
ZigBee Cluster Library
User Guide

JN-UG-3103

Revision 1.4

25 April 2017

ZigBee Cluster Library
User Guide

2 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Contents

Preface 23
Organisation 23

Conventions 25

Acronyms and Abbreviations 25

Related Documents 26

Support Resources 26

Trademarks 26

Chip Compatibility 26

Part I: General and Development Information

1. ZigBee Cluster Library (ZCL) 29
1.1 Member Clusters 30

1.2 Compile-time Options 34

2. ZCL Fundamentals and Features 37
2.1 Shared Device Structures 37

2.2 Accessing Attributes 39
2.2.1 Reading Attributes 39

2.2.1.1 Reading a Set of Attributes of a Remote Cluster 39
2.2.1.2 Reading an Attribute of a Local Cluster 41

2.2.2 Writing Attributes 42
2.2.2.1 Writing to Attributes of a Remote Cluster 42
2.2.2.2 Writing an Attribute Value to a Local Cluster 45

2.2.3 Attribute Discovery 45

2.2.4 Attribute Reporting 46

2.3 Attribute Storage by Application (SE 1.2.2 only) 47

2.4 Default Responses 50

2.5 Bound Transmission Management 51

2.6 Command Discovery 52
2.6.1 Discovering Command Sets 53

2.6.2 Compile-time Options 54

3. Event Handling 55
3.1 Event Structure 55

3.2 Processing Events 56

3.3 Events 57
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 3

Contents
4. Error Handling 63
4.1 Last Stack Error 63

4.2 Error/Command Status on Receiving Command 63

Part II: Clusters and Modules

5. Basic Cluster 67
5.1 Overview 67

5.2 Basic Cluster Structure and Attributes 68

5.3 Mandatory Attribute Settings 72

5.4 Functions 72
eCLD_BasicCreateBasic 73

eCLD_BasicCommandResetToFactoryDefaultsSend 75

5.5 Enumerations 77
5.5.1 teCLD_BAS_ClusterID 77

5.5.2 teCLD_BAS_PowerSource 77

5.5.3 teCLD_BAS_ApplicationProfileType 79

5.6 Compile-Time Options 79

6. Power Configuration Cluster 81
6.1 Overview 81

6.2 Power Configuration Cluster Structure and Attributes 82

6.3 Functions 92
eCLD_PowerConfigurationCreatePowerConfiguration 93

6.4 Enumerations and Defines 95
6.4.1 teCLD_PWRCFG_AttributeId 95

6.4.2 teCLD_PWRCFG_BatterySize 97

6.4.3 Defines for Voltage Alarms 97

6.5 Compile-Time Options 98

7. Identify Cluster 103
7.1 Overview 103

7.2 Identify Cluster Structure and Attribute 104

7.3 Initialisation 105

7.4 Sending Commands 105
7.4.1 Starting and Stopping Identification Mode 105

7.4.2 Requesting Identification Effects (ZLL Only) 105

7.4.3 Inquiring about Identification Mode 106

7.4.4 Using EZ-mode Commissioning Features (HA only) 106

7.5 Sleeping Devices in Identification Mode 107
4 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
7.6 Functions 107
eCLD_IdentifyCreateIdentify 108

eCLD_IdentifyCommandIdentifyRequestSend 110

eCLD_IdentifyCommandTriggerEffectSend 112

eCLD_IdentifyCommandIdentifyQueryRequestSend 114

eCLD_IdentifyEZModeInvokeCommandSend 116

eCLD_IdentifyUpdateCommissionStateCommandSend 118

7.7 Structures 120
7.7.1 Custom Data Structure 120

7.7.2 Custom Command Payloads 120

7.7.3 Custom Command Responses 120

7.7.4 EZ-mode Commissioning Command Payloads 121

7.8 Enumerations 122
7.8.1 teCLD_Identify_ClusterID 122

7.9 Compile-Time Options 122

8. Groups Cluster 125
8.1 Overview 125

8.2 Groups Cluster Structure and Attribute 125

8.3 Initialisation 126

8.4 Sending Commands 126
8.4.1 Adding Endpoints to Groups 126

8.4.2 Removing Endpoints from Groups 126

8.4.3 Obtaining Information about Groups 127

8.5 Functions 127
eCLD_GroupsCreateGroups 128

eCLD_GroupsAdd 130

eCLD_GroupsCommandAddGroupRequestSend 131

eCLD_GroupsCommandViewGroupRequestSend 133

eCLD_GroupsCommandGetGroupMembershipRequestSend 135

eCLD_GroupsCommandRemoveGroupRequestSend 137

eCLD_GroupsCommandRemoveAllGroupsRequestSend 139

eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend 141

8.6 Structures 143
8.6.1 Custom Data Structure 143

8.6.2 Group Table Entry 143

8.6.3 Custom Command Payloads 144

8.6.4 Custom Command Responses 145

8.7 Enumerations 146
8.7.1 teCLD_Groups_ClusterID 146

8.8 Compile-Time Options 147
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 5

Contents
9. Scenes Cluster 149
9.1 Overview 149

9.2 Scenes Cluster Structure and Attributes 150

9.3 Initialisation 150

9.4 Sending Remote Commands 151
9.4.1 Creating a Scene 151

9.4.2 Copying a Scene (ZLL Only) 152

9.4.3 Applying a Scene 152

9.4.4 Deleting a Scene 152

9.4.5 Obtaining Information about Scenes 153

9.5 Issuing Local Commands 153
9.5.1 Creating a Scene 153

9.5.2 Applying a Scene 153

9.6 Functions 154
eCLD_ScenesCreateScenes 155

eCLD_ScenesAdd 157

eCLD_ScenesStore 158

eCLD_ScenesRecall 159

eCLD_ScenesCommandAddSceneRequestSend 160

eCLD_ScenesCommandViewSceneRequestSend 162

eCLD_ScenesCommandRemoveSceneRequestSend 164

eCLD_ScenesCommandRemoveAllScenesRequestSend 166

eCLD_ScenesCommandStoreSceneRequestSend 168

eCLD_ScenesCommandRecallSceneRequestSend 170

eCLD_ScenesCommandGetSceneMembershipRequestSend 172

eCLD_ScenesCommandEnhancedAddSceneRequestSend 174

eCLD_ScenesCommandEnhancedViewSceneRequestSend 176

eCLD_ScenesCommandCopySceneSceneRequestSend 178

9.7 Structures 180
9.7.1 Custom Data Structure 180

9.7.2 Custom Command Payloads 180

9.7.3 Custom Command Responses 184

9.8 Enumerations 188
9.8.1 teCLD_Scenes_ClusterID 188

9.9 Compile-Time Options 188

10. On/Off Cluster 191
10.1 Overview 191

10.2 On/Off Cluster Structure and Attribute 192

10.3 Initialisation 194
6 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
10.4 Sending Commands 194
10.4.1 Switching On and Off 194

10.4.1.1 Timeout on the ‘On’ Command 194
10.4.1.2 Profile-specific Features 195

10.4.2 Switching Off Lights with Effect (ZLL Only) 195

10.4.3 Switching On Timed Lights (ZLL Only) 196

10.5 Saving Light Settings (ZLL Only) 196

10.6 Functions 197
eCLD_OnOffCreateOnOff 198

eCLD_OnOffCommandSend 200

eCLD_OnOffCommandOffWithEffectSend 202

eCLD_OnOffCommandOnWithTimedOffSend 204

10.7 Structures 206
10.7.1 Custom Data Structure 206

10.7.2 Custom Command Payloads 206

10.8 Enumerations 208
10.8.1 teCLD_OnOff_ClusterID 208

10.8.2 teCLD_OOSC_SwitchType (On/Off Switch Types) 208

10.8.3 teCLD_OOSC_SwitchAction (On/Off Switch Actions) 208

10.9 Compile-Time Options 209

11. On/Off Switch Configuration Cluster 211
11.1 Overview 211

11.2 On/Off Switch Config Cluster Structure and Attribute 212

11.3 Initialisation 212

11.4 Functions 212
eCLD_OOSCCreateOnOffSwitchConfig 213

11.5 Enumerations 215
11.5.1 teCLD_OOSC_ClusterID 215

11.6 Compile-Time Options 215

12. Level Control Cluster 217
12.1 Overview 217

12.2 Level Control Cluster Structure and Attributes 218

12.3 Initialisation 220

12.4 Sending Remote Commands 220
12.4.1 Changing Level 220

12.4.2 Stopping a Level Change 221

12.5 Issuing Local Commands 222
12.5.1 Setting Level 222

12.5.2 Obtaining Level 222
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 7

Contents
12.6 Functions 223
eCLD_LevelControlCreateLevelControl 224

eCLD_LevelControlSetLevel 226

eCLD_LevelControlGetLevel 227

eCLD_LevelControlCommandMoveToLevelCommandSend 228

eCLD_LevelControlCommandMoveCommandSend 230

eCLD_LevelControlCommandStepCommandSend 232

eCLD_LevelControlCommandStopCommandSend 234

eCLD_LevelControlCommandStopWithOnOffCommandSend 235

12.7 Structures 236
12.7.1 Custom Data Structure 236

12.7.2 Custom Command Payloads 236
12.7.2.1 Move To Level Command Payload 236
12.7.2.2 Move Command Payload 237
12.7.2.3 Step Command Payload 237

12.8 Enumerations 238
12.8.1 teCLD_LevelControl_ClusterID 238

12.9 Compile-Time Options 238

13. Alarms Cluster 241
13.1 Overview 241

13.2 Alarms Cluster Structure and Attributes 242

13.3 Initialisation 242

13.4 Alarm Operations 242
13.4.1 Raising an Alarm 242

13.4.2 Clearing an Alarm (from Server) 243

13.4.3 Resetting Alarms (from Client) 243

13.5 Alarms Events 243

13.6 Functions 245
eCLD_AlarmsCreateAlarms 246

eCLD_AlarmsCommandResetAlarmCommandSend 248

eCLD_AlarmsCommandResetAllAlarmsCommandSend 250

eCLD_AlarmsCommandGetAlarmCommandSend 252

eCLD_AlarmsCommandResetAlarmLogCommandSend 254

eCLD_AlarmsResetAlarmLog 256

eCLD_AlarmsAddAlarmToLog 257

eCLD_AlarmsGetAlarmFromLog 258

eCLD_AlarmsSignalAlarm 259

eCLD_AlarmsClearAlarm 261
8 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
13.7 Structures 263
13.7.1 Event Callback Message Structure 263

13.7.2 Custom Data Structure 264

13.7.3 Custom Command Payloads 264
13.7.3.1 Reset Alarm Command Payload 264
13.7.3.2 Alarm Notification Payload 265

13.7.4 Custom Response Payloads 265
13.7.4.1 Get Alarm Response Payload 265

13.7.5 Alarms Table Entry 266

13.8 Enumerations 266
13.8.1 teCLD_Alarms_AttributeID 266

13.9 Compile-Time Options 267

14. Time Cluster and ZCL Time 269
14.1 Overview 269

14.2 Time Cluster Structure and Attributes 271

14.3 Attribute Settings 273
14.3.1 Mandatory Attributes 273

14.3.2 Optional Attributes 274

14.4 Maintaining ZCL Time 275
14.4.1 Updating ZCL Time Following Sleep 275

14.4.2 ZCL Time Synchronisation 276

14.5 Time-Synchronisation of Devices 276
14.5.1 Initialising and Maintaining Master Time 278

14.5.2 Initial Synchronisation of Devices 279

14.5.3 Re-synchronisation of Devices 280

14.6 Time Event 280

14.7 Functions 281
eCLD_TimeCreateTime 282

vZCL_SetUTCTime 284

u32ZCL_GetUTCTime 285

bZCL_GetTimeHasBeenSynchronised 286

vZCL_ClearTimeHasBeenSynchronised 287

14.8 Return Codes 288

14.9 Enumerations 288
14.9.1 teCLD_TM_AttributeID 288

14.10 Compile-Time Options 288
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 9

Contents
15. Binary Input (Basic) Cluster 291
15.1 Overview 291

15.2 Binary Input (Basic) Structure and Attribute 291

15.3 Functions 294
eCLD_BinaryInputBasicCreateBinaryInputBasic 295

15.4 Enumerations 297
15.4.1 teCLD_BinaryInputBasicCluster_AttrID 297

15.4.2 teCLD_BinaryInputBasic_Polarity 297

15.4.3 teCLD_BinaryInputBasic_Reliability 298

15.5 Compile-Time Options 298

16. Commissioning Cluster 299
16.1 Overview 299

16.2 Commissioning Cluster Structure and Attributes 299

16.3 Attribute Settings 304

16.4 Functions 304

16.5 Enumerations 304
16.5.1 teCLD_Commissioning_AttributeID 304

16.6 Compile-Time Options 305

17. Door Lock Cluster 307
17.1 Overview 307

17.2 Door Lock Cluster Structure and Attributes 307

17.3 Door Lock Events 310

17.4 Functions 311
eCLD_DoorLockCreateDoorLock 312

eCLD_DoorLockSetLockState 314

eCLD_DoorLockGetLockState 315

eCLD_DoorLockCommandLockUnlockRequestSend 316

eCLD_DoorLockSetSecurityLevel 317

17.5 Return Codes 318

17.6 Enumerations 318
17.6.1 ‘Attribute ID’ Enumerations 318

17.6.2 ‘Lock State’ Enumerations 318

17.6.3 ‘Lock Type’ Enumerations 319

17.6.4 ‘Door State’ Enumerations 320

17.6.5 ‘Command ID’ Enumerations 320

17.7 Structures 321
17.7.1 tsCLD_DoorLockCallBackMessage 321

17.7.2 tsCLD_DoorLock_LockUnlockResponsePayload 321

17.8 Compile-Time Options 322
10 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
18. Thermostat Cluster 323
18.1 Overview 323

18.2 Thermostat Cluster Structure and Attributes 323

18.3 Thermostat Operations 330
18.3.1 Initialisation 330

18.3.2 Recording and Reporting the Local Temperature 330

18.3.3 Configuring Heating and Cooling Setpoints 331

18.4 Thermostat Events 332

18.5 Functions 333
eCLD_ThermostatCreateThermostat 334

eCLD_ThermostatSetAttribute 336

eCLD_ThermostatStartReportingLocalTemperature 337

eCLD_ThermostatCommandSetpointRaiseOrLowerSend 338

18.6 Return Codes 339

18.7 Enumerations 339
18.7.1 ‘Attribute ID’ Enumerations 339

18.7.2 ‘Operating Capabilities’ Enumerations 340

18.7.3 ‘Command ID’ Enumerations 341

18.7.4 ‘Setpoint Raise Or Lower’ Enumerations 341

18.8 Structures 342
18.8.1 Custom Data Structure 342

18.8.2 tsCLD_ThermostatCallBackMessage 342

18.8.3 tsCLD_Thermostat_SetpointRaiseOrLowerPayload 343

18.9 Compile-Time Options 344

19. Fan Control Cluster 347
19.1 Overview 347

19.2 Fan Control Structure and Attributes 347

19.3 Initialisation 348

19.4 Functions 348
eCLD_FanControlCreateFanControl 349

19.5 Enumerations 351
19.5.1 teCLD_FanControl_Cluster_AttrID 351

19.5.2 teCLD_FanControl_FanMode 351

19.5.3 teCLD_FanControl_ModeSequence 352

19.6 Compile-Time Options 352
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 11

Contents
20. Thermostat UI Configuration Cluster 353
20.1 Overview 353

20.2 Cluster Structure and Attributes 354

20.3 Initialisation 354

20.4 Functions 355
eCLD_ThermostatUIConfigCreateThermostatUIConfig 356

eCLD_ThermostatUIConfigConvertTemp 358

20.5 Return Codes 359

20.6 Enumerations 359
20.6.1 ‘Attribute ID’ Enumerations 359

20.6.2 ‘Temperature Display Mode’ Enumerations 359

20.6.3 ‘Keypad Functionality’ Enumerations 360

20.7 Compile-Time Options 360

21.Colour Control Cluster 361
21.1 Overview 361

21.2 Colour Control Cluster Structure and Attributes 362

21.3 Initialisation 371

21.4 Sending Commands 372
21.4.1 Controlling Hue 372

21.4.2 Controlling Saturation 373

21.4.3 Controlling Colour (CIE x and y Chromaticities) 374

21.4.4 Controlling Colour Temperature 375

21.4.5 Controlling ‘Enhanced’ Hue (ZLL Only) 376

21.4.6 Controlling a Colour Loop (ZLL Only) 378

21.4.7 Controlling Hue and Saturation 378

21.5 Functions 380
eCLD_ColourControlCreateColourControl 381

eCLD_ColourControlCommandMoveToHueCommandSend 383

eCLD_ColourControlCommandMoveHueCommandSend 385

eCLD_ColourControlCommandStepHueCommandSend 387

eCLD_ColourControlCommandMoveToSaturationCommandSend 389

eCLD_ColourControlCommandMoveSaturationCommandSend 391

eCLD_ColourControlCommandStepSaturationCommandSend 393

eCLD_ColourControlCommandMoveToHueAndSaturationCommandSend 395

eCLD_ColourControlCommandMoveToColourCommandSend 397

eCLD_ColourControlCommandMoveColourCommandSend 399

eCLD_ColourControlCommandStepColourCommandSend 401

eCLD_ColourControlCommandEnhancedMoveToHueCommandSend 403

eCLD_ColourControlCommandEnhancedMoveHueCommandSend 405

eCLD_ColourControlCommandEnhancedStepHueCommandSend 407

eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend 409

eCLD_ColourControlCommandColourLoopSetCommandSend 411
12 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandStopMoveStepCommandSend 413

eCLD_ColourControlCommandMoveToColourTemperatureCommandSend 415

eCLD_ColourControlCommandMoveColourTemperatureCommandSend 417

eCLD_ColourControlCommandStepColourTemperatureCommandSend 419

eCLD_ColourControl_GetRGB 421

21.6 Structures 422
21.6.1 Custom Data Structure 422

21.6.2 Custom Command Payloads 422

21.7 Enumerations 432
21.7.1 teCLD_ColourControl_ClusterID 432

21.8 Compile-Time Options 433

22. Illuminance Measurement Cluster 437
22.1 Overview 437

22.2 Illuminance Measurement Structure and Attributes 437

22.3 Functions 438
eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement 439

22.4 Enumerations 441
22.4.1 teCLD_IM_ClusterID 441

22.5 Compile-Time Options 441

23. Illuminance Level Sensing Cluster 443
23.1 Overview 443

23.2 Cluster Structure and Attributes 443

23.3 Functions 445
eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing 446

23.4 Enumerations 448
23.4.1 teCLD_ILS_ClusterID 448

23.4.2 teCLD_ILS_LightSensorType 448

23.4.3 teCLD_ILS_LightLevelStatus 448

23.5 Compile-Time Options 449

24. Temperature Measurement Cluster 451
24.1 Overview 451

24.2 Temperature Measurement Structure and Attributes 451

24.3 Functions 452
eCLD_TemperatureMeasurementCreateTemperatureMeasurement 453

24.4 Enumerations 455
24.4.1 teCLD_TemperatureMeasurement_AttributeID 455

24.5 Compile-Time Options 455
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 13

Contents
25. Relative Humidity Measurement Cluster 457
25.1 Overview 457

25.2 RH Measurement Structure and Attributes 457

25.3 Functions 458
eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement 459

25.4 Enumerations 461
25.4.1 teCLD_RHM_ClusterID 461

25.5 Compile-Time Options 461

26. Occupancy Sensing Cluster 463
26.1 Overview 463

26.2 Occupancy Sensing Structure and Attributes 464

26.3 Functions 466
eCLD_OccupancySensingCreateOccupancySensing 467

26.4 Enumerations 469
26.4.1 teCLD_OS_ClusterID 469

26.5 Compile-Time Options 469

27. IAS Zone Cluster 471
27.1 Overview 471

27.2 IAS Zone Structure and Attributes 472

27.3 Enrollment 475
27.3.1 Trip-to-Pair 475

27.3.2 Auto-Enroll-Response 476

27.3.3 Auto-Enroll-Request 476

27.4 IAS Zone Events 477

27.5 Functions 478
eCLD_IASZoneCreateIASZone 479

eCLD_IASZoneUpdateZoneStatus 481

eCLD_IASZoneUpdateZoneState 483

eCLD_IASZoneUpdateZoneType 484

eCLD_IASZoneUpdateZoneID 485

eCLD_IASZoneUpdateCIEAddress 486

eCLD_IASZoneEnrollReqSend 487

eCLD_IASZoneEnrollRespSend 489

eCLD_IASZoneStatusChangeNotificationSend 491

eCLD_IASZoneNormalOperationModeReqSend 493

eCLD_IASZoneTestModeReqSend 494

27.6 Structures 496
27.6.1 Custom Data Structure 496

27.6.2 Custom Command Payloads 496

27.7 Compile-Time Options 499
14 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
28. IAS Ancillary Control Equipment Cluster 501
28.1 Overview 501

28.2 IAS ACE Structure and Attributes 501

28.3 Table and Parameters 501

28.4 Command Summary 502

28.5 IAS ACE Events 504

28.6 Functions 506
eCLD_IASACECreateIASACE 507

eCLD_IASACEAddZoneEntry 509

eCLD_IASACERemoveZoneEntry 510

eCLD_IASACEGetZoneTableEntry 511

eCLD_IASACEGetEnrolledZones 512

eCLD_IASACESetPanelParameter 513

eCLD_IASACEGetPanelParameter 514

eCLD_IASACESetZoneParameter 515

eCLD_IASACESetZoneParameterValue 517

eCLD_IASACEGetZoneParameter 518

eCLD_IASACE_ArmSend 519

eCLD_IASACE_BypassSend 521

eCLD_IASACE_EmergencySend 523

eCLD_IASACE_FireSend 524

eCLD_IASACE_PanicSend 525

eCLD_IASACE_GetZoneIDMapSend 526

eCLD_IASACE_GetZoneInfoSend 528

eCLD_IASACE_GetPanelStatusSend 530

eCLD_IASACE_SetBypassedZoneListSend 532

eCLD_IASACE_GetBypassedZoneListSend 534

eCLD_IASACE_GetZoneStatusSend 536

eCLD_IASACE_ZoneStatusChangedSend 538

eCLD_IASACE_PanelStatusChanged 540

28.7 Structures 542
28.7.1 Custom Data Structure 542

28.7.2 Zone Table Entry 542

28.7.3 Zone Parameters 543

28.7.4 Panel Parameters 545

28.7.5 Custom Command Payloads 546

28.7.6 Event Data Structures 552

28.8 Enumerations 555
28.8.1 teCLD_IASACE_ArmMode 555

28.8.2 teCLD_IASACE_PanelStatus 555

28.8.3 teCLD_IASACE_AlarmStatus 556

28.8.4 teCLD_IASACE_AudibleNotification 556

28.9 Compile-Time Options 557
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 15

Contents
29. IAS Warning Device Cluster 559
29.1 Overview 559

29.2 IAS WD Structure and Attribute 559

29.3 Issuing Warnings 560

29.4 IAS WD Events 561

29.5 Functions 562
eCLD_IASWDCreateIASWD 563

eCLD_IASWDUpdate 565

eCLD_IASWDUpdateMaxDuration 566

eCLD_IASWDStartWarningReqSend 567

eCLD_IASWDSquawkReqSend 569

29.6 Structures 571
29.6.1 Custom Data Structure 571

29.6.2 Custom Command Payloads 571

29.6.3 Event Data Structures 573

29.7 Compile-Time Options 575

30.OTA Upgrade Cluster 577
30.1 Overview 577

30.2 OTA Upgrade Cluster Structure and Attributes 578

30.3 Basic Principles 581
30.3.1 OTA Upgrade Cluster Server 582

30.3.2 OTA Upgrade Cluster Client 582

30.4 Application Requirements 583

30.5 Initialisation 584

30.6 Implementing OTA Upgrade Mechanism 585

30.7 Ancillary Features and Resources for OTA Upgrade 588
30.7.1 Rate Limiting 588

30.7.2 Device-Specific File Downloads 591

30.7.3Image Block Size and Fragmentation 593

30.7.4 Page Requests 594

30.7.5 Persistent Data Management 596

30.7.6 Mutex for Flash Memory Access 597

30.7.7 External Flash Memory Organisation 598

30.7.8Low-Voltage Flag 599

30.8 OTA Upgrade Events 600
30.8.1 Server-side Events 601

30.8.2 Client-side Events 602

30.8.3 Server-side and Client-side Events 605
16 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.9 Functions 606
30.9.1 General Functions 606

eOTA_Create 607

vOTA_FlashInit 608

eOTA_AllocateEndpointOTASpace 609

vOTA_GenerateHash 611

eOTA_GetCurrentOtaHeader 612

30.9.2 Server Functions 613

eOTA_SetServerAuthorisation 614

eOTA_SetServerParams 615

eOTA_GetServerData 616

eOTA_EraseFlashSectorsForNewImage 617

eOTA_FlashWriteNewImageBlock 618

eOTA_NewImageLoaded 619

eOTA_ServerImageNotify 620

eOTA_ServerQueryNextImageResponse 621

eOTA_ServerImageBlockResponse 622

eOTA_SetWaitForDataParams 624

eOTA_ServerUpgradeEndResponse 625

eOTA_ServerSwitchToNewImage 627

eOTA_InvalidateStoredImage 628

eOTA_ServerQuerySpecificFileResponse 629

30.9.3 Client Functions 630

eOTA_SetServerAddress 631

eOTA_ClientQueryNextImageRequest 632

eOTA_ClientImageBlockRequest 633

eOTA_ClientImagePageRequest 634

eOTA_ClientUpgradeEndRequest 635

eOTA_HandleImageVerification 637

eOTA_UpdateCoProcessorOTAHeader 638

eOTA_CoProcessorUpgradeEndRequest 639

eOTA_ClientSwitchToNewImage 640

eOTA_UpdateClientAttributes 641

eOTA_RestoreClientData 642

vOTA_SetImageValidityFlag 643

eOTA_ClientQuerySpecificFileRequest 644

eOTA_SpecificFileUpgradeEndRequest 645

vOTA_SetLowVoltageFlag 646

30.10 Structures 647
30.10.1 tsOTA_ImageHeader 647

30.10.2 tsOTA_CoProcessorOTAHeader 649

30.10.3 tsOTA_Common 649

30.10.4 tsOTA_HwFncTable 650

30.10.5 tsNvmDefs 650

30.10.6 tsOTA_ImageNotifyCommand 651

30.10.7 tsOTA_QueryImageRequest 652
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 17

Contents
30.10.8 tsOTA_QueryImageResponse 652

30.10.9 tsOTA_BlockRequest 653

30.10.10 tsOTA_ImagePageRequest 654

30.10.11 tsOTA_ImageBlockResponsePayload 655

30.10.12 tsOTA_UpgradeEndRequestPayload 656

30.10.13 tsOTA_UpgradeEndResponsePayload 656

30.10.14 tsOTA_SuccessBlockResponsePayload 657

30.10.15 tsOTA_WaitForData 658

30.10.16 tsOTA_WaitForDataParams 659

30.10.17 tsOTA_PageReqServerParams 659

30.10.18 tsOTA_PersistedData 660

30.10.19 tsOTA_QuerySpecificFileRequestPayload 661

30.10.20 tsOTA_QuerySpecificFileResponsePayload 662

30.10.21 tsOTA_CallBackMessage 663

30.10.22 tsCLD_PR_Ota 665

30.10.23 tsCLD_AS_Ota 666

30.10.24 tsOTA_ImageVersionVerify 667

30.10.25 tsOTA_UpgradeDowngradeVerify 667

30.11 Enumerations 668
30.11.1 teOTA_Cluster 668

30.11.2 teOTA_UpgradeClusterEvents 669

30.11.3 eOTA_AuthorisationState 673

30.11.4 teOTA_ImageNotifyPayloadType 673

30.12 Compile-Time Options 674

30.13 Build Process 678
30.13.1 Modifying Makefiles 678

30.13.2 Building Applications 678

30.13.3 Preparing and Downloading Initial Client Image 678

30.13.4 Preparing and Downloading Server Image 679

31.Diagnostics Cluster 681
31.1 Overview 681

31.2 Diagnostics Structure and Attributes 682

31.3 Functions 686
eCLD_DiagnosticsCreateDiagnostics 687

eCLD_DiagnosticsUpdate 689

31.4 Enumerations 690
31.4.1 teCLD_Diagnostics_AttributeId 690

31.5 Compile-time Options 691
18 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
32.EZ-mode Commissioning Module 693
32.1 Overview 693

32.2 Commissioning Process and Stages 694
32.2.1 Invocation 695

32.2.2 Network Steering 695
32.2.2.1 Not a Network Member 696
32.2.2.2 Already a Network Member 697

32.2.3 Find and Bind 697

32.2.4 Grouping 699

32.3 Persisting Commissioning Data 701

32.4 Joining States 702

32.5 EZ-mode Commissioning Events 703

32.6 Functions 705
32.6.1 Joining Functions 705

vEZ_SetUpPolicy 706

vEZ_FormNWK 707

eEZ_UpdateEZState 708

vEZ_EZModeNWKJoinHandler 709

eEZ_GetJoinState 710

vEZ_ReJoinOnLastKnownCh 711

vEZ_RestoreDefaultAIBChMask 712

vEZ_SetDefaultAIBChMask 713

32.6.2 ‘Find and Bind’/Grouping Functions 714

eEZ_ExcludeClusterFromEZBinding 715

eEZ_FindAndBind 716

eEZ_Group 717

vEZ_SetGroupId 718

u16EZ_GetGroupId 719

eEZ_GetFindAndBindState 720

vEZ_Exit 721

vEZ_FactoryReset 722

vEZ_EZModeNWKFindAndBindHandler 723

vEZ_EPCallBackHandler 724

vEZ_EZModeCb 725

32.7 Enumerations 726
32.7.1 ‘Set-Up Policy’ Enumerations 726

32.7.2 Status Enumerations (‘Find and Bind’ Return Codes) 726

32.7.3 ‘Cluster Exclude’ Enumerations 727

32.7.4 ‘Join Action’ Enumerations 728

32.7.5 Event Enumerations 728

32.8 Structures 729
32.8.1 tsEZ_FindAndBindEvent 729

32.9 Compile-Time Options 730
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 19

Contents
Part III: General Reference Information

33. ZCL Functions 737
33.1 General Functions 737

eZCL_Register 738

vZCL_EventHandler 739

eZCL_GetLastZpsError 740

33.2 Attribute Access Functions 741
eZCL_SendReadAttributesRequest 742

eZCL_SendWriteAttributesRequest 744

eZCL_SendWriteAttributesNoResponseRequest 746

eZCL_SendWriteAttributesUndividedRequest 748

eZCL_SendDiscoverAttributesRequest 750

eZCL_SendDiscoverAttributesExtendedRequest 752

eZCL_SendConfigureReportingCommand 754

eZCL_SendReadReportingConfigurationCommand 756

eZCL_ReportAllAttributes 758

eZCL_CreateLocalReport 759

eZCL_SetReportableFlag 760

eZCL_HandleReadAttributesResponse 761

eZCL_ReadLocalAttributeValue 762

eZCL_WriteLocalAttributeValue 764

eZCL_OverrideClusterControlFlags 766

eZCL_SetSupportedSecurity 767

33.3 Command Discovery Functions 768
eZCL_SendDiscoverCommandReceivedRequest 769

eZCL_SendDiscoverCommandGeneratedRequest 771

34. ZCL Structures 773
34.1 General Structures 773

34.1.1 tsZCL_EndPointDefinition 773

34.1.2 tsZCL_ClusterDefinition 774

34.1.3 tsZCL_AttributeDefinition 775

34.1.4 tsZCL_Address 776

34.1.5 tsZCL_AttributeReportingConfigurationRecord 776

34.1.6 tsZCL_AttributeReportingConfigurationResponse 778

34.1.7 tsZCL_AttributeReadReportingConfigurationRecord 778

34.1.8 tsZCL_IndividualAttributesResponse 779

34.1.9 tsZCL_DefaultResponse 779

34.1.10 tsZCL_AttributeDiscoveryResponse 780

34.1.11 tsZCL_AttributeDiscoveryExtendedResponse 780

34.1.12 tsZCL_ReportAttributeMirror 781

34.1.13 tsZCL_OctetString 782

34.1.14 tsZCL_CharacterString 783
20 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
34.1.15 tsZCL_ClusterCustomMessage 783

34.1.16 tsZCL_ClusterInstance 784

34.1.17 tsZCL_CommandDiscoveryIndividualResponse 785

34.1.18 tsZCL_CommandDiscoveryResponse 785

34.1.19 tsZCL_CommandDefinition 786

34.1.20 tsZCL_SceneExtensionTable 786

34.1.21 tsZCL_WriteAttributeRecord 787

34.1.22 tsZCL_PersistDataHeader (SE 1.2.2 only) 787

34.2 Event Structure (tsZCL_CallBackEvent) 788

35. Enumerations and Status Codes 791
35.1 General Enumerations 791

35.1.1 Addressing Modes (teZCL_AddressMode) 791

35.1.2 Broadcast Modes (ZPS_teAplAfBroadcastMode) 793

35.1.3 Attribute Types (teZCL_ZCLAttributeType) 794

35.1.4 Command Status (teZCL_CommandStatus) 796

35.1.5 Report Attribute Status (teZCL_ReportAttributeStatus) 798

35.1.6 Security Level (teZCL_ZCLSendSecurity) 799

35.2 General Return Codes (ZCL Status) 800

35.3 ZCL Event Enumerations 803

Part IV: Appendices

A. Mutex Callbacks 809

B. Attribute Reporting 811
B.1 Automatic Attribute Reporting 811
B.2 Configuring Attribute Reporting 812

B.2.1 Compile-time Options 812

B.2.2 ‘Attribute Report Configuration’ Commands 813

B.3 Sending Attribute Reports 815
B.4 Receiving Attribute Reports 816
B.5 Querying Attribute Reporting Configuration 817
B.6 Storing an Attribute Reporting Configuration 818

B.6.1 Persisting an Attribute Reporting Configuration 818

B.6.2 Formatting an Attribute Reporting Configuration Record 819

B.7 Profile Initialisation of Attribute Reporting 821

C. Extended Attribute Discovery 822
C.1 Compile-time Options 822
C.2 Application Coding 822

D. JN516x Bootloader 823
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 21

Contents
E. OTA Extension for Dual-Processor Nodes 824
E.1 Application Upgrades for Different Target Processors 826
E.2 Application Upgrade Scenarios 827

E.2.1 Loading Image into JN516x in OTA Server Node 829

E.2.2 Distributing Image to JN516x in OTA Client Node(s) 829

E.2.3 Distributing Image to Co-processor in OTA Client Node(s) 830

E.3 Storing Upgrade Images in Co-processor Storage on Server 834
E.4 Use of Image Indices 835
E.5 Multiple OTA Download Files 836

E.5.1 Multiple Independent OTA Files 836

E.5.2 Multiple Dependent OTA Files 836

F. EZ-mode Commissioning Actions and Terminology 837

G. Example Code Fragments 838
G.1 Code Fragment for Flash Memory Access 838

H. Glossary 839
22 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Preface

This manual describes the NXP implementation of the ZigBee Cluster Library (ZCL)
for use with the following application profiles:

 Home Automation (HA)

 ZigBee Light Link (ZLL)

 Smart Energy (SE) 1.2.1

 Smart Energy (SE) 1.2.2 for dual-processor (restricted release)

Organisation

This manual is divided into four parts:

 Part I: General and Development Information comprises four chapters:

 Chapter 1 introduces the ZigBee Cluster Library (ZCL)

 Chapter 2 describes some essential concepts for the ZCL, including read/
write access to cluster attributes and the associated read/write functions

 Chapter 3 describes the event handling framework of the ZCL, including
the supplied event handling function

 Chapter 4 describes the error handling provision of the ZCL, including the
supplied error handling function

 Part II: Clusters and Modules comprises twenty-eight chapters (one chapter per
cluster or module):

 Chapter 5 details the Basic cluster

 Chapter 6 details the Power Configuration cluster

 Chapter 7 details the Identify cluster

 Chapter 8 details the Groups cluster

 Chapter 9 details the Scenes cluster

 Chapter 10 details the On/Off cluster

 Chapter 11 details the On/Off Switch Configuration cluster

 Chapter 12 details the Level Control cluster

Note 1: Content that is specific to a particular profile
(such as ZLL, HA or SE) is indicated as such in this
manual.

Note 2: This manual assumes that you are already
familiar with the concepts of ZigBee application profiles,
devices, clusters and attributes. These are described in
the ZigBee PRO Stack User Guide (see “Support
Resources” on page 26).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 23

Preface
 Chapter 13 details the Alarms cluster

 Chapter 14 details the Time cluster, as well as the use of ZCL time

 Chapter 15 details the Binary Input (Basic) cluster

 Chapter 16 details the Commissioning cluster

 Chapter 17 details the Door Lock cluster

 Chapter 18 details the Thermostat cluster

 Chapter 19 details the Fan Control cluster

 Chapter 20 details the Thermostat UI Configuration cluster

 Chapter 21 details the Colour Control cluster

 Chapter 22 details the Illuminance Measurement cluster

 Chapter 23 details the Illuminance Level Sensing cluster

 Chapter 24 details the Temperature Measurement cluster

 Chapter 25 details the Relative Humidity Measurement cluster

 Chapter 26 details the Occupancy Sensing cluster

 Chapter 27 details the IAS Zone cluster

 Chapter 28 details the IAS ACE (Ancillary Control Equipment) cluster

 Chapter 29 details the IAS WD (Warning Device) cluster

 Chapter 30 details the OTA (Over-the-Air) Upgrade cluster

 Chapter 31 details the Diagnostics cluster

 Chapter 32 details the EZ-mode Commissioning module

 Part III: General Reference Information comprises three chapters:

 Chapter 33 details the general functions of the ZCL

 Chapter 34 details the general structures used by the ZCL

 Chapter 35 details the general enumerations used by the ZCL

 Part IV: Appendices comprises eight appendices covering the use of JenOS
mutexes by the ZCL, the attribute reporting mechanism, the ‘extended’ attribute
discovery mechanism, the JN516x bootloader operation, the OTA extension for
dual-processor nodes, the terminology to use with EZ-mode commissioning,
example code fragments and a glossary of terms.
24 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

ACE Ancillary Control Equipment

APDU Application Protocol Data Unit

API Application Programming Interface

CIE Control and Indicating Equipment

HA Home Automation

IAS Intruder Alarm System

NPDU Network Protocol Data Unit

OTA Over The Air

SE Smart Energy

UI User Interface

ZCL ZigBee Cluster Library

ZLL ZigBee Light Link

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 25

Preface
Related Documents

JN-UG-3101 ZigBee PRO Stack User Guide (for HA and ZLL)

JN-UG-3048 ZigBee PRO Stack User Guide (for SE)

JN-UG-3076 ZigBee Home Automation User Guide

JN-UG-3091 ZigBee Light Link User Guide

JN-UG-3059 ZigBee Smart Energy User Guide

JN-UG-3100 ZigBee Smart Energy v1.2.2 User Guide

JN-UG-3075 JenOS User Guide

JN-UG-3081 JN51xx Encryption Tool (JET) User Guide

075123 ZigBee Cluster Library Specification [from ZigBee Alliance]

095264 ZigBee Over-the-Air Upgrading Cluster [from ZigBee Alliance]

Support Resources

To access JN516x support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity area of the NXP web site:

www.nxp.com/products/wireless-connectivity

ZigBee resources can be accessed from the ZigBee page, which can be reached via
the short-cut www.nxp.com/zigbee.

All NXP resources referred to in this manual can be found at the above addresses,
unless otherwise stated. Resources that are specific to ZigBee Smart Energy 1.2.2
must be requested from NXP.

Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The ZCL software described in this manual can be used on the NXP JN516x family of
wireless microcontrollers with the exception of the JN5161 device. However, the
supported devices will be referred to as JN516x.
26 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Part I:
General and Development

Information
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 27

28 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
1. ZigBee Cluster Library (ZCL)

The ZigBee Alliance has defined the ZigBee Cluster Library (ZCL), comprising a
number of standard clusters that can be applied to different functional areas. For
example, all ZigBee application profiles use the Basic cluster from the ZCL.

The ZCL provides a common means for applications to communicate. It defines a
header and payload that sit inside the Protocol Data Unit (PDU) used for messages.
It also defines attribute types (such as ints, strings, etc), common commands (e.g. for
reading attributes) and default responses for indicating success or failure.

The NXP implementation of the ZCL, described in this manual, is supplied with the
NXP software for the following ZigBee application profiles:

 ZigBee Home Automation

 ZigBee Light Link

 ZigBee Smart Energy 1.2.1

 ZigBee Smart Energy 1.2.2 for dual-processor (restricted release)

The NXP application profile software is available via the NXP web site (see “Support
Resources” on page 26). The ZCL is fully detailed in the ZigBee Cluster Library
Specification (075123), available from the ZigBee Alliance.

The NXP ZCL software can be used on the NXP JN516x family of wireless
microcontrollers with the exception of the JN5161 device.

Note 1: Content that is specific to a particular profile
(such as ZLL, HA or SE) is indicated as such in this
manual.

Note 2: Resources for the Smart Energy 1.2.2 profile
must be requested from NXP.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 29

Chapter 1
ZigBee Cluster Library (ZCL)

1.1 Member Clusters

The clusters of the ZCL include those listed in Table 1 below.

In addition, a number of non-ZCL clusters/modules which are common to all ZigBee
profiles are documented in this manual. These are the OTA Upgrade cluster (0x0019),
Diagnostics cluster (0x0B05) and EZ-mode Commissioning module.

General Cluster Cluster ID

Basic 0x0000

Power Configuration 0x0001

Identify 0x0003

Groups 0x0004

Scenes 0x0005

On/Off 0x0006

On/Off Switch Configuration 0x0007

Level Control 0x0008

Alarms 0x0009

Time 0x000A

Binary Input (Basic) 0x000F

Commissioning 0x0015

Door Lock 0x0101

Thermostat 0x0201

Fan Control 0x0202

Thermostat User Interface Configuration 0x0204

Colour Control 0x0300

Illuminance Measurement 0x0400

Illuminance Level Sensing 0x0401

Temperature Measurement 0x0402

Relative Humidity Measurement 0x0405

Occupancy Sensing 0x0406

IAS Zone 0x0500

IAS ACE (Ancillary Control Equipment) 0x0501

IAS WD (Warning Device) 0x0502

Table 1: ZCL Member Clusters
30 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Basic

The Basic cluster contains the basic properties of a ZigBee device (e.g. software and
hardware versions) and allows the setting of user-defined properties (such as
location). The Basic cluster is detailed in Chapter 5.

Power Configuration

The Power Configuration cluster allows the details of a device’s power source(s) to be
determined and under/over voltage alarms to be configured. The Power Configuration
cluster is detailed in Chapter 6.

Identify

The Identify cluster allows a ZigBee device to make itself known visually (e.g. by
flashing a light) to an observer such as a network installer. The Identify cluster is
detailed in Chapter 7.

Groups

The Groups cluster allows the management of the Group table concerned with group
addressing - that is, the targeting of multiple endpoints using a single address. The
Groups cluster is detailed in Chapter 8.

Scenes

The Scenes cluster allows the management of pre-defined sets of cluster attribute
values called scenes, where a scene can be stored, retrieved and applied to put the
system into a pre-determined state. The Scenes cluster is detailed in Chapter 9.

On/Off

The On/Off cluster allows a device to be put into the ‘on’ and ‘off’ states, or toggled
between the two states. The On/Off cluster is detailed in Chapter 10.

On/Off Switch Configuration

The On/Off Switch Configuration cluster allows the switch type on a device to be
defined, as well as the commands to be generated when the switch is moved between
its two states. The On/Off Switch Configuration cluster is detailed in Chapter 11.

Level Control

The Level Control cluster allows control of the level of a physical quantity (e.g. heat
output) on a device. The Level Control cluster is detailed in Chapter 12.

Alarms

The Alarms cluster is used for sending alarm notifications and the general
configuration of alarms for all other clusters on the ZigBee device (individual alarm
conditions are set in the corresponding clusters). The Alarms cluster is detailed in
Chapter 13.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 31

Chapter 1
ZigBee Cluster Library (ZCL)

Time

The Time cluster provides an interface to a real-time clock on a ZigBee device,
allowing the clock time to be read and written in order to synchronise the clock to a
time standard - the number of seconds since 0 hrs 0 mins 0 secs on 1st January 2000
UTC (Co-ordinated Universal Time). This cluster includes functionality for local time-
zone and daylight saving time. The Time cluster is detailed in Chapter 14.

Binary Input (Basic)

The Binary Input (Basic) cluster provides an interface for accessing a binary
measurement and its associated characteristics, and is typically used to implement a
sensor that measures a two-state physical quantity. The Binary Input (Basic) cluster
is detailed in Chapter 15.

Commissioning

The Commissioning cluster can be optionally used for commissioning the ZigBee
stack on a device (during network installation) and defining the device behaviour with
respect to the ZigBee network (it does not affect applications operating on the
devices). The Commissioning cluster is detailed in Chapter 16.

Door Lock

The Door Lock cluster provides a means of representing the state of a door lock and
(optionally) the door. The Door Lock cluster is detailed in Chapter 17.

Thermostat

The Thermostat cluster provides a means of configuring and controlling the
functionality of a thermostat. The Thermostat cluster is detailed in Chapter 18.

Fan Control

The Fan Control cluster provides a means of controlling the speed or state of a fan
which may be part of a heating or cooling system. The Fan Control cluster is detailed
in Chapter 19.

Thermostat User Interface (UI) Configuration

The Thermostat UI Configuration cluster provides a means of configuring the user
interface (keypad and/or LCD screen) for a thermostat or a thermostat controller
device. The Thermostat UI Configuration cluster is detailed in Chapter 20.

Colour Control

The Colour Control cluster can be used to adjust the colour of a light (it does not
govern the overall luminance of the light, as this is controlled using the Level Control
cluster). The Colour Control cluster is detailed in Chapter 21.
32 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Illuminance Measurement

The Illuminance Measurement cluster provides an interface to an illuminance
measuring device, allowing the configuration of measuring and the reporting of
measurements. The Illuminance Measurement cluster is detailed in Chapter 22.

Illuminance Level Sensing

The Illuminance Level Sensing cluster provides an interface to light-level sensing
functionality. The Illuminance Level Sensing cluster is detailed in Chapter 23.

Temperature Measurement

The Temperature Measurement cluster provides an interface to a temperature
measuring device, allowing the configuration of measuring and the reporting of
measurements. The Temperature Measurement cluster is detailed in Chapter 24.

Relative Humidity Measurement

The Relative Humidity Measurement cluster provides an interface to a humidity
measuring device, allowing the configuration of relative humidity measuring and the
reporting of measurements. The Relative Humidity Measurement cluster is detailed in
Chapter 25.

Occupancy Sensing

The Occupancy Sensing cluster provides an interface to an occupany sensor, allowing
the configuration of sensing and the reporting of status. The Occupancy Sensing
cluster is detailed in Chapter 26.

IAS Zone

The IAS Zone cluster provides an interface to a zone device in an IAS (Intruder Alarm
System). The IAS Zone cluster is detailed in Chapter 27.

IAS ACE (Ancillary Control Equipment)

The IAS ACE cluster provides a control interface to a CIE (Control and Indicating
Equipment) device in an IAS (Intruder Alarm System). The IAS ACE cluster is detailed
in Chapter 28.

IAS WD (Warning Device)

The IAS WD cluster provides an interface to a Warning Device in an IAS (Intruder
Alarm System). For example, a CIE (Control and Indicating Equipment) device can
use the cluster to issue alarm warning indications to a Warning Device when an alarm
condition is detected. The IAS WD cluster is detailed in Chapter 29.

Note: Some of the above clusters have special
attributes that are used in ZigBee Light Link (ZLL) but in
no other application profile. If required, these attributes
must be enabled at compile-time (see Section 1.2).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 33

Chapter 1
ZigBee Cluster Library (ZCL)

1.2 Compile-time Options

Before the application can be built, the ZCL compile-time options must be configured
in the header file zcl_options.h for the application.

Enabled Clusters

All required clusters must be enabled in the options header file. For example, to enable
the Basic and Time clusters:

#define CLD_BASIC

#define CLD_TIME

Support for Attribute Read/Write

Read/write access to cluster attributes must be explicitly compiled into the application,
and must be enabled separately for the server and client sides of a cluster using the
following macros in the options header file:

#define ZCL_ATTRIBUTE_READ_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_READ_CLIENT_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_CLIENT_SUPPORTED

Each of the above definitions will apply to all clusters used in the application.

Optional and ZLL Attributes

Many clusters have optional attributes that may be enabled at compile-time via the
options header file - for example, to enable the Time Zone attribute in the Time cluster:

#define E_CLD_TIME_ATTR_TIME_ZONE

The ZigBee Light Link (ZLL) application profile uses special attributes in the ZCL
clusters. These attributes are not needed for other application profiles and must be
enabled for ZLL by including the appropriate defines in the options header file.

Tip: If only read access to attributes is required then do
not enable write access, as omitting the write options
will give the benefit of a reduced application size.

Note: Cluster-specific compile-time options are detailed
in the sections for the individual clusters in Chapter 5.
The following optional features also have their own
compile-time options: attribute reporting (see Appendix
B.2.1) and OTA upgrade (see Section 30.12).
34 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Cooperative Tasks (HA and ZLL only)

If the tasks within the application are cooperative then this should be specified through
the following line:

#define COOPERATIVE

As a result, events will not be generated for locking and unlocking mutexes for
resources that are shared between the tasks. This option can be defined in the
zcl_options.h file or the makefile.

Parameter Checking (HA and ZLL only)

Parameter checking in various functons can be enabled by including the following line:

#define STRICT_PARAM_CHECK

This feature is useful for testing during application development. When the testing is
complete, the option should be disabled to eliminate the checks and to save code
memory. This option can be defined in the zcl_options.h file or the makefile.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 35

Chapter 1
ZigBee Cluster Library (ZCL)

36 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
2. ZCL Fundamentals and Features

This chapter describes essential ZCL concepts, including the use of shared device
structures as well as remote read and write accesses to cluster attributes. The
attribute access functions are also detailed that are provided in the NXP
implementation of the ZCL.

2.1 Shared Device Structures

In each ZigBee device, cluster attribute values are exchanged between the application
and the ZCL by means of a shared structure. This structure is protected by a mutex -
see Appendix A. The structure for a particular ZigBee device contains structures for
the clusters supported by that device.

A shared device structure within a device can be accessed both by the local
application and by a remote application on another device. Remote read and write
operations involving a shared device structure are illustrated in Figure 1 below.
Normally, these operations are requested by a cluster client and performed on a
cluster server. For more detailed descriptions of these operations, refer to Section 2.2.

Usually, the ZCL parses remote commands that write attribute values to the shared
device structure. The written values can then be read by the local application. For
example, in a Home Automation network, an On/Off Switch device remotely writes to
the shared device structure in an On/Off Light device and the local application then
reads this data to change the state or configuration of the light.

Note: ZCL functions are referred to in this chapter which
are detailed in Chapter 33.

Note: In order to use a cluster which is supported by a
device, the relevant option for the cluster must be
specified at build-time - see Section 1.2.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 37

Chapter 2
ZCL Fundamentals and Features

Figure 1: Operations using Shared Device Structure

Note: Provided that there are no remote attribute writes,
the attributes of a cluster server (in the shared structure)
on a device are maintained by the local application(s).

Read
Command

Response

Server Device

Device
Structure

Application

WriteRead

Client Device

Application

Read Request

ZCLZCL

Reading Remote Attributes

Write
Command

Server Device

Device
Structure

Application

Read
Write

Client Device

Application

Write Request

ZCLZCL

Writing Remote Attributes

Response

Application requests read of attribute values from device
structure on remote server and ZCL sends request .
ZCL receives response and generates events (which can
prompt application to read attributes from structure).

1.

4.

If necessary, application first updates attribute values in
device structure.
ZCL reads requested attribute values from device structure
and then returns them to requesting client .

2.

3.

ZCL sends 'write attributes' request to remote server.
ZCL can receive optional response and generate events
for the application (that indicate any unsuccessful writes).

1.
5.

ZCL writes received attribute values to device structure and
optionally sends response to client.
If required, application can then read new attribute values
from device structure.
ZCL can optionally generate a ‘write attributes’ response .

2.

3.

4.

Event (s)

Event (s)
38 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
2.2 Accessing Attributes

This section describes the processes of reading and writing cluster attributes on a
remote node. For the attribute access function descriptions, refer to Section 33.2.

2.2.1 Reading Attributes

A ZigBee PRO application may need to read attribute values from a remote device.
Attributes are read by sending a ‘read attributes’ request, normally from a client cluster
to a server cluster. This request can be sent using a general ZCL function (see below)
or using a function which is specific to the target cluster. The cluster-specific functions
for reading attributes are covered in the chapters of this manual that describe the
supported clusters. Note that read access to cluster attributes must be explicitly
enabled at compile-time as described in Section 1.2.

A ZCL function is provided for reading a set of attributes of a remote cluster instance,
as described in Section 2.2.1.1. A function is also provided for reading a local cluster
attribute value, as described in Section 2.2.1.2.

2.2.1.1 Reading a Set of Attributes of a Remote Cluster

This section describes the use of the function eZCL_SendReadAttributesRequest()
to send a ‘read attributes’ request to a remote cluster in order to obtain the values of
selected attributes. The resulting activities on the source and destination nodes are
outlined below and illustrated in Figure 2. The events generated from a ‘read
attributes’ request are further described in Chapter 3.

Note: The described sequence is similar when using the
cluster-specific ‘read attributes’ functions.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 39

Chapter 2
ZCL Fundamentals and Features

1. On Source Node

The function eZCL_SendReadAttributesRequest() is called to submit a request to
read one or more attributes on a cluster on a remote node. The information required
by this function includes the following:

 Source endpoint (from which the read request is to be sent)

 Address of destination node for request

 Destination endpoint (on destination node)

 Identifier of the cluster containing the attributes [enumerations provided]

 Number of attributes to be read

 Array of identifiers of attributes to be read [enumerations provided]

2. On Destination Node

On receiving the ‘read attributes’ request, the ZCL software on the destination node
performs the following steps:

1. Generates an E_ZCL_CBET_READ_REQUEST event for the destination
endpoint callback function which, if required, can update the shared device
structure that contains the attributes to be read, before the read takes place.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the shared device
structure - for information on mutexes, refer to Appendix A.

3. Reads the relevant attribute values from the shared device structure and
creates a ‘read attributes’ response message containing the read values.

4. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

5. Sends the ‘read attributes’ response to the source node of the request.

3. On Source Node

On receiving the ‘read attributes’ response, the ZCL software on the source node
performs the following steps:

1. For each attribute listed in the ‘read attributes’ response, it generates an
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message.

2. On completion of the parsing of the ‘read attributes’ response, it generates a
single E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.
40 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
2.2.1.2 Reading an Attribute of a Local Cluster

An individual attribute of a cluster on the local node can be read using the function
eZCL_ReadLocalAttributeValue(). The read value is returned by the function (in a
memory location for which a pointer must be provided).

Figure 2: ‘Read Attributes’ Request and Response

Note: The ‘read attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Section 3.2.

Endpoint ZCL ZCL Endpoint

'Read Attributes' Message

READ_REQUEST
'Read Attributes' Request

LOCK_MUTEX

Read Attribute Values

UNLOCK_MUTEX

'Read Attributes' Response

READ_INDIVIDUAL_
ATTRIBUTE_RESPONSE

READ_ATTRIBUTES
_RESPONSE

Source Node Destination Node

Shared
Structure
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 41

Chapter 2
ZCL Fundamentals and Features

2.2.2 Writing Attributes

The ZCL provides functions for writing attribute values to both remote and local
clusters, as described in Section 2.2.2.1 and Section 2.2.2.2 respectively.

2.2.2.1 Writing to Attributes of a Remote Cluster

A ZigBee PRO application may need to write attribute values to a remote device.
Attribute values are written by sending a ‘write attributes’ request, normally from a
client cluster to a server cluster, where the relevant attributes in the shared device
structure are updated. Note that write access to cluster attributes must be explicitly
enabled at compile-time as described in Section 1.2.

Three ‘write attributes’ functions are provided in the ZCL:

 eZCL_SendWriteAttributesRequest(): This function sends a ‘write attributes’
request to a remote device, which attempts to update the attributes in its shared
structure. The remote device generates a ‘write attributes’ response to the
source device, indicating success or listing error codes for any attributes that it
could not update.

 eZCL_SendWriteAttributesNoResponseRequest(): This function sends a
‘write attributes’ request to a remote device, which attempts to update the
attributes in its shared structure. However, the remote device does not
generate a ‘write attributes’ response, regardless of whether there are errors.

 eZCL_SendWriteAttributesUndividedRequest(): This function sends a ‘write
attributes’ request to a remote device, which checks that all the attributes can
be written to without error:

 If all attributes can be written without error, all the attributes are updated.

 If any attribute is in error, all the attributes are left at their existing values.

The remote device generates a ‘write attributes’ response to the source device,
indicating success or listing error codes for attributes that are in error.

The activities surrounding a ‘write attributes’ request on the source and destination
nodes are outlined below and illustrated in Figure 3. The events generated from a
‘write attributes’ request are further described in Chapter 3.
42 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
1. On Source Node

In order to send a ‘write attributes’ request, the application on the source node calls
one of the above ZCL ‘write attributes’ functions to submit a request to update the
relevant attributes on a cluster on a remote node. The information required by this
function includes the following:

 Source endpoint (from which the write request is to be sent)

 Address of destination node for request

 Destination endpoint (on destination node)

 Identifier of the cluster containing the attributes [enumerations provided]

 Number of attributes to be written

 Array of identifiers of attributes to be written [enumerations provided]

2. On Destination Node

On receiving the ‘write attributes’ request, the ZCL software on the destination node
performs the following steps:

1. For each attribute to be written, generates an
E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE event for the destination
endpoint callback function.

If required, the callback function can do either or both of the following:

 check that the new attribute value is in the correct range - if the value is
out-of-range, the function should set the eAttributeStatus field of the
event to E_ZCL_ERR_ATTRIBUTE RANGE

 block the write by setting the the eAttributeStatus field of the event to
E_ZCL_DENY_ATTRIBUTE_ACCESS

In the case of an out-of-range value or a blocked write, there is no further
processing for that particular attribute following the ‘write attributes’ request.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the relevant shared device
structure - for information on mutexes, refer to Appendix A.

3. Writes the relevant attribute values to the shared device structure - an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE event is generated for
each individual attempt to write an attribute value, which the endpoint callback
function can use to keep track of the successful and unsuccessful writes.

Note that if an ‘undivided write attributes’ request was received, an individual
failed write will render the whole update process unsuccessful.

4. Generates an E_ZCL_CBET_WRITE_ATTRIBUTES event to indicate that all
relevant attributes have been processed and, if required, creates a ‘write
attributes’ response message for the source node.

5. Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

6. If required, sends a ‘write attributes’ response to the source node of the
request.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 43

Chapter 2
ZCL Fundamentals and Features

3. On Source Node

On receiving an optional ‘write attributes’ response, the ZCL software on the source
node performs the following steps:

1. For each attribute listed in the ‘write attributes’ response, it generates an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message. Only attributes for which the write has failed are included in the
response and will therefore result in one of these events.

2. On completion of the parsing of the ‘write attributes’ response, it generates a
single E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.

Figure 3: ‘Write Attributes’ Request and Response

Note: The ‘write attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Chapter 3.

Endpoint ZCL ZCL Endpoint

'Write Attributes' Message

CHECK_ATTRIBUTE_RANGE

'Write Attributes' Request

LOCK_MUTEX

Write Attribute Value

UNLOCK_MUTEX

'Write Attributes' Response

WRITE_INDIVIDUAL_
ATTRIBUTE_RESPONSE

WRITE_ATTRIBUTES
_RESPONSE

Source Node Destination Node

WRITE_INDIVIDUAL_ATTRIBUTE

WRITE_ATTRIBUTES

Shared
Structure
44 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
2.2.2.2 Writing an Attribute Value to a Local Cluster

An individual attribute of a cluster on the local node can be written to using the function
eZCL_WriteLocalAttributeValue(). The function is blocking, returning only once the
value has been written.

2.2.3 Attribute Discovery

A ZigBee cluster may have mandatory and/or optional attributes. The desired optional
attributes are enabled in the cluster structure. An application running on a cluster client
may need to discover which optional attributes are supported by the cluster server.

The ZCL provides functionality to perform the necessary ‘attribute discovery’, as
described in the rest of this section.

Compile-time Options

If required, the attribute discovery feature must be explicitly enabled on the cluster
server and client at compile-time by respectively including the following defines in the
zcl_options.h files:

#define ZCL_ATTRIBUTE_DISCOVERY_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_DISCOVERY_CLIENT_SUPPORTED

Application Coding

The application on a cluster client can initiate a discovery of the attributes on the
cluster server by calling the function eZCL_SendDiscoverAttributesRequest(),
which sends a ‘discover attributes’ request to the server. This function allows a range
of attributes to be searched for, defined by:

 The ‘start’ attribute in the range (the attribute identifier must be specified)

 The number of attributes in the range

Initially, the start attribute should be set to the first attribute of the cluster. If the
discovery request does not return all the attributes used on the cluster server, the
above function should be called again with the start attribute set to the next
‘undiscovered’ attribute. Multiple function calls may be required to discover all of the
attributes used on the server.

Note 1: ‘Extended’ attribute discovery is also available
in which the accessibility of each reported attribute is
also indicated. This is described in Appendix C.

Note 2: Alternatively, the application on a cluster client
can check whether a particular attribute exists on the
cluster server by attempting to read the attribute (see
Section 2.2.1) - if the attribute does not exist on the
server, an error will be returned.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 45

Chapter 2
ZCL Fundamentals and Features

On receiving a discover attributes request, the server handles the request
automatically (provided that attribute discovery has been enabled in the compile-time
options - see above) and replies with a ‘discover attributes’ response containing the
requested information.

The arrival of this response at the client results in an
E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE event for each
attribute reported in the response. Therefore, multiple events will normally result from
a single discover attributes request. This event contains details of the reported
attribute in a tsZCL_AttributeDiscoveryResponse structure (see Section
34.1.10).

Following the event for the final attribute reported, the event
E_ZCL_CBET_DISCOVER_ATTRIBUTES_RESPONSE is generated to indicate that
all attributes from the discover attributes response have been reported.

2.2.4 Attribute Reporting

A cluster client can poll the value of an attribute on the cluster server by sending a
‘read attributes’ request, as described in Section 2.2.1. Alternatively, the server can
issue unsolicited attribute reports to the client using the ‘attribute reporting’ feature (in
which case there is no need for the client to request attribute values).

The attribute reporting mechanism reduces network traffic compared with the polling
method. It also allows a sleeping server to report its attribute values while it is awake.
Attribute reporting is an optional feature and is not supported by all devices.

An ‘attribute report’ (from server to client) can be triggered in one of the following ways:

 by the user application (on the server device)

 automatically (triggered by a change in the attribute value or periodically)

Automatic attribute reporting is more fully described in Appendix B.1.

The rules for automatic reporting can be configured by a remote device by sending a
‘configure reporting’ command to the server using the function
eZCL_SendConfigureReportingCommand(). If it is required, automatic attribute
reporting must also be enabled at compile-time on both the cluster server and client.
The configuration of attribute reporting is detailed in Appendix B.2.

Note: This section only introduces attribute reporting.
This optional feature is fully described in Appendix B.

Note: Attribute reporting configuration data should be
preserved in Non-Volatile Memory (NVM) to allow
automatic attribute reporting to resume following a reset
of the server device. Persisting this data in NVM is
described in Appendix B.6.
46 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
An attribute report for all reportable attributes on the server can be issued directly by
the server application using the function eZCL_ReportAllAttributes(). Only the
standard attributes are reported - this does not include manufacturer-specific
attributes. This method of attribute reporting does not require any configuration and
does not need to be enabled at compile-time on the server, although the client still
needs to be enabled at compile-time to receive attribute reports.

Sending an attribute report from the server is further described in Appendix B.3 and
receiving an attribute report on the client is described in Appendix B.4.

2.3 Attribute Storage by Application (SE 1.2.2 only)

Storage for cluster attributes is defined in a shared structure when a cluster instance
is created. This is explained in the descriptions of cluster-specific ‘Create’ functions.
The ZCL and cluster functionality maintains and modifies the relevant attributes, and
informs the user about any major events.

In Smart Energy 1.2.2, you can over-ride this standard functionality by instead storing
and maintaining the attributes in the application. To do this, follow the steps below:

1. Define the macro APP_STORE_SERVER_ATTRIBUTE_DATA in the file
zcl_options.h to store the server attributes in the application and/or
APP_STORE_CLIENT_ATTRIBUTE_DATA in zcl_options.h to store client
attributes in the application.

2. Implement the function pvZCL_GetAttributePointer() in the application. This
function will be called when ZCL/cluster-specific code tries to read or write any
attributes. This function should return a pointer to the attribute data. A sample
implementation is shown below:

PUBLIC void *pvZCL_GetAttributePointer(

 tsZCL_AttributeDefinition *psAttributeDefinition,

 tsZCL_ClusterInstance *psClusterInstance,

 uint16 u16AttributeId)

 {

 uint8 u8attributeSize;

 if((psAttributeDefinition==NULL)||(psClusterInstance == NULL))

 {

 DBG_vPrintf(TRUE,
"((psAttributeDefinition==NULL)||(psClusterInstance == NULL))\r\n");

 return(NULL);

 }

 eZCL_GetAttributeTypeSize(psAttributeDefinition->eAttributeDataType,
&u8attributeSize);

 if(u16AttributeId < psAttributeDefinition->u16AttributeEnum)

 {

 DBG_vPrintf(TRUE, "(u16AttributeId < psAttributeDefinition-
>u16AttributeEnum)\r\n");
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 47

Chapter 2
ZCL Fundamentals and Features

 return(NULL);

 }

 return (vPtrApp_GetAttr(psAttributeDefinition->eAttributeDataType,
u16AttributeId));

 }

PUBLIC void *vPtrApp_GetAttr(uint8 u8AttributeType, uint16 u16ATtributeID)

{

static uint64 u64AttribMaxSize64Bit = 2;

static tsZCL_OctetString sOctetString;

static tsZCL_CharacterString sCharacterString;

static uint8 u8OctectStringData[] = { "Test Octect String Attributes"};

static uint8 u8CharStringData[] = { "Test Character String Attributes"};

switch(u8AttributeType)

{

case(E_ZCL_GINT8):

case(E_ZCL_UINT8):

case(E_ZCL_INT8):

case(E_ZCL_ENUM8):

case(E_ZCL_BMAP8):

case(E_ZCL_BOOL):

{

 return ((uint8*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT16):

case(E_ZCL_UINT16):

case(E_ZCL_ENUM16):

case(E_ZCL_INT16):

case(E_ZCL_CLUSTER_ID):

case(E_ZCL_ATTRIBUTE_ID):

case(E_ZCL_BMAP16):

case(E_ZCL_FLOAT_SEMI):

{

return ((uint16*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT24):

case(E_ZCL_UINT24):

case(E_ZCL_INT24):

case(E_ZCL_BMAP24):

{

return ((uint32*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_UINT32):
48 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
case(E_ZCL_INT32):

case(E_ZCL_GINT32):

case(E_ZCL_BMAP32):

case(E_ZCL_UTCT):

case(E_ZCL_TOD):

case(E_ZCL_DATE):

case(E_ZCL_FLOAT_SINGLE):

{

return ((uint32*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT40):

case(E_ZCL_UINT40):

case(E_ZCL_INT40):

case(E_ZCL_BMAP40):

{

return ((uint64*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT48):

case(E_ZCL_UINT48):

case(E_ZCL_INT48):

case(E_ZCL_BMAP48):

{

return ((uint64*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT56):

case(E_ZCL_UINT56):

case(E_ZCL_INT56):

case(E_ZCL_BMAP56):

{

return ((uint64*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT64):

case(E_ZCL_UINT64):

case(E_ZCL_INT64):

case(E_ZCL_BMAP64):

case(E_ZCL_IEEE_ADDR):

case(E_ZCL_FLOAT_DOUBLE):

{

return ((uint64*)&u64AttribMaxSize64Bit);

}

/* strings - length determined in actual string*/

case(E_ZCL_OSTRING):

sOctetString.u8MaxLength = sizeof(u8OctectStringData);

sOctetString.u8Length = sizeof(u8OctectStringData);

sOctetString.pu8Data = u8OctectStringData;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 49

Chapter 2
ZCL Fundamentals and Features

return &sOctetString;

case(E_ZCL_CSTRING):

sCharacterString.u8MaxLength = sizeof(u8CharStringData);

sCharacterString.u8Length = sizeof(u8CharStringData);

sCharacterString.pu8Data = u8CharStringData;

return &sCharacterString;

}

return NULL;

}

2.4 Default Responses

The ZCL provides a default response which is generated in reply to a unicast
command in the following circumstances:

 when there is no other relevant response and the requirement for default
responses has not been disabled on the endpoint that sent the command

 when an error results from a unicast command and there is no other relevant
response, even if the requirement for default responses has been disabled on
the endpoint that sent the command

The default response disable setting is made in the bDisableDefaultResponse
field of the structure tsZCL_EndPointDefinition detailed in Section 34.1.1. This
setting dictates the value of the ‘disable default response’ bit in messages sent by the
endpoint. The receiving device then uses this bit to determine whether to return a
default response to the source device.

The default response includes the ID of the command that triggered the response and
a status field (see Section 34.1.9). Therefore, in the case of an error, the identity of the
command that caused the error will be contained in the command ID field of the default
response.

Note that the default response can be generated on reception of all commands,
including responses (e.g. a ‘read attributes’ response) but not other default responses.
50 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
2.5 Bound Transmission Management

ZigBee PRO provides the facility for bound transfers/transmissions. In this case, a
source endpoint on one node is bound to one or more destination endpoints on other
nodes. Data sent from the source endpoint is then automatically transmitted to all the
bound endpoints (without the need to specify destination addresses). The bound
transmission is handled by a Bind Request Server on the source node. Binding, bound
transfers and the Bind Request Server are fully described in the ZigBee PRO Stack
User Guide (JN-UG-3101 or JN-UG-3048).

Congestion may occur if a new bound transmission is requested while the Bind
Request Server is still busy completing the previous bound transmission (still sending
packets to bound nodes). This causes the new bound transmission to fail. The ZCL
software incorporates a feature for managing bound transmission requests, so not to
overload the Bind Request Server and cause transmissions to fail.

If this feature is enabled and a bound transmission request submitted to the Bind
Request Server fails, the bound transmission APDU is automatically put into a queue.
A one-second scheduler periodically takes the APDU at the head of the queue and
submits it to the Bind Request Server for transmission. If this bound transmission also
fails, the APDU will be returned to the bound transmission queue.

The bound transmission queue has the following properties:

 Number of buffers in the queue

 Size of each buffer, in bytes

The feature is enabled and the above properties are defined at compile-time, as
described below.

Note 1: This feature for managing bound transmissions
is not strictly a part of the ZCL but is provided in the ZCL
software since it may be used with all ZigBee application
profiles.

Note 2: The alternative to using this feature is for the
application to re-attempt bound transmissions that fail.

Note: If a single APDU does not fit into a single buffer in
the queue, it will be stored in multiple buffers (provided
that enough buffers are available).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 51

Chapter 2
ZCL Fundamentals and Features

Compile-time Options

In order to use the bound transmission management feature, the following definitions
are required in the zcl_options.h file.

Add this line to enable the bound transmission management feature:

#define CLD_BIND_SERVER

Add this line to define the number of buffers in the bound transmission queue (in this
example, the queue will contain four buffers):

#define MAX_NUM_BIND_QUEUE_BUFFERS 4

Add this line to define the size, in bytes, of a buffer in the bound transmission queue
(in this example, the buffer size is 60 bytes):

#define MAX_PDU_BIND_QUEUE_PAYLOAD_SIZE 60

Certain clusters and the ‘attribute reporting’ feature allow APS acknowledgements to
be disabled for bound transmissions. The required definitions are detailed in the
cluster-specific compile-time options.

2.6 Command Discovery

The ZCL provides the facility to discover the commands that a cluster instance on a
remote device can receive and generate. This is useful since an individual cluster
instance may not be able to receive or generate all of the commands that are
theoretically supported by the cluster.

The commands that are supported by a cluster (and that can therefore potentially be
discovered) are defined in a Command Definition table which is enabled in the cluster
definition when Command Discovery is enabled (see Section 34.1.2).

Two ZCL functions are provided to implement the Command Discovery feature (as
indicated in Section 2.6.1 below and fully described in Section 33.3).
52 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
2.6.1 Discovering Command Sets

The commands supported by a remote cluster instance can be discovered as
described below.

Discovering commands that can be received

The commands that can be received by an instance of a cluster on a remote device
can be discovered using the function

eZCL_SendDiscoverCommandReceivedRequest()

This function sends a request to the remote cluster instance, which responds with a
list of commands (identified by their Command IDs). On receiving this response, the
following events are generated on the local device:

 E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_RESPONSE

This event is generated for each individual command reported in the response.
The reported information is contained in a structure of the type
tsZCL_CommandDiscoveryIndividualResponse (see Section 34.1.17).

 E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE

This event is generated after all the above individual events, in order to indicate
the end of these events. The reported information is contained in a structure of
the type tsZCL_CommandDiscoveryResponse (see Section 34.1.18).

Discovering commands that can be generated

The commands that can be generated by an instance of a cluster on a remote device
can be discovered using the function

eZCL_SendDiscoverCommandGeneratedRequest()

This function sends a request to the remote cluster instance, which responds with a
list of commands (identified by their Command IDs). On receiving this response, the
following events are generated on the local device:

 E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_RESPONSE

This event is generated for each individual command reported in the response.
The reported information is contained in a structure of the type
tsZCL_CommandDiscoveryIndividualResponse (see Section 34.1.17).

 E_ZCL_CBET_DISCOVER_COMMAND_GENERATED_RESPONSE

This event is generated after all the above individual events, in order to indicate
the end of these events. The reported information is contained in a structure of
the type tsZCL_CommandDiscoveryResponse (see Section 34.1.18).

Note: The above functions can be called multiple times
to discover the commands in stages. After each call, the
tsZCL_CommandDiscoveryResponse structure
contains a Boolean flag which indicates whether there
are more commands to be discovered (see Section
34.1.18). For full details, refer to the function
descriptions in Section 33.3.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 53

Chapter 2
ZCL Fundamentals and Features

2.6.2 Compile-time Options

If required, the Command Discovery feature must be enabled at compile-time.

To enable the feature, the following must be defined at both the local and remote ends:

#define ZCL_COMMAND_DISCOVERY_SUPPORTED

To enable the handling of Command Discovery requests (and the generation of
responses) at the remote end, the following must be defined on the remote device:

#define ZCL_COMMAND_RECEIVED_DISCOVERY_SERVER_SUPPORTED

To enable the handling of Command Discovery responses at the local end, the
following must be defined on the local device:

#define ZCL_COMMAND_RECEIVED_DISCOVERY_CLIENT_SUPPORTED
54 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
3. Event Handling

This chapter describes the event handling framework which allows the ZCL to deal
with stack-related and timer-related events (including cluster-specific events).

A stack event is triggered by a message arriving in a message queue and a timer
event is triggered when a JenOS timer expires (for more information on timer events,
refer to Section 5.2).

The event must be wrapped in a tsZCL_CallBackEvent structure by the application
(see Section 3.1 below), which then passes this event structure into the ZCL using the
function vZCL_EventHandler(), described in Section 33.1. The ZCL processes the
event and, if necessary, invokes the relevant endpoint callback function. Refer to
Section 3.2 for more details of event processing.

3.1 Event Structure

The tsZCL_CallBackEvent structure, in which an event is wrapped, is as follows:

typedef struct

{

 teZCL_CallBackEventType eEventType;
 uint8 u8TransactionSequenceNumber;
 uint8 u8EndPoint;
 teZCL_Status eZCL_Status;

 union {
 tsZCL_IndividualAttributesResponse sIndividualAttributeResponse;
 tsZCL_DefaultResponse sDefaultResponse;
 tsZCL_TimerMessage sTimerMessage;
 tsZCL_ClusterCustomMessage sClusterCustomMessage;
 tsZCL_AttributeReportingConfigurationRecord
sAttributeReportingConfigurationRecord;
 tsZCL_AttributeReportingConfigurationResponse
sAttributeReportingConfigurationResponse;
 tsZCL_AttributeDiscoveryResponse sAttributeDiscoveryResponse;
 tsZCL_AttributeStatusRecord sReportingConfigurationResponse;
 tsZCL_ReportAttributeMirror sReportAttributeMirror;
 uint32 u32TimerPeriodMs;
#ifdef EZ_MODE_COMMISSIONING
 tsZCL_EZModeBindDetails sEZBindDetails;
 tsZCL_EZModeGroupDetails sEZGroupDetails;
#endif
 tsZCL_CommandDiscoveryIndividualResponse
 sCommandsReceivedDiscoveryIndividualResponse;
 tsZCL_CommandDiscoveryResponse sCommandsReceivedDiscoveryResponse;
 tsZCL_CommandDiscoveryIndividualResponse
 sCommandsGeneratedDiscoveryIndividualResponse;
 tsZCL_CommandDiscoveryResponse sCommandsGeneratedDiscoveryResponse;
 tsZCL_AttributeDiscoveryExtendedResponse
 sAttributeDiscoveryExtenedResponse;
 }uMessage;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 55

Chapter 3
Event Handling

 ZPS_tsAfEvent *pZPSevent;
 tsZCL_ClusterInstance *psClusterInstance;
} tsZCL_CallBackEvent;

The fields of this structure are fully described Section 34.2.

In the tsZCL_CallBackEvent structure, the eEventType field defines the type of
event being posted - the various event types are described in Section 3.3 below. The
union and remaining fields are each relevant to only specific event types.

3.2 Processing Events

This section outlines how the application should deal with stack events and timer
events that are generated externally to the ZCL. A cluster-specific event will initially
arrive as one of these events.

The occurrence of an event prompts JenOS to activate a ZCL user task - the event
types and the task are pre-linked using the JenOS Configuration Editor. The following
actions must then be performed in the application:

1. The task checks whether a message has arrived in the appropriate message
queue, using the JenOS function OS_eCollectMessage(), or whether a
JenOS timer has expired, using the JenOS function
OS_GetSWTimerStatus().

2. The task sets fields of the event structure tsZCL_CallBackEvent (see
Section 3.1), as follows (all other fields are ignored):

 If a timer event, sets the field eEventType to E_ZCL_CBET_TIMER

 If a millisecond timer event, sets the field eEventType to
E_ZCL_CBET_TIMER_MS

 If a stack event, sets the field eEventType to E_ZCL_ZIGBEE_EVENT
and sets the field pZPSevent to point to the ZPS_tsAfEvent structure
received by the application - this structure is defined in the ZigBee PRO
Stack User Guide (JN-UG-3101 or JN-UG-3048)

3. The task passes this event structure to the ZCL using vZCL_EventHandler()
- the ZCL will then identify the event type (see Section 3.3) and invoke the
appropriate endpoint callback function (for information on callback functions,
refer to the documentation for the application profile, e.g. Home Automation).

Note: For a cluster-specific event (which arrives as a
stack event or a timer event), the cluster normally
contains its own event handler which will be invoked by
the ZCL. If the event requires the attention of the
application, the ZCL will replace the eEventType field
with E_ZCL_CBET_CLUSTER_CUSTOM and populate
the tsZCL_ClusterCustomMessage structure with
the event data. The ZCL will then invoke the user-
defined endpoint callback function to perform any
application-specific event handling that is required.
56 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
3.3 Events

The events that are not cluster-specific are divided into four categories (Input, Read,
Write, General), as shown in the following table. The ‘input events’ originate externally
to the ZCL and are passed into the ZCL for processing (see Section 3.2). The
remaining events are generated as part of this processing.

* Smart Energy 1.2.2 only

The above events are described below.

Note: Cluster-specific events are covered in the chapter
for the relevant cluster.

Category Event

Input Events E_ZCL_ZIGBEE_EVENT

E_ZCL_CBET_TIMER

E_ZCL_CBET_TIMER_MS

Read Events E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

Write Events E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

General Events E_ZCL_CBET_LOCK_MUTEX

E_ZCL_CBET_UNLOCK_MUTEX

E_ZCL_CBET_DEFAULT_RESPONSE

E_ZCL_CBET_UNHANDLED_EVENT

E_ZCL_CBET_ERROR

E_ZCL_CBET_CLUSTER_UPDATE

E_ZCL_CBET_CLUSTER_DATA_PENDING *

E_ZCL_CBET_CLUSTER_DATA_RECEIVED *

Table 2: Events
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 57

Chapter 3
Event Handling

Input Events

The ‘input events’ are generated externally to the ZCL. Such an event is received by
the application, which wraps the event in a tsZCL_CallBackEvent structure and
passes it into the ZCL using the function vZCL_EventHandler() - for further details of
event processing, refer to Section 3.2.

 E_ZCL_ZIGBEE_EVENT

All ZigBee PRO stack events to be processed by the ZCL are designated as this
type of event by setting the eEventType field in the tsZCL_CallBackEvent
structure to E_ZCL_ZIGBEE_EVENT.

