDB_COMMISSIONING_MODE_TOUCHLINK

1 Network Steering BDB_COMMISSIONING_MODE_NWK_STEERING

2 Network Formation BDB_COMMISSIONING_MODE_NWK_FORMATION

3 Finding and Binding BDB_COMMISSIONING_MODE_FINDING_N_BINDING

Table 2: Commissioning Modes (configured via bdbCommissioningMode)
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 21

Chapter 2
ZigBee Base Device

In the NXP implementation of the ZigBee Base Device, the individual commissioning
modes are initiated under application control using supplied API functions. A
commissioning mode can be invoked by the application provided that the mode is
enabled and the node type is relevant to the mode (for example, an End Device cannot
perform Network Formation).

The commissioning modes are outlined in the sub-sections below. For detailed
information on these modes, refer to the ZigBee Base Device Behavior Specification
(13-0402-08).

2.2.1 Touchlink

Touchlink commissioning can be used to form a new network and/or join a node to an
existing network. Touchlink is initiated on a node called the ‘initiator’ which either will
be a member of an existing network or (if not) will create a new network. In both cases,
the initiator will join a second node to the network, called the ‘target’ node.

Touchlink is provided as a cluster in the ZigBee Cluster Library (ZCL). The initiator
must support the Touchlink cluster as a client and the target node must support the
cluster as a server. If it is required on a node, Touchlink commissioning must be
enabled via the ZigBee Base Device attribute u8bdbCommissioningMode. For
detailed information on the Touchlink Commissioning cluster and how to implement
Touchlink, refer to the ZigBee Cluster Library User Guide (JN-UG-3115).

A ‘Touchlink Pre-configured Link Key’ may be provided that is used during the
commissioning of a node into a secured network (see Section 2.3).

If Touchlink commissioning is not successful, this is indicated by a status of
NO_SCAN_RESPONSE through the attribute ebdbCommissioningStatus (all other
states indicate success).

2.2.2 Network Steering

Network Steering can be used to join the local node to an existing network or allow
other nodes to join a network via the local node.

If Network Steering is required on a node, it must be enabled via the attribute
u8bdbCommissioningMode. You can start Network Steering from your application by
calling the function BDB_eNsStartNwkSteering().

The path taken depends on whether the local node is already a member of a network,
as indicated by the Boolean attribute bbdbNodeIsOnANetwork. In all cases, the
outcome of Network Steering is indicated by events passed into the callback function
APP_vBdbCallback().

Note: A node will normally be prompted to enter
commissioning by a user action, such as pressing a
button on the node. This action may be on behalf of the
node as a whole or a single endpoint on the node.
22 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Node is already in a network

When the node is already a member of a network, it opens the network for other nodes
to join for a fixed period of time by broadcasting a Management Permit Joining request
(any node type can open the network in this way). This period is 180 seconds by
default, but can be configured (in seconds) through the ZigBee Base Device constant
BDBC_MIN_COMMISSIONING_TIME (see Section 2.5.2). After initiating the above
broadcast, the event BDB_EVENT_NWK_STEERING_SUCCESS will be generated.

 Node is not in a network

When the node is not a member of a network and is a Router or End Device, it
searches for a suitable network to join and, if it finds one, attempts to join the network,
as follows:

1. The node performs a network discovery by scanning the primary set of radio
channels specified through the u32bdbPrimaryChannelSet bitmap (attribute).
If no open network is found, the network discovery is repeated on the
secondary set of radio channels specified through the
u32bdbSecondaryChannelSet bitmap (attribute). If still no network is found,
the event BDB_EVENT_NO_NETWORK is generated and the Network
Steering is abandoned.

2. If at least one open network was found, the node will then attempt to join each
discovered open network one by one, up to a maximum of
BDBC_MAX_SAME_NETWORK_RETRY_ATTEMPTS times. If a network is
successfully joined, the attribute bbdbNodeIsOnANetwork is set to TRUE. If
there was no successful join following a scan of the primary channels, the
scan is repeated (Step 1) on the secondary channels. If there is still no
successful join following this scan, the BDB_EVENT_NWK_JOIN_FAILURE
event is generated and the Network Steering is abandoned.

3. The joining node is authenticated and receives the network key from its
parent. If the network being joined has centralised security and therefore a
Trust Centre, the node unicasts a Node Descriptor request to the Trust
Centre. The Node Descriptor received back is checked to ensure that the
Trust Centre supports the ZigBee PRO stack version r21 or above. If this is
the case, the node performs the procedure for retrieving a new Trust Centre
link key to replace its pre-configured link key. Failure at any point will be
indicated to the application by a BDB_EVENT_NWK_JOIN_FAILURE event.

4. On successful completion of the above steps, the joining node requests that
the ‘permit joining’ time (for new nodes to join the network) is extended by
BDBC_MIN_COMMISSIONING_TIME (180s by default) and generates a
BDB_EVENT_NWK_STEERING_SUCCESS event for the application.

Depending on the outcome of the above Network Steering process:

 If the node successfully joins a network, you may wish to bind the node to
another node or add the node to a group, in which case it is necessary to
continue to the Finding and Binding stage, described in Section 2.2.4.

 If the node fails to join a network, you may wish to make sure the desired
network is open for joining and re-initiate this Network Steering procedure. In
the case of a Router node, the application may opt to form its own distributed
network, in which case it is necessary to continue to the Network Formation
stage described in Section 2.2.3.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 23

Chapter 2
ZigBee Base Device

2.2.3 Network Formation

Network Formation allows a new network to be created by a Co-ordinator or Router.

 A Co-ordinator will form a centralised security network (see Section 2.3.1) and
activate its Trust Centre functionality.

 A Router will form a distributed security network (see Section 2.3.2).

If Network Formation is required on a node, it must be enabled via the attribute
u8bdbCommissioningMode. You can start Network Formation from your application
by calling the function BDB_eNfStartNwkFormation().

The node will perform a scan of the primary set of radio channels specified through
the u32bdbPrimaryChannelSet bitmap (attribute) to form a centralised or distributed
network with a unique PAN ID on one of the free primary channels. If this network
formation fails or the primary channel bitmap is set to zero, the node will perform a
scan of the secondary set of radio channels specified through the
u32bdbSecondaryChannelSet bitmap (attribute) to form a centralised or distributed
network with a unique PAN ID on one of the free secondary channels.

During the formation of a distributed security network by a Router:

 The above channel scans will start with the first channel of the relevant set and
cover all the specified channels.

 If the macro RAND_CHANNEL is TRUE (in the application), a channel will be
selected at random from the scanned channels.

 The macro RAND_DISTRIBUTED_NWK_KEY should be set to TRUE to
choose a network key at random (but may be set to FALSE during application
development in order to use a specific network key).

 The PAN ID and Extended PAN ID are allocated at random (but must not clash
with those of other networks operating in the neighbourhood).

 The 16-bit network address of the local is allocated at random.

In all cases, successful Network Formation is indicated by the event
BDB_EVENT_NWK_FORMATION_SUCCESS through the callback function
APP_vBdbCallback(), while unsuccessful Network Formation is indicated by the
event BDB_EVENT_NWK_FORMATION_FAILURE.

If Network Formation is successful, the new network will consist of just one node.
Further nodes can be added to the network using Network Steering (see Section
2.2.2) or Touchlink (see Section 2.2.1).
24 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.2.4 Finding and Binding

Finding and Binding mode allows a node in the network to be paired with another
network node - for example, a new lamp may need to be paired with a controller
device, to allow control of the lamp. The objective of this commissioning mode is to
bind an endpoint on a new node to a compatible endpoint on a remote node in the
network (depending on the supported clusters). Alternatively, the new node may be
added to a group of nodes that are collectively controlled.

If it is required on a node, Finding and Binding must be enabled via the attribute
u8bdbCommissioningMode.

In Finding and Binding, a node can have one of two roles:

 Initiator: This node can either create a (local) binding with a remote endpoint
or request that the remote endpoint is added to a group

 Target: This node identifies itself, and receives and responds to requests from
the initiator

The intended outcome is a pairing between the initiator and the target. Usually, the
initiator is a controller device. The path followed by the Finding and Binding process
depends on whether the local endpoint is an initiator or a target.

2.2.4.1 Initiator Node

Finding and Binding can be started on an initiator node by calling the function
BDB_eFbTriggerAsInitiator() - this function may be called as the result of a user
action on the node, such as a button-press. The initiator will then remain in Finding
and Binding mode for a fixed time-interval (in seconds) defined by the constant
BDBC_MIN_COMMISSIONING_TIME. If Finding and Binding does not succeed
within this time, the event BDB_EVENT_FB_TIMEOUT is generated and passed into
the callback function APP_vBdbCallback().

Once Finding and Binding has started, the initiator node searches for target endpoints
by broadcasting an Identify Query command periodically with a period (in seconds)
defined through the macro BDB_FB_RESEND_IDENTIFY_QUERY_TIME.

If the initiator receives an Identify Query response from a remote endpoint, the
application must pass the ZCL event BDB_E_ZCL_EVENT_IDENTIFY_QUERY to
the Base Device using the function BDB_vZclEventHandler(). This will allow the
Base Device to gather information about the identifying device by sending a Simple
Descriptor request to the relevant endpoint. If the requested Simple Descriptor is then
successfully received back, the callback function checks this descriptor for clusters
that match those on the initiator. The application is notified of this via a

Note: Before each broadcast attempt, the event
BDB_EVENT_FB_NO_QUERY_RESPONSE is
generated and passed into APP_vBdbCallback(), in
order to give the application the opportunity to exit the
current Finding and Binding process (see below).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 25

Chapter 2
ZigBee Base Device

BDB_EVENT_FB_HANDLE_SIMPLE_DESC_RESP_OF_TARGET event passed
into APP_vBdbCallback().

If there is at least one matching cluster, the initiator does one of the following:

 If binding is required (indicated by the u16bdbCommissioningGroupID attribute
being equal to 0xFFFF), the initiator adds the remote endpoint to the local
Binding table (but may first need to request the IEEE/MAC address of the
remote node).

 If grouping is required (indicated by the u16bdbCommissioningGroupID
attribute being equal to a 16-bit group address), the initiator will request that the
target endpoint adds the group address to its Group Address table.

The application is notified of a successful binding or grouping via the following events:

 For a binding:

 BDB_EVENT_FB_BIND_CREATED_FOR_TARGET for success

 BDB_EVENT_FB_ERR_BINDING_FAILED for failure

 For a grouping:

 BDB_EVENT_FB_GROUP_ADDED_TO_TARGET for success

 BDB_EVENT_FB_ERR_GROUPING_FAILED for failure

At this point, the application can remotely stop identification mode (and therefore
Finding and Binding) on the target node by calling the Identify cluster function
eCLD_IdentifyCommandIdentifyRequestSend() to request that the identification
mode period is set to zero.

A Finding and Binding process can be stopped on the initiator endpoint using the
function BDB_vFbExitAsInitiator(). This function is typically called in the callback
function APP_vBdbCallback() as the result of a user action, such as a button-press
or button-release.

2.2.4.2 Target Node

Finding and Binding can be started on a target node by calling the function
BDB_eFbTriggerAsTarget() - this function may be called as the result of a user
action on the node, such as a button-press.

The target node then uses the Identify cluster to put itself into identification mode for
a fixed period of time. This period (in seconds) is determined by u16IdentifyTime,
an Identify cluster attribute which is automatically set to the value of the constant
BDBC_MIN_COMMISSIONING_TIME. In identification mode, the cluster will respond
to any received Identify Query commands, as well as other Finding and Binding
commands. The node may also visually or audibly indicate that it is in identification
mode. On exiting identification mode at the end of the above period, the cluster will no
longer be able to process Identify Query commands but the node will still be able to
service other commands from the initiator related to the binding/grouping. The Identify
cluster is fully described in the ZigBee Cluster Library User Guide (JN-UG-3115).
26 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
A target node can be brought out of the Finding and Binding process in either of the
following ways:

 The local application can call the function BDB_vFbExitAsTarget() as the
result of a user action, such as a button-press or button-release.

 The remote application (on the initiator) can call the Identify cluster function
eCLD_IdentifyCommandIdentifyRequestSend() to request that the
identification mode period is set to zero. To indicate to the Base Device that the
identification process has ended, the application must pass the ZCL event
BDB_E_ZCL_EVENT_IDENTIFY to the Base Device using the
BDB_vZclEventHandler() function. This will allow the Base Device to exit the
'Finding and Binding' process on the target endpoint.

2.2.5 Out-Of-Band Commissioning

A node can be commissioned to a ZigBee network via out-of-band means - that is, not
using IEEE802.15.4 packets operating in the radio channel used by the target
network. For example, the out-of-band commissioning could be conducted from
another ZigBee device using inter-PAN packets (operating in a different radio channel)
or by a commissioning device that uses NFC (Near Field Communication).

Out-of-band commissioning can be used to create a new network by starting the Co-
ordinator or to join a Router or End Device to an existing network. To do this,
commissioning data must be sent to the node via an out-of-band means. This data
includes details of the network (see Section 2.7.5). The application must pass the
received commissioning data to the ZigBee Base Device and start out-of-band
commissioning using the function BDB_u8OutOfBandCommissionStartDevice().
The data is then stored locally.

As part of the out-of-band commissioning of a node to an existing centralised network,
the Trust Centre of the joined network may need to validate the new node by checking
that the node contains appropriate data values, such as the correct network key and
Trust Centre address. If such a validation request is received by the node, the required
data values can be obtained by the application in either of two ways:

 The function BDB_vOutOfBandCommissionGetData() can be used to read
the relevant data values. In this case, the application should encrypt the
obtained network key before sending the data to the Trust Centre. The install
code for the node should be used in this encryption.

 The function BDB_eOutOfBandCommissionGetDataEncrypted() can be
used to read the relevant data values and encrypt the obtained network key -
thus, the network key will be delivered already encrypted. The install code for
the node to be used in this encryption must be specified in the function call. The
application can then send the obtained data to the Trust Centre.

Once the Trust Centre has received the requested data, it can decrypt the obtained
network key using the function BDB_bOutOfBandCommissionGetKey() and then
check that the correct key is being used. This function requires the install code for the
new node, which must be supplied to the Trust Centre via out-of-band means (for
example, via a keypad).

Security keys and install codes are described in Section 2.3.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 27

Chapter 2
ZigBee Base Device

2.3 Network Security

The ZigBee Base Device supports the following network security modes:

 Centralised security

 Distributed security

These are described in the sub-sections below.

All Router and End Device nodes should support both centralised security and
distributed security by adapting to the security scheme employed by the network that
they join. A Co-ordinator supports only centralised security.

When the application calls BDB_vInit(), this function internally calls the function
BDB_vSetKeys(). This function will load the appropriate pre-configured link key(s),
depending on whether the node type supports centralised and/or distributed security.
The pre-configured link keys are defined in the file bdb_link_keys.c.

2.3.1 Centralised Security Networks

A centralised security network is formed by a Co-ordinator, which also acts as the
Trust Centre for the network. When a node attempts to join the network, it is
authenticated by this Trust Centre before it is allowed into the network.

For participation in centralised security networks, all nodes must be pre-configured
with a link key. This key is used to encrypt the network key when passing it from the
Trust Centre to a newly joined node. When a node joins a network with centralised
security, the ZigBee Base Device will automatically use the relevant pre-configured
link key. This will also be the case for a Co-ordinator that forms a new centralised
security network.
28 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 The following key types can be pre-configured for centralised security:

 Default Global Trust Centre Link Key: This key is factory-programmed into
all nodes and is used to encrypt communications between the Trust Centre and
a joining node.

 Touchlink Pre-configured Link Key: This key is factory-programmed into all
nodes that can employ Touchlink commissioning and is used to encrypt
communications between the Router parent and a joining node. The Touchlink
Pre-configured Link Key can be one of three types:

 Development key, used during development before ZigBee certification

 Master key, used after successful ZigBee certification

 Certification key, used during ZigBee certification testing

The link key used in the final products should be a ‘master key’, which results
from the successful ZigBee certification of the product.

 Install Code-derived Pre-configured Link Key: This key is derived by the
ZigBee stack from a random install code which is assigned to each Router and
End Device node in the factory. The install code is factory-programmed into the
node but provided to the Trust Centre via out-of-band means when the node is
commissioned. The use of install codes is described in more detail below.

Install Codes

An install code can be used to create an initial link key employed in commissioning an
individual node into a centralised security network. An install code is assigned to the
node in the factory. It is a random code but is not necessarily unique (the same install
code may be randomly generated for more than one node). The ZigBee stack derives
a link key from the install code using a Matyas-Meyer-Oseas hash function. The install
code is factory-programmed into the node and also accompanies the node (e.g. in
printed form) when it leaves the factory. The process of using an install code to
commission a node is outlined below.

In the factory:

1. An install code is randomly generated for the individual node.

2. The install code is programmed into the node.

3. A pre-configured link key is derived from the install code by the ZigBee stack.

4. The install code is shipped with the node (by some unspecified means).

During installation:

5. The install code that was shipped with the node is installed into the
Co-ordinator/Trust Centre.

6. The pre-configured link key is derived from the install code by the ZigBee
stack of the Co-ordinator/Trust Centre.

7. The Trust Centre and node subsequently use the pre-configured link key in
joining the node to the network (e.g. to encrypt/decrypt the network key).