 E_ZCL_CBET_TIMER

A timer event (indicating that a JenOS timer has expired) which is to be
processed by the ZCL is designated as this type of event by setting the
eEventType field in the tsZCL_CallBackEvent structure to
E_ZCL_CBET_TIMER.

 E_ZCL_CBET_TIMER_MS

A millisecond timer event (indicating that a JenOS timer has expired) which is
to be processed by the ZCL is designated as this type of event by setting the
eEventType field in the tsZCL_CallBackEvent structure to
E_ZCL_CBET_TIMER_MS.

Read Events

The ‘read events’ are generated as the result of a ‘read attributes’ request (see Section
2.2.1). Some of these events are generated on the remote node and some of them are
generated on the local (requesting) node, as indicated in the table below.

The circumstances surrounding the generation of the ‘read events’ are outlined below:

 E_ZCL_CBET_READ_REQUEST

When a ‘read attributes’ request has been received and passed to the ZCL (as
a stack event), the ZCL generates the event E_ZCL_CBET_READ_REQUEST
for the relevant endpoint to indicate that the endpoint’s shared device structure
is going to be read. This gives an opportunity for the application to access the
shared structure first, if required - for example, to update attribute values before
they are read. This event may be ignored if the application reads the hardware
asynchronously - for example, driven by a timer or interrupt.

 E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

When a ‘read attributes’ response has been received by the requesting node
and passed to the ZCL (as a stack event), the ZCL generates the event
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE for each
individual attribute in the response. Details of the attribute are incorporated in

Generated on local node (client): Generated on remote node (server):

E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

Table 3: Read Events
58 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
the structure tsZCL_ReadIndividualAttributesResponse, described in
Section 34.2.

Note that this event is often ignored by the application, while the event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE (see next event) is
handled.

 E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

When a ‘read attributes’ response has been received by the requesting node
and the ZCL has completed updating the local copy of the shared device
structure, the ZCL generates the event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE. The transaction sequence
number and cluster instance fields of the tsZCL_CallBackEvent structure
are used by this event.

Write Events

The ‘write events’ are generated as the result of a ‘write attributes’ request (see
Section 2.2.2). Some of these events are generated on the remote node and some of
them are generated on the local (requesting) node, as indicated in the table below.

During the process of receiving and processing a ‘write attributes’ request, the
receiving application maintains a tsZCL_IndividualAttributesResponse structure
for each individual attribute in the request:

typedef struct PACK {

 uint16 u16AttributeEnum;

 teZCL_ZCLAttributeType eAttributeDataType;

 teZCL_CommandStatus eAttributeStatus;

 void *pvAttributeData;

 tsZCL_AttributeStatus *psAttributeStatus;

} tsZCL_IndividualAttributesResponse;

The u16AttributeEnum field identifies the attribute.

The field eAttributeDataType is set to the ZCL data type of the attribute in the
request, which is checked by the ZCL to ensure that the attribute type in the request
matches the expected attribute type.

The above structure is fully detailed in Section 34.2.

Generated on local node (client): Generated on remote node (server):

E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

Table 4: Write Events
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 59

Chapter 3
Event Handling

The circumstances surrounding the generation of the ‘write events’ are outlined below:

 E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

When a ‘write attributes’ request has been received and passed to the ZCL (as
a stack event), for each attribute in the request the ZCL generates the event
E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE for the relevant endpoint. This
indicates that a ‘write attributes’ request has arrived and gives an opportunity for
the application to do either or both of the following:

 check that the attribute value to be written falls within the valid range
(range checking is not performed in the ZCL because the range may
depend on application-specific rules)

 decide whether the requested write access to the attribute in the shared
structure will be allowed or disallowed

The value to be written is pointed to by pvAttributeData in the above
structure (note that this does not point to the field of the shared structure
containing this attribute, as the shared structure field still has its existing value).

The attribute status field eAttributeStatus in the above structure is initially
set to E_ZCL_SUCCESS. The application should set this field to
E_ZCL_ERR_ATTRIBUTE_RANGE if the attribute value is out-of-range or to
E_ZCL_DENY_ATTRIBUTE_ACCESS if it decides to disallow the write. Also
note the following:

 If a conventional ‘write attributes’ request is received and an attribute value
fails the range check or write access to an attribute is denied, this attribute
is left unchanged in the shared structure but other attributes are updated.

 If an ‘undivided write attributes’ request is received and any attribute fails
the range check or write access to any attribute is denied, no attribute
values are updated in the shared structure.

 E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

Following an attempt to write an attribute value to the shared structure, the ZCL
generates the event E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE for the
relevant endpoint. The field eAttributeStatus in the structure
tsZCL_IndividualAttributesResponse indicates to the application whether
the attribute value was updated successfully:

 If the write was successful, this status field is left as E_ZCL_SUCCESS.

 If the write was unsuccessful, this status field will have been set to a
suitable error status (see Section 35.1.4).

 E_ZCL_CBET_WRITE_ATTRIBUTES

Once all the attributes in a ‘write attributes’ request have been processed, the
ZCL generates the event E_ZCL_CBET_WRITE_ATTRIBUTES for the relevant
endpoint.

 E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

The E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE event is
generated for each attribute that is listed in an incoming ‘write attributes’
response message. Only attributes that have failed to be written are contained
in the message. The field eAttributeStatus of the structure
tsZCL_IndividualAttributesResponse indicates the reason for the failure
(see Section 35.1.4).
60 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

The E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE event is generated
when the parsing of an incoming ‘write attributes’ response message is
complete. This event is particularly useful following a write where all the
attributes have been written without errors since, in this case, no
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE events will be
generated.

General Events

 E_ZCL_CBET_LOCK_MUTEX and E_ZCL_CBET_UNLOCK_MUTEX

When an application task accesses the shared device structure of an endpoint,
a mutex should be used by the task to protect the shared structure from
conflicting accesses. Thus, the ZCL may need to lock or unlock a mutex in
handling an event - for example, when a “read attributes” request has been
received and passed to the ZCL (as a stack event). In these circumstances, the
ZCL generates the following events:

 E_ZCL_CBET_LOCK_MUTEX when a mutex is to be locked

 E_ZCL_CBET_UNLOCK_MUTEX when a mutex is to be unlocked

The ZCL will specify one of the above events in invoking the callback function
for the endpoint. Thus, the endpoint callback function must include the
necessary code to lock and unlock a mutex - for further information, refer to
Appendix A.

The locking and unlocking of a mutex are useful if the tasks in the application
are non-cooperative while sharing the same resource. To optimise the code, the
above events will not be generated when the tasks are in a cooperative group
(HA/ZLL only). For cooperative tasks, the COOPERATIVE compiler flag must
be defined in the application makefile or zcl_options.h file (see Section 1.2).

 E_ZCL_CBET_DEFAULT_RESPONSE

The E_ZCL_CBET_DEFAULT_RESPONSE event is generated when a ZCL
default response message has been received. These messages indicate that
either an error has occurred or a message has been processed. The payload of
the default response message is contained in the structure
tsZCL_DefaultResponseMessage below:

typedef struct PACK {

 uint8 u8CommandId;

 uint8 u8StatusCode;

} tsZCL_DefaultResponseMessage;

u8CommandId is the ZCL command identifier of the command which triggered
the default response message.

u8StatusCode is the status code from the default response message. It is set
to 0x00 for OK or to an error code defined in the ZCL Specification.

 E_ZCL_CBET_UNHANDLED_EVENT and E_ZCL_CBET_ERROR

The E_ZCL_CBET_UNHANDLED_EVENT and E_ZCL_CBET_ERROR events
indicate that a stack message has been received which cannot be handled by
the ZCL. The *pZPSevent field of the tsZCL_CallBackEvent structure
points to the stack event that caused the event.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 61

Chapter 3
Event Handling

 E_ZCL_CBET_CLUSTER_UPDATE

The E_ZCL_CBET_CLUSTER_UPDATE event indicates that one or more
attribute values for a cluster on the local device may have changed.

 E_ZCL_CBET_CLUSTER_DATA_PENDING (SE 1.2.2 only)

The E_ZCL_CBET_CLUSTER_DATA_PENDING event indicates that more
cluster data for a device is pending on its parent. The event is mainly intended
for sleepy End Devices. When this event occurs, the End Device should
continue polling its parent for data until the event
E_ZCL_CBET_CLUSTER_DATA_RECEIVED occurs (see below) or until an
application-specific timeout occurs.

 E_ZCL_CBET_CLUSTER_DATA_RECEIVED (SE 1.2.2 only)

The E_ZCL_CBET_CLUSTER_DATA_RECEIVED event indicates that all
pending cluster data has been received by the device from its parent. The event
is mainly intended for sleepy End Devices.

Note: ZCL error events and default responses (see
Section 34.1.9) may be generated when problems occur
in receiving commands. The possible ZCL status codes
contained in the events and responses are detailed in
Section 4.2.
62 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
4. Error Handling

This chapter describes the error handling provision in the NXP implementation of the
ZCL.

4.1 Last Stack Error

The last error generated by the ZigBee PRO stack can be obtained using the ZCL
function eZCL_GetLastZpsError(), described in Section 33.1. The possible returned
errors are listed in the Return/Status Codes chapter of the ZigBee PRO Stack User
Guide (JN-UG-3101 or JN-UG-3048).

4.2 Error/Command Status on Receiving Command

An error may be generated when a command is received by a device. If receiving a
command results in an error, as indicated by an event of the type
E_ZCL_CBET_ERROR on the device, the following status codes may be used:

 The ZCL status of the event (sZCL_CallBackEvent.eZCL_Status) is set to
one of the error codes detailed in Section 35.2.

 A ‘default response’ (see Section 34.1.9) may be generated which contains one
of the command status codes detailed in Section 35.1.4. This response is sent
to the source node of the received command (and can be intercepted using an
over-air sniffer).

The table below details the error and command status codes that may be generated.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 63

Chapter 4
Error Handling

* ZigBee PRO stack raises an error which can be retrieved using eZCL_GetLastZpsError().

Error Status (in Event) Command Status (in Response) Notes

E_ZCL_ERR_ZRECEIVE_FAIL * None A receive error has occurred. This error
is often security-based due to key estab-
lishment not being successfully com-
pleted - ZPS error is
ZPS_APL_APS_E_SECURITY_FAIL.

E_ZCL_ERR_EP_UNKNOWN E_ZCL_CMDS_SOFTWARE_FAILURE Destination endpoint for the command is
not registered with the ZCL.

E_ZCL_ERR_CLUSTER_NOT_FOUND E_ZCL_CMDS_UNSUP_CLUSTER_
COMMAND

Destination cluster for the command is
not registered with the ZCL.

E_ZCL_ERR_SECURITY_
INSUFFICIENT_FOR_CLUSTER

E_ZCL_CMDS_FAILURE Attempt made to access a cluster using
a packet without the necessary applica-
tion-level (APS) encryption.

None E_ZCL_CMDS_UNSUP_GENERAL_
COMMAND

Command is for all profiles but has no
handler enabled in zcl_options.h file.

E_ZCL_ERR_CUSTOM_COMMAND_
HANDLER_NULL_OR_RETURNED_
ERR

E_ZCL_CMDS_UNSUP_CLUSTER_
COMMAND

Custom command has no registered
handler or its handler has not returned
E_ZCL_SUCCESS.

E_ZCL_ERR_KEY_ESTABLISHMENT_
END_POINT_NOT_FOUND

None Key Establishment cluster has not been
registered correctly.

E_ZCL_ERR_KEY_ESTABLISHMENT_
CALLBACK_ERROR

None Key Establishment cluster callback func-
tion has returned an error.

None E_ZCL_CMDS_MALFORMED_
COMMAND

A received message is incomplete due
to some missing command-specific data.

Table 5: Error and Command Status Codes
64 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Part II:
Clusters and Modules
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 65

66 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
5. Basic Cluster

This chapter details the Basic cluster which is defined in the ZCL and is a mandatory
cluster for all ZigBee devices.

The Basic cluster has a Cluster ID of 0x0000.

5.1 Overview

All devices implement the Basic cluster as a Server-side (input) cluster, so the cluster
is able to store attributes and respond to commands relating to these attributes. The
cluster’s attributes hold basic information about the node (and apply to devices
associated with all active endpoints on the host node). The information that can
potentially be stored in this cluster comprises: ZCL version, application version, stack
version, hardware version, manufacturer name, model identifier, date, power source.

The Basic cluster contains only two mandatory attributes, the remaining attributes
being optional - see Section 5.2.

The Basic cluster is enabled by defining CLD_BASIC in the zcl_options.h file.

A Basic cluster instance can act as a client and/or a server. The inclusion of the client
or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server
must also be specified when creating the cluster instance).

The compile-time options for the Basic cluster are fully detailed in Section 5.6.

Note: The Basic cluster can also be implemented as a
Client-side (output) cluster to allow the host device to
act as a commissioning tool.

Note 1: The Basic cluster has an optional attribute
which is only applicable to the ZigBee Light Link (ZLL)
profile - see Section 5.2.

Note 2: Since the Basic cluster contains information
about the entire node, only one set of Basic cluster
attributes must be stored on the node, even if there are
multiple instances of the Basic cluster server across
multiple devices/endpoints. All cluster instances must
refer to the same structure containing the attribute
values.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 67

Chapter 5
Basic Cluster

5.2 Basic Cluster Structure and Attributes

The Basic cluster is contained in the following tsCLD_Basic structure:

typedef struct

{

 zuint8 u8ZCLVersion;

#ifdef CLD_BAS_ATTR_APPLICATION_VERSION

 zuint8 u8ApplicationVersion;

#endif

#ifdef CLD_BAS_ATTR_STACK_VERSION

 zuint8 u8StackVersion;

#endif

#ifdef CLD_BAS_ATTR_HARDWARE_VERSION

 zuint8 u8HardwareVersion;

#endif

#ifdef CLD_BAS_ATTR_MANUFACTURER_NAME

 tsZCL_CharacterString sManufacturerName;

 uint8 au8ManufacturerName[32];

#endif

#ifdef CLD_BAS_ATTR_MODEL_IDENTIFIER

 tsZCL_CharacterString sModelIdentifier;

 uint8 au8ModelIdentifier[32];

#endif

#ifdef CLD_BAS_ATTR_DATE_CODE

 tsZCL_CharacterString sDateCode;

 uint8 au8DateCode[16];

#endif

 zenum8 ePowerSource;

#ifdef CLD_BAS_ATTR_ID_APPLICATION_PROFILE_TYPE

 zenum8 eAppProfileType;

#endif

#ifdef CLD_BAS_ATTR_ID_APPLICATION_PROFILE_VERSION

 uint32 u32AppProfileVersion;

#endif

#ifdef CLD_BAS_ATTR_LOCATION_DESCRIPTION

 sZCL_CharacterString sLocationDescription;

 uint8 au8LocationDescription[16];

#endif
68 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
#ifdef CLD_BAS_ATTR_PHYSICAL_ENVIRONMENT

 zenum8 u8PhysicalEnvironment;

#endif

#ifdef CLD_BAS_ATTR_DEVICE_ENABLED

 zbool bDeviceEnabled;

#endif

#ifdef CLD_BAS_ATTR_ALARM_MASK

 zbmap8 u8AlarmMask;

#endif

#ifdef CLD_BAS_ATTR_DISABLE_LOCAL_CONFIG

 zbmap8 u8DisableLocalConfig;

#endif

#ifdef CLD_BAS_ATTR_SW_BUILD_ID

 tsZCL_CharacterString sSWBuildID;

 uint8 au8SWBuildID[16];

#endif

} tsCLD_Basic;

where:

 u8ZCLVersion is an 8-bit version number for the ZCL release that all clusters
on the local endpoint(s) conform to. Currently, this should be set to 1

 u8ApplicationVersion is an optional 8-bit attribute which represents the
version of the application (and is manufacturer-specific)

 u8StackVersion is an optional 8-bit attribute which represents the version of
the ZigBee stack used (and is manufacturer-specific)

 u8HardwareVersion is an optional 8-bit attribute which represents the
version of the hardware used for the device (and is manufacturer-specific)

 The following optional pair of attributes are used to store the name of the
manufacturer of the device:

 sManufacturerName is a tsZCL_CharacterString structure (see
Section 34.1.14) for a string of up to 32 characters representing the
manufacturer’s name

 au8ManufacturerName[32] is a byte-array which contains the
character data bytes representing the manufacturer’s name

 The following optional pair of attributes are used to store the identifier for the
model of the device:

 sModelIdentifier is a tsZCL_CharacterString structure (see
Section 34.1.14) for a string of up to 32 characters representing the model
identifier

 au8ModelIdentifier[32] is a byte-array which contains the character
data bytes representing the model identifier
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 69

Chapter 5
Basic Cluster

 The following optional pair of attributes are used to store manufacturing
information about the device:

 sDateCode is a tsZCL_CharacterString structure (see Section
34.1.14) for a string of up to 16 characters in which the 8 most significant
characters contain the date of manufacture in the format YYYYMMDD and
the 8 least significant characters contain manufacturer-defined information
such as country of manufacture, factory identifier, production line identifier

 au8DateCode[16] is a byte-array which contains the character data
bytes representing the manufacturing information

 ePowerSource is an 8-bit value in which seven bits indicate the primary power
source for the device (e.g. battery) and one bit indicates whether there is a
secondary power source for the device. Enumerations are provided to cover all
possibilities - see Section 5.5.2

 eAppProfileType is an optional 8-bit value which indicates the ZigBee
application profile under which the Basic cluster was certified. This is not the
ZigBee Application Profile ID. Enumerations for the possible profiles are
provided in teCLD_BAS_ApplicationProfileType - see Section 5.5.3.

 u32AppProfileVersion is an optional 32-bit value representing the version
of the ZigBee application profile under which the Basic cluster was certified

 The following optional pair of attributes relates to the location of the device:

 sLocationDescription is a tsZCL_CharacterString structure
(see Section 34.1.14) for a string of up to 16 characters representing the
location of the device

 au8LocationDescription[16] is a byte-array which contains the
character data bytes representing the location of the device

 u8PhysicalEnvironment is an optional 8-bit attribute which indicates the
physical environment of the device

 bDeviceEnabled is an optional Boolean attribute which indicates whether the
device is enabled (TRUE) or disabled (FALSE). A disabled device cannot send
or respond to application level commands other than commands to read or
write attributes

Note: The application profile/device code automatically
sets two of the fields of sDataCode. The field
sDataCode.pu8Data is set to point at au8DateCode
and the field sDataCode.u8MaxLength is set to 16
(see Section 34.1.14 for details of these fields).

Note: The power source in the Basic cluster is
completely unrelated to the Node Power descriptor in
the ZigBee PRO stack. The power source in the ZigBee
PRO stack is set using the ZPS Configuration Editor.
70 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u8AlarmMask is an optional bitmap indicating the general alarms that can be
generated (Bit 0 - general software alarm, Bit 1 - general hardware alarm)

 u8DisableLocalConfig is an optional bitmap allowing the local user
interface of the device to be disabled (Bit 0 - ‘Reset to factory defaults’ buttons,
Bit 1 - ‘Device configuration’ buttons)

 The following optional pair of attributes are used to store a manufacturer-
specific software build identifier (this attribute may be used in the ZigBee Light
Link profile only):

 sSWBuildID is a tsZCL_CharacterString structure (see Section
34.1.14) for a string of up to 16 characters representing the software build
identifier

 au8SWBuildID[16] is a byte-array which contains the character data
bytes representing the software build identifier

The Basic cluster structure contains two mandatory elements, u8ZCLVersion and
ePowerSource. The remaining elements are optional, each being enabled/disabled
through a corresponding macro defined in the zcl_options.h file - for example, the
attribute u8ApplicationVersion is enabled/disabled using the enumeration
CLD_BAS_ATTR_APPLICATION_VERSION (see Section 5.3).

The mandatory attribute settings are described further in Section 5.3.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 71

Chapter 5
Basic Cluster

5.3 Mandatory Attribute Settings

The application must set the values of the mandatory u8ZCLVersion and
ePowerSource fields of the Basic cluster structure so that other devices can read
them. This should be done immediately after calling the endpoint registration function
for the device, e.g. eHA_RegisterDimmableLightEndPoint().

These values can be set by calling the eZCL_WriteLocalAttributeValue() function
with the appropriate input values. Alternatively, they can be set by writing to the
relevant members of the shared structure of the device, as illustrated below, where
sLight or sSwitch is the device that is registered using the registration function.

On a Dimmable Light:

sLight.sBasicCluster.u8ZCLVersion = 0x01;

sLight.sBasicCluster.ePowerSource = E_CLD_BAS_PS_SINGLE_PHASE_MAINS;

On a battery-powered Dimmer Switch:

sSwitch.sLocalBasicCluster.u8ZCLVersion = 0x01;

sSwitch.sLocalBasicCluster.ePowerSource = E_CLD_BAS_PS_BATTERY;

5.4 Functions

The following Basic cluster functions are provided in the NXP implementation of the
ZCL:

Function Page

eCLD_BasicCreateBasic 73

eCLD_BasicCommandResetToFactoryDefaultsSend 75
72 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_BasicCreateBasic

Description

This function creates an instance of the Basic cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Basic cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be the first Basic cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Basic cluster,
which can be obtained by using the macro
CLD_BASIC_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppBasicClusterAttributeControlBits[CLD_BASIC_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status eCLD_BasicCreateBasic(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. Simple Sensor of the
HA profile) will be used. In this case, the device and its
supported clusters must be registered on the endpoint using
the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 73

Chapter 5
Basic Cluster

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Basic cluster. This
parameter can refer to a pre-filled structure called
sCLD_Basic which is provided in the Basic.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Basic which defines the
attributes of Basic cluster. The function will initialise the
attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
74 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_BasicCommandResetToFactoryDefaultsSend

Description

This function can be called on a client device to send a ‘Reset To Factory Defaults’
command, requesting the recipient server device to reset to its factory defaults. The
recipient device will generate a callback event on the endpoint on which the Basic
cluster was registered.

If used, the ‘Reset To Factory Defaults’ command must be enabled in the compile-
time options on both the client and server, as described in Section 5.6.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the command and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

teZCL_Status eCLD_BasicCommandResetToFactoryDefaultsSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 75

Chapter 5
Basic Cluster

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
76 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
5.5 Enumerations

5.5.1 teCLD_BAS_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Basic cluster.

typedef enum

{

 E_CLD_BAS_ATTR_ID_ZCL_VERSION = 0x0000, /* Mandatory */

 E_CLD_BAS_ATTR_ID_APPLICATION_VERSION,

 E_CLD_BAS_ATTR_ID_STACK_VERSION,

 E_CLD_BAS_ATTR_ID_HARDWARE_VERSION,

 E_CLD_BAS_ATTR_ID_MANUFACTURER_NAME,

 E_CLD_BAS_ATTR_ID_MODEL_IDENTIFIER,

 E_CLD_BAS_ATTR_ID_DATE_CODE,

 E_CLD_BAS_ATTR_ID_POWER_SOURCE, /* Mandatory */

 E_CLD_BAS_ATTR_ID_LOCATION_DESCRIPTION = 0x0010,

 E_CLD_BAS_ATTR_ID_PHYSICAL_ENVIRONMENT,

 E_CLD_BAS_ATTR_ID_DEVICE_ENABLED,

 E_CLD_BAS_ATTR_ID_ALARM_MASK,

 E_CLD_BAS_ATTR_ID_DISABLE_LOCAL_CONFIG,
 E_CLD_BAS_ATTR_ID_SW_BUILD_ID = 0x4000

} teCLD_BAS_ClusterID;

5.5.2 teCLD_BAS_PowerSource

The following enumerations are used in the Basic cluster to specify the power source
for a device (see above):

typedef enum
{
 E_CLD_BAS_PS_UNKNOWN = 0x00,
 E_CLD_BAS_PS_SINGLE_PHASE_MAINS,
 E_CLD_BAS_PS_THREE_PHASE_MAINS,
 E_CLD_BAS_PS_BATTERY,
 E_CLD_BAS_PS_DC_SOURCE,
 E_CLD_BAS_PS_EMERGENCY_MAINS_CONSTANTLY_POWERED,
 E_CLD_BAS_PS_EMERGENCY_MAINS_AND_TRANSFER_SWITCH,
 E_CLD_BAS_PS_UNKNOWN_BATTERY_BACKED = 0x80,
 E_CLD_BAS_PS_SINGLE_PHASE_MAINS_BATTERY_BACKED,
 E_CLD_BAS_PS_THREE_PHASE_MAINS_BATTERY_BACKED,
 E_CLD_BAS_PS_BATTERY_BATTERY_BACKED,
 E_CLD_BAS_PS_DC_SOURCE_BATTERY_BACKED,
 E_CLD_BAS_PS_EMERGENCY_MAINS_CONSTANTLY_POWERED_BATTERY_BACKED,
 E_CLD_BAS_PS_EMERGENCY_MAINS_AND_TRANSFER_SWITCH_BATTERY_BACKED,
} teCLD_BAS_PowerSource;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 77

Chapter 5
Basic Cluster

The power source enumerations are described in the table below.

 Enumeration Description

E_CLD_BAS_PS_UNKNOWN Unknown power source

E_CLD_BAS_PS_SINGLE_PHASE_MAINS Single-phase mains powered

E_CLD_BAS_PS_THREE_PHASE_MAINS Three-phase mains powered

E_CLD_BAS_PS_BATTERY Battery powered

E_CLD_BAS_PS_DC_SOURCE DC source

E_CLD_BAS_PS_EMERGENCY_MAINS_
CONSTANTLY_POWERED

Constantly powered from emergency mains
supply

E_CLD_BAS_PS_EMERGENCY_MAINS_
AND_TRANSFER_SWITCH

Powered from emergency mains supply via
transfer switch

E_CLD_BAS_PS_UNKNOWN_BATTERY_
BACKED

Unknown power source but battery back-up

E_CLD_BAS_PS_SINGLE_PHASE_MAINS_
BATTERY_BACKED

Single-phase mains powered with battery
back-up

E_CLD_BAS_PS_THREE_PHASE_MAINS_
BATTERY_BACKED

Three-phase mains powered with battery
back-up

E_CLD_BAS_PS_BATTERY_
BATTERY_BACKED

Battery powered with battery back-up

E_CLD_BAS_PS_DC_SOURCE_
BATTERY_BACKED

DC source with battery back-up

E_CLD_BAS_PS_EMERGENCY_MAINS_
CONSTANTLY_POWERED_BATTERY_BACKED

Constantly powered from emergency mains
supply with battery back-up

E_CLD_BAS_PS_EMERGENCY_MAINS_AND_
TRANSFER_SWITCH_BATTERY_BACKED

Powered from emergency mains supply via
transfer switch with battery back-up

Table 6: Power Source Enumerations
78 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
5.5.3 teCLD_BAS_ApplicationProfileType

The following enumerations are used in the Basic cluster to specify the ZigBee
Application Profile under which the Basic cluster was certified (note that these values
do not correspond to the ZigBee Application Profile IDs).

typedef enum

{

 E_CLD_BAS_APT_ZIGBEE_BUILDING_AUTOMATION = 0x00,

 E_CLD_BAS_APT_ZIGBEE_REMOTE_CONTROL,

 E_CLD_BAS_APT_ZIGBEE_SMART_ENERGY,

 E_CLD_BAS_APT_ZIGBEE_HEALTH_CARE,

 E_CLD_BAS_APT_ZIGBEE_HOME_AUTOMATION,

 E_CLD_BAS_APT_ZIGBEE_INPUT_DEVICE,

 E_CLD_BAS_APT_ZIGBEE_LIGHT_LINK,

 E_CLD_BAS_APT_ZIGBEE_RETAIL_SERVICES,

 E_CLD_BAS_APT_ZIGBEE_TELECOM_SERVICES

} teCLD_BAS_ApplicationProfileType;

5.6 Compile-Time Options

To enable the Basic cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:

#define CLD_BASIC

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define BASIC_CLIENT

#define BASIC_SERVER

The Basic cluster contains macros that may be optionally specified at compile-time by
adding some or all of the following lines to the zcl_options.h file.

Add this line to enable the optional Application Version attribute:

#define CLD_BAS_ATTR_APPLICATION_VERSION

Add this line to enable the optional Stack Version attribute:

#define CLD_BAS_ATTR_STACK_VERSION

Add this line to enable the optional Hardware Version attribute:

#define CLD_BAS_ATTR_HARDWARE_VERSION
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 79

Chapter 5
Basic Cluster

Add this line to enable the optional Manufacturer Name attribute:

#define CLD_BAS_ATTR_MANUFACTURER_NAME

Add this line to enable the optional Model Identifier attribute:

#define CLD_BAS_ATTR_MODEL_IDENTIFIER

Add this line to enable the optional Date Code attribute:

#define CLD_BAS_ATTR_DATE_CODE

Add this line to enable the optional Application Profile Type attribute:

#define CLD_BAS_ATTR_ID_APPLICATION_PROFILE_TYPE

Add this line to enable the optional Application Profile Version attributes:

#define CLD_BAS_ATTR_ID_APPLICATION_PROFILE_VERSION

Add this line to enable the optional Location Description attribute:

#define CLD_BAS_ATTR_LOCATION_DESCRIPTION

Add this line to enable the optional Physical Environment attribute:

#define CLD_BAS_ATTR_PHYSICAL_ENVIRONMENT

Add this line to enable the optional Device Enabled attribute:

#define CLD_BAS_ATTR_DEVICE_ENABLED

Add this line to enable the optional Alarm Mask attribute:

#define CLD_BAS_ATTR_ALARM_MASK

Add this line to enable the optional Disable Local Config attribute:

#define CLD_BAS_ATTR_DISABLE_LOCAL_CONFIG

Add this line to enable the optional Software Build ID attribute (ZLL only):

#define CLD_BAS_ATTR_SW_BUILD_ID

Add this line to enable the optional Reset To Factory Defaults command on the client
and server:

#define CLD_BAS_CMD_RESET_TO_FACTORY_DEFAULTS
80 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
6. Power Configuration Cluster

This chapter describes the Power Configuration cluster which is defined in the ZCL
and is concerned with the power source(s) of a device.

The Power Configuration cluster has a Cluster ID of 0x0001.

6.1 Overview

The Power Configuration cluster allows:

 information to be obtained about the power source(s) of a device

 voltage alarms to be configured

To use the functionality of this cluster, you must include the file
PowerConfiguration.h in your application and enable the cluster by defining
CLD_POWER_CONFIGURATION in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

 The cluster server is able to receive commands to start and stop identification
mode on the local device.

 The cluster client is able to send the above commands to the server (and
therefore control identification mode on the remote device)

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Power Configuration cluster are fully detailed in
Section 6.5.

Note: Some attributes of this cluster are part of an HA
extension of the cluster and must only be used with the
HA profile. For details, refer to the attribute descriptions
in Section 6.2.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 81

Chapter 6
Power Configuration Cluster

6.2 Power Configuration Cluster Structure and Attributes

The structure definition for the Power Configuration cluster is:

typedef struct

{

#ifdef CLD_PWRCFG_ATTR_MAINS_VOLTAGE

 zuint16 u16MainsVoltage;

#endif

#ifdef CLD_PWRCFG_ATTR_MAINS_FREQUENCY

 zuint8 u8MainsFrequency;

#endif

#ifdef CLD_PWRCFG_ATTR_MAINS_ALARM_MASK

 zbmap8 u8MainsAlarmMask;

#endif

#ifdef CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MIN_THRESHOLD

 uint16 u16MainsVoltageMinThreshold;

#endif

#ifdef CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MAX_THRESHOLD

 uint16 u16MainsVoltageMaxThreshold;

#endif

#ifdef CLD_PWRCFG_ATTR_MAINS_VOLTAGE_DWELL_TRIP_POINT

 uint16 u16MainsVoltageDwellTripPoint;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_VOLTAGE

 uint8 u8BatteryVoltage;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_PERCENTAGE_REMAINING

 uint8 u8BatteryPercentageRemaining;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_MANUFACTURER

 tsZCL_CharacterString sBatteryManufacturer;

 uint8 au8BatteryManufacturer[16];

#endif
82 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
#ifdef CLD_PWRCFG_ATTR_BATTERY_SIZE

 zenum8 u8BatterySize;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_AHR_RATING

 zuint16 u16BatteryAHRating;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_QUANTITY

 zuint8 u8BatteryQuantity;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_RATED_VOLTAGE

 zuint8 u8BatteryRatedVoltage;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_ALARM_MASK

 zbmap8 u8BatteryAlarmMask;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_VOLTAGE_MIN_THRESHOLD

 zuint8 u8BatteryVoltageMinThreshold;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD1

 zuint8 u8BatteryVoltageThreshold1;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD2

 zuint8 u8BatteryVoltageThreshold2;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD3

 zuint8 u8BatteryVoltageThreshold3;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_MIN_THRESHOLD

 zuint8 u8BatteryPercentageMinThreshold;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD1

 zuint8 u8BatteryPercentageThreshold1;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 83

Chapter 6
Power Configuration Cluster

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD2

 zuint8 u8BatteryPercentageThreshold2;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD3

 zuint8 u8BatteryPercentageThreshold3;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_STATE

 zbmap32 u32BatteryAlarmState;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_VOLTAGE

 uint8 u8Battery2Voltage;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_PERCENTAGE_REMAINING

 uint8 u8Battery2PercentageRemaining;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_MANUFACTURER

 tsZCL_CharacterString sBattery2Manufacturer;

 uint8 au8Battery2Manufacturer[16];

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_SIZE

 zenum8 u8Battery2Size;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_AHR_RATING

 zuint16 u16Battery2AHRating;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_QUANTITY

 zuint8 u8Battery2Quantity;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_RATED_VOLTAGE

 zuint8 u8Battery2RatedVoltage;

#endif
84 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
#ifdef CLD_PWRCFG_ATTR_BATTERY_2_ALARM_MASK

 zbmap8 u8Battery2AlarmMask;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_VOLTAGE_MIN_THRESHOLD

 zuint8 u8Battery2VoltageMinThreshold;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD1

 zuint8 u8Battery2VoltageThreshold1;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD2

 zuint8 u8Battery2VoltageThreshold2;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD3

 zuint8 u8Battery2VoltageThreshold3;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_MIN_THRESHOLD

 zuint8 u8Battery2PercentageMinThreshold;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD1

 zuint8 u8Battery2PercentageThreshold1;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD2

 zuint8 u8Battery2PercentageThreshold2;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD3

 zuint8 u8Battery2PercentageThreshold3;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_VOLTAGE

 uint8 u8Battery3Voltage;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_PERCENTAGE_3_REMAINING

 uint8 u8Battery3PercentageRemaining;

#endif
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 85

Chapter 6
Power Configuration Cluster

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_MANUFACTURER

 tsZCL_CharacterString sBattery3Manufacturer;

 uint8 au8Battery3Manufacturer[16];

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_SIZE

 zenum8 u8Battery3Size;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_AHR_RATING

 zuint16 u16Battery3AHRating;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_QUANTITY

 zuint8 u8Battery3Quantity;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_RATED_VOLTAGE

 zuint8 u8Battery3RatedVoltage;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_ALARM_MASK

 zbmap8 u8Battery3AlarmMask;

#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_VOLTAGE_MIN_THRESHOLD

 zuint8 u8Battery3VoltageMinThreshold;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD1

 zuint8 u8Battery3VoltageThreshold1;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD2

 zuint8 u8Battery3VoltageThreshold2;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD3

 zuint8 u8Battery3VoltageThreshold3;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_MIN_THRESHOLD
86 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 zuint8 u8Battery3PercentageMinThreshold;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD1

 zuint8 u8Battery3PercentageThreshold1;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD2

 zuint8 u8Battery3PercentageThreshold2;

#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD3

 zuint8 u8Battery3PercentageThreshold3;

#endif

} tsCLD_PowerConfiguration;

The attributes are classified into four attribute sets: Mains Information, Mains Settings,
Battery Information and Battery Settings. The attributes from these sets are described
below.

Mains Information Attribute Set

 u16MainsVoltage is the measured AC (RMS) mains voltage or DC voltage
currently applied to the device, in units of 100 mV.

 u8MainsFrequency is half of the measured AC mains frequency, in Hertz,
currently applied to the device. Actual frequency = 2 x u8MainsFrequency.
This allows AC mains frequencies to be stored in the range 2-506 Hz in steps
of 2 Hz. In addition:

 0x00 indicates a DC supply or that AC frequency is too low to be
measured

 0xFE indicates that AC frequency is too high to be measured

 0xFF indicates that AC frequency could not be measured.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 87

Chapter 6
Power Configuration Cluster

Mains Settings Attribute Set

 u8MainsAlarmMask is a bitmap indicating which mains voltage alarms can be
generated (a bit is set to ‘1’ if the alarm is enabled):

 u16MainsVoltageMinThreshold is the threshold for the under-voltage
alarm, in units of 100 mV. The RMS mains voltage is allowed to dip below this
threshold for the duration specified by 16MainsVoltageDwellTripPoint
before the alarm is triggered (see below). 0xFFFF indicates that the alarm will
not be generated.

 u16MainsVoltageMaxThreshold is the threshold for the over-voltage
alarm, in units of 100 mV. The RMS mains voltage is allowed to rise above this
threshold for the duration specified by 16MainsVoltageDwellTripPoint
before the alarm is triggered (see below). 0xFFFF indicates that the alarm will
not be generated.

 u16MainsVoltageDwellTripPoint defines the time-delay, in seconds,
before an over-voltage or under-voltage alarm will be triggered when the mains
voltage crosses the relevant threshold. If the mains voltage returns within the
limits of the thresholds during this time, the alarm will be cancelled. 0xFFFF
indicates that the alarms will not be generated.

Battery Information Attribute Set (Battery 1)

 u8BatteryVoltage is the measured battery voltage currently applied to the
device, in units of 100 mV. 0xFF indicates that the measured voltage is invalid
or unknown.

 u8BatteryPercentageRemaining indicates the remaining battery life as a
percentage of the complete battery lifespan, expressed to the nearest half-
percent in the range 0 to 100 - for example, 0xAF represents 87.5%. The
special value 0xFF indicates an invalid or unknown measurement. This
attribute is part of the HA extension to the cluster.

Battery Settings Attribute Set (Battery 1)

 sBatteryManufacturer is a pointer to the array containing the name of the
battery manufacturer (see below).

 au8BatteryManufacturer[16] is a 16-element array containing the name
of the battery manufacturer (maximum of 16 characters).

 u8BatterySize is an enumeration indicating the type of battery in the device
- the enumerations are listed in Section 6.4.2.

Bit Description

0 Under-voltage alarm (triggered when measured RMS mains
voltage falls below a pre-defined threshold - see below)

1 Over-voltage alarm (triggered when measured RMS mains
voltage rises above a pre-defined threshold - see below)

2 Mains power supply has been lost or is unavailable - that is,
the device is now running on battery power. This value is
part of the HA extension to the cluster

3-7 Reserved
88 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u16BatteryAHRating is the Ampere-hour (Ah) charge rating of the battery,
in units of 10 mAh.

 u8BatteryQuantity is the number of batteries used to power the device.

 u8BatteryRatedVoltage is the rated voltage of the battery, in units of
100 mV.

 u8BatteryAlarmMask is a bitmap indicating whether the battery-low alarm
can be generated - if enabled, the alarm is generated when the battery voltage
falls below a pre-defined threshold (see below). The alarm-enable bit is bit 0
(which is set to ‘1’ if the alarm is enabled).

 u8BatteryVoltageMinThreshold is the battery voltage threshold, in units
of 100 mV, below which the device cannot operate or transmit - a battery-low
alarm can be triggered when the battery voltage falls below this threshold:

 u8BatteryVoltageThreshold1 is a battery voltage threshold, in units of
100 mV, which can correspond to a battery-low alarm - that is, if the battery
voltage falls below this threshold, an alarm can be triggered. It must be greater
than the value defined for u8BatteryVoltageMinThreshold. The special
value 0xFF indicates that the threshold is not used. This attribute is part of
the HA extension to the cluster.

 u8BatteryVoltageThreshold2 is a battery voltage threshold, in units of
100 mV, which can correspond to a battery-low alarm - that is, if the battery
voltage falls below this threshold, an alarm can be triggered. It must be greater
than the value defined for u8BatteryVoltageThreshold1. The special
value 0xFF indicates that the threshold is not used. This attribute is part of
the HA extension to the cluster.

 u8BatteryVoltageThreshold3 is a battery voltage threshold, in units of
100 mV, which can correspond to a battery-low alarm - that is, if the battery
voltage falls below this threshold, an alarm can be triggered. It must be greater
than the value defined for u8BatteryVoltageThreshold2. The special
value 0xFF indicates that the threshold is not used. This attribute is part of
the HA extension to the cluster.

 u8BatteryPercentageMinThreshold is the minimum alarm threshold for
percentage battery-life, expressed in half-percent steps in the range 0 to 100 - if
the remaining percentage battery-life (u8BatteryPercentageRemaining)
falls below this threshold, an alarm can be triggered. This attribute is part of
the HA extension to the cluster.

 u8BatteryPercentageThreshold1 is an alarm threshold for percentage
battery-life, expressed in half-percent steps in the range 0 to 100 - if the
remaining percentage battery-life (u8BatteryPercentageRemaining) falls
below this threshold, an alarm can be triggered. It must be greater than the

Value Description

0x00 - 0x39 Minimum battery voltage threshold, in units of 100 mV

0x3A Mains power supply has been lost or is unavailable - that is,
the device is now running on battery power. This value is
part of the HA extension to the cluster

0x3B - 0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 89

Chapter 6
Power Configuration Cluster

value defined for u8BatteryPercentageMinThreshold. The special value
0xFF indicates that the threshold is not used. This attribute is part of the HA
extension to the cluster.

 u8BatteryPercentageThreshold2 is an alarm threshold for percentage
battery-life, expressed in half-percent steps in the range 0 to 100 - if the
remaining percentage battery-life (u8BatteryPercentageRemaining) falls
below this threshold, an alarm can be triggered. It must be greater than the
value defined for u8BatteryPercentageThreshold1. The special value
0xFF indicates that the threshold is not used. This attribute is part of the HA
extension to the cluster.

 u8BatteryPercentageThreshold3 is an alarm threshold for percentage
battery-life, expressed in half-percent steps in the range 0 to 100 - if the
remaining percentage battery-life (u8BatteryPercentageRemaining) falls
below this threshold, an alarm can be triggered. It must be greater than the
value defined for u8BatteryPercentageThreshold2. The special value
0xFF indicates that the threshold is not used. This attribute is part of the HA
extension to the cluster.

 u32BatteryAlarmState is a bitmap repesenting the current state of the
alarms for the battery or batteries (the bitmap includes status bits for optional
additional batteries 2 and 3). It indicates the state of the battery in relation to
the voltage and percentage-life thresholds defined by the attributes above (a bit
is set to ‘1’ when the corresponding threshold has been reached). This
attribute is part of the HA extension to the cluster.

Bit Description

Bits for Battery

0 Bit is set if one of the following thresholds has been reached:

• u8BatteryVoltageMinThreshold

• u8BatteryPercentageMinThreshold

1 Bit is set if one of the following thresholds has been reached:

• u8BatteryVoltageThreshold1

• u8BatteryPercentageThreshold1

2 Bit is set if one of the following thresholds has been reached:

• u8BatteryVoltageThreshold2

• u8BatteryPercentageThreshold2

3 Bit is set if one of the following thresholds has been reached:

• u8BatteryVoltageThreshold3

• u8BatteryPercentageThreshold3

4 - 9 Reserved

Bits for Battery 2 (Optional)

10 Bit is set if one of the following thresholds has been reached:

• u8Battery2VoltageMinThreshold

• u8Battery2PercentageMinThreshold
90 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Battery Information and Battery Settings Attribute Sets for Battery <X>

The Battery Information and Battery Settings attribute sets are repeated for up to two
further (optional) batteries, denoted 2 and 3. The attributes are as follows, where <X>
is 2 or 3, and their definitions are identical to those of the equivalent attributes in the
Battery Information and Battery Settings attribute sets described above.

 u8Battery<X>Voltage

 u8Battery<X>PercentageRemaining

 au8Battery<X>Manufacturer[16]

 u8Battery<X>Size

 u16Battery<X>AHRating

11 Bit is set if one of the following thresholds has been reached:

• u8Battery2VoltageThreshold1

• u8Battery2PercentageThreshold1

12 Bit is set if one of the following thresholds has been reached:

• u8Battery2VoltageThreshold2

• u8Battery2PercentageThreshold2

13 Bit is set if one of the following thresholds has been reached:

• u8Battery2VoltageThreshold3

• u8Battery2PercentageThreshold3

14 - 19 Reserved

Bits for Battery 3 (Optional)

20 Bit is set if one of the following thresholds has been reached:

• u8Battery3VoltageMinThreshold

• u8Battery3PercentageMinThreshold

21 Bit is set if one of the following thresholds has been reached:

• u8Battery3VoltageThreshold1

• u8Battery3PercentageThreshold1

22 Bit is set if one of the following thresholds has been reached:

• u8Battery3VoltageThreshold2

• u8Battery3PercentageThreshold2

23 Bit is set if one of the following thresholds has been reached:

• u8Battery3VoltageThreshold3

• u8Battery3PercentageThreshold3

24 - 29 Reserved

30 Mains power supply has been lost or is unavailable - that is, the device is now
running on battery power

31 Reserved

Bit Description
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 91

Chapter 6
Power Configuration Cluster

 u8Battery<X>Quantity

 u8Battery<X>RatedVoltage

 u8Battery<X>AlarmMask

 u8Battery<X>VoltageMinThreshold

 u8Battery<X>VoltageThreshold1

 u8Battery<X>VoltageThreshold2

 u8Battery<X>VoltageThreshold3

 u8Battery<X>PercentageMinThreshold

 u8Battery<X>PercentageThreshold1

 u8Battery<X>PercentageThreshold2

 u8Battery<X>PercentageThreshold3

 u32Battery<X>AlarmState

6.3 Functions

The following Power Configuration cluster function is provided in the NXP
implementation of the ZCL:

Function Page

eCLD_PowerConfigurationCreatePowerConfiguration 93
92 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_PowerConfigurationCreatePowerConfiguration

Description

This function creates an instance of the Power Configuration cluster on an endpoint.
The cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Power Configuration cluster
instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Power
Configuration cluster, which can be obtained by using the macro
CLD_PWRCFG_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppPowerConfigurationClusterAttributeControlBits[
 CLD_PWRCFG_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status
eCLD_PowerConfigurationCreatePowerConfiguration(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 93

Chapter 6
Power Configuration Cluster

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Basic cluster. This
parameter can refer to a pre-filled structure called
sCLD_PowerConfiguration which is provided in the
PowerConfiguration.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_PowerConfiguration
which defines the attributes of Power Configuration
cluster. The function will initialise the attributes with
default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
94 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
6.4 Enumerations and Defines

6.4.1 teCLD_PWRCFG_AttributeId

The following structure contains the enumerations used to identify the attributes of the
Power Configuration cluster (some attributes are part of the HA extension of this
cluster - see Section 6.2).

typedef enum

{

 /* Mains Information attribute set */

 E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE = 0x0000,

 E_CLD_PWRCFG_ATTR_ID_MAINS_FREQUENCY,

 /* Mains Settings attribute set */

 E_CLD_PWRCFG_ATTR_ID_MAINS_ALARM_MASK = 0x0010,

 E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_MIN_THRESHOLD,

 E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_MAX_THRESHOLD,

 E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_DWELL_TRIP_POINT,

 /* Battery Information attribute set */

 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE = 0x0020,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_REMAINING,

 /* Battery Settings attribute set */

 E_CLD_PWRCFG_ATTR_ID_BATTERY_MANUFACTURER = 0x0030,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_SIZE,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_AHR_RATING,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_QUANTITY,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_RATED_VOLTAGE,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_MASK,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_MIN_THRESHOLD,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD1,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD2,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD3,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_MIN_THRESHOLD,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD1,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD2,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD3,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_STATE,

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 95

Chapter 6
Power Configuration Cluster

 /* Battery 2 Information attribute set */

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE = 0x0040,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_REMAINING,

 /* Battery 2 Settings attribute set */

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_MANUFACTURER = 0x0050,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_SIZE,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_AHR_RATING,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_QUANTITY,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_RATED_VOLTAGE,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ALARM_MASK,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_MIN_THRESHOLD,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD1,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD2,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD3,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_MIN_THRESHOLD,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD1,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD2,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_2_PERCENTAGE_THRESHOLD3,

 /* Battery 3 Information attribute set */

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE = 0x0060,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_REMAINING,

 /* Battery 3 Settings attribute set */

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_MANUFACTURER = 0x0070,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_SIZE,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_AHR_RATING,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_QUANTITY,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_RATED_VOLTAGE,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_ALARM_MASK,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_MIN_THRESHOLD,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD1,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD2,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD3,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_MIN_THRESHOLD,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD1,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD2,

 E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD3

} teCLD_PWRCFG_AttributeId;
96 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
6.4.2 teCLD_PWRCFG_BatterySize

The following structure contains the enumerations used to indicate the type of battery
used in the device.

typedef enum

{

 E_CLD_PWRCFG_BATTERY_SIZE_NO_BATTERY = 0x00,

 E_CLD_PWRCFG_BATTERY_SIZE_BUILT_IN,

 E_CLD_PWRCFG_BATTERY_SIZE_OTHER,

 E_CLD_PWRCFG_BATTERY_SIZE_AA,

 E_CLD_PWRCFG_BATTERY_SIZE_AAA,

 E_CLD_PWRCFG_BATTERY_SIZE_C,

 E_CLD_PWRCFG_BATTERY_SIZE_D,

 E_CLD_PWRCFG_BATTERY_SIZE_UNKNOWN = 0xff,

} teCLD_PWRCFG_BatterySize;

6.4.3 Defines for Voltage Alarms

The following #defines are provided for use in the configuration of the mains over-
voltage and under-voltage alarms, and the battery-low alarm.

Mains Alarm Mask

#define CLD_PWRCFG_MAINS_VOLTAGE_TOO_LOW (1 << 0)

#define CLD_PWRCFG_MAINS_VOLTAGE_TOO_HIGH (1 << 1)

Battery Alarm Mask

#define CLD_PWRCFG_BATTERY_VOLTAGE_TOO_LOW (1 << 0)
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 97

Chapter 6
Power Configuration Cluster

6.5 Compile-Time Options

To enable the Power Configuration cluster in the code to be built, it is necessary to add
the following to the zcl_options.h file:

#define CLD_POWER_CONFIGURATION

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define POWER_CONFIGURATION_CLIENT

#define POWER_CONFIGURATION_SERVER

The Power Configuration cluster contains macros that may be optionally specified at
compile-time by adding some or all the following lines to the zcl_options.h file.

Add this line to enable the optional Mains Voltage attribute:

#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE

Add this line to enable the optional Mains Frequency attribute:

#define CLD_PWRCFG_ATTR_MAINS_FREQUENCY

Add this line to enable the optional Mains Alarm Mask attribute:

#define CLD_PWRCFG_ATTR_MAINS_ALARM_MASK

Add this line to enable the optional Mains Voltage Min Threshold attribute:

#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Mains Voltage Max Threshold attribute:

#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MAX_THRESHOLD

Add this line to enable the optional Mains Voltage Dwell Trip Point attribute:

#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE_DWELL_TRIP_POINT

Add this line to enable the optional Battery Voltage attribute:

#define CLD_PWRCFG_ATTR_BATTERY_VOLTAGE

Note: Some attributes of this cluster are part of an HA
extension of the cluster and must only be used with the
HA profile. For details, refer to the attribute descriptions
in Section 6.2.
98 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Add this line to enable the optional Battery Manufacturer attributes:

#define CLD_PWRCFG_ATTR_BATTERY_MANUFACTURER

Add this line to enable the optional Battery Size attribute:

#define CLD_PWRCFG_ATTR_BATTERY_SIZE

Add this line to enable the optional Battery Amp Hour attribute:

#define CLD_PWRCFG_ATTR_BATTERY_AHR_RATING

Add this line to enable the optional Battery Quantity attribute:

#define CLD_PWRCFG_ATTR_BATTERY_QUANTITY

Add this line to enable the optional Battery Rated Voltage attribute:

#define CLD_PWRCFG_ATTR_BATTERY_RATED_VOLTAGE

Add this line to enable the optional Battery Alarm Mask attribute:

#define CLD_PWRCFG_ATTR_BATTERY_ALARM_MASK

Add this line to enable the optional Battery Voltage Min Threshold attribute:

#define CLD_PWRCFG_ATTR_BATTERY_VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery Percentage Life Remaining attribute:

#define CLD_PWRCFG_ATTR_BATTERY_PERCENTAGE_REMAINING

Add this line to enable the optional Battery Voltage Threshold 1 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD1

Add this line to enable the optional Battery Voltage Threshold 2 attribute:

#define LD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD2

Add this line to enable the optional Battery Voltage Threshold 3 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD3

Add this line to enable the optional Battery Percentage Life Min Threshold attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery Percentage Life Threshold 1 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD1
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 99

Chapter 6
Power Configuration Cluster

Add this line to enable the optional Battery Percentage Life Threshold 2 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD2

Add this line to enable the optional Battery Percentage Life Threshold 3 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD3

Add this line to enable the optional Battery Alarm State attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_STATE

Add this line to enable the optional Battery <X> Voltage attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_VOLTAGE

Add this line to enable the optional Battery <X> Percentage Life Remaining attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_PERCENTAGE_REMAINING

Add this line to enable the optional Battery <X> Manufacturer attributes:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_MANUFACTURER

Add this line to enable the optional Battery <X> Size attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_SIZE

Add this line to enable the optional Battery <X> Amp Hour attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_AHR_RATING

Add this line to enable the optional Battery <X> Quantity attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_QUANTITY

Add this line to enable the optional Battery <X> Rated Voltage attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_RATED_VOLTAGE

Add this line to enable the optional Battery <X> Alarm Mask attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_ALARM_MASK

Add this line to enable the optional Battery <X> Voltage Min Threshold attribute:

#define CLD_PWRCFG_ATTR_BATTERY_<X>_VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery <X> Voltage Threshold 1 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_VOLTAGE_THRESHOLD1
100 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Add this line to enable the optional Battery <X> Voltage Threshold 2 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_VOLTAGE_THRESHOLD2

Add this line to enable the optional Battery <X> Voltage Threshold 3 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_VOLTAGE_THRESHOLD3

Add this line to enable the optional Battery <X> Percentage Life Remaining attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_PERCENTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery <X> Percentage Life Threshold 1 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_PERCENTAGE_THRESHOLD1

Add this line to enable the optional Battery <X> Percentage Life Threshold 2 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_PERCENTAGE_THRESHOLD2

Add this line to enable the optional Battery <X> Percentage Life Threshold 3 attribute:

#define CLD_PWRCFG_ATTR_ID_BATTERY_<X>_PERCENTAGE_THRESHOLD3
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 101

Chapter 6
Power Configuration Cluster

102 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
7. Identify Cluster

This chapter describes the Identify cluster which is defined in the ZCL and allows a
device to identify itself (for example, by flashing a LED on the node).

The Identify cluster has a Cluster ID of 0x0003.

7.1 Overview

The Identify cluster allows the host device to be put into identification mode in which
the node highlights itself in some way to an observer (in order to distinguish itself from
other nodes in the network). It is recommended that identification mode should involve
flashing a light with a period of 0.5 seconds.

To use the functionality of this cluster, you must include the file Identify.h in your
application and enable the cluster by defining CLD_IDENTIFY in the zcl_options.h
file.

It is also necessary to enable the cluster as a server or client, or as both:

 The cluster server is able to receive commands to start and stop identification
mode on the local device.

 The cluster client is able to send the above commands to the server (and
therefore control identification mode on the remote device)

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Identify cluster are fully detailed in Section 7.9.

Note: The Identify cluster contains optional functionality
for the EZ-mode Commissioning module, which is
detailed in Chapter 32 (and is currently only available for
use with the Home Automation profile). However, this
enhanced functionality is not presently certifiable.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 103

Chapter 7
Identify Cluster

7.2 Identify Cluster Structure and Attribute

The structure definition for the Identify cluster is:

typedef struct

{

 zuint16 u16IdentifyTime;

#ifdef CLD_IDENTIFY_ATTR_COMMISSION_STATE

 zbmap8 u8CommissionState;

#endif

} tsCLD_Identify;

where:

 u16IdentifyTime is a mandatory attribute specifying the remaining length of
time, in seconds, that the device will continue in identification mode. Setting the
attribute to a non-zero value will put the device into identification mode and the
attribute will subsequently be decremented every second

 u8CommissionState is an optional attribute for use with EZ-mode
Commissioning (see Chapter 32) to indicate the network status and operational
status of the node - this information is contained in a bitmap, as follows:

Bits Description

0 Network State

• 1 if in the correct network (must be 1 if Operational State bit is 1)

• 0 if not in a network, or in a temporary network, or network status is unknown

1 Operational State

• 1 if commissioned for operation (Network State bit will also be set to 1)

• 0 if not commissioned for operation

2 - 7 Reserved
104 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
7.3 Initialisation

The function eCLD_IdentifyCreateIdentify() is used to create an instance of the
Identify cluster. This function is generally called by the initialisation function for the
host device but can alternatively be used directly by the application in setting up a
custom endpoint which supports the Identify cluster (amongst others).

7.4 Sending Commands

The NXP implementation of the ZCL provides functions for sending commands
between an Identify cluster client and server.

7.4.1 Starting and Stopping Identification Mode

The function eCLD_IdentifyCommandIdentifyRequestSend() can be used on the
cluster client to send a command to the cluster server requesting identification mode
to be started or stopped on the server device. The required action is contained in the
payload of the command (see Section 7.7.2):

 Setting the payload element u16IdentifyTime to a non-zero value has the effect
of requesting that the server device enters identification mode for a time (in
seconds) corresponding to the specified value.

 Setting the payload element u16IdentifyTime to zero has the effect of
requesting the immediate termination of any identification mode that is currently
in progress on the server device.

In a ZigBee Light Link (ZLL) network, identification mode can alternatively be started
and stopped as described in Section 7.4.2.

7.4.2 Requesting Identification Effects (ZLL Only)

The function eCLD_IdentifyCommandTriggerEffectSend() can be used in a ZigBee
Light Link (ZLL) network to request a particular identification effect or behaviour on a
light of a remote node (this function can be used for entering and leaving identification
mode instead of eCLD_IdentifyCommandIdentifyRequestSend()).

The possible behaviours that can be requested are as follows:

 Blink: Light is switched on and then off (once)

 Breathe: Light is switched on and off by smoothly increasing and then
decreasing its brightness over a one-second period, and then this is repeated
15 times

 Okay:

 Colour light goes green for one second

 Monochrome light flashes twice in one second
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 105

Chapter 7
Identify Cluster

 Channel change:

 Colour light goes orange for 8 seconds

 Monochrome light switches to maximum brightness for 0.5 s and then to
minimum brightness for 7.5 s

 Finish effect: Current stage of effect is completed and then identification mode
is terminated (e.g. for the Breathe effect, only the current one-second cycle will
be completed)

 Stop effect: Current effect and identification mode are terminated as soon as
possible

7.4.3 Inquiring about Identification Mode

The function eCLD_IdentifyCommandIdentifyQueryRequestSend() can be called
on an Identify cluster client in order to request a response from a server cluster if it is
currently in identification mode. This request should only be unicast.

7.4.4 Using EZ-mode Commissioning Features (HA only)

When using the EZ-mode Commissioning module, which is described in Chapter 32
(and is currently only available with the Home Automation profile), the Identify cluster
is mandatory:

 An EZ-mode initiator device must host an Identify cluster client

 An EZ-mode target device must host an Identify cluster server

The Identify cluster also contains the following optional features that can be used with
the EZ-mode Commissioning module (these features are not currently certifiable).

‘EZ-mode Invoke’ Command

The ‘EZ-mode Invoke’ command is supported which allows a device to schedule and
start one or more stages of EZ-mode commissioning on a remote device. The
command is issued by calling the eCLD_IdentifyEZModeInvokeCommandSend()
function and allows the following stages to be specified:

1. Factory Reset: EZ-mode commissioning configuration of the destination
device to be reset to ‘Factory Fresh’ settings

2. Network Steering: Destination device to be put into the ‘Network Steering’
phase

3. Find and Bind: Destination device to be put into the ‘Find and Bind’ phase

On receiving the command, the event E_CLD_IDENTIFY_CMD_EZ_MODE_INVOKE
is generated on the remote device, indicating the requested commissioning action(s).
The local application must perform these action(s) using the functions of the EZ-mode
Commissioning module (see Section 32.6). If more than one stage is specified, they
must be performed sequentially in the above order and must be contiguous.

If the ‘EZ-mode Invoke’ command is to be used by an application, its use must be
enabled at compile-time (see Section 7.9).
106 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
‘Commissioning State’ Attribute

The Identify cluster server contains an optional ‘Commissioning State’ attribute,
u8CommissionState (see Section 7.2), which indicates whether the local device is:

 a member of the (correct) network

 in a commissioned state and ready for operation

If the ‘Commissioning State’ attribute is to be used by an application, its use must be
enabled at compile-time (see Section 7.9).

The EZ-mode initiator can send an ‘Update Commission State’ command to the target
device in order to update the commissioning state of the target. The command is
issued by calling the eCLD_IdentifyUpdateCommissionStateCommandSend()
function. On receiving this command on the target, the ‘Commissioning State’ attribute
is automatically updated. It is good practice for the EZ-mode initiator to send this
command to notify the target device when commissioning is complete.

7.5 Sleeping Devices in Identification Mode

If a device sleeps between activities (e.g. a switch that is configured as a sleeping End
Device) and is also operating in identification mode, the device must wake once per
second for the ZCL to decrement the u16IdentifyTime attribute (see Section 7.2),
which represents the time remaining in identification mode. The device may also use
this wake time to highlight itself, e.g. flash a LED. The attribute update is performed
automatically by the ZCL when the application passes an E_ZCL_CBET_TIMER
event to the ZCL via the vZCL_EventHandler() function. The ZCL will also
automatically increment ZCL time as a result of this event.

When in identification mode, it is not permissible for a device to sleep for longer than
one second and to generate one timer event on waking. Before entering sleep, the
value of the u16IdentifyTime attribute can be checked - if this is zero, the device is not
in identification mode and is therefore allowed to sleep for longer than one second (for
details of updating ZCL time following a prolonged sleep, refer to Section 14.4.1).

7.6 Functions

The following Identify cluster functions are provided in the NXP implementation of the
ZCL:

Function Page

eCLD_IdentifyCreateIdentify 108

eCLD_IdentifyCommandIdentifyRequestSend 110

eCLD_IdentifyCommandTriggerEffectSend 112

eCLD_IdentifyCommandIdentifyQueryRequestSend 114

eCLD_IdentifyEZModeInvokeCommandSend 116

eCLD_IdentifyUpdateCommissionStateCommandSend 118
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 107

Chapter 7
Identify Cluster

eCLD_IdentifyCreateIdentify

Description

This function creates an instance of the Identify cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Identify cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be the first Identify cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Identify cluster,
which can be obtained by using the macro
CLD_IDENTIFY_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppIdentifyClusterAttributeControlBits[CLD_IDENTIFY_MAX_NUMBER_OF_ATTRIBU
TE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status eCLD_IdentifyCreateIdentify(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_IdentifyCustomDataStructure

 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
108 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Identify cluster. This
parameter can refer to a pre-filled structure called
sCLD_Identify which is provided in the Identify.h
file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Identify which defines the
attributes of Identify cluster. The function will initialise
the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psCustomDataStructure Pointer to structure which contains custom data for the
Identify cluster (see Section 7.7.1). This structure is
used for internal data storage. No knowledge of the
fields of this structure is required

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 109

Chapter 7
Identify Cluster

eCLD_IdentifyCommandIdentifyRequestSend

Description

This function can be called on a client device to send a custom command requesting
that the recipient server device either enters or exits identification mode. The
required action (start or stop identification mode) must be specified in the payload of
the custom command (see Section 7.7.2). The required duration of the identification
mode is specified in the payload and this value will replace the value in the Identify
cluster structure on the target device.

A device which receives this command will generate a callback event on the endpoint
on which the Identify cluster was registered.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the command and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
the command (see Section 7.7.2).

teZCL_Status eCLD_IdentifyCommandIdentifyRequestSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Identify_IdentifyRequestPayload *psPayload);
110 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 111

Chapter 7
Identify Cluster

eCLD_IdentifyCommandTriggerEffectSend

Description

This function can be called on a client device to send a custom command to a server
device in a ZigBee Light Link (ZLL) network, in order to control the identification effect
on a light of the target node. Therefore, this function can be used to start and stop
identification mode instead of eCLD_IdentifyCommandIdentifyRequestSend().

The following effect commands can be sent using this function:

A variant of the selected effect can also be specified, but currently only the default
(as described above) is available.

A device which receives this command will generate a callback event on the endpoint
on which the Identify cluster was registered.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

teZCL_Status eCLD_IdentifyCommandTriggerEffectSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
teCLD_Identify_EffectId eEffectId,
uint8 u8EffectVariant);

Effect Command Description

Blink Light is switched on and then off (once)

Breathe Light is switched on and off by smoothly increasing and then
decreasing its brightness over a one-second period, and then this is
repeated 15 times

Okay • Colour light goes green for one second

• Monochrome light flashes twice in one second

Channel change • Colour light goes orange for 8 seconds

• Monochrome light switches to
maximum brightness for 0.5 s and then to
minimum brightness for 7.5 s

Finish effect Current stage of effect is completed and then identification mode is
terminated (e.g. for the Breathe effect, only the current one-second
cycle will be completed)

Stop effect Current effect and identification mode are terminated as soon as
possible
112 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

eEffectId Effect command to send (see above), one of:
E_CLD_IDENTIFY_EFFECT_BLINK
E_CLD_IDENTIFY_EFFECT_BREATHE
E_CLD_IDENTIFY_EFFECT_OKAY
E_CLD_IDENTIFY_EFFECT_CHANNEL_CHANGE
E_CLD_IDENTIFY_EFFECT_FINISH_EFFECT
E_CLD_IDENTIFY_EFFECT_STOP_EFFECT

u8EffectVariant Required variant of specified effect - set to zero
for default (as no variants currently available)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 113

Chapter 7
Identify Cluster

eCLD_IdentifyCommandIdentifyQueryRequestSend

Description

This function can be called on a client device to send a custom command requesting
a response from any server devices that are currently in identification mode.

A device which receives this command will generate a callback event on the endpoint
on which the Identify cluster was registered. If the receiving device is currently in
identification mode, it will return a response containing the amount of time for which
it will continue in this mode (see Section 7.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

tsZCL_Status
eCLD_IdentifyCommandIdentifyQueryRequestSend(

uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);
114 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 115

Chapter 7
Identify Cluster

eCLD_IdentifyEZModeInvokeCommandSend

Description

This function can be used to send an ‘EZ-mode Invoke’ to a remote device. The sent
command requests one or more of the following stages of the EZ-mode
commissioning process to be performed on the destination device (for more
information, refer to Chapter 32):

1. Factory Reset - clears all bindings, group table entries and the u8CommissionState
attribute, and reverts to the ‘Factory Fresh’ settings

2. Network Steering - puts the destination device into the ‘Network Steering’ phase

3. Find and Bind - puts the destination device into the ‘Find and Bind’ phase

The required stages are specified in a bitmap in the command payload structure
tsCLD_Identify_EZModeInvokePayload (see Section 7.7.4). If more than one
stage is specified, they must be performed in the above order and be contiguous.

On receiving the ‘EZ-mode Invoke’ command on the destination device, an
E_CLD_IDENTIFY_CMD_EZ_MODE_INVOKE event will be generated with the
required commissioning action(s) specified in the u8Action field of the
tsCLD_Identify_EZModeInvokePayload structure. It is the local application's
responsibility to perform the requested action(s) using the functions of the EZ-mode
Commissioning module (see Section 32.6).

Note that the ‘EZ-mode Invoke’ command is optional and, if required, must be
enabled in the compile-time options (see Section 7.9).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP.

teZCL_Status eCLD_IdentifyEZModeInvokeCommandSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
bool bDirection,
tsCLD_Identify_EZModeInvokePayload

 *psPayload);
116 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

bDirection Boolean indicating the direction of the command,
as follows (this should always be set to TRUE):

TRUE - Identify cluster client to server
FALSE - Identify cluster server to client

psPayload Pointer to a structure containing the payload for
the command (see Section 7.7.4)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 117

Chapter 7
Identify Cluster

eCLD_IdentifyUpdateCommissionStateCommandSend

Description

This function can be used to send an ‘Update Commission State’ command from an
EZ-mode initiator device (cluster client) to a target device (cluster server) in order to
update the (optional) u8CommissionState attribute (see Section 7.2) which is
used for EZ-mode commissioning. The command allows individual bits of
u8CommissionState to be set or cleared (see Section 7.7.4).

On receiving the ‘Update Commission State’ command on the target device, an
event will be generated and the requested update will be automatically performed.

Note that the u8CommissionState attribute is optional and, if required, must be
enabled in the compile-time options (see Section 7.9).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP.

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
the command (see Section 7.7.4)

teZCL_Status
eCLD_IdentifyUpdateCommissionStateCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Identify_UpdateCommissionStatePayload

 *psPayload);
118 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 119

Chapter 7
Identify Cluster

7.7 Structures

7.7.1 Custom Data Structure

The Identity cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct

{

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_IdentifyCallBackMessage sCallBackMessage;

} tsCLD_IdentifyCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

7.7.2 Custom Command Payloads

The following structure contains the payload for an Identify cluster custom command
(sent using the function eCLD_IdentifyCommandIdentifyRequestSend()):

/* Identify request command payload */

typedef struct

{

 zuint16 u16IdentifyTime;

} tsCLD_Identify_IdentifyRequestPayload;

where u16IdentifyTime is the amount of time, in seconds, for which the target device
is to remain in identification mode. If this element is set to 0x0000 and the target device
is currently in identification mode, the mode will be terminated immediately.

7.7.3 Custom Command Responses

The following structure contains the response to a query as to whether a device is
currently in identification mode (the original query is sent using the function
eCLD_IdentifyCommandIdentifyQueryRequestSend()):

/* Identify query response command payload */

typedef struct

{

 zuint16 u16Timeout;

} tsCLD_Identify_IdentifyQueryResponsePayload;

where u16Timeout is the amount of time, in seconds, that the responding device will
remain in identification mode.
120 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
7.7.4 EZ-mode Commissioning Command Payloads

The structures shown and described below may be used when the Identify cluster is
used in conjunction with the EZ-mode Commissioning module.

‘EZ-Mode Invoke’ Command Payload

The following structure is used when sending an ‘EZ-mode Invoke’ command (using
the eCLD_IdentifyEZModeInvokeCommandSend() function).

typedef struct

{

 zbmap8 u8Action;

} tsCLD_Identify_EZModeInvokePayload;

where u8Action is a bitmap specifying the EZ-mode commissioning action(s) to be
performed on the destination device - a bit is set to ‘1’ if the corresponding action is
required, or to ‘0’ if it is not required:

‘Update Commission State’ Command Payload

The following structure is used when sending an ‘Update Commission State’
command (using the eCLD_IdentifyUpdateCommissionStateCommandSend()
function), which requests an update to the value of the u8CommissionState
attribute (for the definition of the attribute, refer to Section 7.2).

typedef struct

{

 zenum8 u8Action;

 zbmap8 u8CommissionStateMask;

} tsCLD_Identify_UpdateCommissionStatePayload;

where:

 u8Action is a value specifying the action to perform (set or clear) on the
u8CommissionState bits specified through u8CommissionStateMask:

 1: Set the specified bit(s) to ‘1’

 2: Clear the specified bit(s) to ‘0’

All other values are reserved.

Bits Action

0 Factory Reset - clears all bindings, group table entries and the u8CommissionState
attribute, and reverts to the ‘Factory Fresh’ settings

1 Network Steering - puts the device into the ‘Network Steering’ phase

2 Find and Bind - puts the device into the ‘Find and Bind’ phase

3 - 7 Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 121

Chapter 7
Identify Cluster

 u8CommissionStateMask is a bitmap in which the bits correspond to the bits
of the u8CommissionState attribute. A bit of this field indicates whether the
corresponding attribute bit is to be updated (according to the action specified in
u8Action):

 If a bit is set to ‘1’, the corresponding u8CommissionState bit should be
updated

 If a bit is set to ‘0’, the corresponding u8CommissionState bit should not
be updated

7.8 Enumerations

7.8.1 teCLD_Identify_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Identify cluster.

typedef enum

{

 E_CLD_IDENTIFY_ATTR_ID_IDENTIFY_TIME = 0x0000, /* Mandatory */

 E_CLD_IDENTIFY_ATTR_ID_COMMISSION_STATE /* Optional */

 } teCLD_Identify_ClusterID;

7.9 Compile-Time Options

To enable the Identify cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:

#define CLD_IDENTIFY

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define IDENTIFY_CLIENT

#define IDENTIFY_SERVER

The following optional cluster functionality can be enabled in the zcl_options.h file.

Enhanced Functionality for EZ-mode Commissioning (HA only)

To enable the optional ‘Commission State’ attribute, you must include:

#define CLD_IDENTIFY_ATTR_COMMISSION_STATE

To enable the optional ‘EZ-mode Invoke’ command, you must include:

#define CLD_IDENTIFY_CMD_EZ_MODE_INVOKE

Note that the above EZ-mode Commissioning features are not currently certifiable.
122 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Enhanced Functionality for ZLL

Enhanced functionality (identification effects) is available for the ZigBee Light Link
(ZLL) profile - see Section 7.4.2. To enable this enhanced cluster functionality for ZLL,
you must include:

#define CLD_IDENTIFY_SUPPORT_ZLL_ENHANCED_COMMANDS
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 123

Chapter 7
Identify Cluster

124 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
8. Groups Cluster

This chapter describes the Groups cluster which is defined in the ZCL and allows the
management of the Group table concerned with group addressing.

The Groups cluster has a Cluster ID of 0x0004.

8.1 Overview

The Groups cluster allows the management of group addressing that is available in
ZigBee PRO. In this addressing scheme, an endpoint on a device can be a member
of a group comprising endpoints from one or more devices. The group is assigned a
16-bit group ID or address. The group ID and the local member endpoint numbers are
held in an entry of the Group table on a device. If a message is sent to a group
address, the Group table is used to determine to which endpoints (if any) the message
should delivered on the device. A group can be assigned a name of up to 16
characters and the cluster allows the support of group names to be enabled/disabled.

To use the functionality of this cluster, you must include the file Groups.h in your
application and enable the cluster by defining CLD_GROUPS in the zcl_options.h
file.

It is also necessary to enable the cluster as a server or client, or as both:

 The cluster server is able to receive commands to modify the local group table.

 The cluster client is able to send commands to the server to request changes to
the group table on the server.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Groups cluster are fully detailed in Section 8.8.

8.2 Groups Cluster Structure and Attribute

The structure definition for the Groups cluster is:

typedef struct

{

 zbmap8 u8NameSupport;

} tsCLD_Groups;

where u8NameSupport indicates whether group names are supported by the cluster:

 A most significant bit of 1 indicates that group names are supported

 A most significant bit of 0 indicates that group names are not supported
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 125

Chapter 8
Groups Cluster

8.3 Initialisation

The function eCLD_GroupsCreateGroups() is used to create an instance of the
Groups cluster. The function is generally called by the initialisation function for the host
device.

A local endpoint can be added to a group on the local node using the function
eCLD_GroupsAdd(). If the group does not already exist, the function will create it.
Therefore, this is a way of creating a local group.

8.4 Sending Commands

The NXP implementation of the ZCL provides functions for sending commands
between a Groups cluster client and server. A command is sent from the client to one
or more endpoints on the server. Multiple endpoints can be targeted using binding or
group addressing.

8.4.1 Adding Endpoints to Groups

Two functions are provided for adding one or more endpoints to a group on a remote
device. Each function sends a command to the endpoint(s) to be added to the group,
where the required group is specified in the payload of the command. If the group does
not already exist in the target device’s Group table, it will be added to the table.

 eCLD_GroupsCommandAddGroupRequestSend() can be used to request
the addition of the target endpoint(s) to the specified group.

 eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend() can be
used to request the addition of the target endpoint(s) to the specified group
provided that the target device is currently in identification mode of the Identity
cluster (see Chapter 7).

An endpoint can also be added to a local group, as described in Section 8.3.

8.4.2 Removing Endpoints from Groups

Two functions are provided for removing one or more endpoints from groups on a
remote device. Each function sends a command to the endpoint(s) to be removed
from the group(s). If a group is empty following the removal of the endpoint(s), it will
be deleted in the Group table.

 eCLD_GroupsCommandRemoveGroupRequestSend() can be used to
request the removal of the target endpoint(s) from the group which is specified
in the payload of the command.

 eCLD_GroupsCommandRemoveAllGroupsRequestSend() can be used to
request the removal of the target endpoint(s) from all groups on the remote
device.

If an endpoint is a member of a scene associated with a group to be removed, the
above function calls will also result in the removal of the endpoint from the scene.
126 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
8.4.3 Obtaining Information about Groups

Two functions are provided for obtaining information about groups. Each function
sends a command to the endpoint(s) to which the inquiry relates.

 eCLD_GroupsCommandViewGroupRequestSend() can be used to request
the name of a group with the ID/address specified in the command payload.

 eCLD_GroupsCommandGetGroupMembershipRequestSend() can be used
to determine whether the target endpoint is a member of any of the groups
specified in the command payload.

8.5 Functions

The following Groups cluster functions are provided in the NXP implementation of the
ZCL:

Function Page

eCLD_GroupsCreateGroups 128

eCLD_GroupsAdd 130

eCLD_GroupsCommandAddGroupRequestSend 131

eCLD_GroupsCommandViewGroupRequestSend 133

eCLD_GroupsCommandGetGroupMembershipRequestSend 135

eCLD_GroupsCommandRemoveGroupRequestSend 137

eCLD_GroupsCommandRemoveAllGroupsRequestSend 139

eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend 141
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 127

Chapter 8
Groups Cluster

eCLD_GroupsCreateGroups

Description

This function creates an instance of the Groups cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Groups cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be the first Groups cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function retrieves any group IDs already stored in the ZigBee PRO stack's
Application Information Base (AIB). However, the AIB does not store group names.
If name support is required, the application should store the group names using the
JenOS PDM module, so that they can be retrieved following a power outage.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Groups cluster. This

teZCL_Status eCLD_GroupsCreateGroups(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 tsCLD_GroupsCustomDataStructure
 *psCustomDataStructure,

tsZCL_EndPointDefinition *psEndPointDefinition);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
128 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
parameter can refer to a pre-filled structure called
sCLD_Groups which is provided in the Groups.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Groups which defines the
attributes of Groups cluster. The function will initialise
the attributes with default values.

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 8.6.1)

psEndPointDefinition Pointer to the ZCL endpoint definition structure for the
application (see Section 34.1.1)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 129

Chapter 8
Groups Cluster

eCLD_GroupsAdd

Description

This function adds the specified endpoint on the local node to the group with the
specified group ID/address and specified group name. The relevant entry is modified
in the Group table on the local endpoint (of the calling application). If the group does
not currently exist, it will be created by adding a new entry for the group to the Group
table.

Note that the number of entries in the Group table must not exceed the value of
CLD_GROUPS_MAX_NUMBER_OF_GROUPS defined at compile-time (see
Section 8.8).

Parameters

u8SourceEndPointId Number of local endpoint to be added to group

u16GroupId 16-bit group ID/address of group

pu8GroupName Pointer to character string representing name of
group

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_GroupsAdd(uint8 u8SourceEndPointId,
uint16 u16GroupId,
uint8 *pu8GroupName);
130 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_GroupsCommandAddGroupRequestSend

Description

This function sends an Add Group command to a remote device, requesting that the
specified endpoint(s) on the target device be added to a group. The group ID/address
and name (if supported) are specified in the payload of the message, and must be
added to the Group table on the target node along with the associated endpoint
number(s).

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered and, if possible, add the group to its Group
table before sending a response indicating success or failure (see Section 8.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 8.6.3)

teZCL_Status
eCLD_GroupsCommandAddGroupRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Groups_AddGroupRequestPayload
 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 131

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
132 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_GroupsCommandViewGroupRequestSend

Description

This function sends a View Group command to a remote device, requesting the name
of the group with the specified group ID (address) on the destination endpoint.

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered and will generate a View Group response
containing the group name (see Section 8.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 8.6.3)

teZCL_Status
eCLD_GroupsCommandViewGroupRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Groups_ViewGroupRequestPayload
 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 133

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
134 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_GroupsCommandGetGroupMembershipRequestSend

Description

This function sends a Get Group Membership command to inquire whether the target
endpoint is a member of any of the groups specified in a list contained in the
command payload.

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered and will generate a Get Group Membership
response containing the required information (see Section 8.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 8.6.3)

teZCL_Status
eCLD_GroupsCommandGetGroupMembershipRequestSend

(uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,

tsCLD_Groups_GetGroupMembershipRequestPayload
 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 135

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
136 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_GroupsCommandRemoveGroupRequestSend

Description

This function sends a Remove Group command to request that the target device
deletes membership of the destination endpoint(s) from a particular group - that is,
remove the endpoint(s) from the group’s entry in the Group table on the device and,
if no other endpoints remain in the group, remove the group from the table.

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered. If the group becomes empty following the
deletion(s), the device will remove the group ID and group name from its Group table.
It will then generate an appropriate Remove Group response indicating success or
failure (see Section 8.6.4).

If the target endpoint belongs to a scene associated with the group to be removed
(requiring the Scenes cluster - see Chapter 9), the endpoint will also be removed
from this scene as a result of this function call - that is, the relevant scene entry will
be deleted from the Scene table on the target device.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId The number of the endpoint on the remote node
to which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP.

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 8.6.3)

teZCL_Status
eCLD_GroupsCommandRemoveGroupRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,

tsCLD_Groups_RemoveGroupRequestPayload
 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 137

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
138 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_GroupsCommandRemoveAllGroupsRequestSend

Description

This function sends a Remove All Groups command to request that the target device
removes all group memberships of the destination endpoint(s) - that is, remove the
endpoint(s) from all group entries in the Group table on the device and, if no other
endpoints remain in a group, remove the group from the table.

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered. If a group becomes empty following the
deletion(s), the device will remove the group ID and group name from its Group table.

If the target endpoint belongs to scenes associated with the groups to be removed
(requiring the Scenes cluster - see Chapter 9), the endpoint will also be removed
from these scenes as a result of this function call - that is, the relevant scene entries
will be deleted from the Scene table on the target device.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId The number of the endpoint on the remote node
to which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP.

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_GroupsCommandRemoveAllGroupsRequestSend
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 139

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
140 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend

Description

This function sends an Add Group If Identifying command to a remote device,
requesting that the specified endpoint(s) on the target device be added to a particular
group on the condition that the remote device is currently identifying itself. The group
ID/address and name (if supported) are specified in the payload of the message, and
must be added to the Group table on the target node along with the associated
endpoint number(s). The identifying functionality is controlled using the Identify
cluster (see Chapter 7).

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered and will then check whether the device is
currently identifying itself. If so, the device will (if possible) add the group ID and
group name to its Group table. If the device it not currently identifying itself then no
action will be taken.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 8.6.3)

teZCL_Status
eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend

(uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_Groups_AddGroupRequestPayload
 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 141

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
142 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
8.6 Structures

8.6.1 Custom Data Structure

The Groups cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct

{

 DLIST lGroupsAllocList;

 DLIST lGroupsDeAllocList;

 bool bIdentifying;

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_GroupsCallBackMessage sCallBackMessage;

#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

 tsCLD_GroupTableEntry
 asGroupTableEntry[CLD_GROUPS_MAX_NUMBER_OF_GROUPS];

#endif

} tsCLD_GroupsCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

However, the structure tsCLD_GroupTableEntry used for the Group table entries
is shown in Section 8.6.2.

8.6.2 Group Table Entry

The following structure contains a Group table entry.

typedef struct

{

 DNODE dllGroupNode;

 uint16 u16GroupId;

 uint8 au8GroupName[CLD_GROUPS_MAX_GROUP_NAME_LENGTH + 1];

} tsCLD_GroupTableEntry;

The fields are for internal use and no knowledge of them is required.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 143

Chapter 8
Groups Cluster

8.6.3 Custom Command Payloads

The following structures contain the payloads for the Groups cluster custom
commands.

Add Group Request Payload

typedef struct

{

 zuint16 u16GroupId;

 tsZCL_CharacterString sGroupName;

} tsCLD_Groups_AddGroupRequestPayload;

where:

 u16GroupId is the ID/address of the group to which the endpoint(s) must be
added

 sGroupName is the name of the group to which the endpoint(s) must be added

View Group Request Payload

typedef struct

{

 zuint16 u16GroupId;

} tsCLD_Groups_ViewGroupRequestPayload;

where u16GroupId is the ID/address of the group whose name is required

Get Group Membership Request Payload

typedef struct

{

 zuint8 u8GroupCount;

 zint16 *pi16GroupList;

} tsCLD_Groups_GetGroupMembershipRequestPayload;

where:

 u8GroupCount is the number of groups in the list of the next field

 pi16GroupList is a pointer to a list of groups whose memberships are being
queried, where each group is represented by its group ID/address
144 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Remove Group Request Payload

typedef struct

{

 zuint16 u16GroupId;

} tsCLD_Groups_RemoveGroupRequestPayload;

where u16GroupId is the ID/address of the group from which the endpoint(s) must be
removed

8.6.4 Custom Command Responses

The Groups cluster generates responses to certain custom commands. The
responses which contain payloads are detailed below:

Add Group Response Payload

typedef struct

{

 zenum8 eStatus;

 zuint16 u16GroupId;

} tsCLD_Groups_AddGroupResponsePayload;

where:

 eStatus is the status (success or failure) of the requested group addition

 u16GroupId is the ID/address of the group to which endpoint(s) were added

View Group Response Payload

typedef struct

{

 zenum8 eStatus;

 zuint16 u16GroupId;

 tsZCL_CharacterString sGroupName;

} tsCLD_Groups_ViewGroupResponsePayload;

where:

 eStatus is the status (success or failure) of the requested operation

 u16GroupId is the ID/address of the group whose name was requested

 sGroupName is the returned name of the specified group
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 145

Chapter 8
Groups Cluster

Get Group Membership Response Payload

typedef struct

{

 zuint8 u8Capacity;

 zuint8 u8GroupCount;

 zint16 *pi16GroupList;

} tsCLD_Groups_GetGroupMembershipResponsePayload;

where:

 u8Capacity is the capacity of the device’s Group table to receive more groups
- that is, the number of groups that may be added (special values: 0xFE means
at least one more group may be added, a higher value means that the table’s
remaining capacity is unknown)

 u8GroupCount is the number of groups in the list of the next field

 pi16GroupList is a pointer to the returned list of groups from those queried
that exist on the device, where each group is represented by its group ID/
address

Remove Group Response Payload

typedef struct

{

 zenum8 eStatus;

 zuint16 u16GroupId;

} tsCLD_Groups_RemoveGroupResponsePayload;

where:

 eStatus is the status (success or failure) of the requested group modification

 u16GroupId is the ID/address of the group from which endpoint(s) were
removed

8.7 Enumerations

8.7.1 teCLD_Groups_ClusterID

The following structure contains the enumeration used to identify the attribute of the
Groups cluster.

typedef enum

{

 E_CLD_GROUPS_ATTR_ID_NAME_SUPPORT = 0x0000 /* Mandatory */

} teCLD_Groups_ClusterID;
146 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
8.8 Compile-Time Options

To enable the Groups cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:

#define CLD_GROUPS

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define GROUPS_CLIENT

#define GROUPS_SERVER

The Groups cluster contains macros that may be optionally specified at compile-time
by adding one or both of the following lines to the zcl_options.h file.

Add this line to set the size used for the group addressing table in the .zpscfg file:

#define CLD_GROUPS_MAX_NUMBER_OF_GROUPS (8)

Add this line to configure the maximum length of the group name:

#define CLD_GROUPS_MAX_GROUP_NAME_LENGTH (16)
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 147

Chapter 8
Groups Cluster

148 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
9. Scenes Cluster

This chapter describes the Scenes cluster which is defined in the ZCL.

The Scenes cluster has a Cluster ID of 0x0005.

9.1 Overview

A scene is a set of stored attribute values for one or more cluster instances, where
these cluster instances may exist on endpoints on one or more devices.

The Scenes cluster allows standard values for these attributes to be set and retrieved.
Thus, the cluster can be used to put the network or part of the network into a pre-
defined mode (e.g. Night or Day mode for a lighting network in a Home Automation
system). These pre-defined scenes can be used as a basis for ‘mood lighting’. A
Scenes cluster instance must be created on each endpoint which contains a cluster
that is part of a scene.

A scene is often associated with a group (which collects together a set of endpoints
over one or more devices) - groups are described in Chapter 8. A scene may,
however, be used without a group.

If a cluster on a device is used in a scene, an entry for the scene must be contained
in the Scene table on the device. A Scene table entry includes the scene ID, the group
ID associated with the scene (0x0000 if there is no associated group), the scene
transition time (amount of time to switch to the scene) and the attribute settings for the
clusters on the device. The scene ID must be unique within the group with which the
scene is associated.

To use the functionality of this cluster, you must include the file Scenes.h in your
application and enable the cluster by defining CLD_SCENES in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

 The cluster server is able to receive commands to access scenes.

 The cluster client is able to send commands to the server to request read or
write access to scenes.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Scenes cluster are fully detailed in Section 9.9.

Note: When the Scenes cluster is used on an endpoint,
a Groups cluster instance must always be created on
the same endpoint, even if a group is not used for the
scene.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 149

Chapter 9
Scenes Cluster

9.2 Scenes Cluster Structure and Attributes

The structure definition for the Scenes cluster is:

typedef struct

{

 zuint8 u8SceneCount;

 zuint8 u8CurrentScene;

 zuint16 u16CurrentGroup;

 zbool bSceneValid;

 zuint8 u8NameSupport;

#ifdef CLD_SCENES_ATTR_LAST_CONFIGURED_BY

 zieeeaddress u64LastConfiguredBy

#endif

} tsCLD_Scenes;

where:

 u8SceneCount is the number of scenes currently in the Scene table

 u8CurrentScene is the scene ID of the last scene invoked on the device

 u16CurrentGroup is the group ID of the group associated with the last scene
invoked (or 0x0000 if this scene is not associated with a group)

 bSceneValid indicates whether the current state of the device corresponds to
the values of the CurrentScene and CurrentGroup attributes (TRUE if they
do, FALSE if they do not)

 u8NameSupport indicates whether scene names are supported - if the most
significant bit is 1 then they are supported, otherwise they are not supported

 u64LastConfiguredBy is the 64-bit IEEE address of the device that last
configured the Scene table (0xFFFFFFFFFFFFFFFF indicates that the address
is unknown or the table has not been configured)

9.3 Initialisation

The function eCLD_ScenesCreateScenes() is used to create an instance of the
Scenes cluster. The function is generally called by the initialisation function for the
host device.
150 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
9.4 Sending Remote Commands

The NXP implementation of the ZCL provides functions for sending commands
between a Scenes cluster client and server. A command is sent from the client to one
or more endpoints on the server. Multiple endpoints can usually be targeted using
binding or group addressing.

9.4.1 Creating a Scene

In order to create a scene, an entry for the scene must be added to the Scene table
on every device that contains a cluster which is associated with the scene.

The function eCLD_ScenesCommandAddSceneRequestSend() can be used to
request that a scene is added to a Scene table on a remote device. A call to this
function can send a request to a single device or to multiple devices (using binding or
group addressing). The fields of the Scene table entry are specified in the payload of
the request.

In the case of the ZigBee Light Link profile, the enhanced function
eCLD_ScenesCommandEnhancedAddSceneRequestSend() must be used
instead, which allows the transition time for the scene to be set in units of tenths of a
second (rather than seconds).

Alternatively, a scene can be created by saving the current attribute settings of the
relevant clusters - in this way, the current state of the system (e.g. lighting levels in a
Home Automation system) can be captured as a scene and re-applied ‘at the touch of
a button’ when required. The current settings are stored as a scene in the Scene table
using the function eCLD_ScenesCommandStoreSceneRequestSend() which,
again, can send the request to a single device or multiple devices. If a Scene table
entry already exists with the same scene ID and group ID, the existing cluster settings
in the entry are overwritten with the new ‘captured’ settings.

Note: In the case of the ZigBee Light Link profile,
commands can also be issued for operations on the
local node, as described in Section 9.5.

Note: This operation of capturing the current system
state as a scene does not result in meaningful settings
for the transition time and scene name fields of the
Scene table entry. If non-null values are required for
these fields, the table entry should be created in
advance with the desired field values using
eCLD_ScenesCommandAddSceneRequestSend().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 151

Chapter 9
Scenes Cluster

9.4.2 Copying a Scene (ZLL Only)

In the case of the ZigBee Light Link profile, scene settings can be copied from one
scene to another scene on the same remote endpoint using the function
eCLD_ScenesCommandCopySceneSceneRequestSend(). This function allows
the settings from an existing scene with a specified source scene ID and associated
group ID to be copied to a new scene with a specified destination scene ID and
associated group ID.

The above function also allows all scenes associated with particular group ID to be
copied to another group ID. In this case, the original scene IDs are maintained but are
associated with the new group ID (any specified source and destination scene IDs are
ignored). Thus, the same scene IDs will be associated with two different group IDs.

9.4.3 Applying a Scene

The cluster settings of a scene stored in the Scene table can be retrieved and applied
to the system by calling eCLD_ScenesCommandRecallSceneRequestSend().
Again, this function can send a request to a single device or to multiple devices (using
binding or group addressing).

If the required scene does not contain any settings for a particular cluster or there are
some missing attribute values for a cluster, these attribute values will remain
unchanged in the implementation of the cluster - that is, the corresponding parts of the
system will not change their states.

9.4.4 Deleting a Scene

Two functions are provided for removing scenes from the system:

 eCLD_ScenesCommandRemoveSceneRequestSend() can be used to
request the removal of the destination endpoint from a particular scene - that is,
to remove the scene from the Scene table on the target device.

 eCLD_ScenesCommandRemoveAllScenesRequestSend() can be used to
request that the target device removes scenes associated with a particular
group ID/address - that is, remove all Scene table entries relating to this group
ID. Specifying a group ID of 0x0000 will remove all scenes not associated with
a group.

Note: If an entry corresponding to the target scene ID
and group ID already exists in the Scene table on the
endpoint, the entry settings will be overwritten with the
copied settings. Otherwise, a new Scene table entry will
be created with these settings.
152 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
9.4.5 Obtaining Information about Scenes

The following functions are provided for obtaining information about scenes:

 eCLD_ScenesCommandViewSceneRequestSend() can be used to request
information on a particular scene on the destination endpoint. Only one device
may be targeted by this function. The target device returns a response
containing the relevant information.

In the case of the ZigBee Light Link profile, the enhanced function
eCLD_ScenesCommandEnhancedViewSceneRequestSend() must be used
instead, which allows the transition time for the scene to be obtained in units of
tenths of a second (rather than seconds).

 eCLD_ScenesCommandGetSceneMembershipRequestSend() can be used
to discover which scenes are associated with a particular group on a device.
The request can be sent to a single device or to multiple devices. The target
device returns a response containing the relevant information (in the case of
multiple target devices, no response is returned from a device that does not
contain a scene associated with the specified group ID). In this way, the
function can be used to determine the unused scene IDs.

9.5 Issuing Local Commands

Some of the operations described in Section 9.4 that correspond to remote commands
can also be performed locally, as described below.

9.5.1 Creating a Scene

A scene can be created on the local node using either of the following functions:

 eCLD_ScenesAdd(): This function can be used to add a new scene to the
Scene table on the specified local endpoint. A scene ID and an associated
group ID must be specified (the latter must be set to 0x0000 if there is no group
association). If a scene with these IDs already exists in the table, the existing
entry will be overwritten.

 eCLD_ScenesStore(): This function can be used to save the currently
implemented attribute values on the device to a scene in the Scene table on the
specified local endpoint. A scene ID and an associated group ID must be
specified (the latter must be set to 0x0000 if there is no group association). If a
scene with these IDs already exists in the table, the existing entry will be
overwritten with the exception of the transition time and scene name fields.

9.5.2 Applying a Scene

An existing scene can be applied on the local node using the function
eCLD_ScenesRecall(). This function reads the stored attribute values for the
specified scene from the local Scene table and implements them on the device. The
values of any attributes that are not included in the scene will remain unchanged.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 153

Chapter 9
Scenes Cluster

9.6 Functions

The following Scenes cluster functions are provided in the NXP implementation of the
ZCL:

Function Page

eCLD_ScenesCreateScenes 155

eCLD_ScenesAdd 157

eCLD_ScenesStore 158

eCLD_ScenesRecall 159

eCLD_ScenesCommandAddSceneRequestSend 160

eCLD_ScenesCommandViewSceneRequestSend 162

eCLD_ScenesCommandRemoveSceneRequestSend 164

eCLD_ScenesCommandRemoveAllScenesRequestSend 166

eCLD_ScenesCommandStoreSceneRequestSend 168

eCLD_ScenesCommandRecallSceneRequestSend 170

eCLD_ScenesCommandGetSceneMembershipRequestSend 172

eCLD_ScenesCommandEnhancedAddSceneRequestSend 174

eCLD_ScenesCommandEnhancedViewSceneRequestSend 176

eCLD_ScenesCommandCopySceneSceneRequestSend 178
154 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ScenesCreateScenes

Description

This function creates an instance of the Scenes cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Scenes cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be the first Scenes cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

On calling this function for the first time, a ‘global scene’ entry is created/reserved in
the Scene table. On subsequent calls (e.g. following a power-cycle or on waking from
sleep), if the scene data is recovered by the application from non-volatile memory
before the function is called then there will be no reinitialisation of the scene data.
Note that removing all groups from the device will also remove the global scene entry
(along with other scene entries) from the Scene table.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Scenes cluster,
which can be obtained by using the macro
CLD_SCENES_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppScenesClusterAttributeControlBits[CLD_SCENES_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status eCLD_ScenesCreateScenes(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,
 tsCLD_ScenesCustomDataStructure
 *psCustomDataStructure,

tsZCL_EndPointDefinition *psEndPointDefinition);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 155

Chapter 9
Scenes Cluster

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Scenes cluster. This
parameter can refer to a pre-filled structure called
sCLD_Scenes which is provided in the Scenes.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Scenes which defines the
attributes of Scenes cluster. The function will initialise
the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above)

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 9.7.1)

psEndPointDefinition Pointer to the ZCL endpoint definition structure for the
application (see Section 34.1.1)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
156 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ScenesAdd

Description

This function adds a new scene on the specified local endpoint - that is, adds an entry
to the Scenes table on the endpoint. The group ID associated with the scene must
also be specified (or set to 0x0000 if there is no associated group).

If a scene with the specified scene ID and group ID already exists in the table, the
existing entry will be overwritten (i.e. all previous scene data in this entry will be lost).

Parameters

u8SourceEndPointId Number of local endpoint on which Scene table entry is
to be added

u16GroupId 16-bit group ID/address of associated group
(or 0x0000 if no group)

u8SceneId 8-bit scene ID of new scene

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

teZCL_Status eCLD_ScenesAdd(
uint8 u8SourceEndPointId,
uint16 u16GroupId,
uint8 u8SceneId);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 157

Chapter 9
Scenes Cluster

eCLD_ScenesStore

Description

This function adds a new scene on the specified local endpoint, based on the current
cluster attribute values of the device - that is, saves the current attribute values of the
device to a new entry of the Scenes table on the endpoint. The group ID associated
with the scene must also be specified (or set to 0x0000 if there is no associated
group).

If a scene with the specified scene ID and group ID already exists in the table, the
existing entry will be overwritten (i.e. previous scene data in this entry will be lost),
with the exception of the transition time field and the scene name field - these fields
will be left unchanged.

Parameters

u8SourceEndPointId Number of local endpoint on which Scene table entry is
to be added

u16GroupId 16-bit group ID/address of associated group
(or 0x0000 if no group)

u8SceneId 8-bit scene ID of scene

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

teZCL_Status eCLD_ScenesStore(
uint8 u8SourceEndPointId,
uint16 u16GroupId,
uint8 u8SceneId);
158 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ScenesRecall

Description

This function obtains the attribute values (from the extension fields) of the scene with
the specified Scene ID and Group ID on the specified (local) endpoint, and sets the
corresponding cluster attributes on the device to these values. Thus, the function
reads the stored attribute values for a scene and implements them on the device.

Note that the values of any cluster attributes that are not included in the scene will
remain unchanged.

Parameters

u8SourceEndPointId Number of local endpoint containing Scene table to be
read

u16GroupId 16-bit group ID/address of associated group
(or 0x0000 if no group)

u8SceneId 8-bit scene ID of scene to be read

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

teZCL_Status eCLD_ScenesRecall(
uint8 u8SourceEndPointId,
uint16 u16GroupId,
uint8 u8SceneId);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 159

Chapter 9
Scenes Cluster

eCLD_ScenesCommandAddSceneRequestSend

Description

This function sends an Add Scene command to a remote device in order to add a
scene on the specified endpoint - that is, to add an entry to the Scene table on the
endpoint. The scene ID is specified in the payload of the message, along with a
duration for the scene among other values (see Section 9.7.2). The scene may also
be associated with a particular group.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and, if possible, add the scene to its Scene
table before sending an Add Scene response indicating success or failure (see
Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandAddSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesAddSceneRequestPayload *psPayload);
160 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 161

Chapter 9
Scenes Cluster

eCLD_ScenesCommandViewSceneRequestSend

Description

This function sends a View Scene command to a remote device, requesting
information on a particular scene on the destination endpoint. The relevant scene ID
is specified in the command payload. Note that this command can only be sent to an
individual device/endpoint and not to a group address.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and will generate a View Scene response
containing the relevant information (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address type
eZCL_AMBOUND

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandViewSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesViewSceneRequestPayload
 *psPayload);
162 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 163

Chapter 9
Scenes Cluster

eCLD_ScenesCommandRemoveSceneRequestSend

Description

This function sends a Remove Scene command to request that the target device
deletes membership of the destination endpoint from a particular scene - that is,
remove the scene from the Scene table. The relevant scene ID is specified in the
payload of the message. The scene may also be associated with a particular group.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. The device will then delete the scene in the
Scene table. If the request was sent to a single device (rather than to a group
address), it will then generate an appropriate Remove Scene response indicating
success or failure (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandRemoveSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,

tsCLD_ScenesRemoveSceneRequestPayload
 *psPayload);
164 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 165

Chapter 9
Scenes Cluster

eCLD_ScenesCommandRemoveAllScenesRequestSend

Description

This function sends a Remove All Scenes command to request that the target device
deletes all entries corresponding to the specified group ID/address in its Scene table.
The relevant group ID is specified in the payload of the message. Note that specifying
a group ID of 0x0000 will remove all scenes not associated with a group.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. The device will then delete the scenes in
the Scene table. If the request was sent to a single device (rather than to a group
address), it will then generate an appropriate Remove All Scenes response
indicating success or failure (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandRemoveAllScenesRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesRemoveAllScenesRequestPayload
 *psPayload);
166 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 167

Chapter 9
Scenes Cluster

eCLD_ScenesCommandStoreSceneRequestSend

Description

This function sends a Store Scene command to request that the target device saves
the current settings of all other clusters on the device as a scene - that is, adds a
scene containing the current cluster settings to the Scene table. The entry will be
stored using the scene ID and group ID specified in the payload of the command. If
an entry already exists with these IDs, its existing cluster settings will be overwritten
with the new settings.

Note that the transition time and scene name fields are not set by this command (or
for a new entry, they are set to null values). When using this command to create a
new scene which requires particular settings for these fields, the scene entry must
be created in advance using the Add Group command, at which stage these fields
should be pre-configured.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. If the request was sent to a single device
(rather than to a group address), it will then generate an appropriate Store Scene
response indicating success or failure (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_ScenesCommandStoreSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesStoreSceneRequestPayload
 *psPayload);
168 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 169

Chapter 9
Scenes Cluster

eCLD_ScenesCommandRecallSceneRequestSend

Description

This function sends a Recall Scene command to request that the target device
retrieves and implements the settings of the specified scene - that is, reads the scene
settings from the Scene table and applies them to the other clusters on the device.
The required scene ID and group ID are specified in the payload of the command.

Note that if the specified scene entry does not contain any settings for a particular
cluster or there are some missing attribute values for a cluster, these attribute values
will remain unchanged in the implementation of the cluster.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. If the request was sent to a single device
(rather than to a group address), it will then generate an appropriate Recall Scene
response indicating success or failure (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandRecallSceneRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesRecallSceneRequestPayload
 *psPayload);
170 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 171

Chapter 9
Scenes Cluster

eCLD_ScenesCommandGetSceneMembershipRequestSend

Description

This function sends a Get Scene Membership to inquire which scenes are associated
with a specified group ID on a device. The relevant group ID is specified in the
payload of the command.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. If the request was sent to a single device
(rather than to a group address), it will then generate an appropriate Get Scene
Membership response indicating success or failure and, if successful, the response
will contain a list of the scene IDs associated with the given group ID (see Section
9.7.3). If the original command is sent to a group address, an individual device will
only respond if it has scenes associated with the group ID in the command payload
(so will only respond in the case of success).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandGetSceneMembershipRequestSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 tsCLD_ScenesGetSceneMembershipRequestPayload
 *psPayload);
172 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 173

Chapter 9
Scenes Cluster

eCLD_ScenesCommandEnhancedAddSceneRequestSend

Description

This function sends an Enhanced Add Scene command to a remote ZLL device in
order to add a scene on the specified endpoint - that is, to add an entry to the Scene
table on the endpoint. The function can be used only with the ZLL profile and allows
a finer transition time (in tenths of a second rather than seconds) when applying the
scene. The scene ID is specified in the payload of the message, along with a duration
for the scene and the transition time, among other values (see Section 9.7.2). The
scene may also be associated with a particular group.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and, if possible, add the scene to its Scene
table before sending an Enhanced Add Scene response indicating success or failure
(see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandEnhancedAddSceneRequestSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesEnhancedAddSceneRequestPayload

 *psPayload);
174 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 175

Chapter 9
Scenes Cluster

eCLD_ScenesCommandEnhancedViewSceneRequestSend

Description

This function sends an Enhanced View Scene command to a remote ZLL device,
requesting information on a particular scene on the destination endpoint. The
function can be used only with the ZLL profile and the returned information includes
the finer transition time available with ZLL. The relevant scene ID is specified in the
command payload. Note that this command can only be sent to an individual device/
endpoint and not to a group address.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and will generate a Enhanced View Scene
response containing the relevant information (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address type
eZCL_AMBOUND

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandEnhancedViewSceneRequestSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesEnhancedViewSceneRequestPayload

 *psPayload);
176 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 177

Chapter 9
Scenes Cluster

eCLD_ScenesCommandCopySceneSceneRequestSend

Description

This function sends a Copy Scene command to a remote ZLL device, requesting that
the scene settings from one scene ID/group ID combination are copied to another
scene ID/group ID combination on the target endpoint. The function can be used only
with the ZLL profile. The relevant source and destination scene ID/group ID
combinations are specified in the command payload.

Note that:

 If the destinaton scene ID/group ID already exists on the target endpoint, the existing
scene will be overwritten with the new settings.

 The message payload contains a ‘copy all scenes’ bit which, if set to ‘1’, instructs the
destination server to copy all scenes in the specified source group to scenes with the
same scene IDs in the destination group (in this case, the source and destination scene
IDs in the payload are ignored).

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and, if the original request was unicast, will
generate a Copy Scene response (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address type
eZCL_AMBOUND

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

teZCL_Status
eCLD_ScenesCommandCopySceneSceneRequestSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesCopySceneRequestPayload *psPayload);
178 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 179

Chapter 9
Scenes Cluster

9.7 Structures

9.7.1 Custom Data Structure

The Scenes cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct

{

 DLIST lScenesAllocList;

 DLIST lScenesDeAllocList;

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_ScenesCallBackMessage sCallBackMessage;

 tsCLD_ScenesTableEntry
 asScenesTableEntry[CLD_SCENES_MAX_NUMBER_OF_SCENES];

} tsCLD_ScenesCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

9.7.2 Custom Command Payloads

The following structures contain the payloads for the Scenes cluster custom
commands.

Add Scene Request Payload

typedef struct

{

 uint16 u16GroupId;

 uint8 u8SceneId;

 uint16 u16TransitionTime;

 tsZCL_CharacterString sSceneName;

 tsCLD_ScenesExtensionField sExtensionField;

} tsCLD_ScenesAddSceneRequestPayload;

where:

 u16GroupId is the group ID with which the scene is associated (0x0000 if there
is no association with a group)

 u8SceneId is the ID of the scene to be added to the Scene table (the Scene ID
must be unique within the group associated with the scene)

 u16TransitionTime is the amount of time, in seconds, that the device will take
to switch to this scene
180 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 sSceneName is an optional character string (of up to 16 characters)
representing the name of the scene

 sExtensionField is a structure containing the attribute values of the clusters
to which the scene relates

View Scene Request Payload

typedef struct

{

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesViewSceneRequestPayload;

where:

 u16GroupId is the group ID with which the desired scene is associated

 u8SceneId is the scene ID of the scene to be viewed

Remove Scene Request Payload

typedef struct

{

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesRemoveSceneRequestPayload;

where:

 u16GroupId is the group ID with which the relevant scene is associated

 u8SceneId is the scene ID of the scene to be deleted from the Scene table

Remove All Scenes Request Payload

typedef struct

{

 uint16 u16GroupId;

} tsCLD_ScenesRemoveAllScenesRequestPayload;

where u16GroupId is the group ID for which all scenes are to be deleted.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 181

Chapter 9
Scenes Cluster

Store Scene Request Payload

typedef struct

{

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesStoreSceneRequestPayload;

where:

 u16GroupId is the group ID with which the relevant scene is associated

 u8SceneId is the scene ID of the scene in which the captured cluster settings
are to be stored

Recall Scene Request Payload

typedef struct

{

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesRecallSceneRequestPayload;

where:

 u16GroupId is the group ID with which the relevant scene is associated

 u8SceneId is the scene ID of the scene from which cluster settings are to be
retrieved and applied

Get Scene Membership Request Payload

typedef struct

{

 uint16 u16GroupId;

} tsCLD_ScenesGetSceneMembershipRequestPayload;

where u16GroupId is the group ID for which associated scenes are required.

Enhanced Add Scene Request Payload (ZLL Only)

typedef struct

{

 uint16 u16GroupId;

 uint8 u8SceneId;

 uint16 u16TransitionTime100ms;

 tsZCL_CharacterString sSceneName;

 tsCLD_ScenesExtensionField sExtensionField;

} tsCLD_ScenesEnhancedAddSceneRequestPayload;
182 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
where:

 u16GroupId is the group ID with which the scene is associated (0x0000 if there
is no association with a group)

 u8SceneId is the ID of the scene to be added to the Scene table (the Scene ID
must be unique within the group associated with the scene)

 u16TransitionTime100ms is the amount of time, in tenths of a second, that
the ZLL device will take to switch to this scene

 sSceneName is an optional character string (of up to 16 characters)
representing the name of the scene

 sExtensionField is a structure containing the attribute values of the clusters
to which the scene relates

View Scene Request Payload (ZLL Only)

typedef struct

{

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesEnhancedViewSceneRequestPayload;

where:

 u16GroupId is the group ID with which the desired scene is associated

 u8SceneId is the scene ID of the scene to be viewed

Copy Scene Request Payload (ZLL Only)

typedef struct

{

 uint8 u8Mode;

 uint16 u16FromGroupId;

 uint8 u8FromSceneId;

 uint16 u16ToGroupId;

 uint8 u8ToSceneId;

} tsCLD_ScenesCopySceneRequestPayload;

where:

 u8Mode is a bitmap indicating the required copying mode (only bit 0 is used):

 If bit 0 is set to ‘1’ then ‘copy all scenes’ mode will be used, in which all
scenes associated with the source group are duplicated for the destination
group (and the scene ID fields are ignored)

 If bit 0 is set to ‘0’ then a single scene will be copied

 u16FromGroupId is the source group ID

 u8FromSceneId is the source scene ID (ignored for ‘copy all scenes’ mode)

 u16ToGroupId is the destination group ID

 u8ToSceneId is the destination scene ID (ignored for ‘copy all scenes’ mode)
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 183

Chapter 9
Scenes Cluster

9.7.3 Custom Command Responses

The Scenes cluster generates responses to certain custom commands. The
responses which contain payloads are detailed below:

Add Scene Response Payload

typedef struct

{

 zenum8 eStatus;

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesAddSceneResponsePayload;

where:

 eStatus is the outcome of the Add Scene command (success or invalid)

 u16GroupId is the group ID with which the added scene is associated

 u8SceneId is the scene ID of the added scene

View Scene Response Payload

typedef struct

{

 zenum8 eStatus;

 uint16 u16GroupId;

 uint8 u8SceneId;

 uint16 u16TransitionTime;

 tsZCL_CharacterString sSceneName;

 tsCLD_ScenesExtensionField sExtensionField;

} tsCLD_ScenesViewSceneResponsePayload;

where:

 eStatus is the outcome of the View Scene command (success or invalid)

 u16GroupId is the group ID with which the viewed scene is associated

 u8SceneId is the scene ID of the viewed scene

 u16TransitionTime is the amount of time, in seconds, that the device will take
to switch to the viewed scene

 sSceneName is an optional character string (of up to 16 characters)
representing the name of the viewed scene

 sExtensionField is a structure containing the attribute values of the clusters
to which the viewed scene relates
184 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Remove Scene Response Payload

typedef struct

{

 zenum8 eStatus;

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesRemoveSceneResponsePayload;

where:

 eStatus is the outcome of the Remove Scene command (success or invalid)

 u16GroupId is the group ID with which the removed scene is associated

 u8SceneId is the scene ID of the removed scene

Remove All Scenes Response Payload

typedef struct

{

 zenum8 eStatus;

 uint16 u16GroupId;

} tsCLD_ScenesRemoveAllScenesResponsePayload;

where:

 eStatus is the outcome of the Remove All Scenes command (success or
invalid)

 u16GroupId is the group ID with which the removed scenes are associated

Store Scene Response Payload

typedef struct

{

 zenum8 eStatus;

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesStoreSceneResponsePayload;

where:

 eStatus is the outcome of the Store Scene command (success or invalid)

 u16GroupId is the group ID with which the stored scene is associated

 u8SceneId is the scene ID of the stored scene
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 185

Chapter 9
Scenes Cluster

Get Scene Membership Response Payload

typedef struct

{

 zenum8 eStatus;

 uint8 u8Capacity;

 uint16 u16GroupId;

 uint8 u8SceneCount;

 uint8 *pu8SceneList;

} tsCLD_ScenesGetSceneMembershipResponsePayload;

 where:

 eStatus is the outcome of the Get Scene Membership command (success or
invalid)

 u8Capacity is the capacity of the device’s Scene table to receive more scenes
- that is, the number of scenes that may be added (special values: 0xFE means
at least one more scene may be added, a higher value means that the table’s
remaining capacity is unknown)

 u16GroupId is the group ID to which the query relates

 u8SceneCount is the number of scenes in the list of the next field

 pu8SceneList is a pointer to the returned list of scenes from those queried that
exist on the device, where each scene is represented by its scene ID

Enhanced Add Scene Response Payload (ZLL Only)

typedef struct

{

 zenum8 eStatus;

 uint16 u16GroupId;

 uint8 u8SceneId;

} tsCLD_ScenesEnhancedAddSceneResponsePayload;

where:

 eStatus is the outcome of the Enhanced Add Scene command (success or
invalid)

 u16GroupId is the group ID with which the added scene is associated

 u8SceneId is the scene ID of the added scene
186 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Enhanced View Scene Response Payload (ZLL Only)

typedef struct

{

 zenum8 eStatus;

 uint16 u16GroupId;

 uint8 u8SceneId;

 uint16 u16TransitionTime;

 tsZCL_CharacterString sSceneName;

 tsCLD_ScenesExtensionField sExtensionField;

} tsCLD_ScenesEnhancedViewSceneResponsePayload;

where:

 eStatus is the outcome of the Enhanced View Scene command (success or
invalid)

 u16GroupId is the group ID with which the viewed scene is associated

 u8SceneId is the scene ID of the viewed scene

 u16TransitionTime is the amount of time, in seconds, that the device will take
to switch to the viewed scene

 sSceneName is an optional character string (of up to 16 characters)
representing the name of the viewed scene

 sExtensionField is a structure containing the attribute values of the clusters
to which the viewed scene relates

Copy Scene Response Payload (ZLL Only)

typedef struct

{

 uint8 u8Status;

 uint16 u16FromGroupId;

 uint8 u8FromSceneId;

} tsCLD_ScenesCopySceneResponsePayload;

where:

 u8Status is the outcome of the Copy Scene command (success, invalid scene
or insufficient space for new scene)

 u16FromGroupId was the source group ID for the copy

 u8FromSceneId was the source scene ID for the copy
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 187

Chapter 9
Scenes Cluster

9.8 Enumerations

9.8.1 teCLD_Scenes_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Scenes cluster.

typedef enum

{

 E_CLD_SCENES_ATTR_ID_SCENE_COUNT = 0x0000, /* Mandatory */

 E_CLD_SCENES_ATTR_ID_CURRENT_SCENE, /* Mandatory */

 E_CLD_SCENES_ATTR_ID_CURRENT_GROUP, /* Mandatory */

 E_CLD_SCENES_ATTR_ID_SCENE_VALID, /* Mandatory */

 E_CLD_SCENES_ATTR_ID_NAME_SUPPORT, /* Mandatory */

 E_CLD_SCENES_ATTR_ID_LAST_CONFIGURED_BY /* Optional */

} teCLD_Scenes_ClusterID;

9.9 Compile-Time Options

To enable the Scenes cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:

#define CLD_SCENES

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define SCENES_CLIENT

#define SCENES_SERVER

The Scenes cluster contains macros that may be optionally specified at compile-time
by adding some or all the following lines to the zcl_options.h file.

Add this line to enable the optional Last Configured By attribute:

#define CLD_SCENES_ATTR_LAST_CONFIGURED_BY

Add this line to configure the maximum length of the Scene Name storage:

#define CLD_SCENES_MAX_SCENE_NAME_LENGTH (16)

Add this line to configure the maximum number of scenes:

#define CLD_SCENES_MAX_NUMBER_OF_SCENES (16)

Add this line to configure the maximum number of bytes available for scene storage:

#define CLD_SCENES_MAX_SCENE_STORAGE_BYTES (20)
188 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Further, enhanced functionality is available for the ZigBee Light Link (ZLL) profile and
must be enabled as a compile-time option - for more information, refer to the ZigBee
Light Link User Guide (JN-UG-3091).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 189

Chapter 9
Scenes Cluster

190 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
10. On/Off Cluster

This chapter describes the On/Off cluster which is defined in the ZCL.

The On/Off cluster has a Cluster ID of 0x0006.

10.1 Overview

The On/Off cluster allows a device to be put into the ‘on’ and ‘off’ states, or toggled
between the two states. In the case of the ZigBee Light Link profile, the cluster also
provides the following enhanced functionality:

 When switching off light(s) with an effect, saves the last light (attribute) settings
to a global scene, ready to be re-used for the next switch-on from the global
scene - see Section 10.4.2 and Section 10.5

 Allows light(s) to be switched on for a timed period (and then automatically
switched off) - see Section 10.4.3

To use the functionality of this cluster, you must include the file OnOff.h in your
application and enable the cluster by defining CLD_ONOFF in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

 The cluster server is able to receive commands to change the on/off state of
the local device.

 The cluster client is able to send commands to the server to request a change
to the on/off state of the remote device.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the On/Off cluster are fully detailed in Section 10.9.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 191

Chapter 10
On/Off Cluster

10.2 On/Off Cluster Structure and Attribute

The structure definition for the On/Off cluster is:

typedef struct

{

 zbool bOnOff;

 #ifdef CLD_ONOFF_ATTR_ID_ON_CONFIGURABLE_DURATION

 zuint16 u16OnConfigurableDuration;

 #endif

 #ifdef CLD_ONOFF_ATTR_ID_DURATION_UNIT_OF_MEASUREMENT

 zenum8 eDurationUnitOfMeasurement;

 #endif

 #ifdef CLD_ONOFF_ATTR_ID_MAX_DURATION

 zuint16 u16MaxDuration;

 #endif

 #ifdef CLD_ONOFF_ATTR_GLOBAL_SCENE_CONTROL

 zbool bGlobalSceneControl;

 #endif

 #ifdef CLD_ONOFF_ATTR_ON_TIME

 zuint16 u16OnTime;

 #endif

 #ifdef CLD_ONOFF_ATTR_OFF_WAIT_TIME

 zuint16 u16OffWaitTime;

 #endif

} tsCLD_OnOff;

where:

 bOnOff is the on/off state of the device (TRUE = on, FALSE = off)

 u16OnConfigurableDuration is an optional attribute indicating the time-
duration for which the ‘on’ state will be maintained before automatically
switching to the ‘off’ state after receiving an ‘On’ command. The unit of
measure for this time-duration is specified in the attribute
eDurationUnitOfMeasurement (below). The value must be less than or
equal to that of u16MaxDuration (below). The special values 0x0000 and
0xFFFF indicate that the device will remain in its current state on receiving the
192 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
command. This attribute provides a more flexible alternative to the Ontime
attribute (for ZLL)

 eDurationUnitOfMeasurement is an optional attribute specifying the unit of
measure for the ‘Duration’ attributes. The value indicates the power of 10
seconds, as follows:

 u16MaxDuration is an optional attribute indicating the maximum time-
duration for which the ‘on’ state can be maintained before automatically
switching to the ‘off’ state after receiving an ‘On’ command. The unit of
measure for this maximum time-duration is specified in the attribute
eDurationUnitOfMeasurement (above). This limit cannot be exceeded by
any other duration values, e.g. u16OnConfigurableDuration.

 bGlobalSceneControl is an optional ZLL attribute that is used with the
global scene - the value of this attribute determines whether to permit saving
the current light settings to the global scene:

 TRUE - Current light settings can be saved to the global scene

 FALSE - Current light settings cannot be saved to the global scene

 u16OnTime is an optional ZLL attribute used to store the time, in tenths of a
second, for which the lights will remain ‘on’ after a switch-on with ‘timed off’
(i.e. the time before starting the transition from the ‘on’ state to the ‘off’ state).
The special values 0x0000 and 0xFFFF indicate the lamp must be maintained
in the ‘on’ state indefinitely (no timed off)

 u16OffWaitTime is an optional ZLL attribute used to store the waiting time, in
tenths of a second, following a ‘timed off’ before the lights can be again
switched on with a ‘timed off’

Value Unit

0x00 109s

0x01 106s

0x02 103s

0x03 1s

0x04 10-3s

0x05 10-6s

0x06 109s

0x07 - 0xFF Reserved

Note: If the bGlobalSceneControl attribute and
global scene are to be used, the Scenes and Groups
clusters must also be enabled - see Chapter 9 and
Chapter 8.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 193

Chapter 10
On/Off Cluster

10.3 Initialisation

The function eCLD_OnOffCreateOnOff() is used to create an instance of the On/Off
cluster. The function is generally called by the initialisation function for the host device.

10.4 Sending Commands

The NXP implementation of the ZCL provides functions for sending commands
between an On/Off cluster client and server. A command is sent from the client to one
or more endpoints on the server. Multiple endpoints can usually be targeted using
binding or group addressing.

10.4.1 Switching On and Off

A remote device (supporting the On/Off cluster server) can be switched on, switched
off or toggled between the on and off states by calling the function
eCLD_OnOffCommandSend() on a cluster client. In the case of a toggle, if the
device is initially in the on state it will be switched off and if the device is initially in the
off state it will be switched on.

10.4.1.1 Timeout on the ‘On’ Command

On receiving an 'On' command, a timeout can be applied such that the 'on' state will
be maintained for a specified duration before automatically switching to the 'off' state.
This timeout is defined using the optional attributes u16OnConfigurableDuration
and eDurationUnitOfMeasurement. The timeout duration in seconds is given by:

u16OnConfigurableDuration * 10^(power from eDurationUnitOfMeasurement)

The attribute u16OnConfigurableDuration can be set locally or remotely, while
the attribute eDurationUnitOfMeasurement must be set locally. A maximum
timeout duration can be defined locally via the optional attribute u16MaxDuration,
which puts an upper limit on the value of u16OnConfigurableDuration.

The attribute u16OnConfigurableDuration can be set remotely using the
eZCL_SendWriteAttributesRequest() function. On receiving this write request, the
local ZCL will check that the requested duration is within the permissible range (see
Section 2.2.2.1) - if the request exceeds the maximum permitted value, the timeout
duration will be clipped to this maximum.

For full details of the above attributes, refer to Section 10.2.

Note: In the case of ZigBee Light Link, if the global
scene is to be used to remember light settings then
Scenes and Groups cluster instances must also be
created - see Chapter 9 and Chapter 8.
194 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
When an ‘On’ command is received, an E_ZCL_CBET_CLUSTER_CUSTOM event is
generated. The application is responsible for implementing the timeout described
above, if it is enabled. First, the application must check the attributes
u16OnConfigurableDuration and eDurationUnitOfMeasurement to make
sure they have valid values. If this is the case, the application must start a timer to
implement the timeout for the duration defined by these attributes. On expiration of the
timer, the application must switch from the ‘on’ state to the ‘off’ state by (locally) writing
to the bOnOff attribute.

10.4.1.2 Profile-specific Features

Note the following:

 For the ZigBee Light Link profile, a fourth option is available in the above
function. This is to switch on with light settings retrieved for a global scene - for
more information, refer to Section 10.5.

 For the Home Automation profile, if the Level Control cluster (see Chapter 12)
is also used on the target device, an ‘On’ or ‘Off’ command can be implemented
with a transition effect, as follows:

 If the optional Level Control ‘On Transition Time’ attribute is enabled, an
‘On’ command will result in a gradual transition from the ‘off’ level to the
‘on’ level over the time-interval specified by the attribute.

 If the optional Level Control ‘Off Transition Time’ attribute is enabled, an
‘Off’ command will result in a gradual transition from the ‘on’ level to the
‘off’ level over the time-interval specified by the attribute.

10.4.2 Switching Off Lights with Effect (ZLL Only)

In the case of the ZigBee Light Link profile, lights can be (remotely) switched off with
an effect by calling the function eCLD_OnOffCommandOffWithEffectSend() on an
On/Off cluster client.

Two ‘off effects’ are available and there are variants of each effect:

 Fade, with the following variants:

 Fade to off in 0.8 seconds (default)

 Reduce brightness by 50% in 0.8 seconds then fade to off in 4 seconds

 No fade

 Rise and fall, with (currently) only one variant:

 Increase brightness by 20% (if possible) in 0.5 seconds then fade to off in
1 second (default)
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 195

Chapter 10
On/Off Cluster

10.4.3 Switching On Timed Lights (ZLL Only)

In the case of the ZigBee Light Link profile, lights can be switched on temporarily and
automatically switched off at the end of a timed period. This kind of switch-on can be
initiated remotely using the function CLD_OnOffCommandOnWithTimedOffSend()
on an On/Off cluster client. In addition, a waiting time can be implemented after the
automatic switch-off, during which the lights cannot be switched on again using the
above function (although a normal switch-on is possible).

The following values must be specified:

 Time for which the lights will remain on (in tenths of a second)

 Waiting time following the automatic switch-off (in tenths of a second)

In addition, the circumstances in which the command can be accepted must be
specified - that is, accepted at any time (except during the waiting time) or only when
the lights are already on. The latter case can be used to initiate a timed switch-off.

10.5 Saving Light Settings (ZLL Only)

In the case of the ZigBee Light Link profile, the current light (attribute) settings can be
automatically saved to a ‘global scene’ when switching off the lights using the function
eCLD_OnOffCommandOffWithEffectSend(). If the lights are subsequently switched
on with the E_CLD_ONOFF_CMD_ON_RECALL_GLOBAL_SCENE option in
eCLD_OnOffCommandSend(), the saved light settings are re-loaded. In this way,
the system remembers the last light settings used before switch-off and resumes with
these settings at the next switch-on. This feature is particularly useful when the light
levels are adjustable using the Level Control cluster (Chapter 12) and/or the light
colours are adjustable using the Colour Control cluster (Chapter 21).

The attribute values corresponding to the current light settings are saved (locally) to a
global scene with scene ID and group ID both equal to zero. Therefore, to use this
feature:

 Scenes cluster must be enabled and a cluster instance created

 Groups cluster must be enabled and a cluster instance created

 Optional On/Off cluster attribute bGlobalSceneControl must be enabled

The above attribute is a boolean which determines whether to permit the current light
settings to be saved to the global scene. The attribute is set to FALSE after a switch-
off using the function eCLD_OnOffCommandOffWithEffectSend(). It is set to TRUE
after a switch-on or a change in the light settings (attributes) - more specifically, after
a change resulting from a Level Control cluster ‘Move to Level with On/Off’ command,
from a Scenes cluster ‘Recall Scene’ command, or from an On/Off cluster 'On'
command or 'On with Recall Global Scene' command.
196 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
10.6 Functions

The following On/Off cluster functions are provided in the NXP implementation of the
ZCL:

Function Page

eCLD_OnOffCreateOnOff 198

eCLD_OnOffCommandSend 200

eCLD_OnOffCommandOffWithEffectSend 202

eCLD_OnOffCommandOnWithTimedOffSend 204
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 197

Chapter 10
On/Off Cluster

eCLD_OnOffCreateOnOff

Description

This function creates an instance of the On/Off cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an On/Off cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be the first On/Off cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the On/Off cluster,
which can be obtained by using the macro
CLD_ONOFF_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppOnOffClusterAttributeControlBits[CLD_ONOFF_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status eCLD_OnOffCreateOnOff(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits,

tsCLD_OnOffCustomDataStructure
 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
198 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the On/Off cluster. This
parameter can refer to a pre-filled structure called
sCLD_OnOff which is provided in the OnOff.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_OnOff which defines the
attributes of On/Off cluster. The function will initialise
the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above)

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 10.7.1)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 199

Chapter 10
On/Off Cluster

eCLD_OnOffCommandSend

Description

This function sends a custom command instructing the target device to perform the
specified operation on itself: switch off, switch on, toggle (on-to-off or off-to-on), or
switch on with settings retrieved from the global scene (this last option is only
available for the ZigBee Light Link profile and is described in Section 10.5).

The device receiving this message will generate a callback event on the endpoint on
which the On/Off cluster was registered.

In the case of the Home Automation profile, if the Level Control cluster (see Chapter
12) is also used on the target device, an ‘On’ or ‘Off’ command can be implemented
with a transition effect, as follows:

 If the optional Level Control ‘On Transition Time’ attribute is enabled, an ‘On’ command
will result in a gradual transition from the ‘off’ level to the ‘on’ level over the time-interval
specified in the attribute.

 If the optional Level Control ‘Off Transition Time’ attribute is enabled, an ‘Off’ command
will result in a gradual transition from the ‘on’ level to the ‘off’ level over the time-interval
specified in the attribute.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

eCommand Command code, one of the following:

E_CLD_ONOFF_CMD_OFF

E_CLD_ONOFF_CMD_ON

E_CLD_ONOFF_CMD_TOGGLE

E_CLD_ONOFF_CMD_ON_RECALL_GLOBAL_SCENE

teZCL_Status eCLD_OnOffCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 teCLD_OnOff_Command eCommand);
200 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 201

Chapter 10
On/Off Cluster

eCLD_OnOffCommandOffWithEffectSend

Description

This function sends a custom ‘Off With Effect’ command instructing the target ZLL
device to switch off one or more lights with the specified effect, which can be one of:

 fade (in two phases or no fade)

 rise and fall

Each of these effects is available in variants. The required effect and variant are
specified in the command payload. For the payload details, refer to “Off With Effect
Request Payload” on page 206.

The device receiving this message will generate a callback event on the endpoint on
which the On/Off cluster was registered.

Following a call to this function, the light settings on the target device will be saved
to a global scene, after which the attribute bGlobalSceneControl will be set to
FALSE - for more details, refer to Section 10.5.

The function can be used only with the ZLL profile.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 10.7.2)

teZCL_Status eCLD_OnOffCommandOffWithEffectSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_OnOff_OffWithEffectRequestPayload *psPayload);
202 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 203

Chapter 10
On/Off Cluster

eCLD_OnOffCommandOnWithTimedOffSend

Description

This function sends a custom ‘On With Timed Off’ command instructing the target
ZLL device to switch on one or more lights for a timed period and then switch them
off. In addition, a waiting time can be implemented after switch-off, during which the
light(s) cannot be switched on again.

The following functionality must be specified in the command payload:

 Time for which the light(s) must remain on

 Waiting time during which switched-off light(s) cannot be switched on again

 Whether this command can be accepted at any time (outside the waiting time) or only
when a light is on

For the payload details, refer to “On With Timed Off Request Payload” on page 207.

The device receiving this message will generate a callback event on the endpoint on
which the On/Off cluster was registered.

The function can be used only with the ZLL profile.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 10.7.2)

teZCL_Status eCLD_OnOffCommandOnWithTimedOffSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_OnOff_OnWithTimedOffRequestPayload

 *psPayload);
204 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 205

Chapter 10
On/Off Cluster

10.7 Structures

10.7.1 Custom Data Structure

The On/Off cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct

{

 uint8 u8Dummy;

} tsCLD_OnOffCustomDataStructure;

The fields are for internal use and no knowledge of them required.

10.7.2 Custom Command Payloads

Off With Effect Request Payload

typedef struct

{

 zuint8 u8EffectId;

 zuint8 u8EffectVariant;

} tsCLD_OnOff_OffWithEffectRequestPayload;

where:

 u8EffectId indicates the required ‘off effect’:

 0x00 - Fade

 0x01 - Rise and fall

All other values are reserved.

 u8EffectVariant indicates the required variant of the specified ‘off effect’ -
the interpretation of this field depends on the value of u8EffectId, as
indicated in the table below.
206 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
On With Timed Off Request Payload

typedef struct

{

 zuint8 u8OnOff;

 zuint16 u16OnTime;

 zuint16 u16OffTime;

} tsCLD_OnOff_OnWithTimedOffRequestPayload;

where:

 u8OnOff indicates when the command can be accepted:

 0x00 - at all times (apart from in waiting time, if implemented)

 0x01 - only when light is on

All other values are reserved.

 u16OnTime is the ‘on time’, expressed in tenths of a second in the range
0x0000 to 0xFFFE.

 u16OffTime is the ‘off waiting time’, expressed in tenths of a second in the
range 0x0000 to 0xFFFE

u8EffectId u8EffectVariant Description

0x00
(Fade)

0x00 Fade to off in 0.8 seconds (default)

0x01 No fade

0x02 Reduce brightness by 50% in 0.8 seconds then
fade to off in 4 seconds

0x03-0xFF Reserved

0x01
(Rise and fall)

0x00 Increase brightness by 20% (if possible) in 0.5
seconds then fade to off in 1 second (default)

0x01-0xFF Reserved

0x02-0xFF 0x00-0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 207

Chapter 10
On/Off Cluster

10.8 Enumerations

10.8.1 teCLD_OnOff_ClusterID

The following structure contains the enumerations used to identify the attributes of the
On/Off cluster.

typedef enum

{

 E_CLD_ONOFF_ATTR_ID_ONOFF = 0x0000, /* Mandatory */

 E_CLD_ONOFF_ATTR_ID_GLOBAL_SCENE_CONTROL = 0x4000, /* Optional */

 E_CLD_ONOFF_ATTR_ID_ON_TIME, /* Optional */

 E_CLD_ONOFF_ATTR_ID_OFF_WAIT_TIME, /* Optional */

} teCLD_OnOff_ClusterID;

10.8.2 teCLD_OOSC_SwitchType (On/Off Switch Types)

typedef enum

{

 E_CLD_OOSC_TYPE_TOGGLE,

 E_CLD_OOSC_TYPE_MOMENTARY

} teCLD_OOSC_SwitchType;

10.8.3 teCLD_OOSC_SwitchAction (On/Off Switch Actions)

typedef enum

{

 E_CLD_OOSC_ACTION_S2ON_S1OFF,

 E_CLD_OOSC_ACTION_S2OFF_S1ON,

 E_CLD_OOSC_ACTION_TOGGLE

} teCLD_OOSC_SwitchAction;
208 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
10.9 Compile-Time Options

To enable the On/Off cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:

#define CLD_ONOFF

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define ONOFF_CLIENT

#define ONOFF_SERVER

The On/Off cluster contains macros that may be optionally specified at compile-time
by adding some or all of the following lines to the zcl_options.h file.

Add this line to enable the optional On Configurable Duration attribute:

#define CLD_ONOFF_ATTR_ID_ON_CONFIGURABLE_DURATION

Add this line to enable the optional Duration Unit of Measure attribute:

#define CLD_ONOFF_ATTR_ID_DURATION_UNIT_OF_MEASUREMENT

Add this line to enable the optional Maximum Duration attribute:

#define CLD_ONOFF_ATTR_ID_MAX_DURATION

Add this line to enable the optional Global Scene Control attribute (ZLL only):

#define CLD_ONOFF_ATTR_GLOBAL_SCENE_CONTROL

Add this line to enable the optional On Time attribute (ZLL only):

#define CLD_ONOFF_ATTR_ON_TIME

Add this line to enable the optional Off Wait Time attribute (ZLL only):

#define CLD_ONOFF_ATTR_OFF_WAIT_TIME

Further, enhanced functionality is available for the ZigBee Light Link (ZLL) profile and
must be enabled as a compile-time option - for more information, refer to the ZigBee
Light Link User Guide (JN-UG-3091).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 209

Chapter 10
On/Off Cluster

210 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
11. On/Off Switch Configuration Cluster

This chapter describes the On/Off Switch Configuration cluster which is defined in the
ZCL.

The On/Off Switch Configuration cluster has a Cluster ID of 0x0007.

11.1 Overview

The On/Off Switch Configuration cluster allows the switch type on a device to be
defined, as well as the commands to be generated when the switch is moved between
its two states.

To use the functionality of this cluster, you must include the file OOSC.h in your
application and enable the cluster by defining CLD_OOSC in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

 The cluster server is able to receive commands to define a switch
configuration.

 The cluster client is able to send commands to define a switch configuration.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the On/Off Switch Configuration cluster are fully detailed
in Section 11.6.

Note: When using this cluster, the On/Off cluster must
also be used (see Chapter 10).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 211

Chapter 11
On/Off Switch Configuration Cluster

11.2 On/Off Switch Config Cluster Structure and Attribute

The structure definition for the On/Off Switch Configuration cluster is:

typedef struct

{

 zenum8 eSwitchType; /* Mandatory */

 zenum8 eSwitchActions; /* Mandatory */

} tsCLD_OOSC;

where:

 eSwitchType is the type of the switch, one of:

 Toggle (0x00) - when the switch is physically moved between its two
states, it remains in the latest state until it is physically returned to the
original state (e.g. a rocker switch)

 Momentary (0x01) - when the switch is physically moved between its two
states, it returns to the original state as soon as it is released (e.g. a push-
button which is pressed and then released)

 eSwitchActions defines the commands to be generated when the switch
moves between state 1 (S1) and state 2 (S2), one of:

 S1 to S2 is ‘switch on’, S2 to S1 is ‘switch off’

 S1 to S2 is ‘switch off’, S2 to S1 is ‘switch on’

 S1 to S2 is ‘toggle’, S2 to S1 is ‘toggle’

Enumerations are provided for the fields of this structure, as detailed in Section 11.6.

11.3 Initialisation

The function eCLD_OOSCCreateOnOffSwitchConfig() is used to create an instance
of the On/Off Switch Configuration cluster. The function is generally called by the
initialisation function for the host device.

11.4 Functions

The following On/Off Switch Configuration cluster function is provided in the NXP
implementation of the ZCL:

Function Page

eCLD_OOSCCreateOnOffSwitchConfig 213
212 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_OOSCCreateOnOffSwitchConfig

Description

This function creates an instance of the On/Off Switch Configuration cluster on an
endpoint. The cluster instance is created on the endpoint which is associated with
the supplied tsZCL_ClusterInstance structure and can act as a server or a
client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an On/Off Switch Configuration
cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

When used, this function must be the first On/Off Switch Configuration cluster
function called in the application, and must be called after the stack has been started
and after the application profile has been initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the On/Off Switch
Configuration cluster. This parameter can refer to a pre-
filled structure called sCLD_OOSC which is provided in
the OOSC.h file.

teZCL_Status eCLD_OOSCCreateOnOffSwitchConfig(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 tsZCL_AttributeStatus *psAttributeStatus);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 213

Chapter 11
On/Off Switch Configuration Cluster

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_OOSC which defines the
attributes of On/Off Switch Configuration cluster. The
function will initialise the attributes with default values.

psAttributeStatus Pointer to a structure containing the storage for each
attribute's status

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
214 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
11.5 Enumerations

11.5.1 teCLD_OOSC_ClusterID

The following structure contains the enumerations used to identify the attributes of the
On/Off Switch Configuration cluster.

typedef enum

{

 E_CLD_OOSC_ATTR_ID_SWITCH_TYPE = 0x0000, /* Mandatory */

 E_CLD_OOSC_ATTR_ID_SWITCH_ACTIONS = 0x0010, /* Mandatory */

} teCLD_OOSC_ClusterID;

11.6 Compile-Time Options

To enable the On/Off Switch Configuration cluster in the code to be built, it is
necessary to add the following to the zcl_options.h file:

#define CLD_OOSC

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define OOSC_CLIENT

#define OOSC_SERVER

The On/Off Switch Configuration cluster does not contain any optional functionality.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 215

Chapter 11
On/Off Switch Configuration Cluster

216 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
12. Level Control Cluster

This chapter describes the Level Control cluster which is defined in the ZCL.

The Level Control cluster has a Cluster ID of 0x0008.

12.1 Overview

The Level Control cluster is used to control the level of a physical quantity on a device.
The physical quantity is device-dependent - for example, it could be light, sound or
heat output.

The Level Control cluster provides the facility to increase to a target level gradually
during a ‘switch-on’ and decrease from this level gradually during a ‘switch-off’.

To use the functionality of this cluster, you must include the file LevelControl.h in your
application and enable the cluster by defining CLD_LEVEL_CONTROL in the
zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

 The cluster server is able to receive commands to change the level on the local
device.

 The cluster client is able to send commands to change the level on the remote
device.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Level Control cluster are fully detailed in Section
12.9.

Note: This cluster should normally be used with the On/
Off cluster (see Chapter 10) and this is assumed to be
the case in this description.

Note: Some attributes of this cluster are specific to the
HA profile and must not be used with any other ZigBee
application profile. For details, refer to the attribute
descriptions in Section 12.2.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 217

Chapter 12
Level Control Cluster

12.2 Level Control Cluster Structure and Attributes

The structure definition for the Level Control cluster is shown below. Some attributes
are specific to the Home Automation (HA) profile, as indicated in their descriptions.

typedef struct

{

 zuint8 u8CurrentLevel;

#ifdef CLD_LEVELCONTROL_ATTR_REMAINING_TIME

 zuint16 u16RemainingTime;

#endif

#ifdef CLD_LEVELCONTROL_ATTR_ON_OFF_TRANSITION_TIME

 zuint16 u16OnOffTransitionTime;

#endif

#ifdef CLD_LEVELCONTROL_ATTR_ON_LEVEL

 zuint8 u8OnLevel;

#endif

#ifdef CLD_LEVELCONTROL_ATTR_ON_TRANSITION_TIME

 zuint16 u16OnTransitionTime;

#endif

#ifdef CLD_LEVELCONTROL_ATTR_OFF_TRANSITION_TIME

 zuint16 u16OffTransitionTime;

#endif

#ifdef CLD_LEVELCONTROL_ATTR_DEFAULT_MOVE_RATE

 zuint8 u8DefaultMoveRate;

#endif

#ifdef CLD_LEVELCONTROL_PHYSICAL_MIN_LEVEL

 zuint8 u8PhysicalMinLevel;

#endif

#ifdef CLD_LEVELCONTROL_PHYSICAL_MAX_LEVEL

 zuint8 u8PhysicalMaxLevel;

#endif

#ifdef CLD_LEVELCONTROL_ATTR_MIN_LEVEL

 zuint8 u8MinLevel;

#endif
218 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
#ifdef CLD_LEVELCONTROL_ATTR_MAX_LEVEL

 zuint8 u8MaxLevel;

#endif

} tsCLD_LevelControl;

where:

 u8CurrentLevel is the current level on the device, in the range 0x01 to 0xFE
(0x00 is not used and 0xFF represents an undefined level). If maximum and
minimum levels are implemented using the final four attributes of the cluster
(see below), the permissible range of this attribute will be restricted.

 u16RemainingTime is the time remaining (in tenths of a second) at the
current level

 u16OnOffTransitionTime is the time taken (in tenths of a second) to
increase from ‘off’ to the target level or decrease from the target level to ‘off’
when an On or Off command is received, respectively (see below for target
level)

 u8OnLevel is the target level to which u8CurrentLevel will be set when an
On command is received. The value must be in the range 0x01 to 0xFE. If
maximum and minimum levels are implemented using the final four attributes of
the cluster (see below), the value must be within the permissible range.

 u16OnTransitionTime is an HA-specific attribute representing the time
taken (in tenths of a second) to increase the level from 0 (off) to 255 (on) when
an ‘On’ command of the On/Off cluster is received. The special value of
0xFFFF indicates that the transition time u16OnOffTransitionTime must
be used instead (which will also be used if u16OnTransitionTime is not
enabled).

 u16OffTransitionTime is an HA-specific attribute representing the time
taken (in tenths of a second) to decrease the level from 255 (on) to 0 (off) when
an ‘Off’ command of the On/Off cluster is received. The special value of
0xFFFF indicates that the transition time u16OnOffTransitionTime must
be used instead (which will also be used if u16OffTransitionTime is not
enabled).

 u8DefaultMoveRate is an HA-specific attribute representing the rate of
movement (in units per second) to be used when a Move command is received
with a rate value (u8Rate) equal to 0xFF (see Section 12.7.2.2).

 u8PhysicalMinLevel is the minimum level that the controlled device can
physically achieve (the controlled level cannot go below this value) and is
determined by the manufacturer. It can be set in the range 0x01 to 0xFE (0x00
is not used and 0xFF represents an undefined level, which is the default). If set,
its value must be less than that of u8PhysicalMaxLevel

 u8PhysicalMaxLevel is the maximum level that the controlled device can
physically achieve (the controlled level cannot go above this value) and is
determined by the manufacturer. It can be set in the range 0x01 to 0xFE (0x00
represents an undefined level, which is the default, and 0xFF is not used). If
set, its value must be greater than that of u8PhysicalMinLevel
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 219

Chapter 12
Level Control Cluster

 u8MinLevel is the minimum level that the controlled device is permitted to use
(the controlled level cannot go below this value) and is determined by the user
or installer. It can be set in the range 0x01 to 0xFE (0x00 and 0xFF are not
used, and the default value is 0x01). If set, its value must be greater than or
equal to that of u8PhysicalMinLevel and less than that of u8MaxLevel.

 u8MaxLevel is the maximum level that the controlled device is permitted to
use (the controlled level cannot go above this value) and is determined by the
user or installer. It can be set in the range 0x01 to 0xFE (0x00 and 0xFF are not
used, and the default value is 0x01). If set, its value must be greater than that of
u8MinLevel and less than or equal to that of u8PhysicalMaxLevel.

12.3 Initialisation

The function eCLD_LevelControlCreateLevelControl() is used to create an instance
of the Level Control cluster. The function is generally called by the initialisation
function for the host device.

12.4 Sending Remote Commands

The NXP implementation of the ZCL provides functions for sending commands
between a Level Control cluster client and server. A command is sent from the client
to one or more endpoints on the server. Multiple endpoints can usually be targeted
using binding or group addressing.

12.4.1 Changing Level

Three functions (see below) are provided for sending commands to change the
current level on a device. These commands have the effect of modifying the ‘current
level’ attribute of the Level Control cluster.

If maximum and minimum values have been imposed on the controlled level by the
manufacturer and/or user/installer, using the relevant maximum and minimum
attributes, the target level must be within the permissible range:

 The manfacturer can impose maximum and minimum levels using the
u8PhysicalMinLevel and u8PhysicalMaxLevel attributes, as
determined by the physical or safety limitations of the device.

 The user or installer can also impose maximum and minimum levels (within the
manufacturer’s limits) using the u8MinLevel and u8MaxLevel attributes, as
determined by the practical or safety limitations of the operating environment.

The above attributes are described in Section 12.2. Any attempt to change the level
to a value outside of the permissible range will result in clipping of the level at the
relevant minimum or maximum.
220 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Each of the three level functions can be implemented in conjunction with the On/Off
cluster. In this case:

 If the command increases the current level, the OnOff attribute of the On/Off
cluster will be set to ‘on’.

 If the command decreases the current level to the minimum permissible level
for the device, the OnOff attribute of the On/Off cluster will be set to ‘off’.

Use of the three functions/commands are described below.

Move to Level Command

The current level can be moved (up or down) to a new level over a given time using
the function eCLD_LevelControlCommandMoveToLevelCommandSend(). The
target level and transition time are specified in the command payload (see Section
12.7.2.1). In the case of the ZigBee Light Link profile, the target level is interpreted as
described in Section 12.5.1.

Move Command

The current level can be moved (up or down) at a specified rate using the function
eCLD_LevelControlCommandMoveCommandSend(). The level will vary until
stopped (see Section 12.4.2) or until the maximum or minimum level is reached. The
direction and rate are specified in the command payload (see Section 12.7.2.2).

Step Command

The current level can be moved (up or down) to a new level in a single step over a
given time using the function eCLD_LevelControlCommandStepCommandSend().
The direction, step size and transition time are specified in the command payload (see
Section 12.7.2.3).

12.4.2 Stopping a Level Change

A level change initiated using any of the functions referenced in Section 12.4.1 can be
halted using the function eCLD_LevelControlCommandStopCommandSend() or
eCLD_LevelControlCommandStopWithOnOffCommandSend().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 221

Chapter 12
Level Control Cluster

12.5 Issuing Local Commands

Some of the operations described in Section 12.4 that correspond to remote
commands can also be performed locally, as described below.

12.5.1 Setting Level

The level on the device on a local endpoint can be set using the function
eCLD_LevelControlSetLevel(). This function sets the value of the ‘current level’
attribute of the Level Control cluster. A transition time must also be specified, in units
of tenths of a second, during which the level will move towards the target value (this
transition should be as smooth as possible, not stepped).

The specified level must be in the range 0x01 to 0xFE (the extreme values 0x00 and
0xFF are not used), where:

 0x01 represents the minimum possible level for the device

 0x02 to 0xFD are device-dependent values

 0xFE represents the maximum possible level for the device

Alternatively, the specified level must be within limits that can be optionally imposed
by the manufacturer and/or user/installer using the relevant maximum and minimum
attributes:

 The manfacturer can impose maximum and minimum levels using the
u8PhysicalMinLevel and u8PhysicalMaxLevel attributes, as
determined by the physical or safety limitations of the device.

 The user or installer can also impose maximum and minimum levels (within the
manufacturer’s limits) using the u8MinLevel and u8MaxLevel attributes, as
determined by the practical or safety limitations of the operating environment.

The above attributes are described in Section 12.2. Any attempt to set the level to a
value outside of the permissible range will result in clipping of the level at the relevant
minimum or maximum.

When the On/Off cluster is also enabled, calling the above function can have the
following outcomes:

 If the operation is to increase the current level, the OnOff attribute of the On/Off
cluster will be set to ‘on’.

 If the operation is to decrease the current level to the minimum permissible
level for the device, the OnOff attribute of the On/Off cluster will be set to ‘off’.

12.5.2 Obtaining Level

The current level on the device on a local endpoint can be obtained using the function
eCLD_LevelControlGetLevel(). This function reads the value of the ‘current level’
attribute of the Level Control cluster.
222 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
12.6 Functions

The following Level Control cluster functions are provided in the NXP implementation
of the ZCL:

Function Page

eCLD_LevelControlCreateLevelControl 224

eCLD_LevelControlSetLevel 226

eCLD_LevelControlGetLevel 227

eCLD_LevelControlCommandMoveToLevelCommandSend 228

eCLD_LevelControlCommandMoveCommandSend 230

eCLD_LevelControlCommandStepCommandSend 232

eCLD_LevelControlCommandStopCommandSend 234

eCLD_LevelControlCommandStopWithOnOffCommandSend 235
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 223

Chapter 12
Level Control Cluster

eCLD_LevelControlCreateLevelControl

Description

This function creates an instance of the Level Control cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Level Control cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

When used, this function must be the first Level Control cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Level Control
cluster, which can be obtained by using the macro
CLD_LEVELCONTROL_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppLevelControlClusterAttributeControlBits[
 CLD_LEVELCONTROL_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status eCLD_LevelControlCreateLevelControl(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,

uint8 *pu8AttributeControlBits,
 tsCLD_LevelControlCustomDataStructure
 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
224 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Level Control cluster.
This parameter can refer to a pre-filled structure called
sCLD_LevelControl which is provided in the
LevelControl.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_LevelControl which defines
the attributes of Level Control cluster. The function will
initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above)

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 12.7.1)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 225

Chapter 12
Level Control Cluster

eCLD_LevelControlSetLevel

Description

This function sets the level on the device on the specified (local) endpoint by writing
the specified value to the ‘current level’ attribute. The new level is implemented over
the specified transition time by gradually changing the level.

The specified target level must be within the range 0x01 to 0xFE or a more restricted
range imposed by the device manufacturer and/or user/installer (see Section 12.5.1).

This operation can be performed in conjunction with the On/Off cluster (if enabled),
in which case:

 If the operation is to increase the current level, the OnOff attribute of the On/Off cluster
will be set to ‘on’.

 If the operation is to decrease the current level to the minimum permissible level for the
device, the OnOff attribute of the On/Off cluster will be set to ‘off’.

Parameters

u8SourceEndPointId Number of the local endpoint on which level is to
be changed

u8Level New level to be set, within the range 0x01 to
0xFE or within a more restricted range (see
above)

u16TransitionTime Time to be taken, in units of tenths of a second,
to reach the target level (0xFFFF means move to
the level as fast as possible)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_LevelControlSetLevel(
uint8 u8SourceEndPointId,
uint8 u8Level,
uint16 u16TransitionTime);
226 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_LevelControlGetLevel

Description

This function obtains the current level on the device on the specified (local) endpoint
by reading the ‘current level’ attribute.

Parameters

u8SourceEndPointId Number of the local endpoint from which the level
is to be read

pu8Level Pointer to location to receive obtained level

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_LevelControlGetLevel(
uint8 u8SourceEndPointId,
uint8 *pu8Level);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 227

Chapter 12
Level Control Cluster

eCLD_LevelControlCommandMoveToLevelCommandSend

Description

This function sends a Move to Level command to instruct a device to move its
‘current level’ attribute to the specified level over a specified time. The new level and
the transition time are specified in the payload of the command (see Section 12.7.2).
The target level must be within the range 0x01 to 0xFE or a more restricted range
imposed by the device manufacturer and/or user/installer (see Section 12.4.1).

The device receiving this message will generate a callback event on the endpoint on
which the Level Control cluster was registered and transition the ‘current level’
attribute to the new value.

The option is provided to use this command in association with the On/Off cluster. In
this case:

 If the command is to increase the current level, the OnOff attribute of the On/Off cluster
will be set to ‘on’.

 If the command is to decrease the current level to the minimum permissible level for the
device, the OnOff attribute of the On/Off cluster will be set to ‘off’.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_LevelControlCommandMoveToLevelCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool_t bWithOnOff,
 tsCLD_LevelControl_MoveToLevelCommandPayload
 *psPayload);
228 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
bWithOnOff Specifies whether this cluster interacts with the
On/Off cluster:
TRUE - interaction
FALSE - no interaction

psPayload Pointer to a structure containing the payload for
this message (see Section 12.7.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 229

Chapter 12
Level Control Cluster

eCLD_LevelControlCommandMoveCommandSend

Description

This function sends a Move command to instruct a device to move its ‘current level’
attribute either up or down in a continuous manner at a specified rate. The direction
and rate are specified in the payload of the command (see Section 12.7.2).

If the current level reaches the maximum or minimum permissible level for the device,
the level change will stop.

The device receiving this message will generate a callback event on the endpoint on
which the Level Control cluster was registered, and move the current level in the
direction and at the rate specified.

The option is provided to use this command in association with the On/Off cluster. In
this case:

 If the command is to increase the current level, the OnOff attribute of the On/Off cluster
will be set to ‘on’.

 If the command decreases the current level to the minimum permissible level for the
device, the OnOff attribute of the On/Off cluster will be set to ‘off’.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_LevelControlCommandMoveCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool_t bWithOnOff,

tsCLD_LevelControl_MoveCommandPayload
 *psPayload);
230 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
bWithOnOff Specifies whether this cluster interacts with the
On/Off cluster:
TRUE - interaction
FALSE - no interaction

psPayload Pointer to a structure containing the payload for
this message (see Section 12.7.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 231

Chapter 12
Level Control Cluster

eCLD_LevelControlCommandStepCommandSend

Description

This function sends a Step command to instruct a device to move its ‘current level’
attribute either up or down in a step of the specified step size over the specified time.
The direction, step size and transition time are specified in the payload of the
command (see Section 12.7.2).

If the target level is above the maximum or below the minimum permissible level for
the device, the stepped change will be limited to this level (and the transition time will
be cut short).

The device receiving this message will generate a callback event on the endpoint on
which the Level Control cluster was registered and move the current level according
to the specified direction, step size and transition time.

The option is provided to use this command in association with the On/Off cluster. In
this case:

 If the command is to increase the current level, the OnOff attribute of the On/Off cluster
will be set to ‘on’.

 If the command decreases the current level to the minimum permissible level for the
device, the OnOff attribute of the On/Off cluster will be set to ‘off’.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

teZCL_Status
eCLD_LevelControlCommandStepCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber,
 bool_t bWithOnOff,

tsCLD_LevelControl_StepCommandPayload
 *psPayload);
232 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

bWithOnOff Specifies whether this cluster interacts with the
On/Off cluster:
TRUE - interaction
FALSE - no interaction

psPayload Pointer to a structure containing the payload for
this message (see Section 12.7.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 233

Chapter 12
Level Control Cluster

eCLD_LevelControlCommandStopCommandSend

Description

This function sends a Stop command to instruct a device to halt any transition to a
new level.

The device receiving this message will generate a callback event on the endpoint on
which the Level Control cluster was registered and stop any in progress transition.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status
eCLD_LevelControlCommandStopCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);
234 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_LevelControlCommandStopWithOnOffCommandSend

Description

This function sends a Stop with On/Off command to instruct a device to halt any
transition to a new level.

The device receiving this message will generate a callback event on the endpoint on
which the Level Control cluster was registered and stop any in progress transition.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status
eCLD_LevelControlCommandStopWithOnOffCommandSend(
 uint8 u8SourceEndPointId,
 uint8 u8DestinationEndPointId,
 tsZCL_Address *psDestinationAddress,
 uint8 *pu8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 235

Chapter 12
Level Control Cluster

12.7 Structures

12.7.1 Custom Data Structure

The Level Control cluster requires extra storage space to be allocated for use by
internal functions. The structure definition for this storage is shown below:

typedef struct

{

 bool bUpdateAttributes;

 bool bWithOnOff;

 bool bRestoreLevelAfterOff;

 uint16 u16RemainingTime;

 uint8 u8TargetLevel;

 uint8 u8PreviousLevel;

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_LevelControlCallBackMessage sCallBackMessage;

} tsCLD_LevelControlCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

12.7.2 Custom Command Payloads

The following structures contain the payloads for the Level Control cluster custom
commands.

12.7.2.1 Move To Level Command Payload

typedef struct

{

 uint8 u8Level;

 uint16 u16TransitionTime;

} tsCLD_LevelControl_MoveToLevelCommandPayload;

where:

 u8Level is the target level within the range 0x01 to 0xFE or within a more
restricted range (see Section 12.4.1)

 u16TransitionTime is the time taken, in units of tenths of a second, to reach
the target level (0xFFFF means use the u16OnOffTransitionTime attribute
instead - if this optional attribute is not present, the device will change the level
as fast as possible).
236 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
12.7.2.2 Move Command Payload

typedef struct

{

 uint8 u8MoveMode;

 uint8 u8Rate;

} tsCLD_LevelControl_MoveCommandPayload;

where:

 u8MoveMode indicates the direction of the required level change, up (0x00) or
down (0x01)

 u8Rate represents the required rate of change in units per second (0xFF
means use the HA-specific u8DefaultMoveRate attribute instead - if this
optional attribute is not present, the device will change the level as fast as
possible)

12.7.2.3 Step Command Payload

typedef struct

{

 uint8 u8StepMode;

 uint8 u8StepSize;

 uint16 u16TransitionTime;

} tsCLD_LevelControl_StepCommandPayload;

where:

 u8StepMode indicates the direction of the required level change, up (0x00) or
down (0x01)

 u8StepSize is the size for the required level change

 u16TransitionTime is the time taken, in units of tenths of a second, to reach
the target level (0xFFFF means move to the level as fast as possible)
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 237

Chapter 12
Level Control Cluster

12.8 Enumerations

12.8.1 teCLD_LevelControl_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Level Control cluster.

typedef enum

{

 E_CLD_LEVELCONTROL_ATTR_ID_CURRENT_LEVEL = 0x0000, /* Mandatory */

 E_CLD_LEVELCONTROL_ATTR_ID_REMAINING_TIME,

 E_CLD_LEVELCONTROL_ATTR_ID_ON_OFF_TRANSITION_TIME = 0x010,

 E_CLD_LEVELCONTROL_ATTR_ID_ON_LEVEL,

 E_CLD_LEVELCONTROL_ATTR_ID_ON_TRANSITION_TIME,

 E_CLD_LEVELCONTROL_ATTR_ID_OFF_TRANSITION_TIME,

 E_CLD_LEVELCONTROL_ATTR_ID_DEFAULT_MOVE_RATE,

 E_CLD_LEVELCONTROL_ATTR_ID_PHYSICAL_MIN_LEVEL,

 E_CLD_LEVELCONTROL_ATTR_ID_PHYSICAL_MAX_LEVEL,

 E_CLD_LEVELCONTROL_ATTR_ID_MIN_LEVEL,

 E_CLD_LEVELCONTROL_ATTR_ID_MAX_LEVEL

} teCLD_LevelControl_ClusterID;

12.9 Compile-Time Options

To enable the Level Control cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_LEVEL_CONTROL

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define LEVEL_CONTROL_CLIENT

#define LEVEL_CONTROL_SERVER

The Level Control cluster contains macros that may be optionally specified at compile-
time by adding one or more of the following lines to the zcl_options.h file.