More detailed information about install codes can be found in the ZigBee Base Device
Behavior Specification (13-0402-08).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 29

Chapter 2
ZigBee Base Device

2.3.2 Distributed Security Networks

A distributed security network is formed by a Router and does not have a Trust Centre.
It consists only of Routers and End Devices. When a node attempts to join the
network, it is authenticated by its Router parent before it is allowed into the network.

For participation in distributed security networks, all Router and End Device nodes
must be pre-configured with a link key. This key is used to encrypt the network key
when passing it from a Router parent to a newly joined node. When a Router or End
Device joins a network with distributed security, the ZigBee Base Device will
automatically use the relevant pre-configured link key. This will also be the case for a
Router that forms a new distributed security network.

The following key types can be pre-configured for distributed security:

 Distributed Security Global Link Key: This key is factory-programmed into all
nodes and is used to encrypt communications between the Router parent and a
joining node.

 Touchlink Pre-configured Link Key: This key is factory-programmed into all
nodes that can employ Touchlink commissioning and is used to encrypt
communications between the Router parent and a joining node. The Touchlink
Pre-configured Link Key can be one of three types:

 Development key, used during development before ZigBee certification

 Master key, used after successful ZigBee certification

 Certification key, used during ZigBee certification testing

The link key used in the final products should be a ‘master key’, which results
from the successful ZigBee certification of the product.

2.4 ZigBee Base Device Rejoin Handling

For a Router or End Device, there are instances in which the ZigBee PRO stack will
initiate a network rejoin attempt. These include:

 A Router or End Device which receives a ‘leave with rejoin’ request

 An End Device which polls its parent for data but fails to receive a response

The ZigBee Base Device handles the stack events that result from this rejoin attempt:

 If the stack event ZPS_EVENT_NWK_FAILED_TO_JOIN is received to
indicate an unsuccessful rejoin, the ZigBee Base Device makes a series of
rejoin attempts as described for the case “If the node was in a network” in
Section 2.1. If a rejoin attempt is successful, the event
BDB_EVENT_REJOIN_SUCCESS is generated to notify the application. If all
rejoins are unsuccessful, the event BDB_EVENT_REJOIN_FAILURE is
generated unless unsecured joins are enabled, in which case a join through
Network Steering is attempted.

 If the stack event ZPS_EVENT_NWK_JOINED_AS_ROUTER or
ZPS_EVENT_NWK_JOINED_AS_END_DEVICE is received to indicate a
successful rejoin, the event BDB_EVENT_REJOIN_SUCCESS is generated to
notify the application.
30 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.5 Attributes and Constants

2.5.1 Attributes

The attributes of the ZigBee Base Device are contained in the structure
BDB_tsAttrib, shown below.

typedef struct

{

 uint16 u16bdbCommissioningGroupID;

 uint8 u8bdbCommissioningMode;

 BDB_teCommissioningStatus ebdbCommissioningStatus;

 uint64 u64bdbJoiningNodeEui64;

 uint8 au8bdbJoiningNodeNewTCLinkKey[16];

 bool_t bbdbJoinUsesInstallCodeKey;

 const uint8 u8bdbNodeCommissioningCapability;

 bool_t bbdbNodeIsOnANetwork;

 uint8 u8bdbNodeJoinLinkKeyType;

 uint32 u32bdbPrimaryChannelSet;

 uint8 u8bdbScanDuration;

 uint32 u32bdbSecondaryChannelSet;

 uint8 u8bdbTCLinkKeyExchangeAttempts;

 uint8 u8bdbTCLinkKeyExchangeAttemptsMax;

 uint8 u8bdbTCLinkKeyExchangeMethod;

 uint8 u8bdbTrustCenterNodeJoinTimeout;

 bool_t bbdbTrustCenterRequireKeyExchange;

 bool_t bTLStealNotAllowed;

 bool_t bLeaveRequested;

}BDB_tsAttrib;

The ZigBee Base Device attribute values can be initialised at compile-time in the
bdb_options.h file using the macros listed in Table 3 below (for information on
compile-time options, refer to Section 2.10). The attributes can written to or read at
run-time through the above structure.

Note: Both bTLStealNotAllowed and
bLeaveRequested are NXP proprietary variables and
not ZigBee attributes.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 31

Chapter 2
ZigBee Base Device

The attributes are individually described below. For further details, refer to the ZigBee
Base Device Behavior Specification (13-0402-08).

u16bdbCommissioningGroupID

This attribute can only be used on a Finding and Binding initiator endpoint. It contains
the identifier of the group in which the initiator will put the target endpoints. If it is equal
to 0xFFFF, individual (rather than group) bindings will be created. The value of this
attribute can be initialised at compile-time using the macro
BDB_COMMISSIONING_GROUP_ID.

Use of this attribute requires Finding and Binding to be enabled in the
u8bdbCommissioningMode attribute.

The Finding and Binding commissioning mode is described in Section 2.2.4.

Attribute Initialisation Macro

u16bdbCommissioningGroupID BDB_COMMISSIONING_GROUP_ID

u8bdbCommissioningMode BDB_COMMISSIONING_MODE

ebdbCommissioningStatus BDB_COMMISSIONING_STATUS

u64bdbJoiningNodeEui64 BDB_JOINING_NODE_EUI64

au8bdbJoiningNodeNewTCLinkKey[16] -

bbdbJoinUsesInstallCodeKey BDB_JOIN_USES_INSTALL_CODE_KEY

u8bdbNodeCommissioningCapability -

bbdbNodeIsOnANetwork -

u8bdbNodeJoinLinkKeyType BDB_NODE_JOIN_LINK_KEY_TYPE

u32bdbPrimaryChannelSet BDB_PRIMARY_CHANNEL_SET

u8bdbScanDuration BDB_SCAN_DURATION

u32bdbSecondaryChannelSet BDB_SECONDARY_CHANNEL_SET

u8bdbTCLinkKeyExchangeAttempts BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS

u8bdbTCLinkKeyExchangeAttemptsMax BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS_MAX

u8bdbTCLinkKeyExchangeMethod BDB_TC_LINK_KEY_EXCHANGE_METHOD

u8bdbTrustCenterNodeJoinTimeout BDB_TRUST_CENTER_NODE_JOIN_TIMEOUT

bbdbTrustCenterRequireKeyExchange BDB_TRUST_CENTER_REQUIRE_KEYEXCHANGE

bTLStealNotAllowed -

bLeaveRequested -

Table 3: ZBD Attributes and Initialisation Macros
32 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
u8bdbCommissioningMode

This attribute is a bitmap used to indicate which commissioning modes are enabled on
an endpoint, where each bit corresponds to a commissioning mode and is set (to ‘1’)
when the mode is enabled - this means that the node will be able to implement this
commissioning mode, if required. The value of this attribute can be initialised at
compile-time using the macro BDB_COMMISSIONING_MODE. The bitmap is
illustrated in the table below, along with the enumerations used to set the bits.

The commissioning modes are described in Section 2.2.

ebdbCommissioningStatus

This attribute indicates the status of the commissioning process that is currently
underway on an endpoint. The attribute takes one of the values defined in the
BDB_teCommissioningStatus enumerations (see Section 2.8.2). The attribute is
used on all node types. The value of this attribute is updated internally by the ZigBee
Base Device implementation, but can be read by the application.

u64bdbJoiningNodeEui64

This attribute contains the 64-bit IEEE/MAC address of a node that is in the process
of joining a centralised security network. It is used on the network Co-ordinator only.
The value of this attribute is updated internally by the ZigBee Base Device
implementation.

au8bdbJoiningNodeNewTCLinkKey

This attribute contains a new link key for use with a node that is currently joining the
network but has not yet been granted full network membership. The value of this
attribute is updated internally by the ZigBee Base Device implementation (on a joining
node and its parent).

Bit Commissioning Mode Enumeration

0 Touchlink BDB_COMMISSIONING_MODE_TOUCHLINK

1 Network Steering BDB_COMMISSIONING_MODE_NWK_STEERING

2 Network Formation BDB_COMMISSIONING_MODE_NWK_FORMATION

3 Finding and Binding BDB_COMMISSIONING_MODE_FINDING_N_BINDING

4-7 Reserved (set to ‘0’) -

Table 4: bdbCommissioningMode Bitmap

Note: The attribute is used on all node types. However,
in order to enable a commissioning mode, it must be
available on the node, as indicated through the attribute
u8bdbNodeCommissioningCapability. The
enabled commissioning modes will be a subset of the
commissioning capabilities of the node.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 33

Chapter 2
ZigBee Base Device

bbdbJoinUsesInstallCodeKey

This attribute indicates whether a pre-configured link key must be available for a node
before it is allowed to join the network - this may be a pre-installed link key or may be
derived from an install code. A value of TRUE means that a link key is required, while
FALSE means that a link key is not required. It is used on the network Co-ordinator/
Trust Centre only. The value of this attribute can be initialised at compile-time using
the macro BDB_JOIN_USES_INSTALL_CODE_KEY. By default, the attribute should
be set to FALSE. The attribute is not used by the ZigBee Base Device and if the
attribute is set to TRUE, it is the responsibility of the application to handle this
functionality directly and to set the required key (see u8bdbNodeJoinLinkKeyType).

u8bdbNodeCommissioningCapability

This attribute is a bitmap indicating the commissioning capabilities of the node, where
each bit corresponds to a commissioning capability and is set (to ‘1’) if the capability
is present. The attribute is used on all node types. The application cannot write directly
to these bits - they are set according to the options defined in the application makefile.
The bitmap and the related makefile options are detailed in the table below.

The above commissioning modes are described in Section 2.2.

Bit Capability Makefile Options

0 Network Steering Is set to ‘1’ if BDB_SUPPORT_NWK_STEERING is defined

1 Network Formation Is set to ‘1’ if BDB_SUPPORT_NWK_FORMATION is defined

2 Finding and Binding Is set to ‘1’ if either of the following is defined:

• BDB_SUPPORT_FIND_AND_BIND_INITIATOR

• BDB_SUPPORT_FIND_AND_BIND_TARGET

3 Touchlink Is set to ‘1’ if any of the following is defined:

• BDB_SUPPORT_TOUCHLINK_INITIATOR_END_DEVICE

• BDB_SUPPORT_TOUCHLINK_INITIATOR_ROUTER

• BDB_SUPPORT_TOUCHLINK_TARGET

4-7 Reserved (set to ‘0’) -

Table 5: bdbCommissioningCapability Bitmap

Note: In order to use one of the available
commissioning modes, the mode must also be enabled
through the attribute u8bdbCommissioningMode. The
enabled commissioning modes will be a subset of the
commissioning capabilities of the node.
34 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
bbdbNodeIsOnANetwork

This attribute indicates whether the local node is currently a member of a network. A
value of TRUE means that it is in a network (but not necessarily bound to any remote
nodes), while FALSE means that it is not in a network. The attribute is used on all node
types but the ZigBee Base Device does not maintain it. The application is responsible
for persisting the attribute value and initialising the attribute following a power-cycle
(before any other ZigBee Base Device functions are called).

u8bdbNodeJoinLinkKeyType

This attribute indicates the type of link key with which the node is able to decrypt the
encypted network key received over-air when the node joins a new network. The
attribute is used by Router and End Device nodes. The attribute values and the
corresponding link key types are listed in the table below, as well as the macros that
can be used to define the link keys.

u32bdbPrimaryChannelSet

This attribute specifies the primary (first-choice) set of 2.4GHz radio channels that will
be used in channel scans. The attribute is a bitmap in which each bit corresponds to
a channel and should be set to ‘1’ if the channel is to be included in a scan. The bit
number corresponds directly to the channel number - for example, bit 11 corresponds
to the 2.4GHz channel 11 and bit 26 corresponds to channel 26. This attribute is used
on all node types. The value of this attribute can be initialised at compile-time using
the macro BDB_PRIMARY_CHANNEL_SET.

u8bdbScanDuration

This attribute determines the duration of a scan operation per 2.4GHz radio channel.
The actual scan duration is calculated from the attribute value as follows:

aBaseSuperframeDuration x (2bdbScanDuration + 1)

where aBaseSuperframeDuration is defined in the IEEE 802.15.4 specification

The attribute is used on all node types. The value of this attribute is taken from the
Scan Duration Time set in the ZPS Configuration Editor.

Value Link Key Type Link Key Definition Macro

0x00 Default Global Trust Centre Link Key DEFAULT_GLOBAL_TRUST_CENTER_LINK_KEY

0x01 Distributed Security Global Link Key DISTRIBUTED_SECURITY_GLOBAL_LINK_KEY

0x02 Install Code Derived Pre-configured Link Key INSTALL_CODE_DERIVED_PRECONFIGURED_LINK_KEY

0x03 Touchlink Pre-configured Link Key TOUCHLINK_PRECONFIGURED_LINK_KEY

Table 6: bdbNodeJoinLinkKeyType Values and Macros
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 35

Chapter 2
ZigBee Base Device

u32bdbSecondaryChannelSet

This attribute specifies the secondary (second-choice) set of 2.4GHz radio channels
that will be used in channel scans. This channel set will be used if the scan of primary
channels is unsuccessful. The attribute is a bitmap in which each bit corresponds to a
channel and should be set to ‘1’ if the channel is to be included in a scan. The bit
number corresponds directly to the channel number - for example, bit 11 corresponds
to the 2.4GHz channel 11 and bit 26 corresponds to channel 26. If a scan of secondary
channels is not required, the attribute should be set to zero. The attribute is used on
all node types. The value of this attribute can be initialised at compile-time using the
macro BDB_SECONDARY_CHANNEL_SET.

u8bdbTCLinkKeyExchangeAttempts

This attribute indicates the number of attempts to request a new link key that were
made when the node joined the network. The attribute is used on Router and End
Device nodes. The value of this attribute can be initialised at compile-time using the
macro BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS.

u8bdbTCLinkKeyExchangeAttemptsMax

This attribute specifies the maximum number of key establishment attempts that will
be made before key establishment is abandoned when the node joins a new network.
The attribute is used on Router and End Device nodes. The value of this attribute can
initialised at compile-time using the macro
BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS_MAX.

u8bdbTCLinkKeyExchangeMethod

This attribute specifies the method that was used to obtain a new link key when the
node joined the network. The attribute values and corresponding methods are listed
in the table below. This attribute is used on Router and End Device nodes.

The value of this attribute can be initialised at compile-time using the macro
BDB_TC_LINK_KEY_EXCHANGE_METHOD. It should be initialised to 0x00 (APS
Request Key).

u8bdbTrustCenterNodeJoinTimeout

This attribute specifies a timeout (in seconds) for the Trust Centre to delete the Trust
Centre-generated link key for a newly joined node when key establishment with the
node was unsuccessful. The attribute is used on the network Co-ordinator/Trust
Centre only. The value of this attribute can be initialised at compile-time using the
macro BDB_TRUST_CENTER_NODE_JOIN_TIMEOUT.

Value Key Exchange Method

0x00 APS Request Key

0x01 Certificate Based Key Exchange (CBKE)

0x02-0xFF Reserved

Table 7: bdbTCLinkKeyExchangeMethod Values
36 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
bbdbTrustCenterRequireKeyExchange

This attribute specifies whether the Trust Centre requires a joining node to replace its
initial link key with a new link key generated by the Trust Centre. A value of TRUE
means that the joining node must successfully complete the link key exchange
procedure and failure to do so will result in the node being removed from the network.
A value of FALSE means that the joining node will be allowed remain in the network
even if it does not successfully complete the link key exchange procedure. The
attribute is used on the network Co-ordinator/Trust Centre only. The value of this
attribute can be initialised at compile-time using the macro
BDB_TRUST_CENTER_REQUIRE_KEYEXCHANGE. It should be initialised
according to the Trust Centre policy that is implemented in the network - by default,
set it to FALSE for backward compatibility.

bTLStealNotAllowed

This is an NXP proprietary flag which the application can set to prevent Touchlink
commissioning commands from another node in a different network from 'stealing' the
local node. Clearing the flag allows the node to be stolen, in which case it leaves the
current network and either joins the other network or forms a new distributed network,
as instructed by Touchlink initiator.

bLeaveRequested

This is an NXP proprietary flag which the application should only read and not write to.
If Touchlink commissioning operations cause the ZigBee Base Device to initiate a
network leave then this flag is set by the Base Device. When a
ZPS_EVENT_NWK_LEAVE_CONFIRM stack event is generated, the application
should read this flag and if it reads as TRUE, the application should not handle the
event (since the ZigBee Base Device will handle it).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 37

Chapter 2
ZigBee Base Device

2.5.2 Constants

The ZigBee Base Device constants are divided into two categories:

 Constants used on all nodes - see Section 2.5.2.1

 Constants used on nodes that support Touchlink - see Section 2.5.2.2

2.5.2.1 General Constants

The table below lists the ZigBee Base Device constants that can be used on all nodes
and also shows the corresponding macros used to define the constant values in the
bdb_options.h file.

bdbcMaxSameNetworkRetryAttempts

This constant specifies the maximum number of join or key exchange attempts that
the node can make on the same network. The value of this constant is defined using
the macro BDBC_MAX_SAME_NETWORK_RETRY_ATTEMPTS and should be set
to 10 (as recommended in the ZigBee BDB Specification).

bdbcMinCommissioningTime

This constant specifies the minimum time-interval (in seconds) for which a network will
be open to allow new nodes to join or for a device to identify itself. The value of this
constant is defined using the macro BDBC_MIN_COMMISSIONING_TIME and
should be set to 180 (as recommended in the ZigBee BDB Specification).

bdbcRecSameNetworkRetryAttempts

This constant specifies the recommended number of join or key exchange attempts
that the node can make on the same network. The value of this constant is defined
using the macro BDBC_REC_SAME_NETWORK_RETRY_ATTEMPTS and should
be set to 3 (as recommended in the ZigBee BDB Specification).

bdbcTCLinkKeyExchangeTimeout

This constant specifies the maximum time (in seconds) for which a joining node will
wait for a response after an APS key request has been sent to the Trust Centre. The
value of this constant is defined using the macro
BDBC_TC_LINK_KEY_EXCHANGE_TIMEOUT and should be set to 5 (as
recommended in the ZigBee BDB Specification).