Add this line to enable the optional Remaining Time attribute:

#define CLD_LEVELCONTROL_ATTR_REMAINING_TIME

Add this line to enable the optional On/Off Transition Time attribute:

#define CLD_LEVELCONTROL_ATTR_ON_OFF_TRANSITION_TIME

Add this line to enable the optional On Level attribute:

#define CLD_LEVELCONTROL_ATTR_ON_LEVEL
238 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Add this line to enable the optional HA-specific On Transition Time attribute:

#define CLD_LEVELCONTROL_ATTR_ON_TRANSITION_TIME

Add this line to enable the optional HA-specific Off Transition Time attribute:

#define CLD_LEVELCONTROL_ATTR_OFF_TRANSITION_TIME

Add this line to enable the optional HA-specific Default Move Rate attribute:

#define CLD_LEVELCONTROL_ATTR_DEFAULT_MOVE_RATE

Add this line to enable the optional Physical Minimum Level attribute:

#define E_CLD_LEVELCONTROL_ATTR_ID_PHYSICAL_MIN_LEVEL

Add this line to enable the optional Physical Maximum Level attribute:

#define E_CLD_LEVELCONTROL_ATTR_ID_PHYSICAL_MAX_LEVEL

Add this line to enable the optional Minimum Level attribute:

#define E_CLD_LEVELCONTROL_ATTR_ID_MIN_LEVEL

Add this line to enable the optional Maximum Level attribute:

#define E_CLD_LEVELCONTROL_ATTR_ID_MAX_LEVEL
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 239

Chapter 12
Level Control Cluster

240 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
13. Alarms Cluster

This chapter describes the Alarms cluster which is defined in the ZCL.

The Alarms cluster has a Cluster ID of 0x0009.

13.1 Overview

The Alarms cluster is used to configure alarm functionality on a device and send alarm
notifications to other devices.

To use the functionality of this cluster, you must include the file Alarms.h in your
application and enable the cluster by defining CLD_ALARMS in the zcl_options.h file.

An Alarms cluster instance can act as a client or a server. The inclusion of the client
or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server
must also be specified when creating the cluster instance).

The compile-time options for the Alarms cluster are fully detailed in Section 13.9.

The Alarms cluster server resides on a device on which other clusters may generate
alarm conditions (e.g. a cluster attribute value exceeds a certain limit). When an alarm
condition occurs, the Alarms cluster server may send an Alarm notification to a cluster
client - for example, the client may be on a device that signals alarms to the user. An
Alarms cluster client may also contain a user interface (e.g. a set of buttons) which
allows user instructions to be sent to the server - for example, to reset an alarm.

The Alarms cluster server implements alarm logging by keeping a record of the
previously generated alarms in an Alarms table. Thus, historic alarm information can
be retrieved from the Alarms table. Each entry of the table contains the following
information about one alarm activation:

 Alarm code which identifies the type of alarm (this type is cluster-specific)

 Cluster ID of the cluster which generated the alarm

 Time-stamp indicating the time (UTC) at which the alarm was generated

 A maximum number of Alarms table entries can be set in the compile-time options.

Note: The Alarms cluster is used in conjunction with
other clusters that use alarms. Alarms conditions and
codes are cluster-specific and defined in these clusters.

Note: Any device which implements time-stamping for
alarms must also employ the Time cluster, described in
Chapter 13.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 241

Chapter 13
Alarms Cluster

13.2 Alarms Cluster Structure and Attributes

The structure definition for the Alarms cluster is shown below.

typedef struct

{

#ifdef CLD_ALARMS_ATTR_ALARM_COUNT

 zuint16 u16AlarmCount;

#endif

} tsCLD_Alarms;

where u16AlarmCount is an optional attribute which contains the number of entries
currently in the Alarms table on the cluster server.

13.3 Initialisation

The function eCLD_AlarmsCreateAlarms() is used to create an instance of the
Alarms cluster. The function is generally called by the initialisation function for the host
device.

13.4 Alarm Operations

This section describes the main operations that are performed using the Alarms
cluster - raising an alarm and clearing/resetting an alarm.

13.4.1 Raising an Alarm

An alarm is raised when an alarm condition occurs on a cluster on the same endpoint
as the Alarms cluster server - for example, when a cluster attribute falls below a lower
threshold. The Alarms cluster server should then send an Alarm notification to any
remote Alarms cluster clients that might be interested in the alarm. The server
application can send this notification and add an entry to the Alarms table by calling
the eCLD_AlarmsSignalAlarm() function. On arriving at a destination device, the
notification will cause an E_CLD_ALARMS_CMD_ALARM event to be generated to
notify the client application.
242 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
13.4.2 Clearing an Alarm (from Server)

The server application can clear an active alarm by calling the function
eCLD_AlarmsClearAlarm(). This function sends a Clear Alarm command to one or
more cluster clients (e.g. to indicate that an audible alarm signal should be stopped).
On arriving at a destination device, the command will cause an
E_CLD_ALARMS_CMD_CLEAR_ALARM event to be generated to notify the client
application.

The server application can also remove entries from the local Alarms table, as follows:

 To remove an individual entry, call eCLD_AlarmsGetAlarmFromLog()

 To remove all entries, call eCLD_AlarmsResetAlarmLog()

13.4.3 Resetting Alarms (from Client)

A client application can remotely request one alarm or all alarms to be reset:

 The function eCLD_AlarmsCommandResetAlarmCommandSend() can be
used to request an individual alarm to be reset. A Reset Alarm command is
sent to the cluster server. On arriving at the destination device, the command
will cause an E_CLD_ALARMS_CMD_RESET_ALARM event to be generated.

 The function eCLD_AlarmsCommandResetAllAlarmsCommandSend() can
be used to request all alarms to be reset. A Reset All Alarms command is sent
to the cluster server. On arriving at the destination device, the command will
cause an E_CLD_ALARMS_CMD_RESET_ALL_ALARMS event to be
generated.

On the generation of the above events on the cluster server, the server application can
remove the relevant entry or entries from the local Alarms table as described in
Section 13.4.2.

13.5 Alarms Events

The Alarms cluster has its own events that are handled through the callback
mechanism outlined in Chapter 3. If a device uses the Alarms cluster then Alarms
event handling must be included in the callback function for the associated endpoint,
where this callback function is registered through the relevant endpoint registration
function (for example, through eHA_RegisterThermostatEndPoint() for a
Thermostat device). The relevant callback function will then be invoked when an
Alarms event occurs.

Note : The client application can also request that all the
entries in an Alarms table are removed by calling
eCLD_AlarmsCommandResetAlarmLogCommandSend().
In this case, the entries are automatically deleted by the
ZCL on the server.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 243

Chapter 13
Alarms Cluster

For an Alarms event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an
element sClusterCustomMessage, which is itself a structure containing a field
pvCustomData. This field is a pointer to the following
tsCLD_AlarmsCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_AlarmsResetAlarmCommandPayload *psResetAlarmCommandPayload;

 tsCLD_AlarmsAlarmCommandPayload *psAlarmCommandPayload;

 tsCLD_AlarmsGetAlarmResponsePayload *psGetAlarmResponse;

 } uMessage;

} tsCLD_AlarmsCallBackMessage;

When an Alarms event occurs, one of a number of command types could have been
received. The relevant command type is specified through the u8CommandId field of
the tsCLD_AlarmsCallBackMessage structure. The possible command types are
detailed below.

The table below lists and describes the command types that can be received by the
cluster server.

The table below lists and describes the command types that can be received by the
cluster client.

u8CommandId Enumeration Description

E_CLD_ALARMS_CMD_RESET_ALARM A Reset Alarm command has been received

E_CLD_ALARMS_CMD_RESET_ALL_ALARMS A Reset All Alarms command has been
received

E_CLD_ALARMS_CMD_GET_ALARM A Get Alarm command has been received

E_CLD_ALARMS_CMD_RESET_ALARM_LOG A Reset Alarm Log command has been
received

Table 7: Alarms Command Types (on Server)

u8CommandId Enumeration Description

E_CLD_ALARMS_CMD_CLEAR_ALARM A Clear Alarm command has been received

E_CLD_ALARMS_CMD_ALARM An Alarm notification has been received

E_CLD_ALARMS_CMD_GET_ALARM_RESPONSE A Get Alarm response has been received

Table 8: Alarms Command Types (on Client)
244 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
13.6 Functions

The following Alarms cluster functions are provided in the NXP implementation of the
ZCL:

Function Page

eCLD_AlarmsCreateAlarms 246

eCLD_AlarmsCommandResetAlarmCommandSend 248

eCLD_AlarmsCommandResetAllAlarmsCommandSend 250

eCLD_AlarmsCommandGetAlarmCommandSend 252

eCLD_AlarmsCommandResetAlarmLogCommandSend 254

eCLD_AlarmsResetAlarmLog 256

eCLD_AlarmsAddAlarmToLog 257

eCLD_AlarmsGetAlarmFromLog 258

eCLD_AlarmsSignalAlarm 259

eCLD_AlarmsClearAlarm 261
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 245

Chapter 13
Alarms Cluster

eCLD_AlarmsCreateAlarms

Description

This function creates an instance of the Alarms cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an Alarms cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be the first Alarms cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Alarms cluster. This
parameter can refer to a pre-filled structure called
sCLD_Alarms which is provided in the Alarms.h file.

teZCL_Status eCLD_AlarmsCreateAlarms(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,

uint8 *pu8AttributeControlBits,
 tsCLD_AlarmsCustomDataStructure
 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
246 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Alarms which defines the
attributes of Alarms cluster. The function will initialise
the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above)

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 13.7.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 247

Chapter 13
Alarms Cluster

eCLD_AlarmsCommandResetAlarmCommandSend

Description

This function can be called on an Alarms cluster client to send a Reset Alarm
command to a cluster server. This command requests that a specific alarm for a
specific cluster is reset. The function may be called as the result of user input. The
relevant alarm and cluster ID must be specified in the command payload (see
Section 13.7.3.1).

On receiving the command, an E_CLD_ALARMS_CMD_RESET_ALARM event will
be generated on the cluster server to notify the application.

The function should only be used to reset alarms that are not automatically reset
when the alarm condition no longer exists.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
the command (see Section 13.7.3.1)

teZCL_Status
eCLD_AlarmsCommandResetAlarmCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_AlarmsResetAlarmCommandPayload
 *psPayload);
248 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 249

Chapter 13
Alarms Cluster

eCLD_AlarmsCommandResetAllAlarmsCommandSend

Description

This function can be called on an Alarms cluster client to send a Reset All Alarms
command to a cluster server. This command requests that all alarms on the server
device are reset. The function may be called as the result of user input.

On receiving the command, an E_CLD_ALARMS_CMD_RESET_ALL_ALARMS
event will be generated on the cluster server to notify the application.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_AlarmsCommandResetAllAlarmsCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
250 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 251

Chapter 13
Alarms Cluster

eCLD_AlarmsCommandGetAlarmCommandSend

Description

This function can be used on an Alarms cluster client to send a Get Alarm command
to a cluster server. This command requests information on the logged alarm with the
earliest time-stamp in the device’s Alarms table. As a result of this command, the
retrieved entry is also deleted from the table.

The requested information is returned by the server in a Get Alarm response. When
this response is received, an E_CLD_ALARMS_CMD_GET_ALARM_RESPONSE
event is generated on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_AlarmsCommandGetAlarmCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
252 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 253

Chapter 13
Alarms Cluster

eCLD_AlarmsCommandResetAlarmLogCommandSend

Description

This function can be called on an Alarms cluster client to send a Reset Alarm Log
command to a cluster server. This command requests that the Alarms table on the
server is cleared of all entries. The function may be called as the result of user input.

On receiving the command, an E_CLD_ALARMS_CMD_RESET_ALARM_LOG
event will be generated on the cluster server to notify the application but the ZCL will
automatically clear the Alarms table.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_AlarmsCommandResetAlarmLogCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
254 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 255

Chapter 13
Alarms Cluster

eCLD_AlarmsResetAlarmLog

Description

This function can be called on the Alarms cluster server to clear all entries of the local
Alarms table. The function may be called as the result of user input.

Parameters

psEndPointDefinition Pointer to the ZCL endpoint definition structure for the
application (see Section 34.1.1)

psClusterInstance Pointer to structure containing information about the
Alarms cluster instance (see Section 34.1.16)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_AlarmsResetAlarmLog(
tsZCL_EndPointDefinition *psEndPointDefinition,
tsZCL_ClusterInstance *psClusterInstance);
256 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_AlarmsAddAlarmToLog

Description

This function can be called on the Alarms cluster server to add a new entry to the
local Alarms table. The function should be called by the server application when an
alarm condition has occurred. The alarm and the cluster which generated it must be
specified. A time-stamp (UTC) for the alarm is automatically inserted into the entry.

Parameters

psEndPointDefinition Pointer to the ZCL endpoint definition structure for the
application (see Section 34.1.1)

psClusterInstance Pointer to structure containing information about the
Alarms cluster instance (see Section 34.1.16)

u8AlarmCode Code which identifies the type of alarm to be added

u16ClusterId Cluster ID of the cluster which generated the alarm

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_AlarmsAddAlarmToLog(
tsZCL_EndPointDefinition *psEndPointDefinition,
tsZCL_ClusterInstance *psClusterInstance,
uint8 u8AlarmCode,
uint16 u16ClusterId);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 257

Chapter 13
Alarms Cluster

eCLD_AlarmsGetAlarmFromLog

Description

This function can be called on the Alarms cluster server to obtain an entry from the
local Alarms table. Information on the logged alarm with the earliest time-stamp in
the device’s Alarms table will be returned - pointers to memory locations to receive
the retrieved alarm data must be provided. As a result of this command, the retrieved
entry is also deleted from the table.

Parameters

psEndPointDefinition Pointer to the ZCL endpoint definition structure for the
application (see Section 34.1.1)

psClusterInstance Pointer to structure containing information about the
Alarms cluster instance (see Section 34.1.16)

pu8AlarmCode Pointer to location to receive the alarm code which
identifies the retrieved alarm type

pu16ClusterId Pointer to location to receive the Cluster ID of the
cluster which generated the alarm

pu32TimeStamp Pointer to location to receive time-stamp (UTC) of the
retrieved alarm (a value of 0XFFFFFFFF indicates that
no time-stamp is available for the alarm)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_AlarmsGetAlarmFromLog(
tsZCL_EndPointDefinition *psEndPointDefinition,
tsZCL_ClusterInstance *psClusterInstance,
uint8 *pu8AlarmCode,
uint16 *pu16ClusterId,
uint32 *pu32TimeStamp);
258 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_AlarmsSignalAlarm

Description

This function can be called on the Alarms cluster server to send an Alarm notification
to a cluster client and add a log entry to the local Alarms table on the server. The
function should be called by the server application when an alarm condition has
occurred. The alarm and the cluster which generated it must be specified.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

u8AlarmCode Code which identifies the type of alarm that has
occurred

u16ClusterId Cluster ID of the cluster which generated the
alarm

teZCL_Status eCLD_AlarmsSignalAlarm(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8AlarmCode,
uint16 u16ClusterId);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 259

Chapter 13
Alarms Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
260 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_AlarmsClearAlarm

Description

This function can be called on the Alarms cluster server to reset an active alarm by
sending a Clear Alarm command to a cluster client (e.g. to indicate that an audible
alarm signal should be stopped). The alarm and the cluster which generated it must
be specified.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

u8AlarmCode Code which identifies the type of alarm

u16ClusterId Cluster ID of the cluster which generated the
alarm

teZCL_Status eCLD_AlarmsClearAlarm(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8AlarmCode,
uint16 u16ClusterId);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 261

Chapter 13
Alarms Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
262 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
13.7 Structures

13.7.1 Event Callback Message Structure

For an Alarms event, the eEventType field of the tsZCL_CallBackEvent structure
is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an
element sClusterCustomMessage, which is itself a structure containing a field
pvCustomData. This field is a pointer to the following
tsCLD_AlarmsCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_AlarmsResetAlarmCommandPayload *psResetAlarmCommandPayload;

 tsCLD_AlarmsAlarmCommandPayload *psAlarmCommandPayload;

 tsCLD_AlarmsGetAlarmResponsePayload *psGetAlarmResponse;

 } uMessage;

} tsCLD_AlarmsCallBackMessage;

where:

 u8CommandId indicates the type of Alarms command that has been received
by a cluster server or client, one of:

 E_CLD_ALARMS_CMD_RESET_ALARM (server event)

 E_CLD_ALARMS_CMD_RESET_ALL_ALARMS (server event)

 E_CLD_ALARMS_CMD_GET_ALARM (server event)

 E_CLD_ALARMS_CMD_RESET_ALARM_LOG (server event)

 E_CLD_ALARMS_CMD_CLEAR_ALARM (client event)

 E_CLD_ALARMS_CMD_ALARM (client event)

 E_CLD_ALARMS_CMD_GET_ALARM_RESPONSE (client event)

 uMessage is a union containing the command payload in the following form:

 psResetAlarmCommandPayload is a pointer to a structure containing
the Reset Alarm command payload - see Section 13.7.3.1

 psAlarmCommandPayload is a pointer to a structure containing the
Alarm notification payload - see Section 13.7.3.2

 psGetAlarmResponse is a pointer to a structure containing the Get
Alarm response payload - see Section 13.7.4.1

For further information on the above events, refer to Section 13.5.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 263

Chapter 13
Alarms Cluster

13.7.2 Custom Data Structure

The Alarms cluster requires extra storage space to be allocated for use by internal
functions. The structure definition for this storage is shown below:

typedef struct

{

 DLIST lAlarmsAllocList;

 DLIST lAlarmsDeAllocList;

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_AlarmsCallBackMessage sCallBackMessage;

 tsCLD_AlarmsTableEntry
 asAlarmsTableEntry[CLD_ALARMS_MAX_NUMBER_OF_ALARMS];

} tsCLD_AlarmsCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

13.7.3 Custom Command Payloads

This section contains the structures for the payloads of the Alarms cluster custom
commands.

13.7.3.1 Reset Alarm Command Payload

typedef struct

{

 uint8 u8AlarmCode;

 uint16 u16ClusterId;

} tsCLD_AlarmsResetAlarmCommandPayload;

where:

 u8AlarmCode is the code which identifies the type of alarm to be reset - these
codes are cluster-specific

 u16ClusterId is the Cluster ID of the cluster which generated the alarm to be
reset
264 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
13.7.3.2 Alarm Notification Payload

typedef struct

{

 uint8 u8AlarmCode;

 uint16 u16ClusterId;

} tsCLD_AlarmsAlarmCommandPayload;

where:

 u8AlarmCode is the code which identifies the type of alarm that has been
generated - these codes are cluster-specific

 u16ClusterId is the Cluster ID of the cluster which generated the alarm

13.7.4 Custom Response Payloads

This section contains the structures for the payloads of the Alarms cluster custom
responses.

13.7.4.1 Get Alarm Response Payload

typedef struct

{

 uint8 u8Status;

 uint8 u8AlarmCode;

 uint16 u16ClusterId;

 uint32 u32TimeStamp;

} tsCLD_AlarmsGetAlarmResponsePayload;

where:

 u8Status indicates the result of the Get Alarm operation as follows:

 SUCCESS (0x01): An alarm entry was successfully retrieved from the
Alarms table and its details are reported in the remaining fields (below)

 NOT_FOUND (0x00): There were no alarm entries to be retrieved from the
Alarms table and the remaining fields (below) are empty

 u8AlarmCode is the code which identifies the type of alarm reported - these
codes are cluster-specific

 u16ClusterId is the Cluster ID of the cluster which generated the alarm

 u32TimeStamp is a time-stamp representing the time (UTC) at which the
alarm was generated (a value of 0XFFFFFFFF indicates that no time-stamp is
available for the alarm)
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 265

Chapter 13
Alarms Cluster

13.7.5 Alarms Table Entry

The following structure contains the data for an entry of an Alarms table.

typedef struct

{

 DNODE dllAlarmsNode;

 uint8 u8AlarmCode;

 uint16 u16ClusterId;

 uint32 u32TimeStamp;

} tsCLD_AlarmsTableEntry;

where:

 dllAlarmsNode is for internal use and no knowledge of it is required

 u8AlarmCode is the code which identifies the type of alarm - these codes are
cluster-specific

 u16ClusterId is the Cluster ID of the cluster which generated the alarm

 u32TimeStamp is a time-stamp representing the time (UTC) at which the
alarm was generated (a value of 0XFFFFFFFF indicates that no time-stamp is
available for the alarm)

13.8 Enumerations

13.8.1 teCLD_Alarms_AttributeID

The following structure contains the enumerations used to identify the attributes of the
Alarms cluster.

typedef enum

{

 E_CLD_ALARMS_ATTR_ID_ALARM_COUNT = 0x0000,

} teCLD_Alarms_AttributeID;
266 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
13.9 Compile-Time Options

To enable the Alarms cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:

#define CLD_ALARMS

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define ALARMS_CLIENT

#define ALARMS_SERVER

The Alarms cluster contains macros that may be optionally specified at compile-time
by adding one or more of the following lines to the zcl_options.h file.

Add this line to enable the optional Alarm Count attribute:

#define CLD_ALARMS_ATTR_ALARM_COUNT

Add this line to set the maximum number of entries in the Alarms table on the server:

#define CLD_ALARMS_MAX_NUMBER_OF_ALARMS n

where n is the maximum to be set.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 267

Chapter 13
Alarms Cluster

268 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
14. Time Cluster and ZCL Time

This chapter describes the Time cluster which is defined in the ZCL. This cluster is
used to maintain a time reference for the transactions in a ZigBee PRO network and
to time-synchronise the ZigBee PRO devices.

The Time cluster has a Cluster ID of 0x000A.

This section also describes the maintenance of ‘ZCL time’.

14.1 Overview

The Time cluster is required in a ZigBee PRO network in which the constituent devices
must be kept time-synchronised - for example, in a Home Automation network, it may
be necessary for heating to operate only between specific times of the day. In such a
case, one device implements the Time cluster as a server and acts as the time-master
for the network, while other devices in the network implement the Time cluster as a
client and time-synchronise with the server.

Note that as for all clusters, the Time cluster is stored in a shared device structure (see
Section 14.3) which, for the cluster client, reflects the state of the cluster server.
Access to the shared device structure (on Time cluster server and client) must be
controlled using a mutex - for information on mutexes, refer to Appendix A.

The Time cluster is enabled by defining CLD_TIME in the zcl_options.h file. The
inclusion of the client or server software must also be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).
The compile-time options for the Time cluster are fully detailed in Section 14.10.

In addition to the time in the Time cluster, the ZCL also keeps its own time, ‘ZCL time’.
ZCL time may be maintained on a device even when the Time cluster is not used by
the device. Both times are described below.

Time Attribute

The Time cluster contains an attribute for the current time, as well as associated
information such as time-zone and daylight saving - see Section 14.3. The time
attribute is referenced to UTC (Co-ordinated Universal Time) and based on the type
UTCTime, which is defined in the ZigBee standard as:

"UTCTime is an unsigned 32 bit value representing the number of seconds since 0
hours, 0 minutes, 0 seconds, on the 1st of January, 2000 UTC".

Note: This section is not entirely applicable to the Home
Automation (HA) profile. Time handling in HA is
described in the ZigBee PRO Home Automation API
User Guide (JN-UG-3076).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 269

Chapter 14
Time Cluster and ZCL Time

ZCL Time

‘ZCL time’ is based on the above UTCTime definition. This time is derived from a one-
second timer provided by JenOS and is used to drive any ZCL timers that have been
registered.
270 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
14.2 Time Cluster Structure and Attributes

The Time cluster is contained in the following tsCLD_Time structure:

typedef struct

{

zutctime utctTime; /* Mandatory */

zbmap8 u8TimeStatus; /* Mandatory */

#ifdef CLD_TIME_ATTR_TIME_ZONE

zint32 i32TimeZone;

#endif

#ifdef CLD_TIME_ATTR_DST_START

zuint32 u32DstStart;

#endif

#ifdef CLD_TIME_ATTR_DST_END

zuint32 u32DstEnd;

#endif

#ifdef CLD_TIME_ATTR_DST_SHIFT

zint32 i32DstShift;

#endif

#ifdef CLD_TIME_ATTR_STANDARD_TIME

zuint32 u32StandardTime;

#endif

#ifdef CLD_TIME_ATTR_LOCAL_TIME

zuint32 u32LocalTime;

#endif

#ifdef CLD_TIME_ATTR_LAST_SET_TIME

zutctime u32LastSetTime;

#endif

#ifdef CLD_TIME_ATTR_VALID_UNTIL_TIME

zutctime u32ValidUntilTime;

#endif

} tsCLD_Time;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 271

Chapter 14
Time Cluster and ZCL Time

where:

 utctTime is a mandatory 32-bit attribute which holds the current time (UTC).
This attribute can only be over-written using a remote ‘write attributes’ request if
the local Time cluster is not configured as the time-master for the network - this
is the case if bit 0 of the element u8TimeStatus (see below) is set to 0.

 u8TimeStatus is a mandatory 8-bit attribute containing the following bitmap:

* DST= Daylight Saving Time

Macros are provided for setting the individual bits of this bitmap:

 CLD_TM_TIME_STATUS_MASTER_MASK (bit 0)

 CLD_TM_TIME_STATUS_SYNCHRONIZED_MASK (bit 1)

 CLD_TM_TIME_STATUS_MASTER_ZONE_DST_MASK (bit 2)

 i32TimeZone is an optional attribute which indicates the local time-zone
expressed as an offset from UTC, in seconds.

 u32DstStart is an optional attribute which contains the start-time (UTC), in
seconds, for daylight saving for the current year.

 u32DstEnd is an optional attribute which contains the end-time (UTC), in
seconds, for daylight saving for the current year.

 i32DstShift is an optional attribute which contains the local time-shift, in
seconds, relative to standard local time that is applied during the daylight
saving period.

 u32StandardTime is an optional attribute which contains the local standard
time (equal to utctTime + i32TimeZone).

 u32LocalTime is an optional attribute which contains the local time taking into
account daylight saving, if applicable (equal to utctTime + i32TimeZone +
i32DstShift during the daylight saving period).

 u32LastSetTime is an optional attribute which indicates the most recent UTC
time at which the Time attribute (utctTime) was set, either internally or over
the ZigBee network.

 u32ValidUntilTime is an optional attribute which indicates a UTC time
(later than u32LastSetTime) up to which the Time attribute (utctTime)
value may be trusted.

Bits Meaning Description

0 Master 1: Time-master for network
0: Not time-master for network

1 Synchronised 1: Synchronised to another device
0: Not synchronised to another device

2 Master for Time
Zone and DST *

1: Master for time-zone and DST
0: Not master for time-zone and DST

3-7 Reserved -

Table 9: u8TimeStatus Bitmap
272 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
The Time cluster structure contains two mandatory elements, utctTime and
u8TimeStatus. The remaining elements are optional, each being enabled/disabled
through a corresponding macro defined in the zcl_options.h file - for example, the
optional time zone element i32TimeZone is enabled/disabled through the macro
CLD_TIME_ATTR_TIME_ZONE (see Section 14.3.2).

14.3 Attribute Settings

14.3.1 Mandatory Attributes

The mandatory attributes of the Time cluster are set as follows:

utctTime

This is a mandatory 32-bit attribute which holds the current time (UTC). On the time-
master, this attribute value is incremented once per second. On all other devices, it is
the responsibility of the local application to synchronise this time with the time-master.
For more information on time-synchronisation, refer to Section 14.5.

u8TimeStatus

This is a mandatory 8-bit attribute containing the bitmap detailed in Table 9 on
page 272. This attribute must be set as follows on the time-master (Time cluster
server):

 The ‘Master’ bit should initially be zero until the current time has been obtained
from an external time-of-day source. Once the time has been obtained and set,
the ‘Master’ bit should be set (to ‘1’).

 The ‘Synchronised’ bit must always be zero, as the time-master does not obtain
its time from another device within the ZigBee network (this bit is set to ‘1’ only
for a secondary Time cluster server that is synchronised to the time-master).

 The ‘Master for Time Zone and DST’ bit must be set (to ‘1’) once the time-zone
and Daylight Saving Time (DST) attributes (see below) have been correctly set
for the device.

Macros are provided for setting the individual bits of the u8TimeStatus bitmap - for
example, the macro CLD_TM_TIME_STATUS_MASTER_MASK is used to set the
Master bit. These macros are defined in the header file time.h and are also listed in
Section 14.2.

Note: If required, the daylight saving attributes
(u32DstStart, u32DstEnd and i32DstShift) must
all be enabled together.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 273

Chapter 14
Time Cluster and ZCL Time

14.3.2 Optional Attributes

The optional attributes of the Time cluster are set as follows:

i32TimeZone

This is an optional attribute which is enabled using the macro
CLD_TIME_ATTR_TIME_ZONE and which indicates the local time-zone.

The local time-zone is expressed as an offset from UTC, where this offset is quantified
in seconds. Therefore:

Current local standard time = utctTime + i32TimeZone

where i32TimeZone is negative if the local time is behind UTC.

u32DstStart

This is an optional attribute which is enabled using the macro
CLD_TIME_ATTR_DST_START and which contains the start-time (in seconds) for
daylight saving for the current year.

If u32DstStart is used then u32DstEnd and i32DstShift are also required.

u32DstEnd

This is an optional attribute which is enabled using the macro
CLD_TIME_ATTR_DST_END and which contains the end-time (in seconds) for
daylight saving for the current year.

If u32DstEnd is used then u32DstStart and i32DstShift are also required.

i32DstShift

This is an optional attribute which is enabled using the macro
CLD_TIME_ATTR_DST_SHIFT and which contains the local time-shift (in seconds),
relative to standard local time, that is applied during the daylight saving period
(between u32DstStart and u32DstEnd). During this period:

Current local time = utctTime + i32TimeZone + i32DstShift

This time-shift varies between territories, but is 3600 seconds (1 hour) for Europe and
North America.

If i32DstShift is used then u32DstStart and u32DstEnd are also required.

u32StandardTime

This is an optional attribute which is enabled using the macro
CLD_TIME_ATTR_STANDARD_TIME and which contains the local standard time
(equal to utctTime + i32TimeZone).

u32LocalTime

This is an optional attribute which is enabled using the macro
CLD_TIME_ATTR_LOCAL_TIME and which contains the local time taking into
274 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
account daylight saving, if applicable (equal to utctTime + i32TimeZone +
i32DstShift during the daylight saving period and equal to u32StandardTime
outside of the daylight saving period).

u32LastSetTime

This is an optional attribute which is enabled using the macro
CLD_TIME_ATTR_LAST_SET_TIME and which indicates the most recent UTC time
at which the Time attribute (utctTime) was set, either internally or over the ZigBee
network.

u32ValidUntilTime

This is an optional attribute which is enabled using the macro
CLD_TIME_ATTR_VALID_UNTIL_TIME and indicates a UTC time (later than
u32LastSetTime) up to which the Time attribute (utctTime) value may be trusted.

14.4 Maintaining ZCL Time

The simplest case of keeping time on a ZigBee PRO device is to maintain ‘ZCL time’
only (without using the Time cluster). In this case, the ZCL time on a device can be
initialised by the application using the function vZCL_SetUTCTime().

The ZCL time is subsequently incremented from a local one-second timer provided by
JenOS, as follows. On expiration of the JenOS timer, an event is generated (from the
hardware/software timer that drives the JenOS timer), which causes JenOS to activate
a ZCL user task. The event is initially handled by this task as described in Section 3.2,
resulting in an E_ZCL_CBET_TIMER event being passed to the ZCL via the function
vZCL_EventHandler(). The following actions should then be performed:

1. The ZCL automatically increments the ZCL time and may run cluster-specific
schedulers.

2. The user task resumes the one-second timer using the JenOS function
OS_eContinueSWTimer().

14.4.1 Updating ZCL Time Following Sleep

In the case of a device that sleeps, on waking from sleep, the application should
update the ZCL time using the function vZCL_SetUTCTime() according to the
duration for which the device was asleep. This requires the sleep duration to be timed.

While sleeping, the JN516x microcontroller normally uses its RC oscillator for timing
purposes, which may not maintain the required accuracy. It is therefore recommended
that a more accurate external crystal is used to time the sleep periods.

The vZCL_SetUTCTime() function does not cause timer events to be executed. If the
device is awake for less than one second, the application should generate a
E_ZCL_CBET_TIMER event to prompt the ZCL to run any timer-related functions.
Note that when passed into vZCL_EventHandler(), this event will increment the ZCL
time by one second.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 275

Chapter 14
Time Cluster and ZCL Time

14.4.2 ZCL Time Synchronisation

The local ZCL time on a device can be synchronised with the time in a time-related
cluster, such as Time, Price or Messaging. The ZCL time is considered to be
synchronised following a call to vZCL_SetUTCTime(). The NXP implementation of
the ZCL also provides the following functions relating to ZCL time synchronisation:

 u32ZCL_GetUTCTime() obtains the ZCL time (held locally).

 bZCL_GetTimeHasBeenSynchronised() determines whether the ZCL time
on the device has been synchronised - that is, whether vZCL_SetUTCTime()
has been called.

 vZCL_ClearTimeHasBeenSynchronised() can be used to specify that the
device can no longer be considered to be synchronised (for example, if there
has been a problem in accessing the Time cluster server over a long period).

14.5 Time-Synchronisation of Devices

The devices in a ZigBee PRO network may need to be time-synchronised (so that they
all refer to the same time). In this case, the Time cluster is used and one device acts
as the Time cluster server and time-master from which the other devices set their time.

There are two times on a device that should be maintained during the synchronisation
process:

 Time attribute of the Time cluster (utctTime field of tsCLD_Time structure)

 ZCL time

On the time-master, these times are initialised by the local application using an
external master time and are subsequently maintained using a local one-second timer
(see Section 14.5.1), as well as occasional re-synchronisations with external master
time.

On all other devices, these times are initialised by the local application by
synchronising with the time-master (see Section 14.5.2). The ZCL time is
subsequently maintained using a local one-second timer and both times are
occasionally re-synchronised with the time-master (see Section 14.5.3).

Synchronisation with the time-master is normally performed via the Time cluster.

Note: Synchronisation with a time-master is not
normally required for the devices in a Home Automation
(HA) network. In this case, it is sufficient to use the ZCL
time without synchronisation between devices, as
described in Section 14.4.
276 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide

The diagram in Figure 4 below provides an overview of the time initialisation and
synchronisation processes described in the sub-sections that follow.

Caution: If there is more than one Time cluster server in
the network, devices should only attempt to synchronise
to one server in order to prevent their clocks from
repeatedly jittering backwards and forwards.

Figure 4: Time Initialisation and Synchronisation

Time Cluster

Application on
Time-master

ZCL Clock

ZCL

JenOS Timer

Time Cluster

Application on
Other Device

ZCL Clock

ZCL

JenOS Timer

Increment

Increment Set

Set

Master Time
from External Source

'Read
Attributes'
Request

'Read
Attributes'
Response

Increment

READ_ATTRIBUTES_RESPONSE Event

Callback Function

Set

Set
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 277

Chapter 14
Time Cluster and ZCL Time

14.5.1 Initialising and Maintaining Master Time

The time-master must initially obtain a master time from an external source. The
application on the time-master must use this time to set its ZCL time by calling the
function vZCL_SetUTCTime() and to set the value of the Time cluster attribute
utctTime in the local tsCLD_Time structure within the shared device structure
(securing access with a mutex). The application must also set (to ‘1’) the ‘Master’ bit
of the u8TimeStatus attribute of the tsCLD_Time structure, to indicate that this
device is the time-master and that the time has been set.

If the time-master has also obtained time-zone and daylight saving information (or has
been pre-programmed with this information), its application must set (to ‘1’) the
‘Master for Time Zone and DST’ bit of the u8TimeStatus attribute and write the
relevant optional attributes. These optional attributes can then be used to provide
time-zone and daylight saving information to other devices (see Section 14.3).

The ZCL time and the utctTime attribute are subsequently incremented from a local
one-second timer provided by JenOS, as follows. On expiration of the JenOS timer,
an event is generated (from the hardware/software timer that drives the JenOS timer),
which causes JenOS to activate a ZCL user task. The event is initially handled by this
task as described in Section 3.2, resulting in an E_ZCL_CBET_TIMER event being
passed to the ZCL via the function vZCL_EventHandler(). The following actions
should then be performed:

1. The ZCL automatically increments the ZCL time and may run cluster-specific
schedulers (e.g. for maintaining a price list).

2. The user task updates the value of the utctTime attribute of the
tsCLD_Time structure within the shared device structure (securing access
with a mutex).

3. The user task resumes the one-second timer using the JenOS function
OS_eContinueSWTimer().

Both the ZCL time and the utctTime attribute must also be updated by the
application when an update of the master time is received.

Note: The ‘Synchronised’ bit of the u8TimeStatus
attribute should always be zero on the time-master, as
this device does not synchronise to any other device
within the ZigBee network.

Note: The time-master can prevent other devices from
attempting to read its Time cluster attributes before the
time has been set - the initialisation of the master time
should be done after registering the endpoint for the
device and before starting the ZigBee PRO stack.
278 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
14.5.2 Initial Synchronisation of Devices

It is the responsibility of the application on a ZigBee PRO device to perform time-
synchronisation with the time-master. The application can remotely read the Time
cluster attributes from the time-master by calling the function
eZCL_SendReadAttributesRequest(), which will result in a ‘read attributes’
response containing the Time cluster data. On receiving this response, a ‘data
indication’ stack event is generated on the local device, which causes JenOS to
activate a ZCL user task. The event is initially handled by this task as described in
Section 3.2, resulting in an E_ZCL_ZIGBEE_EVENT event being passed to the ZCL
via the function vZCL_EventHandler(). Provided that the event contains a message
incorporating a ‘read attributes’ response, the ZCL:

1. automatically sets the utctTime field of the tsCLD_Time structure to the
value of the same attribute in the ‘read attributes’ response (and also sets
other Time cluster attributes, if requested)

2. invokes the relevant user-defined callback function (see Chapter 3), which
must read the local utctTime attribute (securing access with a mutex) and
use this value to set the ZCL time by calling the function vZCL_SetUTCTime()

It may also be possible to obtain time-zone and daylight saving information from the
time-master. If available, this information will be returned in the ‘read attributes’
response. However, before using these optional Time cluster attributes from the
response, the application should first check that the ‘Master for Time Zone and DST’
bit of the u8TimeStatus attribute is set (to ‘1’) in the response.

The ZCL time and utctTime attribute value on the local device are subsequently
maintained as described in Section 14.5.3.

Note: When a device attempts to time-synchronise with
the time-master, it should check the u8TimeStatus
attribute in the ‘read attributes’ response. If the ‘Master’
bit of this attribute is not equal to ‘1’, the obtained time
should not be trusted and the time should not be set.
The device should wait and try to synchronise again
later.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 279

Chapter 14
Time Cluster and ZCL Time

14.5.3 Re-synchronisation of Devices

After the initialisation described in Section 14.5.2, the ZCL time must be updated by
the application on each one-second tick of the local JenOS timer. The ZCL time is
updated from the timer in the same way as described in Section 14.4.

Due to the inaccuracy of the local one-second timer, the ZCL time is likely to lose
synchronisation with the time on the time-master. It will therefore be necessary to
occasionally re-synchronise the local ZCL time with the time-master - the utctTime
attribute value is also updated at the same time. A device can re-synchronise with the
time-master by first remotely reading the utctTime attribute using the function
eZCL_SendReadAttributesRequest(). On receiving the ‘read attributes’ response
from the time-master, the operations performed are the same as those described for
initial synchronisation in Section 14.5.2.

14.6 Time Event

The Time cluster does not have any events of its own, but the ZCL includes one time-
related event: E_ZCL_CBET_TIMER. For this event, the eEventType field of the
tsZCL_CallBackEvent structure (see Section 3.1) is set to E_ZCL_CBET_TIMER.

The application may need to generate this event, as indicated in Section 3.2.
280 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
14.7 Functions

The following time-related functions are provided in the NXP implementation of the
ZCL:

Function Page

eCLD_TimeCreateTime 282

vZCL_SetUTCTime 284

u32ZCL_GetUTCTime 285

bZCL_GetTimeHasBeenSynchronised 286

vZCL_ClearTimeHasBeenSynchronised 287

Note: The time used in the Time cluster and in the ZCL
is a UTC (Co-ordinated Universal Time) type UTCTime,
which is defined in the ZigBee Specification as follows:
"UTCTime is an unsigned 32 bit value representing the
number of seconds since 0 hours, 0 minutes, 0
seconds, on the 1st of January, 2000 UTC"
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 281

Chapter 14
Time Cluster and ZCL Time

eCLD_TimeCreateTime

Description

This function creates an instance of the Time cluster on the local endpoint. The
cluster instance can act as a server or a client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Time cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be the first Time cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Time cluster,
which can be obtained by using the macro
CLD_TIME_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppTimeClusterAttributeControlBits[CLD_TIME_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

teZCL_Status eCLD_TimeCreateTime(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. Simple Sensor of the
HA profile) will be used. In this case, the device and its
supported clusters must be registered on the endpoint using
the relevant device registration function.
282 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Time cluster. This
parameter can refer to a pre-filled structure called
sCLD_Time which is provided in the Time.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Time which defines the
attributes of Time cluster. The function will initialise the
attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 283

Chapter 14
Time Cluster and ZCL Time

vZCL_SetUTCTime

Description

This function sets the current time (UTC) that is stored in the ZCL (‘ZCL time’).

The application may call this function, for example, when a time update has been
received (e.g. via the Time or Price cluster).

Note that this function does not update the time in the Timer cluster - if required, the
application must do this by writing to the tsCLD_Time structure (see Section 14.2).

Parameters

u32UTCTime The current time (UTC) to be set, in seconds

Returns

None

void vZCL_SetUTCTime(uint32 u32UTCTime);
284 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
u32ZCL_GetUTCTime

Description

This function obtains the current time (UTC) that is stored in the ZCL (‘ZCL time’).

Parameters

None

Returns

The current time (UTC), in seconds, obtained from the ZCL

uint32 u32ZCL_GetUTCTime(void);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 285

Chapter 14
Time Cluster and ZCL Time

bZCL_GetTimeHasBeenSynchronised

Description

This function queries whether the ZCL time on the device has been synchronised.

The clock is considered to be unsynchronised at start-up and is synchronised
following a call to vZCL_SetUTCtime(). The ZCL time must be synchronised before
using the time-related functions of other clusters.

Parameters

None

Returns

TRUE if the local ZCL time has been synchronised, otherwise FALSE

bool_t bZCL_GetTimeHasBeenSynchronised(void);
286 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vZCL_ClearTimeHasBeenSynchronised

Description

This function is used to notify the ZCL that the local ZCL time may no longer be
accurate.

Parameters

None

Returns

None

void vZCL_ClearTimeHasBeenSynchronised(void);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 287

Chapter 14
Time Cluster and ZCL Time

14.8 Return Codes

The time-related functions use the ZCL return codes defined in Section 35.2.

14.9 Enumerations

14.9.1 teCLD_TM_AttributeID

The following structure contains the enumerations used to identify the attributes of the
Time cluster.

typedef enum

{

 E_CLD_TIME_ATTR_ID_TIME = 0x0000, /* Mandatory */

 E_CLD_TIME_ATTR_ID_TIME_STATUS, /* Mandatory */

 E_CLD_TIME_ATTR_ID_TIME_ZONE,

 E_CLD_TIME_ATTR_ID_DST_START,

 E_CLD_TIME_ATTR_ID_DST_END,

 E_CLD_TIME_ATTR_ID_DST_SHIFT,

 E_CLD_TIME_ATTR_ID_STANDARD_TIME,

 E_CLD_TIME_ATTR_ID_LOCAL_TIME,

 E_CLD_TIME_ATTR_ID_LAST_SET_TIME,

 E_CLD_TIME_ATTR_ID_VALID_UNTIL_TIME

} teCLD_TM_AttributeID;

14.10 Compile-Time Options

To enable the Time cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:

#define CLD_TIME

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define TIME_CLIENT

#define TIME_SERVER

The Time cluster contains macros that may be optionally specified at compile-time by
adding some or all of the following lines to the zcl_options.h file.

Add this line to enable the optional Time Zone attribute

#define CLD_TIME_ATTR_TIME_ZONE

Add this line to enable the optional DST Start attribute

#define CLD_TIME_ATTR_DST_START
288 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Add this line to enable the optional DST End attribute

#define CLD_TIME_ATTR_DST_END

Add this line to enable the optional DST Shift attribute

#define CLD_TIME_ATTR_DST_SHIFT

Add this line to enable the optional Standard Time attribute

#define CLD_TIME_ATTR_STANDARD_TIME

Add this line to enable the optional Local Time attribute

#define CLD_TIME_ATTR_LOCAL_TIME

Note that some attributes must always be enabled together - for example, if daylight
saving is to be implemented then CLD_TIME_ATTR_DST_START,
CLD_TIME_ATTR_DST_END and CLD_TIME_ATTR_DST_SHIFT must all be
included in the zcl_options.h file.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 289

Chapter 14
Time Cluster and ZCL Time

290 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
15. Binary Input (Basic) Cluster

This chapter describes the Binary Input (Basic) cluster which is defined in the ZCL,
and which provides an interface for accessing a binary measurement and its
associated characteristics.

The Binary Input (Basic) cluster has a Cluster ID of 0x000F.

15.1 Overview

The Binary Input (Basic) cluster provides an interface for accessing a binary
measurement and its associated characteristics, and is typically used to implement a
sensor that measures a two-state physical quantity.

To use the functionality of this cluster, you must include the file Binary_input_basic.h
in your application and enable the cluster by defining CLD_BINARY_INPUT_BASIC
in the zcl_options.h file.

A Binary Input (Basic) cluster instance can act as either a client or a server. The
inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Binary Input (Basic) cluster are fully detailed in
Section 15.5.

15.2 Binary Input (Basic) Structure and Attribute

The structure definition for the Binary Input (Basic) cluster is:

typedef struct

{

#ifdef CLD_BINARY_INPUT_BASIC_ATTR_ACTIVE_TEXT

 tsZCL_CharacterString sActiveText;

 uint8 au8ActiveText[16];

#endif

#ifdef CLD_BINARY_INPUT_BASIC_ATTR_DESCIRPTION

 tsZCL_CharacterString sDescription;

 uint8 au8Description[16];

#endif

#ifdef CLD_BINARY_INPUT_BASIC_ATTR_INACTIVE_TEXT

 tsZCL_CharacterString sInactiveText;

 uint8 au8InactiveText[16];
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 291

Chapter 15
Binary Input (Basic) Cluster

#endif

 zbool bOutOfService;

#ifdef CLD_BINARY_INPUT_BASIC_ATTR_POLARITY

 zenum8 u8Polarity;

#endif

 zbool bPresentValue;

#ifdef CLD_BINARY_INPUT_BASIC_ATTR_RELIABILITY

 zenum8 u8Reliability;

#endif

 zbmap8 u8StatusFlags;

#ifdef CLD_BINARY_INPUT_BASIC_ATTR_APPLICATION_TYPE

 zuint32 u32ApplicationType;

#endif

} tsCLD_BinaryInputBasic;

 The following optional pair of attributes are used to store a human readable
description of the active state of a binary input (e.g. “Window 3 open”):

 sActiveText is a tsZCL_CharacterString structure (see Section
34.1.14) for a string of up to 16 characters representing the description

 au8ActiveText[16] is a byte-array which contains the character data
bytes representing the description

 The following optional pair of attributes are used to store a human readable
description of the usage of the binary input (e.g. “Window 3”):

 sDescription is a tsZCL_CharacterString structure (see Section
34.1.14) for a string of up to 16 characters representing the description

 au8Description[16] is a byte-array which contains the character data
bytes representing the description

 The following optional pair of attributes are used to store a human readable
description of the inactive state of a binary input (e.g. “Window 3 closed”):

 sInactiveText is a tsZCL_CharacterString structure (see Section
34.1.14) for a string of up to 16 characters representing the description

 au8InactiveText[16] is a byte-array which contains the character
data bytes representing the description
292 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 bOutOfService is an optional attribute which indicates whether the binary
input is currently in or out of service:

 TRUE: Out of service

 FALSE In service

If this attribute is set to TRUE, the bPresentValue attribute will not be updated
to contain the current value of the input.

 u8Polarity is a optional attribute which indicates the relationship between
the value of the bPresentValue attribute and the physical state of the input:

 E_CLD_ BINARY_INPUT_BASIC_POLARITY_NORMAL (0x00): The
active (1) state of bPresentValue corresponds to the active/on state of
the physical input

 E_CLD_ BINARY_INPUT_BASIC_POLARITY_REVERSE (0x01): The
active (1) state of bPresentValue corresponds to the inactive/off state of
the physical input

 bPresentValue is a mandatory attribute representing the current state of the
binary input (this attribute is updated when the input changes state):

 TRUE: Input is in the ‘active’ state

 FALSE: Input is in the ‘inactive’ state

The interpretation bPresentValue in relation to the physical state of the input
is determined by the setting of the u8Polarity attribute.

 u8Reliability is an optional attribute which indicates whether the value
reported through bPresentValue is reliable and why it might be unreliable:

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_SENSOR

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_OVER_RANGE

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_UNDER_RANGE

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_OPEN_LOOP

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_SHORTED_LOOP

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_OUTPUT

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_PROCESS_ERROR

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 293

Chapter 15
Binary Input (Basic) Cluster

 u8StatusFlags is a mandatory attribute which is a bitmap representing the
following status flags:

 u32ApplicationType is an optional attribute which is a bitmap representing
the application type, as follows:

15.3 Functions

The following Binary Input (Basic) cluster function is provided in the NXP
implementation of the ZCL:

Function Page

eCLD_BinaryInputBasicCreateBinaryInputBasic 295

The cluster attributes can be accessed using the general attribute read/write functions,
as described in Section 2.2.

Bits Name Description

0 In Alarm Reserved - unused for Binary Input (Basic) cluster

1 Fault • 1: Optional attribute u8Reliability is used and does not have
a value of NO_FAULT_DETECTED

• 0: Otherwise

2 Overridden • 1: Cluster has been over-ridden by a local mechanism
(bPresentValue and u8Reliability will not track input)

• 0: Otherwise

3 Out Of Service • 1: Optional attribute bOutOfService is used and is TRUE

• 0: Otherwise

4-7 - Reserved

Bits Field Name Description

0-15 Index Specific application usage (e.g. Boiler Status). For a complete
list of usages and the corresponding Index codes, refer to the
attribute description in the ZCL Specification.

16-23 Type Application usage domain. For the Basic Input cluster, this is
0x00 or 0x01, depending on the application usage. For lists of
usages for each of these Type codes, refer to the attribute
description in the ZCL Specification.

24-31 Group The Cluster ID of the cluster that this attribute is part of. For the
Binary Input (Basic) cluster, this is 0x000F.
294 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_BinaryInputBasicCreateBinaryInputBasic

Description

This function creates an instance of the Binary Input (Basic) cluster on an endpoint.
The cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Binary Input (Basic) cluster
instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Binary Input
(Basic) cluster, which can be obtained by using the macro
CLD_BINARY_INPUT_BASIC_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppBinaryInputBasicClusterAttributeControlBits
 [CLD_BINARY_INPUT_BASIC_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status
eCLD_BinaryInputBasicCreateBinaryInputBasic(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 295

Chapter 15
Binary Input (Basic) Cluster

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Binary Input (Basic)
cluster. This parameter can refer to a pre-filled structure
called sCLD_BinaryInputBasic which is provided in
the BinaryInputBasic.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_BinaryInputBasic which
defines the attributes of Binary Input (Basic) cluster.
The function will initialise the attributes with default
values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
296 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
15.4 Enumerations

15.4.1 teCLD_BinaryInputBasicCluster_AttrID

The following structure contains the enumerations used to identify the attributes of the
Binary Input (Basic) cluster.

typedef enum

{

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_ACTIVE_TEXT,

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_DESCRIPTION,

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_INACTIVE_TEXT,

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_OUT_OF_SERVICE,

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_POLARITY,

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_PRESENT_VALUE,

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_RELIABILITY,

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_STATUS_FLAGS,

 E_CLD_BINARY_INPUT_BASIC_ATTR_ID_APPLICATION_TYPE

} teCLD_BinaryInputBasicCluster_AttrID;

15.4.2 teCLD_BinaryInputBasic_Polarity

The following structure contains the enumerations used to specify the value of the
u8Polarity attribute (see Section 15.2).

typedef enum

{

 E_CLD_ BINARY_INPUT_BASIC_POLARITY_NORMAL,

 E_CLD_ BINARY_INPUT_BASIC_POLARITY_REVERSE

}teCLD_BinaryInputBasic_Polarity
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 297

Chapter 15
Binary Input (Basic) Cluster

15.4.3 teCLD_BinaryInputBasic_Reliability

The following structure contains the enumerations used to report the value of the
u8Reliability attribute (see Section 15.2).

typedef enum

{

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_FAULT_DETECTED,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_SENSOR,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_OVER_RANGE,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_UNDER_RANGE,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_OPEN_LOOP,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_SHORTED_LOOP,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_NO_OUTPUT,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_UNRELIABLE_OTHER,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_PROCESS_ERROR,

 E_CLD_ BINARY_INPUT_BASIC_RELIABILITY_CONFIGURATION_ERROR

}teCLD_BinaryInputBasic_Reliability;

15.5 Compile-Time Options

To enable the Binary Input (Basic) cluster in the code to be built, it is necessary to add
the following to the zcl_options.h file:

#define CLD_BINARY_INPUT_BASIC

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define BINARY_INPUT_BASIC_CLIENT

#define BINARY_INPUT_BASIC_SERVER

Optional Attributes

The optional attributes for the Binary Input (Basic) cluster (see Section 15.2) are
enabled by defining:

 CLD_BINARY_INPUT_BASIC_ATTR_ACTIVE_TEXT

 CLD_BINARY_INPUT_BASIC_ATTR_DESCRIPTION

 CLD_BINARY_INPUT_BASIC_ATTR_INACTIVE_TEXT

 CLD_BINARY_INPUT_BASIC_ATTR_POLARITY

 CLD_BINARY_INPUT_BASIC_ATTR_RELIABILITY

 CLD_BINARY_INPUT_BASIC_ATTR_APPLICATION_TYPE
298 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
16. Commissioning Cluster

This chapter details the Commissioning cluster which is defined in the ZCL and is a
optional cluster for all ZigBee devices.

The Commissioning cluster has a Cluster ID of 0x0015.

16.1 Overview

The Commissioning cluster is used for commissioning the ZigBee stack on a device
during network installation and defining the device behaviour with respect to the
ZigBee network (it does not affect applications operating on the devices).

This optional cluster is enabled by defining CLD_COMMISSIONING in the
zcl_options.h file. The inclusion of the client or server software must also be pre-
defined in the application’s compile-time options (in addition, if the cluster is to reside
on a custom endpoint then the role of client or server must also be specified when
creating the cluster instance). The compile-time options for the Commissioning cluster
are fully detailed in Section 16.6.

Only server attributes are supported and all are optional. The information that can
potentially be stored in the Commissioning cluster is organised into the following
attribute sets: Start-up Parameters, Join Parameters, End Device Parameters,
Concentrator Parameters. The attribute values are set by the application but the
application must ensure that these values are synchronised with the settings and NIB
values for the ZigBee PRO stack.

16.2 Commissioning Cluster Structure and Attributes

The Commissioning cluster has only server attributes that are contained in the
following tsCLD_Commissioning structure:

typedef struct

{

 /* Start-up attribute set (3.15.2.2) */

#ifdef CLD_COMM_ATTR_SHORT_ADDRESS

 uint16 u16ShortAddress;

#endif

#ifdef CLD_COMM_ATTR_EXTENED_PAN_ID

 zieeeaddress u64ExtPanId;

#endif

#ifdef CLD_COMM_ATTR_PAN_ID

 uint16 u16PANId;

#endif
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 299

Chapter 16
Commissioning Cluster

#ifdef CLD_COMM_ATTR_CHANNEL_MASK

 zbmap32 u32ChannelMask;

#endif

#ifdef CLD_COMM_ATTR_PROTOCOL_VERSION

 uint8 u8ProtocolVersion;

#endif

#ifdef CLD_COMM_ATTR_STACK_PROFILE

 uint8 u8StackProfile;

#endif

#ifdef CLD_COMM_ATTR_START_UP_CONTROL

 zenum8 e8StartUpControl;

#endif

#ifdef CLD_COMM_ATTR_TC_ADDR

 zieeeaddress u64TcAddr;

#endif

#ifdef CLD_COMM_ATTR_TC_MASTER_KEY

 tsZCL_Key sTcMasterKey;

#endif

#ifdef CLD_COMM_ATTR_NWK_KEY

 tsZCL_Key sNwkKey;

#endif

#ifdef CLD_COMM_ATTR_USE_INSECURE_JOIN

 bl_t bUseInsecureJoin;

#endif

#ifdef CLD_COMM_ATTR_PRE_CONFIG_LINK_KEY

 tsZCL_Key sPreConfigLinkKey;

#endif

#ifdef CLD_COMM_ATTR_NWK_KEY_SEQ_NO

 uint8 u8NwkKeySeqNo;

#endif

#ifdef CLD_COMM_ATTR_NWK_KEY_TYPE
300 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 zenum8 e8NwkKeyType;

#endif

#ifdef CLD_COMM_ATTR_NWK_MANAGER_ADDR

 uint16 u16NwkManagerAddr;

#endif

 /* Join Parameters attribute set (3.15.2.2.2)*/

#ifdef CLD_COMM_ATTR_SCAN_ATTEMPTS

 uint8 u8ScanAttempts;

#endif

#ifdef CLD_COMM_ATTR_TIME_BW_SCANS

 uint16 u16TimeBwScans;

#endif

#ifdef CLD_COMM_ATTR_REJOIN_INTERVAL

 uint16 u16RejoinInterval;

#endif

#ifdef CLD_COMM_ATTR_MAX_REJOIN_INTERVAL

 uint16 u16MaxRejoinInterval;

#endif

 /* End Device Parameters attribute set (3.15.2.2.3)*/

#ifdef CLD_COMM_ATTR_INDIRECT_POLL_RATE

 uint16 u16IndirectPollRate;

#endif

#ifdef CLD_COMM_ATTR_PARENT_RETRY_THRSHLD

 uint8 u8ParentRetryThreshold;

#endif

 /* Concentrator Parameters attribute set (3.15.2.2.4)*/

#ifdef CLD_COMM_ATTR_CONCENTRATOR_FLAG

 bl_t bConcentratorFlag;

#endif

#ifdef CLD_COMM_ATTR_CONCENTRATOR_RADIUS

 uint8 u8ConcentratorRadius;

#endif

#ifdef CLD_COMM_ATTR_CONCENTRATOR_DISCVRY_TIME

 uint8 u8ConcentratorDiscoveryTime;

#endif

} tsCLD_Commissioning;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 301

Chapter 16
Commissioning Cluster

where:

‘Start-up Parameters’ Attribute Set

 u16ShortAddress is the intended 16-bit network address of the device
(which will be used provided that the address is not to be obtained from the
parent - that is, on the Co-ordinator or on other ZigBee PRO devices for which
e8StartUpControl is set to 0x00).

 u64ExtPanId is the 64-bit Extended PAN ID of the network which the device
should join (the special value of 0xFFFFFFFF can be used to specify no
particular network).

 u16PANId is the 16-bit PAN ID of the network which the device should join
(which will be used provided that the PAN ID is not to be obtained from the
parent - that is, on the Co-ordinator or on other ZigBee PRO devices for which
e8StartUpControl is set to 0x00).

 u32ChannelMask is a 32-bit bitmap representing an IEEE 802.15.4 channel
mask which indicates the set of radio channels that the device should scan as
part of the network join or formation process.

 u8ProtocolVersion is used to indicate the ZigBee protocol version that the
device is to support (only needed if the device potentially supports multiple
versions).

 u8StackProfile is used to indicate the stack profile to be implemented on
the device - the possible values are 0x01 for ZigBee Stack profile and 0x02 for
ZigBee PRO Stack profile.

 e8StartUpControl is an enumeration which is used to indicate the start-up
mode of the device (e.g. device should form a network with the specified
Extended PAN ID) and therefore determines how certain other attributes will be
used. For further information on how this attribute is used, refer to the ZCL
Specification.

 u64TcAddr is the 64-bit IEEE/MAC address of the Trust Centre node for the
network with the specified Extended PAN ID (this is needed if security is to be
implemented).

 sTcMasterKey is the master key to be used during key establishment with the
specified Trust Centre (this is needed if security is to be implemented). The
default is a 128-bit zero value indicating that the key is unspecified.

 sNwkKey is the network key to be used when communicating within the
network with the specified Extended PAN ID (this is needed if security is to be
implemented). The default is a 128-bit zero value indicating that the key is
unspecified.

 bUseInsecureJoin is a Boolean flag which, when set to TRUE, allows an
unsecured join as a fall-back (even if security is enabled).

 sPreConfigLinkKey is the pre-configured link key between the device and
the Trust Centre (this is needed if security is to be implemented). The default is
a 128-bit zero value indicating that the key is unspecified.

 u8NwkKeySeqNo is the 8-bit sequence number for the network key. The
default value is 0x00.
302 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 e8NwkKeyType is the type of the network key. The default value is 0x01 when
u8StackProfile is 0x01 and 0x05 when u8StackProfile is 0x02.

 u16NwkManagerAddr is the 16-bit network address of the Network Manager.
The default value is 0x0000, indicating that the Network Manager is the ZigBee
Co-ordinator.

‘Join Parameters’ Attribute Set

 u8ScanAttempts is the number of scan attempts to make before selecting a
parent to join. The default value is 0x05.

 u16TimeBwScans is the time-interval, in milliseconds, between consecutive
scan attempts. The default value is 0x64.

 u16RejoinInterval is the time-interval, in seconds, between consecutive
attempts to rejoin the network for an End Device which has lost its network
connection. The default value is 0x3C.

 u16MaxRejoinInterval is an upper limit, in seconds, on the value of the
u16RejoinInterval attribute. The default value is 0x0E10.

‘End Device Parameters’ Attribute Set

 u16IndirectPollRate is the time-interval, in milliseconds, between
consecutive polls from an End Device which polls its parent while awake (an
End Device with a receiver that is inactive while sleeping).

 u8ParentRetryThreshold is the number of times that an End Device
should attempt to re-contact its parent before initiating the rejoin process.

‘Concentrator Parameters’ Attribute Set

 bConcentratorFlag is a Boolean flag which, when set to TRUE, enables the
device as a concentrator for many-to-one routing. The default value is FALSE.

 u8ConcentratorRadius is the hop-count radius for concentrator route
discoveries. The default value is 0x0F.

 u8ConcentratorDiscoveryTime is the time-interval, in seconds, between
consecutive discoveries of inbound routes initiated by the concentrator. The
default value is 0x0000, indicating that this time-interval is unknown and the
discoveries must be triggered by the application.

Note: Memory is allocated at compile-time for all the
Commissioning cluster attributes.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 303

Chapter 16
Commissioning Cluster

16.3 Attribute Settings

The Commissioning cluster structure contains only optional attributes. Each attribute
is enabled/disabled through a corresponding macro defined in the zcl_options.h file
(see Section 16.6) - for example, u16ShortAddress is enabled/disabled through the
macro CLD_COMM_ATTR_SHORT_ADDRESS.

16.4 Functions

There are no Commissioning cluster functions.

16.5 Enumerations

16.5.1 teCLD_Commissioning_AttributeID

The following structure contains the enumerations used to identify the attributes of the
Commissioning cluster.

typedef enum

{

 E_CLD_CMSNG_ATTR_ID_SHORT_ADDRESS = 0x0000,

 E_CLD_CMSNG_ATTR_ID_EXT_PANID,

 E_CLD_CMSNG_ATTR_ID_PANID,

 E_CLD_CMSNG_ATTR_ID_CHANNEL_MASK,

 E_CLD_CMSNG_ATTR_ID_PROTOCOL_VERSION,

 E_CLD_CMSNG_ATTR_ID_STACK_PROFILE,

 E_CLD_CMSNG_ATTR_ID_STARTUP_CONTROl,

 E_CLD_CMSNG_ATTR_ID_TC_ADDR = 0x0010,

 E_CLD_CMSNG_ATTR_ID_TC_MASTER_KEY,

 E_CLD_CMSNG_ATTR_ID_NETWORK_KEY,

 E_CLD_CMSNG_ATTR_ID_USE_INSECURE_JOIN,

 E_CLD_CMSNG_ATTR_ID_PRECONFIG_LINK_KEY,

 E_CLD_CMSNG_ATTR_ID_NWK_KEY_SEQ_NO,

 E_CLD_CMSNG_ATTR_ID_NWK_KEY_TYPE,

 E_CLD_CMSNG_ATTR_ID_NWK_MANAGER_ADDR,

 E_CLD_CMSNG_ATTR_ID_SCAN_ATTEMPTS = 0x0020,

 E_CLD_CMSNG_ATTR_ID_TIME_BW_SCANS,

 E_CLD_CMSNG_ATTR_ID_REJOIN_INTERVAL,

 E_CLD_CMSNG_ATTR_ID_MAX_REJOIN_INTERVAL,

 E_CLD_CMSNG_ATTR_ID_INDIRECT_POLL_RATE = 0x0030,

 E_CLD_CMSNG_ATTR_ID_PARENT_RETRY_THRSHOLD,

 E_CLD_CMSNG_ATTR_ID_CONCENTRATOR_FLAG = 0x0040,

 E_CLD_CMSNG_ATTR_ID_CONCENTRATOR_RADIUS,

 E_CLD_CMSNG_ATTR_ID_CONCENTRATOR_DISCVRY_TIME

} teCLD_Commissioning_AttributeID;
304 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
16.6 Compile-Time Options

To enable the Commissioning cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_COMMISSIONING

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define COMMISSIONING_CLIENT

#define COMMISSIONING_SERVER

The Commissioning cluster contains attributes that may be optionally enabled at
compile-time by adding some or all of the following lines to the zcl_options.h file (see
Section 16.2 and Section 16.3):

#define CLD_COMM_ATTR_SHORT_ADDRESS

#define CLD_COMM_ATTR_EXTENED_PAN_ID

#define CLD_COMM_ATTR_PAN_ID

#define CLD_COMM_ATTR_CHANNEL_MASK

#define CLD_COMM_ATTR_PROTOCOL_VERSION

#define CLD_COMM_ATTR_STACK_PROFILE

#define CLD_COMM_ATTR_START_UP_CONTROL

#define CLD_COMM_ATTR_TC_ADDR

#define CLD_COMM_ATTR_TC_MASTER_KEY

#define CLD_COMM_ATTR_NWK_KEY

#define CLD_COMM_ATTR_USE_INSECURE_JOIN

#define CLD_COMM_ATTR_PRE_CONFIG_LINK_KEY

#define CLD_COMM_ATTR_NWK_KEY_SEQ_NO

#define CLD_COMM_ATTR_NWK_KEY_TYPE

#define CLD_COMM_ATTR_NWK_MANAGER_ADDR

#define CLD_COMM_ATTR_SCAN_ATTEMPTS

#define CLD_COMM_ATTR_TIME_BW_SCANS

#define CLD_COMM_ATTR_REJOIN_INTERVAL

#define CLD_COMM_ATTR_MAX_REJOIN_INTERVAL

#define CLD_COMM_ATTR_INDIRECT_POLL_RATE

#define CLD_COMM_ATTR_PARENT_RETRY_THRSHLD

#define CLD_COMM_ATTR_CONCENTRATOR_FLAG

#define CLD_COMM_ATTR_CONCENTRATOR_RADIUS

#define CLD_COMM_ATTR_CONCENTRATOR_DISCVRY_TIME
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 305

Chapter 16
Commissioning Cluster

306 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
17. Door Lock Cluster

This chapter outlines the Door Lock cluster which is defined in the ZCL, and provides
an interface to a set values representing the state of a door lock and (optionally) the
door.

The Door Lock cluster has a Cluster ID of 0x0101.

17.1 Overview

The Door Lock cluster is required in HA devices as indicated in the table below.

The Door Lock cluster is enabled by defining CLD_DOOR_LOCK in the
zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Door Lock cluster are fully detailed in Section 17.8.

17.2 Door Lock Cluster Structure and Attributes

The Door Lock cluster is contained in the following tsCLD_DoorLock structure:

typedef struct

{

 zenum8 eLockState;

 zenum8 eLockType;

 zbool bActuatorEnabled;

#ifdef CLD_DOOR_LOCK_ATTR_DOOR_STATE

 zenum8 eDoorState;

#endif

#ifdef CLD_DOOR_LOCK_ATTR_NUMBER_OF_DOOR_OPEN_EVENTS

 zuint32 u32NumberOfDoorOpenEvent;

#endif

Server-side Client-side

Mandatory in... Door Lock Door Lock Controller

Optional in... Remote Control

Table 10: Door Lock Cluster in HA Devices
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 307

Chapter 17
Door Lock Cluster

#ifdef CLD_DOOR_LOCK_ATTR_NUMBER_OF_DOOR_CLOSED_EVENTS

 zuint32 u32NumberOfDoorClosedEvent;

#endif

#ifdef CLD_DOOR_LOCK_ATTR_NUMBER_OF_MINUTES_DOOR_OPENED

 zuint16 u16NumberOfMinutesDoorOpened;

#endif

#ifdef CLD_DOOR_LOCK_ZIGBEE_SECURITY_LEVEL

 zuint8 u8ZigbeeSecurityLevel;

#endif

} tsCLD_DoorLock;

where:

 eLockState is a mandatory attribute indicating the state of the lock, one of:

 E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED

 E_CLD_DOORLOCK_LOCK_STATE_LOCK

 E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

 eLockType is a mandatory attribute representing the type of door lock, one of:

 E_CLD_DOORLOCK_LOCK_TYPE_DEAD_BOLT

 E_CLD_DOORLOCK_LOCK_TYPE_MAGNETIC

 E_CLD_DOORLOCK_LOCK_TYPE_OTHER

 bActuatorEnabled is a mandatory attribute indicating whether the actuator
for the door lock is enabled:

 TRUE - enabled

 FALSE - disabled

 eDoorState is an optional attribute indicating the current state of the door,
one of:

 E_CLD_DOORLOCK_DOOR_STATE_OPEN

 E_CLD_DOORLOCK_DOOR_STATE_CLOSED

 E_CLD_DOORLOCK_DOOR_STATE_ERROR_JAMMED

 E_CLD_DOORLOCK_DOOR_STATE_ERROR_FORCED_OPEN

 E_CLD_DOORLOCK_DOOR_STATE_ERROR_UNSPECIFIED

 u32NumberOfDoorOpenEvent is an optional attribute representing the
number of ‘door open’ events that have occurred

 u32NumberOfDoorClosedEvent is an optional attribute representing the
number of ‘door close’ events that have occurred
308 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u16NumberOfMinutesDoorOpened is an optional attribute representing the
length of time, in minutes, that the door has been open since the last ‘door
open’ event

 u8ZigbeeSecurityLevel is an optional attribute representing the ZigBee
PRO security level that should be applied to communications between a cluster
server and client:

 0: Network-level security only

 1 or higher: Application-level security (in addition to Network-level security)

Application-level security is an enhancement to the Door Lock cluster and is
currently not certifiable.

Note: The application must not write directly to the
u8ZigbeeSecurityLevel attribute. If required,
Application-level security should be enabled only using
the function eCLD_DoorLockSetSecurityLevel(). For
more information, refer to the description of this function
on page 317.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 309

Chapter 17
Door Lock Cluster

17.3 Door Lock Events

The Door Lock cluster has its own events that are handled through the callback
mechanism outlined in Chapter 3. If a device uses the Door Lock cluster then Door
Lock event handling must be included in the callback function for the associated
endpoint, where this callback function is registered through the relevant endpoint
registration function (for example, through eHA_RegisterDoorLockEndPoint() for a
Door Lock device). The relevant callback function will then be invoked when a Door
Lock event occurs.

For a Door Lock event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_DoorLockCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_DoorLock_LockUnlockResponsePayload *psLockUnlockResponsePayload;

 }uMessage;

 }tsCLD_DoorLockCallBackMessage;

When a Door Lock event occurs, one of two command types could have been
received. The relevant command type is specified through the u8CommandId field of
the tsCLD_DoorLockCallBackMessage structure. The possible command types
are detailed below.

u8CommandId Enumeration Description

E_CLD_DOOR_LOCK_CMD_LOCK A lock request command has been received by the clus-
ter server

E_CLD_DOOR_LOCK_CMD_UNLOCK An unlock request command has been received by the
cluster server

Table 11: Door Lock Command Types
310 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
17.4 Functions

The following Door Lock cluster functions are provided in the HA API:

Function Page

eCLD_DoorLockCreateDoorLock 312

eCLD_DoorLockSetLockState 314

eCLD_DoorLockGetLockState 315

eCLD_DoorLockCommandLockUnlockRequestSend 316

eCLD_DoorLockSetSecurityLevel 317
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 311

Chapter 17
Door Lock Cluster

eCLD_DoorLockCreateDoorLock

Description

This function creates an instance of the Door Lock cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Door Lock cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

When used, this function must be the first Door Lock cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Door Lock cluster,
which can be obtained by using the macro
CLD_DOORLOCK_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppDoorLockClusterAttributeControlBits[
 CLD_DOORLOCK_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status eCLD_DoorLockCreateDoorLock(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. the Door Lock device)
will be used. In this case, the device and its supported
clusters must be registered on the endpoint using the relevant
device registration function.
312 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Door Lock cluster. This
parameter can refer to a pre-filled structure called
sCLD_DoorLock which is provided in the DoorLock.h
file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_DoorLock which defines the
attributes of Door Lock cluster. The function will
initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 313

Chapter 17
Door Lock Cluster

eCLD_DoorLockSetLockState

Description

This function can be used on a Door Lock cluster server to set the value of the
eLockState attribute which represents the current state of the door lock (locked,
unlocked or not fully locked).

Depending on the specified value of eLock, the attribute will be set to one of the
following:

 E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED

 E_CLD_DOORLOCK_LOCK_STATE_LOCK

 E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

This function generates an update event to inform the application when the change
has been made.

Parameters

u8SourceEndPointId Number of the endpoint on which the Door Lock cluster
resides

eLock State in which to put the door lock, one of:

E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED

E_CLD_DOORLOCK_LOCK_STATE_LOCK

E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_DoorLockSetLockState(
uint8 u8SourceEndPointId,
teCLD_DoorLock_LockState eLock);
314 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_DoorLockGetLockState

Description

This function can be used on a Door Lock cluster server to obtain the value of the
eLockState attribute which represents the current state of the door lock (locked,
unlocked or not fully locked).

The value of the attribute is returned through the location pointed to by peLock and
can be any one of the following:

 E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED

 E_CLD_DOORLOCK_LOCK_STATE_LOCK

 E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

Parameters

u8SourceEndPointId Number of the endpoint on which the Door Lock cluster
resides

peLock Pointer to location to receive the obtained state of the door
lock, which will be one of:

E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED

E_CLD_DOORLOCK_LOCK_STATE_LOCK

E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_DoorLockGetLockState(
uint8 u8SourceEndPointId,
teCLD_DoorLock_LockState *peLock);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 315

Chapter 17
Door Lock Cluster

eCLD_DoorLockCommandLockUnlockRequestSend

Description

This function can be used on a Door Lock cluster client to send a lock or unlock
command to the Door Lock cluster server.

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

eCommand The command to be sent, one of:

E_CLD_DOOR_LOCK_CMD_LOCK

E_CLD_DOOR_LOCK_CMD_UNLOCK

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status
eCLD_DoorLockCommandLockUnlockRequestSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
teCLD_DoorLock_CommandID eCommand);
316 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_DoorLockSetSecurityLevel

Description

This function can be used to set the level of security to be used by the Door Lock
cluster: Network-level security or Application-level security. By default, only Network-
level security is implemented, but this function can be used to enable Application-
level security (in addition to Network-level security). For more information on ZigBee
security, refer to the ZigBee PRO Stack User Guide (JN-UG-3101 or JN-UG-3048).

Application-level security is an enhancement to the Door Lock cluster and is currently
not certifiable. It is enabled through an optional attribute of the cluster, but the
application must not write directly to this attribute - if required, Application-level
security should be enabled only using this function.

To use Application-level security, it is necessary to call this function on the Door Lock
cluster server and client nodes. If an application link key is to be used which is not
the default one, the new link key must be subsequently specified on both nodes using
the ZigBee PRO function ZPS_eAplZdoAddReplaceLinkKey().

Parameters

u8SourceEndPointId Number of the local endpoint on which the Door Lock
cluster resides

bIsServer Type of local cluster instance (server or client):

 TRUE - server
FALSE - client

u8SecurityLevel The security level to be set:

0: Network-level security only
1 or higher: Application-level security

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_DoorLockSetSecurityLevel(
uint8 u8SourceEndPointId,
bool bServer,
uint8 u8SecurityLevel);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 317

Chapter 17
Door Lock Cluster

17.5 Return Codes

The Door Lock cluster functions use the ZCL return codes defined in Section 35.2.

17.6 Enumerations

17.6.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Door Lock cluster.

typedef enum
{
 E_CLD_DOOR_LOCK_ATTR_ID_LOCK_STATE = 0x0000,
 E_CLD_DOOR_LOCK_ATTR_ID_LOCK_TYPE,
 E_CLD_DOOR_LOCK_ATTR_ID_ACTUATOR_ENABLED,
 E_CLD_DOOR_LOCK_ATTR_ID_DOOR_STATE,
 E_CLD_DOOR_LOCK_ATTR_ID_NUMBER_OF_DOOR_OPEN_EVENTS,
 E_CLD_DOOR_LOCK_ATTR_ID_NUMBER_OF_DOOR_CLOSED_EVENTS,
 E_CLD_DOOR_LOCK_ATTR_ID_NUMBER_OF_MINUTES_DOOR_OPENED,
 E_CLD_DOOR_LOCK_ATTR_ID_ZIGBEE_SECURITY_LEVEL = 0x0034
} teCLD_DoorLock_Cluster_AttrID;

17.6.2 ‘Lock State’ Enumerations

The following enumerations are used to set the eLockState element in the Door
Lock cluster structure tsCLD_DoorLock.

typedef enum

{

 E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED = 0x00,

 E_CLD_DOORLOCK_LOCK_STATE_LOCK,

 E_CLD_DOORLOCK_LOCK_STATE_UNLOCK

} teCLD_DoorLock_LockState;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_DOORLOCK_LOCK_STATE_NOT_FULLY_LOCKED Not fully locked

E_CLD_DOORLOCK_LOCK_STATE_LOCK Locked

E_CLD_DOORLOCK_LOCK_STATE_UNLOCK Unlocked

Table 12: ‘Lock State’ Enumerations
318 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
17.6.3 ‘Lock Type’ Enumerations

The following enumerations are used to set the eLockType element in the Door Lock
cluster structure tsCLD_DoorLock.

typedef enum

{

 E_CLD_DOORLOCK_LOCK_TYPE_DEAD_BOLT = 0x00,

 E_CLD_DOORLOCK_LOCK_TYPE_MAGNETIC,

 E_CLD_DOORLOCK_LOCK_TYPE_OTHER

} teCLD_DoorLock_LockType;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_DOORLOCK_LOCK_TYPE_DEAD_BOLT Dead bold lock

E_CLD_DOORLOCK_LOCK_TYPE_MAGNETIC Magnetic lock

E_CLD_DOORLOCK_LOCK_TYPE_OTHER Other type of lock

Table 13: ‘Lock Type’ Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 319

Chapter 17
Door Lock Cluster

17.6.4 ‘Door State’ Enumerations

The following enumerations are used to set the optional eDoorState element in the
Door Lock cluster structure tsCLD_DoorLock.

typedef enum

{

 E_CLD_DOORLOCK_DOOR_STATE_OPEN = 0x00,

 E_CLD_DOORLOCK_DOOR_STATE_CLOSED,

 E_CLD_DOORLOCK_DOOR_STATE_ERROR_JAMMED,

 E_CLD_DOORLOCK_DOOR_STATE_ERROR_FORCED_OPEN,

 E_CLD_DOORLOCK_DOOR_STATE_ERROR_UNSPECIFIED

} teCLD_DoorLock_DoorState;

The above enumerations are described in the table below.