Constant Macro

bdbcMaxSameNetworkRetryAttempts BDBC_MAX_SAME_NETWORK_RETRY_ATTEMPTS

bdbcMinCommissioningTime BDBC_MIN_COMMISSIONING_TIME

bdbcRecSameNetworkRetryAttempts BDBC_REC_SAME_NETWORK_RETRY_ATTEMPTS

bdbcTCLinkKeyExchangeTimeout BDBC_TC_LINK_KEY_EXCHANGE_TIMEOUT

Table 8: ZBD General Constants and Macros
38 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.5.2.2 Touchlink Constants

The table below lists the ZigBee Base Device constants that can be used on nodes
that support Touchlink commissioning and also shows the corresponding macros
used to define the constant values in the bdb_options.h file.

bdbcTLInterPANTransIdLifetime

This constant specifies the maximum length of time (in seconds) that an inter-PAN
transaction ID remains valid. The value of this constant is defined using the macro
BDBC_TL_INTERPAN_TRANS_ID_LIFETIME and should be set to 8 (as
recommended in the ZigBee BDB Specification).

bdbcTLMinStartupDelayTime

This constant specifies the length of time (in seconds) that a Touchlink initiator waits
for the target to complete its network start-up procedure. The value of this constant is
defined using the macro BDBC_TL_MIN_STARTUP_DELAY_TIME and should be
set to 2 (as recommended in the ZigBee BDB Specification).

bdbcTLPrimaryChannelSet

This constant specifies the bitmap for the primary (first-choice) set of 2.4GHz radio
channels that will be used for a non-extended Touchlink scan. The value of this
constant is defined using the macro BDBC_TL_PRIMARY_CHANNEL_SET and
should be set to 0x02108800, corresponding to channels 11, 15, 20 and 25 (as
recommended in the ZigBee BDB Specification).

bdbcTLRxWindowDuration

This constant specifies the maximum duration (in seconds) that the node's radio
receiver remains enabled during Touchlink commissioning, in order to receive
responses. The value of this constant is defined using the macro
BDBC_TL_RX_WINDOW_DURATION and should be set to 5 (as recommended in
the ZigBee BDB Specification).

Constant Macro

bdbcTLInterPANTransIdLifetime BDBC_TL_INTERPAN_TRANS_ID_LIFETIME

bdbcTLMinStartupDelayTime BDBC_TL_MIN_STARTUP_DELAY_TIME

bdbcTLPrimaryChannelSet BDBC_TL_PRIMARY_CHANNEL_SET

bdbcTLRxWindowDuration BDBC_TL_RX_WINDOW_DURATION

bdbcTLScanTimeBaseDuration BDBC_TL_SCAN_TIME_BASE_DURATION_MS

bdbcTLSecondaryChannelSet BDBC_TL_SECONDARY_CHANNEL_SET

Table 9: ZBD Touchlink Constants and Macros
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 39

Chapter 2
ZigBee Base Device

bdbcTLScanTimeBaseDuration

This constant specifies the base duration (in milliseconds) for which the node's radio
receiver will remain enabled after transmitting a scan request during a Touchlink scan
operation, in order to receive responses. The value of this constant is defined using
the macro BDBC_TL_SCAN_TIME_BASE_DURATION_MS and should be set to 250
(as recommended in the ZigBee BDB Specification).

bdbcTLSecondaryChannelSet

This constant specifies the bitmap for the secondary (second-choice) set of 2.4GHz
radio channels that will be used for an extended Touchlink scan. It should contain the
channels that remain from those specified in bdbcTLPrimaryChannelSet. The value of
this constant is defined using the macro BDBC_TL_SECONDARY_CHANNEL_SET
and should be set to 0x07FFF800 XOR BDBC_TL_PRIMARY_CHANNEL_SET.
40 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.6 Functions

This section details the C functions that are provided for the ZigBee Base Device. The
functions are listed below along with page references to their descriptions.

Function Page

BDB_vInit 42

BDB_vSetKeys 43

BDB_vStart 44

BDB_eNfStartNwkFormation 45

BDB_eNsStartNwkSteering 46

BDB_eFbTriggerAsInitiator 47

BDB_vFbExitAsInitiator 48

BDB_eFbTriggerAsTarget 49

BDB_vFbExitAsTarget 50

BDB_bIsBaseIdle 51

BDB_u8OutOfBandCommissionStartDevice 52

BDB_vOutOfBandCommissionGetData 53

BDB_eOutOfBandCommissionGetDataEncrypted 54

BDB_bOutOfBandCommissionGetKey 55

Note 1: The application must provide a user-defined
callback function, APP_vBdbCallback(), to handle
ZigBee Base Device events. The prototype for this
function is given in Section 2.9.

Note 2: The ZigBee Base Device supplies the callback
function BDB_vZclEventHandler() which handles
certain ZCL events during the Finding and Binding
process, as indicated in Section 2.2.4.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 41

Chapter 2
ZigBee Base Device

BDB_vInit

Description

This function initialises the ZigBee Base Device (ZBD) and must be the first ZigBee
Base Device function called in your code. The function must be called after initialising
the ZigBee PRO stack via a call to ZPS_eAplAfInit(). The ZigBee Base Device
attribute bbdbNodeIsOnANetwork must also be restored from persistent storage (if
relevant) before calling this function.

The initialisation performed by this function includes the following:

 Sets the ZigBee Base Device attributes to their default values, unless other values are
defined by the application in the file bdb_options.h

 Registers the ZigBee Base Device message queue passed into this function - this
message queue is used by the ZigBee Base Device to capture stack events

 Calls BDB_vSetKeys() to set the initial pre-configured security keys (defined in the file
bdb_link_keys.c), according to the node type:

 For a Co-ordinator, the Default Global Trust Centre Link Key is set

 For a Router or End Device, both the Default Global Trust Centre Link Key and
Distributed Security Global Link Key are set

 Opens timers for ZigBee Base Device internal use

For more information on the security keys, refer to Section 2.3.

Parameters

psInitArgs Handle of the ZigBee Base Device event queue

Returns

None

void BDB_vInit(BDB_tsInitArgs *psInitArgs);

Note: Before calling this function, the application must
initialise the required ZigBee software timers using the
function ZTIMER_eInit() from the ZigBee PRO Stack libraries.
In doing so, it must add a number of timers for internal use by
the ZigBee Base Device, where this number is defined by the
macro BDB_ZTIMER_STORAGE.
42 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
BDB_vSetKeys

Description

This function loads into memory the appropriate pre-configured link key(s) on the
local node for the initial security state of the node. The function is automatically called
by BDB_vInit(). However, it may need to be called explicitly to restore the link keys
after a reset which removes the keys from memory.

The type of link key that is loaded depends on the node type, as follows:

 On a Co-ordinator, the Default Global Trust Centre Link Key is loaded for participation
in a centralised security network

 On a Router or End Device, both of the following keys are loaded:

 Default Global Trust Centre Link Key for participation in a centralised security
network

 Distributed Security Global Link Key for participation in a distributed security
network

The pre-configured link keys are defined in the file bdb_link_keys.c, from where
they are loaded.

Network security is described in Section 2.3.

Parameters

None

Returns

None

void BDB_vSetKeys(void);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 43

Chapter 2
ZigBee Base Device

BDB_vStart

Description

This function starts the ZigBee Base Device (ZBD) and must be called after
BDB_vInit() and just before the application enters the main loop
(e.g. APP_vMainLoop()).

Depending on the node type and whether the node was previously a member of a
network, the function may or may not perform an action. In either case, the function
will finally invoke the callback function APP_vBdbCallback() with a suitable event.

 If the node was not in a network:

 For a Router node that supports Touchlink commissioning, the function selects a
radio channel for the node from the set of primary channels defined for Touchlink

 For other Router, Co-ordinator and End Device nodes, no action will be taken and
the application will subsequently need to join the node to a network.

In the above cases, the function will generate the event BDB_EVENT_INIT_SUCCESS.

 If the node was in a network:

 For Co-ordinator and Router nodes, no action is taken by the function and the
event BDB_EVENT_INIT_SUCCESS is generated.

 For an End Device node, a series of rejoin attempts will be performed. If a rejoin
attempt is successful, the event BDB_EVENT_REJOIN_SUCCESS is generated.
If all rejoins were unsuccessful, the event BDB_EVENT_REJOIN_FAILURE is
generated unless unsecured joins are enabled, in which case a join through
Network Steering will be attempted.

The above actions are described in more detail in Section 2.1.

Parameters

None

Returns

None

void BDB_vStart(void);
44 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
BDB_eNfStartNwkFormation

Description

This function starts the Network Formation process and, if required, must be called
after BDB_vStart(). If it is potentially required on a node, Network Formation must
be enabled via the attribute u8bdbCommissioningMode.

The function can be called only on a Co-ordinator or Router:

 If called on a Co-ordinator, a centralised security network will be formed

 If called on a Router, a distributed security network will be formed

The above network types are described in Section 2.3.

Once Network Formation has been started, the function will return and the eventual
outcome of the Network Formation process will be indicated by an asynchronous
event - one of the following:

 BDB_EVENT_NWK_FORMATION_SUCCESS if a centralised or distributed network
has been successfully formed

 BDB_EVENT_NWK_FORMATION_FAILURE if a network has not been successfully
formed

Network Formation is described in more detail in Section 2.2.3.

Parameters

None

Returns

BDB_E_SUCCESS
(Network Formation has been successfully started) *

BDB_E_ERROR_INVALID_PARAMETER
(End Device has attempted Network Formation)

BDB_E_ERROR_NODE_IS_ON_A_NWK
(node is already in a network)

* The eventual outcome will be indicated by a BDB_EVENT_NWK_FORMATION_SUCCESS
or BDB_EVENT_NWK_FORMATION_FAILURE event, as described above.

BDB_teStatus BDB_eNfStartNwkFormation(void);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 45

Chapter 2
ZigBee Base Device

BDB_eNsStartNwkSteering

Description

This function starts the Network Steering process and, if required, must be called
after BDB_vStart(). If it is potentially required on a node, Network Steering must be
enabled via the attribute u8bdbCommissioningMode.

The actions performed by this function depend on whether the local node is already
a member of a network:

 When the node is already in a network and is a Co-ordinator or Router, it opens up the
network for other nodes to join. This is for a fixed time-interval of 180 seconds by
default, but this interval can be configured (in seconds) using the macro
BDBC_MIN_COMMISSIONING_TIME in the bdb_options.h file.

 When the node is not already in a network, it searches for a suitable network to join
and, if it finds one, attempts to join the network. Once a node has joined the network,
the node is authenticated and receives the network key from its parent. If the network
has a Trust Centre, the node may then replace its pre-configured link key with one
generated and supplied by the Trust Centre.

Once Network Steering has been started, the function will return and the eventual
outcome of the Network Steering process will be indicated by an asynchronous event
- one of the following:

 BDB_EVENT_NWK_STEERING_SUCCESS if Network Steering has been completed
successfully

 BDB_EVENT_NO_NETWORK if no open network was discovered for joining

 BDB_EVENT_NWK_JOIN_FAILURE if the node attempted to join a network but failed

Network Steering is described in more detail in Section 2.2.2.

Parameters

None

Returns

BDB_E_SUCCESS
(Network Steering has been successfully started) *

BDB_E_ERROR_IMPROPER_COMMISSIONING_MODE
(Network Steering is not enabled)

BDB_E_ERROR_COMMISSIONING_IN_PROGRESS
(node is already in a commissioning mode)

BDB_E_ERROR_INVALID_DEVICE
(joining node is a Co-ordinator)

* The eventual outcome will be indicated by a BDB_EVENT_NWK_STEERING_SUCCESS,
BDB_EVENT_NO_NETWORK or BDB_EVENT_NWK_JOIN_FAILURE event, as described
above.

BDB_teStatus BDB_eNsStartNwkSteering(void);
46 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
BDB_eFbTriggerAsInitiator

Description

This function starts the Finding and Binding process on an initiator endpoint. The
function may be called as the result of a user action, such as a button-press. The
initiator will remain in Finding and Binding mode for a fixed time-interval (in seconds)
defined using the macro BDBC_MIN_COMMISSIONING_TIME in the
bdb_options.h file.

The initiator node first searches for target endpoints by broadcasting an Identify
Query command. If the initiator receives a response from a remote endpoint, it then
sends a Simple Descriptor request to this endpoint. If the requested Simple
Descriptor is then successfully received back, the initiator checks this descriptor for
clusters on the remote endpoint that match its own clusters. It there is at least one
matching cluster, the initiator does one of the following:

 If binding is required (indicated by the u16bdbCommissioningGroupID attribute being
equal to 0xFFFF), the initiator adds the remote endpoint to the local Binding table

 If grouping is required (indicated by the u16bdbCommissioningGroupID attribute being
equal to a 16-bit group address), the initiator will request that the target endpoint adds
the group address to its Group Address table.

Finding and Binding mode is described in Section 2.2.4.

Parameters

u8SourceEndPointId Number of initiator endpoint

Returns

BDB_E_SUCCESS
(Finding and Binding has been successfully started)

BDB_E_FAILURE
(invalid endpoint number or unable to broadcast Identify Query command)

BDB_E_ERROR_COMMISSIONING_IN_PROGRESS
(Finding and Binding already on-going)

BDB_teStatus BDB_eFbTriggerAsInitiator(
uint8 u8SourceEndPointId);

Note: Events are generated during this function call - for
details, refer to Section 2.2.4.1.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 47

Chapter 2
ZigBee Base Device

BDB_vFbExitAsInitiator

Description

This function stops an on-going Finding and Binding process on an initiator endpoint.
The function may be called as the result of a user action, such as a button-press or
button-release.

Finding and Binding mode is described in Section 2.2.4.

Parameters

None

Returns

None

void BDB_vFbExitAsInitiator(void);
48 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
BDB_eFbTriggerAsTarget

Description

This function starts the Finding and Binding process on a target endpoint and must
be called locally by the application on the target endpoint. The function may be called
as the result of a user action, such as a button-press.

The functions puts the device into identification mode of the Identify cluster for a time-
interval (in seconds) which is at least equal to the value defined using the macro
BDBC_MIN_COMMISSIONING_TIME in the bdb_options.h file. During this time,
the target device will generate responses to Identify Query commands, as well as
other Finding and Binding commands.

The endpoint can subsequently be brought out of Find and Binding mode locally
using the function BDB_vFbExitAsTarget() or remotely (by the initiator) using the
Identify cluster function eCLD_IdentifyCommandIdentifyRequestSend().

Finding and Binding mode is described in Section 2.2.4.

Parameters

u8EndPoint Number of target endpoint

Returns

BDB_E_SUCCESS
(Finding and Binding has been successfully started)

BDB_E_FAILURE
(invalid endpoint number or Identify cluster is inaccessible)

BDB_teStatus BDB_eFbTriggerAsTarget(uint8 u8EndPoint);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 49

Chapter 2
ZigBee Base Device

BDB_vFbExitAsTarget

Description

This function stops an on-going Finding and Binding process on a target endpoint
and must be called locally by the application on the target endpoint. The function may
be called as the result of a user action, such as a button-press or button-release.

Finding and Binding mode is described in Section 2.2.4.

Parameters

u8SourceEndpoint Number of target endpoint

Returns

None

void BDB_vFbExitAsTarget(uint8 u8SourceEndpoint);
50 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
BDB_bIsBaseIdle

Description

This function determines whether the ZigBee Base Device is busy or idle, and
therefore whether the node can enter sleep mode. The function returns a Boolean
indicating the activity status of the ZigBee Base Device.

If the ZigBee Base Device is idle and the node can go to sleep (indicated by TRUE),
it is then the responsibility of the application to put the JN516x/7x device into sleep
mode.