17.6.5 ‘Command ID’ Enumerations

The following enumerations are used to set specify the type of command (lock or
unlock) sent to a Door Lock cluster server.

typedef enum

{

 E_CLD_DOOR_LOCK_CMD_LOCK

 E_CLD_DOOR_LOCK_CMD_UNLOCK

} teCLD_DoorLock_CommandID;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_DOORLOCK_DOOR_STATE_OPEN Door is open

E_CLD_DOORLOCK_DOOR_STATE_CLOSED Door is closed

E_CLD_DOORLOCK_DOOR_STATE_ERROR_JAMMED Door is jammed

E_CLD_DOORLOCK_DOOR_STATE_ERROR_FORCED_OPEN Door has been forced open

E_CLD_DOORLOCK_DOOR_STATE_ERROR_UNSPECIFIED Door is in an unknown state

Table 14: ‘Door State’ Enumerations

Enumeration Description

E_CLD_DOOR_LOCK_CMD_LOCK A lock command

E_CLD_DOOR_LOCK_CMD_UNLOCK An unlock command

Table 15: ‘Command ID’ Enumerations
320 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
17.7 Structures

17.7.1 tsCLD_DoorLockCallBackMessage

For a Door Lock event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_DoorLockCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_DoorLock_LockUnlockResponsePayload *psLockUnlockResponsePayload;
 }uMessage;
 }tsCLD_DoorLockCallBackMessage;

where:

 u8CommandId indicates the type of Door Lock command (lock or unlock) that
has been received, one of:

 E_CLD_DOOR_LOCK_CMD_LOCK

 E_CLD_DOOR_LOCK_CMD_UNLOCK

 uMessage is a union containing the command payload in the following form:

 psLockUnlockResponsePayload is a pointer to a structure containing
the response payload of the received command - see Section 17.7.2

17.7.2 tsCLD_DoorLock_LockUnlockResponsePayload

This stucture contains the payload of a lock/unlock command response (from the
cluster server).

typedef struct

{

 zenum8 eStatus;

}tsCLD_DoorLock_LockUnlockResponsePayload;

where eStatus indicates whether the command was received:
0x00 - SUCCESS, 0x01 - FAILURE (all other values are reserved).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 321

Chapter 17
Door Lock Cluster

17.8 Compile-Time Options

To enable the Door Lock cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_DOOR_LOCK

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define CLD_DOOR_LOCK_SERVER

#define CLD_DOOR_LOCK_CLIENT

Optional Attributes

The optional attributes for the Door Lock cluster (see Section 17.2) are enabled by
defining:

 CLD_DOOR_LOCK_ATTR_DOOR_STATE

 CLD_DOOR_LOCK_ATTR_NUMBER_OF_DOOR_OPEN_EVENTS

 CLD_DOOR_LOCK_ATTR_NUMBER_OF_DOOR_CLOSED_EVENTS

 CLD_DOOR_LOCK_ATTR_NUMBER_OF_MINUTES_DOOR_OPENED

 CLD_DOOR_LOCK_ZIGBEE_SECURITY_LEVEL
322 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
18. Thermostat Cluster

This chapter outlines the Thermostat cluster which is defined in the ZCL, and provides
an interface for configuring and controlling the functionality of a thermostat.

The Thermostat cluster has a Cluster ID of 0x0201.

18.1 Overview

The Thermostat cluster is required in HA devices as indicated in the table below.

The Thermostat cluster is enabled by defining CLD_THERMOSTAT in the
zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Thermostat cluster are fully detailed in Section 18.9.

The information that can potentially be stored in this cluster is organised into the
following attribute sets:

 Thermostat Information

 Thermostat Settings

The attributes are listed and described next, in Section 18.2.

18.2 Thermostat Cluster Structure and Attributes

The Thermostat cluster is contained in the following tsCLD_Thermostat structure:

typedef struct

{

 zint16 i16LocalTemperature;

#ifdef CLD_THERMOSTAT_ATTR_OUTDOOR_TEMPERATURE

 zint16 i16OutdoorTemperature;

#endif

#ifdef CLD_THERMOSTAT_ATTR_OCCUPANCY

 zbmap8 u8Occupancy;

Server-side Client-side

Mandatory in... Thermostat

Optional in... Remote Control

Table 16: Thermostat Cluster in HA Devices
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 323

Chapter 18
Thermostat Cluster

#endif

#ifdef CLD_THERMOSTAT_ATTR_ABS_MIN_HEAT_SETPOINT_LIMIT

 zint16 i16AbsMinHeatSetpointLimit;

#endif

#ifdef CLD_THERMOSTAT_ATTR_ABS_MAX_HEAT_SETPOINT_LIMIT

 zint16 i16AbsMaxHeatSetpointLimit;

#endif

#ifdef CLD_THERMOSTAT_ATTR_ABS_MIN_COOL_SETPOINT_LIMIT

 zint16 i16AbsMinCoolSetpointLimit;

#endif

#ifdef CLD_THERMOSTAT_ATTR_ABS_MAX_COOL_SETPOINT_LIMIT

 zint16 i16AbsMaxCoolSetpointLimit;

#endif

#ifdef CLD_THERMOSTAT_ATTR_PI_COOLING_DEMAND

 zuint8 u8PICoolingDemand;

#endif

#ifdef CLD_THERMOSTAT_ATTR_PI_HEATING_DEMAND

 zuint8 u8PIHeatingDemand;

#endif

 /* Thermostat settings attribute set attribute ID's (6.3.2.2.2)
*/

#ifdef CLD_THERMOSTAT_ATTR_LOCAL_TEMPERATURE_CALIBRATION

 zint8 i8LocalTemperatureCalibration;

#endif

 zint16 i16OccupiedCoolingSetpoint;

 zint16 i16OccupiedHeatingSetpoint;

#ifdef CLD_THERMOSTAT_ATTR_UNOCCUPIED_COOLING_SETPOINT

 zint16 i16UnoccupiedCoolingSetpoint;

#endif

#ifdef CLD_THERMOSTAT_ATTR_UNOCCUPIED_HEATING_SETPOINT

 zint16 i16UnoccupiedHeatingSetpoint;

#endif
324 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
#ifdef CLD_THERMOSTAT_ATTR_MIN_HEAT_SETPOINT_LIMIT

 zint16 i16MinHeatSetpointLimit;

#endif

#ifdef CLD_THERMOSTAT_ATTR_MAX_HEAT_SETPOINT_LIMIT

 zint16 i16MaxHeatSetpointLimit;

#endif

#ifdef CLD_THERMOSTAT_ATTR_MIN_COOL_SETPOINT_LIMIT

 zint16 i16MinCoolSetpointLimit;

#endif

#ifdef CLD_THERMOSTAT_ATTR_MAX_COOL_SETPOINT_LIMIT

 zint16 i16MaxCoolSetpointLimit;

#endif

#ifdef CLD_THERMOSTAT_ATTR_MIN_SETPOINT_DEAD_BAND

 zint8 i8MinSetpointDeadBand;

#endif

#ifdef CLD_THERMOSTAT_ATTR_REMOTE_SENSING

 zbmap8 u8RemoteSensing;

#endif

 zenum8 eControlSequenceOfOperation;

 zenum8 eSystemMode;

#ifdef CLD_THERMOSTAT_ATTR_ALARM_MASK

 zbmap8 u8AlarmMask;

#endif

} tsCLD_Thermostat;

where:

‘Thermostat Information’ Attribute Set

 i16LocalTemperature is a mandatory attribute representing the measured
temperature in degrees Celsius, as follows:

i16LocalTemperature = 100 x temperature in degrees Celsius

The possible values are used as follows:

 0x0000 to 0x7FFF represent positive temperatures from 0°C to 327.67ºC

 0x8000 indicates that the temperature measurement is invalid

 0x8001 to 0x954C are unused values
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 325

Chapter 18
Thermostat Cluster

 0x954D to 0xFFFF represent negative temperatures from -273.15°C to
-1°C (in two’s complement form)

 i16OutdoorTemperature is an optional attribute representing the outside
temperature in degrees Celsius. This temperature is represented as described
above for i16LocalTemperature.

 u8Occupancy is an optional attribute indicating whether the heated/cooled
space has been detected as occupied. Bit 0 is used as a flag as follows (all
other bits are reserved):

 1 = occupied

 0 = not occupied

 i16AbsMinHeatSetpointLimit is an optional attribute specifying the
absolute minimum possible temperature of the heating setpoint (as determined
by the manufacturer). This temperature is represented as described above for
i16LocalTemperature.

 i16AbsMaxHeatSetpointLimit is an optional attribute specifying the
absolute maximum possible temperature of the heating setpoint (as determined
by the manufacturer). This temperature is represented as described above for
i16LocalTemperature.

 i16AbsMinCoolSetpointLimit is an optional attribute specifying the
absolute minimum possible temperature of the cooling setpoint (as determined
by the manufacturer). This temperature is represented as described above for
i16LocalTemperature.

 i16AbsMaxCoolSetpointLimit is an optional attribute specifying the
absolute maximum possible temperature of the cooling setpoint (as determined
by the manufacturer). This temperature is represented as described above for
i16LocalTemperature.

‘Thermostat Settings’ Attribute Set

 u8PICoolingDemand is an optional attribute indicating the level of cooling
required by the PI (Proportional Integral) control loop, if any, used by the
thermostat. It is a percentage value and takes the value 0 when the thermostat
is 'off' or in 'heating' mode.

 u8PIHeatingDemand is an optional attribute indicating the level of heating
required by the PI (Proportional Integral) control loop, if any, used by the
thermostat. It is a percentage value and takes the value 0 when the thermostat
is 'off' or in 'cooling' mode.

 i8LocalTemperatureCalibration is an optional attribute representing a
temperature offset (in the range -2.5°C to 2.5°C) that can be added to or
subtracted from the displayed temperature:

i8LocalTemperatureCalibration = 100 x offset in degrees Celsius

The possible values are used as follows:

 0x00 to 0x19 represent positive offsets from 0°C to 2.5ºC

 0x20 to 0xE6 are unused values

 0xE7 to 0xFF represent negative offets from -2.5°C to -1°C (in two’s
complement form)
326 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 i16OccupiedCoolingSetpoint is an optional attribute specifying the
cooling setpoint (target temperature) when the cooling space is occupied. The
value is calculated as described above for the i16LocalTemperature
attribute and must take a value in the range defined by the attributes
i16MinCoolSetpointLimit and i16MaxCoolSetpointLimit. If it is not
known whether the space is occupied, this attribute will be used as the cooling
setpoint (rather than i16UnoccupiedCoolingSetpoint).

 i16OccupiedHeatingSetpoint is an optional attribute specifying the
heating setpoint (target temperature) when the heating space is occupied. The
value is calculated as described above for the i16LocalTemperature
attribute and must take a value in the range defined by the attributes
i16MinHeatSetpointLimit and i16MaxHeatSetpointLimit. If it is not
known whether the space is occupied, this attribute will be used as the heating
setpoint (rather than i16UnoccupiedHeatingSetpoint).

 i16UnoccupiedCoolingSetpoint is an optional attribute specifying the
cooling setpoint (target temperature) when the cooling space is unoccupied.
The value is calculated as described above for the i16LocalTemperature
attribute and must take a value in the range defined by the attributes
i16AbsMinCoolSetpointLimit and i16MaxCoolSetpointLimit. If it is
not known whether the space is occupied, this attribute will not be used
(i16OccupiedCoolingSetpoint will be used instead).

 i16UnoccupiedHeatingSetpoint is an optional attribute specifying the
heating setpoint (target temperature) when the heating space is unoccupied.
The value is calculated as described above for the i16LocalTemperature
attribute and must take a value in the range defined by the attributes
i16MinHeatSetpointLimit and i16MaxHeatSetpointLimit. If it is not
known whether the space is occupied, this attribute will not be used
(i16OccupiedHeatingSetpoint will be used instead).

Note: i16OccupiedCoolingSetpoint must always
be greater in value than
i16OccupiedHeatingSetpoint by an amount at
least equal to the value of i8MinSetpointDeadBand
(below). An attempt to violate this condition will result in
a default response with the status INVALID_VALUE.

Note: i16UnoccupiedCoolingSetpoint must
always be greater in value than
i16UnoccupiedHeatingSetpoint by an amount at
least equal to the value of i8MinSetpointDeadBand
(below). An attempt to violate this condition will result in
a default response with the status INVALID_VALUE.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 327

Chapter 18
Thermostat Cluster

 i16MinHeatSetpointLimit is an optional attribute specifying the minimum
possible temperature of the heating setpoint. This temperature is represented
as described above for i16LocalTemperature. The value set must be
greater than or equal to the value of i16AbsMinHeatSetpointLimit, which
is also the default value for this attribute.

 i16MaxHeatSetpointLimit is an optional attribute specifying the maximum
possible temperature of the heating setpoint. This temperature is represented
as described above for i16LocalTemperature. The value set must be less
than or equal to the value of i16AbsMaxHeatSetpointLimit, which is also
the default value for this attribute.

 i16MinCoolSetpointLimit is an optional attribute specifying the minimum
possible temperature of the cooling setpoint. This temperature is represented
as described above for i16LocalTemperature. The value set must be
greater than or equal to the value of i16AbsMinCoolSetpointLimit, which
is also the default value for this attribute.

 i16MaxCoolSetpointLimit is an optional attribute specifying the maximum
possible temperature of the cooling setpoint. This temperature is represented
as described above for i16LocalTemperature. The value set must be less
than or equal to the value of i16AbsMaxCoolSetpointLimit, which is also
the default value for this attribute.

 i8MinSetpointDeadBand is an optional attribute specifying the minimum
difference between the heating setpoint and cooling setpoint, in steps of 0.1°C.
The attribute can take a value in the range 0x0A to 0x19, representing 1°C to
2.5°C. All other values are unused.

 u8RemoteSensing is an optional attribute comprising an 8-bit bitmap which
indicates whether remote (networked) or internal sensors are being used to
measure/detect the local temperature, outside temperature and occupancy.
The bitmap is detailed in the table below.

Note: The above four ‘Limit’ attributes can be set in the
compile-time options using macros, as described in
Section 18.9.

Bit Description

0 Local temperature
1 - Remote sensor
0 - Internal sensor

1 Outside temperature
1 - Remote sensor
0 - Internal sensor

2 Occupancy
1 - Remote sensor
0 - Internal sensor

3-7 Reserved
328 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 eControlSequenceOfOperation is an optional attribute representing the
operational capabilities/environment of the thermostat. The possible values are
indicated in the table below:

 eSystemMode is an optional attribute specifying the current operating mode of
the thermostat. The possible modes/values are indicated in the table below:

Value Capabilities Notes (see eSystemMode)

0x00 Cooling only Heat and Emergency Heating are not possible

0x01 Cooling with Reheat Heat and Emergency Heating are not possible

0x02 Heating only Cool and Pre-cooling are not possible

0x03 Heating with Reheat Cool and Pre-cooling are not possible

0x04 Cooling and Heating
4-pipes

All modes are possible

0x05 Cooling and Heating
4-pipes with Reheat

All modes are possible

0x06 – 0xFE Reserved -

Value Description

0x00 Off

0x01 Auto

0x02 Reserved

0x03 Cool

0x04 Heat

0x05 Emergency Heating

0x06 Pre-cooling

0x07 Fan only

0x08 – 0xFE Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 329

Chapter 18
Thermostat Cluster

 u8AlarmMask is an optional attribute containing a 3-bit bitmap specifying
which alarms are enabled from those listed in the table below (use of the
Alarms cluster is also required):

18.3 Thermostat Operations

The Thermostat cluster server is mandatory for some HVAC devices, such as the
Thermostat device of the HA profile, while the cluster client can be used on a
controlling device, such as the Remote Control device of the HA profile.

The sections below describe common operations using the Thermostat cluster.

18.3.1 Initialisation

The function eCLD_ThermostatCreateThermostat() is used to create an instance of
the Thermostat cluster. The function is generally called by the initialisation function for
the host device.

18.3.2 Recording and Reporting the Local Temperature

A record of the local temperature is kept in the mandatory attribute
i16LocalTemperature on the cluster server - this attribute is fully detailed in
Section 18.2. The value of this attribute can be updated by the server application using
the function eCLD_ThermostatSetAttribute() - for example, as the result of a local
temperature measurement.

The value of the attribute i16LocalTemperature can be regularly reported to a
cluster client - for example, to allow the local temperature to be displayed to the user.
This automated reporting can be configured and started on the server using the
function eCLD_ThermostatStartReportingLocalTemperature(). Reports will be
sent regularly, but not periodically - maximum and minimum time-intervals between
consecutive reports can be specified.

Bit Description

0 Initialisation failure (device failed to complete initialisation at power-up)
1 - Alarm enabled
0 - Alarm disabled

1 Hardware failure
1 - Alarm enabled
0 - Alarm disabled

2 Self-calibration failure
1 - Alarm enabled
0 - Alarm disabled

3-7 Reserved
330 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
18.3.3 Configuring Heating and Cooling Setpoints

Functions are provided to update the following two optional attributes that are used to
specify setpoints (target temperatures) for heating and cooling:

 i16OccupiedHeatingSetpoint

 i16OccupiedCoolingSetpoint

If both of these setpoints are used, the cooling setpoint value must be greater than the
heating setpoint value. These attributes are fully detailed in Section 18.2.

These server attributes can be controlled remotely from a client using the function
eCLD_ThermostatCommandSetpointRaiseOrLowerSend(), usually as the result
of user input on a controlling device. This function is used on the client to send a
SetpointRaiseOrLower command to the server to increase or decrease the value of
one or both of these setpoint attributes by a specified amount. On receipt of this
command, an E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER event is
generated on the server to notify the server application.

The server application can modify the values of these attributes using the function
eCLD_ThermostatSetAttribute().

Note: These and other attributes of the Thermostat
cluster can also be written and read using the general
attribute access functions, as described in Section 2.2.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 331

Chapter 18
Thermostat Cluster

18.4 Thermostat Events

The Thermostat cluster has its own events that are handled through the callback
mechanism outlined in Chapter 3. If a device uses the Thermostat cluster then
Thermostat event handling must be included in the callback function for the associated
endpoint, where this callback function is registered through the relevant endpoint
registration function (for example, through eHA_RegisterThermostatEndPoint() for
a Thermostat device). The relevant callback function will then be invoked when a
Thermostat event occurs.

For a Thermostat event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_ThermostatCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_Thermostat_SetpointRaiseOrLowerPayload
 *psSetpointRaiseOrLowerPayload;

 } uMessage;

} tsCLD_ThermostatCallBackMessage;

The u8CommandId field of the above structure specifies the type of command that has
been received - only one command type is possible and is described below.

E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER

In the tsCLD_ThermostatCallBackMessage structure, the u8CommandId is set
to E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER on the Thermostat
cluster server when a SetpointRaiseOrLower command has been received. On receipt
of this command, the Thermostat command handler will be invoked.
332 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
18.5 Functions

The following Thermostat cluster functions are provided in the HA API:

Function Page

eCLD_ThermostatCreateThermostat 334

eCLD_ThermostatSetAttribute 336

eCLD_ThermostatStartReportingLocalTemperature 337

eCLD_ThermostatCommandSetpointRaiseOrLowerSend 338
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 333

Chapter 18
Thermostat Cluster

eCLD_ThermostatCreateThermostat

Description

This function creates an instance of the Thermostat cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Thermostat cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

When used, this function must be the first Thermostat cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Thermostat
cluster, which can be obtained by using the macro
CLD_THERMOSTAT_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8ThermostatClusterAttributeControlBits[
 CLD_THERMOSTAT_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status eCLD_ThermostatCreateThermostat(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
sZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_ThermostatCustomDataStructure

 psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. the Thermostat device)
will be used. In this case, the device and its supported
clusters must be registered on the endpoint using the relevant
device registration function.
334 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Thermostat cluster. This
parameter can refer to a pre-filled structure called
sCLD_Thermostat which is provided in the
Thermostat.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Thermostat which defines
the attributes of Thermostat cluster. The function will
initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 335

Chapter 18
Thermostat Cluster

eCLD_ThermostatSetAttribute

Description

This function can be used on a Thermostat cluster server to update the Thermostat
attributes - specifically to write a value to one of the following attributes:

 i16LocalTemperature

 i16OccupiedCoolingSetpoint

 i16OccupiedHeatingSetpoint

The function first checks whether the value to be written falls within the valid range
for the relevant attribute. If not, it returns with status E_ZCL_ERR_INVALID_VALUE.
If the server attempts to write to an attribute other than those specified above, the
function returns with status E_ZCL_DENY_ATTRIBUTE_ACCESS. If the cluster
does not exist, it returns with status E_ZCL_ERR_CLUSTER_NOT_FOUND.

Parameters

u8SourceEndPointId Number of the endpoint on which the Thermostat cluster
resides

u8AttributeId Identifier of attribute to be updated, one of:
E_CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE
E_CLD_THERMOSTAT_ATTR_ID_OCCUPIED_COOLING_SETPOINT
E_CLD_THERMOSTAT_ATTR_ID_OCCUPIED_HEATING_SETPOINT

i16AttributeValue Value to be written to attribute

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_INVALID_VALUE

E_ZCL_DENY_ATTRIBUTE_ACCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

teZCL_Status eCLD_ThermostatSetAttribute(
uint8 u8SourceEndPointId,
uint8 u8AttributeId,
int16 i16AttributeValue);
336 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ThermostatStartReportingLocalTemperature

Description

This function can be used on a Thermostat cluster server to start automatic reporting
of the measured local temperature to a cluster client. The change to be reported can
be configured through this function. Reports will be sent regularly (but not
periodically), within the specified maximum and minimum time-intervals between
consecutive reports.

Parameters

u8SourceEndPointId Number of the local endpoint on which the Thermostat
cluster server resides

u8DstEndPointId Number of the endpoint to which reports are to be sent on
the destination node

u64DstAddr IEEE/MAC address of destination node

u16MinReportInterval Minimum time-interval, in seconds, between reports

u16MaxReportInterval Maximum time-interval, in seconds, between reports

i16ReportableChange Specifies the change to be reported

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_CLUSTER_NOT_FOUND

teZCL_Status
eCLD_ThermostatStartReportingLocalTemperature(

uint8 u8SourceEndPointId,
uint8 u8DstEndPointId,
uint64 u64DstAddr,
uint16 u16MinReportInterval,
uint16 u16MaxReportInterval,
int16 i16ReportableChange);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 337

Chapter 18
Thermostat Cluster

eCLD_ThermostatCommandSetpointRaiseOrLowerSend

Description

This function can be used on a Thermostat cluster client to send a ‘Setpoint Raise Or
Lower’ command to the cluster server. This command is used to increase or
decrease the heating setpoint and/or cooling setpoint by requesting a change to the
values of the attribute i16OccupiedHeatingSetpoint and/or the attribute
i16OccupiedCoolingSetpoint. The relevant setpoint(s) and the required
temperature change are specified in the command payload structure
tsCLD_Thermostat_SetpointRaiseOrLowerPayload (see Section 18.8.3).

A pointer must be specified to a location to receive a Transaction Sequence Number
(TSN) for the request. The TSN in the response will be set to match the TSN in the
request, allowing an incoming response to be paired with a request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

psDestinationAddress Pointer to a structure containing the address of
the remote node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to the command payload (see Section
18.8.3)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

teZCL_Status
eCLD_ThermostatCommandSetpointRaiseOrLowerSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Thermostat_SetpointRaiseOrLowerPayload

 *psPayload);
338 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
18.6 Return Codes

The Thermostat cluster functions use the ZCL return codes defined in Section 35.2.

18.7 Enumerations

18.7.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Thermostat cluster.

typedef enum
{
 E_CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE = 0x0000,
 E_CLD_THERMOSTAT_ATTR_ID_OUTDOOR_TEMPERATURE,
 E_CLD_THERMOSTAT_ATTR_ID_OCCUPANCY,
 E_CLD_THERMOSTAT_ATTR_ID_ABS_MIN_HEAT_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_ABS_MAX_HEAT_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_ABS_MIN_COOL_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_ABS_MAX_COOL_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_PI_COOLING_DEMAND,
 E_CLD_THERMOSTAT_ATTR_ID_PI_HEATING_DEMAND,
 E_CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE_CALIBRATION = 0x0010,
 E_CLD_THERMOSTAT_ATTR_ID_OCCUPIED_COOLING_SETPOINT,
 E_CLD_THERMOSTAT_ATTR_ID_OCCUPIED_HEATING_SETPOINT,
 E_CLD_THERMOSTAT_ATTR_ID_UNOCCUPIED_COOLING_SETPOINT,
 E_CLD_THERMOSTAT_ATTR_ID_UNOCCUPIED_HEATING_SETPOINT,
 E_CLD_THERMOSTAT_ATTR_ID_MIN_HEAT_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_MAX_HEAT_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_MIN_COOL_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_MAX_COOL_SETPOINT_LIMIT,
 E_CLD_THERMOSTAT_ATTR_ID_MIN_SETPOINT_DEAD_BAND,
 E_CLD_THERMOSTAT_ATTR_ID_REMOTE_SENSING,
 E_CLD_THERMOSTAT_ATTR_ID_CONTROL_SEQUENCE_OF_OPERATION,
 E_CLD_THERMOSTAT_ATTR_ID_SYSTEM_MODE,
 E_CLD_THERMOSTAT_ATTR_ID_ALARM_MASK
} teCLD_Thermostat_AttributeID;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 339

Chapter 18
Thermostat Cluster

18.7.2 ‘Operating Capabilities’ Enumerations

The following enumerations are used to set the optional attribute
eControlSequenceOfOperation in the Thermostat cluster structure
tsCLD_Thermostat.

typedef enum

{

 E_CLD_THERMOSTAT_CSOO_COOLING_ONLY = 0x00,

 E_CLD_THERMOSTAT_CSOO_COOLING_WITH_REHEAT,

 E_CLD_THERMOSTAT_CSOO_HEATING_ONLY,

 E_CLD_THERMOSTAT_CSOO_HEATING_WITH_REHEAT,

 E_CLD_THERMOSTAT_CSOO_COOLING_AND_HEATING_4_PIPES,

 E_CLD_THERMOSTAT_CSOO_COOLING_AND_HEATING_4_PIPES_WITH_REHEAT,

}teCLD_Thermostat_ControlSequenceOfOperation;

The above enumerations are described in the table below.

Enumeration Description

E_CLD_THERMOSTAT_CSOO_COOLING_ONLY Heat and Emergency Heating are not
possible

E_CLD_THERMOSTAT_CSOO_COOLING_WITH_REHEAT Heat and Emergency Heating are not
possible

E_CLD_THERMOSTAT_CSOO_HEATING_ONLY Cool and Pre-cooling are not possible

E_CLD_THERMOSTAT_CSOO_HEATING_WITH_REHEAT Cool and Pre-cooling are not possible

E_CLD_THERMOSTAT_CSOO_COOLING_AND_HEATING_
4_PIPES

All modes are possible

E_CLD_THERMOSTAT_CSOO_COOLING_AND_HEATING_
4_PIPES_WITH_REHEAT

All modes are possible

Table 17: ‘Operating Capabilities’ Enumerations
340 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
18.7.3 ‘Command ID’ Enumerations

The following enumeration is used to specify the type of command sent to a
Thermostat cluster server.

typedef enum

{

 E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER = 0x00,

} teCLD_Thermostat_Command;

The above enumerations are described in the table below.

18.7.4 ‘Setpoint Raise Or Lower’ Enumerations

The following enumerations are used to specify an operating mode (heating, cooling
or both) or the Thermostat.

{

 E_CLD_THERMOSTAT_SRLM_HEAT = 0x00,

 E_CLD_THERMOSTAT_SRLM_COOL,

 E_CLD_THERMOSTAT_SRLM_BOTH

}teCLD_Thermostat_SetpointRaiseOrLowerMode;

The above enumerations are described in the table below.

Enumeration Command

E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER Setpoint Raise Or Lower

Table 18: ‘Command ID’ Enumerations

Enumeration Description

E_CLD_THERMOSTAT_SRLM_HEAT Heating mode

E_CLD_THERMOSTAT_SRLM_COOL Cooling mode

E_CLD_THERMOSTAT_SRLM_BOTH Heating and Cooling modes

Table 19: ‘Setpoint Raise Or Lower’ Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 341

Chapter 18
Thermostat Cluster

18.8 Structures

18.8.1 Custom Data Structure

The Thermostat cluster requires extra storage space to be allocated for use by internal
functions. The structure definition for this storage is shown below:

typedef struct

{

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_ThermostatCallBackMessage sCallBackMessage;

} tsCLD_ThermostatCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

18.8.2 tsCLD_ThermostatCallBackMessage

For a Thermostat cluster event, the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_CUSTOM.
This event structure also contains an element sClusterCustomMessage, which is
itself a structure containing a field pvCustomData. This field is a pointer to the
following tsCLD_ThermostatCallBackMessage structure:

typedef struct
{
 uint8 u8CommandId;
 union
 {
 tsCLD_Thermostat_SetpointRaiseOrLowerPayload *psSetpointRaiseOrLowerPayload;
 } uMessage;
} tsCLD_ThermostatCallBackMessage;

where:

 u8CommandId indicates the type of Thermostat cluster command that has
been received - there is only one possibility:
E_CLD_THERMOSTAT_CMD_SETPOINT_RAISE_LOWER

 uMessage is a union containing the command payload in the following form:
psSetpointRaiseOrLowerPayload is a pointer to a structure containing
the payload of a ‘Setpoint Raise Or Lower’ command - see Section 18.8.3.
342 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
18.8.3 tsCLD_Thermostat_SetpointRaiseOrLowerPayload

This stucture contains the payload of a ‘Setpoint Raise Or Lower’ command (from the
cluster client) which requests a change the value of the attribute
i16OccupiedHeatingSetpoint and/or the attribute
i16OccupiedCoolingSetpoint.

typedef struct

{

 zenum8 eMode;

 zint8 i8Amount;

}tsCLD_Thermostat_SetpointRaiseOrLowerPayload;

where:

 eMode indicates the Thermostat operating mode to which the command
relates, one of:

 E_CLD_THERMOSTAT_SRLM_HEAT (Heating)

 E_CLD_THERMOSTAT_SRLM_COOL (Cooling)

 E_CLD_THERMOSTAT_SRLM_BOTH (Heating and Cooling)

 i8Amount represents the value (in two’s complement form) by which the
setpoint corresponding to the specified operating mode is to be changed
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 343

Chapter 18
Thermostat Cluster

18.9 Compile-Time Options

To enable the Thermostat cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_THERMOSTAT

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define THERMOSTAT_SERVER

#define THERMOSTAT_CLIENT

Optional Attributes

The optional attributes for the Thermostat cluster (see Section 18.2) are enabled by
defining:

 CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE

 CLD_THERMOSTAT_ATTR_ID_OUTDOOR_TEMPERATURE

 CLD_THERMOSTAT_ATTR_ID_OCCUPANCY

 CLD_THERMOSTAT_ATTR_ID_ABS_MIN_HEAT_SETPOINT_LIMIT

 CLD_THERMOSTAT_ATTR_ID_ABS_MAX_HEAT_SETPOINT_LIMIT

 CLD_THERMOSTAT_ATTR_ID_ABS_MIN_COOL_SETPOINT_LIMIT

 CLD_THERMOSTAT_ATTR_ID_ABS_MAX_COOL_SETPOINT_LIMIT

 CLD_THERMOSTAT_ATTR_ID_PI_COOLING_DEMAND

 CLD_THERMOSTAT_ATTR_ID_PI_HEATING_DEMAND

 CLD_THERMOSTAT_ATTR_ID_LOCAL_TEMPERATURE_CALIBRATION

 CLD_THERMOSTAT_ATTR_ID_OCCUPIED_COOLING_SETPOINT

 CLD_THERMOSTAT_ATTR_ID_OCCUPIED_HEATING_SETPOINT

 CLD_THERMOSTAT_ATTR_ID_UNOCCUPIED_COOLING_SETPOINT

 CLD_THERMOSTAT_ATTR_ID_UNOCCUPIED_HEATING_SETPOINT

 CLD_THERMOSTAT_ATTR_ID_MIN_HEAT_SETPOINT_LIMIT

 CLD_THERMOSTAT_ATTR_ID_MAX_HEAT_SETPOINT_LIMIT

 CLD_THERMOSTAT_ATTR_ID_MIN_COOL_SETPOINT_LIMIT

 CLD_THERMOSTAT_ATTR_ID_MAX_COOL_SETPOINT_LIMIT

 CLD_THERMOSTAT_ATTR_ID_MIN_SETPOINT_DEAD_BAND

 CLD_THERMOSTAT_ATTR_ID_REMOTE_SENSING

 CLD_THERMOSTAT_ATTR_ID_CONTROL_SEQUENCE_OF_OPERATION

 CLD_THERMOSTAT_ATTR_ID_SYSTEM_MODE

 CLD_THERMOSTAT_ATTR_ID_ALARM_MASK
344 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Minimum Cooling Setpoint

The value of the attribute i16MinCoolSetpointLimit can be set as follows:

#define CLD_THERMOSTAT_MIN_COOLING_SETPOINT n

where n is the value to be set (in two’s complement form). The default value is 0x954D.

Maximum Cooling Setpoint

The value of the attribute i16MaxCoolSetpointLimit can be set as follows:

#define CLD_THERMOSTAT_MAX_COOLING_SETPOINT n

where n is the value to be set (in two’s complement form). The default value is 0x7FFF.

Minimum Heating Setpoint

The value of the attribute i16MinHeatSetpointLimit can be set as follows:

#define CLD_THERMOSTAT_MIN_HEATING_SETPOINT n

where n is the value to be set (in two’s complement form). The default value is 0x954D.

Maximum Heating Setpoint

The value of the attribute i16MaxHeatSetpointLimit can be set as follows:

#define CLD_THERMOSTAT_MAX_HEATING_SETPOINT n

where n is the value to be set (in two’s complement form). The default value is 0x7FFF.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 345

Chapter 18
Thermostat Cluster

346 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
19. Fan Control Cluster

This chapter describes the Fan Control cluster which is defined in the ZCL.

The Fan Control cluster has a Cluster ID of 0x0202.

19.1 Overview

The Fan Control cluster is used to control the speed of a fan which may be part of a
heating or cooling system. It allows the speed or state of the fan to be set, as well as
the possible speeds/states that a thermostat can set.

To use the functionality of this cluster, you must include the file FanControl.h in your
application and enable the cluster by defining CLD_FAN_CONTROL in the
zcl_options.h file.

A Fan Control cluster instance can act as a client or a server. The inclusion of the client
or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server
must also be specified when creating the cluster instance).

The compile-time options for the Fan Control cluster are fully detailed in Section 19.6.

19.2 Fan Control Structure and Attributes

The structure definition for the Fan Control cluster is shown below.

typedef struct

{

 zenum8 eFanMode;

 zenum8 eFanModeSequence;

} tsCLD_FanControl;

where:

 e8FanMode is a server attribute that represents the current speed/state of the
fan. The attribute can be set to one of the enumerated values listed in Section
19.5.2, representing off, low, medium, high, on, auto or smart.

 e8FanModeSequence is a server attribute that specifies the possible fan
speeds/states that a thermostat can set. The attribute can be set to one of the
enumerated values listed in Section 19.5.3, each representing a set of possible
fan speeds/states.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 347

Chapter 19
Fan Control Cluster

19.3 Initialisation

The function eCLD_FanControlCreateFanControl() is used to create an instance of
the Fan Control cluster. The function is generally called by the initialisation function for
the host device.

19.4 Functions

The following Fan Control cluster function is provided in the NXP implementation of
the ZCL:

Function Page

eCLD_FanControlCreateFanControl 349
348 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_FanControlCreateFanControl

Description

This function creates an instance of the Fan Control cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Fan Control cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server

 FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Fan Control cluster. This
parameter can refer to a pre-filled structure called
tsCLD_FanControl which is provided in the
FanControl.h file.

teZCL_Status eCLD_FanControlCreateFanControl(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,

uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 349

Chapter 19
Fan Control Cluster

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_FanControl which defines
the attributes of the Fan Control cluster. The function
will initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL
350 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
19.5 Enumerations

19.5.1 teCLD_FanControl_Cluster_AttrID

The following structure contains the enumerations used to identify the server attributes
of the Fan Control cluster.

typedef enum

{

 E_CLD_FAN_CONTROL_ATTR_ID_FAN_MODE = 0x0000,

 E_CLD_FAN_CONTROL_ATTR_ID_FAN_MODE_SEQUENCE,

} teCLD_FanControl_Cluster_AttrID;

19.5.2 teCLD_FanControl_FanMode

The following structure contains the enumerations used to set the value of the
e8FanMode attribute in the tsCLD_FanControl structure (see Section 19.2).

typedef enum

{

 E_CLD_FANCONTROL_FAN_MODE_OFF = 0x00,

 E_CLD_FANCONTROL_FAN_MODE_LOW,

 E_CLD_FANCONTROL_FAN_MODE_MEDIUM,

 E_CLD_FANCONTROL_FAN_MODE_HIGH,

 E_CLD_FANCONTROL_FAN_MODE_ON,

 E_CLD_FANCONTROL_FAN_MODE_AUTO,

 E_CLD_FANCONTROL_FAN_MODE_SMART

} teCLD_FanControl_FanMode;

The above enumerations are described in the table below.

Enumeration Description (Fan State/Speed)

E_CLD_FANCONTROL_FAN_MODE_OFF Off

E_CLD_FANCONTROL_FAN_MODE_LOW Low

E_CLD_FANCONTROL_FAN_MODE_MEDIUM Medium

E_CLD_FANCONTROL_FAN_MODE_HIGH High

E_CLD_FANCONTROL_FAN_MODE_ON On

E_CLD_FANCONTROL_FAN_MODE_AUTO Auto (fan speed is self-regulated)

E_CLD_FANCONTROL_FAN_MODE_SMART Smart (when the space is occupied, the fan is always on)

Table 20: ‘Fan Mode’ Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 351

Chapter 19
Fan Control Cluster

19.5.3 teCLD_FanControl_ModeSequence

The following structure contains the enumerations used to set the value of the
e8FanModeSequence attribute in the tsCLD_FanControl structure (see Section
19.2).

typedef enum

{

 E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_LMH = 0x00,

 E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_LH,

 E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_LMHA,

 E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_LHA,

 E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_OA

} teCLD_FanControl_ModeSequence;

The above enumerations are described in the table below (the fan speeds/states refer
to those listed in Section 19.5.2).

19.6 Compile-Time Options

To enable the Fan Control cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_FAN_CONTROL

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define FAN_CONTROL_CLIENT

#define FAN_CONTROL_SERVER

Enumeration Description (Set of Fan Speeds/States)

E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_LMH Low/Med/High

E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_LH Low/High

E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_LMHA Low/Med/High/Auto

E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_LHA Low/High/Auto

E_CLD_FANCONTROL_FAN_MODE_SEQUENCE_OA On/Auto

Table 21: ‘Fan Mode Sequence’ Enumerations
352 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
20. Thermostat UI Configuration Cluster

This chapter outlines the Thermostat User Interface (UI) Configuration cluster which
is defined in the ZCL and provides an interface for configuring the user interface
(keypad and/or LCD screen) of a thermostat - this interface may be located on a
controlling device which is remote from the thermostat.

The Thermostat UI Configuration cluster has a Cluster ID of 0x0204.

20.1 Overview

The Thermostat UI Configuration cluster is required in HA devices as indicated in the
table below.

The Thermostat UI Configuration cluster is enabled by defining
CLD_THERMOSTAT_UI_CONFIG in the zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Thermostat UI Configuration cluster are fully detailed
in Section 20.7.

Server-side Client-side

Mandatory in...

Optional in... Thermostat Configuration Tool
Combined Interface

Table 22: Thermostat UI Configuration Cluster in HA Devices
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 353

Chapter 20
Thermostat UI Configuration Cluster

20.2 Cluster Structure and Attributes

The Thermostat UI Configuration cluster is contained in the following
tsCLD_ThermostatUIConfig structure:

typedef struct

{

 zenum8 eTemperatureDisplayMode;

 zenum8 eKeypadLockout;

} tsCLD_ThermostatUIConfig;

where:

 eTemperatureDisplayMode specifies the units (Celsius or Fahrenheit) used
to display temperature on the screen of the user interface. Enumerations are
provided:

 E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_CELSIUS

 E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_FAHRENHEIT

 eKeypadLockout specifies the level of functionality that is available via the
keypad of the user interface. Enumerations are provided:

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_NO_LOCKOUT

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_1_LOCKOUT

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_2_LOCKOUT

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_3_LOCKOUT

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_4_LOCKOUT

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_5_LOCKOUT

The functionality of each level is manufacturer-defined but level 5 represents the
minimum functionality.

20.3 Initialisation

The function eCLD_ThermostatUIConfigCreateThermostatUIConfig() is used to
create an instance of the Thermostat UI Configuration cluster. The function is
generally called by the initialisation function for the host device.
354 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
20.4 Functions

The following Thermostat UI Configuration cluster functions are provided in the HA
API:

Function Page

eCLD_ThermostatUIConfigCreateThermostatUIConfig 356

eCLD_ThermostatUIConfigConvertTemp 358
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 355

Chapter 20
Thermostat UI Configuration Cluster

eCLD_ThermostatUIConfigCreateThermostatUIConfig

Description

This function creates an instance of the Thermostat UI Configuration cluster on an
endpoint. The cluster instance is created on the endpoint which is associated with
the supplied tsZCL_ClusterInstance structure and can act as a server or a
client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Thermostat UI Configuration
cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

When used, this function must be the first Thermostat UI Configuration cluster
function called in the application, and must be called after the stack has been started
and after the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Thermostat UI
Configuration cluster, which can be obtained by using the macro
CLD_THERMOSTAT_UI_CONFIG_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8ThermostatUIConfigClusterAttributeControlBits[
 CLD_THERMOSTAT_UI_CONFIG_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

teZCL_Status
eCLD_ThermostatUIConfigCreateThermostatUIConfig(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
sZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. the Thermostat device)
will be used. In this case, the device and its supported
clusters must be registered on the endpoint using the relevant
device registration function.
356 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Thermostat UI
Configuration cluster. This parameter can refer to a pre-
filled structure called sCLD_ThermostatUIConfig
which is provided in the ThermostatUIConfig.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_ThermostatUIConfig
which defines the attributes of Thermostat UI
Configuration cluster. The function will initialise the
attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 357

Chapter 20
Thermostat UI Configuration Cluster

eCLD_ThermostatUIConfigConvertTemp

Description

This function can be used on a Thermostat UI Configuration cluster server to convert
a temperature from units of Celsius to Fahrenheit or vice-versa (the direction must
be specified). The temperature value to be converted is provided to the function as a
pointer to a memory location where the input value is stored. This stored value is
replaced with the converted temperature value by the function (over-writing the input
value).

Parameters

u8SourceEndPointId Number of the endpoint on which the Thermostat UI
Configuration cluster resides

bConvertCToF Direction of temperature conversion:
TRUE - Celsius to Fahrenheit
FALSE - Fahrenheit to Celsius

pi16Temperature Pointer to location containing the temperature value to be
converted. The converted temperature value is also output to
this location by the function

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_INVALID_VALUE

E_ZCL_DENY_ATTRIBUTE_ACCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

teZCL_Status eCLD_ThermostatUIConfigConvertTemp(
uint8 u8SourceEndPointId,
bool bConvertCToF,
int16 *pi16Temperature);
358 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
20.5 Return Codes

The Thermostat UI Configuration cluster functions use the ZCL return codes defined
in Section 35.2.

20.6 Enumerations

20.6.1 ‘Attribute ID’ Enumerations

The following structure contains the enumerations used to identify the attributes of the
Thermostat UI Configuration cluster.

typedef enum

{

 E_CLD_THERMOSTAT_UI_CONFIG_ATTR_ID_TEMPERATURE_DISPLAY_MODE = 0x0000

 E_CLD_THERMOSTAT_UI_CONFIG_ATTR_ID_KEYPAD_LOCKOUT

} teCLD_ThermostatUIConfig_AttributeID;

20.6.2 ‘Temperature Display Mode’ Enumerations

The following enumerations are used to set the optional attribute
eTemperatureDisplayMode in the Thermostat UI Configuration cluster structure
tsCLD_ThermostatUIConfig.

typedef enum

{

 E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_CELSIUS = 0x00,

 E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_FAHRENHEIT

} teCLD_ThermostatUIConfig_TemperatureDisplay;

The above enumerations represent the units of temperature available to display
temperature on the screen of the user interface and are described in the table below.

Enumeration Description

E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_
CELSIUS

Display temperature in Celsius

E_CLD_THERMOSTAT_UI_CONFIG_TEMPERATURE_DISPLAY_MODE_
FAHRENHEIT

Display temperature in Fahrenheit

Table 23: ‘Temperature Display Mode’ Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 359

Chapter 20
Thermostat UI Configuration Cluster

20.6.3 ‘Keypad Functionality’ Enumerations

The following enumeration is used to set the optional attribute eKeypadLockout in
the Thermostat UI Configuration cluster structure tsCLD_ThermostatUIConfig.

typedef enum

{

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_NO_LOCKOUT = 0x00,

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_1_LOCKOUT,

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_2_LOCKOUT,

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_3_LOCKOUT,

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_4_LOCKOUT,

 E_CLD_THERMOSTAT_UI_CONFIG_KEYPAD_LOCKOUT_LEVEL_5_LOCKOUT

} teCLD_ThermostatUIConfig_KeyPadLockout;

The above enumerations represent levels of functionality available via the keypad of
the user interface. The functionality of each level is manufacturer-defined but level 5
represents the minimum functionality.

20.7 Compile-Time Options

To enable the Thermostat UI Configuration cluster in the code to be built, it is
necessary to add the following to the zcl_options.h file:

#define CLD_THERMOSTAT_UI_CONFIG

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define THERMOSTAT_UI_CONFIG_SERVER

#define THERMOSTAT_UI_CONFIG_CLIENT
360 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
21. Colour Control Cluster

This chapter describes the Colour Control cluster which is defined in the ZCL.

The Colour Control cluster has a Cluster ID of 0x0300.

21.1 Overview

The Colour Control cluster is used to control the colour of a light.

The Colour Control cluster provides the facility to specify the colour of a light in the
colour space defined in the Commission Internationale de l'Éclairage (CIE)
specification (1931). Colour control can be performed in terms of any of the following:

 x and y values, as defined in the CIE specification

 hue and saturation

 colour temperature

To use the functionality of this cluster, you must include the file ColourControl.h in
your application and enable the cluster by defining CLD_COLOUR_CONTROL in the
zcl_options.h file - see Section 21.8.

It is also necessary to enable the cluster as a server or client, or as both:

 The cluster server is able to receive commands to change the colour on the
local light device.

 The cluster client is able to send commands to change the colour on the remote
light device.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Colour Control cluster are fully detailed in Section
21.8.

Note 1: This cluster should normally be used with the
Level Control cluster (see Chapter 12) and On/Off
cluster (see Chapter 10). This is assumed to be the
case in this description.

Note 2: This cluster only controls the colour balance
and not the overall brightness of a light. The brightness
is adjusted using the Level Control cluster.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 361

Chapter 21
Colour Control Cluster

The information that can potentially be stored in this cluster is organised into the
following attribute sets:

 Colour Information

 Defined Primaries Information

 Additional Defined Primaries Information

 Defined Colour Point Settings

There is also a set of of ‘enhanced’ attributes for the ZigBee Light Link profile.

21.2 Colour Control Cluster Structure and Attributes

The structure definition for the Colour Control cluster is:

typedef struct

{

/* Colour Information attribute set */

#ifdef CLD_COLOURCONTROL_ATTR_CURRENT_HUE

 zuint8 u8CurrentHue;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_CURRENT_SATURATION

 zuint8 u8CurrentSaturation;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_REMAINING_TIME

 zuint16 u16RemainingTime;

#endif

 zuint16 u16CurrentX;

 zuint16 u16CurrentY;

#ifdef CLD_COLOURCONTROL_ATTR_DRIFT_COMPENSATION

 zenum8 u8DriftCompensation;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COMPENSATION_TEXT

 tsZCL_CharacterString sCompensationText;

 uint8
au8CompensationText[CLD_COLOURCONTROL_COMPENSATION_TEXT_MAX_STRING
_LENGTH];

#endif
362 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED

 zuint16 u16ColourTemperatureMired;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_MODE

 zenum8 u8ColourMode;

#endif

/* Defined Primaries Information attribute set */

#ifdef CLD_COLOURCONTROL_ATTR_NUMBER_OF_PRIMARIES

 zuint8 u8NumberOfPrimaries;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_1_X

 zuint16 u16Primary1X;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_1_Y

 zuint16 u16Primary1Y;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_1_INTENSITY

 zuint8 u8Primary1Intensity;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_2_X

 zuint16 u16Primary2X;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_2_Y

 zuint16 u16Primary2Y;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_2_INTENSITY

 zuint8 u8Primary2Intensity;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_3_X

 zuint16 u16Primary3X;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_3_Y
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 363

Chapter 21
Colour Control Cluster

 zuint16 u16Primary3Y;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_3_INTENSITY

 zuint8 u8Primary3Intensity;

#endif

/* Additional Defined Primaries Information attribute set */

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_4_X

 zuint16 u16Primary4X;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_4_Y

 zuint16 u16Primary4Y;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_4_INTENSITY

 zuint8 u8Primary4Intensity;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_5_X

 zuint16 u16Primary5X;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_5_Y

 zuint16 u16Primary5Y;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_5_INTENSITY

 zuint8 u8Primary5Intensity;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_6_X

 zuint16 u16Primary6X;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_6_Y

 zuint16 u16Primary6Y;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_PRIMARY_6_INTENSITY

 zuint8 u8Primary6Intensity;

#endif
364 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
/* Defined Colour Points Settings attribute set */

#ifdef CLD_COLOURCONTROL_ATTR_WHITE_POINT_X

 zuint16 u16WhitePointX;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_WHITE_POINT_Y

 zuint16 u16WhitePointY;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_X

 zuint16 u16ColourPointRX;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_Y

 zuint16 u16ColourPointRY;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_INTENSITY

 zuint8 u8ColourPointRIntensity;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_X

 zuint16 u16ColourPointGX;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_Y

 zuint16 u16ColourPointGY;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_INTENSITY

 zuint8 u8ColourPointGIntensity;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_X

 zuint16 u16ColourPointBX;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_Y

 zuint16 u16ColourPointBY;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_INTENSITY
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 365

Chapter 21
Colour Control Cluster

 zuint8 u8ColourPointBIntensity;

#endif

/* ZLL enhanced attributes */

#ifdef CLD_COLOURCONTROL_ATTR_ENHANCED_CURRENT_HUE

 zuint16 u16EnhancedCurrentHue;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE

 zenum8 u8EnhancedColourMode;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_ACTIVE

 zuint8 u8ColourLoopActive;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_DIRECTION

 zuint8 u8ColourLoopDirection;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_TIME

 zuint16 u16ColourLoopTime;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_START_ENHANCED_HUE

 zuint16 u16ColourLoopStartEnhancedHue;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_STORED_ENHANCED_HUE

 zuint16 u16ColourLoopStoredEnhancedHue;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_CAPABILITIES

 zuint16 u16ColourCapabilities;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED_PHY_MIN

 zuint16 u16ColourTemperatureMiredPhyMin;

#endif

#ifdef CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED_PHY_MAX

 zuint16 u16ColourTemperatureMiredPhyMax;

#endif
366 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
} tsCLD_ColourControl;

where:

‘Colour Information’ Attribute Set

Note that the attributes u8CurrentHue, u8CurrentSaturation, u16CurrentX,
u16CurrentY and u16ColourTemperatureMired are enabled as part of ‘Colour
Capabilities’ groups - see Table 25 on page 435.

 u8CurrentHue is the current hue value of the light in the range 0-254. This
value can be converted to hue in degrees using the following formula:
hue = u8CurrentHue x 360/254. This attribute is only valid when the attributes
u8CurrentSaturation and u8ColorMode are also implemented.

 u8CurrentSaturation is the current saturation value of the light in the
range 0-254. This value can be converted to saturation as a fraction using the
following formula: saturation = u8CurrentSaturation/254. This attribute is
only valid when the attributes u8CurrentHue and u8ColorMode are also
implemented.

 u16RemainingTime is the time duration, in tenths of a second, before the
currently active command completes.

 u16CurrentX is the current value for the chromaticity x, as defined in the CIE
xyY colour space, in the range 0-65279. The normalised value of x is calculated
using the following formula: x = u16CurrentX/65536.

 u16CurrentY is the current value for the chromaticity y, as defined in the CIE
xyY colour space, in the range 0-65279. The normalised value of y is calculated
using the following formula: y = u16CurrentY/65536.

 u8DriftCompensation indicates which mechanism, if any, is being used to
compensate for colour/intensity drift over time. One of the following values is
specified:

u8DriftCompensation Drift Compensation Mechanism

0x00 None

0x01 Other or unknown

0x02 Temperature monitoring

0x03 Optical luminance monitoring and feedback

0x04 Optical colour monitoring and feedback

0x05 - 0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 367

Chapter 21
Colour Control Cluster

 The following optional pair of attributes are used to store a textual indication of
the drift compensation mechanism used:

 sCompensationText is a tsZCL_CharacterString structure (see
Section 34.1.14) for a character string representing the drift compensation
method used

 au8CompensationText[] is a byte-array which contains the character
data bytes representing the drift compensation method used

 u16ColourTemperatureMired is the colour temperature of the light
exressed as a mired value. It is a scaled reciprocal of the current value of the
colour temperature, in the range 1-65279 (0 is undefined and 65535 indicates
an invalid value). The colour temperature, in Kelvin, is calculated using the
following formula: T = 1000000/u16ColourTemperatureMired. This
attribute is only valid when the attribute u8ColourMode is also implemented.

 u8ColourMode indicates which method is currently being used to control the
colour of the light. One of the following values is specified:

‘Defined Primaries Information’ Attribute Set

 u8NumberOfPrimaries is the number of colour primaries implemented on
the device, in the range 1-6 (0xFF is used if the number of primaries is
unknown).

For each colour primary, there is a set of three attributes used (see below) - for
example, for the first primary this attribute trio comprises u16Primary1X,
u16Primary1Y and u8Primary1Intensity. Therefore, the number of
primaries specified determines the number of these attribute trios used.

The attribute definitions below are valid for colour primary N, where N is 1, 2 or 3.

 u16PrimaryNX is the value for the chromaticity x for colour primary N, as
defined in the CIE xyY colour space, in the range 0-65279. The normalised
value of x is calculated using the following formula: x = u16PrimaryNX/65536.

 u16PrimaryNY is the value for the chromaticity y for colour primary N, as
defined in the CIE xyY colour space, in the range 0-65279. The normalised
value of y is calculated using the following formula: y = u16PrimaryNY/65536.

u8ColourMode Colour Control Method/Attributes

0x00 Hue and saturation
(u8CurrentHue and u8CurrentSaturation)

0x01 Chromaticities x and y from CIE xyY colour space
(u16CurrentX and u16CurrentY)

0x02 Colour temperature (u16ColourTemperatureMired)

0x03 - 0xFF Reserved

Note: The number of primaries is set using a macro at
compile-time (see Section 21.8). This automatically
enables the relevant u16PrimaryNX, u16PrimaryNY
and u8PrimaryNIntensity (N=1 to 6) attributes.
368 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u8PrimaryNIntensity is a representation of the maximum intensity of
colour primary 1, normalised such that the primary with the highest maximum
intensity has the value 0xFE.

‘Additional Defined Primaries Information’ Attribute Set

The attribute definitions for this set are as for u16PrimaryNX, u16PrimaryNY
and u8PrimaryNIntensity above, where N is 4, 5 or 6.

As indicated in the Note above for the ‘Defined Primaries Information’ Attribute
Set, these attributes are enabled automatically according to the number of
required primaries defined at compile-time (see Section 21.8).

‘Defined Colour Points Settings’ Attribute Set

 u16WhitePointX is the value for the chromaticity x for the white point of the
device, as defined in the CIE xyY colour space, in the range 0-65279. The
normalised value of x is calculated using the following formula:
x = u16WhitePointX/65536.

 u16WhitePointY is the value for the chromaticity y for the white point of the
device, as defined in the CIE xyY colour space, in the range 0-65279. The
normalised value of y is calculated using the following formula:
y = u16WhitePointY/65536.

 u16ColourPointRX is the value for the chromaticity x for the red colour point
of the device, as defined in the CIE xyY colour space, in the range 0-65279.
The normalised value of x is calculated using the following formula:
x = u16ColourPointRX/65536.

 u16ColourPointRY is the value for the chromaticity y for the red colour point
of the device, as defined in the CIE xyY colour space, in the range 0-65279.
The normalised value of y is calculated using the following formula:
y = u16ColourPointRY/65536.

 u8ColourPointRIntensity is a representation of the relative intensity of
the red colour point of the device, normalised such that the colour point with the
highest relative intensity has the value 0xFE (the value 0xFF indicates an
invalid value).

 u16ColourPointGX is the value for the chromaticity x for the green colour
point of the device, as defined in the CIE xyY colour space, in the range 0-
65279. The normalised value of x is calculated using the following formula:
x = u16ColourPointGX/65536.

 u16ColourPointGY is the value for the chromaticity y for the green colour
point of the device, as defined in the CIE xyY colour space, in the range 0-
65279. The normalised value of y is calculated using the following formula:
y = u16ColourPointGY/65536.

 u8ColourPointGIntensity is a representation of the relative intensity of
the green colour point of the device, normalised such that the colour point with
the highest relative intensity has the value 0xFE (the value 0xFF indicates an
invalid value).

 u16ColourPointBX is the value for the chromaticity x for the blue colour point
of the device, as defined in the CIE xyY colour space, in the range 0-65279.
The normalised value of x is calculated using the following formula:
x = u16ColourPointBX/65536.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 369

Chapter 21
Colour Control Cluster

 u16ColourPointBY is the value for the chromaticity y for the blue colour point
of the device, as defined in the CIE xyY colour space, in the range 0-65279.
The normalised value of y is calculated using the following formula:
y = u16ColourPointBY/65536.

 u8ColourPointBIntensity is a representation of the relative intensity of
the blue colour point of the device, normalised such that the colour point with
the highest relative intensity has the value 0xFE (the value 0xFF indicates an
invalid value).

ZLL Enhanced Attributes

Note that the ZLL enhanced attributes are enabled as part of ‘Colour Capabilities’
groups - see Table 25 on page 435.

 u16EnhancedCurrentHue contains the current hue of the light in terms of
(unequal) steps around the CIE colour ‘triangle’:

 8 most significant bits represent an index into the XY look-up table that
contains the step values, thus indicating the current step used

 8 least significant bits represent a linear interpolation value between the
current step and next step (up), facilitating a colour zoom

The value of the u8CurrentHue attribute is calculated from the above values.

 u8EnhancedColourMode indicates which method is currently being used to
control the colour of the light. One of the following values is specified:

 u8ColourLoopActive indicates whether the colour loop is currently active:
0x01 - active, 0x00 - not active (all other values are reserved). The colour loop
follows the hue steps around the CIE colour ‘triangle’ by incrementing or
decrementing the value of u16EnhancedCurrentHue.

 u8ColourLoopDirection indicates the current direction of the colour loop in
terms of the direction of change of u16EnhancedCurrentHue:
0x01 - incrementing, 0x00 - decrementing (all other values are reserved).

 u16ColourLoopTime is the period, in seconds, of a full colour loop - that is,
the time to cycle all possible values of u16EnhancedCurrentHue.

 u16ColourLoopStartEnhancedHue indicates the value of
u16EnhancedCurrentHue at which the colour loop must be started.

u8ColourMode Colour Control Method/Attributes

0x00 Current hue and current saturation
(u8CurrentHue and u8CurrentSaturation)

0x01 Chromaticities x and y from CIE xyY colour space
(u16CurrentX and u16CurrentY)

0x02 Colour temperature (u16ColourTemperatureMired)

0x03 Enhanced hue and current saturation
(u16EnhancedCurrentHue and u8CurrentSaturation)

0x03 - 0xFF Reserved
370 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u16ColourLoopStoredEnhancedHue contains the value of
u16EnhancedCurrentHue at which the last colour loop completed (this value
is stored on completing a colour loop).

 u16ColourCapabilities is a bitmap indicating the Colour Control cluster
features (and attributes) supported by the device, as detailed below (a bit is set
to ‘1’ if the feature is supported or ‘0’ otherwise):

Macros are provided to select the required Colour Capabilities at compile-time
- see Table 25 on page 435.

 u16ColourTemperatureMiredPhyMin indicates the minimum value
(supported by the hardware) of the mired colour temperature attribute.

 u16ColourTemperatureMiredPhyMax indicates the maximum value
(supported by the hardware) of the mired colour temperature attribute.

21.3 Initialisation

The function eCLD_ColourControlCreateColourControl() is used to create an
instance of the Colour Control cluster. The function is generally called by the
initialisation function for the host device.

Bits Feature Attributes

0 Hue/Saturation u8CurrentHue
u8CurrentSaturation

1 Enhanced Hue
(Hue/Saturation must also be
supported)

u16EnhancedCurrentHue

2 Colour Loop
(Enhanced Hue must also be
supported)

u8ColourLoopActive
u8ColourLoopDirection
u16ColourLoopTime
u16ColourLoopStartEnhancedHue
u16ColourLoopStoredEnhancedHue
u16ColourCapabilities

3 CIE XY Values u16CurrentX
u16CurrentY

4 Colour Temperature (Mired) u16ColourTemperatureMired
u16ColourTemperatureMiredPhyMin
u16ColourTemperatureMiredPhyMax

5-15 Reserved -
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 371

Chapter 21
Colour Control Cluster

21.4 Sending Commands

The NXP implementation of the ZCL provides functions for sending commands
between a Colour Control cluster client and server. A command is sent from the client
to one or more endpoints on the server. Multiple endpoints can usually be targeted
using binding or group addressing.

The Colour Control cluster includes some commands that are specific to the ZigBee
Light Link (ZLL) profile. These commands relate to the ZLL ‘enhanced’ attributes of
the cluster (see Section 21.2).

21.4.1 Controlling Hue

Colour can be controlled in terms of hue, which is related to the dominant wavelength
(or frequency) of the light emitted by a lighting device. On a device that supports the
Colour Control cluster, the hue is controlled by means of the ‘current hue’ attribute
(u8CurrentHue) of the cluster. This attribute can take a value in the range 0-254,
which can be converted to hue in degrees using the following formula:

Hue in degrees = u8CurrentHue x 360/254

The ‘current hue’ attribute can be controlled in a number of ways using commands of
the Colour Control cluster. API functions are available to send these commands to
endpoints on remote devices.

‘Move to Hue’ Command

The ‘Move to Hue’ command allows the ‘current hue’ attribute to be moved (increased
or decreased) to a specified target value in a continuous manner over a specified
transition time. This command can be sent to an endpoint on a remote device using
the function

eCLD_ColourControlCommandMoveToHueCommandSend()

Since the possible hues are represented on a closed boundary, the target hue can be
reached by moving the attribute value in either direction, up or down (the attribute
value wraps around). Options are also provided for taking the ‘shortest route’ and
‘longest route’ around the boundary.

‘Move Hue’ Command

The ‘Move Hue’ command allows the ‘current hue’ attribute to be moved in a given
direction (increased or decreased) at a specified rate indefinitely, until stopped. This
command can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveHueCommandSend()

Note: In the case of ZLL, any ‘Move to’, ‘Move’ or ‘Step’
command that is currently in progress can be stopped at
any time by calling the function:
eCLD_ColourControlCommandStopMoveStepCommandSend()
372 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Since the possible hues are represented on a closed boundary, the movement is
cyclic (the attribute value wraps around). The above function can also be used to stop
the movement.

‘Step Hue’ Command

The ‘Step Hue’ command allows the ‘current hue’ attribute to be moved (increased or
decreased) by a specified amount in a continuous manner over a specified transition
time. This command can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandStepHueCommandSend()

21.4.2 Controlling Saturation

Colour can be controlled in terms of saturation, which is related to the spread of
wavelengths (or frequencies) in the light emitted by a lighting device. On a device that
supports the Colour Control cluster, the saturation is controlled by means of the
‘current saturation’ attribute (u8CurrentSaturation) of the cluster. This attribute
can take a value in the range 0-254, which can be converted to saturation as a fraction
using the following formula:

Saturation = u8CurrentSaturation/254

The ‘current saturation’ attribute can be controlled in a number of ways using
commands of the Colour Control cluster. API functions are available to send these
commands to endpoints on remote devices.

‘Move to Saturation’ Command

The ‘Move to Saturation’ command allows the ‘current saturation’ attribute to be
moved (increased or decreased) to a specified target value in a continuous manner
over a specified transition time. This command can be sent to an endpoint on a remote
device using the function

eCLD_ColourControlCommandMoveToSaturationCommandSend()

‘Move Saturation’ Command

The ‘Move Saturation’ command allows the ‘current saturation’ attribute to be moved
in a given direction (increased or decreased) at a specified rate until stopped or until
the current saturation reaches its minimum or maximum value. This command can be
sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveSaturationCommandSend()

Note 1: Hue can also be moved in conjunction with
saturation, as described in Section 21.4.7.

Note 2: In the ZigBee Light Link (ZLL) profile, the
‘enhanced’ hue can be moved in similar ways, as
described in Section 21.4.5.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 373

Chapter 21
Colour Control Cluster

The above function can also be used to stop the movement.

‘Step Saturation’ Command

The ‘Step Saturation’ command allows the ‘current saturation’ attribute to be moved
(increased or decreased) by a specified amount in a continuous manner over a
specified transition time. This command can be sent to an endpoint on a remote device
using the function

eCLD_ColourControlCommandStepSaturationCommandSend()

21.4.3 Controlling Colour (CIE x and y Chromaticities)

Colour can be controlled in terms of the x and y chromaticities defined in the CIE xyY
colour space. On a device that supports the Colour Control cluster, these values are
controlled by means of the ‘current x’ attribute (u16CurrentX) and ‘current y’
attribute (u16CurrentY) of the cluster. Each of these attributes can take a value in
the range 0-65279. The normalised x and y chromaticities can then be calculated from
these values using the following formulae:

x = u16CurrentX/65536

y = u16CurrentY/65536

The x and y chromaticity attributes can be controlled in a number of ways using
commands of the Colour Control cluster. API functions are available to send these
commands to endpoints on remote devices.

‘Move to Colour’ Command

The ‘Move to Colour’ command allows the ‘current x’ and ‘current y’ attributes to be
moved (increased or decreased) to specified target values in a continuous manner
over a specified transition time. This command can be sent to an endpoint on a remote
device using the function

eCLD_ColourControlCommandMoveToColourCommandSend()

‘Move Colour’ Command

The ‘Move Colour’ command allows the ‘current x’ and ‘current y’ attributes to be
moved in a given direction (increased or decreased) at specified rates until stopped or
until both attributes reach their minimum or maximum value. This command can be
sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandMoveColourCommandSend()

The above function can also be used to stop the movement.

Note: Saturation can also be moved in conjunction with
hue, as described in Section 21.4.7.
374 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
‘Step Colour’ Command

The ‘Step Colour’ command allows the ‘current x’ and ‘current y’ attributes to be
moved (increased or decreased) by specified amounts in a continuous manner over
a specified transition time. This command can be sent to an endpoint on a remote
device using the function

eCLD_ColourControlCommandStepColourCommandSend()

21.4.4 Controlling Colour Temperature

Colour can be controlled in terms of colour temperature, which is the temperature of
an ideal black body which radiates light of a similar hue to that of the lighting device.
On a device that supports the Colour Control cluster, the colour temperature is
controlled by means of the ‘mired colour temperature’ attribute
(u16ColourTemperatureMired) of the cluster. This attribute represents a scaled
reciprocal of the current value of the colour temperature of the light, in the range
1-65279. The colour temperature, in Kelvin, can be calculated from the attribute value
using the following formula:

T = 1000000/u16ColourTemperatureMired

‘Move to Colour Temperature’ Command

The ‘Move to Colour Temperature’ command allows the ‘mired colour temperature’
attribute to be moved (increased or decreased) to a specified target value in a
continuous manner over a specified transition time. This command can be sent to an
endpoint on a remote device using the function

eCLD_ColourControlCommandMoveToColourTemperatureCommandSend()

‘Move Colour Temperature’ Command

The ‘Move Colour Temperature’ command allows the ‘mired colour temperature’
attribute to be moved in a given direction (increased or decreased) at a specified rate
until stopped. This command can be sent to an endpoint on a remote device using the
function

eCLD_ColourControlCommandMoveColourTemperatureCommandSend()

The above function can also be used to stop the movement.

Maximum and minimum values for the ‘mired colour temperature’ attribute during the
movement are also specified. If the attribute value reaches the specified maximum or
minimum before the required change has been achieved, the movement will
automatically stop.

Note: The movement of colour temperature through
colour space always follows the ‘Black Body Line'.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 375

Chapter 21
Colour Control Cluster

‘Step Colour Temperature’ Command

The ‘Step Colour Temperature’ command allows the ‘mired colour temperature’
attribute to be moved (increased or decreased) by a specified amount in a continuous
manner over a specified transition time. This command can be sent to an endpoint on
a remote device using the function

eCLD_ColourControlCommandStepColourTemperatureCommandSend()

Maximum and minimum values for the ‘mired colour temperature’ attribute during the
movement are also specified. If the attribute value reaches the specified maximum or
minimum before the required change has been achieved, the movement will
automatically stop.

21.4.5 Controlling ‘Enhanced’ Hue (ZLL Only)

Colour can be controlled in terms of hue, which is related to the dominant wavelength
(or frequency) of the light emitted by a lighting device. On a ZLL device that supports
the Colour Control cluster, the hue can be controlled by means of the ‘enhanced
current hue’ attribute (u16EnhancedCurrentHue), instead of the ‘current hue’
attribute (the ‘current hue’ attribute is automatically adjusted when the ‘enhanced
current hue’ attribute value changes).

The ‘enhanced current hue’ attribute allows hue to be controlled on a finer scale than
the ‘current hue’ attribute. Hue steps are defined in a look-up table and values
between the steps can be achieved through linear interpolation. This 16-bit attribute
value therefore comprises two 8-bit components, as described below.

Thus, if the current hue step value is Hi (where i is the relevant table index) and the
linear interpolation value is interp, the ‘enhanced’ hue is given by the formula:

Enhanced hue = Hi + (interp/255) x (Hi+1 - Hi)

To convert this hue to a value in degrees, it is then necessary to multiply by 360/255.

The ‘enhanced current hue’ attribute can be controlled in a number of ways using
commands of the Colour Control cluster. API functions are available to send these
commands to endpoints on remote devices.

Bits 15-8 Bits 7-0

Index into the look-up table that
contains the hue step values, thus indicating the
current step used

Linear interpolation value between the
current step and next step (up)

Table 24: ‘Enhanced Current Hue’ Attribute Format
376 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
‘Enhanced Move to Hue’ Command

The ‘Enhanced Move to Hue’ command allows the ‘enhanced current hue’ attribute to
be moved (increased or decreased) to a specified target value in a continuous manner
over a specified transition time (the ‘current hue’ attribute is also moved to a value
based on the target ‘enhanced current hue’ value). This command can be sent to an
endpoint on a remote device using the function

eCLD_ColourControlCommandEnhancedMoveToHueCommandSend()

Since the possible hues are represented on a closed boundary, the target hue can be
reached by moving the attribute value in either direction, up or down (the attribute
value wraps around). Options are also provided for taking the ‘shortest route’ and
‘longest route’ around the boundary.

‘Enhanced Move Hue’ Command

The ‘Enhanced Move Hue’ command allows the ‘enhanced current hue’ attribute to be
moved in a given direction (increased or decreased) at a specified rate indefinitely,
until stopped (the ‘current hue’ attribute is also moved through values based on the
‘enhanced current hue’ value). This command can be sent to an endpoint on a remote
device using the function

eCLD_ColourControlCommandEnhancedMoveHueCommandSend()

The above function can also be used to stop the movement.

Since the possible hues are represented on a closed boundary, the movement is
cyclic (the attribute value wraps around). The above function can also be used to stop
the movement.

‘Enhanced Step Hue’ Command

The ‘Enhanced Step Hue’ command allows the ‘enhanced current hue’ attribute to be
moved (increased or decreased) by a specified amount in a continuous manner over
a specified transition time (the ‘current hue’ attribute is also moved through values
based on the ‘enhanced current hue’ value). This command can be sent to an endpoint
on a remote device using the function

eCLD_ColourControlCommandEnhancedStepHueCommandSend()

Note: These commands are issued by a cluster client
and are performed on a cluster server. The look-up table
is user-defined on the server. When this command is
received by the server, the user-defined callback
function that is invoked must read the entry with the
specified index from the look-up table and calculate the
corresponding ‘enhanced’ hue value.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 377

Chapter 21
Colour Control Cluster

21.4.6 Controlling a Colour Loop (ZLL Only)

The colour of a ZLL device can be controlled by moving the value of the ‘enhanced
current hue’ attribute around a colour loop corresponding to the CIE colour ‘triangle’ -
refer to Section 21.4.5 for details of the ‘enhanced current hue’ attribute.

Movement along the colour loop can be controlled using the ‘Colour Loop Set’
command of the Colour Control cluster. A function is available to send this command
to endpoints on remote devices.

‘Colour Loop Set’ Command

The ‘Colour Loop Set’ command allows movement of the ‘enhanced current hue’
attribute value around the colour loop to be configured and started. The direction(up
or down), start ‘enhanced’ hue and duration of the movement can be specified. This
command can be sent to an endpoint on a remote device using the function

eCLD_ColourControlCommandColourLoopSetCommandSend()

The above function can also be used to stop the movement.

21.4.7 Controlling Hue and Saturation

Colour can be completely specified in terms of hue and saturation, which respectively
represent the dominant wavelength (or frequency) of the light and the spread of
wavelengths (around the former) within the light. Therefore, the Colour Control cluster
provides commands to change both the hue and saturation at the same time. In fact,
commands are provided to control the values of the:

 ‘current hue’ and ‘current saturation’ attributes

 ‘enhanced current hue’ and ‘current saturation’ attributes (ZLL only)

 API functions are available to send these commands to endpoints on remote devices.

Note 1: ‘Enhanced’ hue can also be moved in
conjunction with saturation, as described in Section
21.4.7.

Note 2: The value of the ‘enhanced current hue’
attribute can be moved around a colour loop, as
described in Section 21.4.6.
378 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
‘Move to Hue and Saturation’ Command

The ‘Move to Hue and Saturation’ command allows the ‘current hue’ and ‘current
saturation’attributes to be moved to specified target values in a continuous manner
over a specified transition time. This command can be sent to an endpoint on a remote
device using the function

eCLD_ColourControlCommandMoveToHueCommandSend()

‘Enhanced Move to Hue and Saturation’ Command (ZLL Only)

The ‘Enhanced Move to Hue and Saturation’ command allows the ‘enhanced current
hue’ and ‘current saturation’attributes to be moved to specified target values in a
continuous manner over a specified transition time. This command can be sent to an
endpoint on a remote device using the function

eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommand
Send()
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 379

Chapter 21
Colour Control Cluster

21.5 Functions

The following Colour Control cluster functions are provided in the NXP implementation
of the ZCL:

Function Page

eCLD_ColourControlCreateColourControl 381

eCLD_ColourControlCommandMoveToHueCommandSend 383

eCLD_ColourControlCommandMoveHueCommandSend 385

eCLD_ColourControlCommandStepHueCommandSend 387

eCLD_ColourControlCommandMoveToSaturationCommandSend 389

eCLD_ColourControlCommandMoveSaturationCommandSend 391

eCLD_ColourControlCommandStepSaturationCommandSend 393

eCLD_ColourControlCommandMoveToHueAndSaturationCommandSend 395

eCLD_ColourControlCommandMoveToColourCommandSend 397

eCLD_ColourControlCommandMoveColourCommandSend 399

eCLD_ColourControlCommandStepColourCommandSend 401

eCLD_ColourControlCommandEnhancedMoveToHueCommandSend 403

eCLD_ColourControlCommandEnhancedMoveHueCommandSend 405

eCLD_ColourControlCommandEnhancedStepHueCommandSend 407

eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend

409

eCLD_ColourControlCommandColourLoopSetCommandSend 411

eCLD_ColourControlCommandStopMoveStepCommandSend 413

eCLD_ColourControlCommandMoveToColourTemperatureCommandSend 415

eCLD_ColourControlCommandMoveColourTemperatureCommandSend 417

eCLD_ColourControlCommandStepColourTemperatureCommandSend 419

eCLD_ColourControl_GetRGB 421
380 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCreateColourControl

Description

This function creates an instance of the Colour Control cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Colour Control cluster instance
on the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

When used, this function must be the first Colour Control cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Colour Control
cluster, which can be obtained by using the macro
CLD_COLOURCONTROL_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppColourControlClusterAttributeControlBits[
 CLD_COLOURCONTROL_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status eCLD_ColourControlCreateColourControl(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_ColourControlCustomDataStructure
 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 381

Chapter 21
Colour Control Cluster

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Colour Control cluster.
This parameter can refer to a pre-filled structure called
sCLD_ColourControl which is provided in the
ColourControl.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_ColourControl which
defines the attributes of Colour Control cluster. The
function will initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 21.6.1)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
382 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveToHueCommandSend

Description

This function sends a Move to Hue command to instruct a device to move its ‘current
hue’ attribute to a target hue value in a continuous manner within a given time. The
hue value, direction and transition time are specified in the payload of the command
(see Section 21.6.2).

Since the possible hues are represented on a closed boundary, the target hue can
be reached by moving the attribute value in either direction, up or down (the attribute
value wraps around). Options are also provided for ‘shortest route’ and ‘longest
route’ around the boundary.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00,
if required. It can then move the ‘current hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current hue’ attribute is enabled in the
Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_ColourControlCommandMoveToHueCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveToHueCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 383

Chapter 21
Colour Control Cluster

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
384 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveHueCommandSend

Description

This function sends a Move Hue command to instruct a device to move its ‘current
hue’ attribute value in a given direction at a specified rate for an indefinite time. The
direction and rate are specified in the payload of the command (see Section 21.6.2).

The command can request that the hue is moved up or down, or that existing
movement is stopped. Since the possible hues are represented on a closed
boundary, the movement is cyclic (the attribute value wraps around). Once started,
the movement will continue until it is stopped.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00,
if required. It can then move the ‘current hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current hue’ attribute is enabled in the
Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandMoveHueCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveHueCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 385

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
386 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandStepHueCommandSend

Description

This function sends a Step Hue command to instruct a device to increase or
decrease its ‘current hue’ attribute by a specified ‘step’ value in a continuous manner
within a given time. The step size, direction and transition time are specified in the
payload of the command (see Section 21.6.2).

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00,
if required. It can then move the ‘current hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current hue’ attribute is enabled in the
Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandStepHueCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_StepHueCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 387

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
388 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveToSaturationCommandSend

Description

This function sends a Move to Saturation command to instruct a device to move its
‘current saturation’ attribute to a target saturation value in a continuous manner
within a given time. The saturation value and transition time are specified in the
payload of the command (see Section 21.6.2).

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00,
if required. It can then move the ‘current saturation’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current saturation’ attribute is enabled in
the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandMoveToSaturationCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveToSaturationCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 389

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
390 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveSaturationCommandSend

Description

This function sends a Move Saturation command to instruct a device to move its
‘current saturation’ attribute value in a given direction at a specified rate for an
indefinite time. The direction and rate are specified in the payload of the command
(see Section 21.6.2).

The command can request that the saturation is moved up or down, or that existing
movement is stopped. Once started, the movement will continue until it is stopped. If
the current saturation reaches its minimum or maximum value, the movement will
automatically stop.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00,
if required. It can then move the ‘current saturation’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current saturation’ attribute is enabled in
the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_ColourControlCommandMoveSaturationCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveSaturationCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 391

Chapter 21
Colour Control Cluster

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
392 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandStepSaturationCommandSend

Description

This function sends a Step Saturation command to instruct a device to increase or
decrease its ‘current saturation’ attribute by a specified ‘step’ value in a continuous
manner within a given time. The step size, direction and transition time are specified
in the payload of the command (see Section 21.6.2).

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. he device must first ensure that ‘hue
and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00, if
required. It can then move the ‘current saturation’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current saturation’ attribute is enabled in
the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandStepSaturationCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_StepSaturationCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 393

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
394 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveToHueAndSaturationCommandSend

Description

This function sends a Move to Hue and Saturation command to instruct a device to
move its ‘current hue’ and ‘current saturation’ attributes to target values in a
continuous manner within a given time. The hue value, saturation value and
transition time are specified in the payload of the command (see Section 21.6.2).

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00,
if required. It can then move the ‘current hue’ and ‘current saturation’ values as
requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current hue’ and ‘current saturation’
attributes are enabled in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandMoveToHueCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveToHueCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 395

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
396 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveToColourCommandSend

Description

This function sends a Move to Colour command to instruct a device to move its
‘current x’ and ‘current y’ attributes to target values in a continuous manner within a
given time (where x and y are the chromaticities from the CIE xyY colour space). The
x-value, y-value and transition time are specified in the payload of the command (see
Section 21.6.2).

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘chromaticities x and y’ mode is selected by setting the ‘colour mode’ attribute to
0x01, if required. It can then move the ‘current x’ and ‘current y’ values as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current x’ and ‘current y’ attributes are
enabled in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandMoveToColourCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveToColourCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 397

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
398 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveColourCommandSend

Description

This function sends a Move Colour command to instruct a device to move its ‘current
x’ and ‘current y’ attribute values at a specified rate for each attribute for an indefinite
time (where x and y are the chromaticities from the CIE xyY colour space). The rates
are specified in the payload of the command (see Section 21.6.2 and each rate can
be positive (increase) or negative (decrease).

Once started, the movement will continue until it is stopped. The movement can be
stopped by calling this function with both rates set to zero. The movement will be
automatically stopped when either of the attributes reaches its minimum of maximum
value.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘chromaticities x and y’ mode is selected by setting the ‘colour mode’ attribute to
0x01, if required. It can then move the ‘current x’ and ‘current y’ values as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current x’ and ‘current y’ values attributes
are enabled in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_ColourControlCommandMoveColourCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveColourCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 399

Chapter 21
Colour Control Cluster

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
400 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandStepColourCommandSend

Description

This function sends a Step Colour command to instruct a device to change its ‘current
x’ and ‘current y’ attribute values by a specified ‘step’ value for each attribute in a
continuous manner within a given time (where x and y are the chromaticities from the
CIE xyY colour space). The step sizes and transition time are specified in the payload
of the command (see Section 21.6.2), and each step size can be positive (increase)
or negative (decrease).

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘chromaticities x and y’ mode is selected by setting the ‘colour mode’ attribute to
0x01, if required. It can then move the ‘current x’ and ‘current y’ values as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘current x’ and ‘current y’ values attributes
are enabled in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandStepColourCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_StepColourCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 401

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
402 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandEnhancedMoveToHueCommandSend

Description

This function sends an Enhanced Move to Hue command to instruct a ZLL device to
move its ‘enhanced current hue’ attribute to a target hue value in a continuous
manner within a given time. The function can be used only with the ZLL profile. The
enhanced hue value, direction and transition time are specified in the payload of the
command (see Section 21.6.2). The ‘current hue’ attribute is also moved to a value
based on the target ‘enhanced current hue’ value.

Since the possible hues are represented on a closed boundary, the target hue can
be reached by moving the attribute value in either direction, up or down (the attribute
value wraps around). Options are also provided for ‘shortest route’ and ‘longest
route’ around the boundary.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00
and that ‘enhanced hue and saturation’ mode is selected by setting the ‘enhanced
colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current
hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled
in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

teZCL_Status
eCLD_ColourControlCommandEnhancedMoveToHueCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_EnhancedMoveToHueCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 403

Chapter 21
Colour Control Cluster

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
404 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandEnhancedMoveHueCommandSend

Description

This function sends an Enhanced Move Hue command to instruct a ZLL device to
move its ‘enhanced current hue’ attribute value in a given direction at a specified rate
for an indefinite time. The function can be used only with the ZLL profile. The
direction and rate are specified in the payload of the command (see Section 21.6.2).
The ‘current hue’ attribute is also moved through values based on the ‘enhanced
current hue’ value.

The command can request that the hue is moved up or down, or that existing
movement is stopped. Since the possible hues are represented on a closed
boundary, the movement is cyclic (the attribute value wraps around). Once started,
the movement will continue until it is stopped.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00
and that ‘enhanced hue and saturation’ mode is selected by setting the ‘enhanced
colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current
hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled
in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

teZCL_Status
eCLD_ColourControlCommandEnhancedMoveHueCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_EnhancedMoveHueCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 405

Chapter 21
Colour Control Cluster

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
406 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandEnhancedStepHueCommandSend

Description

This function sends an Enhanced Step Hue command to instruct a ZLL device to
increase or decrease its ‘enhanced current hue’ attribute by a specified ‘step’ value
in a continuous manner within a given time. The function can be used only with the
ZLL profile. The step size, direction and transition time are specified in the payload
of the command (see Section 21.6.2). The ‘current hue’ attribute is also moved
through values based on the ‘enhanced current hue’ value.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00
and that ‘enhanced hue and saturation’ mode is selected by setting the ‘enhanced
colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current
hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled
in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandEnhancedStepHueCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_EnhancedStepHueCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 407

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
408 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend

Description

This function sends an Enhanced Move to Hue and Saturation command to instruct
a ZLL device to move its ‘enhanced current hue’ and ‘current saturation’ attributes to
target values in a continuous manner within a given time. The function can be used
only with the ZLL profile. The enhanced hue value, saturation value and transition
time are specified in the payload of the command (see Section 21.6.2). The ‘current
hue’ attribute is also moved to a value based on the target ‘enhanced current hue’
value.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00
and that ‘enhanced hue and saturation’ mode is selected by setting the ‘enhanced
colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current
hue’ and ‘current saturation’ values as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ and ‘current
saturation’ attributes are enabled in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommand
Send(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,

 tsCLD_ColourControl_EnhancedMoveToHueAndSaturation
 CommandPayload *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 409

Chapter 21
Colour Control Cluster

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
410 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandColourLoopSetCommandSend

Description

This function sends a Colour Loop Set command to instruct a ZLL device to configure
the movement of the ‘enhanced current hue’ attribute value around the colour loop
corresponding to the CIE colour ‘triangle’. The function can be used only with the ZLL
profile. The configured movement can be started in either direction and for a specific
duration. The start hue, direction and duration are specified in the payload of the
command (see Section 21.6.2). The ‘current hue’ attribute is also moved through
values based on the ‘enhanced current hue’ value.

The function can also be used to stop existing movement around the colour loop.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘hue and saturation’ mode is selected by setting the ‘colour mode’ attribute to 0x00
and that ‘enhanced hue and saturation’ mode is selected by setting the ‘enhanced
colour mode’ attribute to 0x03, if required. It can then move the ‘enhanced current
hue’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled
in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_ColourControlCommandColourLoopSetCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_ColourLoopSetCommandPayload
 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 411

Chapter 21
Colour Control Cluster

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
412 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandStopMoveStepCommandSend

Description

This function sends a Stop Move Step command to instruct a ZLL device to stop a
‘Move to’, ‘Move’ or ‘Step’ command that is currently in progress. The function can
be used only with the ZLL profile.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered, and stop the current action.

The ‘current hue’, ‘enhanced current hue’ and ‘current saturation’ attributes will
subsequently keep the values they have when the current action is stopped.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘enhanced current hue’ attribute is enabled
in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

teZCL_Status
eCLD_ColourControlCommandStopMoveStepCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 413

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
414 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveToColourTemperatureCommandSend

Description

This function sends a Move to Colour Temperature command to instruct a device to
move its ‘mired colour temperature’ attribute to a target value in a continuous manner
within a given time. The attribute value is a scaled reciprocal of colour temperature,
as indicated in Section 21.4.4. The target attribute value, direction and transition time
are specified in the payload of the command (see Section 21.6.2).

The movement through colour space will follow the ‘Black Body Line'.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘colour temperature’ mode is selected by setting the ‘colour mode’ attribute to 0x02,
if required. It can then move the ‘mired colour temperature’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘mired colour temperature’ attribute is
enabled in the Colour Control cluster.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

teZCL_Status
eCLD_ColourControlCommandMoveToColourTemperatureCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveToColourTemperatureCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 415

Chapter 21
Colour Control Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
416 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandMoveColourTemperatureCommandSend

Description

This function sends a Move Colour Temperature command to instruct a ZLL device
to move its ‘mired colour temperature’ attribute value in a given direction at a
specified rate. The attribute value is a scaled reciprocal of colour temperature, as
indicated in Section 21.4.4. The direction and rate are specified in the payload of the
command (see Section 21.6.2). Maximum and minimum attribute values for the
movement are also specified in the payload.

The function can be used only with the ZLL profile.

The command can request that the attribute value is moved up or down, or that
existing movement is stopped. Once started, the movement will automatically stop
when the attribute value reaches the specified maximum or minimum.

The movement through colour space will follow the ‘Black Body Line'.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘colour temperature’ mode is selected by setting the ‘colour mode’ attribute to 0x02,
if required. It can then move the ‘mired colour temperature’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘mired colour temperature’ attribute is
enabled in the Colour Control cluster, as well as the ‘mired colour temperature
maximum’ and ‘mired colour temperature minimum’ attributes.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

teZCL_Status
eCLD_ColourControlCommandMoveColourTemperatureCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_MoveColourTemperatureCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 417

Chapter 21
Colour Control Cluster

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
418 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControlCommandStepColourTemperatureCommandSend

Description

This function sends a Step Colour Temperature command to instruct a ZLL device to
increase or decrease its ‘mired colour temperature’ attribute by a specified ‘step’
value in a continuous manner within a given time. The attribute value is a scaled
reciprocal of colour temperature, as indicated in Section 21.4.4. The step size,
direction and transition time are specified in the payload of the command (see
Section 21.6.2). Maximum and minimum attribute values for the movement are also
specified in the payload.

The function can be used only with the ZLL profile.

The command can request that the attribute value is moved up or down. If this value
reaches the specified maximum or minimum before the required change has been
achieved, the movement will automatically stop.

The movement through colour space will follow the ‘Black Body Line'.

The device receiving this message will generate a callback event on the endpoint on
which the Colour Control cluster was registered. The device must first ensure that
‘colour temperature’ mode is selected by setting the ‘colour mode’ attribute to 0x02,
if required. It can then move the ‘mired colour temperature’ value as requested.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

This function can only be used when the ‘mired colour temperature’ attribute is
enabled in the Colour Control cluster, as well as the ‘mired colour temperature
maximum’ and ‘mired colour temperature minimum’ attributes.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

teZCL_Status
eCLD_ColourControlCommandStepColourTemperatureCommandSend(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ColourControl_StepColourTemperatureCommandPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 419

Chapter 21
Colour Control Cluster

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 21.6.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
420 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_ColourControl_GetRGB

Description

This function obtains the current colour of the ZLL device on the specified (local)
endpoint in terms of the Red (R), Green (G) and Blue (B) components. The function
can be used only with the ZLL profile.

Parameters

u8SourceEndPointId Number of local endpoint on which the ZLL device
resides

pu8Red Pointer to a location to receive the red value, in the
range 0-255

pu8Green Pointer to a location to receive the green value, in the
range 0-255

pu8Blue Pointer to a location to receive the blue value, in the
range 0-255

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_ColourControl_GetRGB(
uint8 u8SourceEndPointId,
uint8 *pu8Red,
uint8 *pu8Green,
uint8 *pu8Blue);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 421

Chapter 21
Colour Control Cluster

21.6 Structures

21.6.1 Custom Data Structure

The Colour Control cluster requires extra storage space to be allocated for use by
internal functions. The structure definition for this storage is shown below:

typedef struct

{

 teCLD_ColourControl_ColourMode eColourMode;

 uint16 u16CurrentHue;

 tsCLD_ColourControl_Transition sTransition;

 /* Matrices for XYZ <> RGB conversions */

 float afXYZ2RGB[3][3];

 float afRGB2XYZ[3][3];

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_ColourControlCallBackMessage sCallBackMessage;

} tsCLD_ColourControlCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

21.6.2 Custom Command Payloads

The following structures contain the payloads for the Colour Control cluster custom
commands.

Move to Hue Command Payload

typedef struct

{

 uint8 u8Hue;

 teCLD_ColourControl_Direction eDirection;

 uint16 u16TransitionTime;

} tsCLD_ColourControl_MoveToHueCommandPayload;

where:

 u8Hue is the target hue value.
422 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 eDirection indicates the direction/path of the change in hue:

 u16TransitionTime is the time period, in tenths of a second, over which the
change in hue should be implemented.

Move Hue Command Payload

typedef struct

{

 teCLD_ColourControl_MoveMode eMode;

 uint8 u8Rate;

} tsCLD_ColourControl_MoveHueCommandPayload;

where:

 eMode indicates the required action and/or direction of the change in hue:

 u8Rate is the required rate of movement in hue steps per second (a step is
one unit of hue for the device).

Step Hue Command Payload

typedef struct

{

 teCLD_ColourControl_StepMode eMode;

 uint8 u8StepSize;

 uint8 u8TransitionTime;

} tsCLD_ColourControl_StepHueCommandPayload;

eDirection Direction/Path

0x00 Shortest path

0x01 Longest path

0x02 Up

0x03 Down

0x04 – 0xFF Reserved

eMode Action/Direction

0x00 Stop existing movement in hue

0x01 Start increasing hue

0x02 Reserved

0x03 Start decreasing hue

0x04 – 0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 423

Chapter 21
Colour Control Cluster

where:

 eMode indicates the required direction of the change in hue:

 u8StepSize is the amount by which the hue is to be changed (increased or
decreased), in units of hue for the device.

 u8TransitionTime is the time period, in tenths of a second, over which the
change in hue should be implemented.

Move To Saturation Command Payload

typedef struct

{

 uint8 u8Saturation;

 uint16 u16TransitionTime;

} tsCLD_ColourControl_MoveToSaturationCommandPayload;

where:

 u8Saturation is the target saturation value.

 u16TransitionTime is the time period, in tenths of a second, over which the
change in saturation should be implemented.

Move Saturation Command Payload

typedef struct

{

 teCLD_ColourControl_MoveMode eMode;

 uint8 u8Rate;

} tsCLD_ColourControl_MoveSaturationCommandPayload;

where:

 eMode indicates the required action and/or direction of the change in
saturation:

eMode Action/Direction

0x00 Reserved

0x01 Increase hue

0x02 Reserved

0x03 Decrease hue

0x04 – 0xFF Reserved

eMode Action/Direction

0x00 Stop existing movement in hue

0x01 Start increasing saturation
424 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u8Rate is the required rate of movement in saturation steps per second (a step
is one unit of saturation for the device).

Step Saturation Command Payload

typedef struct

{

 teCLD_ColourControl_StepMode eMode;

 uint8 u8StepSize;

 uint8 u8TransitionTime;

} tsCLD_ColourControl_StepSaturationCommandPayload;

where:

 eMode indicates the required direction of the change in saturation:

 u8StepSize is the amount by which the saturation is to be changed
(increased or decreased), in units of saturation for the device.

 u8TransitionTime is the time period, in tenths of a second, over which the
change in hue should be implemented.

Move To Hue And Saturation Command Payload

typedef struct

{

 uint8 u8Hue;

 uint8 u8Saturation;

 uint16 u16TransitionTime;

} tsCLD_ColourControl_MoveToHueAndSaturationCommandPayload;

where:

 u8Hue is the target hue value.

0x02 Reserved

0x03 Start decreasing saturation

0x04 – 0xFF Reserved

eMode Action/Direction

0x00 Reserved

0x01 Increase saturation

0x02 Reserved

0x03 Decrease saturation

0x04 – 0xFF Reserved

eMode Action/Direction
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 425

Chapter 21
Colour Control Cluster

 u8Saturation is the target saturation value.

 16TransitionTime is the time period, in tenths of a second, over which the
change in hue and saturation should be implemented.

Move To Colour Command Payload

typedef struct

{

 uint16 u16ColourX;

 uint16 u16ColourY;

 uint16 u16TransitionTime;

} tsCLD_ColourControl_MoveToColourCommandPayload;

where:

 u16ColourX is the target x-chromaticity in the CIE xyY colour space

 u16ColourY is the target y-chromaticity in the CIE xyY colour space

 u16TransitionTime is the time period, in tenths of a second, over which the
colour change should be implemented.

Move Colour Command Payload

typedef struct

{

 int16 i16RateX;

 int16 i16RateY;

} tsCLD_ColourControl_MoveColourCommandPayload;

where:

 i16RateX is the required rate of movement of x-chromaticity in the CIE xyY
colour space, in steps per second (a step is one unit of x-chromaticity for the
device).

 i16RateY is the required rate of movement of y-chromaticity in the CIE xyY
colour space, in steps per second (a step is one unit of y-chromaticity for the
device).

Step Colour Command Payload

typedef struct

{

 int16 i16StepX;

 int16 i16StepY;

 uint16 u16TransitionTime;

} tsCLD_ColourControl_StepColourCommandPayload;

where:
426 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 i16StepX is the amount by which the x-chromaticity in the CIE xyY colour
space is to be changed (increased or decreased), in units of x-chromaticity for
the device.

 i16StepY is the amount by which the y-chromaticity in the CIE xyY colour
space is to be changed (increased or decreased), in units of y-chromaticity for
the device.

 u16TransitionTime is the time period, in tenths of a second, over which the
colour change should be implemented.

Move To Colour Temperature Command Payload

typedef struct

{

 uint16 u16ColourTemperatureMired;

 uint16 u16TransitionTime;

} tsCLD_ColourControl_MoveToColourTemperatureCommandPayload;

where:

 u16ColourTemperatureMired is the target value of the mired colour
temperature attribute u16ColourTemperatureMired (this value is a scaled
reciprocal of colour temperature - for details, refer to the attribute description in
Section 21.2).

 u16TransitionTime is the time period, in tenths of a second, over which the
change in colour temperature should be implemented.

Move Colour Temperature Command Payload

typedef struct

{

 teCLD_ColourControl_MoveMode eMode;

 uint16 u16Rate;

 uint16 u16ColourTemperatureMiredMin;

 uint16 u16ColourTemperatureMiredMax;

} tsCLD_ColourControl_MoveColourTemperatureCommandPayload;

where:

 eMode indicates the required action and/or direction of the change in the mired
colour temperature attribute value:

eMode Action/Direction

0x00 Stop existing movement in colour temperature

0x01 Start increasing mired colour temperature attribute value

0x02 Reserved

0x03 Start decreasing mired colour temperature attribute value
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 427

Chapter 21
Colour Control Cluster

 u16Rate is the required rate of movement in mired colour temperature steps
per second (a step is one unit of the mired colour temperature attribute).

 u16ColourTemperatureMiredMin is the lower limit for the mired colour
temperature attribute during the operation resulting from this command.

 u16ColourTemperatureMiredMax is the upper limit for the mired colour
temperature attribute during the operation resulting from this command.

Step Colour Temperature Command Payload

typedef struct

{

 teCLD_ColourControl_StepMode eMode;

 uint16 u16StepSize;

 uint16 u16TransitionTime;

 uint16 u16ColourTemperatureMiredMin;

 uint16 u16ColourTemperatureMiredMax;

} tsCLD_ColourControl_StepColourTemperatureCommandPayload;

where:

 eMode indicates the required direction of the change in the mired colour
temperature attribute value:

 u16StepSize is the amount by which the mired colour temperature attribute is
to be changed (increased or decreased).

 u16TransitionTime is the time period, in tenths of a second, over which the
change in the mired colour temperature attribute should be implemented.

 u16ColourTemperatureMiredMin is the lower limit for the mired colour
temperature attribute during the operation resulting from this command.

 u16ColourTemperatureMiredMax is the upper limit for the mired colour
temperature attribute during the operation resulting from this command.

0x04 – 0xFF Reserved

eMode Action/Direction

0x00 Reserved

0x01 Increase mired colour temperature attribute value

0x02 Reserved

0x03 Decrease mired colour temperature attribute value

0x04 – 0xFF Reserved

eMode Action/Direction
428 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Enhanced Move To Hue Command Payload

typedef struct

{

 uint16 u16EnhancedHue;

 teCLD_ColourControl_Direction eDirection;

 uint16 u16TransitionTime;

} tsCLD_ColourControl_EnhancedMoveToHueCommandPayload;

where:

 u16EnhancedHue is the target ‘enhanced’ hue value in terms of a step around
the CIE colour ‘triangle’ - for the format, refer to the description of the attribute
u16EnhancedCurrentHue in Section 21.2.

 eDirection indicates the direction/path of the change in hue:

 u16TransitionTime is the time period, in tenths of a second, over which the
change in hue should be implemented.

Enhanced Move Hue Command Payload

typedef struct

{

 teCLD_ColourControl_MoveMode eMode;

 uint16 u16Rate;

} tsCLD_ColourControl_EnhancedMoveHueCommandPayload;

where:

 eMode indicates the required action and/or direction of the change in hue:

eDirection Direction/Path

0x00 Shortest path

0x01 Longest path

0x02 Up

0x03 Down

0x04 – 0xFF Reserved

eMode Action/Direction

0x00 Stop existing movement in hue

0x01 Start increase in hue

0x02 Reserved

0x03 Start decrease in hue

0x04 – 0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 429

Chapter 21
Colour Control Cluster

 u16Rate is the required rate of movement in ‘enhanced’ hue steps per second
(a step is one unit of hue for the device).

Enhanced Step Hue Command Payload

typedef struct

{

 teCLD_ColourControl_StepMode eMode;

 uint16 u16StepSize;

 uint16 u16TransitionTime;

} tsCLD_ColourControl_EnhancedStepHueCommandPayload;

where:

 eMode indicates the required direction of the change in hue:

 u16StepSize is the amount by which the ‘enhanced’ hue is to be changed
(increased or decreased) - for the format, refer to the description of the attribute
u16EnhancedCurrentHue in Section 21.2.

 u8TransitionTime is the time period, in tenths of a second, over which the
change in hue should be implemented.

Enhanced Move To Hue And Saturation Command Payload

typedef struct

{

 uint16 u16EnhancedHue;

 uint8 u8Saturation;

 uint16 u16TransitionTime;

}
tsCLD_ColourControl_EnhancedMoveToHueAndSaturationCommandPayload;

where:

 u16EnhancedHue is the target ‘enhanced’ hue value in terms of a step around
the CIE colour ‘triangle’ - for the format, refer to the description of the attribute
u16EnhancedCurrentHue in Section 21.2.

 u8Saturation is the target saturation value.

eMode Action/Direction

0x00 Reserved

0x01 Increase in hue

0x02 Reserved

0x03 Decrease in hue

0x04 – 0xFF Reserved
430 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 16TransitionTime is the time period, in tenths of a second, over which the
change in hue and saturation should be implemented.

Colour Loop Set Command Payload

typedef struct

{

 uint8 u8UpdateFlags;

 teCLD_ColourControl_LoopAction eAction;

 teCLD_ColourControl_LoopDirection eDirection;

 uint16 u16Time;

 uint16 u16StartHue;

} tsCLD_ColourControl_ColourLoopSetCommandPayload;

where:

 u8UpdateFlags is a bitmap indicating which of the other fields of the structure
must be set (a bit must be set to ‘1’ to enable the corresponding field, and ‘0’
otherwise):

 eAction indicates the colour loop action to be taken (if enabled through
u8UpdateFlags), as one of:

Bits Field

0 eAction

1 eDirection

2 u16Time

3 u16StartHue

4–7 Reserved

Enumeration Value Action

E_CLD_COLOURCONTROL_COLOURLOOP_ACTION_
DEACTIVATE

0x00 Deactivate colour loop

E_CLD_COLOURCONTROL_COLOURLOOP_ACTION_
ACTIVATE_FROM_START

0x01 Activate colour loop from specified
start (enhanced) hue value

E_CLD_COLOURCONTROL_COLOURLOOP_ACTION_
ACTIVATE_FROM_CURRENT

0x02 Activate colour from current
(enhanced) hue value
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 431

Chapter 21
Colour Control Cluster

 eDirection indicates the direction to be taken around the colour loop (if
enabled through u8UpdateFlags) in terms of the direction of change of
u16EnhancedCurrentHue:

 u16Time is the period, in seconds, of a full colour loop - that is, the time to
cycle all possible values of u16EnhancedCurrentHue.

 u16StartHue is the value of u16EnhancedCurrentHue at which the colour
loop is to be started (if enabled through u8UpdateFlags).

21.7 Enumerations

21.7.1 teCLD_ColourControl_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Colour Control cluster.

typedef enum

{

 E_CLD_COLOURCONTROL_ATTR_CURRENT_HUE = 0x0000,

 E_CLD_COLOURCONTROL_ATTR_CURRENT_SATURATION,

 E_CLD_COLOURCONTROL_ATTR_REMAINING_TIME,

 E_CLD_COLOURCONTROL_ATTR_CURRENT_X,

 E_CLD_COLOURCONTROL_ATTR_CURRENT_Y,

 E_CLD_COLOURCONTROL_ATTR_DRIFT_COMPENSATION,

 E_CLD_COLOURCONTROL_ATTR_COMPENSATION_TEXT,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_MODE,

 E_CLD_COLOURCONTROL_ATTR_NUMBER_OF_PRIMARIES = 0x0010,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_1_X,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_1_Y,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_1_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_2_X = 0x0015,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_2_Y,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_2_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_3_X = 0x0019,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_3_Y,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_3_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_4_X = 0x0020,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_4_Y,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_4_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_5_X = 0x0024,

Enumeration Value Direction

E_CLD_COLOURCONTROL_COLOURLOOP_
DIRECTION_DECREMENT

0x00 Decrement current (enhanced)
hue value

E_CLD_COLOURCONTROL_COLOURLOOP_
DIRECTION_INCREMENT

0x01 Increment current (enhanced) hue
value
432 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 E_CLD_COLOURCONTROL_ATTR_PRIMARY_5_Y,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_5_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_6_X = 0x0028,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_6_Y,

 E_CLD_COLOURCONTROL_ATTR_PRIMARY_6_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_WHITE_POINT_X = 0x0030,

 E_CLD_COLOURCONTROL_ATTR_WHITE_POINT_Y,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_X,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_Y,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_X = 0x0036,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_Y,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_X = 0x003a,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_Y,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_INTENSITY,

 E_CLD_COLOURCONTROL_ATTR_ENHANCED_CURRENT_HUE = 0x4000,

 E_CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_ACTIVE,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_DIRECTION,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_TIME,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_START_ENHANCED_HUE,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_LOOP_STORED_ENHANCED_HUE,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_CAPABILITIES = 0x400a,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED_PHY_MIN,

 E_CLD_COLOURCONTROL_ATTR_COLOUR_TEMPERATURE_MIRED_PHY_MAX

} teCLD_ColourControl_ClusterID;

21.8 Compile-Time Options

To enable the Colour Control cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_COLOUR_CONTROL

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define COLOUR_CONTROL_CLIENT

#define COLOUR_CONTROL_SERVER

The Colour Cluster cluster attributes reside on the server only. Therefore, attributes
should not be enabled in the zcl_options.h file for the cluster client.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 433

Chapter 21
Colour Control Cluster

Optional Attributes

The optional attributes of the Colour Control cluster are enabled/disabled by defining
the following in the zcl_options.h file:

 For optional attributes from the ‘Colour Information’ attribute set:

 CLD_COLOURCONTROL_ATTR_REMAINING_TIME

 CLD_COLOURCONTROL_ATTR_DRIFT_COMPENSATION

 CLD_COLOURCONTROL_ATTR_COMPENSATION_TEXT

 CLD_COLOURCONTROL_ATTR_COLOUR_MODE

Certain attributes from this attribute set are enabled through a ‘Colour
Capabilities’ Definition (see below) - these are u8CurrentHue,
u8CurrentSaturation and u16ColourTemperatureMired.

 For optional attributes from the ‘Defined Primaries Information’ and ‘Additional
Defined Primaries Information’ attribute sets, the macro

 CLD_COLOURCONTROL_ATTR_NUMBER_OF_PRIMARIES

is used to define the required number of colour primaries, N, in the range 1 to 6
(0xFF can also be specified if the number of primaries is not known). This macro
will be used to automatically enable the required attributes from these attribute
sets - for example, if N is set to 4 then the following attributes will be enabled:
u16Primary1X, u16Primary1Y, u8Primary1Intensity,
u16Primary2X, u16Primary2Y, u8Primary2Intensity,
u16Primary3X, u16Primary3Y, u8Primary3Intensity,
u16Primary4X, u16Primary4Y, u8Primary4Intensity.

 For optional attributes from the ‘Defined Colour Points Settings’ attribute set:

 CLD_COLOURCONTROL_ATTR_WHITE_POINT_X

 CLD_COLOURCONTROL_ATTR_WHITE_POINT_Y

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_X

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_Y

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_R_INTENSITY

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_X

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_Y

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_G_INTENSITY

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_X

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_Y

 CLD_COLOURCONTROL_ATTR_COLOUR_POINT_B_INTENSITY

 For optional attributes from the ZLL enhanced attributes, the following must be
defined:

 CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE

 CLD_COLOURCONTROL_ATTR_COLOUR_CAPABILITIES

The required ZLL enhanced attributes for a device must then be enabled
through a ‘Colour Capabilities’ Definition (see below).
434 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
‘Colour Capabilities’ Definition

If required, certain ‘Colour Information’ attributes and all ZLL enhanced attributes must
be enabled through a ‘Colour Capabilities’ definition. Attributes are enabled as a group
according to the required capability/functionality. The capabilities are detailed in the
table below, with their corresponding attributes and macros.

* The ZLL enhanced attributes also require ‘enhanced colour mode’ to be enabled through
#define CLD_COLOURCONTROL_ATTR_ENHANCED_COLOUR_MODE

The above macros will automatically invoke the macros for the individual attributes in
the capability group, e.g. E_CLD_COLOURCONTROL_ATTR_CURRENT_HUE for
the attribute u8CurrentHue.

The enabled Colour Capabilities are reflected in the ZLL enhanced attribute (bitmap)
u16ColourCapabilities.

Example Colour Capabilities definitions are provided below for different devices.

Capability/Functionality Attributes Macro

Hue/Saturation u8CurrentHue
u8CurrentSaturation

COLOUR_CAPABILITY_HUE_SATURATION_
SUPPORTED

Enhanced Hue
(also need Hue/Saturation)

u16EnhancedCurrentHue* COLOUR_CAPABILITY_ENHANCE_HUE_
SUPPORTED

Colour Loop
(also need Enhanced Hue)

u8ColourLoopActive*
u8ColourLoopDirection*
u16ColourLoopTime*
u16ColourLoopStartEnhancedHue*
u16ColourLoopStoredEnhancedHue*

COLOUR_CAPABILITY_COLOUR_LOOP_
SUPPORTED

CIE XY Values
(this is mandatory)

u16CurrentX
u16CurrentY

COLOUR_CAPABILITY_XY_SUPPORTED

Colour Temperature u16ColourTemperatureMired
u16ColourTemperatureMiredPhyMin*
u16ColourTemperatureMiredPhyMax*

COLOUR_CAPABILITY_COLOUR_
TEMPERATURE_SUPPORTED

Table 25: ‘Colour Capabilities’ Macros
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 435

Chapter 21
Colour Control Cluster

ZLL Extended Colour Light:

#define CLD_COLOURCONTROL_COLOUR_CAPABILITIES
 (COLOUR_CAPABILITY_HUE_SATURATION_SUPPORTED | \

 COLOUR_CAPABILITY_ENHANCE_HUE_SUPPORTED | \

 COLOUR_CAPABILITY_COLOUR_LOOP_SUPPORTED | \

 COLOUR_CAPABILITY_XY_SUPPORTED | \

 COLOUR_CAPABILITY_COLOUR_TEMPERATURE_SUPPORTED)

ZLL Color Light:

#define CLD_COLOURCONTROL_COLOUR_CAPABILITIES

 (COLOUR_CAPABILITY_HUE_SATURATION_SUPPORTED | \

 COLOUR_CAPABILITY_ENHANCE_HUE_SUPPORTED | \

 COLOUR_CAPABILITY_COLOUR_LOOP_SUPPORTED | \

 COLOUR_CAPABILITY_XY_SUPPORTED)

ZLL Color Temperature Light:

#define CLD_COLOURCONTROL_COLOUR_CAPABILITIES
 (COLOUR_CAPABILITY_COLOUR_TEMPERATURE_SUPPORTED)
436 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
22. Illuminance Measurement Cluster

This chapter describes the Illuminance Measurement cluster which is defined in the
ZCL and provides an interface to a light sensor which is able to make illuminance
measurements.

The Illuminance Measurement cluster has a Cluster ID of 0x0400.

22.1 Overview

The Illuminance Measurement cluster provides an interface to an illuminance
measuring device, allowing the configuration of measuring and the reporting of
measurements.

To use the functionality of this cluster, you must include the file
IlluminanceMeasurement.h in your application and enable the cluster by defining
CLD_ILLUMINANCE_MEASUREMENT in the zcl_options.h file.

An Illuminance Measurement cluster instance can act as a client or a server. The
inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Illuminance Measurement cluster are fully detailed in
Section 22.5.

22.2 Illuminance Measurement Structure and Attributes

The structure definition for the Illuminance Measurement cluster is:

typedef struct

{

 zuint16 u16MeasuredValue;

 zuint16 u16MinMeasuredValue;

 zuint16 u16MaxMeasuredValue;

#ifdef CLD_ILLMEAS_ATTR_TOLERANCE

 zuint16 u16Tolerance;

#endif

#ifdef CLD_ILLMEAS_ATTR_LIGHT_SENSOR_TYPE

 zenum8 eLightSensorType;

#endif

} tsCLD_IlluminanceMeasurement;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 437

Chapter 22
Illuminance Measurement Cluster

where:

 u16MeasuredValue is a mandatory attribute representing the measured
illuminance in logarithmic form, calculated as (10000 x log10Illuminance) + 1,
where the illuminance is measured in Lux (lx). The possible illumination values
are in the range 1 lx to 3.576 x 106 lx, corresponding to attribute values of 1 to
0xFFFE. The following attribute values have special meaning:

 0x0000: Illuminance is too low to be measured

 0xFFFF: Illuminance measurement is invalid

The valid range of values of u16MeasuredValue can be restricted using the
attributes u16MinMeasuredValue and u16MaxMeasuredValue below - in
this case, the attribute can take any value in the range
u16MinMeasuredValue to u16MaxMeasuredValue.

 u16MinMeasuredValue is a mandatory attribute representing a lower limit on
the value of the attribute u16MeasuredValue. The value must be less than
that of u16MaxMeasuredValue. The value 0xFFFF is used to indicated that
the attribute is unused.

 u16MaxMeasuredValue is a mandatory attribute representing an upper limit
on the value of the attribute u16MeasuredValue. The value must be greater
than that of u16MinMeasuredValue. The value 0xFFFF is used to indicated
that the attribute is unused.

 u16Tolerance is an optional attribute which indicates the magnitude of the
maximum possible error in the value of the attribute u16MeasuredValue. The
true value will be in the range (u16MeasuredValue – u16Tolerance) to
(u16MeasuredValue + u16Tolerance) .

 eLightSensorType is an optional attribute which indicates the type of light
sensor to which the cluster is interfaced:

 0x00: Photodiode

 0x01: CMOS

 0x02–0x3F: Reserved

 0x40–0xFE: Reserved for manufacturer-specific light sensor types

 0xFF: Unknown

22.3 Functions

The following Illuminance Measurement cluster function is provided in the NXP
implementation of the ZCL:

Function Page

eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement 439

The cluster attributes can be accessed using the general attribute read/write functions,
as described in Section 2.2.
438 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement

Description

This function creates an instance of the Illuminance Measurement cluster on an
endpoint. The cluster instance is created on the endpoint which is associated with
the supplied tsZCL_ClusterInstance structure and can act as a server or a
client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an Illuminance Measurement
cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Illuminance
Measurement cluster, which can be obtained by using the macro
CLD_ILLMEAS_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppIlluminanceMeasurementClusterAttributeControlBits[
 CLD_ILLMEAS_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status
eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 439

Chapter 22
Illuminance Measurement Cluster

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Illuminance
Measurement cluster. This parameter can refer to a
pre-filled structure called
sCLD_IlluminanceMeasurement which is provided
in the IlluminanceMeasurement.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_IlluminanceMeasurement
which defines the attributes of Illuminance
Measurement cluster. The function will initialise the
attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
440 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
22.4 Enumerations

22.4.1 teCLD_IM_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Illuminance Measurement cluster.

typedef enum

{

 E_CLD_ILLMEAS_ATTR_ID_MEASURED_VALUE = 0x0000, /* Mandatory */

 E_CLD_ILLMEAS_ATTR_ID_MIN_MEASURED_VALUE, /* Mandatory */

 E_CLD_ILLMEAS_ATTR_ID_MAX_MEASURED_VALUE, /* Mandatory */

 E_CLD_ILLMEAS_ATTR_ID_TOLERANCE,

 E_CLD_ILLMEAS_ATTR_ID_LIGHT_SENSOR_TYPE

} teCLD_IM_ClusterID;

22.5 Compile-Time Options

To enable the Illuminance Measurement cluster in the code to be built, it is necessary
to add the following to the zcl_options.h file:

#define CLD_ILLUMINANCE_MEASUREMENT

In addition, to include the software for a cluster client or server, it is necessary to add
one of the following to the same file:

#define ILLUMINANCE_MEASUREMENT_CLIENT

#define ILLUMINANCE_MEASUREMENT_SERVER

Optional Attributes

The optional attributes for the Illuminance Measurement cluster (see Section 22.2) are
enabled by defining:

 CLD_ILLMEAS_ATTR_TOLERANCE

 CLD_ILLMEAS_ATTR_LIGHT_SENSOR_TYPE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 441

Chapter 22
Illuminance Measurement Cluster

442 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
23. Illuminance Level Sensing Cluster

This chapter describes the Illuminance Level Sensing cluster which is defined in the
ZCL and provides an interface to light-level sensing functionality.

The Illuminance Level Sensing cluster has a Cluster ID of 0x0401.

23.1 Overview

The Illuminance Level Sensing cluster provides an interface to a device that can sense
the local level of illumination. The cluster can configure notifications that are generated
when the light-level is above, within or below a certain illuminance band.

To use the functionality of this cluster, you must include the file
IlluminanceLevelSensing.h in your application and enable the cluster by defining
CLD_ILLUMINANCE_LEVEL_SENSING in the zcl_options.h file.

An Illuminance Level Sensing cluster instance can act as a client or a server. The
inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Illuminance Level Sensing cluster are fully detailed
in Section 23.5.

The information that can potentially be stored in this cluster is organised into the
following attribute sets:

 Illuminance Level Sensing Information

 Illuminance Level Sensing Settings

23.2 Cluster Structure and Attributes

The structure definition for the Illuminance Level Sensing cluster is:

typedef struct

{

 zenum8 u8LevelStatus;

#ifdef CLD_ILS_ATTR_LIGHT_SENSOR_TYPE

 zenum8 eLightSensorType;

#endif

 zuint16 u16IlluminanceTargetLevel;

} tsCLD_IlluminanceLevelSensing;

where:
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 443

Chapter 23
Illuminance Level Sensing Cluster

Illuminance Level Sensing Information Attributes

 u8LevelStatus is a mandatory attribute indicating whether the current
illuminance is above, within or below the target band, as follows:

 eLightSensorType is an optional attribute indicating the type of light-level
sensor used, as follows:

Illuminance Level Sensing Settings Attribute

 u16IlluminanceTargetLevel is a mandatory attribute representing the
illuminance level at the centre of the target band. The value of this attribute is
calculated as

10000 x log10Illuminance

where Illuminance is measured in Lux (lx) and can take values in the range
1 lx Illuminance 3.576x106 lx, corresponding to attribute values in the range
0x0000 to 0xFFFE. The value 0xFFFF is used to indicate that the attribute is
invalid.

Value Enumeration Description

0x00 E_CLD_ILS_LLS_ON_TARGET Measured illuminance is within the
target band

0x01 E_CLD_ILS_LLS_BELOW_TARGET Measured illuminance is below the
target band

0x02 E_CLD_ILS_LLS_ABOVE_TARGET Measured illuminance is above the
target band

0x03 - 0xFF - Reserved

Value Enumeration Description

0x00 E_CLD_ILS_LST_PHOTODIODE Photodiode

0x01 E_CLD_ILS_LST_CMOS CMOS

0x02 - 0x3F - Reserved

0x40 - 0xFE - Manufacturer-specific types

0xFF - Unknown

Note 1: The target band is a ‘dead band’ around the
above target level, in which the sensing device is not
able to differentiate between different illuminance levels.
The width of this band is device-specific.

Note 2: The illuminance status relative to the target
band can be monitored by regularly reading the
u8LevelStatus attribute.
444 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
23.3 Functions

The following Illuminance Level Sensing cluster function is provided in the NXP
implementation of the ZCL:

Function Page

eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing 446

The cluster attributes can be accessed using the general attribute read/write functions,
as described in Section 2.2.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 445

Chapter 23
Illuminance Level Sensing Cluster

eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing

Description

This function creates an instance of the Illuminance Level Sensing cluster on an
endpoint. The cluster instance is created on the endpoint which is associated with
the supplied tsZCL_ClusterInstance structure and can act as a server or a
client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an Illuminance Level Sensing
cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Illuminance Level
Sensing cluster, which can be obtained by using the macro
CLD_ILS_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppIlluminanceLevelSensingClusterAttributeControlBits[
 CLD_ILS_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status
eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
446 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Illuminance Level
Sensing cluster. This parameter can refer to a pre-filled
structure called sCLD_IlluminanceLevelSensing
which is provided in the IlluminanceLevelSensing.h
file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type
tsCLD_IlluminanceLevelSensing which defines
the attributes of Illuminance Level Sensing cluster. The
function will initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 447

Chapter 23
Illuminance Level Sensing Cluster

23.4 Enumerations

23.4.1 teCLD_ILS_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Illuminance Level Sensing cluster (see Section 23.2).

typedef enum

{

 E_CLD_ILS_ATTR_ID_LEVEL_STATUS = 0x0000, /* Mandatory */

 E_CLD_ILS_ATTR_ID_LIGHT_SENSOR_TYPE,

 E_CLD_ILS_ATTR_ID_ILLUMINANCE_TARGET_LEVEL = 0x0010, /* Mandatory */

} teCLD_ILS_ClusterID;

23.4.2 teCLD_ILS_LightSensorType

The following structure contains the enumerations used to identify the light-level
sensor type in the eLightSensorType attribute of the cluster (see Section 23.2).

typedef enum

{

 E_CLD_ILS_LST_PHOTODIODE = 0,

 E_CLD_ILS_LST_CMOS

} teCLD_ILS_LightSensorType;

23.4.3 teCLD_ILS_LightLevelStatus

The following structure contains the enumerations used to represent the light-level
status in the u8LevelStatus attribute of the cluster (see Section 23.2).

typedef enum

{

 E_CLD_ILS_LLS_ON_TARGET,

 E_CLD_ILS_LLS_BELOW_TARGET,

 E_CLD_ILS_LLS_ABOVE_TARGET,

} teCLD_ILS_LightLevelStatus;
448 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
23.5 Compile-Time Options

To enable the Illuminance Level Sensing cluster in the code to be built, it is necessary
to add the following to the zcl_options.h file:

#define CLD_ILLUMINANCE_LEVEL_SENSING

In addition, to include the software for a cluster client or server, it is necessary to add
one of the following to the same file:

#define ILLUMINANCE_LEVEL_SENSING_CLIENT

#define ILLUMINANCE_LEVEL_SENSING_SERVER

Optional Attribute

The optional attribute eLightSensorType for the Illuminance Level Sensing cluster
(see Section 23.2) is enabled by defining:

#define E_CLD_ILS_ATTR_ID_LIGHT_SENSOR_TYPE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 449

Chapter 23
Illuminance Level Sensing Cluster

450 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
24. Temperature Measurement Cluster

This chapter describes the Temperature Measurement cluster which is defined in the
ZCL, and is concerned with configuring and reporting temperature measurement.

The Temperature Measurement cluster has a Cluster ID of 0x0402.

24.1 Overview

The Temperature Measurement cluster provides an interface to an temperature
measuring device, allowing the configuration of measuring and the reporting of
measurements.

To use the functionality of this cluster, you must include the file
TemperatureMeasurement.h in your application and enable the cluster by defining
CLD_TEMPERATURE_MEASUREMENT in the zcl_options.h file.

A Temperature Measurement cluster instance can act as a client or a server. The
inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Temperature Measurement cluster are fully detailed
in Section 24.5.

24.2 Temperature Measurement Structure and Attributes

The structure definition for the Temperature Measurement cluster (server) is:

typedef struct

{

 zint16 i16MeasuredValue;

 zint16 i16MinMeasuredValue;

 zint16 i16MaxMeasuredValue;

#ifdef CLD_TEMPMEAS_ATTR_TOLERANCE

 zuint16 u16Tolerance;

#endif

} tsCLD_TemperatureMeasurement;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 451

Chapter 24
Temperature Measurement Cluster

where:

 i16MeasuredValue is a mandatory attribute representing the measured
temperature in degrees Celsius, as follows:

i16MeasuredValue = 100 x temperature in degrees Celsius

The possible values are used as follows:

 0x0000 to 0x7FFF represent positive temperatures from 0°C to 327.67ºC

 0x8000 indicates that the temperature measurement is invalid

 0x8001 to 0x954C are unused values

 0x954D to 0xFFFF represent negative temperatures from -273.15°C to
-1°C (in two’s complement form)

This attribute is updated continuously as measurements are made.

 i16MinMeasuredValue is a mandatory attribute specifying the value of the
attribute i16MeasuredValue which corresponds to the minimum possible
temperature that can be measured. Its value must be less than that of the
attribute i16MaxMeasuredValue (below). The special value 0x8000 is used
to indicate that the minimum is not known.

 i16MaxMeasuredValue is a mandatory attribute specifying the value of the
attribute i16MeasuredValue which corresponds to the maximum possible
temperature that can be measured. Its value must be greater than that of the
attribute i16MinMeasuredValue (above). The special value 0x8000 is used
to indicate that the maximum is not known.

 u16Tolerance is an optional attribute which indicates the magnitude of the
maximum possible error in the value of the attribute u16MeasuredValue. The
true value will be in the range (u16MeasuredValue – u16Tolerance) to
(u16MeasuredValue + u16Tolerance).

24.3 Functions

The following Temperature Measurement cluster function is provided in the NXP
implementation of the ZCL:

Function Page

eCLD_TemperatureMeasurementCreateTemperatureMeasurement 453
452 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_TemperatureMeasurementCreateTemperatureMeasurement

Description

This function creates an instance of the Temperature Measurement cluster on an
endpoint. The cluster instance is created on the endpoint which is associated with
the supplied tsZCL_ClusterInstance structure and can act as a server or a
client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Temperature Measurement
cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. Since the Temperature
Measurement cluster client has no attributes, this array is only required for the server.
The array length is automatically adjusted by the compiler using the following
declaration (for the cluster server):

uint8 au8TemperatureMeasurementServerAttributeControlBits
[(sizeof(asCLD_TemperatureMeasurementClusterAttributeDefinitions) /
sizeof(tsZCL_AttributeDefinition))];

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status
eCLD_TemperatureMeasurementCreateTemperatureMeasurement(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 453

Chapter 24
Temperature Measurement Cluster

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Temperature
Measurement cluster. This parameter can refer to a
pre-filled structure called
sCLD_TemperatureMeasurement which is provided
in the TemperatureMeasurement.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type
tsCLD_TemperatureMeasurementwhich defines
the attributes of Temperature Measurement cluster.
The function will initialise the attributes with default
values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above). For a cluster
client, set this pointer to NULL.

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
454 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
24.4 Enumerations

24.4.1 teCLD_TemperatureMeasurement_AttributeID

The following structure contains the enumerations used to identify the attributes of the
Temperature Measurement cluster.

typedef enum

{

 E_CLD_TEMPMEAS_ATTR_ID_MEASURED_VALUE = 0x0000, /* Mandatory */

 E_CLD_TEMPMEAS_ATTR_ID_MIN_MEASURED_VALUE, /* Mandatory */

 E_CLD_TEMPMEAS_ATTR_ID_MAX_MEASURED_VALUE, /* Mandatory */

 E_CLD_TEMPMEAS_ATTR_ID_TOLERANCE,

} teCLD_TemperatureMeasurement_AttributeID;

24.5 Compile-Time Options

To enable the Temperature Measurement cluster in the code to be built, it is necessary
to add the following to the zcl_options.h file:

#define CLD_TEMPERATURE_MEASUREMENT

In addition, to include the software for a cluster client or server, it is necessary to add
one of the following to the same file:

#define TEMPERATURE_MEASUREMENT_CLIENT

#define TEMPERATURE_MEASUREMENT_SERVER

Optional Attribute

The optional attribute for the Temperature Measurement cluster (see Section 24.2) is
enabled by defining:

 CLD_TEMPMEAS_ATTR_TOLERANCE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 455

Chapter 24
Temperature Measurement Cluster

456 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
25. Relative Humidity Measurement Cluster

This chapter describes the Relative Humidity Measurement cluster which is defined in
the ZCL, and is concerned with configuring and reporting relative humidity
measurement.

The Relative Humidity Measurement cluster has a Cluster ID of 0x0405.

25.1 Overview

The Relative Humidity Measurement cluster provides an interface to a humidity
measuring device, allowing the configuration of relative humidity measuring and the
reporting of measurements.

To use the functionality of this cluster, you must include the file
RelativeHumidityMeasurement.h in your application and enable the cluster by
defining CLD_RELATIVE_HUMIDITY_MEASUREMENT in the zcl_options.h file.

A Relative Humidity Measurement cluster instance can act as a client or a server. The
inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Relative Humidity Measurement cluster are fully
detailed in Section 25.5.

25.2 RH Measurement Structure and Attributes

The structure definition for the Relative Humidity Measurement cluster (server) is:

typedef struct

{

 zuint16 u16MeasuredValue;

 zuint16 u16MinMeasuredValue;

 zuint16 u16MaxMeasuredValue;

#ifdef E_CLD_RHMEAS_ATTR_TOLERANCE

 zuint16 u16Tolerance;

#endif

} tsCLD_RelativeHumidityMeasurement;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 457

Chapter 25
Relative Humidity Measurement Cluster

where:

 u16MeasuredValue is a mandatory attribute representing the measured
relatively humidity as a percentage in steps of 0.01%, as follows:

u16MeasuredValue = 100 x relative humidity percentage

So, for example, 0x197C represents a relative humidity measurement of
65.24%. The possible values are used as follows:

 0x0000 to 0x2710 represent relative humidities from 0% to 100%

 0x2711 to 0xFFFE are unused values

 0xFFFF indicates an invalid measurement

This attribute is updated continuously as measurements are made.

 u16MinMeasuredValue is a mandatory attribute specifying the value of the
attribute u16MeasuredValue which corresponds to the minimum possible
relative humidity that can be measured. Its value must be less than that of the
attribute u16MaxMeasuredValue (below). The special value 0xFFFF is used
to indicate that the minimum is not defined.

 u16MaxMeasuredValue is a mandatory attribute specifying the value of the
attribute u16MeasuredValue which corresponds to the maximum possible
relative humidity that can be measured. Its value must be greater than that of
the attribute u16MinMeasuredValue (above). The special value 0xFFFF is
used to indicate that the maximum is not defined.

 u16Tolerance is an optional attribute which indicates the magnitude of the
maximum possible error in the value of the attribute u16MeasuredValue. The
true value will be in the range (u16MeasuredValue – u16Tolerance) to
(u16MeasuredValue + u16Tolerance).

25.3 Functions

The following Relative Humidity Measurement cluster function is provided in the NXP
implementation of the ZCL:

Function Page

eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement 459
458 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement

Description

This function creates an instance of the Relative Humidity Measurement cluster on
an endpoint. The cluster instance is created on the endpoint which is associated with
the supplied tsZCL_ClusterInstance structure and can act as a server or a
client, as specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Relative Humidity Measurement
cluster instance on the endpoint, but instances of other clusters may also be created
on the same endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. Since the Relative Humidity
Measurement cluster client has no attributes, this array is only required for the server.
The array length is automatically adjusted by the compiler using the following
declaration (for the cluster server):

uint8 au8RelativeHumidityMeasurementServerAttributeControlBits
[(sizeof(asCLD_RelativeHumidityMeasurementClusterAttributeDefinitions) /
sizeof(tsZCL_AttributeDefinition))];

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status
eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 459

Chapter 25
Relative Humidity Measurement Cluster

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Relative Humidity
Measurement cluster. This parameter can refer to a
pre-filled structure called
sCLD_RelativeHumidityMeasurement which is
provided in the RelativeHumidityMeasurement.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type
tsCLD_RelativeHumidityMeasurement which
defines the attributes of Relative Humidity
Measurement cluster. The function will initialise the
attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above). For a cluster
client, set this pointer to NULL.

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
460 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
25.4 Enumerations

25.4.1 teCLD_RHM_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Relative Humidity Measurement cluster.

typedef enum

{

 E_CLD_RHMEAS_ATTR_ID_MEASURED_VALUE = 0x0000, /* Mandatory */

 E_CLD_RHMEAS_ATTR_ID_MIN_MEASURED_VALUE, /* Mandatory */

 E_CLD_RHMEAS_ATTR_ID_MAX_MEASURED_VALUE, /* Mandatory */

 E_CLD_RHMEAS_ATTR_ID_TOLERANCE,

} teCLD_RHM_ClusterID;

25.5 Compile-Time Options

To enable the Relative Humidity Measurement cluster in the code to be built, it is
necessary to add the following to the zcl_options.h file:

#define CLD_RELATIVE_HUMIDITY_MEASUREMENT

In addition, to include the software for a cluster client or server, it is necessary to add
one of the following to the same file:

#define RELATIVE_HUMIDITY_MEASUREMENT_CLIENT

#define RELATIVE_HUMIDITY_MEASUREMENT_SERVER

Optional Attribute

The optional attribute for the Relative Humidity Measurement cluster (see Section
25.2) is enabled by defining:

 CLD_RHMEAS_ATTR_TOLERANCE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 461

Chapter 25
Relative Humidity Measurement Cluster

462 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
26. Occupancy Sensing Cluster

This chapter describes the Occupancy Sensing cluster which is defined in the ZCL
and provides an interface to an occupancy sensor.

The Occupancy Sensing cluster has a Cluster ID of 0x0406.

26.1 Overview

The Occupancy Sensing cluster provides an interface to an occupany sensor, allowing
the configuration of sensing and the reporting of status.

To use the functionality of this cluster, you must include the file OccupancySensing.h
in your application and enable the cluster by defining CLD_OCCUPANCY_SENSING
in the zcl_options.h file.

An Occupancy Sensing cluster instance can act as a client or a server. The inclusion
of the client or server software must be pre-defined in the application’s compile-time
options (in addition, if the cluster is to reside on a custom endpoint then the role of
client or server must also be specified when creating the cluster instance).

The compile-time options for the Occupancy Sensing cluster are fully detailed in
Section 26.5.

The information that can potentially be stored in this cluster is organised into the
following attribute sets:

 Occupancy sensor information

 PIR configuration

 Ultrasonic configuration

This cluster has no associated events. The status of an occupancy sensor can be
obtained by reading the ‘occupancy’ attribute (see Section 26.2) which is automatically
maintained by the cluster server. The cluster attributes can be accessed using the
general attribute read/write functions, as described in Section 2.2.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 463

Chapter 26
Occupancy Sensing Cluster

26.2 Occupancy Sensing Structure and Attributes

The structure definition for the Occupancy Sensing cluster is:

typedef struct

{

 zbmap8 u8Occupancy;

 zenum8 eOccupancySensorType;

#ifdef CLD_OS_ATTR_PIR_OCCUPIED_TO_UNOCCUPIED_DELAY

 zuint16 u16PIROccupiedToUnoccupiedDelay;

#endif

#ifdef CLD_OS_ATTR_PIR_UNOCCUPIED_TO_OCCUPIED_DELAY

 zuint8 u8PIRUnoccupiedToOccupiedDelay;

#endif

#ifdef CLD_OS_ATTR_PIR_UNOCCUPIED_TO_OCCUPIED_THRESHOLD

 zuint8 u8PIRUnoccupiedToOccupiedThreshold;

#endif

#ifdef CLD_OS_ATTR_ULTRASONIC_OCCUPIED_TO_UNOCCUPIED_DELAY

 zuint16 u16UltrasonicOccupiedToUnoccupiedDelay;

#endif

#ifdef CLD_OS_ATTR_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_DELAY

 zuint8 u8UltrasonicUnoccupiedToOccupiedDelay;

#endif

#ifdef CLD_OS_ATTR_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_THRESHOLD

 zuint8 u8UltrasonicUnoccupiedToOccupiedThreshold;

#endif

} tsCLD_OccupancySensing;

where:

‘Occupancy Sensor Information’ Attribute Set

 u8Occupancy is a mandatory attribute indicating the sensed occupancy in a
bitmap in which bit 0 is used as follows (and all other bits are reserved):

 bit 0 = 1 : occupied

 bit 0 = 0 : unoccupied
464 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 eOccupancySensorType is a mandatory attribute indicating the type of
occupancy sensor, as follows:

 0x00 : PIR

 0x01 : Ultrasonic

 0x02 : PIR and ultrasonic

‘PIR Configuration’ Attribute Set

 u16PIROccupiedToUnoccupiedDelay is an optional attribute for a PIR
detector representing the time delay, in seconds, between the last detected
movement and the sensor changing its occupancy state from ‘occupied’ to
‘unoccupied’

 u8PIRUnoccupiedToOccupiedDelay is an optional attribute for a PIR
detector representing the time delay, in seconds, between the detection of
movement and the sensor changing its occupancy state from ‘unoccupied’ to
‘occupied’. The interpretation of this attribute changes when it is used in
conjunction with the corresponding threshold attribute (see below)

 u8PIRUnoccupiedToOccupiedThreshold is an optional threshold attribute
that can be used in conjunction with the delay attribute
u8PIRUnoccupiedToOccupiedDelay to allow for false positive detections.
Use of this threshold attribute changes the interpretation of the delay attribute.
The threshold represents the minimum number of detections required within
the delay-period before the sensor will change its occupancy state from
‘unoccupied’ to ‘occupied’. The minimum valid threshold value is 1

 ‘Ultrasonic Configuration’ Attribute Set

 u16UltrasonicOccupiedToUnoccupiedDelay is an optional attribute for
an Ultrasonic detector representing the time delay, in seconds, between the
last detected movement and the sensor changing its occupancy state from
‘occupied’ to ‘unoccupied’

 u8UltrasonicUnoccupiedToOccupiedDelay is an optional attribute
representing the time delay, in seconds, between the detection of movement
and the sensor changing its occupancy state from ‘unoccupied’ to ‘occupied’.
The interpretation of this attribute changes when it is used in conjunction with
the corresponding threshold attribute (see below)

 u8UltrasonicUnoccupiedToOccupiedThreshold is an optional
threshold attribute that can be used in conjunction with the delay attribute
u8UltrasonicUnoccupiedToOccupiedDelay to allow for false positive
detections. Use of this threshold attribute changes the interpretation of the
delay attribute. The threshold represents the minimum number of detections
required within the delay-period before the sensor will change its occupancy
state from ‘unoccupied’ to ‘occupied’. The minimum valid threshold value is 1

Note: The 'Occupied To Unoccupied’ and 'Unoccupied
To Occupied' attributes can be used to reduce sensor
'chatter' when an occupancy sensor is deployed in an
area in which the occupation frequently changes
(e.g. in a corridor).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 465

Chapter 26
Occupancy Sensing Cluster

26.3 Functions

The following Occupancy Sensing cluster function is provided in the NXP
implementation of the ZCL:

Function Page

eCLD_OccupancySensingCreateOccupancySensing 467

The cluster attributes can be accessed using the general attribute read/write functions,
as described in Section 2.2. The state of the occupancy sensor can be obtained by
reading the u8Occupancy attribute in the tsCLD_OccupancySensing structure on
the cluster server (see Section 26.2).
466 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_OccupancySensingCreateOccupancySensing

Description

This function creates an instance of the Occupancy Sensing cluster on an endpoint.
The cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an Occupancy Sensing cluster
instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Occupancy
Sensing cluster, which can be obtained by using the macro
CLD_OS_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 au8AppOccupancySensingClusterAttributeControlBits[
 CLD_OS_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

teZCL_Status
eCLD_OccupancySensingCreateOccupancySensing(

tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 467

Chapter 26
Occupancy Sensing Cluster

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Occupancy Sensing
cluster. This parameter can refer to a pre-filled structure
called sCLD_OccupancySensing which is provided in
the OccupancySensing.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_OccupancySensing which
defines the attributes of Occupancy Sensing cluster.
The function will initialise the attributes with default
values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
468 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
26.4 Enumerations

26.4.1 teCLD_OS_ClusterID

The following structure contains the enumeration used to identify the attributes of the
Occupancy Sensing cluster.

typedef enum

{

 E_CLD_OS_ATTR_ID_OCCUPANCY = 0x0000, /* Mandatory */

 E_CLD_OS_ATTR_ID_OCCUPANCY_SENSOR_TYPE, /* Mandatory */

 E_CLD_OS_ATTR_ID_PIR_OCCUPIED_TO_UNOCCUPIED_DELAY = 0x0010,

 E_CLD_OS_ATTR_ID_PIR_UNOCCUPIED_TO_OCCUPIED_DELAY,

 E_CLD_OS_ATTR_ID_PIR_UNOCCUPIED_TO_OCCUPIED_THRESHOLD,

 E_CLD_OS_ATTR_ID_ULTRASONIC_OCCUPIED_TO_UNOCCUPIED_DELAY = 0x0020,

 E_CLD_OS_ATTR_ID_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_DELAY,

 E_CLD_OS_ATTR_ID_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_THRESHOLD

} teCLD_OS_ClusterID;

26.5 Compile-Time Options

To enable the Occupancy Sensing cluster in the code to be built, it is necessary to add
the following to the zcl_options.h file:

#define CLD_OCCUPANCY_SENSING

In addition, to include the software for a cluster client or server or both, it is necessary
to add one of the following to the same file:

#define OCCUPANCY_SENSING_CLIENT

#define OCCUPANCY_SENSING_SERVER

Optional Attributes

The optional attributes for the Occupancy Sensing cluster (see Section 26.2) are
enabled by defining:

 CLD_OS_ATTR_PIR_OCCUPIED_TO_UNOCCUPIED_DELAY

 CLD_OS_ATTR_PIR_UNOCCUPIED_TO_OCCUPIED_DELAY

 CLD_OS_ATTR_PIR_UNOCCUPIED_TO_OCCUPIED_THRESHOLD

 CLD_OS_ATTR_ULTRASONIC_OCCUPIED_TO_UNOCCUPIED_DELAY

 CLD_OS_ATTR_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_DELAY

 CLD_OS_ATTR_ULTRASONIC_UNOCCUPIED_TO_OCCUPIED_THRESHOLD
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 469

Chapter 26
Occupancy Sensing Cluster

470 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
27. IAS Zone Cluster

This chapter describes the IAS Zone cluster which is defined in the ZCL and provides
an interface to an IAS Zone device in an IAS (Intruder Alarm System).

The IAS Zone cluster has a Cluster ID of 0x0500.

27.1 Overview

The IAS Zone cluster provides an interface to an IAS Zone device, which provides
security alarm triggers for a zone or region of a building (e.g. fire detection). The
cluster allows an IAS Zone device to be configured/controlled from a CIE (Control and
Indicating Equipment) device. The server side of the cluster is implemented on the IAS
Zone device and the client side is implemented on the CIE device. The IAS Zone
device is included in the Home Automation profile and detailed in the ZigBee Home
Automation User Guide (JN-UG-3076).

The cluster supports the following functionality:

 Up to two alarm types per zone, Alarm1 and Alarm2

 ‘Low battery’ reports

 Supervision of the IAS network

To use the functionality of this cluster, you must include the file IASZone.h in your
application and enable the cluster by defining CLD_IASZONE in the zcl_options.h
file.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the IAS Zone cluster are fully detailed in Section 27.7.

The information that can potentially be stored in this cluster is organised into the
following attribute sets:

 Zone information

 Zone settings
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 471

Chapter 27
IAS Zone Cluster

27.2 IAS Zone Structure and Attributes

The structure definition for the IAS Zone cluster is:

typedef struct

{

 zenum8 e8ZoneState;

 zenum16 e16ZoneType;

 zbmap16 b16ZoneStatus;

 zuint64 u64IASCIEAddress;

 zuint8 u8ZoneId;

 #ifdef CLD_IASZONE_ATTR_ID_NUMBER_OF_ZONE_SENSITIVITY_LEVELS

 zuint8 u8NumberOfZoneSensitivityLevels;

 #endif

 #ifdef CLD_IASZONE_ATTR_ID_CURRENT_ZONE_SENSITIVITY_LEVEL

 zuint8 u8CurrentZoneSensitivityLevel;

 #endif

} tsCLD_IASZone;

where:

‘Zone Information’ Attribute Set

 e8ZoneState is a mandatory attribute which indicates the membership status
of the device in an IAS system (enrolled or not enrolled) - one of:

 E_CLD_IASZONE_STATE_NOT_ENROLLED (0x00)

 E_CLD_IASZONE_STATE_ENROLLED (0x01)

‘Enrolled’ means that the cluster client will react to Zone State Change
Notification commands from the cluster server.

 e16ZoneType is a mandatory attribute which indicates the zone type and the
types of security detectors that can trigger the alarms, Alarm1 and Alarm2:

Enumeration Value Type Alarm1 Alarm2

E_CLD_IASZONE_TYPE_STANDARD_
CIE

0x0000 Standard CIE System alarm -

E_CLD_IASZONE_TYPE_MOTION_
SENSOR

0x000D Motion sensor Intrusion indica-
tion

Presence indica-
tion

E_CLD_IASZONE_TYPE_CONTACT_
SWITCH

0x0015 Contact switch First portal open-
close

Second portal
open-close

E_CLD_IASZONE_TYPE_FIRE_
SENSOR

0x0028 Fire sensor Fire indication -
472 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 b16ZoneStatus is a mandatory attribute which is a 16-bit bitmap indicating
the status of each of the possible notification triggers from the device:

E_CLD_IASZONE_TYPE_WATER_
SENSOR

0x002A Water sensor Water overflow
indication

-

E_CLD_IASZONE_TYPE_GAS_
SENSOR

0x002B Gas sensor Carbon monox-
ide indication

Cooking indica-
tion

E_CLD_IASZONE_TYPE_PERSONAL_
EMERGENCY_DEVICE

0x002C Personal emer-
gency device

Fall/concussion Emergency but-
ton

E_CLD_IASZONE_TYPE_VIBRATION_
MOVEMENT_SENSOR

0x002D Vibration move-
ment sensor

Movement indica-
tion

Vibration

E_CLD_IASZONE_TYPE_REMOTE_
CONTROL

0x010F Remote control Panic Emergency

E_CLD_IASZONE_TYPE_KEY_FOB 0x0115 Key fob Panic Emergency

E_CLD_IASZONE_TYPE_KEYPAD 0x021D Keypad Panic Emergency

E_CLD_IASZONE_TYPE_STANDARD_
WARNING_DEVICE

0x0225 Standard warn-
ing device

- -

E_CLD_IASZONE_TYPE_INVALID_
ZONE

0xFFFF Invalid zone type - -

Bit Description

0 Alarm1:
1 - Opened or alarmed
0 - Closed or not alarned

1 Alarm2:
1 - Opened or alarmed
0 - Closed or not alarned

2 Tamper:
1 - Tampered with
0 - Not tampered with

3 Battery:
1 - Low
0 - OK

4 Supervision reports1:
1 - Reports
0 - No reports

5 Restore reports2:
1 - Reports
0 - No reports

6 Trouble:
1 - Trouble/failure
0 - OK

Enumeration Value Type Alarm1 Alarm2
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 473

Chapter 27
IAS Zone Cluster

1 Bit 4 indicates whether the Zone device issues periodic Zone Status Change Notification com-
mands that may be used by the CIE device as evidence that the Zone device is operational.

2 Bit 5 indicates whether the Zone device issues a Zone Status Change Notification command to
notify when an alarm is no longer present (some Zone devices do not have the ability to detect
when the alarm condition has disappeared).

‘Zone Settings’ Attribute Set

 u64IASCIEAddress is a mandatory attribute containing the 64-bit IEEE/MAC
address of the CIE device to which the cluster server must send commands/
notifications

 u8ZoneId is a mandatory attribute containing the 8-bit identifier for the zone
allocated by the CIE device at the time of enrollment

 u8NumberOfZoneSensitivityLevels is an optional attribute containing
the number of sensitivity levels (for the detectable quantity) for the zone - for
devices that have only one sensitivity level, this attribute need not be enabled
or can be set to 0x00 or 0x01

 u8CurrentZoneSensitivityLevel is an optional attribute containing the
current sensitivity level for the zone - the value 0x00 corresponds to the default
sensitivity level (which will also be represented by another value, e.g. 0x05)

7 AC (mains):
1 - Fault
0 - OK

8 Test mode:
1 - Sensor in test mode
0 - Sensor in operational mode

9 Battery defect:
1 - Defective battery detected
0 - Battery OK

10-15 Reserved

Note: The definition of a sensitivity level is
manufacturer-specific but detector ‘sensitivity’ should
increase with higher values of this attribute.

Bit Description
474 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
27.3 Enrollment

An IAS Zone device hosting the IAS Zone cluster server must be paired with a CIE
device hosting the cluster client. This pairing is implemented by the process of
‘enrollment’ which, for extra security, provides a layer of pairing in addition to ZigBee
PRO binding - if required, binding is implemented as part of the enrollment process.

During enrollment, the CIE device sends its IEEE/MAC address to the Zone device as
well as a Zone ID, which is a unique 8-bit identifier that the CIE device assigns to the
Zone device. These values are stored in the u64IASCIEAddress and u8ZoneId
attributes on the Zone device (cluster server) - see Section 27.2. In addition, once
enrollment has completed, the e8ZoneState attribute is set to ‘enrolled’.
Subsequently, the Zone device will only communicate with the paired CIE device.

Enrollment begins just after the Zone device joins the network. This device must then
periodically poll for data (from the CIE device), ideally once every 2 seconds (or faster)
but no slower than once every 7 seconds. This polling must continue until the
e8ZoneState attribute has been updated to ‘enrolled’. However, if the IAS Zone
device supports the Poll Control cluster, polling at the above rate should continue until
the Poll Control cluster configuration is changed.

Three methods of enrollment are available:

 Trip-to-Pair, described in Section 27.3.1

 Auto-Enroll-Response, described in Section 27.3.2

 Auto-Enroll-Request, described in Section 27.3.3

A cluster server and client can each implement both Trip-to-Pair and Auto-Enroll-
Response or just Auto-Enroll-Request.

27.3.1 Trip-to-Pair

The Trip-to-Pair method of enrollment is described below:

1. After the IAS Zone device joins the network, the CIE device performs a
service discovery.

2. If the CIE device determines that it wants to enroll the Zone device, it sends a
Write Attribute command to the Zone device in order to write its IEEE/MAC
address to the relevant attribute.

3. The Zone device may optionally create a binding table entry for the CIE device
and store the CIE device’s IEEE/MAC address there.

4. The Zone device waits for the authorisation of the enrollment via a user input
(e.g. a button-press) and, on this input, sends a Zone Enroll Request
command to the CIE device.

5. The CIE device assigns a Zone ID to the Zone device and sends a Zone
Enroll Response command to it.

6. The Zone device updates its attributes to stored the assigned Zone ID and
update its zone state to ‘enrolled’.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 475

Chapter 27
IAS Zone Cluster

27.3.2 Auto-Enroll-Response

The Auto-Enroll-Response method of enrollment is described below:

1. After the IAS Zone device joins the network, the CIE device performs a
service discovery.

2. If the CIE device determines that it wants to enroll the Zone device, it sends a
Write Attribute command to the Zone device in order to write its IEEE/MAC
address to the relevant attribute.

3. The Zone device may optionally create a binding table entry for the CIE device
and store the CIE device’s IEEE/MAC address there.

4. The CIE device assigns a Zone ID to the Zone device and sends a Zone
Enroll Response command to it.

5. The Zone device updates its attributes to stored the assigned Zone ID and
update its zone state to ‘enrolled’.

27.3.3 Auto-Enroll-Request

 The Auto-Enroll-Request method of enrollment is described below:

1. After the IAS Zone device joins the network, the CIE device performs a
service discovery.

2. If the CIE device determines that it wants to enroll the Zone device, it sends a
Write Attribute command to the Zone device in order to write its IEEE/MAC
address to the relevant attribute.

3. The Zone device may optionally create a binding table entry for the CIE device
and store the CIE device’s IEEE/MAC address there.

4. The Zone device sends a Zone Enroll Request command to the CIE device.

5. The CIE device assigns a Zone ID to the Zone device and sends a Zone
Enroll Response command to it.

6. The Zone device updates its attributes to stored the assigned Zone ID and
update its zone state to ‘enrolled’.

Note: The above Auto-Enroll-Response process is
similar to the Trip-to-Pair process (described in Section
27.3.2) except user authorisation for the enrollment of
the Zone device is not required and no Zone Enroll
Request command needs to be sent to the CIE device.

Note: The above Auto-Enroll-Request process is similar
to the Trip-to-Pair process (described in Section 27.3.2)
except user authorisation for the enrollment of the Zone
device is not required.
476 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
27.4 IAS Zone Events

The IAS Zone cluster has its own events that are handled through the callback
mechanism outlined in Chapter 3. If a device uses the IAS Zone cluster then IAS Zone
event handling must be included in the callback function for the associated endpoint,
where this callback function is registered through the relevant endpoint registration
function (for example, through eHA_RegisterIASZoneEndPoint() for a Zone device).
The relevant callback function will then be invoked when an IAS Zone event occurs.

For an IAS Zone event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_IASZoneCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_IASZone_TestModeUpdate *psTestModeUpdate; /* Internal */

 tsCLD_IASZone_EnrollRequestCallBackPayload sZoneEnrollRequestCallbackPayload;

 tsCLD_IASZone_EnrollResponsePayload *psZoneEnrollResponsePayload;

 tsCLD_IASZone_StatusChangeNotificationPayload
 *psZoneStatusNotificationPayload;

 tsCLD_IASZone_InitiateTestModeRequestPayload
 *psZoneInitiateTestModeRequestPayload;

 } uMessage;

} tsCLD_IASZoneCallBackMessage;

When an IAS Zone event occurs, one of several command types could have been
received. The relevant command type is specified through the u8CommandId field of
the tsSM_CallBackMessage structure. The possible command/event types are
detailed in the table below (note that psTestModeUpdate is for internal use only).

u8CommandId Enumeration Description

E_CLD_IASZONE_CMD_ZONE_ENROLL_RESP An IAS Zone Enroll Response has been
received by the cluster server

E_CLD_IASZONE_CMD_ZONE_STATUS_NOTIFICATION An IAS Zone Status Change Notification has
been received by the cluster client

E_CLD_IASZONE_CMD_ZONE_ENROLL_REQ An IAS Zone Enroll Request has been received
by the cluster client

E_CLD_IASZONE_CMD_INITIATE_NORMAL_OP_MODE_REQ An IAS Zone Normal Operation Mode Initiation
Request command has been received by the
cluster server

E_CLD_IASZONE_CMD_INITIATE_TEST_MODE_REQ An IAS Zone Initiate Test Mode Request has
been received by the cluster server

Table 26: IAS Zone Command Types
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 477

Chapter 27
IAS Zone Cluster

27.5 Functions

The following IAS Zone cluster functions are provided in the NXP implementation of
the ZCL:

Function Page

eCLD_IASZoneCreateIASZone 479

eCLD_IASZoneUpdateZoneStatus 481

eCLD_IASZoneUpdateZoneState 483

eCLD_IASZoneUpdateZoneType 484

eCLD_IASZoneUpdateZoneID 485

eCLD_IASZoneUpdateCIEAddress 486

eCLD_IASZoneEnrollReqSend 487

eCLD_IASZoneEnrollRespSend 489

eCLD_IASZoneStatusChangeNotificationSend 491

eCLD_IASZoneNormalOperationModeReqSend 493

eCLD_IASZoneTestModeReqSend 494
478 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASZoneCreateIASZone

Description

This function creates an instance of the IAS Zone cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an IAS Zone cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the IAS Zone cluster. This
parameter can refer to a pre-filled structure called
sCLD_IASZone which is provided in the IASZone.h
file.

teZCL_Status eCLD_IASZoneCreateIASZone(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_IASZone_CustomDataStructure

 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 479

Chapter 27
IAS Zone Cluster

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_IASZone which defines the
attributes of IAS Zone cluster. The function will initialise
the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster.

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 27.6.1)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
480 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASZoneUpdateZoneStatus

Description

This function can be used on an IAS Zone cluster server to update the zone status
bitmap stored in the b16ZoneStatus attribute, described in Section 27.2.

In one call to this function, one or more selected bits in the b16ZoneStatus attribute
bitmap can be to set to ‘1’ or ‘0’. The affected bits must themselves be specified in a
bitmap and the value to be set must also be specified.

If the server is enrolled with a client on a CIE device, the function sends a notification
of this update to the client, in a Zone Status Change Notification. Before sending the
notification and returning, the function invokes a user-defined callback function to
allow the application to validate the status change.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS Zone cluster resides

u16StatusBitMask 16-bit bitmap indicating the bits of the zb16ZoneStatus
bitmap to be updated. There is a one-to-one correspondence
between the bits of the two bitmaps and a bit should be set to
‘1’ if the corresponding attribute bit is to be updated.
Enumerations are provided (which can be logical-ORed):

teZCL_Status eCLD_IASZoneUpdateZoneStatus(
uint8 u8SourceEndPoint,
uint16 u16StatusBitMask,
bool_t bStatusState);

Bits Enumeration

0 CLD_IASZONE_STATUS_MASK_ALARM1

1 CLD_IASZONE_STATUS_MASK_ALARM2

2 CLD_IASZONE_STATUS_MASK_TAMPER

3 CLD_IASZONE_STATUS_MASK_BATTERY

4 CLD_IASZONE_STATUS_MASK_SUPERVISION_REPORTS

5 CLD_IASZONE_STATUS_MASK_RESTORE_REPORTS

6 CLD_IASZONE_STATUS_MASK_TROUBLE

7 CLD_IASZONE_STATUS_MASK_AC_MAINS

8 CLD_IASZONE_STATUS_MASK_TEST

9 CLD_IASZONE_STATUS_MASK_BATTERY_DEFECT

10-15 Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 481

Chapter 27
IAS Zone Cluster

 bStatusState Boolean indicating the value to which the attribute bits to be
updated must be set - enumerations are provided:

CLD_IASZONE_STATUS_MASK_SET (1)
CLD_IASZONE_STATUS_MASK_RESET (0)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL
482 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASZoneUpdateZoneState

Description

This function can be used on an IAS Zone cluster server to update the zone state
value stored in the e8ZoneState attribute, described in Section 27.2. This attribute
indicates whether or not the server is enrolled with a client on a CIE device. The
function checks that the specified state is valid.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS Zone cluster resides

eZoneState Zone state value to be written to the attribute, one of:

E_CLD_IASZONE_STATE_NOT_ENROLLED (0x00)
E_CLD_IASZONE_STATE_ENROLLED (0x01)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_IASZoneUpdateZoneState(
uint8 u8SourceEndPoint,
teCLD_IASZoneState eZoneState);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 483

Chapter 27
IAS Zone Cluster

eCLD_IASZoneUpdateZoneType

Description

This function can be used on an IAS Zone cluster server to update the zone type
value stored in the e16ZoneType attribute. The possible values are listed in Section
27.2 and the function checks that the specified type is one of these values.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS Zone cluster resides

eIASZoneType Zone type value to be written to the attribute (for the possible
values, refer to Section 27.2)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_IASZoneUpdateZoneType(
uint8 u8SourceEndPoint,
teCLD_IASZoneType eIASZoneType);
484 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASZoneUpdateZoneID

Description

This function can be used on an IAS Zone cluster server to update the zone ID value
stored in the u8ZoneId attribute. This is an 8-bit user-defined identifier.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS Zone cluster resides

u8IASZoneId Zone ID value to be written to the attribute

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_IASZoneUpdateZoneID(
uint8 u8SourceEndPoint,
uint8 u8IASZoneId);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 485

Chapter 27
IAS Zone Cluster

eCLD_IASZoneUpdateCIEAddress

Description

This function can be used on an IAS Zone cluster server to update the 64-bit IEEE/
MAC address stored in the u64IASCIEAddress attribute. This is the address of the
CIE device to which the local device should send commands and notifications.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS Zone cluster resides

u64CIEAddress IEEE/MAC address to be written to the attribute

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_IASZoneUpdateCIEAddress(
uint8 u8SourceEndPoint,
u64IEEEAddress u64CIEAddress);
486 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASZoneEnrollReqSend

Description

This function can be used on an IAS Zone cluster server to send an IAS Zone Enroll
Request to an IAS Zone client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 27.6.2)

teZCL_Status eCLD_IASZoneEnrollReqSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASZone_EnrollRequestPayload *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 487

Chapter 27
IAS Zone Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
488 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASZoneEnrollRespSend

Description

This function can be used on an IAS Zone cluster client to send an IAS Zone Enroll
Response to the IAS Zone server.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 27.6.2)

teZCL_Status eCLD_IASZoneEnrollRespSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASZone_EnrollResponsePayload *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 489

Chapter 27
IAS Zone Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
490 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASZoneStatusChangeNotificationSend

Description

This function can be used on IAS Zone cluster server to send a Zone Status Change
Notification to the IAS Zone client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 27.6.2)

teZCL_Status eCLD_IASZoneStatusChangeNotificationSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASZone_StatusChangeNotificationPayload

 *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 491

Chapter 27
IAS Zone Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
492 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASZoneNormalOperationModeReqSend

Description

This function can be used on IAS Zone cluster client to send a request the IAS Zone
server to initiate normal operation mode. If required, this command must be enabled
in the compile-time options, as described in Section 27.7.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_IASZoneNormalOperationModeReqSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 493

Chapter 27
IAS Zone Cluster

eCLD_IASZoneTestModeReqSend

Description

This function can be used on IAS Zone cluster client to send a request to the IAS
Zone server to initiate test mode and operate in this mode for a specified time. If
required, this command must be enabled in the compile-time options, as described
in Section 27.7.

Test mode allows the target device to be temporarily isolated from the IAS to allow
configuration/adjustment of the device. Alternatively, the whole IAS can be put into
test mode for maintenance, but the command issued by this function only affects the
individual target IAS Zone cluster server(s).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 27.6.2)

teZCL_Status eCLD_IASZoneTestModeReqSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASZone_InitiateTestModeRequestPayload

 *psPayload);
494 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 495

Chapter 27
IAS Zone Cluster

27.6 Structures

27.6.1 Custom Data Structure

The IAS Zone cluster requires extra storage space to be allocated to be used by
internal functions. The structure definition for this storage is shown below:

typedef struct

{

 tsCLD_IASZone_InitiateTestModeRequestPayload sTestMode;

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_IASZoneCallBackMessage sCallBackMessage;

} tsCLD_IASZone_CustomDataStructure;

The fields are for internal use and no knowledge of them is required.