Parameters

None

Returns

TRUE indicates that the ZigBee Base Device is idle and the node can sleep

FALSE indicates that the ZigBee Base Device is busy

bool_t BDB_bIsBaseIdle(void);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 51

Chapter 2
ZigBee Base Device

BDB_u8OutOfBandCommissionStartDevice

Description

This function can be used to initiate out-of-band commissioning which allows the
local device to form a network as a Co-ordinator or to join an existing network as a
Router or End Device. The function should be called after ZPS_eAplAfInit(). It would
be called when commissioning data has been received from another device via out-
of-band means. This commissioning data must be supplied to the function in a
BDB_tsOobWriteDataToCommission structure, described in Section 2.7.5.
Not all the data values are mandatory.

The out-of-band commissioning interface makes sensible assumptions about data
values and does not allow certain values already in the node to be over-ridden by the
commissioning data. For example:

 It will not allow the network address of a Co-ordinator to be set to a non-zero value
(since the network address of the Co-ordinator must be zero)

 It will not allow the rejoin flag to be set on a Co-ordinator (since the Co-ordinator cannot
leave and then rejoin the network)

 In a centralised network, it will not allow the Trust Centre’s IEEE/MAC address to be set
to any value other than the Co-ordinator's IEEE/MAC address (since the Co-ordinator
is always the Trust Centre)

For an overview of out-of-band commissioning, refer to Section 2.2.5.

Parameters

psStartupData Pointer to a structure containing commissioning data (see
Section 2.7.5)

Returns

BDB_E_SUCCESS
(The device has successfully formed or joined a network)

BDB_E_FAILURE
(The request to form or join a network has not been accepted)

ZPS_NWK_ENUM_INVALID_REQUEST
(The request contained invalid data)

ZPS_APL_APS_E_ILLEGAL_REQUEST
(The stack is not in the correct state to accept the request)

uint8 BDB_u8OutOfBandCommissionStartDevice(
 BDB_tsOobWriteDataToCommission *psStartupData);
52 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
BDB_vOutOfBandCommissionGetData

Description

This function can be used to obtain locally stored commissioning data. The obtained
data is received in a structure described in Section 2.7.6 and includes the network
key. The data can then be passed to higher layers which may encrypt it before
sending it by out-of-band means to the other device involved in the commissioning.

A similar set of data but with the network key encrypted can be obtained using the
function BDB_eOutOfBandCommissionGetDataEncrypted().

For an overview of out-of-band commissioning, refer to Section 2.2.5.

Parameters

psReturnedCommissioningData Pointer to a structure to receive the obtained
commissioning data (see Section 2.7.6)

Returns

None

void BDB_vOutOfBandCommissionGetData(
 BDB_tsOobReadDataToAuthenticate
 *psReturnedCommissioningData);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 53

Chapter 2
ZigBee Base Device

BDB_eOutOfBandCommissionGetDataEncrypted

Description

This function can be used to obtain locally stored commissioning data, including the
network key which will be returned encrypted. Authentication data (including an
install code) must be provided that will be used to encrypt the network key.

The obtained data is received as a byte stream - the size of the byte stream is also
returned. The byte stream contains the following data:

 IEEE/MAC address of the local node as u64address (8 bytes)

 Network key encrypted with the data passed via psSrcCredentials (16 bytes)

 MIC value generated to validate encryption (4 bytes)

 Key sequence number of active network key (1 byte)

 Active channel number (1 byte)

 PAN ID (2 bytes)

 Extended PAN ID (8 bytes)

The encrypted network key and other obtained data may then be sent by out-of-band
means to the other device involved in the commissioning. The receiving device may
decrypt the key using the BDB_bOutOfBandCommissionGetKey() function.

A similar set of data without encryption of the network key can be obtained using the
function BDB_u8OutOfBandCommissionStartDevice().

For an overview of out-of-band commissioning, refer to Section 2.2.5.

Parameters

psSrcCredentials Pointer to a structure containing authentication data to be
used to encrypt the network key (see Section 2.7.7)

pu8ReturnAuthData Pointer to the start of the returned byte stream containing
the obtained data

puSize Pointer to a location to receive the size of the obtained byte
stream

Returns

None

BDB_teStatus
BDB_eOutOfBandCommissionGetDataEncrypted(

BDB_tsOobWriteDataToAuthenticate *psSrcCredentials,
uint8 *pu8ReturnAuthData,
uint16 *puSize);
54 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
BDB_bOutOfBandCommissionGetKey

Description

This function can be used to decrypt an encrypted security key. It may be used to
decrypt the network key received from another device during out-of-band
commissioning.

The function requires the install code that was used to generate the pre-configured
link key used to encrypt the key.

For an overview of out-of-band commissioning, refer to Section 2.2.5.

Parameters

pu8InstallCode Pointer to install code used to generate the pre-configured link
key used in the encryption

pu8EncKey Pointer to encrypted key

u64ExtAddress Pointer to IEEE/MAC address of originating device

pu8DecKey Pointer to location to receive the decrypted key

pu8Mic Pointer to the MIC value to be used to validate the decryption

Returns

TRUE if key successfully decrypted, otherwise FALSE

bool_t BDB_bOutOfBandCommissionGetKey(
uint8* pu8InstallCode,
uint8* pu8EncKey,
uint64 u64ExtAddress,
uint8* pu8DecKey,
uint8* pu8Mic);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 55

Chapter 2
ZigBee Base Device

2.7 Structures

2.7.1 BDB_tsBdbEvent

The following structure contains ZigBee Base Device event information that is passed
to the APP_vBdbCallback() callback function (see Section 2.9).

typedef struct

{

 BDB_teBdbEventType eEventType;

 BDB_tuBdbEventData uEventData;

} BDB_tsBdbEvent;

where:

 eEventType is an enumeration indicating the event type - for the possible
enumerations, refer to Section 2.9.

 uEventData is a union structure containing the event information (if any) - for
a description of this structure, refer to Section 2.7.2.

2.7.2 BDB_tuBdbEventData

The following structure is a union containing the data for a ZigBee Base Device event.

typedef union

{

 BDB_tsZpsAfEvent sZpsAfEvent;

 BDB_tsFindAndBindEvent *psFindAndBindEvent;

} BDB_tuBdbEventData

where:

 sZpsAfEvent is a structure containing the data for a stack event, indicated by
the event type BDB_EVENT_ZPSAF - for a description of this structure, refer to
Section 2.7.3.

 psFindAndBindEvent is a pointer to a structure containing the data for a
‘Finding and Binding’ event (see Section 2.9) - for a description of this
structure, refer to Section 2.7.4.
56 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.7.3 BDB_tsZpsAfEvent

The following structure contains the data for a ZigBee stack event (see Section).

typedef struct

{

 uint8 u8EndPoint;

 ZPS_tsAfEvent sStackEvent;

} BDB_tsZpsAfEvent;

where:

 u8EndPoint is the number of the endpoint on which the event occurred.

 sStackEvent is a ZPS structure containing the stack event type and data -
this structure is detailed in the ZigBee 3.0 Stack User Guide (JN-UG-3113).

2.7.4 BDB_tsFindAndBindEvent

The following structure contains the data for a ‘Finding and Binding’ event (see
Section 2.9), which is passed to the application during the Finding and Binding
process on the initiator.

typedef struct{

 uint8 u8InitiatorEp;

 uint8 u8TargetEp;

 uint16 u16TargetAddress;

 uint16 u16ProfileId;

 uint16 u16DeviceId;

 uint8 u8DeviceVersion;

 union {

 uint16 u16ClusterId;

 uint16 u16GroupId;

 }uEvent;

 ZPS_tsAfZdpEvent *psAfZdpEvent;

 bool bAllowBindOrGroup;

 bool bGroupCast;

}BDB_tsFindAndBindEvent;

where:

 u8InitiatorEp is the number of the endpoint involved in the binding/
grouping on the initiator node

 u8TargetEp is the number of the endpoint involved in the binding/grouping on
the target node

 u16TargetAddress is the 16-bit network address of the target node
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 57

Chapter 2
ZigBee Base Device

 u16ProfileId is the identifier of the ZigBee application profile supported by
the two nodes (for Lighting & Occupancy devices, this is 0x0104)

 u16DeviceId is the 16-bit identifier of the ZigBee device type supported by
the target endpoints. This must be a device type identifier issued by the ZigBee
Alliance.

 u8DeviceVersion contains 4 bits (bits 0-3) representing the version of the
supported device description on the target node (the default is 0000, unless set
to another value according to the application profile used).

 uEvent is a union of the following two fields:

 u16ClusterId is the identifier of the cluster involved in the binding

 u16GroupId is the address of the group to which the target endpoint will
be assigned

 psAfZdpEvent is a pointer to a ZPS_tsAfZdpEvent structure containing the
generated Finding and Binding event - this ZPS structure is detailed in the
ZigBee 3.0 Stack User Guide (JN-UG-3113). The event can be any of the
following (detailed in Section 2.9):

 BDB_EVENT_FB_HANDLE_SIMPLE_DESC_RESP_OF_TARGET

 BDB_EVENT_FB_CHECK_BEFORE_BINDING_CLUSTER_FOR_TARGET

 BDB_EVENT_FB_CLUSTER_BIND_CREATED_FOR_TARGET

 BDB_EVENT_FB_BIND_CREATED_FOR_TARGET

 BDB_EVENT_FB_GROUP_ADDED_TO_TARGET

 BDB_EVENT_FB_ERR_BINDING_FAILED

 BDB_EVENT_FB_ERR_BINDING_TABLE_FULL

 BDB_EVENT_FB_ERR_GROUPING_FAILED

 BDB_EVENT_FB_NO_QUERY_RESPONSE

 BDB_EVENT_FB_TIMEOUT

 bAllowBindOrGroup is a Boolean flag that indicates whether the relevant
cluster is permitted to participate in a binding or grouping. The default value is
TRUE (permitted) but if the application needs to exclude the cluster (and block
the binding/grouping) then it should set this field to FALSE.

 bGroupCast is a Boolean flag that indicates whether an 'Add Group If
Identifying' command should be broadcast to all the identifying targets (TRUE)
or an 'Add Group' request should be individually unicast to all the identifying
targets. The default value is TRUE.
58 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.7.5 BDB_tsOobWriteDataToCommission

The following structure contains the data values that are used to initialise a node at
the start of out-of-band commissioning of the node.

typedef struct {

 uint64 u64PanId;

 uint64 u64TrustCenterAddress;

 uint8* pu8NwkKey;

 uint8* pu8InstallCode;

 uint16 u16PanId;

 uint16 u16ShortAddress;

 bool_t bRejoin;

 uint8 u8ActiveKeySqNum;

 uint8 u8DeviceType;

 uint8 u8RxOnWhenIdle;

 uint8 u8Channel;

 uint8 u8NwkUpdateId;

} BDB_tsOobWriteDataToCommission;

where:

 u64PanId is the Extended PAN ID of the network to be joined.

 u64TrustCenterAddress is the IEEE/MAC address of the Trust Centre in
the centralised network to be joined.

 pu8NwkKey is a pointer to the network key.

 pu8InstallCode is a pointer to an initial link key derived from an install code
(see Section 2.3.1).

 u16PanId is the PAN ID of the network to be joined.

 u16ShortAddress is the network address assigned to the node.

 bRejoin is the ‘rejoin flag’ which indicates whether the node should attempt to
rejoin the network if it leaves (TRUE: rejoin, FALSE: do not rejoin).

 u8ActiveKeySqNum is the key sequence number associated with the active
network key.

 u8DeviceType is a value indicating the type of ZigBee node:

 0: Co-ordinator

 1: Router

 2: End Device

All other values are reserved.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 59

Chapter 2
ZigBee Base Device

 u8RxOnWhenIdle is a value indicating whether the node’s receiver is enable
during idle periods:

 0: Receiver off when idle (sleeping device)

 1: Receiver on when idle (non-sleeping device)

All other values are reserved.

 u8Channel is the radio channel number on which the network operates.

 u8NwkUpdateId is a unique byte value which is incremented when the
network parameters are updated (and is therefore used to determine whether a
receiving node has missed an update).

2.7.6 BDB_tsOobReadDataToAuthenticate

The following structure contains data values that are read from the local node during
out-of-band commissioning of the node.

typedef struct {

 uint8 au8Key[16]__attribute__((aligned (16)));

 uint64 u64TcAddress;

 uint64 u64PanId;

 uint16 u16ShortPanId;

 uint8 u8ActiveKeySeq;

 uint8 u8Channel;

} BDB_tsOobReadDataToAuthenticate;

where:

 au8Key[16]__attribute__((aligned (16))) is an array containing the
current network key, with one byte per array element.

 u64TcAddress is the IEEE/MAC address of the Trust Centre of the network to
which the node is being commissioned.

 u64PanId is the Extended PAN ID of the network to which the node is being
commissioned.

 u16ShortPanId is the PAN ID of the network to which the node is being
commissioned.

 u8ActiveKeySeq is the key sequence number of the currently active network
key.

 u8Channel is the radio channel number on which the network operates.
60 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.7.7 BDB_tsOobWriteDataToAuthenticate

The following structure contains authentication data that is used to encrypt a security
key during out-of-band commissioning of the node.

typedef struct {

 uint64 u64ExtAddr;

 uint8* pu8InstallCode;

} BDB_tsOobWriteDataToAuthenticate;

where:

 u64ExtAddr is the IEEE/MAC address of the node.

 pu8InstallCode is a pointer to a 16-byte install code to be used in the key
encryption.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 61

Chapter 2
ZigBee Base Device

2.8 Enumerations

This section lists and describes the enumerations used on the ZigBee Base Device.
However, the ZigBee Base Device event enumerations are detailed in Section 2.9.

2.8.1 BDB_teStatus

The following enumerations are used to indicate the status of certain function calls.

typedef enum

{

 BDB_E_SUCCESS,

 BDB_E_FAILURE,

 BDB_E_ERROR_INVALID_PARAMETER,

 BDB_E_ERROR_INVALID_DEVICE,

 BDB_E_ERROR_NODE_IS_ON_A_NWK,

 BDB_E_ERROR_IMPROPER_COMMISSIONING_MODE,

 BDB_E_ERROR_COMMISSIONING_IN_PROGRESS,

}BDB_teStatus;

The enumerations are listed and described in the table below.

Enumeration Description

BDB_E_SUCCESS Function call was successful in its purpose

BDB_E_FAILURE Function call failed in its purpose and no other error
code is appropriate

BDB_E_ERROR_INVALID_PARAMETER A specified parameter value was invalid

BDB_E_ERROR_INVALID_DEVICE Device type is not valid for the operation

BDB_E_ERROR_NODE_IS_ON_A_NWK Node is already in a network

BDB_E_ERROR_IMPROPER_COMMISSIONING_MODE The commissioning mode is not appropriate

BDB_E_ERROR_COMMISSIONING_IN_PROGRESS The commissioning process is in progress

Table 10: Function Status Enumerations
62 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.8.2 BDB_teCommissioningStatus

The following enumerations are used to indicate the status of the commissioning
process for the node.

typedef enum

{

 E_BDB_COMMISSIONING_STATUS_SUCCESS,

 E_BDB_COMMISSIONING_STATUS_IN_PROGRESS,

 E_BDB_COMMISSIONING_STATUS_NOT_AA_CAPABLE,

 E_BDB_COMMISSIONING_STATUS_NO_NETWORK,

 E_BDB_COMMISSIONING_STATUS_FORMATION_FAILURE,

 E_BDB_COMMISSIONING_STATUS_NO_IDENTIFY_QUERY_RESPONSE,

 E_BDB_COMMISSIONING_STATUS_BINDING_TABLE_FULL,

 E_BDB_COMMISSIONING_STATUS_NO_SCAN_RESPONSE,

 E_BDB_COMMISSIONING_STATUS_NOT_PERMITTED,

 E_BDB_COMMISSIONING_STATUS_TCLK_EX_FAILURE

}BDB_teCommissioningStatus;

The enumerations are listed and described in the table below.

Enumeration Description

E_BDB_COMMISSIONING_STATUS_SUCCESS Commissioning has successfully completed

E_BDB_COMMISSIONING_STATUS_IN_PROGRESS Commissioning is on-going

E_BDB_COMMISSIONING_STATUS_NOT_AA_CAPABLE Parent cannot assign address to joining node

E_BDB_COMMISSIONING_STATUS_NO_NETWORK No network was found that can be joined

E_BDB_COMMISSIONING_STATUS_FORMATION_FAILURE Network formation failed

E_BDB_COMMISSIONING_STATUS_NO_IDENTIFY_
QUERY_RESPONSE

No responses were received to an Identify
Query command

E_BDB_COMMISSIONING_STATUS_BINDING_TABLE_
FULL

The local Binding table is full

E_BDB_COMMISSIONING_STATUS_NO_SCAN_
RESPONSE

No responses were received during a channel
scan

E_BDB_COMMISSIONING_STATUS_NOT_PERMITTED Requested commissioning is not permitted

E_BDB_COMMISSIONING_STATUS_TCLK_EX_FAILURE Trust Centre link key exchange failed

Table 11: Commissioning Status Enumerations
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 63

Chapter 2
ZigBee Base Device

2.9 Events

The ZigBee Base Device has a number of associated events. Some API functions
(described in Section 2.6) return immediately and the outcome of the process they
invoke is later indicated with the generation of an asynchronous event. A user-defined
callback function must be defined in the application to handle these events. The
prototype of this callback function is as follows:

void APP_vBdbCallback(BDB_tsBdbEvent *psBdbEvent)

where psBdbEvent is a pointer to a BDB_tsBdbEvent event structure containing the
event information to be passed to the function (for this structure, see Section 2.7.1).