27.6.2 Custom Command Payloads

The following structures contain the payloads for the IAS Zone cluster custom
commands.

‘Enroll Request’ Payload

The following structure contains the payload of an Enroll Request command.

typedef struct

{

 zenum16 e16ZoneType;

 uint16 u16ManufacturerCode;

}tsCLD_IASZone_EnrollRequestPayload;

where:

 e16ZoneType is the zone type of the local (sending) node, as specified in the
e16ZoneType attribute (see Section 27.2)

 u16ManufacturerCode is the manufacturer ID code that is held in the Node
Descriptor of the local (sending) node
496 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
‘Enroll Response’ Payload

The following structure contains the payload of an Enroll Response command.

typedef struct

{

 teCLD_IASZoneZoneEnrollRspCode e8EnrollResponseCode;

 uint8 u8ZoneID;

}tsCLD_IASZone_EnrollResponsePayload;

where:

 e8EnrollResponseCode is a code indicating the outcome of the
corresponding Enroll Request, one of:

 u8ZoneID is the index of the entry for the enrollment which has been added to
the Zone table on the CIE device (only valid for a successful enrollment)

‘Zone Status Change Notification’ Payload

The following structure contains the payload of a Zone Status Change Notification
command.

typedef struct

{

 zbmap16 b16ZoneStatus;

 zbmap8 b8ExtendedStatus;

 zuint8 u8ZoneId;

 zuint16 u16Delay;

}tsCLD_IASZone_StatusChangeNotificationPayload;

where:

 b16ZoneStatus contains the new/current status of the (sending) zone device,
as indicated in the e8ZoneState attribute - one of:

 E_CLD_IASZONE_STATE_NOT_ENROLLED (0x01)

 E_CLD_IASZONE_STATE_ENROLLED (0x02)

 b8ExtendedStatus can be optionally used to indicate further status
information, but otherwise should be set to zero

Enumeration Description

E_CLD_IASZONE_ENROLL_RESP_SUCCESS Requested enrollment successful

E_CLD_IASZONE_ENROLL_RESP_NOT_SUPPORTED Zone type of requesting device is not known/sup-
ported by the CIE device

E_CLD_IASZONE_ENROLL_RESP_NO_ENROLL_PERMIT CIE device is not allowing new zones to be
enrolled at the present time

E_CLD_IASZONE_ENROLL_RESP_TOO_MANY_ZONES CIE device has reached its limit for the number of
zones that it can enroll
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 497

Chapter 27
IAS Zone Cluster

 u8ZoneId is the index of the entry for the (sending) device in the Zone table on
the CIE device

 u16Delay is is the time-delay, in quarter-seconds, between the status change
taking place in the e8ZoneState attribute and the successful transmission of
the Zone Status Change Notification (this value can be used in assessing
network traffic congestion)

‘Initiate Test Mode Request’ Payload

The following structure contains the payload of an Initiate Test Mode Request
command.

typedef struct

{

 uint8 u8TestModeDuration;

 uint8 u8CurrentZoneSensitivityLevel;

}tsCLD_IASZone_InitiateTestModeRequestPayload;

where:

 u8TestModeDuration is the duration, in seconds, for which the device
should remain in test mode

 u8CurrentZoneSensitivityLevel is the current sensitivity level for the
zone, as indicated in the u8CurrentZoneSensitivityLevel attribute (see
Section 27.2)
498 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
27.7 Compile-Time Options

To enable the IAS Zone cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_IASZONE

In addition, to include the software for a cluster client or server or both, it is necessary
to add one of the following to the same file:

#define IASZONE_SERVER

#define IASZONE_CLIENT

Optional Attributes

The optional attributes of the IAS Zone cluster (see Section 27.2) are enabled by
defining:

 CLD_IASZONE_ATTR_ID_NUMBER_OF_ZONE_SENSITIVITY_LEVELS

 CLD_IASZONE_ATTR_ID_CURRENT_ZONE_SENSITIVITY_LEVEL

Optional Commands

The optional commands of the IAS Zone cluster are enabled by defining:

 CLD_IASZONE_CMD_INITIATE_NORMAL_OPERATION_MODE

 CLD_IASZONE_CMD_INITIATE_TEST_MODE

Disable APS Acknowledgements for Bound Transmissions

APS acknowledgements for bound transmissions from this cluster can be disabled by
defining:

#define CLD_IASZONE_BOUND_TX_WITH_APS_ACK_DISABLED
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 499

Chapter 27
IAS Zone Cluster

500 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
28. IAS Ancillary Control Equipment Cluster

This chapter describes the IAS Ancillary Control Equipment (ACE) cluster which is
defined in the ZCL and provides a control interface to a CIE (Control and Indicating
Equipment) device in an IAS (Intruder Alarm System).

The IAS ACE cluster has a Cluster ID of 0x0501.

28.1 Overview

The IAS ACE cluster provides a control interface to a CIE (Control and Indicating
Equipment) device in an IAS (Intruder Alarm System). For example, it allows a remote
control unit to be used to configure the IAS via a CIE device. The server side of the
cluster is implemented on the CIE device and the client side is implemented on the
remote device.

To use the functionality of this cluster, you must include the file IASACE.h in your
application and enable the cluster by defining CLD_IASACE in the zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the IAS ACE cluster are fully detailed in Section 28.9.

28.2 IAS ACE Structure and Attributes

The IAS ACE cluster has no attributes.

28.3 Table and Parameters

The IAS ACE cluster server hosts the following table and sets of parameters:

 Zone table: The Zone table contains an entry for each enrolled zone. Each
entry stores the identifier and type of the zone, as well as the IEEE/MAC
address of the device which hosts the zone (see Section 28.7.2).

 Zone parameters: This set of parameters contains certain zone properties
including the zone status, the zone name/label and the zone arm/disarm code
(see Section 28.7.3)

 Panel parameters: This set of parameters contains certain status information
about the display panel and alarm (see Section 28.7.4).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 501

Chapter 28
IAS Ancillary Control Equipment Cluster

28.4 Command Summary

The IAS ACE cluster includes a number of commands that can be sent by the
application on the client or server. These commands are summarised below.

 Table 27 lists the commands that can be issued on the client

 Table 28 lists the commands that can be issued on the server

Functions are provided to send these commands - these functions are indicated in the
descriptions below and detailed in Section 28.6.

Command Description and Function

Arm Instructs the server to put all or certain enrolled zones into the ‘armed’ state or put
all of them into the ‘disarmed’ state.

eCLD_IASACE_ArmSend()

Bypass Instructs the server to take one or more specified zones out of the system for the
current activation (these zones will be reinstated the next time the system is dis-
armed and to exclude them again the next time the system is armed, the Bypass
command must be re-sent before sending the Arm command).

eCLD_IASACE_BypassSend()

Emergency Instructs the server to put the alarm in the ‘Emergency’ state.

eCLD_IASACE_EmergencySend()

Fire Instructs the server to put the alarm in the ‘Fire’ state.

eCLD_IASACE_FireSend()

Panic Instructs the server to put the alarm in the ‘Panic’ state.

eCLD_IASACE_PanicSend()

Get Zone ID Map Requests the Zone IDs that have been allocated to zones.

eCLD_IASACE_GetZoneIDMapSend()

Get Zone Information Requests information on a specified zone.

eCLD_IASACE_GetZoneInfoSend()

Get Panel Status Requests the current status of the (display) panel.

eCLD_IASACE_GetPanelStatusSend()

Get Bypassed Zone List Requests a list of the currently bypassed zones.

eCLD_IASACE_GetBypassedZoneListSend()

Table 27: IAS ACE Cluster Commands from Client to Server
502 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Get Zone Status Requests a list of either all zones with their status or those zones with a particular
status (that is, all zones with the b16ZoneStatus attribute of the IAS Zone cluster
having a certain value).

eCLD_IASACE_GetZoneStatusSend()

Command Description and Function

Set Bypassed Zone List Informs the client which zones are currently bypassed and can be sent in response
to a Get Bypassed Zone List command.

eCLD_IASACE_SetBypassedZoneListSend()

Zone Status Changed Informs the client that the status (value of the b16ZoneStatus attribute of the IAS
Zone cluster) of a particular zone has changed.

eCLD_IASACE_ZoneStatusChangedSend()

Panel Status Changed Informs the client that the status of the (display) panel has changed.

eCLD_IASACE_PanelStatusChanged()

Table 28: IAS ACE Cluster Commands from Server to Client

Command Description and Function

Table 27: IAS ACE Cluster Commands from Client to Server
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 503

Chapter 28
IAS Ancillary Control Equipment Cluster

28.5 IAS ACE Events

The IAS ACE cluster has its own events that are handled through the callback
mechanism outlined in Chapter 3. If a device uses the IAS ACE cluster then IAS ACE
event handling must be included in the callback function for the associated endpoint,
where this callback function is registered through the relevant endpoint registration
function (for example, through eHA_RegisterIASCIEEndPoint() for a CIE device).
The relevant callback function will then be invoked when an IAS ACE event occurs.

For an IAS ACE event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_IASACECallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_IASACE_ArmPayload *psArmPayload;

 tsCLD_IASACE_BypassPayload *psBypassPayload;

 tsCLD_IASACE_GetZoneInfoPayload *psGetZoneInfoPayload;

 tsCLD_IASACE_GetZoneStatusPayload *psGetZoneStatusPayload;

 tsCLD_IASACE_ArmRespPayload *psArmRespPayload;

 tsCLD_IASACE_GetZoneIDMapRespPayload *psGetZoneIDMapRespPayload;

 tsCLD_IASACE_GetZoneInfoRespPayload *psGetZoneInfoRespPayload;

 tsCLD_IASACE_ZoneStatusChangedPayload *psZoneStatusChangedPayload;

 tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload
 *psPanelStatusChangedOrGetPanelStatusRespPayload;

 tsCLD_IASACE_SetBypassedZoneListPayload *psSetBypassedZoneListPayload;

 tsCLD_IASACE_BypassRespPayload *psBypassRespPayload;

 tsCLD_IASACE_GetZoneStatusRespPayload *psGetZoneStatusRespPayload;

 } uMessage;

} tsCLD_IASACECallBackMessage;

When an IAS ACE event occurs, one of twelve command types could have been
received. The relevant command type is specified through the u8CommandId field of
the tsCLD_IASACECallBackMessage structure. The possible command/event
types are detailed in Table 29 below (for command descriptions, refer to Section 28.4).

In the case where an IAS Arm or Bypass command has been received and results in
a change to a Zone parameter on the cluster server (e.g. an update of the zone status
u8ZoneStatusFlag), a second event will be generated before any response is sent.
This is a ‘cluster update’ event for which the eEventType field of the
tsZCL_CallBackEvent structure is set to E_ZCL_CBET_CLUSTER_UPDATE.
This prompts the application to perform any required actions such as saving persistent
data and refreshing a display.
504 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
u8CommandId Enumeration Description

Server Events

E_CLD_IASACE_CMD_ARM An IAS ACE Arm command has been received by the server

E_CLD_IASACE_CMD_BYPASS An IAS ACE Bypass command has been received by the
server

E_CLD_IASACE_CMD_EMERGENCY An IAS ACE Emergency command has been received by the
server

E_CLD_IASACE_CMD_FIRE An IAS ACE Fire command has been received by the server

E_CLD_IASACE_CMD_PANIC An IAS ACE Panic command has been received by the
server

E_CLD_IASACE_CMD_GET_ZONE_ID_MAP An IAS ACE Get Zone ID Map command has been received
by the server

E_CLD_IASACE_CMD_GET_ZONE_INFO An IAS ACE Get Zone Information command has been
received by the server

E_CLD_IASACE_CMD_GET_PANEL_STATUS An IAS ACE Get Panel Status command has been received
by the server

E_CLD_IASACE_CMD_GET_BYPASSED_
ZONE_LIST

An IAS ACE Get Bypassed Zone List command has been
received by the server

E_CLD_IASACE_CMD_GET_ZONE_STATUS An IAS ACE Get Zone Status command has been received
by the server

Client Events

E_CLD_IASACE_CMD_ARM_RESP An IAS ACE Arm Response command has been received by
the client

E_CLD_IASACE_CMD_GET_ZONE_ID_MAP_
RESP

An IAS ACE Get Zone ID Map Response command has been
received by the client

E_CLD_IASACE_CMD_GET_ZONE_INFO_
RESP

An IAS ACE Get Zone Information Response command has
been received by the client

E_CLD_IASACE_CMD_ZONE_STATUS_
CHANGED

An IAS ACE Zone Status Changed command has been
received by the client

E_CLD_IASACE_CMD_PANEL_STATUS_
CHANGED

An IAS ACE Panel Status Changed command has been
received by the client

E_CLD_IASACE_CMD_GET_PANEL_STATUS_R
ESP

An IAS ACE Get Panel Status Response command has been
received by the client

E_CLD_IASACE_CMD_SET_BYPASSED_ZONE
_LIST

An IAS ACE Set Bypassed Zone List command has been
received by the client

E_CLD_IASACE_CMD_BYPASS_RESP An IAS ACE Bypass Response command has been received
by the client

E_CLD_IASACE_CMD_GET_ZONE_STATUS_
RESP

An IAS ACE Get Zone Status Response command has been
received by the client

Table 29: IAS ACE Command Types
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 505

Chapter 28
IAS Ancillary Control Equipment Cluster

28.6 Functions

The following IAS ACE cluster functions are provided in the NXP implementation of
the ZCL:

Function Page

eCLD_IASACECreateIASACE 507

eCLD_IASACEAddZoneEntry 509

eCLD_IASACERemoveZoneEntry 510

eCLD_IASACEGetZoneTableEntry 511

eCLD_IASACEGetEnrolledZones 512

eCLD_IASACESetPanelParameter 513

eCLD_IASACEGetPanelParameter 514

eCLD_IASACESetZoneParameter 515

eCLD_IASACESetZoneParameterValue 517

eCLD_IASACEGetZoneParameter 518

eCLD_IASACE_ArmSend 519

eCLD_IASACE_BypassSend 521

eCLD_IASACE_EmergencySend 523

eCLD_IASACE_FireSend 524

eCLD_IASACE_PanicSend 525

eCLD_IASACE_GetZoneIDMapSend 526

eCLD_IASACE_GetZoneInfoSend 528

eCLD_IASACE_GetPanelStatusSend 530

eCLD_IASACE_SetBypassedZoneListSend 532

eCLD_IASACE_GetBypassedZoneListSend 534

eCLD_IASACE_GetZoneStatusSend 536

eCLD_IASACE_ZoneStatusChangedSend 538

eCLD_IASACE_PanelStatusChanged 540
506 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACECreateIASACE

Description

This function creates an instance of the IAS ACE cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an IAS ACE cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the IAS ACE cluster.

pvEndPointSharedStructPtr Set this pointer to NULL for this cluster

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 28.7.1)

teZCL_Status eCLD_IASACECreateIASACE(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
tsCLD_IASACECustomDataStructure

 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 507

Chapter 28
IAS Ancillary Control Equipment Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
508 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACEAddZoneEntry

Description

This function can be used on an IAS ACE cluster server to create an entry in the local
Zone table - that is, to add the details of a zone to the table after receiving a Zone
Enrollment Request (and before sending a Zone Enrollment Response).

The details of the zone are provided in the function parameters. The function checks
that the supplied pointer to the Zone ID is not NULL and that the supplied IEEE
address is valid. The function can then add the zone details to the Zone table,
provided that there is a free entry in the table.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster resides

u16ZoneType Value indicating the type of zone to be added to the table (for
the possible values, refer to the description of the attribute
e16ZoneType of the IAS Zone cluster in Section 27.2)

u64IeeeAddress IEEE address of the device which hosts the zone

pu8ZoneID Pointer to an identifier of the zone to be added to the table

Returns

E_ZCL_CMDS_SUCCESS (zone successfully added to Zone table)

E_ZCL_CMDS_FAILURE (cluster instance not found)

E_ZCL_CMDS_INVALID_FIELD (pointer to Zone ID is NULL)

E_ZCL_CMDS_INVALID_VALUE (IEEE address is invalid)

E_ZCL_CMDS_INSUFFICIENT_SPACE (no free entry in Zone table)

teZCL_CommandStatus eCLD_IASACEAddZoneEntry(
uint8 u8SourceEndPointId,
uint16 u16ZoneType,
uint64 u64IeeeAddress,
uint8 *pu8ZoneID);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 509

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACERemoveZoneEntry

Description

This function can be used on an IAS ACE cluster server to remove an existing entry
from the local Zone table - that is, to delete the details of a zone in the table and
release the table entry for re-use. Thus, this function can be used to unenroll a zone.

The zone to be removed is specified by means of the Zone ID. The function checks
that the supplied pointer to a location to receive the IEEE address is not NULL. The
function then searches for the relevant table entry using the supplied Zone ID and, if
found, returns its IEEE address via the supplied location and frees the table entry by
setting the IEEE address in the table entry to zero. The returned IEEE address can
be used by a (local) CIE device application to send a request to the relevant Zone
device to set its IAS Zone cluster attribute u64IASCIEAddress to all zeros (writing
to remote attributes is described in Section 2.2.2.1).

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster resides

u8ZoneID Zone ID of zone to be removed from table

pu64IeeeAddress Pointer to location to receive the IEEE address found in the
table entry to be removed

Returns

E_ZCL_CMDS_SUCCESS (zone successfully removed from Zone table)

E_ZCL_CMDS_FAILURE (cluster instance not found)

E_ZCL_CMDS_INVALID_FIELD (pointer to IEEE address location is NULL)

E_ZCL_CMDS_NOT_FOUND (entry with specified Zone ID not found in table)

teZCL_CommandStatus eCLD_IASACERemoveZoneEntry(
uint8 u8SourceEndPointId,
uint8 u8ZoneID,
uint64 *pu64IeeeAddress);
510 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACEGetZoneTableEntry

Description

This function can be used on an IAS ACE cluster server to obtain the details of a
specified zone from the local Zone table.

The zone of interest is specified by means of its Zone ID. The function searches for
the relevant table entry using the supplied Zone ID and, if found, returns the zone
information from the table entry via the supplied structure (see Section 28.7.2).

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster resides

u8ZoneID Zone ID of zone for which details required from table

ppsZoneTable Pointer to a pointer to a structure to receive obtained zone
information (see Section 28.7.2)

Returns

E_ZCL_CMDS_SUCCESS (zone details successfully obtained from Zone table)

E_ZCL_CMDS_FAILURE (cluster instance not found)

E_ZCL_CMDS_NOT_FOUND (entry with specified Zone ID not found in table)

teZCL_CommandStatus eCLD_IASACEGetZoneTableEntry(
uint8 u8SourceEndPointId,
uint8 u8ZoneID,
tsCLD_IASACE_ZoneTable **ppsZoneTable);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 511

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACEGetEnrolledZones

Description

This function can be used on an IAS ACE cluster server to obtain a list of the enrolled
zones from the local Zone table.

The function searches the Zone table and returns a list of the Zone IDs of all the
enrolled zones (for which there are table entries). The number of enrolled zones is
also returned.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster
resides

pu8ZoneID Pointer to a location to receive the first Zone ID in the
reported list of enrolled zones

pu8NumOfEnrolledZones Pointer to a location to receive the number of enrolled
zones reported in the above list

Returns

E_ZCL_CMDS_SUCCESS (zone list successfully obtained from Zone table)

E_ZCL_CMDS_FAILURE (cluster instance not found)

E_ZCL_CMDS_INVALID_FIELD (a supplied pointer is NULL)

teZCL_CommandStatus eCLD_IASACEGetEnrolledZones(
uint8 u8SourceEndPointId,
uint8 *pu8ZoneID,
uint8 *pu8NumOfEnrolledZones);
512 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACESetPanelParameter

Description

This function can be used on an IAS ACE cluster server to set the value of a Panel
parameter. The Panel parameters are held on the server in a
tsCLD_IASACE_PanelParameter structure (see Section 28.7.4) and this function
can be used to write a value to one parameter in the structure. The function verifies
that the specified parameter identifier is valid before attempting the write.

If this function is used to set the Panel parameter ePanelStatus, an IAS ACE
Panel Status Changed command is automatically sent to all bound clients.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster resides

eParameterId Enumeration identifying the Panel parameter to be set, one of:
E_CLD_IASACE_PANEL_PARAMETER_PANEL_STATUS
E_CLD_IASACE_PANEL_PARAMETER_SECONDS_REMAINING
E_CLD_IASACE_PANEL_PARAMETER_AUDIBLE_NOTIFICATION
E_CLD_IASACE_PANEL_PARAMETER_ALARM_STATUS

u8ParameterValue Value to be written to the parameter

Returns

E_ZCL_SUCCESS (Panel parameter successfully set)

E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Panel parameter identifier invalid)

teZCL_Status eCLD_IASACESetPanelParameter(
uint8 u8SourceEndPointId,
teCLD_IASACE_PanelParameterID eParameterId,
uint8 u8ParameterValue);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 513

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACEGetPanelParameter

Description

This function can be used on an IAS ACE cluster server to obtain the value of a Panel
parameter. The Panel parameters are held on the server in a
tsCLD_IASACE_PanelParameter structure (see Section 28.7.4) and this function
can be used to read the value of one parameter in the structure. The function verifies
that the specified parameter identifier is valid before attempting the read.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster resides

eParameterId Enumeration identifying the Panel parameter to be read, one
of:

E_CLD_IASACE_PANEL_PARAMETER_PANEL_STATUS

E_CLD_IASACE_PANEL_PARAMETER_SECONDS_REMAINING

E_CLD_IASACE_PANEL_PARAMETER_AUDIBLE_NOTIFICATION

E_CLD_IASACE_PANEL_PARAMETER_ALARM_STATUS

pu8ParameterValue Pointer to location to receive read parameter value

Returns

E_ZCL_SUCCESS (Panel parameter successfully read)

E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)

E_ZCL_ERR_PARAMETER_NULL (specfied pointer is NULL)

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Panel parameter identifier invalid)

teZCL_Status eCLD_IASACEGetPanelParameter(
uint8 u8SourceEndPointId,
teCLD_IASACE_PanelParameterID eParameterId,
uint8 *pu8ParameterValue);
514 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACESetZoneParameter

Description

This function can be used on an IAS ACE cluster server to set the value of a Zone
parameter. The Zone parameters for a particular Zone ID are held on the server in a
tsCLD_IASACE_ZoneParameter structure (see Section 28.7.3) and this function
can be used to write a value to one parameter in the structure. The specified zone
must have been enrolled in the local Zone table. Before attempting the write, the
function verifies that the specified Zone ID is present in the Zone table and that the
specified parameter identifier is valid.

If this function is used to set the Zone parameter eZoneStatus, an IAS ACE Zone
Status Changed command is automatically sent to all bound clients.

The function requires the parameter value to be provided as a uint8 array. This is to
allow one of the array parameters, au8ZoneLabel[] or au8ArmDisarmCode[],
to be set - the corresponding string parameter, sZoneLabel or sArmDisarmCode,
will be set automatically. The function eCLD_IASACESetZoneParameterValue()
provides an easier way of setting one of the non-array/non-string parameters.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster resides

eParameterId Enumeration identifying the Zone parameter to be set, one of:

E_CLD_IASACE_ZONE_PARAMETER_ZONE_CONFIG_FLAG

E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS_FLAG

E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS

E_CLD_IASACE_ZONE_PARAMETER_AUDIBLE_NOTIFICATION

E_CLD_IASACE_ZONE_PARAMETER_ZONE_LABEL

E_CLD_IASACE_ZONE_PARAMETER_ARM_DISARM_CODE

u8ZoneID Zone ID of zone information to be updated

u8ParameterLength Number of uint8 elements in the array containing the
parameter value to be set

pu8ParameterValue Pointer to a location containing the first element of the array
containing the parameter value to be set

teZCL_Status eCLD_IASACESetZoneParameter(
uint8 u8SourceEndPointId,
teCLD_IASACE_ZoneParameterID eParameterId,
uint8 u8ZoneID,
uint8 u8ParameterLength,
uint8 *pu8ParameterValue);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 515

Chapter 28
IAS Ancillary Control Equipment Cluster

Returns

E_ZCL_SUCCESS (Zone parameter successfully set)

E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Zone parameter identifier invalid)

E_ZCL_ERR_NO_REPORT_ENTRIES (Zone ID not found in Zone table)

E_ZCL_ERR_PARAMETER_NULL (Pointer to location containing value is NULL)

E_ZCL_ERR_PARAMETER_RANGE (specified array length too long to be stored)
516 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACESetZoneParameterValue

Description

This function can be used on an IAS ACE cluster server to set the value of a Zone
parameter. The Zone parameters for a particular Zone ID are held on the server in a
tsCLD_IASACE_ZoneParameter structure (see Section 28.7.3) and this function
can be used to write a value to one of the non-string/non-array parameters in the
structure. The specified zone must have been enrolled in the local Zone table. Before
attempting the write, the function verifies that the specified Zone ID is present in the
Zone table and that the specified parameter identifier is valid.

If this function is used to set the Zone parameter eZoneStatus, an IAS ACE Zone
Status Changed command is automatically sent to all bound clients.

This function cannot be used to set the string parameters sZoneLabel and
sArmDisarmCode or the array parameters au8ZoneLabel[] and
au8ArmDisarmCode[]. The function eCLD_IASACESetZoneParameter() must
be used to set the string and array parameters.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster resides

eParameterId Enumeration identifying the Zone parameter to be set, one of:

E_CLD_IASACE_ZONE_PARAMETER_ZONE_CONFIG_FLAG

E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS_FLAG

E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS

E_CLD_IASACE_ZONE_PARAMETER_AUDIBLE_NOTIFICATION

u8ZoneID Zone ID of zone information to be updated

u16ParameterValue Value to be written to the parameter

Returns

E_ZCL_SUCCESS (Zone parameter successfully set)

E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Zone parameter identifier invalid)

E_ZCL_ERR_NO_REPORT_ENTRIES (Zone ID not found in Zone table)

teZCL_Status eCLD_IASACESetZoneParameterValue(
uint8 u8SourceEndPointId,
teCLD_IASACE_ZoneParameterID eParameterId,
uint8 u8ZoneID,
uint16 u16ParameterValue);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 517

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACEGetZoneParameter

Description

This function can be used on an IAS ACE cluster server to obtain the value of a Zone
parameter. The Zone parameters for a particular Zone ID are held on the server in a
tsCLD_IASACE_ZoneParameter structure (see Section 28.7.3) and this function
can be used to read the value of one parameter in the structure. Before attempting
the read, the function verifies that the specified Zone ID is present in the Zone table
and that the specified parameter identifier is valid.

The function expects the read parameter value to be returned as a uint8 array.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS ACE cluster resides

eParameterId Enumeration identifying the Zone parameter to be read, one
of:

E_CLD_IASACE_ZONE_PARAMETER_ZONE_CONFIG_FLAG

E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS_FLAG

E_CLD_IASACE_ZONE_PARAMETER_ZONE_STATUS

E_CLD_IASACE_ZONE_PARAMETER_AUDIBLE_NOTIFICATION

E_CLD_IASACE_ZONE_PARAMETER_ZONE_LABEL

E_CLD_IASACE_ZONE_PARAMETER_ARM_DISARM_CODE

u8ZoneID Zone ID of zone information to be accessed

pu8ParameterLength Pointer to location to receive the number of uint8 elements in
the array containing the parameter value obtained

pu8ParameterValue Pointer to location to receive the first element of the array
containing the parameter value obtained

Returns

E_ZCL_SUCCESS (Zone parameter successfully read)

E_ZCL_ERR_CLUSTER_NOT_FOUND (cluster instance not found)

E_ZCL_ERR_PARAMETER_NULL (a specified pointer is NULL)

E_ZCL_ERR_NO_REPORT_ENTRIES (Zone ID not found in Zone table)

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND (Zone parameter identifier invalid)

E_ZCL_ERR_PARAMETER_RANGE (returned array too long to be stored)

teZCL_Status eCLD_IASACEGetZoneParameter(
uint8 u8SourceEndPointId,
teCLD_IASACE_ZoneParameterID eParameterId,
uint8 u8ZoneID,
uint8 *pu8ParameterLength,
uint8 *pu8ParameterValue);
518 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACE_ArmSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Arm
command to an IAS ACE server. This command instructs the server to put all or
certain enrolled zones into the ‘armed’ state or put all of them into the ‘disarmed’
state, according to the command payload (see Section 28.7.5).

The outcome of the request will be returned by the server in a response which will
generate an E_CLD_IASACE_CMD_ARM_RESP event when received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 28.7.5)

teZCL_Status eCLD_IASACE_ArmSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASACE_ArmPayload *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 519

Chapter 28
IAS Ancillary Control Equipment Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
520 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACE_BypassSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Bypass
command to an IAS ACE server. This command instructs the server to take one or
more specified zones out of the system for the current activation.

The outcome of the request will be returned by the server in a response which will
generate an E_CLD_IASACE_CMD_BYPASS_RESP event when received on the
client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 28.7.5)

teZCL_Status eCLD_IASACE_BypassSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASACE_BypassPayload *psPayload);

Note: The bypassed zones will be reinstated the next time the
system is disarmed. To exclude them again the next time the
system is armed, the Bypass command must be re-sent
before sending the Arm command.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 521

Chapter 28
IAS Ancillary Control Equipment Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
522 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACE_EmergencySend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE
Emergency command to an IAS ACE server. This command instructs the server to
put the alarm in the ‘Emergency’ state.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_IASACE_EmergencySend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 523

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_FireSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Fire
command to an IAS ACE server. This command instructs the server to put the alarm
in the ‘Fire’ state.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_IASACE_FireSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
524 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASACE_PanicSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Panic
command to an IAS ACE server. This command instructs the server to put the alarm
in the ‘Panic’ state.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

teZCL_Status eCLD_IASACE_PanicSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 525

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_GetZoneIDMapSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get Zone
ID Map command to an IAS ACE server. This command requests the Zone IDs that
have been allocated to zones.

The requested information will be returned by the server in a response which will
generate an E_CLD_IASACE_CMD_GET_ZONE_ID_MAP_RESP event when
received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

teZCL_Status eCLD_IASACE_GetZoneIDMapSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
526 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 527

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_GetZoneInfoSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get Zone
Information command to an IAS ACE server. This command requests information on
the zone specified in the command payload.

The requested information will be returned by the server in a response which will
generate an E_CLD_IASACE_CMD_GET_ZONE_INFO_RESP event when
received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 28.7.5)

teZCL_Status eCLD_IASACE_GetZoneInfoSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASACE_GetZoneInfoPayload *psPayload);
528 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 529

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_GetPanelStatusSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get
Panel Status command to an IAS ACE server. This command requests the current
status of the (display) panel.

The requested information will be returned by the server in a response which will
generate an E_CLD_IASACE_CMD_GET_PANEL_STATUS_RESP event when
received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

teZCL_Status eCLD_IASACE_GetPanelStatusSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
530 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 531

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_SetBypassedZoneListSend

Description

This function can be used on an IAS ACE cluster server to send an IAS ACE Set
Bypassed Zone List command to an IAS ACE client. This command informs the client
which zones are currently bypassed - the zones are specified in the command
payload.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 28.7.5)

teZCL_Status eCLD_IASACE_SetBypassedZoneListSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASACE_SetBypassedZonelistPayload *psPayload);
532 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 533

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_GetBypassedZoneListSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get
Bypassed Zone List command to an IAS ACE server. This command requests a list
of the currently bypassed zones.

The requested information will be returned by the server in a response which will
generate an E_CLD_IASACE_CMD_SET_BYPASSED_ZONE_LIST event when
received on the client.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

teZCL_Status eCLD_IASACE_GetBypassedZoneListSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);
534 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 535

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_GetZoneStatusSend

Description

This function can be used on an IAS ACE cluster client to send an IAS ACE Get Zone
Status command to an IAS ACE server. This command requests either of the
following:

 a list of all enrolled zones with their status

 a list of those zones with a particular status (that is, all zones with the b16ZoneStatus
attribute of the IAS Zone cluster having a certain value)

The list required is specified in the bZoneStatusMaskFlag field of the command
payload (see Section 28.7.5). If the second of the above lists is required, the status
to look for is also specified in the payload.

The requested information will be returned by the server in a response which will
generate an E_CLD_IASACE_CMD_GET_ZONE_STATUS_RESP event when
received on the client. A single response may not be able to carry all the zone status
information to be returned and more than one request (and associated response) will
be needed. For this reason, the request allows a starting zone and the number of
zones to be included in the response to be specified (in the request payload).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

teZCL_Status eCLD_IASACE_GetZoneStatusSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASACE_GetZoneStatusPayload *psPayload);
536 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
psPayload Pointer to a structure containing the payload
for the command (see Section 28.7.5)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 537

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_ZoneStatusChangedSend

Description

This function can be used on an IAS ACE cluster server to send an IAS ACE Zone
Status Changed command to an IAS ACE client. This command informs the client
that the status of the specified zone has changed - that is, the value of the
b16ZoneStatus attribute of the IAS Zone cluster for the zone has changed.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 28.7.5)

teZCL_Status eCLD_IASACE_ZoneStatusChangedSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASACE_ZoneStatusChangedPayload *psPayload);

Note: This command is sent automatically when the function
eCLD_IASACESetZoneParameter() is called on the server
to update the u16ZoneStatus attribute for all the bound
clients.
538 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 539

Chapter 28
IAS Ancillary Control Equipment Cluster

eCLD_IASACE_PanelStatusChanged

Description

This function can be used on an IAS ACE cluster server to send an IAS ACE Panel
Status Changed command to an IAS ACE client. This command informs the client
that the value of the panel parameter ePanelStatus (see Section 28.7.4) on the
(local) CIE device has changed.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

teZCL_Status eCLD_IASACE_PanelStatusChanged(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,

 teCLD_IASACE_ServerCmdId eCommandId,
 tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload
 *psPayload);

Note 1: The IAS ACE Panel Status Changed command is
sent automatically when the function
eCLD_IASACESetPanelParameter() is called to update the
ePanelStatus parameter.

Note 2: The function alternatively provides the option of
sending an IAS ACE Get Panel Status Response but, in
practice, this response is sent automatically when a Get
Panel Status Request is received.
540 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCommandId Identifier of command to be sent - for Panel
Status Changed command, always set to:
E_CLD_IASACE_CMD_PANEL_STATUS_CHANGED

psPayload Pointer to a structure containing the payload
for the command (see Section 28.7.5)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 541

Chapter 28
IAS Ancillary Control Equipment Cluster

28.7 Structures

28.7.1 Custom Data Structure

The IAS ACE cluster requires extra storage space to be allocated to be used by
internal functions. The structure definition for this storage is shown below:

typedef struct

{

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_IASACECallBackMessage sCallBackMessage;

#if (defined CLD_IASACE) && (defined IASACE_SERVER)

 tsCLD_IASACE_PanelParameter
 sCLD_IASACE_PanelParameter;

 tsCLD_IASACE_ZoneParameter
 asCLD_IASACE_ZoneParameter[CLD_IASACE_ZONE_TABLE_SIZE];

 tsCLD_IASACE_ZoneTable
 asCLD_IASACE_ZoneTable[CLD_IASACE_ZONE_TABLE_SIZE];

#endif

} tsCLD_IASACECustomDataStructure;

The fields are for internal use and no knowledge of them is required.

28.7.2 Zone Table Entry

The following structure contains a Zone table entry, used to hold the enrollment details
of a zone.

typedef struct

{

 zuint8 u8ZoneID;

 zbmap16 u16ZoneType;

 zieeeaddress u64IeeeAddress;

} tsCLD_IASACE_ZoneTable;

where:

 u8ZoneID is the identifier of the zone

 u16ZoneType is a value indicating the type of zone (for the possible values,
refer to the description of the attribute e16ZoneType of the IAS Zone cluster in
Section 27.2)

 u64IeeeAddress is the IEEE/MAC address of the device which hosts the
zone
542 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
28.7.3 Zone Parameters

The following structure is used to store the ‘zone parameters’ on the IAS ACE cluster
server.

typedef struct

{

 zbmap8 u8ZoneConfigFlag;

 zbmap8 u8ZoneStatusFlag;

 zbmap16 eZoneStatus;

 zenum8 eAudibleNotification;

 tsZCL_CharacterString sZoneLabel;

 uint8
 au8ZoneLabel[CLD_IASACE_MAX_LENGTH_ZONE_LABEL];

 tsZCL_CharacterString sArmDisarmCode;

 uint8
 au8ArmDisarmCode[CLD_IASACE_MAX_LENGTH_ARM_DISARM_CODE];

}tsCLD_IASACE_ZoneParameter;

where:

 u8ZoneConfigFlag is is a bitmap used to configure the temporal role of a
zone (as Day, Night or Day/Night) and whether the zone is allowed to be
bypassed. Macros are provided as follows:

* Determines whether the zone is allowed to be bypassed: 1 - allowed, 0 - not allowed

** Used to configure a status of ZONE_NOT_BYPASSED in responses to Bypass commands

 u8ZoneStatusFlag is a bitmap used to indicate the current status of a zone
as armed or bypassed. Macros are provided as follows:

 eZoneStatus is the zone status as the value of the b16ZoneStatus attribute
of the IAS Zone cluster (see Section 27.2)

Bit Macro

0 CLD_IASACE_ZONE_CONFIG_FLAG_BYPASS *

1 CLD_IASACE_ZONE_CONFIG_FLAG_DAY_HOME

2 CLD_IASACE_ZONE_CONFIG_FLAG_NIGHT_SLEEP

3 CLD_IASACE_ZONE_CONFIG_FLAG_NOT_BYPASSED **

4-7 Reserved

Bit Macro

0 CLD_IASACE_ZONE_STATUS_FLAG_BYPASS

1 CLD_IASACE_ZONE_STATUS_FLAG_ARM

2-7 Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 543

Chapter 28
IAS Ancillary Control Equipment Cluster

 eAudibleNotification is a value specifying whether an audible notification
(e.g. a chime) is required to signal a zone status change (enumerations are
available in teCLD_IASACE_AudibleNotification - see Section 28.8.4):

 sZoneLabel is the name/label for the zone represented as a character string

 au8ZoneLabel[] is the name/label for the zone represented as an array of
ASCII values

 sArmDisarmCode is the arm/disarm code for the zone represented as a
character string

 au8ArmDisarmCode[] is the arm/disarm code for the zone represented as an
array of ASCII values

Value Status

0x00 Audible notification muted

0x01 Audible notification sounded

0x02 - 0xFF Reserved
544 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
28.7.4 Panel Parameters

The following structure is used to store the ‘panel parameters’ on the IAS ACE cluster
server.

typedef struct

{

 zenum8 ePanelStatus;

 zuint8 u8SecondsRemaining;

 zenum8 eAudibleNotification;

 zenum8 eAlarmStatus;

}tsCLD_IASACE_PanelParameter;

where:

 ePanelStatus is a value indicating the status to be displayed on the panel, as
follows (enumerations are available in teCLD_IASACE_PanelStatus - see
Section 28.8.2):

 u8SecondsRemaining represents the time, in seconds, that the server will
remain in the displayed state when the latter is ‘Exit delay’ or ‘Entry delay’ (for
other states, this field should be set to 0x00).

Value Status

0x00 Disarmed (all zones) and ready to be armed

0x01 Armed stay

0x02 Armed night

0x03 Armed away

0x04 Exit delay

0x05 Entry delay

0x06 Not ready to be armed

0x07 In alarm

0x08 Arming stay

0x09 Arming night

0x0A Arming away

0x0B - 0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 545

Chapter 28
IAS Ancillary Control Equipment Cluster

 eAudibleNotification is a value specifying whether an audible notification
(e.g. a chime) is required to signal a zone status change (enumerations are
available in teCLD_IASACE_AudibleNotification - see Section 28.8.4):

 eAlarmStatus is a value indicating the alarm status/type when the panel’s
state is ‘In Alarm’, as follows (enumerations are available in
teCLD_IASACE_AlarmStatus - see Section 28.8.3):

28.7.5 Custom Command Payloads

The following structures contain the payloads for the IAS ACE cluster custom
commands.

‘Arm’ Command Payload

The following structure contains the payload of a Arm command.

typedef struct

{

 zenum8 eArmMode;

 tsZCL_CharacterString sArmDisarmCode;

 zuint8 u8ZoneID;

} tsCLD_IASACE_ArmPayload;

where:

Value Status

0x00 Audible notification muted

0x01 Audible notification sounded

0x02 - 0xFF Reserved

Value Status

0x00 No alarm

0x01 Burglar

0x02 Fire

0x03 Emergency

0x04 Police panic

0x05 Fire panic

0x06 Emergency panic

0x07 - 0xFF Reserved
546 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 eArmMode is a value indicating the state of armament in which to put the zone
(enumerations are available in teCLD_IASACE_ArmMode - see Section
28.8.1):

 sArmDisarmCode is an 8-character string containing the arm/disarm code (if a
code is not required, set to “00000000”)

 u8ZoneID is the identifier of the zone to arm/disarm

‘Bypass’ Command Payload

The following structure contains the payload of a Bypass command.

typedef struct

{

 zuint8 u8NumOfZones;

 zuint8 *pu8ZoneID;

 tsZCL_CharacterString sArmDisarmCode;

} tsCLD_IASACE_BypassPayload;

where:

 u8NumOfZones is the number of zones to be ‘bypassed’ (taken out of the
system)

 pu8ZoneID is a pointer to a list of identifiers specifying the zones to be
bypassed (the number of zones in the list is specified in u8NumOfZones)

 sArmDisarmCode is an 8-character string containing the arm/disarm code (if a
code is not required, set to “00000000”)

‘Get Zone Information’ Command Payload

The following structure contains the payload of a Get Zone Information command.

typedef struct

{

 zuint8 u8ZoneID;

} tsCLD_IASACE_GetZoneInfoPayload;

where u8ZoneID is the identifier of the zone on which information is required.

Value Status

0x00 Disarm

0x01 Arm day/home zones only

0x02 Arm night/sleep zones only

0x03 Arm all zones

0x04 - 0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 547

Chapter 28
IAS Ancillary Control Equipment Cluster

‘Set Bypassed Zone List’ Command Payload

The following structure contains the payload of a Set Bypassed Zone List command.

typedef struct

{

 zuint8 u8NumofZones;

 zuint8 *pu8ZoneID;

} tsCLD_IASACE_SetBypassedZoneListPayload;

where:

 u8NumofZones is the number of zones in the new bypassed zone list

 pu8ZoneID is a pointer to the new bypassed zone list (the number of zones in
the list is specified in u8NumOfZones)

‘Get Zone Status’ Command Payload

The following structure contains the payload of a Get Zone Status command.

typedef struct

{

 zuint8 u8StartingZoneID;

 zuint8 u8MaxNumOfZoneID;

 zbool bZoneStatusMaskFlag;

 zbmap16 u16ZoneStatusMask;

} tsCLD_IASACE_GetZoneStatusPayload;

where:

 u8StartingZoneID is the identifier of the first zone for which status
information is required

 u8MaxNumOfZoneID is the maximum number of zones for which status
information should be returned

 bZoneStatusMaskFlag is a Boolean indicating whether status information
should be returned for all zones or only for those zones with particular status
values (specified through u16ZoneStatusMask below):

 TRUE - only zones with specific status values

 FALSE - all zones
548 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u16ZoneStatusMask is a 16-bit bitmap indicating the zone status values of
interest (used when bZoneStatusMaskFlag is set to TRUE) - the response
to the request will contain information only for those zones with a status value
indicated in this bitmap:

Bit Description

0 Alarm1:
1 - Opened or alarmed
0 - Closed or not alarned

1 Alarm2:
1 - Opened or alarmed
0 - Closed or not alarned

2 Tamper:
1 - Tampered with
0 - Not tampered with

3 Battery:
1 - Low
0 - OK

4 Supervision reports:
1 - Reports
0 - No reports

5 Restore reports:
1 - Reports
0 - No reports

6 Trouble:
1 - Trouble/failure
0 - OK

7 AC (mains):
1 - Fault
0 - OK

8 Test mode:
1 - Sensor in test mode
0 - Sensor in operational mode

9 Battery defect:
1 - Defective battery detected
0 - Battery OK

10-15 Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 549

Chapter 28
IAS Ancillary Control Equipment Cluster

‘Panel Status Changed or Get Panel Status Response’ Payload

The following structure contains the payload of a Panel Status Changed command or
Get Panel Status Response.

typedef struct

{

 zenum8 ePanelStatus;

 zuint8 u8SecondsRemaining;

 zenum8 eAudibleNotification;

 zenum8 eAlarmStatus;

} tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload;

where:

 ePanelStatus is a value indicating the status to be displayed on the panel, as
follows (enumerations are available in teCLD_IASACE_PanelStatus - see
Section 28.8.2):

 u8SecondsRemaining represents the time, in seconds, that the server will
remain in the displayed state when the latter is ‘Exit delay’ or ‘Entry delay’ (for
other states, this field should be set to 0x00).

Value Status

0x00 Disarmed (all zones) and ready to be armed

0x01 Armed stay

0x02 Armed night

0x03 Armed away

0x04 Exit delay

0x05 Entry delay

0x06 Not ready to be armed

0x07 In alarm

0x08 Arming stay

0x09 Arming night

0x0A Arming away

0x0B - 0xFF Reserved
550 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 eAudibleNotification is a value specifying whether an audible notification
(e.g. a chime) is required to signal a zone status change (enumerations are
available in teCLD_IASACE_AudibleNotification - see Section 28.8.4):

 eAlarmStatus is a value indicating the alarm status/type when the panel’s
state is ‘In Alarm’, as follows (enumerations are available in
teCLD_IASACE_AlarmStatus - see Section 28.8.3):

Value Status

0x00 Audible notification muted

0x01 Audible notification sounded

0x02 - 0xFF Reserved

Value Status

0x00 No alarm

0x01 Burglar

0x02 Fire

0x03 Emergency

0x04 Police panic

0x05 Fire panic

0x06 Emergency panic

0x07 - 0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 551

Chapter 28
IAS Ancillary Control Equipment Cluster

28.7.6 Event Data Structures

The following structures hold the data contained in certain IAS ACE cluster events.

E_CLD_IASACE_CMD_ARM_RESP Data

typedef struct

{

 zenum8 eArmNotification;

} tsCLD_IASACE_ArmRespPayload;

where eArmNotification is an enumeration indicating the outcome of the Arm
command, one of:

E_CLD_IASACE_ARM_NOTIF_ALL_ZONES_DISARMED

E_CLD_IASACE_ARM_NOTIF_ONLY_DAY_HOME_ZONES_ARMED

E_CLD_IASACE_ARM_NOTIF_ONLY_NIGHT_SLEEP_ZONES_ARMED

E_CLD_IASACE_ARM_NOTIF_ALL_ZONES_ARMED

E_CLD_IASACE_ARM_NOTIF_INVALID_ARM_DISARM_CODE

E_CLD_IASACE_ARM_NOTIF_NOT_READY_TO_ARM

E_CLD_IASACE_ARM_NOTIF_ALREADY_DISARMED

E_CLD_IASACE_CMD_GET_ZONE_ID_MAP_RESP Data

typedef struct

{

 zbmap16 au16ZoneIDMap[CLD_IASACE_MAX_BYTES_FOR_NUM_OF_ZONES];

} tsCLD_IASACE_GetZoneIDMapRespPayload;

where au16ZoneIDMap[] is an array, each element being a 16-bit bitmap indicating
whether each of a set of zone identifiers is allocated - a Zone ID is represented by a
single bit which is set to ‘1’ if the identifier value has been allocated and ‘0’ otherwise.

Array Element Bit Zone ID

au16ZoneIDMap[0] 0
1
:

15

0x00
0x01
:
0x0F

au16ZoneIDMap[1] 0
1
:

15

0x10
0x11
:
0x1F

: : :

au16ZoneIDMap[N] 0
1
:
n
:

15

16N
16N + 0x1
:
16N + 0xn
:
16N + 0xF
552 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 E_CLD_IASACE_CMD_GET_ZONE_INFO_RESP Data

typedef struct

{

 zuint8 u8ZoneID;

 zbmap16 u16ZoneType;

 zieeeaddress u64IeeeAddress;

 tsZCL_CharacterString sZoneLabel;

} tsCLD_IASACE_GetZoneInfoRespPayload;

where:

 u8ZoneID is the identifier of the zone

 u16ZoneType is a value indicating the type of zone (for the possible values,
refer to the description of the attribute e16ZoneType of the IAS Zone cluster in
Section 27.2)

 u64IeeeAddress is the IEEE/MAC address of the device which hosts the
zone

 sZoneLabel is a character string representing a name/label for the zone

E_CLD_IASACE_CMD_ZONE_STATUS_CHANGED Data

typedef struct

{

 zuint8 u8ZoneID;

 zenum16 eZoneStatus;

 zenum8 eAudibleNotification;

 tsZCL_CharacterString sZoneLabel;

} tsCLD_IASACE_ZoneStatusChangedPayload;

where:

 u8ZoneID is the identifier of the zone

 u16ZoneType is a value indicating the type of zone (for the possible values,
refer to the description of the attribute e16ZoneType of the IAS Zone cluster in
Section 27.2)

 eAudibleNotification is a value specifying whether an audible notification
(e.g. a chime) to signal the change is required (enumerations are available in
teCLD_IASACE_AudibleNotification - see Section 28.8.4):

 sZoneLabel is a character string representing a name/label for the zone

Value Status

0x00 Audible notification to be muted

0x01 Audible notification to be sounded

0x02 - 0xFF Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 553

Chapter 28
IAS Ancillary Control Equipment Cluster

E_CLD_IASACE_CMD_PANEL_STATUS_CHANGED Data

tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload

For details of this structure, see Section 28.7.5.

E_CLD_IASACE_CMD_GET_PANEL_STATUS_RESP Data

tsCLD_IASACE_PanelStatusChangedOrGetPanelStatusRespPayload

For details of this structure, see Section 28.7.5.

E_CLD_IASACE_CMD_BYPASS_RESP Data

typedef struct

{

 zuint8 u8NumofZones;

 zuint8 *pu8BypassResult;

} tsCLD_IASACE_BypassRespPayload;

where:

 u8NumOfZones is the number of zones ‘bypassed’ (taken out of the system)

 pu8BypassResult is a pointer to a list of identifiers specifying the zones
bypassed (the number of zones in the list is specified in u8NumOfZones)

E_CLD_IASACE_CMD_GET_ZONE_STATUS_RESP Data

typedef struct

{

 zbool bZoneStatusComplete;

 zuint8 u8NumofZones;

 zuint8 *pu8ZoneStatus;

} tsCLD_IASACE_GetZoneStatusRespPayload;

where:

 bZoneStatusComplete is a Boolean indicating whether the current response
completes the set of zones for which status information can be returned (if not,
the client should send another Get Zone Status command to the server):

 TRUE - no more zone status information to be returned

 FALSE - status information for more zones available to be queried

 u8NumofZones is the number of zones for which status information was
returned in this response
554 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 pu8ZoneStatus is a pointer to a list of status values for the reported zones
(the number of values in the list is indicated by u8NumofZones above) - each
is a 24-bit value containing the following information:

28.8 Enumerations

28.8.1 teCLD_IASACE_ArmMode

The following structure contains the enumerations used to indicate a mode of
armament:

typedef enum

{

 E_CLD_IASACE_ARM_MODE_DISARM = 0x00,

 E_CLD_IASACE_ARM_MODE_ARM_DAY_HOME_ZONES_ONLY,

 E_CLD_IASACE_ARM_MODE_ARM_NIGHT_SLEEP_ZONES_ONLY,

 E_CLD_IASACE_ARM_MODE_ARM_ALL_ZONES,

} teCLD_IASACE_ArmMode;

28.8.2 teCLD_IASACE_PanelStatus

The following structure contains the enumerations used to indicate the status of the
panel:

typedef enum

{

 E_CLD_IASACE_PANEL_STATUS_PANEL_DISARMED = 0x00,

 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMED_DAY,

 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMED_NIGHT,

 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMED_AWAY,

 E_CLD_IASACE_PANEL_STATUS_PANEL_EXIT_DELAY,

 E_CLD_IASACE_PANEL_STATUS_PANEL_ENTRY_DELAY,

 E_CLD_IASACE_PANEL_STATUS_PANEL_NOT_READY_TO_ARM,

 E_CLD_IASACE_PANEL_STATUS_PANEL_IN_ALARM,

 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMING_STAY,

 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMING_NIGHT,

 E_CLD_IASACE_PANEL_STATUS_PANEL_ARMING_AWAY

} teCLD_IASACE_PanelStatus;

Bits Description

0-7 Zone ID

8-23 Value of b16ZoneStatus attribute of
the IAS Zone cluster for the zone
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 555

Chapter 28
IAS Ancillary Control Equipment Cluster

28.8.3 teCLD_IASACE_AlarmStatus

The following structure contains the enumerations used to indicate the status/meaning
of the alarm:

typedef enum

{

 E_CLD_IASACE_ALARM_STATUS_NO_ALARM = 0x00,

 E_CLD_IASACE_ALARM_STATUS_BURGLAR,

 E_CLD_IASACE_ALARM_STATUS_FIRE,

 E_CLD_IASACE_ALARM_STATUS_EMERGENCY,

 E_CLD_IASACE_ALARM_STATUS_POLICE_PANIC,

 E_CLD_IASACE_ALARM_STATUS_FIRE_PANIC,

 E_CLD_IASACE_ALARM_STATUS_EMERGENCY_PANIC

} teCLD_IASACE_AlarmStatus;

28.8.4 teCLD_IASACE_AudibleNotification

The following structure contains the enumerations used to indicate the configuration
of the audible indication:

typedef enum

{

 E_CLD_IASACE_AUDIBLE_NOTIF_MUTE = 0x00,

 E_CLD_IASACE_AUDIBLE_NOTIF_DEFAULT_SOUND

} teCLD_IASACE_AudibleNotification;
556 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
28.9 Compile-Time Options

To enable the IAS ACE cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_IASACE

In addition, to include the software for a cluster client or server or both, it is necessary
to add one of the following to the same file:

#define IASACE_SERVER

#define IASACE_CLIENT

The IAS ACE cluster contains macros that may be specified at compile-time by adding
one or more of the following lines to the zcl_options.h file.

Maximum Size of Zone Table

The maximum number of entries in a Zone table on the cluster server can be defined
using the following line:

#define CLD_IASACE_ZONE_TABLE_SIZE n

where n is the desired maximum (e.g. 8).

Maximum Length of Arm/Disarm Code

The maximum length of string allowed for the arm/disarm code can be defined using
the following line:

#define CLD_IASACE_MAX_LENGTH_ARM_DISARM_CODE n

where n is the desired maximum.

Maximum Length of Zone Label

The maximum length of string allowed for a zone name/label can be defined using the
following line:

#define CLD_IASACE_MAX_LENGTH_ZONE_LABEL n

where n is the desired maximum.

Disable APS Acknowledgements for Bound Transmissions

APS acknowledgements for bound transmissions from this cluster can be disabled
using the following line:

#define CLD_IASACE_BOUND_TX_WITH_APS_ACK_DISABLED
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 557

Chapter 28
IAS Ancillary Control Equipment Cluster

558 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
29. IAS Warning Device Cluster

This chapter describes the IAS Warning Device (WD) cluster which is defined in the
ZCL and provides an interface to a Warning Device in an IAS (Intruder Alarm System).

The IAS WD cluster has a Cluster ID of 0x0502.

29.1 Overview

The IAS WD cluster provides an interface to an IAS Warning Device, allowing warning
indications triggered by alarm conditions to be sent to it. The server side of the cluster
is implemented on the IAS Warning Device and the client side is implemented on the
triggering device. The IAS Warning Device is included in the Home Automation profile
and detailed in the ZigBee Home Automation User Guide (JN-UG-3076).

To use the functionality of this cluster, you must include the file IASWD.h in your
application and enable the cluster by defining CLD_IASWD in the zcl_options.h file.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the IAS WD cluster are fully detailed in Section 29.7.

29.2 IAS WD Structure and Attribute

The structure definition for the IAS WD cluster is:

typedef struct

{

 zuint16 u16MaxDuration;

} tsCLD_IASWD;

where u16MaxDuration is the maximum duration, in seconds, for which the alarm
can be continuously active (e.g. a siren sounded). The range of possible values is 0
to 65534 seconds and the default value is 240 seconds.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 559

Chapter 29
IAS Warning Device Cluster

29.3 Issuing Warnings

The IAS WD cluster allows a device which detects warning conditions (e.g. fire) to
trigger a warning on an IAS Warning Device which, in turn, initiates a physical alarm
such as a siren and/or strobe. The IAS Warning Device hosts the cluster server and
the triggering device hosts the cluster client.

Two types of warning can be initiated:

 Warning mode: This mode indicates a genuine emergency, such as a fire or
an intruder. On detection of the emergency condition, the application on the
triggering device must call the eCLD_IASWDStartWarningReqSend()
function, which sends a Start Warning command to the Warning Device. The
payload of this command contains the time-duration for which the Warning
Device must remain in warning mode. The specified duration must not exceed
the maximum duration defined in the u16MaxDuration attribute on the
Warning Device (see Section 29.2). The payload also contains details of the
warning and the strobe requirements, if any. On receiving this command, an
E_CLD_IASWD_CMD_WD_START_WARNING event is generated on the
Warning Device (see Section 29.4) for the attention of the application.

 Squawk mode: This mode indicates a change of state of the IAS system - that
is, armed or disarmed. Thus, this is typically a short audible beep or ‘squawk’
that is emitted when the system is armed or disarmed. To initiate a squawk, the
application on the triggering device must call the function
eCLD_IASWDSquawkReqSend(), which sends a Squawk command to the
Warning Device. The payload also contains details of the squawk and the
strobe requirements, if any. On receiving this command, an
E_CLD_IASWD_CMD_WD_SQUAWK event is generated on the Warning
Device (see Section 29.4) for the attention of the application.

The payloads of the commands are detailed in Section 29.6.2.

Note 1: In order to maintain timing information on the
cluster server, the application on the Warning Device
must periodically call the eCLD_IASWDUpdate()
function every 100 ms. These calls can be prompted
using a JenOS software timer.

Note 2: The u16MaxDuration attribute on the
Warning Device can be updated by the application on
this device by calling the function
eCLD_IASWDUpdateMaxDuration().
560 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
29.4 IAS WD Events

The IAS WD cluster has its own events that are handled through the callback
mechanism outlined in Chapter 3. If a device uses the IAS WD cluster then IAS WD
event handling must be included in the callback function for the associated endpoint,
where this callback function is registered through the relevant endpoint registration
function (for example, through eHA_RegisterWarningDeviceEndPoint() for a
Warning Device). The relevant callback function will then be invoked when an IAS WD
event occurs.

For an IAS WD event, the eEventType field of the tsZCL_CallBackEvent
structure is set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also
contains an element sClusterCustomMessage, which is itself a structure
containing a field pvCustomData. This field is a pointer to the following
tsCLD_IASWDCallBackMessage structure:

typedef struct

{

 uint8 u8CommandId;

 union

 {

 tsCLD_IASWD_StartWarningReqPayload *psWDStartWarningReqPayload;

 tsCLD_IASWD_SquawkReqPayload *psWDSquawkReqPayload;

 tsCLD_IASWD_StrobeUpdate *psStrobeUpdate; /* Internal */

 tsCLD_IASWD_WarningUpdate *psWarningUpdate; /* Internal */

 } uMessage;

} tsCLD_IASWDCallBackMessage;

When an IAS WD event occurs, one of several command types could have been
received. The relevant command type is specified through the u8CommandId field of
the tsSM_CallBackMessage structure. The possible command/event types are
detailed in the table below (not that psStrobeUpdate and psWarningUpdate are
for internal use only).

u8CommandId Enumeration Description

E_CLD_IASWD_CMD_WD_START_WARNING A Start Warning command has been received by the cluster
server - this command requests that the alarm is activated for
a specified time. The command payload is contained in the
event in the tsCLD_IASWD_StartWarningReqPayload
structure, described in Section 29.6.2.

E_CLD_IASWD_CMD_WD_SQUAWK A Squawk command has been received by the cluster server
- this command requests that the alarm is briefly activated to
emit a ‘squawk’ to indicate a status change, such as system
disarmed. The command payload is contained in the event in
the tsCLD_IASWD_SquawkReqPayload structure,
described in Section 29.6.2.

Table 30: IAS WD Command Types
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 561

Chapter 29
IAS Warning Device Cluster

29.5 Functions

The following IAS WD cluster functions are provided in the NXP implementation of the
ZCL:

Function Page

eCLD_IASWDCreateIASWD 563

eCLD_IASWDUpdate 565

eCLD_IASWDUpdateMaxDuration 566

eCLD_IASWDStartWarningReqSend 567

eCLD_IASWDSquawkReqSend 569
562 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASWDCreateIASWD

Description

This function creates an instance of the IAS WD cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an IAS WD cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the IAS WD cluster. This
parameter can refer to a pre-filled structure called
sCLD_IASWD which is provided in the
IASWarningDevice.h file.

teZCL_Status eCLD_IASWDCreateIASWD(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_IASWDCustomDataStructure

 *psCustomDataStructure);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 563

Chapter 29
IAS Warning Device Cluster

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_IASWD which defines the
attributes of IAS WD cluster. The function will initialise
the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster.

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 29.6.1)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
564 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASWDUpdate

Description

This function can be used on an IAS WD cluster server to update the timing
requirements of the Warning Device. The function must be called by the application
at a rate of once every 100 ms.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS WD cluster resides

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_IASWDUpdate(
uint8 u8SourceEndPoint);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 565

Chapter 29
IAS Warning Device Cluster

eCLD_IASWDUpdateMaxDuration

Description

This function can be used on an IAS WD cluster server to set the value of the
u16MaxDuration attribute which represents the maximum duration, in seconds, for
which the alarm can be continuously active.

The set value will be the maximum duration, in seconds, for which the alarm can be
active following a received Start Warning request.

Parameters

u8SourceEndPointId Number of the endpoint on which the IAS WD cluster resides

u16MaxDuration Value to which attribute will be set, in the range 0 to 65534

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eCLD_IASWDUpdateMaxDuration(
uint8 u8SourceEndPointId,
uint16 u16MaxDuration);
566 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASWDStartWarningReqSend

Description

This function can be used on IAS WD cluster client to send a Start Warning command
to the IAS WD server on a Warning Device.

The receiving IAS WD server will activate the alarm on the Warning Device for a
specified duration.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 29.6.2)

teZCL_Status eCLD_IASWDStartWarningReqSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASWD_StartWarningReqPayload *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 567

Chapter 29
IAS Warning Device Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().
568 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_IASWDSquawkReqSend

Description

This function can be used on IAS WD cluster client to send a Squawk command to
the IAS WD server on a Warning Device.

The receiving IAS WD server will briefly activate the alarm on the Warning Device to
emit a ‘squawk’ - depending on the device, this could be a visible and/or audible
emission. The parameters of the squawk are specified in the command payload.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint through which to
send the request. This parameter is used both
to send the command and to identify the
instance of the shared structure holding the
required attribute values

u8DestinationEndPointId Number of the endpoint on the remote node to
which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of
the node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the
Transaction Sequence Number (TSN) of the
request

psPayload Pointer to a structure containing the payload
for the command (see Section 29.6.2)

teZCL_Status eCLD_IASWDSquawkReqSend(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_IASWD_SquawkReqPayload *psPayload);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 569

Chapter 29
IAS Warning Device Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this function to
transmit the data, this error may be obtained by calling eZCL_GetLastZpsError().
570 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
29.6 Structures

29.6.1 Custom Data Structure

The IAS WD cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct

{

 tsCLD_IASWD_SquawkReqPayload sSquawk;

 tsCLD_IASWD_StartWarningReqPayload sWarning;

 uint32 u32WarningDurationRemainingIn100MS;

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sCustomCallBackEvent;

 tsCLD_IASWDCallBackMessage sCallBackMessage;

} tsCLD_IASWD_CustomDataStructure;

The fields are for internal use and no knowledge of them is required.

29.6.2 Custom Command Payloads

The following structures contain the payloads for the IAS WD cluster custom
commands.

‘Start Warning’ Payload

The following structure contains the payload of a Start Warning command.

typedef struct

{

 uint8 u8WarningModeStrobeAndSirenLevel;

 uint16 u16WarningDuration;

 uint8 uStrobeDutyCycle;

 enum8 eStrobeLevel;

}tsCLD_IASWD_StartWarningReqPayload;

where:
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 571

Chapter 29
IAS Warning Device Cluster

 u8WarningModeStrobeAndSirenLevel is an 8-bit bitmap containing the
requirements for the warning alarm, as follows:

 * If ‘Strobe’ is 1 and ‘Warning Mode’ is 0, only the strobe will be activated

 u16WarningDuration is the requested time-duration of the warning, in
seconds, which must be less than or equal to the value of the
u16MaxDuration attribute

 uStrobeDutyCycle is the duty-cycle of the strobe pulse, expressed as a
percentage in 10% steps (e.g. 0x1E represents 30%) - invalid values will be
rounded to the nearerst multiple of 10%

 eStrobeLevel is the level of the strobe (pulse)

Bits Description

0-3 Warning Mode - indicates the meaning of the requested warning:
0 - Stop (no warning)
1 - Burglar
2 - Fire
3 - Emergency
4 - Police panic
5 - Fire panic
6 - Emergency (medical) panic
All other values are reserved

4-5 Strobe* - indicates whether a visual strobe indication of the warning is required:
0 - No strobe
1 - Use strobe
Other values are reserved

6-7 Siren Level - indicates the requested level of an audible siren (if enabled):
0 - Low level
1 - Medium level
2 - High level
3 - Very high level
572 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
‘Squawk’ Payload

The following structure contains the payload of a Squawk command.

typedef struct

{

 uint8 u8SquawkModeStrobeAndLevel;

}tsCLD_IASWD_SquawkReqPayload;

where u8SquawkModeStrobeAndLevel is an 8-bit bitmap containing the
requirements for the ‘squawk’, as follows.

29.6.3 Event Data Structures

The following structures hold the data contained in certain IAS WD cluster events.

E_CLD_IASWD_CLUSTER_UPDATE_STROBE Data

typedef struct

{

 bool_t bStrobe;

 uint8 u8StrobeDutyCycle;

 zenum8 eStrobeLevel;

}tsCLD_IASWD_StrobeUpdate;

where:

Bits Description

0-3 Squawk Mode - indicates the meaning of the required ‘squawk’:
0 - System is armed
1 - System is disarmed
All other values are reserved

4 Strobe - indicates whether a visual strobe indication of the ‘squawk’ is required:
0 - No strobe
1 - Use strobe

5 Reserved

6-7 Squawk Level - indicates the requested level of the audible squawk sound:
0 - Low level
1 - Medium level
2 - High level
3 - Very high level
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 573

Chapter 29
IAS Warning Device Cluster

 bStrobe is the current (new) status of the strobe:

 TRUE - Strobe ‘on’

 FALSE - Strobe ‘off’

 uStrobeDutyCycle is the duty-cycle of the strobe pulse, expressed as a
percentage in 10% steps (e.g. 0x1E represents 30%) - invalid values will be
rounded to the nearerst multiple of 10%

 eStrobeLevel is the level (brightness) of the strobe pulse:

 0 - Low level

 1 - Medium level

 2 - High level

 3 - Very high level

All other values are reserved

E_CLD_IASWD_CLUSTER_UPDATE_WARNING Data

typedef struct

{

 uint8 u8WarningMode;

 uint16 u16WarningDurationRemaining;

 zenum8 eStrobeLevel;

}tsCLD_IASWD_WarningUpdate;

where:

 u8WarningMode is a value indicating the current warning mode:

 0 - No warning

 1 - Burglar

 2 - Fire

 3 - Emergency

 4 - Police panic

 5 - Fire panic

 6 - Emergency (medical) panic

All other values are reserved

 u16WarningDurationRemaining is the time, in seconds, that the device will
remain in warning mode

 eStrobeLevel is the level of the strobe (pulse)
574 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
29.7 Compile-Time Options

To enable the IAS WD cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_IASWD

In addition, to include the software for a cluster client or server or both, it is necessary
to add one of the following to the same file:

#define IASWD_SERVER

#define IASWD_CLIENT
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 575

Chapter 29
IAS Warning Device Cluster

576 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30. OTA Upgrade Cluster

This chapter describes the Over-The-Air (OTA) Upgrade cluster. This cluster is not
officially a part of the ZCL but is described in this manual as it can be included in any
ZigBee application profile.

The OTA Upgrade cluster has a Cluster ID of 0x0019.

30.1 Overview

The Over-The-Air (OTA) Upgrade cluster provides the facility to upgrade (or
downgrade or re-install) application software on the nodes of a ZigBee PRO network
by:

1. distributing the replacement software through the network (over the air) from a
designated node

2. updating the software in a node with minimal interruption to the operation of
the node

The OTA Upgrade cluster acts as a server on the node that distributes the software
and as a client on the nodes that receive software updates from the server. The cluster
server receives the software from outside the network.

An application that uses the OTA Upgrade cluster must include the header files
zcl_options.h and OTA.h.

The OTA Upgrade cluster is enabled by defining CLD_OTA in the zcl_options.h file.
Further compile-time options for the OTA Upgrade cluster are detailed in Section
30.12.

When including the OTA Upgrade facility in your application, you should increase the
CPU stack size from the default value (as described in Section 30.4).

Note 1: The JN516x device has internal Flash memory
but also requires an external Flash memory device in
order to participate in OTA upgrades.

Note 2: For ZigBee Smart Energy, refer to the
description of the OTA Upgrade cluster in the relevant
ZigBee Smart Energy User Guide (JN-UG-3059 for
SE 1.2.1 or JN-UG-3100 for SE 1.2.2) rather than to this
chapter.

Note 3: This chapter largely assumes that the ZigBee
PRO network consists of nodes which contain only one
processor - a JN516x microcontroller. However, the OTA
Upgrade cluster can also be used with dual-processor
nodes (containing a JN516x device and another
processor), as described in Appendix E.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 577

Chapter 30
OTA Upgrade Cluster

30.2 OTA Upgrade Cluster Structure and Attributes

The attributes of the OTA Upgrade cluster are contained in the following structure,
which is located only on cluster clients:

const tsZCL_AttributeDefinition asOTAClusterAttributeDefinitions[] = {

/* ZigBee Cluster Library Version */

{E_CLD_OTA_ATTR_UPGRADE_SERVER_ID, E_ZCL_AF_RD | E_ZCL_AF_CA,
E_ZCL_IEEE_ADDR, (uint16)(&((tsCLD_AS_Ota*)(0))->u64UgradeServerID), 0},
/* Mandatory */

#ifdef OTA_CLD_ATTR_FILE_OFFSET

{E_CLD_OTA_ATTR_FILE_OFFSET, E_ZCL_AF_RD | E_ZCL_AF_CA, E_ZCL_UINT32,
(uint16)(&((tsCLD_AS_Ota*)(0))->u32FileOffset), 0}, /* Optional */

#endif

#ifdef OTA_CLD_ATTR_CURRENT_FILE_VERSION

{E_CLD_OTA_ATTR_CURRENT_FILE_VERSION, E_ZCL_AF_RD | E_ZCL_AF_CA,
E_ZCL_UINT32, (uint16)(&((tsCLD_AS_Ota*)(0))->u32CurrentFileVersion), 0},
/* Optional */

#endif

#ifdef OTA_CLD_ATTR_CURRENT_ZIGBEE_STACK_VERSION

{E_CLD_OTA_ATTR_CURRENT_ZIGBEE_STACK_VERSION, E_ZCL_AF_RD | E_ZCL_AF_CA,
E_ZCL_UINT16, (uint16)(&((tsCLD_AS_Ota*)(0))->u16CurrentStackVersion),
0}, /* Optional */

#endif

#ifdef OTA_CLD_ATTR_DOWNLOADED_FILE_VERSION

{E_CLD_OTA_ATTR_DOWNLOADED_FILE_VERSION, E_ZCL_AF_RD | E_ZCL_AF_CA,
E_ZCL_UINT32, (uint16)(&((tsCLD_AS_Ota*)(0))->u32DownloadedFileVersion),
0}, /* Optional */

#endif

#ifdef OTA_CLD_ATTR_DOWNLOADED_ZIGBEE_STACK_VERSION

{E_CLD_OTA_ATTR_DOWNLOADED_ZIGBEE_STACK_VERSION, E_ZCL_AF_RD |
E_ZCL_AF_CA, E_ZCL_UINT16, (uint16)(&((tsCLD_AS_Ota*)(0))-
>u16DownloadedStackVersion), 0}, /* Optional */

#endif

{E_CLD_OTA_ATTR_IMAGE_UPGRADE_STATUS, E_ZCL_AF_RD | E_ZCL_AF_CA,
E_ZCL_ENUM8, (uint16)(&((tsCLD_AS_Ota*)(0))->u8ImageUpgradeStatus), 0},
/* Mandatory */
578 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
#ifdef OTA_CLD_ATTR_MANF_ID

{E_CLD_OTA_ATTR_MANF_ID, E_ZCL_AF_RD | E_ZCL_AF_CA, E_ZCL_UINT16,
(uint16)(&((tsCLD_AS_Ota*)(0))->u16ManfId), 0}, /* Optional */

#endif

#ifdef OTA_CLD_ATTR_IMAGE_TYPE

{E_CLD_OTA_ATTR_IMAGE_TYPE, E_ZCL_AF_RD | E_ZCL_AF_CA, E_ZCL_UINT16,
(uint16)(&((tsCLD_AS_Ota*)(0))->u16ImageType), 0}, /* Optional */

#endif

#ifdef OTA_CLD_ATTR_REQUEST_DELAY

{E_CLD_OTA_ATTR_REQUEST_DELAY, E_ZCL_AF_RD | E_ZCL_AF_CA, E_ZCL_UINT16,
(uint16)(&((tsCLD_AS_Ota*)(0))->u16MinBlockRequestDelay), 0},
/* Optional */

#endif

#ifdef OTA_CLD_ATTR_IMAGE_STAMP

{E_CLD_OTA_ATTR_IMAGE_STAMP, E_ZCL_AF_RD | E_ZCL_AF_CA, E_ZCL_UINT32,
(uint32)(&((tsCLD_AS_Ota*)(0))->u32ImageStamp), 0},

/* Optional */

#endif

};

where:

 u64UgradeServerID contains the 64-bit IEEE/MAC address of the OTA
Upgrade server for the client. This address can be fixed during manufacture or
discovered during network formation/operation. If not pre-set, the default value
is 0xFFFFFFFFFFFFFFFF. This attribute is mandatory.

 u32FileOffset contains the start address in local (external) Flash memory of
the upgrade image (that may be currently in transfer from server to client). This
attribute is optional.

 u32CurrentFileVersion contains the file version of the firmware currently
running on the client. This attribute is optional.

 u16CurrentStackVersion contains the version of the ZigBee stack
currently running on the client. This attribute is optional.

 u32DownloadedFileVersion contains the file version of the downloaded
upgrade image on the client. This attribute is optional.

 u16DownloadedStackVersion contains the version of the ZigBee stack for
which the downloaded upgrade image was built. This attribute is optional.

 u8ImageUpgradeStatus contains the status of the client device in relation to
image downloads and upgrades. This attribute is mandatory and the possible
values are shown in the table below.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 579

Chapter 30
OTA Upgrade Cluster

 u16ManfId contains the device’s manufacturer code, assigned by the ZigBee
Alliance. This attribute is optional.

 u16ImageType contains an image type identifier for the upgrade image that is
currently being downloaded to the client or waiting on the client for the upgrade
process to begin. When neither of these cases apply, the attribute is set to
0xFFFF. This attribute is optional.

 u16MinBlockRequestDelay is the minimum time, in milliseconds, that the
local client must wait between submitting consecutive block requests to the
server during an image download. It is used by the ‘rate limiting’ feature to
control the average download rate to the client. The attribute can take values in
the range 0 to OTA_BLOCK_REQUEST_DELAY_MAX_VALUE ms, where this
upper limit can be defined in the zcl_options.h file (see Section 30.12) - if
undefined, its default value is 5000 ms. The attribute value 0x0000 (default)
indicates that the download can be performed at the full rate with no minimum
delay between block requests. This attribute is optional.

 u32ImageStamp contains the Image Stamp identifier for the firmware. This
attribute can be initialised with a user-defined value in a call to the function
eOTA_UpdateClientAttributes(). The value is subsequently updated with the
Cyclic Redundancy Check (CRC) values of received upgrade images, unless
CRC values are disabled (see Section 30.12). This attribute is optional.

Thus, the OTA Upgrade cluster structure contains only two mandatory elements,
u64UgradeServerID and u8ImageUpgradeStatus. The remaining elements are
optional, each being enabled/disabled through a corresponding macro defined in the
zcl_options.h file (see Section 30.12).

u8ImageUpgradeStatus Status Notes

0x00 Normal Has not participated in a download/
upgrade or the previous download/
upgrade was unsuccessful

0x01 Download in progress Client is requesting and successfully
receiving blocks of image data from
server

0x02 Download complete All image data received and image
saved to memory

0x03 Waiting to upgrade Waiting for instruction from server to
upgrade from the saved image

0x04 Count down Client has been instructed by server
to count down to start of upgrade

0x05 Wait for more Client is waiting for further upgrade
image(s) from server - relevant to
multi-processor devices, where each
processor requires a different image

0x06 - 0xFF Reserved -
580 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.3 Basic Principles

Over-the-Air (OTA) Upgrade allows the application software on a ZigBee node to be
upgraded with minimal disruption to node operation and without physical intervention
by the user/installer (e.g. no need for a cabled connection to the node). Using this
technique, the replacement software is distributed to nodes through the wireless
network, allowing application upgrades to be performed remotely.

The software upgrade is performed from a node which acts as an OTA Upgrade
cluster server, which is able to obtain the upgrade software from an external source.
The nodes that receive the upgrade software act as OTA Upgrade cluster clients. The
server node and client node(s) may be from different manufacturers.

The download of an application image from the server to the network is done on a per
client basis and follows normal network routes (including routing via Routers). This is
illustrated in the figure below.

The upgrade application is downloaded into an external Flash memory device which
is attached to the JN516x device on the client node. The application is then loaded into
JN516x internal Flash memory and executed. Note that the final sector of external
Flash memory should normally be reserved for persistent data storage - for example,
in an 8-sector device, Sector 7 is used for persistent data storage, leaving Sectors
0-6 available to store application software.

The requirements of the devices which act as the OTA Upgrade cluster server and
clients are detailed in the sub-sections below.

Figure 5: OTA Download Example

Server

Client

Client

Router

End Device End Device

e.g. Co-ordinator

Client

Client End Device

Download to client is unicast via
normal network routes, e.g. via
Router to End Device client

Connected to external
software provider
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 581

Chapter 30
OTA Upgrade Cluster

30.3.1 OTA Upgrade Cluster Server

The OTA Upgrade cluster server is a network node that distributes application
upgrades to other nodes of the network (as well as performing its own functions). The
server must therefore be connected to the provider of the upgrade software. The
server would also usually be the Co-ordinator of the ZigBee network.

The server may need to store different upgrade images for different nodes (possibly
from different manufacturers) and must have ample Flash memory space for this
purpose. Therefore, the server must keep a record of the software required by each
client in the network and the software version number that the client is currently on.
When a new version of an application image becomes available, the server may notify
the relevant client(s) or respond to poll requests for software upgrades from the clients
(see Section 30.3.2 below).

30.3.2 OTA Upgrade Cluster Client

An OTA Upgrade cluster client is a node which receives software upgrades from the
server and can be any type of node in a ZigBee network. However, an End Device
client which sleeps will not always be available to receive notifications of software
upgrades from the server and must therefore periodically poll the server for upgrades.
In fact, all types of client can poll the server, if preferred.

During a software download from server to client, the upgrade image is transferred
over the air in a series of data blocks. It is the responsibility of the client (and not the
server) to keep track of the blocks received and then to validate the final image. The
upgrade image is initially saved to the relevant sectors of Flash memory on the client.
There must be enough Flash memory space on the client to store the upgrade image
and the image of the currently running software.
582 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.4 Application Requirements

In order to implement OTA upgrades, the application images for the server and clients
must be designed and built according to certain requirements.

These requirements include the following:

 Inclusion of the header files zcl_options.h and OTA.h

 Inclusion of the relevant #defines in the file zcl_options.h, as described in
Section 30.12

 Specific application initialisation requirements, as outlined in Section 30.5

 Use of the JenOS Persistent Data Manager (PDM) to preserve context data, as
outlined in Section 30.7.5

 Use of a JenOS mutex to protect accesses to Flash memory via the SPI bus,
as outlined in Section 30.7.6

 Organisation of Flash memory, as outlined in Section 30.7.7

 It is necessary to remove references to the Certicom security certificate, as
indicated in Section 30.12

In addition, you should increase the CPU stack size from the default value. With OTA
Upgrade, the recommended stack size is 6000 bytes. This can be done by including
the following line in your application makefile:

__stack_size = 6000;

Note: Some of above requirements differ between the
server image, the first client image and client upgrade
images. These differences are pointed out, where
relevant, in Section 30.5 and Section 30.7.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 583

Chapter 30
OTA Upgrade Cluster

30.5 Initialisation

Initialisation of the various software components used with the OTA Upgrade cluster
(see Section 30.4) must be performed in a particular order in the application code. The
initialisation could be incorporated in a function APP_vInitialise(), as is the case in the
NXP ZigBee PRO Application Template (JN-AN-1123).