The enumerations for the ZigBee Base Device events are listed below.

typedef enum {

 BDB_EVENT_NONE,

 BDB_EVENT_ZPSAF,

 BDB_EVENT_INIT_SUCCESS,

 BDB_EVENT_REJOIN_SUCCESS,

 BDB_EVENT_REJOIN_FAILURE,

 BDB_EVENT_NWK_STEERING_SUCCESS,

 BDB_EVENT_NO_NETWORK,

 BDB_EVENT_NWK_JOIN_SUCCESS,

 BDB_EVENT_NWK_JOIN_FAILURE,

 BDB_EVENT_APP_START_POLLING,

 BDB_EVENT_NWK_FORMATION_SUCCESS,

 BDB_EVENT_NWK_FORMATION_FAILURE,

 BDB_EVENT_FB_HANDLE_SIMPLE_DESC_RESP_OF_TARGET,

 BDB_EVENT_FB_CHECK_BEFORE_BINDING_CLUSTER_FOR_TARGET,

 BDB_EVENT_FB_CLUSTER_BIND_CREATED_FOR_TARGET,

 BDB_EVENT_FB_BIND_CREATED_FOR_TARGET,

 BDB_EVENT_FB_GROUP_ADDED_TO_TARGET,

 BDB_EVENT_FB_ERR_BINDING_FAILED,

 BDB_EVENT_FB_ERR_BINDING_TABLE_FULL,

 BDB_EVENT_FB_ERR_GROUPING_FAILED,

 BDB_EVENT_FB_NO_QUERY_RESPONSE,

 BDB_EVENT_FB_TIMEOUT,

 BDB_EVENT_FB_OVER_AT_TARGET,

 BDB_EVENT_LEAVE_WITHOUT_REJOIN,

} BDB_teBdbEventType;

These events are described below.
64 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
The events with ‘FB’ in their names are used in the ‘Finding and Binding’ process and
the event data is contained in the structure BDB_tsFindAndBindEvent (see
Section 2.7.4).

BDB_EVENT_ZPSAF

This event indicates that a ZigBee stack event has occurred. In this case, the
uEventData field (of the BDB_tsBdbEvent structure) contains a
BDB_tsZpsAfEvent structure, which itself includes the ZPS_tsAfEvent stack
event structure.

BDB_EVENT_INIT_SUCCESS

This event is generated when the ZigBee Base Device has been successfully
initialised.

BDB_EVENT_REJOIN_SUCCESS

This event is generated when the node has successfully rejoined its previous network.

BDB_EVENT_REJOIN_FAILURE

This event is generated when the node’s attempt to rejoin its previous network has
failed.

BDB_EVENT_NWK_STEERING_SUCCESS

This event is generated when the Network Steering process has successfully
completed and the local node has broadcast either of the following messages:

 Management Permit Joining message to request the network to be opened for
other devices to join (this message is broadcast when the local node was
already in the network before Network Steering).

 Device Announce message to announce that the local node has just joined the
network (this message is broadcast when the local node was not in the network
before Network Steering).

BDB_EVENT_NO_NETWORK

This event is generated when no open network open was discovered in a channel
scan performed by a device attempting to join a network.

BDB_EVENT_NWK_JOIN_SUCCESS

This event is generated when the node has successfully joined a network.

Note: In addition, certain ZCL events are generated
during the Finding and Binding process, and are passed
to the callback function BDB_vZclEventHandler(),
which is supplied with the ZigBee Base Device. For
these events, refer to Section 2.2.4.
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 65

Chapter 2
ZigBee Base Device

BDB_EVENT_NWK_JOIN_FAILURE

This event is generated when the node attempted to a join a network but failed.

BDB_EVENT_APP_START_POLLING

This event is generated on an End Device during the Trust Centre link key exchange
procedure to instruct the application to start fast polling of its parent, in order to retrieve
packets received as part of the exchange procedure.

BDB_EVENT_NWK_FORMATION_SUCCESS

This event is generated at the end of the Network Formation process when a
centralised or distributed has been successfully formed by the local node.

BDB_EVENT_NWK_FORMATION_FAILURE

This event is generated at the end of the Network Formation process if the local node
failed to form a network.

BDB_EVENT_FB_HANDLE_SIMPLE_DESC_RESP_OF_TARGET

This event indicates that the initiator has received a Simple Descriptor response from
a target. This event can be used by the application to determine which type of device
(e.g. Dimmable Light, On/Off Light) the initiator is binding to. The information provided
to the application is:

 u8InitiatorEp

 u8TargetEp

 u16TargetAddress

 u16ProfileId

 u16DeviceId

 u8DeviceVersion

 psAfZdpEvent (points to received Simple Descriptor)
66 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
BDB_EVENT_FB_CHECK_BEFORE_BINDING_CLUSTER_FOR_TARGET

This event is generated just before creating a Binding table entry for a cluster. It gives
the application an opportunity to exclude clusters from binding by setting the
bAllowBindOrGroup flag to FALSE (by default it is TRUE). This event can also be
used when the application needs to perform a group binding by setting the attribute
u16bdbCommissioningGroupID to a value other than 0xFFFF. Moreover, this event
also allows the application to decide whether to broadcast an 'Add Group If Identifying'
command to all the identifying targets by setting bGroupCast to TRUE (by default it
is assumed to be FALSE) or unicast an 'Add Group' request individually to all the
identifying targets. The information provided to the application is:

 u8InitiatorEp

 u8TargetEp

 u16TargetAddress

 u16ClusterId

 bAllowBindOrGroup

 bGroupCast

 psAfZdpEvent (points to received Simple Descriptor)

BDB_EVENT_FB_CLUSTER_BIND_CREATED_FOR_TARGET

This event is generated per cluster for every binding or grouping created. The event
may be generated more than once for the same target device. For example, when
binding a Colour Dimmer Switch to a Dimmable Light, the event will be generated
twice: once for the On/Off cluster and once for the Level Control Cluster. The
information provided to the application is:

 u8InitiatorEp

 u8TargetEp

 u16TargetAddress

 u16ClusterId

BDB_EVENT_FB_BIND_CREATED_FOR_TARGET

This event is generated once all address bindings have been completed. The
application can then send a ‘Stop Identifying’ command to the bound target. The
information provided to the application is:

 u8InitiatorEp

 u8TargetEp

 u16TargetAddress
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 67

Chapter 2
ZigBee Base Device

BDB_EVENT_FB_GROUP_ADDED_TO_TARGET

This event is generated once the ‘Add Group’ or ‘Add Group If Identifying’ has been
sent, in order to inform the application that grouping has been completed from the
initiator’s perspective. The application can then groupcast a ‘Stop Identifying’
command to the grouped targets. The information provided to the application is:

 u8InitiatorEp

 u8TargetEp

 u16GroupId

 u16TargetAddress

 psAfZdpEvent

BDB_EVENT_FB_ERR_BINDING_FAILED

This event is generated to indicate that an unexpected error has occurred while
creating a Binding table entry.

BDB_EVENT_FB_ERR_BINDING_TABLE_FULL

This event is generated to inform the application that the Binding table is full and
therefore the Finding and Binding process has failed. As a result, the ZigBee Base
Device will exit the Finding and Binding process.

BDB_EVENT_FB_ERR_GROUPING_FAILED

This event is generated to indicate that a grouping has failed, since the initiator was
not able to send an ‘Add Group’ or ‘Add Group If Identifying’ request.

BDB_EVENT_FB_NO_QUERY_RESPONSE

This event indicates that the initiator did not receive an Identify Query response within
BDB_FB_RESEND_IDENTIFY_QUERY_TIME (default value is 10) seconds. The
information provided to the application is:

 u8InitiatorEp

BDB_EVENT_FB_TIMEOUT

This event indicates that the commissioning timer expired after a period defined by the
constant BDBC_MIN_COMMISSIONING_TIME (180 seconds by default). The
information provided to the application is:

 u8InitiatorEp

BDB_EVENT_FB_OVER_AT_TARGET

This event indicates that the Finding and Binding process has ended on the target
node because the identify time reached zero or a remote node forced it to go to zero.

BDB_EVENT_LEAVE_WITHOUT_REJOIN

This event is generated when the node has been instructed to leave the network
without subsequently attempting to rejoin the network.
68 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
2.10 Compile-time Options

Compile-time options can be configured through definitions in the file bdb_options.h.
This allows custom values to be defined for ZigBee Base Device attributes and
constants. If the value of an attribute or constant is not defined in this file, the default
value for the attribute or constant will be used.

Attributes

The following macros can be used to pre-configure values for the ZigBee Base Device
attributes (listed and described in Section 2.5.1):

 BDB_COMMISSIONING_GROUP_ID

 BDB_COMMISSIONING_MODE

 BDB_COMMISSIONING_STATUS

 BDB_JOINING_NODE_EUI64

 BDB_JOIN_USES_INSTALL_CODE_KEY

 BDB_NODE_JOIN_LINK_KEY_TYPE

 BDB_PRIMARY_CHANNEL_SET

 BDB_SCAN_DURATION

 BDB_SECONDARY_CHANNEL_SET

 BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS

 BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS_MAX

 BDB_TC_LINK_KEY_EXCHANGE_METHOD

 BDB_TRUST_CENTER_NODE_JOIN_TIMEOUT

 BDB_TRUST_CENTER_REQUIRE_KEYEXCHANGE

For example, to set the maximum number of key establishment attempts to 5, include
the following line:

#define BDB_TC_LINK_KEY_EXCHANGE_ATTEMPTS_MAX 5
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 69

Chapter 2
ZigBee Base Device

Constants

The following macros can be used to set values for the ZigBee Base Device constants
(listed and described in Section 2.5.2):

 BDBC_MAX_SAME_NETWORK_RETRY_ATTEMPTS

 BDBC_MIN_COMMISSIONING_TIME

 BDBC_REC_SAME_NETWORK_RETRY_ATTEMPTS

 BDBC_TC_LINK_KEY_EXCHANGE_TIMEOUT

 BDBC_TL_INTERPAN_TRANS_ID_LIFETIME

 BDBC_TL_MIN_STARTUP_DELAY_TIME

 BDBC_TL_PRIMARY_CHANNEL_SET

 BDBC_TL_RX_WINDOW_DURATION

 BDBC_TL_SCAN_TIME_BASE_DURATION_MS

 BDBC_TL_SECONDARY_CHANNEL_SET

For example, to set the minimum commissioning time for which a network will be open
to joining to 240 seconds, include the following line:

#define BDBC_MIN_COMMISSIONING_TIME 240

(this minimum commissioning time should set to a value below 255 seconds)
70 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3. Lighting and Occupancy Device Types

This chapter details the ZigBee device types that are collected together in the ZigBee
Lighting and Occupancy Device Specification (15-0014-01) from the ZigBee Alliance.

The ZigBee Lighting and Occupancy (ZLO) device types are listed below:

Note: Lighting and Occupancy is not an application
profile but devices in this collection use the application
profile identifier 0x0104 that was previously used for the
Home Automation application profile. This ensures
backward compatibility with applications for devices
based on the Home Automation 1.2 profile.

Device Type Device ID Reference

On/Off Light 0x0100 Section 3.1

Dimmable Light 0x0101 Section 3.2

Colour Dimmable Light 0x0102 Section 3.3

On/Off Light Switch 0x0103 Section 3.4

Dimmer Switch 0x0104 Section 3.5

Colour Dimmer Switch 0x0105 Section 3.6

Light Sensor 0x0106 Section 3.7

Occupancy Sensor 0x0107 Section 3.8

On/Off Ballast 0x0108 Section 3.9

Dimmable Ballast 0x0109 Section 3.10

On/Off Plug-in Unit 0x010A Section 3.11

Dimmable Plug-in Unit 0x010B Section 3.12

Colour Temperature Light 0x010C Section 3.13

Extended Colour Light 0x010D Section 3.14

Light Level Sensor 0x010E Section 3.15

Colour Controller 0x0800 Section 3.16

Colour Scene Controller 0x0810 Section 3.17

Non-Colour Controller 0x0820 Section 3.18

Non-Colour Scene Controller 0x0830 Section 3.19

Control Bridge 0x0840 Section 3.20

On/Off Sensor 0x0850 Section 3.21

Table 1: Lighting and Occupancy Device Types
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 71

Chapter 3
Lighting and Occupancy Device Types

3.1 On/Off Light

The On/Off Light device is simply a light that can be switched on and off (two states
only and no intermediate levels).

 The Device ID is 0x0100

 The header file for the device is on_off_light.h

 The clusters supported by the device are listed in Section 3.1.1

 The device structure, tsZLO_OnOffLightDevice, is listed in Section 3.1.2

 The endpoint registration function for the device,
eZLO_RegisterOnOffLightEndPoint(), is detailed in Section 3.1.3

3.1.1 Supported Clusters

The clusters used by the On/Off Light device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

On/Off

Scenes

Groups

Optional

Level Control OTA Upgrade

Touchlink Commissioning Occupancy Sensing

Table 2: Clusters for On/Off Light
72 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.1.2 Device Structure

The following tsZLO_OnOffLightDevice structure is the shared structure for an
On/Off Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_OnOffLightDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 /* On Off light device 2 optional clusters for the server */

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;

 #endif
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 73

Chapter 3
Lighting and Occupancy Device Types

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /* On Off light device 2 optional clusters for the client */

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

 #endif

} tsZLO_OnOffLightDevice;
74 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.1.3 Registration Function

The following eZLO_RegisterOnOffLightEndPoint() function is the endpoint
registration function for an On/Off Light device.

Description

This function is used to register an endpoint which will support an On/Off Light
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_OnOffLightDevice structure (see
Section 3.1.2) which will be used to store all variables relating to the On/Off Light
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Light device is housed in the same hardware,
sharing the same JN516x/7x module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the callback function that will be used to indicate
events to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.1.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eZLO_RegisterOnOffLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_OnOffLightDevice *psDeviceInfo);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 75

Chapter 3
Lighting and Occupancy Device Types

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
76 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.2 Dimmable Light

The Dimmable Light device is a light that can have its luminance varied, and can be
switched on and off. The permitted range of light levels is 0x01 to 0xFE.

 The Device ID is 0x0101

 The header file for the device is dimmable_light.h

 The clusters supported by the device are listed in Section 3.2.1

 The device structure, tsZLO_DimmableLightDevice, is listed in Section
3.2.2

 The endpoint registration function for the device,
eZLO_RegisterDimmableLightEndPoint(), is detailed in Section 3.2.3

3.2.1 Supported Clusters

The clusters used by the Dimmable Light device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

On/Off

Level Control

Scenes

Groups

Optional

Touchlink Commissioning OTA Upgrade

Occupancy Sensing

Table 3: Clusters for Dimmable Light
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 77

Chapter 3
Lighting and Occupancy Device Types

3.2.2 Device Structure

The following tsZLO_DimmableLightDevice structure is the shared structure for a
Dimmable Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_DimmableLightDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)
78 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

 #endif

} tsZLO_DimmableLightDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 79

Chapter 3
Lighting and Occupancy Device Types

3.2.3 Registration Function

The following eZLO_RegisterDimmableLightEndPoint() function is the endpoint
registration function for a Dimmable Light device.

Description

This function is used to register an endpoint which will support a Dimmable Light
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_DimmableLightDevice structure
(see Section 3.2.2) which will be used to store all variables relating to the Dimmable
Light device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Dimmable Light device is housed in the same
hardware, sharing the same JN516x/7x module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that will be used to indicate events to
the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.2.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eZLO_RegisterDimmableLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_DimmableLightDevice *psDeviceInfo);
80 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 81

Chapter 3
Lighting and Occupancy Device Types

3.3 Colour Dimmable Light

The Colour Dimmable Light device is a multi-colour light that can have its hue,
saturation and luminance varied, and can be switched on and off.

 The Device ID is 0x0102

 The header file for the device is colour_dimmable_light.h

 The clusters supported by the device are listed in Section 3.3.1

 The device structure, tsZLO_ColourDimmableLightDevice, is listed in
Section 3.3.2

 The endpoint registration function for the device,
eZLO_RegisterColourDimmableLightEndPoint(), is detailed in Section 3.3.3

3.3.1 Supported Clusters

The clusters used by the Colour Dimmable Light device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

On/Off

Level Control

Colour Control

Scenes

Groups

Optional

Touchlink Commissioning OTA Upgrade

Occupancy Sensing

Table 4: Clusters for Colour Dimmable Light
82 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.3.2 Device Structure

The following tsZLO_ColourDimmableLightDevice structure is the shared
structure for a Colour Dimmable Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_ColourDimmableLightDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;

 #endif

 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 83

Chapter 3
Lighting and Occupancy Device Types

 /* Colour Control Cluster - Server */

 tsCLD_ColourControl sColourControlServerCluster;

 tsCLD_ColourControlCustomDataStructure
 sColourControlServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

 #endif

} tsZLO_ColourDimmableLightDevice;
84 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.3.3 Registration Function

The following eZLO_RegisterColourDimmableLightEndPoint() function is the
endpoint registration function for a Colour Dimmable Light device.

Description

This function is used to register an endpoint which will support a Colour Dimmable
Light device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_ColourDimmableLightDevice
structure (see Section 3.3.2) which will be used to store all variables relating to the
Colour Dimmable Light device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Dimmable Light device is housed in the same
hardware, sharing the same JN516x/7x module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that will be used to indicate events to
the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.3.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status
eZLO_RegisterColourDimmableLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_ColourDimmableLightDevice *psDeviceInfo);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 85

Chapter 3
Lighting and Occupancy Device Types

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
86 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.4 On/Off Light Switch

The On/Off Light Switch device is used to switch a light device on and off by sending
on, off and toggle commands to the target device.

 The Device ID is 0x0103

 The header file for the device is on_off_light_switch.h

 The clusters supported by the device are listed in Section 3.4.1

 The device structure, tsZLO_OnOffLightSwitchDevice, is listed in Section
3.4.2

 The endpoint registration function for the device,
eZLO_RegisterOnOffLightSwitchEndPoint(), is detailed in Section 3.4.3

3.4.1 Supported Clusters

The clusters used by the On/Off Light Switch device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Optional

On/Off Switch Configuration OTA Upgrade

Scenes

Groups

Table 5: Clusters for On/Off Light Switch
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 87

Chapter 3
Lighting and Occupancy Device Types

3.4.2 Device Structure

The following tsZLO_OnOffLightSwitchDevice structure is the shared structure
for an On/Off Light Switch device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_OnOffLightSwitchDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 /* Recommended Optional server */

 #if (defined CLD_OOSC) && (defined OOSC_SERVER)

 /* On/Off Switch Configuration Cluster - Server */

 tsCLD_OOSC sOOSCServerCluster;

 #endif

 /* Mandatory client clusters */

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Client */

 tsCLD_Basic sBasicClientCluster;

 #endif

 /* Recommended Optional client clusters */

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)
88 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_OnOffLightSwitchDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 89

Chapter 3
Lighting and Occupancy Device Types

3.4.3 Registration Function

The following eZLO_RegisterOnOffLightSwitchEndPoint() function is the endpoint
registration function for an On/Off Light Switch device.

Description

This function is used to register an endpoint which will support an On/Off Light Switch
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_OnOffLightSwitchDevice structure
(see Section 3.4.2) which will be used to store all variables relating to the On/Off Light
Switch device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Light Switch device is housed in the same
hardware, sharing the same JN516x/7x module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that will be used to indicate events to
the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.4.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eZLO_RegisterOnOffLightSwitchEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_OnOffLightSwitchDevice *psDeviceInfo);
90 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 91

Chapter 3
Lighting and Occupancy Device Types

3.5 Dimmer Switch

The Dimmer Switch device is used to control a characteristic of a light (e.g. luminance)
and to switch the light device on and off.

 The Device ID is 0x0104

 The header file for the device is dimmer_switch.h

 The clusters supported by the device are listed in Section 3.5.1

 The device structure, tsZLO_DimmerSwitchDevice, is listed in Section 3.5.2

 The endpoint registration function for the device,
eZLO_RegisterDimmerSwitchEndPoint(), is detailed in Section 3.5.3

3.5.1 Supported Clusters

The clusters used by the Dimmer Switch device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Level Control

Optional

On/Off Switch Configuration OTA Upgrade

Scenes

Groups

Table 6: Clusters for Dimmer Switch
92 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.5.2 Device Structure

The following tsZLO_DimmerSwitchDevice structure is the shared structure for a
Dimmer Switch device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_DimmerSwitchDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 /* Optional server clusters */

 #if (defined CLD_OOSC) && (defined OOSC_SERVER)

 /* On/Off Switch Configuration Cluster - Server */

 tsCLD_OOSC sOOSCServerCluster;

 #endif

 /* Mandatory client clusters */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Client */

 tsCLD_Basic sBasicClientCluster;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 93

Chapter 3
Lighting and Occupancy Device Types

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;

 #endif

 /* Recommended Optional client clusters */

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_DimmerSwitchDevice;
94 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.5.3 Registration Function

The following eZLO_RegisterDimmerSwitchEndPoint() function is the endpoint
registration function for a Dimmer Switch device.

Description

This function is used to register an endpoint which will support a Dimmer Switch
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for application.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_DimmerSwitchDevice structure (see
Section 3.5.2) which will be used to store all variables relating to the Dimmer Switch
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Dimmer Switch device is housed in the same
hardware, sharing the same JN516x/7x module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that will be used to indicate events to
the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.5.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eZLO_RegisterDimmerSwitchEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_DimmerSwitchDevice *psDeviceInfo);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 95

Chapter 3
Lighting and Occupancy Device Types

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
96 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.6 Colour Dimmer Switch

The Colour Dimmer Switch device is used to control the hue, saturation and luminance
of a multi-colour light, and to switch the light device on and off.

 The Device ID is 0x0105

 The header file for the device is colour_dimmer_switch.h

 The clusters supported by the device are listed in Section 3.6.1

 The device structure, tsZLO_ColourDimmerSwitchDevice, is listed in
Section 3.6.2

 The endpoint registration function for the device,
eZLO_RegisterColourDimmerSwitchEndPoint(), is detailed in Section 3.6.3

3.6.1 Supported Clusters

The clusters used by the Colour Dimmer Switch device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Level Control

Colour Control

Identify

Optional

On/Off Switch Configuration OTA Upgrade

Scenes

Groups

Table 7: Clusters for Colour Dimmer Switch
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 97

Chapter 3
Lighting and Occupancy Device Types

3.6.2 Device Structure

The following tsZLO_ColourDimmerSwitchDevice structure is the shared
structure for a Colour Dimmer Switch device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_ColourDimmerSwitchDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 /* Optional server clusters */

 #if (defined CLD_OOSC) && (defined OOSC_SERVER)

 /* On/Off Switch Configuration Cluster - Server */

 tsCLD_OOSC sOOSCServerCluster;

 #endif

 /* Mandatory client clusters */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicClientCluster;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */
98 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
 sColourControlClientCustomDataStructure;

 #endif

 /*Recommended Optional client clusters */

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_ColourDimmerSwitchDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 99

Chapter 3
Lighting and Occupancy Device Types

3.6.3 Registration Function

The following eZLO_RegisterColourDimmerSwitchEndPoint() function is the
endpoint registration function for a Colour Dimmer Switch device.

Description

This function is used to register an endpoint which will support a Colour Dimmer
Switch device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_ColourDimmerSwitchDevice
structure (see Section 3.6.2) which will be used to store all variables relating to the
Colour Dimmer Switch device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Dimmer Switch device is housed in the same
hardware, sharing the same JN516x/7x module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that will be used to indicate events to
the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.6.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eZLO_RegisterColourDimmerSwitchEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_DimmerSwitchDevice *psDeviceInfo);
100 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 101

Chapter 3
Lighting and Occupancy Device Types

3.7 Light Sensor

The Light Sensor device reports the illumination level in an area.

 The Device ID is 0x0106

 The header file for the device is light_sensor.h

 The clusters supported by the device are listed in Section 3.7.1

 The device structure, tsZLO_LightSensorDevice, is listed in Section 3.7.2

 The endpoint registration function for the device,
eZLO_RegisterLightSensorEndPoint(), is detailed in Section 3.7.3

3.7.1 Supported Clusters

The clusters used by the Light Sensor device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

3.7.2 Device Structure

The following tsZLO_LightSensorDevice structure is the shared structure for a
Light Sensor device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_LightSensorDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

Server (Input) Side Client (Output) Side

Mandatory

Basic Identify

Identify

Illuminance Measurement

Optional

OTA Upgrade

Groups

Table 8: Clusters for Light Sensor
102 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
ILLUMINANCE_MEASUREMENT_SERVER)

 /* Illuminance Measurement Cluster - Server */

 tsCLD_IlluminanceMeasurement sIlluminanceMeasurementServerCluster;

 #endif

 /* Optional server clusters */

 #if (defined CLD_POLL_CONTROL) && (defined POLL_CONTROL_SERVER)

 tsCLD_PollControl sPollControlServerCluster;

 tsCLD_PollControlCustomDataStructure
 sPollControlServerCustomDataStructure;

 #endif

 /* Mandatory server clusters */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 /* Recommended Optional client clusters */

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_LightSensorDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 103

Chapter 3
Lighting and Occupancy Device Types

3.7.3 Registration Function

The following eZLO_RegisterLightSensorEndPoint() function is the endpoint
registration function for a Light Sensor device.

Description

This function is used to register an endpoint which will support a Light Sensor device.
The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_LightSensorDevice structure (see
Section 3.7.2) which will be used to store all variables relating to the Light Sensor
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Light Sensor device is housed in the same hardware,
sharing the same JN516x/7x module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that will be used to indicate events to
the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.7.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eZLO_RegisterLightSensorEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_LightSensorDevice *psDeviceInfo);
104 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 105

Chapter 3
Lighting and Occupancy Device Types

3.8 Occupancy Sensor

The Occupancy Sensor device reports the presence (or not) of occupants in an area.

 The Device ID is 0x0107

 The header file for the device is occupancy_sensor.h

 The clusters supported by the device are listed in Section 3.8.1

 The device structure, tsZLO_OccupancySensorDevice, is listed in Section
3.7.2

 The endpoint registration function for the device,
eZLO_RegisterOccupancySensorEndPoint(), is detailed in Section 3.7.3

3.8.1 Supported Clusters

The clusters used by the Occupancy Sensor device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

3.8.2 Device Structure

The following tsZLO_OccupancySensorDevice structure is the shared structure
for an Occupancy Sensor device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_OccupancySensorDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

#if (defined CLD_BASIC) && (defined BASIC_SERVER)

Server (Input) Side Client (Output) Side

Mandatory

Basic Identify

Identify

Occupancy Sensing

Optional

OTA Upgrade

Groups

Table 9: Clusters for Occupancy Sensor
106 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

#endif

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyServerCustomDataStructure;

#endif

#if (defined CLD_OCCUPANCY_SENSING) && (defined OCCUPANCY_SENSING_SERVER)

 /* Occupancy Sensing Cluster - Server */

 tsCLD_OccupancySensing sOccupancySensingServerCluster;

#endif

 /* Optional server clusters */

#if (defined CLD_POLL_CONTROL) && (defined POLL_CONTROL_SERVER)

 tsCLD_PollControl sPollControlServerCluster;

 tsCLD_PollControlCustomDataStructure
 sPollControlServerCustomDataStructure;

#endif

 /* Mandatory client clusters */

#if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyClientCustomDataStructure;

#endif

 /* Recommended Optional client clusters */

#if (defined CLD_POLL_CONTROL) && (defined POLL_CONTROL_CLIENT)

 tsCLD_PollControl sPollControlClientCluster;

 tsCLD_PollControlCustomDataStructure
 sPollControlClientCustomDataStructure;

#endif

#if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

#endif

#if (defined CLD_OTA) && (defined OTA_CLIENT)

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

#endif

} tsZLO_OccupancySensorDevice;;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 107

Chapter 3
Lighting and Occupancy Device Types

3.8.3 Registration Function

The following eZLO_RegisterOccupancySensorEndPoint() function is the endpoint
registration function for an Occupancy Sensor device.

Description

This function is used to register an endpoint which will support an Occupancy Sensor
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_OccupancySensorDevice structure
(see Section 3.8.2) which will be used to store all variables relating to the Light
Sensor device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Occupancy Sensor device is housed in the same
hardware, sharing the same JN516x/7x module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that will be used to indicate events to
the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.8.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eZLO_RegisterOccupancySensorEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_OccupancySensorDevice *psDeviceInfo);
108 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 109

Chapter 3
Lighting and Occupancy Device Types

3.9 On/Off Ballast

The On/Off Ballast is a lighting device that can be switched on/off from a controller
device, such as an On/Off Light Switch or an Occupancy Sensor.

 The Device ID is 0x0108

 The header file for the device is on_off_ballast.h

 The clusters supported by the device are listed in Section 3.9.1

 The device structure, tsZLO_OnOffBallastDevice, is listed in Section 3.9.2

 The endpoint registration function for the device,
eZLO_RegisterOnOffBallastEndPoint(), is detailed in Section 3.9.3

3.9.1 Supported Clusters

The clusters used by the On/Off Ballast device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic

Power Configuration

Device Temperature Configuration

Identify

Groups

Scenes

On/Off

Ballast Configuration

Optional

Level Control OTA Upgrade

Illuminance Level Sensing Illuminance Measurement

Touchlink Commissioning Illuminance Level Sensing

Occupancy Sensing

Table 10: Clusters for On/Off Ballast
110 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.9.2 Device Structure

The following tsZLO_OnOffBallastDevice structure is the shared structure for an
On/Off Ballast device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_OnOffBallastDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;

 #endif

 /* Optional server clusters */

 #if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

 #endif
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 111

Chapter 3
Lighting and Occupancy Device Types

 #if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
 sDeviceTemperatureConfigurationServerCluster;

 #endif

 #if (defined CLD_BALLAST_CONFIGURATION) && (defined
BALLAST_CONFIGURATION_SERVER)

 tsCLD_BallastConfiguration sBallastConfigurationServerCluster;

 #endif

 /* Recommended Optional server clusters */

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;

 #endif

 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
ILLUMINANCE_LEVEL_SENSING_SERVER)

 tsCLD_IlluminanceLevelSensing
sIlluminanceLevelSensingServerCluster;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /*Recommended Optional client clusters */

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
ILLUMINANCE_MEASUREMENT_CLIENT)

 /* Illuminance Measurement Cluster - Client */

 tsCLD_IlluminanceMeasurement sIlluminanceMeasurementClientCluster;

 #endif

 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
ILLUMINANCE_LEVEL_SENSING_CLIENT)

 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingClientCluster;

 #endif

112 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 #if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

 #endif

} tsZLO_OnOffBallastDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 113

Chapter 3
Lighting and Occupancy Device Types

3.9.3 Registration Function

The following eZLO_RegisterOnOffBallastEndPoint() function is the endpoint
registration function for an On/Off Ballast device.

Description

This function is used to register an endpoint which will support an On/Off Ballast
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_OnOffBallastDevice structure (see
Section 3.9.2) which will be used to store all variables relating to the On/Off Ballast
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Ballast device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.9.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterOnOffBallastEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_OnOffBallastDevice *psDeviceInfo);
114 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 115

Chapter 3
Lighting and Occupancy Device Types

3.10 Dimmable Ballast

The Dimmable Ballast is a lighting device that can be switched on/off or have its level
adjusted from a controller device, such as a Dimmer Switch, or simply be switched on/
off from an Occupancy Sensor.

 The Device ID is 0x0109

 The header file for the device is dimmable_ballast.h

 The clusters supported by the device are listed in Section 3.10.1

 The device structure, tsZLO_DimmableBallastDevice, is listed in Section
3.10.2

 The endpoint registration function for the device,
eZLO_RegisterDimmableBallastEndPoint, is detailed in Section 3.10.3

3.10.1 Supported Clusters

The clusters used by the Dimmable Ballast device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic

Power Configuration

Device Temperature Configuration

Identify

Groups

Scenes

On/Off

Level Control

Ballast Configuration

Optional

Illuminance Level Sensing OTA Upgrade

Touchlink Commissioning Illuminance Measurement

Illuminance Level Sensing

Occupancy Sensing

Table 11: Clusters for On/Off Ballast
116 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.10.2 Device Structure

The following tsZLO_DimmableBallastDevice structure is the shared structure
for a Dimmable Ballast device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_DimmableBallastDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
sLevelControlServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;

 #endif
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 117

Chapter 3
Lighting and Occupancy Device Types

 #if (defined CLD_POWER_CONFIGURATION) && (defined
POWER_CONFIGURATION_SERVER)

 /* Power Configuration Cluster - Server */

 tsCLD_PowerConfiguration sPowerConfigServerCluster;

 #endif

 #if (defined CLD_DEVICE_TEMPERATURE_CONFIGURATION) && (defined
DEVICE_TEMPERATURE_CONFIGURATION_SERVER)

 /* Device Temperature Configuration Cluster - Server */

 tsCLD_DeviceTemperatureConfiguration
 sDeviceTemperatureConfigurationServerCluster;

 #endif

 #if (defined CLD_BALLAST_CONFIGURATION) && (defined
BALLAST_CONFIGURATION_SERVER)

 tsCLD_BallastConfiguration sBallastConfigurationServerCluster;

 #endif

 /* Recommended Optional server clusters */

 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
ILLUMINANCE_LEVEL_SENSING_SERVER)

 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingServerCluster;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /*Recommended Optional client clusters */

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
ILLUMINANCE_MEASUREMENT_CLIENT)

 /* Illuminance Measurement Cluster - Client */

 tsCLD_IlluminanceMeasurement sIlluminanceMeasurementClientCluster;

 #endif

 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
ILLUMINANCE_LEVEL_SENSING_CLIENT)

 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingClientCluster;

 #endif

118 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 #if (defined CLD_OCCUPANCY_SENSING) && (defined
OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

 #endif

} tsZLO_DimmableBallastDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 119

Chapter 3
Lighting and Occupancy Device Types

3.10.3 Registration Function

The following eZLO_RegisterDimmableBallastEndPoint() function is the endpoint
registration function for a Dimmable Ballast device.

Description

This function is used to register an endpoint which will support a Dimmable Ballast
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_DimmableBallastDevice structure
(see Section 3.10.2) which will be used to store all variables relating to the Dimmable
Ballast device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Dimmable Ballast device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.10.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterDimmableBallastEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_DimmableBallastDevice *psDeviceInfo);
120 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 121

Chapter 3
Lighting and Occupancy Device Types

3.11 On/Off Plug-in Unit

The On/Off Plug-in Unit device is typically used in nodes that contain a controllable
mains plug or adaptor which includes an on/off switch. It may be controlled from a
controller device such as an On/Off Light Switch.

 The Device ID is 0x010A

 The header file for the device is on_off_plug.h

 The clusters supported by the device are listed in Section 3.11.1

 The device structure, tsZLO_OnOffPlugDevice, is listed in Section 3.11.2

 The endpoint registration function for the device,
eZLO_RegisterOnOffPlugEndPoint(), is detailed in Section 3.11.3

3.11.1 Supported Clusters

The clusters supported by the On/Off Plug-in Unit device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

3.11.2 Device Structure

The following tsZLO_OnOffPlugDevice structure is the shared structure for an
On/Off Plug-in Unit device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_OnOffPlugDeviceClusterInstances sClusterInstance;

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

Groups

Scenes

On/Off

Optional

Level Control OTA Upgrade

Table 12: Clusters for On/Off Plug-in Unit
122 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure
 sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure
 sGroupsServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure
 sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_OnOffPlugDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 123

Chapter 3
Lighting and Occupancy Device Types

3.11.3 Registration Function

The following eZLO_RegisterOnOffPlugEndPoint() function is the endpoint
registration function for an On/Off Plug-in Unit device.

Description

This function is used to register an endpoint which will support an On/Off Plug-in Unit
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_OnOffPlugDevice structure (see
Section 3.11.2) which will be used to store all variables relating to the On/Off Plug-in
Unit device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Plug-in Unit device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.11.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterOnOffPlugEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_OnOffPlugDevice *psDeviceInfo);
124 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 125

Chapter 3
Lighting and Occupancy Device Types

3.12 Dimmable Plug-in Unit

The Dimmable Plug-in Unit device is typically used in nodes that contain a controllable
mains plug or adaptor which includes an adjustable output (to a lamp). It may be
controlled from a controller device such as a Dimmer Switch or a Non-colour
Controller.

 The Device ID is 0x010B

 The header file for the device is dimmable_plug.h

 The clusters supported by the device are listed in Section 3.12.1

 The device structure, tsZLO_DimmablePlugDevice, is listed in Section
3.12.2

 The endpoint registration function for the device,
eZLO_RegisterDimmablePlugEndPoint(), is detailed in Section 3.12.3

3.12.1 Supported Clusters

The clusters supported by the Dimmable Plug-in Unit device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

3.12.2 Device Structure

The following tsZLO_DimmablePlugDevice structure is the shared structure for a
Dimmable Plug-in Unit device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

Groups

Scenes

On/Off

Level Control

Optional

OTA Upgrade

Table 13: Clusters for Dimmable Plug-in Unit
126 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 /* Cluster instances */

 tsZLO_DimmablePlugDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_DimmablePlugDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 127

Chapter 3
Lighting and Occupancy Device Types

3.12.3 Registration Function

The following eZLO_RegisterDimmablePlugEndPoint() function is the endpoint
registration function for a Dimmable Plug-in Unit device.

Description

This function is used to register an endpoint which will support a Dimmable Plug-in
Unit device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_DimmablePlugDevice structure (see
Section 3.12.2) which will be used to store all variables relating to the Dimmable
Plug-in Unit device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Dimmable Plug-in Unit device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.12.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterDimmablePlugEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_DimmablePlugDevice *psDeviceInfo);
128 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 129

Chapter 3
Lighting and Occupancy Device Types

3.13 Colour Temperature Light

The Colour Temperature Light device is typically used in nodes that contain a colour
lamp with adjustable colour (and brightness) which operates using colour
temperature.

 The Device ID is 0x010C

 The header file for the device is colour_temperature_light.h

 The clusters supported by the device are listed in Section 3.13.1

 The device structure, tsZLO_ColourTemperatureLightDevice, is listed in
Section 3.13.2

 The endpoint registration function for the device,
eZLO_RegisterColourTemperatureLightEndPoint(), is detailed in Section
3.13.3

3.13.1 Supported Clusters

The clusters supported by the Colour Temperature Light device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

Groups

Scenes

On/Off

Level Control

Colour Control

Optional

Touchlink Commissioning OTA Upgrade

Table 14: Clusters for Colour Temperature Light
130 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.13.2 Device Structure

The following tsZLO_ColourTemperatureLightDevice structure is the shared
structure for a Colour Temperature Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_ColourTemperatureLightDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;

 #endif

 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 131

Chapter 3
Lighting and Occupancy Device Types

 /* Colour Control Cluster - Server */

 tsCLD_ColourControl sColourControlServerCluster;

 tsCLD_ColourControlCustomDataStructure
 sColourControlServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_ColourTemperatureLightDevice;
132 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.13.3 Registration Function

The following eZLO_RegisterColourTemperatureLightEndPoint() function is the
endpoint registration function for a Colour Temperature Light device.

Description

This function is used to register an endpoint which will support a Colour Temperature
Light device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_ColourTemperatureLightDevice
structure (see Section 3.13.2) which will be used to store all variables relating to the
Colour Temperature Light device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Temperature Light device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.13.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status
eZLO_RegisterColourTemperatureLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_ColourTemperatureLightDevice *psDeviceInfo);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 133

Chapter 3
Lighting and Occupancy Device Types

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
134 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.14 Extended Colour Light

The Extended Colour Light device is typically used in nodes that contain a colour lamp
with adjustable colour and brightness. This device supports a range of colour
parameters, including hue/saturation, enhanced hue, colour temperature, colour loop
and XY.

 The Device ID is 0x010D

 The header file for the device is extended_colour_light.h

 The clusters supported by the device are listed in Section 3.14.1

 The device structure, tsZLO_ExtendedColourLightDevice, is listed in
Section 3.14.2

 The endpoint registration function for the device,
eZLO_RegisterExtendedColourLightEndPoint(), is detailed in Section
3.14.3

3.14.1 Supported Clusters

The clusters supported by the Extended Colour Light device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic

Identify

Groups

Scenes

On/Off

Level Control

Colour Control

Optional

Touchlink Commissioning OTA Upgrade

Table 15: Clusters for Extended Colour Light
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 135

Chapter 3
Lighting and Occupancy Device Types

3.14.2 Device Structure

The following tsZLO_ExtendedColourLightDevice structure is the shared
structure for a Extended Colour Light device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_ExtendedColourLightDeviceClusterInstances
 sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_SERVER)

 /* On/Off Cluster - Server */

 tsCLD_OnOff sOnOffServerCluster;

 tsCLD_OnOffCustomDataStructure sOnOffServerCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 /* Groups Cluster - Server */

 tsCLD_Groups sGroupsServerCluster;

 tsCLD_GroupsCustomDataStructure sGroupsServerCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_SERVER)

 /* Scenes Cluster - Server */

 tsCLD_Scenes sScenesServerCluster;

 tsCLD_ScenesCustomDataStructure sScenesServerCustomDataStructure;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_SERVER)

 /* LevelControl Cluster - Server */

 tsCLD_LevelControl sLevelControlServerCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlServerCustomDataStructure;

 #endif
136 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_SERVER)

 /* Colour Control Cluster - Server */

 tsCLD_ColourControl sColourControlServerCluster;

 tsCLD_ColourControlCustomDataStructure
 sColourControlServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_ExtendedColourLightDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 137

Chapter 3
Lighting and Occupancy Device Types

3.14.3 Registration Function

The following eZLO_RegisterExtendedColourLightEndPoint() function is the
endpoint registration function for an Extended Colour Light device.

Description

This function is used to register an endpoint which will support an Extended Colour
Light device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_ExtendedColourLightDevice
structure (see Section 3.14.2) which will be used to store all variables relating to the
Extended Colour Light device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Extended Colour Light device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.14.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterExtendedColourLightEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_ExtendedColourLightDevice *psDeviceInfo);
138 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 139

Chapter 3
Lighting and Occupancy Device Types

3.15 Light Level Sensor

The Light Level Sensor device measures the illumination level in an area and can be
used to switch on/off a lighting device, such as an On/Off Ballast.

 The Device ID is 0x010E

 The header file for the device is light_level_sensor.h

 The clusters supported by the device are listed in Section 3.15.1

 The device structure, tsZLO_LightLevelSensorDevice, is listed in Section
3.15.2

 The endpoint registration function for the device,
eZLO_RegisterLightLevelSensorEndPoint(), is detailed in Section 3.15.3

3.15.1 Supported Clusters

The clusters used by the Light Level Sensor device are listed in the table below.

3.15.2 Device Structure

The following tsZLO_LightLevelSensorDevice structure is the shared structure
for a Light Level Sensor device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_LightLevelSensorDeviceClusterInstances sClusterInstance;

 /* Mandatory server clusters */

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

Server (Input) Side Client (Output) Side

Mandatory

Basic Identify

Identify

Illuminance Level Sensing

Optional

OTA Upgrade

Groups

Table 16: Clusters for Light Level Sensor
140 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
ILLUMINANCE_LEVEL_SENSING_SERVER)

 tsCLD_IlluminanceLevelSensing
 sIlluminanceLevelSensingServerCluster;

 #endif

 /* Optional server clusters */

 #if (defined CLD_POLL_CONTROL) && (defined POLL_CONTROL_SERVER)

 tsCLD_PollControl sPollControlServerCluster;

 tsCLD_PollControlCustomDataStructure
 sPollControlServerCustomDataStructure;

 #endif

 /* Mandatory server clusters */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 /* Recommended Optional client clusters */

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

} tsZLO_LightLevelSensorDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 141

Chapter 3
Lighting and Occupancy Device Types

3.15.3 Registration Function

The following eZLO_RegisterLightLevelSensorEndPoint() function is the endpoint
registration function for a Light Level Sensor device.

Description

This function is used to register an endpoint which will support a Light Level Sensor
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_LightLevelSensorDevice structure
(see Section 3.16.2) which will be used to store all variables relating to the Light Level
Sensor device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Light Level Sensor device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.16.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterLightLevelSensorEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_LightLevelSensorDevice *psDeviceInfo);
142 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 143

Chapter 3
Lighting and Occupancy Device Types

3.16 Colour Controller

The Colour Controller device is typically used in a node that issues colour-control
commands to adjust the intensity or colour of a lighting device, or switch it on/off.

 The Device ID is 0x0800

 The header file for the device is colour_controller.h

 The clusters supported by the device are listed in Section 3.16.1

 The device structure, tsZLO_ColourControllerDevice, is listed in Section
3.16.2

 The endpoint registration function for the device,
eZLO_RegisterColourRemoteEndPoint(), is detailed in Section 3.16.3

3.16.1 Supported Clusters

The clusters supported by the Colour Controller device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Level Control

Colour Control

Optional

Touchlink Commissioning Touchlink Commissioning

Groups

OTA Upgrade

Table 17: Clusters for Colour Controller
144 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.16.2 Device Structure

The following tsZLO_ColourControllerDevice structure is the shared structure
for a Colour Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_ColourControllerDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /* Mandatory client clusters */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Client */

 tsCLD_Basic sBasicClientCluster;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 145

Chapter 3
Lighting and Occupancy Device Types

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
 sColourControlClientCustomDataStructure;

 #endif

 /* Optional client cluster */

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

 tsCLD_ZllCommission sZllCommissionClientCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;

 #endif

} tsZLO_ColourControllerDevice;
146 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.16.3 Registration Function

The following eZLO_RegisterColourControllerEndPoint() function is the endpoint
registration function for a Colour Controller device.

Description

This function is used to register an endpoint which will support a Colour Controller
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_ColourControllerDevice structure
(see Section 3.16.2) which will be used to store all variables relating to the Colour
Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Controller device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.16.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterColourControllerEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_ColourControllerDevice *psDeviceInfo);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 147

Chapter 3
Lighting and Occupancy Device Types

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
148 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.17 Colour Scene Controller

The Colour Scene Controller device is typically used in nodes that support scenes and
that issue colour-control commands (to adjust the intensity or colour of a lighting
device, or switch it on/off) - for example, to control a Colour Dimmable Light.

 The Device ID is 0x0810

 The header file for the device is colour_scene_controller.h

 The clusters supported by the device are listed in Section 3.17.1

 The device structure, tsZLO_ColourSceneControllerDevice, is listed in
Section 3.17.2

 The endpoint registration function for the device,
eZLO_RegisterColourSceneControllerEndPoint(), is detailed in Section
3.17.3

3.17.1 Supported Clusters

The clusters supported by the Colour Scene Controller device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Level Control

Colour Control

Scenes

Optional

Touchlink Commissioning Touchlink Commissioning

Groups

OTA Upgrade

Table 18: Clusters for Colour Scene Controller
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 149

Chapter 3
Lighting and Occupancy Device Types

3.17.2 Device Structure

The following tsZLO_ColourSceneControllerDevice structure is the shared
structure for a Colour Scene Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_ColourSceneControllerDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /* Mandatory client clusters */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicClientCluster;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */
150 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
 sColourControlClientCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;

 #endif

 /* Recommended Optional Client Cluster */

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

 tsCLD_ZllCommission sZllCommissionClientCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;

 #endif

} tsZLO_ColourSceneControllerDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 151

Chapter 3
Lighting and Occupancy Device Types

3.17.3 Registration Function

The following eZLO_RegisterColourSceneControllerEndPoint() function is the
endpoint registration function for a Colour Scene Controller device.

Description

This function is used to register an endpoint which will support a Colour Scene
Controller device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_ColourSceneControllerDevice
structure (see Section 3.17.2) which will be used to store all variables relating to the
Colour Scene Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Colour Scene Controller device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.17.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status
eZLO_RegisterColourSceneControllerEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_ColourSceneControllerDevice *psDeviceInfo);
152 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 153

Chapter 3
Lighting and Occupancy Device Types

3.18 Non-Colour Controller

The Non-Colour Controller device is typically used in nodes that issue control
commands that are not related to colour - for example, to control a Dimmable Light.

 The Device ID is 0x0820

 The header file for the device is non_colour_controller.h

 The clusters supported by the device are listed in Section 3.18.1

 The device structure, tsZLO_NonColourControllerDevice, is listed in
Section 3.18.2

 The endpoint registration function for the device,
eZLO_RegisterNonColourControllerEndPoint(), is detailed in Section 3.18.3

3.18.1 Supported Clusters

The clusters supported by the Non-Colour Controller device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Level Control

Optional

Touchlink Commissioning Touchlink Commissioning

Groups

OTA Upgrade

Table 19: Clusters for Non-Colour Controller
154 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.18.2 Device Structure

The following tsZLO_NonColourControllerDevice structure is the shared
structure for a Non-Colour Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_NonColourControllerDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /* Mandatory client clusters */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Client */

 tsCLD_Basic sBasicClientCluster;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 155

Chapter 3
Lighting and Occupancy Device Types

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

 tsCLD_ZllCommission sZllCommissionClientCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;

 #endif

} tsZLO_NonColourControllerDevice;
156 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.18.3 Registration Function

The following eZLO_RegisterNonColourControllerEndPoint() function is the
endpoint registration function for a Non-Colour Controller device.

Description

This function is used to register an endpoint which will support a Non-Colour
Controller device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_NonColourControllerDevice
structure (see Section 3.18.2) which will be used to store all variables relating to the
Non-Colour Controller device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Non-Colour Controller device is housed in the same
hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.18.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterNonColourControllerEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_NonColourControllerDevice *psDeviceInfo);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 157

Chapter 3
Lighting and Occupancy Device Types

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
158 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.19 Non-Colour Scene Controller

The Non-Colour Scene Controller device is typically used in nodes that support
‘scenes’ and that issue control commands which are not related to colour - for
example, to control a Dimmable Light.

 The Device ID is 0x0830

 The header file for the device is non_colour_scene_controller.h

 The clusters supported by the device are listed in Section 3.19.1

 The device structure, tsZLO_NonColourSceneRemoteDevice, is listed in
Section 3.19.2

 The endpoint registration function for the device,
eZLO_RegisterNonColourSceneControllerEndPoint(), is detailed in Section
3.19.3

3.19.1 Supported Clusters

The clusters supported by the Non-Colour Scene Controller device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Level Control

Scenes

Optional

Touchlink Commissioning Touchlink Commissioning

Groups

OTA Upgrade

Table 20: Clusters for Non-Colour Scene Controller
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 159

Chapter 3
Lighting and Occupancy Device Types

3.19.2 Device Structure

The following tsZLO_NonColourSceneControllerDevice structure is the
shared structure for a Non-Colour Scene Controller device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_NonColourSceneControllerDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /* Mandatory client clusters */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Client */

 tsCLD_Basic sBasicClientCluster;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */
160 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;

 #endif

 /* Recommended Optional Client Cluster */

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

 tsCLD_ZllCommission sZllCommissionClientCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;

 #endif

} tsZLO_NonColourSceneControllerDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 161

Chapter 3
Lighting and Occupancy Device Types

3.19.3 Registration Function

The following eZLO_RegisterNonColourSceneControllerEndPoint() function is the
endpoint registration function for a Non-Colour Scene Controller device.

Description

This function is used to register an endpoint which will support a Non-Colour Scene
Controller device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a
tsZLO_NonColourSceneControllerDevice structure (see Section 3.19.2)
which will be used to store all variables relating to the Non-Colour Scene Controller
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Non-Colour Scene Controller device is housed in the
same hardware, sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.19.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status
eZLO_RegisterNonColourSceneControllerEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_NonColourSceneControllerDevice *psDeviceInfo);
162 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 163

Chapter 3
Lighting and Occupancy Device Types

3.20 Control Bridge

The Control Bridge device is typically used in nodes that relay control commands
issued from another network, e.g. in an Internet router with a ZigBee interface.

 The Device ID is 0x0840

 The header file for the device is control_bridge.h

 The clusters supported by the device are listed in Section 3.20.1

 The device structure, tsZLO_ControlBridgeDevice, is listed in Section
3.20.2

 The endpoint registration function for the device,
eZLO_RegisterControlBridgeEndPoint(), is detailed in Section 3.20.3

3.20.1 Supported Clusters

The clusters supported by the Control Bridge device are as follows:

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Groups

Scenes

Level Control

Colour Control

Optional

OTA Upgrade OTA Upgrade

Touchlink Commissioning Touchlink Commissioning

Illuminance Measurement

Illuminance Level Sensing

Occupancy Sensing

Table 21: Clusters for Control Bridge
164 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.20.2 Device Structure

The following tsZLO_ControlBridgeDevice structure is the shared structure for a
Control Bridge device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_ControlBridgeDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyServerCustomDataStructure;

 #endif

 /* Recommended Optional Server Cluster */

 #if (defined CLD_OTA) && (defined OTA_SERVER)

 /* OTA cluster */

 tsCLD_AS_Ota sCLD_ServerOTA;

 tsOTA_Common sCLD_OTA_ServerCustomDataStruct;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /*

 * Mandatory client clusters

 */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure sIdentifyClientCustomDataStructure;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 165

Chapter 3
Lighting and Occupancy Device Types

 #endif

 #if (defined CLD_BASIC) && (defined BASIC_CLIENT)

 /* Basic Cluster - Client */

 tsCLD_Basic sBasicClientCluster;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;

 tsCLD_LevelControlCustomDataStructure
 sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
 sColourControlClientCustomDataStructure;

 #endif

 /* Recommended Optional client clusters */

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;
166 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
 #endif

 #if (defined CLD_ILLUMINANCE_MEASUREMENT) && (defined
ILLUMINANCE_MEASUREMENT_CLIENT)

 /* Illuminance Measurement Cluster - Client */

 tsCLD_IlluminanceMeasurement sIlluminanceMeasurementClientCluster;

 #endif

 #if (defined CLD_ILLUMINANCE_LEVEL_SENSING) && (defined
ILLUMINANCE_LEVEL_SENSING_CLIENT)

 tsCLD_IlluminanceLevelSensing sIlluminanceLevelSensingClientCluster;

 #endif

 #if (defined CLD_OCCUPANCY_SENSING) && (defined OCCUPANCY_SENSING_CLIENT)

 /* Occupancy Sensing Cluster - Client */

 tsCLD_OccupancySensing sOccupancySensingClientCluster;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

 tsCLD_ZllCommission sZllCommissionClientCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;

 #endif

} tsZLO_ControlBridgeDevice;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 167

Chapter 3
Lighting and Occupancy Device Types

3.20.3 Registration Function

The following eZLO_RegisterControlBridgeEndPoint() function is the endpoint
registration function for a Control Bridge device.

Description

This function is used to register an endpoint which will support a Control Bridge
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_ControlBridgeDevice structure
(see Section 3.20.2) which will be used to store all variables relating to the Control
Bridge device associated with the endpoint. The sEndPoint and
sClusterInstance fields of this structure are set by this function and must not be
directly written to by the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one Control Bridge device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered
structure and callback function

cbCallBack Pointer to the function that will be used to indicate events
to the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all
variables related to the device being registered on this
endpoint (see Section 3.20.2). The sEndPoint and
sClusterInstance fields are set by this register
function for internal use and must not be written to by the
application

teZCL_Status eZLO_RegisterControlBridgeEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_ControlBridgeDevice *psDeviceInfo);
168 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 169

Chapter 3
Lighting and Occupancy Device Types

3.21 On/Off Sensor

The On/Off Sensor device is typically used in sensor nodes that issue control
commands, e.g. an infra-red occupancy sensor.

 The Device ID is 0x0850

 The header file for the device is on_off_sensor.h

 The clusters supported by the device are listed in Section 3.21.1

 The device structure, tsZLO_OnOffSensorDevice, is listed in Section 3.21.2

 The endpoint registration function for the device,
eZLO_RegisterOnOffSensorEndPoint(), is detailed in Section 3.21.3

3.21.1 Supported Clusters

The clusters used by the On/Off Sensor device are listed in the table below.

The mandatory attributes within each cluster for this device type are indicated in the
ZigBee Lighting and Occupancy Device Specification (15-0014-01).

Server (Input) Side Client (Output) Side

Mandatory

Basic On/Off

Identify Identify

Optional

Touchlink Commissioning Touchlink Commissioning

Level Control

Colour Control

Groups

Scenes

OTA Upgrade

Table 22: Clusters for On/Off Sensor
170 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.21.2 Device Structure

The following tsZLO_OnOffSensorDevice structure is the shared structure for a
On/Off Sensor device:

typedef struct

{

 tsZCL_EndPointDefinition sEndPoint;

 /* Cluster instances */

 tsZLO_OnOffSensorDeviceClusterInstances sClusterInstance;

 #if (defined CLD_BASIC) && (defined BASIC_SERVER)

 /* Basic Cluster - Server */

 tsCLD_Basic sBasicServerCluster;

 #endif

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_SERVER)

 /* Identify Cluster - Server */

 tsCLD_Identify sIdentifyServerCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyServerCustomDataStructure;

 #endif

 /* Recommended Optional Server Cluster */

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_SERVER)

 tsCLD_ZllCommission sZllCommissionServerCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionServerCustomDataStructure;

 #endif

 /*

 * Mandatory client clusters

 */

 #if (defined CLD_IDENTIFY) && (defined IDENTIFY_CLIENT)

 /* Identify Cluster - Client */

 tsCLD_Identify sIdentifyClientCluster;

 tsCLD_IdentifyCustomDataStructure
 sIdentifyClientCustomDataStructure;

 #endif

 #if (defined CLD_ONOFF) && (defined ONOFF_CLIENT)

 /* On/Off Cluster - Client */

 tsCLD_OnOff sOnOffClientCluster;

 #endif

 /* Recommended Optional Client CLuster */

 #if (defined CLD_LEVEL_CONTROL) && (defined LEVEL_CONTROL_CLIENT)

 /* Level Control Cluster - Client */

 tsCLD_LevelControl sLevelControlClientCluster;
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 171

Chapter 3
Lighting and Occupancy Device Types

 tsCLD_LevelControlCustomDataStructure
sLevelControlClientCustomDataStructure;

 #endif

 #if (defined CLD_SCENES) && (defined SCENES_CLIENT)

 /* Scenes Cluster - Client */

 tsCLD_Scenes sScenesClientCluster;

 tsCLD_ScenesCustomDataStructure sScenesClientCustomDataStructure;

 #endif

 #if (defined CLD_GROUPS) && (defined GROUPS_CLIENT)

 /* Groups Cluster - Client */

 tsCLD_Groups sGroupsClientCluster;

 tsCLD_GroupsCustomDataStructure sGroupsClientCustomDataStructure;

 #endif

 #if (defined CLD_COLOUR_CONTROL) && (defined COLOUR_CONTROL_CLIENT)

 /* Colour Control Cluster - Client */

 tsCLD_ColourControl sColourControlClientCluster;

 tsCLD_ColourControlCustomDataStructure
 sColourControlClientCustomDataStructure;

 #endif

 #if (defined CLD_OTA) && (defined OTA_CLIENT)

 /* OTA cluster - Client */

 tsCLD_AS_Ota sCLD_OTA;

 tsOTA_Common sCLD_OTA_CustomDataStruct;

 #endif

 #if (defined CLD_ZLL_COMMISSION) && (defined ZLL_COMMISSION_CLIENT)

 tsCLD_ZllCommission sZllCommissionClientCluster;

 tsCLD_ZllCommissionCustomDataStructure
 sZllCommissionClientCustomDataStructure;

 #endif

} tsZLO_OnOffSensorDevice;
172 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
3.21.3 Registration Function

The following eZLO_RegisterOnOffSensorEndPoint() function is the endpoint
registration function for an On/Off Sensor device.

Description

This function is used to register an endpoint which will support an On/Off Sensor
device. The function must be called after eZCL_Initialise().

The specified identifier for the endpoint is a number in the range 1 to 240 (endpoint
0 is reserved for ZigBee use). Application endpoints are normally numbered
consecutively starting at 1. The specified number must be less than or equal to the
value of ZLO_NUMBER_OF_ENDPOINTS defined in the zcl_options.h file, which
represents the highest endpoint number used for applications.

As part of this function call, you must specify a user-defined callback function that will
be invoked when an event occurs that is associated with the endpoint. This callback
function is defined according to the typedef:

typedef void (* tfpZCL_ZCLCallBackFunction)

 (tsZCL_CallBackEvent *pCallBackEvent);

You must also provide a pointer to a tsZLO_OnOffSensorDevice structure (see
Section 3.21.2) which will be used to store all variables relating to the On/Off Sensor
device associated with the endpoint. The sEndPoint and sClusterInstance
fields of this structure are set by this function and must not be directly written to by
the application.

The function may be called multiple times if more than one endpoint is being used -
for example, if more than one On/Off Sensor device is housed in the same hardware,
sharing the same JN51xx module.

Parameters

u8EndPointIdentifier Endpoint that is to be associated with the registered structure
and callback function

cbCallBack Pointer to the function that will be used to indicate events to
the application for this endpoint

psDeviceInfo Pointer to the structure that will act as storage for all variables
related to the device being registered on this endpoint (see
Section 3.21.2). The sEndPoint and sClusterInstance
fields are set by this register function for internal use and must
not be written to by the application

teZCL_Status eZLO_RegisterOnOffSensorEndPoint(
 uint8 u8EndPointIdentifier,
 tfpZCL_ZCLCallBackFunction cbCallBack,
 tsZLO_OnOffSensorDevice *psDeviceInfo);
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 173

Chapter 3
Lighting and Occupancy Device Types

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_0

E_ZCL_ERR_CALLBACK_NULL

E_ZCL_ERR_CLUSTER_NULL

E_ZCL_ERR_SECURITY_RANGE

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_MANUFACTURER_SPECIFIC

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED

E_ZCL_ERR_ATTRIBUTE_ID_ORDER

E_ZCL_ERR_ATTRIBUTES_ACCESS

The above codes are described in the ZCL User Guide (JN-UG-3115).
174 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

 ZigBee 3.0 Devices
User Guide
Revision History

Version Date Comments

1.0 14-Apr-2016 First release

1.1 6-July-2016 Updated for JN517x devices

1.2 1-Dec-2016 Includes corrections to install code description
JN-UG-3114 v1.2 © NXP Laboratories UK 2016 175

ZigBee 3.0 Devices
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Semiconductors

For online support resources and contact details of your local NXP office or distributor, refer to:

www.nxp.com
176 © NXP Laboratories UK 2016 JN-UG-3114 v1.2

	Contents
	Preface
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks
	Chip Compatibility

	1. Introduction
	1.1 ZigBee Device Types
	1.2 Software Architecture
	1.3 Shared Device Structure
	1.4 Device Initialisation
	1.5 Endpoint Callback Functions
	1.6 Compile-Time Options

	2. ZigBee Base Device
	2.1 Initialising and Starting the ZigBee Base Device
	2.2 Network Commissioning
	2.2.1 Touchlink
	2.2.2 Network Steering
	2.2.3 Network Formation
	2.2.4 Finding and Binding
	2.2.5 Out-Of-Band Commissioning

	2.3 Network Security
	2.3.1 Centralised Security Networks
	2.3.2 Distributed Security Networks

	2.4 ZigBee Base Device Rejoin Handling
	2.5 Attributes and Constants
	2.5.1 Attributes
	2.5.2 Constants

	2.6 Functions
	BDB_vInit
	BDB_vSetKeys
	BDB_vStart
	BDB_eNfStartNwkFormation
	BDB_eNsStartNwkSteering
	BDB_eFbTriggerAsInitiator
	BDB_vFbExitAsInitiator
	BDB_eFbTriggerAsTarget
	BDB_vFbExitAsTarget
	BDB_bIsBaseIdle
	BDB_u8OutOfBandCommissionStartDevice
	BDB_vOutOfBandCommissionGetData
	BDB_eOutOfBandCommissionGetDataEncrypted
	BDB_bOutOfBandCommissionGetKey

	2.7 Structures
	2.7.1 BDB_tsBdbEvent
	2.7.2 BDB_tuBdbEventData
	2.7.3 BDB_tsZpsAfEvent
	2.7.4 BDB_tsFindAndBindEvent
	2.7.5 BDB_tsOobWriteDataToCommission
	2.7.6 BDB_tsOobReadDataToAuthenticate
	2.7.7 BDB_tsOobWriteDataToAuthenticate

	2.8 Enumerations
	2.8.1 BDB_teStatus
	2.8.2 BDB_teCommissioningStatus

	2.9 Events
	2.10 Compile-time Options

	3. Lighting and Occupancy Device Types
	3.1 On/Off Light
	3.1.1 Supported Clusters
	3.1.2 Device Structure
	3.1.3 Registration Function

	3.2 Dimmable Light
	3.2.1 Supported Clusters
	3.2.2 Device Structure
	3.2.3 Registration Function

	3.3 Colour Dimmable Light
	3.3.1 Supported Clusters
	3.3.2 Device Structure
	3.3.3 Registration Function

	3.4 On/Off Light Switch
	3.4.1 Supported Clusters
	3.4.2 Device Structure
	3.4.3 Registration Function

	3.5 Dimmer Switch
	3.5.1 Supported Clusters
	3.5.2 Device Structure
	3.5.3 Registration Function

	3.6 Colour Dimmer Switch
	3.6.1 Supported Clusters
	3.6.2 Device Structure
	3.6.3 Registration Function

	3.7 Light Sensor
	3.7.1 Supported Clusters
	3.7.2 Device Structure
	3.7.3 Registration Function

	3.8 Occupancy Sensor
	3.8.1 Supported Clusters
	3.8.2 Device Structure
	3.8.3 Registration Function

	3.9 On/Off Ballast
	3.9.1 Supported Clusters
	3.9.2 Device Structure
	3.9.3 Registration Function

	3.10 Dimmable Ballast
	3.10.1 Supported Clusters
	3.10.2 Device Structure
	3.10.3 Registration Function

	3.11 On/Off Plug-in Unit
	3.11.1 Supported Clusters
	3.11.2 Device Structure
	3.11.3 Registration Function

	3.12 Dimmable Plug-in Unit
	3.12.1 Supported Clusters
	3.12.2 Device Structure
	3.12.3 Registration Function

	3.13 Colour Temperature Light
	3.13.1 Supported Clusters
	3.13.2 Device Structure
	3.13.3 Registration Function

	3.14 Extended Colour Light
	3.14.1 Supported Clusters
	3.14.2 Device Structure
	3.14.3 Registration Function

	3.15 Light Level Sensor
	3.15.1 Supported Clusters
	3.15.2 Device Structure
	3.15.3 Registration Function

	3.16 Colour Controller
	3.16.1 Supported Clusters
	3.16.2 Device Structure
	3.16.3 Registration Function

	3.17 Colour Scene Controller
	3.17.1 Supported Clusters
	3.17.2 Device Structure
	3.17.3 Registration Function

	3.18 Non-Colour Controller
	3.18.1 Supported Clusters
	3.18.2 Device Structure
	3.18.3 Registration Function

	3.19 Non-Colour Scene Controller
	3.19.1 Supported Clusters
	3.19.2 Device Structure
	3.19.3 Registration Function

	3.20 Control Bridge
	3.20.1 Supported Clusters
	3.20.2 Device Structure
	3.20.3 Registration Function

	3.21 On/Off Sensor
	3.21.1 Supported Clusters
	3.21.2 Device Structure
	3.21.3 Registration Function