Initialisation must be performed in the following order:

1. The JenOS RTOS must first be started using the function OS_vStart().

2. The PDM module must next be initialised using the function PDM_vInit().

3. The persistent data record(s) should then be initialised using the function
PDM_eLoadRecord().

4. The ZigBee PRO stack must now be started by first calling the function
ZPS_vSetOverrideLocalMacAddress() to over-ride the existing MAC
address, followed by ZPS_eAplAfInit() to initialise the Application Framework
and then ZPS_eAplZdoStartStack() to start the stack.

5. The initialisation function for the relevant ZigBee application profile can now
be called. An OTA Upgrade cluster instance should then be created using
eOTA_Create(), followed by a call to eOTA_UpdateClientAttributes() or
eOTA_RestoreClientData() on a client to initialise the cluster attributes.

6. The Flash programming of the OTA Upgrade cluster must now be initialised
using the function vOTA_FlashInit(). If an unsupported/custom Flash memory
device is used, callback functions must be provided to perform read, write,
erase and initialisation operations, otherwise standard NXP callback functions
are used - see function description on page 608.

7. The required device endpoint(s) from the relevant application profile can now
be registered (e.g. a Simple Sensor device from the HA profile).

8. The function eOTA_AllocateEndpointOTASpace() must be called to allocate
Flash memory space to an endpoint. The information provided to this function
includes the numbers of the start sectors for storage of application images and
the maximum number of sectors per image.

9. On the server, a set of client devices can be defined for which OTA upgrades
are authorised - that is, a list of clients that are allowed to use the server for
OTA upgrades. This client list is set up using the function
eOTA_SetServerAuthorisation().

10. For a client, a server must be found (provided this is a first-time start or a
reboot with no persisted data, and so there is no record of a previous server
address). This can be done by sending out a Match Descriptor Request using
the function ZPS_eAplZdpMatchDescRequest(), described in the ZigBee
PRO Stack User Guide (JN-UG-3101 or JN-UG-3048). Once a server has
been found, its address must be registered with the OTA Upgrade cluster
using the function eOTA_SetServerAddress().

The coding that is then required to implement OTA upgrade in the server and client
applications is outlined in Section 30.6.
584 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.6 Implementing OTA Upgrade Mechanism

The OTA upgrade mechanism is implemented in code as described below.

1. On the server, when a new client image is available for download, the function
eOTA_NewImageLoaded() should be called to request the OTA Upgrade
cluster to validate the image.

Then, optionally, the function eOTA_SetServerParams() can be called to set
the server parameter values for the new image. Otherwise, the default
parameter values will be used.

2. The server must then notify the relevant client(s) of the availability of the new
image. The notification method depends on the ZigBee node type of the client:

 Co-ordinator or Router client: The server can notify the Co-ordinator or
a Router client directly by sending an Image Notify message to the client
through a call to the function eOTA_ServerImageNotify(). This message
can be unicast, multicast or broadcast. On arrival at a client, this message
will trigger an Image Notify event. If the new software is required, the client
can request the upgrade image by sending a Query Next Image Request
to the server through a call to eOTA_ClientQueryNextImageRequest().

 All clients: The server cannot notify an End Device client directly, since
the End Device may be asleep when a notification message is sent.
Therefore, an End Device client must poll the server periodically (during
wake periods) in order to establish whether new software is available. In
fact, any client can implement polling of the server. The client does this by
sending a Query Next Image Request to the server through a call to the
function eOTA_ClientQueryNextImageRequest().

On arrival at the server, the Query Next Image Request message triggers a
Query Next Image Request event.

Note: The stack automatically handles part of an OTA
upgrade and calls some of the OTA functions. However,
if preferred, the application can handle all aspects of an
OTA upgrade and filter all OTA data indications. In this
case, the application must call all the relevant OTA
functions (these are indicated below).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 585

Chapter 30
OTA Upgrade Cluster

3. The server automatically replies to the request with a Query Next Image
Response (the application can also send this response by calling the function
eOTA_ServerQueryNextImageResponse()). The contents of this response
message depend on whether the client is using notifications or polling:

 Co-ordinator or Router client (notifications): The response contains
details of the upgrade image, such as manufacturer, image type, image
size and file version.

 All clients (polling): If upgrade software is available, the response reports
success and the message contains details of the upgrade image, as
indicated above. If no upgrade software is available, the response simply
reports failure (the client must then poll again later).

On arrival at the client, the Query Next Image Response message triggers a
Query Next Image Response event.

4. The OTA Upgrade cluster on the client now automatically requests the
upgrade image one block at a time by sending an Image Block Request to the
server (this request can also be sent by the application through a call to the
function eOTA_ClientImageBlockRequest()). The maximum size of a block
and the time interval between requests can both be configured in the header
file zcl_options.h - see Section 30.7.3 for guidance on block size and see
Section 30.12 for the compile-time options.

On arrival at the server, the Image Block Request message triggers an Image
Block Request event.

5. The server automatically responds to each block request with an Image Block
Response containing a block of data (the application can also send this
response by calling the function eOTA_ServerImageBlockResponse()).

On arrival at the client, the Image Block Response message triggers an Image
Block Response event.

6. The client determines when the entire image has been received (by referring
to the image size that was quoted in the Query Next Image Response before
the download started). Once the final block of image data has been received,
the client application should transmit an Upgrade End Request to the server
(i.e. by calling eOTA_HandleImageVerification()).

This Upgrade End Request may report success or an invalid image. In the case
of an invalid image, the image will be discarded by the client, which may initiate
a new download of the image by sending a Query Next Image Request to the
server.

On arrival at the server, the Upgrade End Request message triggers an
Upgrade End Request event.

Note: An Upgrade End Request may also be sent to the
server during a download in order to abort the
download.
586 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
7. The server replies to the request with an Upgrade End Response containing
an instruction of when the client should use the downloaded image to upgrade
the running software on the node (the message contains both the current time
and the upgrade time, and hence an implied delay).

On arrival at the client, the Upgrade End Response message triggers an
Upgrade End Response event.

8. The client will then count down to the upgrade time (in the Upgrade End
Response) and on reaching it, start the upgrade. If the upgrade time has been
set to an indefinite value (represented by 0xFFFFFFFF), the client should poll
the server for an Upgrade Command at least once per minute and start the
upgrade once this command has been received.

9. Once triggered on the client, the upgrade process will proceed as follows
(although the details will be manufacturer-specific):

a) A reboot of the JN516x device will be initiated causing the default
bootloader to run.

b) The running bootloader will find the (only) valid application image in
external Flash memory and load it into JN516x internal Flash memory.

c) The new software will then be executed.

Query Jitter

The 'query jitter' mechanism can be used to prevent a flood of replies to an Image
Notify broadcast or multicast (Step 2 above). The server includes a number, n, in the
range 1-100 in the notification. If interested in the image, the receiving client generates
a random number in the range 1-100. If this number is greater than n, the client
discards the notification, otherwise it responds with a Query Next Image Request. This
results in only a fraction of interested clients responding to each broadcast/multicast
and therefore helps to avoid traffic congestion.

Note: The client automatically invalidates the existing
image and validates the new upgrade image once the
allotted upgrade time is reached.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 587

Chapter 30
OTA Upgrade Cluster

30.7 Ancillary Features and Resources for OTA Upgrade

As indicated in Section 30.4, in order to implement OTA upgrades, a number of other
software features and resources are available. These are described in the sub-
sections below.

30.7.1 Rate Limiting

During busy periods when the OTA Upgrade server is downloading images to multiple
clients, it is possible to prevent OTA traffic congestion by limiting the download rates
to individual clients. This is achieved by introducing a minimum time-delay between
consecutive Image Block Requests from a client - for example, if this delay is set to
500 ms for a particular client then after sending one block request to the server, the
client must wait at least 500 ms before sending the next block request. This has the
effect of restricting the average OTA download rate from the server to the client.

This ‘block request delay’ can be set to different values for different clients. This allows
OTA downloads to be prioritised by granting more download bandwidth to some
clients than to others. This delay for an individual client can also be modified by the
server during a download, allowing the server to react in real-time to varying OTA
traffic levels.

The implementation of the above rate limiting is described below and is illustrated in
Figure 6.

‘Block Request Delay’ Attribute

The download rate to an individual client is controlled using the optional attribute
u16MinBlockRequestDelay of the OTA Upgrade cluster (see Section 30.2) on the
client. This attribute contains the ‘block request delay’ for the client (described above),
in milliseconds, and must be enabled on the client only (see below).

Enabling the Rate Limiting Feature

In order to use the rate limiting feature during an OTA upgrade, the macro
OTA_CLD_ATTR_REQUEST_DELAY must be defined in the zcl_options.h file for
both the participating client(s). This enables the u16MinBlockRequestDelay
attribute in the OTA Upgrade cluster structure.

Note: The u16MinBlockRequestDelay attribute is
the minimum time-interval between block requests. The
application on the client can implement longer intervals
between these requests (a slower download rate), if
required.
588 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Implementation in the Server Application

The application on the OTA Upgrade server device can control the OTA download rate
to an individual client by remotely setting the value of the ‘block request delay’ attribute
on the client. However, first the server must determine whether the client supports the
rate limiting feature. The server can do this in either of two ways:

 It can attempt to read the u16MinBlockRequestDelay attribute in the OTA
Upgrade cluster on the client - if rate limiting is not enabled on the client, this
read will yield an error.

 It can check whether the first Image Block Request received from the client
contains a ‘block request delay’ field - if present, this value is passed to the
application in the event E_CLD_OTA_COMMAND_BLOCK_REQUEST.

The server can change the value of the ‘block request delay’ attribute on the client at
any time, even during a download. To do this, the server includes the new attribute
value in an Image Block Response with status OTA_STATUS_WAIT_FOR_DATA.
This is achieved in the application code through a call to the function
eOTA_SetWaitForDataParams() following an Image Block Request (indicated by an
E_CLD_OTA_COMMAND_BLOCK_REQUEST event). The new attribute value
specified in this function call is included in the subsequent Image Block Response and
is automatically written to the OTA Upgrade cluster on the client.

The server may update the ‘block request delay’ attribute on a client multiple times
during a download in order to react to changing OTA traffic conditions. If the server is
downloading an image to only one client then it may choose to allow this download to
proceed at the full rate (specified by a zero value of the attribute on the client).
However, if two or more clients request downloads at the same time, the server may
choose to limit their download rates (by setting the attribute to non-zero values on the
clients). The download to one client can be given higher priority than other downloads
by setting the attribute on this client to a lower value.

Implementation in the Client Application

The application on the OTA Upgrade client device must control a millisecond timer (a
timer with a resolution of one millisecond) to support rate limiting. This timer is used to
time the delay between receiving an Image Block Response and submitting the next
Image Block Request. It is a software timer that is set up and controlled using the
JenOS RTOS - for details, refer to the JenOS User Guide (JN-UG-3075).

During an image download, a received Image Block Response with the status
OTA_STATUS_WAIT_FOR_DATA may contain a new value for the ‘block request
delay’ attribute (this type of response may arrive at the start of a download or at any
time during the download). The client will automatically write this new value to the
u16MinBlockRequestDelay attribute in the local OTA Upgrade cluster structure
and will also generate the event E_ZCL_CBET_ENABLE_MS_TIMER (provided that
the new attribute value is non-zero).

The E_ZCL_CBET_ENABLE_MS_TIMER event prompts the application to start the
millisecond timer for a timed interval greater than or equal to the new value of the
‘block request delay’ attribute. The application can obtain this new attribute value (in
milliseconds) from the event via:

sZCL_CallBackEvent.uMessage.u32TimerPeriodMs
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 589

Chapter 30
OTA Upgrade Cluster

The millisecond timer is started using the JenOS function OS_eStartSWTimer() and
will expire after the specified interval has passed. This expiry is indicated by an
E_ZCL_CBET_TIMER_MS event, which is handled as described in Section 3.2. The
client will then send the next Image Block Request.

After sending an Image Block Request:

 If the client now generates an E_ZCL_CBET_DISABLE_MS_TIMER event, this
indicates that the last of the Image Block Request (for the required image) has
been sent and the application should disable the millisecond timer using the
JenOS function OS_eStopSWTimer().

 Otherwise, the application must start the next timed interval (until the next
request) by calling the JenOS function OS_eContinueSWTimer().

Figure 6: Example ‘Rate Limiting’ Exchange

OTA Upgrade
Cluster Server

OTA Upgrade
Cluster Client

Image Block Request

MinBlockRequestDelay=0

Image Block Response
Status=WAIT_FOR_DATA

MinBlockRequestDelay=500ms

Image Block Request

MinBlockRequestDelay=500ms

Image Block Response
Status=SUCCESS

Data

Image Block Request

MinBlockRequestDelay=500ms

Image Block Response
Status=SUCCESS

Data

time=0

time=5ms

time=505ms

time=510ms

time=1010ms

time=1015ms
590 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.7.2 Device-Specific File Downloads

An OTA Ugrade client can request a file (from the server) which is specific to the client
device - this file may contain non-firmware data such as security credentials,
configuration data or log data. The process of making this request and receiving the
file is described in the table below for both the client and server sides.

On Client On Server

1 Client application sends a Query Specific File
Request to the server through a call to
eOTA_ClientQuerySpecificFileRequest().

2 On arrival at the server, the Query Specific
File Request triggers the event
E_CLD_OTA_COMMAND_QUERY_SPECIFIC
_FILE_REQUEST.

3 Server automatically replies to the request
with a Query Specific File Response - the
application can also send a response using
eOTA_ServerQuerySpecificFileResponse().

4 On arrival at the client, the Query Specific File
Response triggers the event
E_CLD_OTA_COMMAND_QUERY_SPECIFIC
_FILE_RESPONSE.

5 Client obtains status from Query Specific File
Response. If status is SUCCESS, the client
automatically requests the device-specific file
one block at a time by sending Image Block
Requests to the server.

6 On arrival at the server, each Image Block
Request triggers an Image Block Request
event.

7 Server automatically responds to each block
request with an Image Block Response con-
taining a block of device-specific file data.

8 After receiving each Image Block Response,
the client generates the event
E_CLD_OTA_INTERNAL_COMMAND_
SPECIFIC_FILE_BLOCK_RESPONSE.

9 A callback function is invoked on the client to
handle the event and store the data block (it
is the responsibility of the application to store
the data in a convenient place).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 591

Chapter 30
OTA Upgrade Cluster

Footnotes

1. For a device-specific file download, it is not mandatory for the server to send an Upgrade End
Response to the client. In the case of a client which has just finished retrieving a log file from
the server, the Upgrade End Response may not be needed. However, if the client has just
retrieved a file containing security credentials or configuration data, the Upgrade End
Response may be needed to notify the client of when to apply the file. The decision of whether
to send an Upgrade End Response for a device-specific file download is manufacturer-specific.

2. If an Upgrade End Response is not received from the server, the client will perform 3 retries to
get the response. If it still does not receive a response, the client will generate the event
E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_NO_UPGRADE_END_RESPONSE.

10 Client determines when the entire file has
been received (by referring to the file size that
was quoted in the Query Specific File
Response before the download started).
Once all the file blocks have been received:

• E_CLD_OTA_INTERNAL_COMMAND_
SPECIFIC_FILE_DL_COMPLETE event is
generated by the client to indicate that the
file transfer is complete.

• The file can optionally be verified by
application.

• Client sends an Upgrade End Request to
the server to indicate that the download is
complete, where this request is the result of
an application call to the function
eOTA_SpecificFileUpgradeEndRequest().

11 On arrival at the server, the Upgrade End
Request triggers an Upgrade End Request
event.

12 Server may reply to the Upgrade End
Request with an Upgrade End Response
containing an instruction of when the client
should use the device-specific file (the mes-
sage contains both the current time and the
upgrade time, and hence an implied delay) -
see Footnotes 1 and 2 below.

13 On arrival at the client, the Upgrade End
Response triggers an Upgrade End
Response event - see Footnotes 1 and 2
below.

14 Client will then count down to the upgrade
time (in the Upgrade End Response) and, on
reaching it, will generate the event
E_CLD_OTA_INTERNAL_COMMAND_
SPECIFIC_FILE_USE_NEW_FILE. Finally, it is
the responsibility of the application to use
device-specific file as appropriate.

On Client On Server
592 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.7.3 Image Block Size and Fragmentation

An OTA Upgrade image is normally requested by the OTA Upgrade client one block
at a time. The ZigBee frame for the OTA transfer contains various header data as well
as payload data and, for this reason, the payload data is limited to about 48 bytes.
Therefore, to transfer one image block per frame, the block size must be restricted to
48 bytes or less. The maximum block size can be configured at compile-time through
the OTA_MAX_BLOCK_SIZE define in the zcl_options.h file (see Section 30.12).

A block size of greater than 48 bytes can be used but the image block will need to be
transferred across two or more ZigBee frames. In this case, fragmentation must be
enabled in which the image block data that is assembled in an APDU (Application
Protocol Data Unit) on the server is fragmented into multiple NPDUs (Network
Protocol Data Unit) for OTA transfer, where one NPDU is transferred in a single
ZigBee frame. Fragmentation is enabled on the OTA Upgrade server and client using
network parameters of the ZigBee PRO stack, as follows:

 On the server: Set the parameter Maximum Number of Transmitted
Simultaneous Fragmented Messages to a non-zero value to allow transmitted
messages to be fragmented.

 On the client: Set the parameter Maximum Number of Received Simultaneous
Fragmented Messages to a non-zero value to allow received fragmented
messages to be re-assembled.

The network parameter values are set using the ZPS Configuration Editor and are
described in the ZigBee PRO Stack User Guide (JN-UG-3101 or JN-UG-3048).

The maximum APDU size must always be greater than the size of an Image Block
Response. It is set through the APDU Size parameter of the PDU Manager, where this
parameter is amongst the Advanced Device Parameters that can be configured using
the ZPS Configuration Editor.

Depending on the image block size, fragmentation is not always an efficient way of
transferring image blocks, as the payload of the final NPDU fragment may contain little
data and be mostly empty. For example, if the image block size is set to 64 bytes and
fragmentation is enabled, each block will be transferred in two ZigBee frames, the first
may contain 48 bytes of data and the second may contain only 16 bytes of data,
leaving 32 empty bytes in the payload. In contrast, if the block size is set to 48 bytes
without fragmentation, two consecutive frames will carry 96 bytes of data, and the
image transfer will require fewer frames. This is particularly important when
transferring an application image to a battery-powered End Device that needs to
conserve energy.

Note: The 48-byte limit on the payload data in a ZigBee
frame is also applicable when image data is requested
and transferred one page at a time (see Section 30.7.4).
In this case, fragmentation may need to be enabled.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 593

Chapter 30
OTA Upgrade Cluster

30.7.4 Page Requests

An OTA Upgrade client normally requests image data from the server one block at a
time, by sending an Image Block Request when it is ready for the next block. The
number of requests can be reduced by requesting the image data one page at a time,
where a page may contain many blocks of data. Requesting data by pages reduces
the OTA traffic and, in the case of battery-powered client device, extends battery life.

A page of data is requested by sending an Image Page Request to the server. This
request contains a page size, which indicates the number of data bytes that should be
returned by the server following the request (and before the next request is sent, if
any). The server still sends the data one block at a time in Image Block Responses.
The Image Page Request also specifies the maximum number of bytes that the client
device can receive in any one OTA message and the block size must therefore not
exceed this limit (in general, the page size should be a multiple of this limit).

It is the responsibility of the client to keep track of the amount of data so far received
since the last Image Page Request was issued - this count is updated after each
Image Block Response received. Once this count reaches the page size in the
request, the client will issue the next Image Page Request (if the download is not yet
complete).

During a download that uses page requests:

 If the client fails to receive one or more of the requested blocks then the next
Image Page Request will request data starting from the offset which
corresponds to the first missing block.

 If the client fails to receive all the blocks requested in an Image Page Request
then the same request will be repeated up to two more times - if the requested
data still fails to arrive, the client will switch to using Image Block Requests to
download the remaining image data.

An Image Page Request also contains a ‘response spacing’ value. This indicates the
minimum time-interval, in milliseconds, that the server should insert between
consecutive Image Block Responses. If the client is a sleepy End Device, it may
specify a long response spacing so that it can sleep between consecutive Image Block
Responses, or it may specify a short response spacing so that it can quickly receive
all blocks requested in a page and sleep between consecutive Image Page Requests.

The implementation of the above page requests in an application is described below.
The OTA image download process using page requests is similar to the one described
in Section 30.6, except the client submits Image Page Requests to the server instead
of Image Block Requests.

Enabling the Page Requests Feature

In order to use page requests, the macro OTA_PAGE_REQUEST_SUPPORT must
be defined in the zcl_options.h file for the server and client.

In addition, values for the page size and response spacing can also be defined in this
file for the client (if non-default values are required) - see below and Section 30.12.
594 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Implementation in the Server Application

The application on the OTA Upgrade server device must control a millisecond timer (a
timer with a resolution of one millisecond) to support page requests. This timer is used
to implement the ‘response spacing’ specified in an Image Page Request - that is, to
time the interval between the transmissions of consecutive Image Block Responses
(sent out in response to the Image Page Request). It is a software timer that is set up
and controlled using the JenOS RTOS - for details, refer to the JenOS User Guide
(JN-UG-3075).

When the server receives an Image Page Request, it will generate the event
E_ZCL_CBET_ENABLE_MS_TIMER to prompt the application to start the
millisecond timer for a timed interval equal in value to the ‘response spacing’ in the
request. The application can obtain this value (in milliseconds) from the event via:

sZCL_CallBackEvent.uMessage.u32TimerPeriodMs

The millisecond timer is started using the JenOS function OS_eStartSWTimer() and
will expire after the specified interval has passed. This expiry is indicated by an
E_ZCL_CBET_TIMER_MS event, which is handled as described in Section 3.2. The
server will then send the next Image Block Response.

After sending an Image Block Response:

 If the server now generates an E_ZCL_CBET_DISABLE_MS_TIMER event,
this indicates that the last of the Image Block Responses (for the Image Page
Request) has been sent and the application should disable the millisecond
timer using the JenOS function OS_eStopSWTimer().

 Otherwise, the application must start the next timed interval (until the next
response) by calling the JenOS function OS_eContinueSWTimer().

Implementation in the Client Application

There is nothing specific to do in the client application to implement page requests.
Provided that page requests have been enabled in the zcl_options.h file for the client
(see above), page requests will be automatically implemented by the stack instead of
block requests for OTA image downloads. The page size (in bytes) and response
spacing (in milliseconds) for these requests can be specified through the following
macros in the zcl_options.h file (see Section 30.12):

 OTA_PAGE_REQ_PAGE_SIZE

 OTA_PAGE_REQ_RESPONSE_SPACING

The default values are 512 bytes and 300 ms, respectively.

However, the client application can itself submit an Image Page Request to the server
by calling the function eOTA_ClientImagePageRequest(). In this case, the page size
and response spacing are specified in the Image Page Request payload structure as
part of this function call.

The client handles the resulting Image Block Responses as described in Section 30.6
for standard OTA downloads.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 595

Chapter 30
OTA Upgrade Cluster

30.7.5 Persistent Data Management

The OTA Upgrade cluster on a client requires context data to be preserved in Flash
memory to facilitate a recovery of the OTA Upgrade status following a device reboot.
The JenOS Persistent Data Manager (PDM) module should be used to perform this
data saving and recovery. The PDM module is implemented as described in the
JenOS User Guide (JN-UG-3075).

Persistent data should normally be stored in the final sector of EEPROM. Thus, when
the PDM module is initialised, this sector should be specified (just this one sector
should be managed by the PDM module).

When it needs to save context data, the OTA Upgrade cluster will generate the event
E_CLD_OTA_INTERNAL_COMMAND_SAVE_CONTEXT, which will also contain
the data to be saved to Flash memory. A user-defined callback function can then be
invoked to perform the data storage using functions of the PDM module.

The OTA Upgrade cluster is implemented for an individual application/endpoint.
Therefore, the PDM module should also be implemented per endpoint. The following
code illustrates the reservation of memory space for persistent data per endpoint.

typedef struct

{

 uint8 u8Endpoints[APP_NUM_OF_ENDPOINTS];

 uint8 eState; // Current application state to re-instate

 tsOTA_PersistedData sPersistedData[APP_NUM_OF_ENDPOINTS];

} tsDevice;

PUBLIC tsDevice s_sDevice;

PUBLIC PDM_tsRecordDescriptor s_OTAPDDesc;

If a client is restarted and persisted data is available on the device, the OTA Upgrade
cluster data should be restored using the function eOTA_RestoreClientData().
596 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.7.6 Mutex for Flash Memory Access

The Flash memory device on a node is accessed from the JN516x device via the SPI
bus. Flash memory needs to be accessed by the OTA Upgrade cluster and the
Persistent Data Manager (PDM). Each access should be allowed to complete before
allowing the next access to start and, therefore, should be protected by a mutex.

A JenOS mutex can be used, as described in the JenOS User Guide (JN-UG-3075).
Callback functions should be defined which allow the OTA Upgrade cluster to get and
release a Flash memory mutex, as illustrated below.

void vGrabLock(void)

{

 OS_eEnterCriticalSection(mutexFLASH);

}

void vReleaseLock(void)

{

 OS_eExitCriticalSection(mutexFLASH);

}

These callback functions are invoked when the following events are generated for the
application:

E_CLD_OTA_INTERNAL_COMMAND_LOCK_FLASH_MUTEX
E_CLD_OTA_INTERNAL_COMMAND_FREE_FLASH_MUTEX

Note: The above user-defined callback functions to get
and release a mutex must be designed such that OTA
Upgrade is in the same mutex group as the PDM
module. If the mutex is not properly implemented,
unpredictable behaviour may result.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 597

Chapter 30
OTA Upgrade Cluster

30.7.7 External Flash Memory Organisation

JN516x external Flash memory should be organised such that the application images
are stored from Sector 0 and, if required, persistent data is stored in the final sector
(alternatively, it may be stored in JN516x internal EEPROM).

Thus, for a Flash memory device with 8 sectors:

 Sectors 0-6 are available for the storage of application images

 Sector 7 can be used for persistent data storage (if persistent data is instead
stored in JN516x EEPROM, sector 7 will be available for application storage)

Storage of the above software is described further below.

Application Images

As part of application initialisation (see Section 30.5), the OTA Upgrade cluster must
be informed of the storage arrangements for application images in Flash memory. This
is done through the function eOTA_AllocateEndpointOTASpace(), which applies to
a specified endpoint (normally the endpoint of the application which calls the function).
The information provided via this function includes:

 Start sector for each image that can be stored (specified through an array with
one element per image).

 Number of images for the endpoint (the maximum number of images per
endpoint is specified in the zcl_options.h file - see Section 30.12)

 Maximum number of sectors per image

 Type of node (server or client)

 Public key for signed images

Persistent Data

The storage of persistent data is handled by the PDM module (see Section 30.7.5) and
the sector used is specified as part of the PDM initialisation through PDM_vInit() - the
final sector of external Flash memory should be specified (if not using the internal
EEPROM on the JN516x device).
598 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.7.8 Low-Voltage Flag

An OTA Upgrade cluster client should not attempt to participate in an OTA upgrade if
the supply voltage to the host hardware device is low (below the normal operating
voltage for the device). On the JN516x device, sufficient voltage is required to write to
the internal EEPROM. There may be a number of reasons for a sudden drop in supply
voltage - for example, the voltage on a battery-powered node may fall when the battery
is near the end of its life.

The OTA Upgrade cluster incorporates a mechanism which, if enabled, stops the
cluster client from sending Image Block Requests to the server when the local supply
voltage becomes low. This mechanism allows the application to set a low-voltage flag
which, when set, automatically suspends the block requests. When the flag is cleared,
the block requests are automatically resumed.

If required, use of the low-voltage flag and associated mechanism must be enabled at
compile-time by including the following line in the zcl_options.h file:

#define OTA_UPGRADE_VOLTAGE_CHECK

It is the responsibility of the application to check the supply voltage. This check is
system-specific and may be performed periodically or using a voltage monitoring
feature - for example, on the JN516x device, the Supply Voltage Monitor (SVM) can
be used, which is described in the JN516x Integrated Peripherals API User Guide
(JN-UG-3087).

The application can use the function vOTA_SetLowVoltageFlag() to configure the
low-voltage flag. This function is detailed in Section 30.9.3.

When a low voltage is detected, the application should make the following function call
to set the low-voltage flag and suspend Image Block Requests:

vOTA_SetLowVoltageFlag(TRUE);

When the voltage is restored to a normal level, the application should make the
following function call to clear the low-voltage flag and resume Image Block Requests:

vOTA_SetLowVoltageFlag(FALSE);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 599

Chapter 30
OTA Upgrade Cluster

30.8 OTA Upgrade Events

The events that can be generated on an OTA Upgrade cluster server or client are
defined in the structure teOTA_UpgradeClusterEvents (see Section 30.11.2).
The events are listed in the table below, which also indicates on which side of the
cluster (server or client) the events can occur:

Cluster Side(s) Event

Server E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQUEST

E_CLD_OTA_COMMAND_BLOCK_REQUEST

E_CLD_OTA_COMMAND_PAGE_REQUEST

E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST

E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_REQUEST

E_CLD_OTA_INTERNAL_COMMAND_SEND_UPGRADE_END_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_BLOCK_REQUEST

Client E_CLD_OTA_COMMAND_IMAGE_NOTIFY

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE

E_CLD_OTA_COMMAND_BLOCK_RESPONSE

E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE

E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_TIMER_EXPIRED

E_CLD_OTA_INTERNAL_COMMAND_POLL_REQUIRED

E_CLD_OTA_INTERNAL_COMMAND_RESET_TO_UPGRADE

E_CLD_OTA_INTERNAL_COMMAND_SAVE_CONTEXT

E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_BLOCK_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_DL_ABORT

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_DL_COMPLETE

E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_SWITCH_TO_NEW_IMAGE

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_BLOCK_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_COMPLETE

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_ABORT

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_USE_NEW_FILE

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_NO_UPGRADE_END_RESPONSE

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE_ERROR

Table 31: OTA Upgrade Events
600 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
OTA Upgrade events are treated as ZCL events. Thus, an event is received by the
application, which wraps the event in a tsZCL_CallBackEvent structure and
passes it into the ZCL using the function vZCL_EventHandler() - for further details of
ZCL event processing, refer to Chapter 3.

The above events are outlined in the sub-sections below.

30.8.1 Server-side Events

 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQUEST

This event is generated on the server when a Query Next Image Request is
received from a client to enquire whether a new application image is available
for download. The event may result from a poll request from the client or may
be a consequence of an Image Notify message previously sent by the server.
The server reacts to this event by returning a Query Next Image Response.

 E_CLD_OTA_COMMAND_BLOCK_REQUEST

This event is generated on the server when an Image Block Request is received
from a client to request a block of image data as part of a download. The
application reacts to this event by returning an Image Block Response
containing a data block.

 E_CLD_OTA_COMMAND_PAGE_REQUEST

This event is generated on the server when an Image Page Request is received
from a client to request a page of image data as part of a download.

 E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST

This event is generated on the server when an Upgrade End Request is
received from a client to indicate that the complete image has been downloaded
and verified. The application reacts to this event by returning an Upgrade End
Response.

 E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_REQUEST

This event is generated on the server when a Query Specific File Request is
received from a client to request a particular application image. The server
reacts to this event by returning a Query Specific File Response.

E_CLD_OTA_INTERNAL_COMMAND_RCVD_DEFAULT_RESPONSE

E_CLD_OTA_INTERNAL_COMMAND_VERIFY_IMAGE_VERSION

E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_UPGRADE_DOWNGRADE

E_CLD_OTA_INTERNAL_COMMAND_REQUEST_QUERY_NEXT_IMAGES

E_CLD_OTA_INTERNAL_COMMAND_FAILED_VALIDATING_UPGRADE_IMAGE

E_CLD_OTA_INTERNAL_COMMAND_FAILED_COPYING_SERIALIZATION_DATA

Both E_CLD_OTA_INTERNAL_COMMAND_LOCK_FLASH_MUTEX

E_CLD_OTA_INTERNAL_COMMAND_FREE_FLASH_MUTEX

Cluster Side(s) Event

Table 31: OTA Upgrade Events
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 601

Chapter 30
OTA Upgrade Cluster

 E_CLD_OTA_INTERNAL_COMMAND_SEND_UPGRADE_END_RESPONSE

This event is generated on the server to notify the application that the stack is
going to send an Upgrade End Response to a client. No specific action is
required by the application on the server.

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_BLOCK_
REQUEST

This event is generated on the server when an Image Block Request is received
from a client to request a block of image data as part of a download and the
server finds that the required image is stored in the co-processor’s external
storage device. The JN516x application can then fetch the required image block
from the co-processor and send it in an Image Block Response to the client
(whose address and endpoint details are contained in the event).

30.8.2 Client-side Events

 E_CLD_OTA_COMMAND_IMAGE_NOTIFY

This event is generated on the client when an Image Notify message is received
from the server to indicate that a new application image is available for
download. If the client decides to download the image, the application should
react to this event by sending a Query Next Image Request to the server using
the function eOTA_ClientQueryNextImageRequest().

 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE

This event is generated on the client when a Query Next Image Response is
received from the server (in response to a Query Next Image Request) to
indicate whether a new application image is available for download. If a suitable
image is reported, the client initiates a download by sending an Image Block
Request to the server.

 E_CLD_OTA_COMMAND_BLOCK_RESPONSE

This event is generated on the client when an Image Block Response is
received from the server (in response to an Image Block Request) and contains
a block of image data which is part of a download. Following this event, the client
can request the next block of image data by sending an Image Block Request
to the server or, if the entire image has been received and verified, the client can
close the download by sending an Upgrade End Request to the server.

 E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE

This event is generated on the client when an Upgrade End Response is
received from the server (in response to an Upgrade End Request) to confirm
the end of a download. This event contains the time delay before the upgrade
of the running application must be performed.

 E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_RESPONSE

This event is generated on the client when a Query Specific File Response is
received from the server (in response to a Query Specific File Request) to
indicate whether the requested application image is available for download.

 E_CLD_OTA_INTERNAL_COMMAND_TIMER_EXPIRED

This event is generated on the client when the local one-second timer has
expired. It is an internal event and is not passed to the application.
602 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 E_CLD_OTA_INTERNAL_COMMAND_POLL_REQUIRED

This event is generated on the client to prompt the application to poll the server
for a new application image by calling the function
eOTA_ClientQueryNextImageRequest().

 E_CLD_OTA_INTERNAL_COMMAND_RESET_TO_UPGRADE

This event is generated on the client to notify the application that the stack is
going to reset the device. No specific action is required by the application.

 E_CLD_OTA_INTERNAL_COMMAND_SAVE_CONTEXT

This event prompts the client application to store context data in Flash memory.
The data to be stored is passed to the application within this event.

 E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED

This event is generated on a client if the received image is invalid or the client
has aborted the image download. This allows the application to request the new
image again.

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_BLOCK_
RESPONSE

This event is generated on the client when an Image Block Response is
received from the server (in response to an Image Block Request) and contains
a block of the co-processor image. Following this event, the JN516x application
can store the block in the appropriate place (attached Flash memory or co-
processor’s storage device). The client can also request the next block of image
data by sending an Image Block Request to the server or, if the entire image has
been received and verified, the client can close the download by sending an
Upgrade End Request to the server.

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_DL_ABORT

This event is generated on the client to notify the application that the download
of the co-processor image from the server has been aborted.

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_DL_
COMPLETE

This event is generated on the client to notify the application that the download
of the co-processor image from the server has completed (all blocks have been
received). Following this event, the JN516x application should verify the image
and call eOTA_CoProcessorUpgradeEndRequest() to send an Upgrade End
Request to the server.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 603

Chapter 30
OTA Upgrade Cluster

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_SWITCH_TO_
NEW_IMAGE

This event is generated on the client to notify the application that the upgrade
time for a previously downloaded co-processor image has been reached. This
event occurs after receiving the Upgrade End Response which contains the
upgrade time. Following this event, the JN516x application should instruct the
co-processor to update its own running application image.

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_BLOCK_RESPONSE

This event is generated on the client when an Image Block Response is
received from the server in response to an Image Block Request for a device-
specific file. The event contains a block of file data which is part of a download.
Following this event, the client stores the data block in an appropriate location
and can request the next block of file data by sending an Image Block Request
to the server (if the complete image has not yet been received and verified).

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_COMPLETE

This event is generated on the client when the final Image Block Response of a
device-specific file download has been received from the server - the event
indicates that all the data blocks that make up the file have been received.

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_USE_NEW_FILE

This event is generated on the client following a device-specific file download to
indicate that the file can now be used by the client. At the end of the download,
the server sends an Upgrade End Response that may include an ‘upgrade time’
- this is the UTC time at which the new file can be applied. Thus, on receiving
this response, the client starts a timer and, on reaching the upgrade time,
generates this event.

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_ABORT

This event is generated to indicate that the OTA Upgrade cluster needs to abort
a device-specific file download. Following this event, the application should
discard data that has already been received as part of the aborted download.

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_NO_UPGRADE_
END_RESPONSE

This event is generated when no Upgrade End Response has been received for
a device-specific file download. The client makes three attempts to obtain an
Upgrade End Response. If no response is received, the client raises this event.

 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE_ERROR

This event is generated on the client when a Query Next Image Response
message is received from the server, in response to a Query Next Image
Request with a status of Invalid Image Size.

Note: For a device-specific file download, it is not
mandatory for the server to send an Upgrade End
Response. The decision of whether to send the
Upgrade End Response is manufacturer-specific.
604 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 E_CLD_OTA_INTERNAL_COMMAND_RCVD_DEFAULT_RESPONSE

This event is generated on the client when a default response message is
received from the server, in response to a Query Next Image Request, Image
Block Request or Upgrade End Request. This is an internal ZCL event that
results in an OTA download being aborted, thus activating the callback function
for the E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED event.

 E_CLD_OTA_INTERNAL_COMMAND_VERIFY_IMAGE_VERSION

This event is generated to prompt the application to verify the image version
received in a Query Next Image Response. This event allows the application to
verify that the new upgrade image has a valid image version. After checking the
image version, the application should set the status field of the event to
E_ZCL_SUCCESS (valid version) or E_ZCL_FAIL (invalid version).

 E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_UPGRADE_
DOWNGRADE

This event is generated to prompt the application to verify the image version
received in an upgrade end response. This event allows the application to verify
that the new upgrade image has a valid image version.

After checking the image version, the application should set the status field of
the event to E_ZCL_SUCCESS (valid version) or E_ZCL_FAIL (invalid version).

 E_CLD_OTA_INTERNAL_COMMAND_REQUEST_QUERY_NEXT_IMAGES

This event is generated on the client when a co-processor image also requires
the client to update its own image. After the first file is downloaded (co-
processor image), this event notifies the application in order to allow it to send
a Query Next Image command for its own upgrade image, using
eOTA_ClientQueryNextImageRequest().

 E_CLD_OTA_INTERNAL_COMMAND_FAILED_VALIDATING_UPGRADE_
IMAGE

This event is generated on the client when the validation of a new upgrade
image fails. This validation takes place when the upgrade time is reached.

 E_CLD_OTA_INTERNAL_COMMAND_FAILED_COPYING_SERIALIZATION_
DATA

This event is generated on the client when the copying of serialisation data from
the active image to the new upgrade image fails. This process takes place after
image validation (if applicable) is completed successfully.

30.8.3 Server-side and Client-side Events

 E_CLD_OTA_INTERNAL_COMMAND_LOCK_FLASH_MUTEX

This event prompts the application to lock the mutex used for accesses to Flash
memory (via the SPI bus).

 E_CLD_OTA_INTERNAL_COMMAND_FREE_FLASH_MUTEX

This event prompts the application to unlock the mutex used for accesses to
Flash memory (via the SPI bus).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 605

Chapter 30
OTA Upgrade Cluster

30.9 Functions

The OTA Upgrade cluster functions that are provided in the NXP implementation of
the ZCL are divided into the following three categories:

 General functions (used on server and client) - see Section 30.9.1

 Server functions - see Section 30.9.2

 Client functions - see Section 30.9.3

30.9.1 General Functions

The following OTA Upgrade cluster functions can be used on the cluster server and
the cluster client:

Function Page

eOTA_Create 607

vOTA_FlashInit 608

eOTA_AllocateEndpointOTASpace 609

vOTA_GenerateHash 611

eOTA_GetCurrentOtaHeader 612

Note: When referring to the storage of OTA upgrade
images in Flash memory, this is a Flash memory device
which is external to the JN516x device (i.e. not the
JN516x internal Flash memory).
606 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_Create

Description

This function creates an instance of the OTA Upgrade cluster on the specified
endpoint. The cluster instance can act as a server or a client, as specified. The
shared structure of the device associated with cluster must also be specified.

The function must be the first OTA function called in the application, and must be
called after the stack has been started and after the application profile has been
initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16)

bIsServer Side of cluster to be implemented on this device:

TRUE - Server
FALSE - Client

psClusterDefinition Pointer to structure indicating the type of cluster (see
Section 34.1.2) - this structure must contain the
details of the OTA Upgrade cluster

pvEndPointSharedStructPtr Pointer to shared device structure for relevant
endpoint (depends on device type, e.g. Door Lock)

u8Endpoint Number of endpoint with which cluster will be
associated

pu8AttributeControlBits Pointer to an array of bitmaps, one for each attribute
in the relevant cluster - for internal cluster definition
use only, array should be initialised to 0

tpsCustomDataStruct Pointer to structure containing custom data for OTA
Upgrade cluster (see Section 30.10.3)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_Create(
tsZCL_ClusterInstance *psClusterInstance,
bool_t bIsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 u8Endpoint,
uint8 *pu8AttributeControlBits,
tsOTA_Common *psCustomDataStruct);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 607

Chapter 30
OTA Upgrade Cluster

vOTA_FlashInit

Description

This function initialises the Flash memory device to be used by the OTA Upgrade
cluster. Information about the device must be provided, such as the device type and
sector size.

If a custom or unsupported Flash memory device is used then user-defined callback
functions must be provided to perform Flash memory read, write, erase and
initialisation operations (if an NXP-supported device is used, standard callback
functions will be used):

 A general set of functions (for use by all software components) can be specified
through pvFlashTable.

 Optionally, an additional set of functions specifically for use by the OTA Upgrade cluster
can be specified in the structure referenced by psNvmStruct.

This function must be called after the OTA Upgrade cluster has been created (after
eOTA_Create() has been called either directly or indirectly) and before any other
OTA Upgrade functions are called.

Parameters

pvFlashTable Pointer to general set of callback functions to perform Flash
memory read, write, erase and initialisation operations. If
using an NXP-supported Flash memory device, set a null
pointer to use standard callback functions

psNvmStruct Pointer to structure containing information on Flash memory
device - see Section 30.10.5

Returns

None

void vOTA_FlashInit(void *pvFlashTable,
tsNvmDefs *psNvmStruct);
608 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_AllocateEndpointOTASpace

Description

This function is used to allocate Flash memory space to store application images as
part of the OTA upgrade process for the specified endpoint. The maximum number
of images that will be held at any one time must be specified as well the Flash
memory start sector of every image. The maximum number of sectors used to store
an image must also be specified.

The start sectors of the image space allocations are provided in an array. The index
of an element of this array will subsequently be used to identify the stored image in
other function calls.

Parameters

u8Endpoint Number of endpoint for which Flash memory space
is to be allocated

pu8Data Pointer to array containing the Flash memory start
sector of each image (array index identifies image)

u8NumberOfImages Maximum number of application images that will be
stored in Flash memory at any one time

u8MaxSectorsPerImage Maximum number of sectors to be used to store an
individual application image

bIsServer Side of cluster implemented on this device:

TRUE - Server
FALSE - Client

pu8CAPublicKey Pointer to Certificate Authority public key (provided
in the security certificate from a company such as
Certicom)

teZCL_Status eOTA_AllocateEndpointOTASpace(
uint8 u8Endpoint,
uint8 *pu8Data,
uint8 u8NumberOfImages,
uint8 u8MaxSectorsPerImage,
bool_t bIsServer,
uint8 *pu8CAPublicKey);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 609

Chapter 30
OTA Upgrade Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_INVALID_VALUE

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL
610 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vOTA_GenerateHash

Description

This function can be used to generate a hash checksum for an application image in
Flash memory, using the Matyas-Meyer-Oseas cryptographic hash.

Parameters

psEndPointDefinition Pointer to structure which defines endpoint
corresponding to the application (see Section
34.1.1)

psCustomData Pointer to data structure connected with event
associated with the checksum (see Section 30.10.3)

bIsServer Side of cluster implemented on this device:

TRUE - Server
FALSE - Client

bHeaderPresent Presence of image header:

TRUE - Present
FALSE - Absent

puHash Pointer to structure to receive calculated hash
checksum

u8ImageLocation Number of sector where image starts in Flash
memory

Returns

None

void vOTA_GenerateHash(
tsZCL_EndPointDefinition *psEndPointDefinition,
tsOTA_Common *psCustomData,
bool bIsServer,
bool bHeaderPresent,
AESSW_Block_u *puHash,
uint8 u8ImageLocation);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 611

Chapter 30
OTA Upgrade Cluster

eOTA_GetCurrentOtaHeader

Description

This function can be used to obtain the OTA header of the application image which
is currently running on the local node.

The obtained parameter values are received in a tsOTA_ImageHeader structure.

Parameters

u8Endpoint Number of endpoint on which cluster operates

bIsServer Side of the cluster implemented on this device:

TRUE - Server
FALSE - Client

psOTAHeader Pointer to structure to receive the current OTA header (see
Section 30.10.1)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

teZCL_Status eOTA_GetCurrentOtaHeader(
uint8 u8Endpoint,
bool_t bIsServer,
tsOTA_ImageHeader *psOTAHeader);
612 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.9.2 Server Functions

The following OTA Upgrade cluster functions can be used on the cluster server only:

Function Page

eOTA_SetServerAuthorisation 614

eOTA_SetServerParams 615

eOTA_GetServerData 616

eOTA_EraseFlashSectorsForNewImage 617

eOTA_FlashWriteNewImageBlock 618

eOTA_NewImageLoaded 619

eOTA_ServerImageNotify 620

eOTA_ServerQueryNextImageResponse 621

eOTA_ServerImageBlockResponse 622

eOTA_SetWaitForDataParams 624

eOTA_ServerUpgradeEndResponse 625

eOTA_ServerSwitchToNewImage 627

eOTA_InvalidateStoredImage 628

eOTA_ServerQuerySpecificFileResponse 629
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 613

Chapter 30
OTA Upgrade Cluster

eOTA_SetServerAuthorisation

Description

This function can be used to define a set of clients to which the server will be
authorised to download application images. The function allows all clients to be
authorised or a list of selected authorised clients to be provided. Clients are specified
in this list by means of their 64-bit IEEE/MAC addresses.

Parameters

u8Endpoint Number of endpoint (on server) on which cluster operates

eState Indicates whether a list of authorised clients will be used or all
clients will be authorised - one of:

E_CLD_OTA_STATE_USE_LIST
E_CLD_OTA_STATE_ALLOW_ALL

pu64WhiteList Pointer to list of IEEE/MAC addresses of authorised clients
(ignored if all clients are authorised through eState parameter)

u8Size Number of clients in list
(ignored if all clients are authorised through eState parameter)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_SetServerAuthorisation(
uint8 u8Endpoint,
eOTA_AuthorisationState eState,
uint64 *pu64WhiteList,
uint8 u8Size);
614 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_SetServerParams

Description

This function can be used to set server parameter values (including query jitter, data
size, image data, current time and upgrade time) for a particular image stored on the
server. The parameter values to be set are specified in a structure, described in
Section 30.10.22. For detailed descriptions of these parameters, refer to the ZigBee
Over-the-Air Upgrading Cluster Specification (095264) from the ZigBee Alliance.

If this function is not called, default values will be used for these parameters.

The current values of these parameters can be obtained using the function
eOTA_GetServerData().

The index of the image for which server parameter values are to be set must be
specified. For an image stored in JN516x external Flash memory, this index will take
a value in the range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1). In the case of
a dual-processor OTA server node, refer to Appendix E.4.

Parameters

u8Endpoint Number of endpoint (on server) on which cluster
operates

u8ImageIndex Index number of image

psOTAData Pointer to structure containing parameter values to be
set (see Section 30.10.22)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_SetServerParams(
uint8 u8Endpoint,
uint8 u8ImageIndex,
tsCLD_PR_Ota *psOTAData);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 615

Chapter 30
OTA Upgrade Cluster

eOTA_GetServerData

Description

This function can be used to obtain server parameter values (including query jitter,
data size, image data, current time and upgrade time). The obtained parameter
values are received in a structure, described in Section 30.10.22. For detailed
descriptions of these parameters, refer to the ZigBee Over-the-Air Upgrading Cluster
Specification (095264) from the ZigBee Alliance.

The values of these parameters can be set by the application using the function
eOTA_SetServerParams().

The index of the image for which server parameter values are to be obtained must
be specified. For an image stored in JN516x external Flash memory, this index will
take a value in the range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1). In the
case of a dual-processor OTA server node, refer to Appendix E.4.

Parameters

u8Endpoint Number of endpoint (on server) on which cluster
operates

u8ImageIndex Index number of image

psOTAData Pointer to structure to receive parameter values (see
Section 30.10.22)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_GetServerData(
uint8 u8Endpoint,
uint8 u8ImageIndex,
tsCLD_PR_Ota *psOTAData);
616 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_EraseFlashSectorsForNewImage

Description

This function can be used to erase certain sectors of the Flash memory attached to
the JN516x device in the OTA server node. The sectors allocated to the specified
image index number will be erased so that the sectors (and index number) can be re-
used. The function is normally called before writing a new upgrade image to Flash
memory.

The specified image index number must be in the range 0 to
(OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint Number of endpoint (on server) on which cluster operates

u8ImageIndex Index number of image

Returns

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_SUCCESS

teZCL_Status eOTA_EraseFlashSectorsForNewImage(
uint8 u8Endpoint,
uint8 u8ImageIndex);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 617

Chapter 30
OTA Upgrade Cluster

eOTA_FlashWriteNewImageBlock

Description

This function can be used to write a block of an upgrade image to the Flash memory
attached to the JN516x device in the OTA server node. The image may be either of
the following:

 An upgrade image for the server itself (the server will later be rebooted from this image)

 An upgrade image for one or more clients, which will later be made available for OTA
distribution through the wireless network (this image may be destined for the JN516x
device or a co-processor in the OTA client node)

The image in Flash memory to which the block belongs is identified by its index
number. The specified image index number must be in the range 0 to
(OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint Number of endpoint (on server) on which
cluster operates

u8ImageIndex Index number of image

bIsServerImage Indicates whether new image is for the server
or a client:
TRUE - Server image
FALSE - Client image

pu8UpgradeBlockData Pointer to image block to be written

u8UpgradeBlockDataLength Size, in bytes, of image block to be written

u32FileOffSet Offset of block from start of image file (in
terms of number of bytes)

Returns

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_FAIL

E_ZCL_SUCCESS

teZCL_Status eOTA_FlashWriteNewImageBlock(
uint8 u8Endpoint,
uint8 u8ImageIndex,
bool bIsServerImage,
uint8 *pu8UpgradeBlockData,
uint8 u8UpgradeBlockDataLength,
uint32 u32FileOffSet);
618 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_NewImageLoaded

Description

This function can be used for two purposes which relate to a new application image
and which depend on whether the image has been stored in the external Flash
memory of the JN516x device or in the external storage device for a co-processor (if
any) within the server node:

 For an image stored in JN516x external Flash memory, the function can be used to
notify the OTA Upgrade cluster server on the specified endpoint that a new application
image has been loaded into Flash memory and is available for download to clients. The
server then validates the new image.

 For one or more images stored in the co-processor’s external storage device, the
function can be used to provide OTA header information for the image(s) to the cluster
server. In the case of more than one image stored in co-processor storage, this
function may replicate OTA header information for older images already registered with
the server.

Parameters

u8Endpoint Number of endpoint (on server) on which
cluster operates

bIsImageOnCoProcessorMedia Flag indicating whether image is stored in co-
processor’s external storage device:

TRUE - Stored in co-processor storage
FALSE - Stored in JN516x Flash memory

psOTA_CoProcessorOTAHeader Pointer to array of OTA headers of images
which are held in co-processor’s storage
device (see Section 30.10.2)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_NewImageLoaded(
uint8 u8Endpoint,
bool bIsImageOnCoProcessorMedia,
tsOTA_CoProcessorOTAHeader

 *psOTA_CoProcessorOTAHeader);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 619

Chapter 30
OTA Upgrade Cluster

eOTA_ServerImageNotify

Description

This function issues an Image Notify message to one or more clients to indicate that
a new application image is available for download.

The message can be unicast to an individual client or multicast to selected clients
(but cannot be broadcast to all clients, for security reasons).

Parameters

u8SourceEndpoint Number of endpoint (on server) from which the
message will be sent

u8DestinationEndpoint Number of endpoint (on client) to which the message
will be sent

psDestinationAddress Pointer to structure containing the address of the target
client for the message - a multicast to more than one
client is also possible (see Section 34.1.4)

psImageNotifyCommand Pointer to structure containing payload for message
(see Section 30.10.6)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_ServerImageNotify(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_ImageNotifyCommand *psImageNotifyCommand);
620 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_ServerQueryNextImageResponse

Description

This function issues a Query Next Image Response to a client which has sent a
Query Next Image Request (the arrival of this request triggers the event
E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQUEST on the server).

The Query Next Image Response contains information on the latest application
image available for download to the client, including the image size and file version.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Parameters

u8SourceEndpoint Number of endpoint (on server) from which the
response will be sent

u8DestinationEndpoint Number of endpoint (on client) to which the
response will be sent

psDestinationAddress Pointer to structure containing the address of the
target client for the response (see Section
34.1.4)

psQueryImageResponsePayload Pointer to structure containing payload for
response (see Section 30.10.8)

u8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_ServerQueryNextImageResponse(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_QueryImageResponse

 *psQueryImageResponsePayload,
uint8 u8TransactionSequenceNumber);

Note: The cluster server responds automatically to a Query
Next Image Request, so it is not normally necessary for the
application to call this function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 621

Chapter 30
OTA Upgrade Cluster

eOTA_ServerImageBlockResponse

Description

This function issues an Image Block Response, containing a block of image data, to
a client to which the server is downloading an application image. The function is
called after receiving an Image Block Request from the client, indicating that the
client is ready to receive the next block of the application image (the arrival of this
request triggers the event E_CLD_OTA_COMMAND_BLOCK_REQUEST on the
server).

The size of the block, in bytes, is specified as part of the function call. This must be
less than or equal to the maximum possible block size defined in the zcl_options.h
file (see Section 30.12).

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Parameters

u8SourceEndpoint Number of endpoint (on server) from which the
response will be sent

u8DestinationEndpoint Number of endpoint (on client) to which the
response will be sent

psDestinationAddress Pointer to structure containing the address of the
target client for the response (see Section
34.1.4)

psImageBlockResponsePayload Pointer to structure containing payload for
response (see Section 30.10.11)

u8BlockSize Size, in bytes, of block to be transferred

u8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

teZCL_Status eOTA_ServerImageBlockResponse(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_ImageBlockResponsePayload

 *psImageBlockResponsePayload,
uint8 u8BlockSize,
uint8 u8TransactionSequenceNumber);

Note: The cluster server responds automatically to an Image
Block Request, so it is not normally necessary for the
application to call this function.
622 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_FAIL
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 623

Chapter 30
OTA Upgrade Cluster

eOTA_SetWaitForDataParams

Description

This function can be used to send an Image Block Response with a status of
OTA_STATUS_WAIT_FOR_DATA to a client, in response to an Image Block
Request from the client.

The payload of this response includes a new value for the ‘block request delay’
attribute on the client. This value can be used by the client for ‘rate limiting’ -that is,
to control the rate at which the client requests data blocks from the server and
therefore the average OTA download rate from the server to the client.

Rate limiting is described in more detail in Section 30.7.1.

Parameters

u8Endpoint Number of endpoint (on server) from which the response
will be sent

u16ClientAddress Network address of client device to which the response will
be sent

sWaitForDataParams Pointer to structure containing ‘Wait for Data’ parameter
values for Image Block Response payload (see Section
30.10.15)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_SetWaitForDataParams(
uint8 u8Endpoint,
uint16 u16ClientAddress,
tsOTA_WaitForData *sWaitForDataParams);
624 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_ServerUpgradeEndResponse

Description

This function issues an Upgrade End Response to a client to which the server has
been downloading an application image. The function is called after receiving an
Upgrade End Request from the client, indicating that the client has received the
entire application image and verified it (the arrival of this request triggers the event
E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST on the server).

The Upgrade End Response includes the upgrade time for the downloaded image as
well as the current time (the client will use this information to implement a delay
before upgrading the running application image).

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Parameters

u8SourceEndpoint Number of endpoint (on server) from which the
response will be sent

u8DestinationEndpoint Number of endpoint (on client) to which the
response will be sent

psDestinationAddress Pointer to structure containing the address of the
target client for the response (see Section
34.1.4)

psUpgradeResponsePayload Pointer to structure containing payload for
response (see Section 30.10.13)

u8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

teZCL_Status eOTA_ServerUpgradeEndResponse(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_UpgradeEndResponsePayload

 *psUpgradeResponsePayload,
uint8 u8TransactionSequenceNumber);

Note: The cluster server responds automatically to an
Upgrade End Request, so it is not normally necessary for the
application to call this function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 625

Chapter 30
OTA Upgrade Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL
626 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_ServerSwitchToNewImage

Description

This function can be used to force a reset of the JN516x device in the OTA server
node and, on reboot, run a new application image that has been saved in the
attached Flash memory.

Before forcing the reset of the JN516x device, the function checks whether the
version of the new image is greater than the version of the current image. If this is
the case, the function invalidates the currently running image in Flash memory and
initiates a software reset - otherwise, it returns an error.

The new application image is identified by its index number. The specified image
index number must be in the range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint Number of endpoint (on server) on which cluster operates

u8ImageIndex Index number of image

Returns

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_FAIL

E_ZCL_SUCCESS

teZCL_Status eOTA_ServerSwitchToNewImage(
uint8 u8Endpoint,
uint8 u8ImageIndex);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 627

Chapter 30
OTA Upgrade Cluster

eOTA_InvalidateStoredImage

Description

This function can be used to invalidate an application image that is held in the Flash
memory attached to the JN516x device in the OTA server node. Once the image has
been invalidated, it will no longer to available for OTA upgrade.

The image to be invalidated is identified by its index number. The specified image
index number must be in the range 0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1).

Parameters

u8Endpoint Number of endpoint (on server) on which cluster operates

u8ImageIndex Index number of image to be invalidated

Returns

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_SUCCESS

teZCL_Status eOTA_InvalidateStoredImage(
uint8 u8Endpoint,
uint8 u8ImageIndex);
628 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_ServerQuerySpecificFileResponse

Description

This function can be used to issue a Query Specific File Response to a client which
has sent a Query Specific File Request (the arrival of this request triggers the event
E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_REQUEST on the server).
The Query Specific File Response contains information on the latest device-specific
file available for download to the client, including the file size and file version.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Parameters

u8SourceEndpoint Number of endpoint (on server) from which the
response will be sent

u8DestinationEndpoint Number of endpoint (on client) to which the
response will be sent

psDestinationAddress Pointer to structure containing the address of the
target client

psQuerySpecificFileResponsePayload
Pointer to structure containing payload for Query
Specific File Response (see Section 30.10.20)

u8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_ServerQuerySpecificFileResponse(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_QuerySpecificFileResponsePayload

 *psQuerySpecificFileResponsePayload,
uint8 u8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 629

Chapter 30
OTA Upgrade Cluster

30.9.3 Client Functions

The following OTA Upgrade cluster functions can be used on the cluster client only:

Function Page

eOTA_SetServerAddress 631

eOTA_ClientQueryNextImageRequest 632

eOTA_ClientImageBlockRequest 633

eOTA_ClientImagePageRequest 634

eOTA_ClientUpgradeEndRequest 635

eOTA_HandleImageVerification 637

eOTA_UpdateCoProcessorOTAHeader 638

eOTA_CoProcessorUpgradeEndRequest 639

eOTA_UpdateCoProcessorOTAHeader 638

eOTA_UpdateClientAttributes 641

eOTA_RestoreClientData 642

vOTA_SetImageValidityFlag 643

eOTA_ClientQuerySpecificFileRequest 644

eOTA_SpecificFileUpgradeEndRequest 645

eOTA_UpdateCoProcessorOTAHeader 638

vOTA_SetLowVoltageFlag 646
630 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_SetServerAddress

Description

This function sets the addresses (64-bit IEEE/MAC address and 16-bit network
address) of the OTA Upgrade cluster server that will be used to provide application
upgrade images to the local client.

The function should be called after a server discovery has been performed to find a
suitable server - this is done by sending out a Match Descriptor Request using the
function ZPS_eAplZdpMatchDescRequest() described in the ZigBee PRO Stack
User Guide (JN-UG-3101 or JN-UG-3048). The server discovery must be completed
and a server address set before any OTA-related message exchanges can occur
(e.g. image request).

Parameters

u8Endpoint Number of endpoint corresponding to application

u64IeeeAddress IEEE/MAC address of server

u16ShortAddress Network address of server

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_SetServerAddress(
uint8 u8Endpoint,
uint64 u64IeeeAddress,
uint16 u16ShortAddress);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 631

Chapter 30
OTA Upgrade Cluster

eOTA_ClientQueryNextImageRequest

Description

This function issues a Query Next Image Request to the server and should be called
in either of the following situations:

 to poll for a new application image (typically used in this way by an End Device) - in this
case, the function should normally be called periodically

 to respond to an Image Notify message from the server, which indicated that a new
application image is available for download - in this case, the function call should be
prompted by the event E_CLD_OTA_COMMAND_IMAGE_NOTIFY

The payload of the request includes the relevant image type, current file version,
hardware version and manufacturer code.

As a result of this function call, a Query Next Image Response will (eventually) be
received from the server. The arrival of this response will trigger an
E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE event.

Parameters

u8SourceEndpoint Number of endpoint (on client) from which the
request will be sent

u8DestinationEndpoint Number of endpoint (on server) to which the
request will be sent

psDestinationAddress Pointer to structure containing the address of the
target server (see Section 34.1.4)

psQueryImageRequest Pointer to structure containing payload for
request (see Section 30.10.7)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_ClientQueryNextImageRequest(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_QueryImageRequest

 *psQueryImageRequest);
632 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_ClientImageBlockRequest

Description

This function can be used during an image download to send an Image Block
Request to the server, in order to request the next block of image data.

As a result of this function call, an Image Block Response containing the requested
data block will (eventually) be received from the server. The arrival of this response
will trigger an E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE
event.

Parameters

u8SourceEndpoint Number of endpoint (on client) from which the
request will be sent

u8DestinationEndpoint Number of endpoint (on server) to which the
request will be sent

psDestinationAddress Pointer to structure containing the address of the
target server (see Section 34.1.4)

psOtaBlockRequest Pointer to structure containing payload for
request (see Section 30.10.9)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_ClientImageBlockRequest(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_BlockRequest

 *psOtaBlockRequest);

Note: The cluster client automatically sends Image Block
Requests to the server during a download, so it is not
normally necessary for the application to call this function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 633

Chapter 30
OTA Upgrade Cluster

eOTA_ClientImagePageRequest

Description

This function can be used during an image download to send an Image Page
Request to the server, in order to request the next page of image data. In this function
call, a structure must be supplied which contains the payload data for the request.
This data includes the page size, in bytes.

As a result of this function call, a sequence of Image Block Responses containing the
requested data will (eventually) be received from the server. The arrival of each
response will trigger an E_CLD_OTA_COMMAND_BLOCK_RESPONSE event on
the client. If this function is used (rather than the stack) to issue Image Page
Requests, it is the responsibility of the application to keep a count of the number of
data bytes received since the Image Page Request was issued - when all the
requested page data has been received, this count will equal the specified page size.

Page requests are described in more detail Section 30.7.4.

Parameters

u8SourceEndpoint Number of endpoint (on client) from which the
request will be sent

u8DestinationEndpoint Number of endpoint (on server) to which the
request will be sent

psDestinationAddress Pointer to structure containing the address of the
target server (see Section 34.1.4)

psOtaPageRequest Pointer to structure containing payload for
request (see Section 30.10.10)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_ClientImagePageRequest(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_ImagePageRequest *psOtaPageRequest);

Note 1: Image Page Requests can be used instead of Image
Block Requests if page requests have been enabled in the
zcl_options.h file for the client and server (see Section
30.12).

Note 2: The cluster client automatically sends Image Page
Requests (if enabled) to the server during a download, so it is
not normally necessary for the application to call this function.
634 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_ClientUpgradeEndRequest

Description

This function can be used during an image download to send an Upgrade End
Request to the server. This is normally used to indicate that all the image data has
been received and that the image has been successfully verified - it is the
responsibility of the client to determine when all the image data has been received
(using the image size quoted in the original Query Next Image Response) and then
to verify the image.

In addition to the status OTA_STATUS_SUCCESS described above, the function
can be used by the client to report other conditions to the server:

 OTA_REQUIRE_MORE_IMAGE: The downloaded image was successfully received
and verified, but the client requires multiple images before performing an upgrade

 OTA_STATUS_INVALID_IMAGE: The downloaded image failed the verification checks
and will be discarded

 OTA_STATUS_ABORT The image download that is currently in progress should be
cancelled

In all three of the above cases, the client may then request another download.

When the function is called to report success, an Upgrade End Response will
(eventually) be received from the server, indicating when the image upgrade should
be implemented (a time delay may be indicated in the response). The arrival of this
response will trigger an E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE
event.

Parameters

u8SourceEndpoint Number of endpoint (on client) from which the
request will be sent

u8DestinationEndpoint Number of endpoint (on server) to which the
request will be sent

psDestinationAddress Pointer to structure containing the address of the
target server (see Section 34.1.4)

teZCL_Status eOTA_ClientUpgradeEndRequest(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_UpgradeEndRequestPayload

 *psUpgradeEndRequestPayload);

Note: The cluster client automatically sends an Upgrade End
Request to the server on completion of a download, so it is
not normally necessary for the application to call this function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 635

Chapter 30
OTA Upgrade Cluster

psUpgradeEndRequestPayload Pointer to structure containing payload for
request, including reported status (see Section
30.10.12)

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL
636 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_HandleImageVerification

Description

This function transmits an upgrade end request with the specified status.

Parameters

u8SourceEndPointId Identifier of endpoint on which the cluster
client operates

u8DstEndpoint Identifier of endpoint (on the server) to which
the upgrade end request will be sent

eImageVerificationStatus Image status code

Returns

E_ZCL_FAIL

E_ZCL_SUCCESS

teZCL_Status eOTA_HandleImageVerification(
uint8 u8SourceEndPointId,
uint8 u8DstEndpoint,
teZCL_Status eImageVerificationStatus);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 637

Chapter 30
OTA Upgrade Cluster

eOTA_UpdateCoProcessorOTAHeader

Description

This function can be used to register the OTA header information of one or more co-
processor upgrade image(s) with the OTA Upgrade cluster client before the client
requests a download of the image(s) from the OTA server node. OTA upgrade
images for the co-processor are held in a storage device which is external to the co-
processor. The function provides, in big endian format, the OTA headers of the
currently stored images to the OTA Upgrade cluster on the JN516x device. This
information allows the cluster to request new upgrade images for the co-processor
when they become available on the OTA server.

The function also specifies whether or not the co-processor image(s) are dependent
on the client image for the JN516x that is also being upgraded.

Note that the maximum number of OTA upgrade images that can be stored for the
co-processor is given by the value of OTA_MAX_CO_PROCESSOR_IMAGES,
which is defined at compile-time (see Section 30.12).

Parameters

psOTA_CoProcessorOTAHeader Pointer to array of OTA headers of application
images which are stored for the co-processor
(see Section 30.10.2)

bIsCoProcessorImageUpgradeDependent

Indicates whether the co-processor upgrade
image is dependant on the JN516x client
image that is also being upgraded:
TRUE - Image upgrade is dependent on other
upgrade images
FALSE - Image upgrade is independent

Returns

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_FAIL

teZCL_Status eOTA_UpdateCoProcessorOTAHeader(
 tsOTA_CoProcessorOTAHeader *psOTA_CoProcessorOTAHeader,
 bool_t bIsCoProcessorImageUpgradeDependent);
638 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_CoProcessorUpgradeEndRequest

Description

This function can be used during the download of a co-processor upgrade image to
send an Upgrade End Request to the server. This is normally used to indicate that
all the image data has been received and that the image has been successfully
verified - it is the responsibility of the client application to determine when all the
image data has been received (using the image size quoted in the original Query
Next Image Response) and then to verify the image.

In addition to the status OTA_STATUS_SUCCESS described above, the function
can be used by the client to report other conditions to the server:

 OTA_REQUIRE_MORE_IMAGE: The downloaded image was successfully received
and verified, but the client requires multiple images before performing an upgrade

 OTA_STATUS_INVALID_IMAGE: The downloaded image failed the verification checks
and will be discarded

 OTA_STATUS_ABORT: The image download that is currently in progress should be
cancelled

In all three of the above cases, the client may then request another download.

When the function is called to report success, an Upgrade End Response will
(eventually) be received from the server, indicating when the image upgrade should
be implemented (a time delay may be indicated in the response). The response
triggers an E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE event.

Parameters

u8SourceEndPointId Number of endpoint (on client) on which cluster
operates

u8Status Status of download and verification, one of:
OTA_STATUS_SUCCESS
OTA_STATUS_INVALID_IMAGE
OTA_REQUIRE_MORE_IMAGE
OTA_STATUS_ABORT

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_CoProcessorUpgradeEndRequest(
uint8 u8SourceEndPointId,
uint8 u8Status);

Note: Although the OTA Upgrade cluster client normally
sends an Upgrade End Request to the server on completion
of a download, this is not the case for a co-processor image
and so it is necessary for the application to call this function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 639

Chapter 30
OTA Upgrade Cluster

eOTA_ClientSwitchToNewImage

Description

This function is used to switch a JN516x device to a new client image when a co-
processor upgrade is a dependent, i.e. all upgrade images are required to complete
at the same time. This function should be called from the callback event
E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_SWITCH_TO_NEW_IMAGE.

Parameters

u8SourceEndPointId Identifier of endpoint on which the cluster
client operates

Returns

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_SUCCESS

teZCL_Status eOTA_ClientSwitchToNewImage(
uint8 u8SourceEndPointId);
640 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_UpdateClientAttributes

Description

This function can be used on a client to set the OTA Upgrade cluster attributes to
their default values. The u32ImageStamp attribute can be initialised to a user-
defined value. The function should be called during application initialisation after the
cluster instance has been created using eOTA_Create().

Following subsequent resets, provided that context data has been saved, the
application should call eOTA_RestoreClientData() instead of this function.

Parameters

u8Endpoint Number of endpoint corresponding to context data

u32ImageStamp Value of u32ImageStamp attribute to be set

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_UpdateClientAttributes(
uint8 u8Endpoint,
uint32 u32ImageStamp);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 641

Chapter 30
OTA Upgrade Cluster

eOTA_RestoreClientData

Description

This function can be used to restore OTA Upgrade context data that has been
previously saved to Flash memory (using the JenOS Persistent Data Manager) on
the local client - for example, it restores the OTA Upgrade attribute values. The
function can be used to restore the data in RAM following a device reset or simply to
refresh the data in RAM.

Parameters

8Endpoint Number of endpoint corresponding to context data

psOTAData Pointer to structure containing the context data to be restored
(see Section 30.10.14)

bReset Indicates whether the data restoration follows a reset:

TRUE - Follows a reset
FALSE - Does not follow a reset

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

teZCL_Status eOTA_RestoreClientData(
uint8 u8Endpoint,
tsOTA_PersistedData *psOTAData,
bool_t bReset);
642 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vOTA_SetImageValidityFlag

Description

This function can be used to set an image validity flag once a downloaded upgrade
image has been received and verified by the client.

Parameters

u8Location Number of sector where image starts in Flash memory

psCustomData Pointer to custom data for image (see Section 30.10.3)

bSet Flag state to be set:

TRUE - Reset
FALSE - No reset

psEndPointDefinition Pointer to endpoint definition (see Section 34.1.1)

Returns

None

void vOTA_SetImageValidityFlag(
uint8 u8Location,
tsOTA_Common *psCustomData,
bool bSet,
tsZCL_EndPointDefinition *psEndPointDefinition);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 643

Chapter 30
OTA Upgrade Cluster

eOTA_ClientQuerySpecificFileRequest

Description

This function can be used to issue a Query Specific File Request to the server. It
should be called to request a device-specific file from the server. As a result of this
function call, a Query Specific File Response will (eventually) be received in reply.

Parameters

u8SourceEndpoint Number of endpoint (on client) from which the
request will be sent

u8DestinationEndpoint Number of endpoint (on server) to which the
request will be sent

psDestinationAddress Pointer to structure containing the address of the
target server

psQuerySpecificFileRequestPayload
Pointer to structure containing payload for Query
Specific File Request

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

eOTA_ClientQuerySpecificFileRequest(
uint8 u8SourceEndpoint,
uint8 u8DestinationEndpoint,
tsZCL_Address *psDestinationAddress,
tsOTA_QuerySpecificFileRequestPayload

 *psQuerySpecificFileRequestPayload);
644 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eOTA_SpecificFileUpgradeEndRequest

Description

This function can be used to issue an Upgrade End Request for the device-specific
file download that is in progress in order to indicate to the server that the download
has completed. This request can be issued by the client optionally after the
downloaded image has been verified and found to be valid.

Parameters

u8SourceEndPointId Number of endpoint (on client) from which the request will
be sent

u8Status Download status of device-specific file - if the file has been
completely and successfully received, this parameter must
be set to OTA_STATUS_SUCCESS

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

eOTA_SpecificFileUpgradeEndRequest(
uint8 u8SourceEndPointId,
uint8 u8Status);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 645

Chapter 30
OTA Upgrade Cluster

vOTA_SetLowVoltageFlag

Description

This function can be used to configure the low-voltage flag on a node hosting an OTA
Upgrade cluster client. This flag should be set when the supply voltage to the
underlying hardware is below that required for normal operation and the node should
not participate in an OTA upgrade.

 When the flag is set, the client stops sending Image Block Requests to the server

 When the flag is cleared, the client resumes sending Image Block Requests to the
server

Use of the low-voltage flag must be enabled at compile-time by including the macro
OTA_UPGRADE_VOLTAGE_CHECK in the zcl_options.h file.

Use of the low-voltage flag is described further in Section 30.7.8.

Parameters

bValue Determines the state of the low-voltage flag, as follows:

TRUE - Sets the flag
FALSE - Clears the flag

Returns

None

void vOTA_SetLowVoltageFlag(bool bValue);
646 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.10 Structures

30.10.1 tsOTA_ImageHeader

The following structure contains information for the OTA header:

typedef struct

{

 uint32 u32FileIdentifier;

 uint16 u16HeaderVersion;

 uint16 u16HeaderLength;

 uint16 u16HeaderControlField;

 uint16 u16ManufacturerCode;

 uint16 u16ImageType;

 uint32 u32FileVersion;

 uint16 u16StackVersion;

 uint8 stHeaderString[OTA_HEADER_STRING_SIZE];

 uint32 u32TotalImage;

 uint8 u8SecurityCredVersion;

 uint64 u64UpgradeFileDest;

 uint16 u16MinimumHwVersion;

 uint16 u16MaxHwVersion;

}tsOTA_ImageHeader;

where:

 u32FileIdentifier is a 4-byte value equal to 0x0BEEF11E which indicates
that the file contains an OTA upgrade image

 u16HeaderVersion is the version of the OTA header expressed as a 2-byte
value in which the most significant byte contains the major version number and
the least significant byte contains the minor version number

 u16HeaderLength is the full length of the OTA header, in bytes

 u16HeaderControlField is a bitmap indicating certain information about
the file, as detailed in table below.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 647

Chapter 30
OTA Upgrade Cluster

 u16ManufacturerCode is the ZigBee-assigned manufacturer code (0xFFFF
is a wild card value, representing any manufacturer)

 u16ImageType is a unique value representing the image type, where this
value is normally manufacturer-specific but certain values have been reserved
for specific file types, as indicated below (the wild card value of 0xFFFF
represents any file type):

 u32FileVersion contains the release and build numbers of the application
and stack used to produce the application image - for details of the file version
format, refer to the ZigBee Over-the-Air Upgrading Cluster Specification
(095264)

 u16StackVersion contains ZigBee stack version that is used by the
application (this is 0x0002 for ZigBee PRO)

 stHeaderString[] is a manufacturer-specific string that can be used to
store any useful human-readable information

 u32TotalImage is the total size, in bytes, of the image that will be transferred
over-the air (including the OTA header and any optional data)

 u8SecurityCredVersion indicates the security credential version type that
is required by the client in order to install the image - the possibilities are SE1.0
(0x0), SE1.1 (0x1) and SE2.0 (0x2)

Bit Information

0 Security credential version (in OTA header):
1: Field present in header
0: Field not present in header

1 Device-specific file (also see u64UpgradeFileDest):
1: File is device-specific
0: File is not device-specific

2 Maximum and minimum hardware version (in OTA header):
1: Field present in header
0: Field not present in header

3-15 Reserved

Value File Type

0x0000 – 0xFFBF Manufacturer-specific

0xFFC0 Security credential

0xFFC1 Configuration

0xFFC2 Log

0xFFC3 – 0xFFFE Reserved

0xFFFF Wild card
648 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u64UpgradeFileDest contains the IEEE/MAC address of the destination
device for the file, in the case when the file is device-specific (as indicated by
bit 1 of u16HeaderControlField)

 u16MinimumHwVersion indicates the earliest hardware platform on which the
image should be used, expressed as a 2-byte value in which the most
significant byte contains the hardware version number and the least significant
byte contains the revision number

 u16MaxHwVersion indicates the latest hardware platform on which the image
should be used, expressed as a 2-byte value in which the most significant byte
contains the hardware version number and the least significant byte contains
the revision number

30.10.2 tsOTA_CoProcessorOTAHeader

This structure is used on nodes in which a JN516x device operates in conjunction with
a co-processor. It contains an array of OTA headers corresponding to the application
images that are stored for the co-processor in an external storage device:

typedef struct

{

 tsOTA_ImageHeader sOTA_ImageHeader[OTA_MAX_CO_PROCESSOR_IMAGES];

}tsOTA_CoProcessorOTAHeader;

where sOTA_ImageHeader is an array of OTA headers for the application images
that are stored for the co-processor. Each array element is a tsOTA_ImageHeader
structure, as detailed in Section 30.10.1. The number of array elements is determined
by OTA_MAX_CO_PROCESSOR_IMAGES, defined at compile-time (see Section 30.12).

30.10.3 tsOTA_Common

The following structure contains data relating to an OTA message received by the
cluster (server or client) - this data is used for callback functions and the local OTA
state machine:

typedef struct

{

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

 tsZCL_CallBackEvent sOTACustomCallBackEvent;

 tsOTA_CallBackMessage sOTACallBackMessage;

} tsOTA_Common;

The fields are for internal use and no knowledge of them is required. The
tsOTA_CallBackMessage structure is described in Section 30.10.21.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 649

Chapter 30
OTA Upgrade Cluster

30.10.4 tsOTA_HwFncTable

The following structure contains pointers to callback functions to be used by the OTA
Upgrade cluster to perform initialisation, erase, write and read operations on Flash
memory (if these functions are not specified, standard NXP functions will be used):

typedef struct

{

 void (*prInitHwCb)(uint8, void*);

 void (*prEraseCb) (uint8 u8Sector);

 void (*prWriteCb) (uint32 u32FlashByteLocation,

 uint16 u16Len,

 uint8 *pu8Data);

 void (*prReadCb) (uint32 u32FlashByteLocation,

 uint16 u16Len,

 uint8 *pu8Data);

} tsOTA_HwFncTable;

where:

 prInitHwCb is a pointer to a callback function that is called after a cold or
warm start to perform any initialisation required for the Flash memory device

 prEraseCb is a pointer to a callback function that is called to erase a specified
sector of Flash memory

 prWriteCb is a pointer to a callback function that is called to write a block of
data to a sector, starting the write at a specified byte location in the sector
(address zero is the start of the sector)

 prReadCb is a pointer to a callback function that is called to read a block of
data from a sector, starting the read at a specified byte location in the sector
(address zero is the start of the sector)

30.10.5 tsNvmDefs

The following structure contains information used to configure access to Flash
memory:

typedef struct

{

 tsOTA_HwFncTable sOtaFnTable;

 uint32 u32SectorSize;

 uint8 u8FlashDeviceType;

}tsNvmDefs;

where:

 sOtaFnTable is a structure specifying the callback functions to be used by the
cluster to perform initialisation, erase, write and read operations on the Flash
650 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
memory device (see Section 30.10.4) - if user-defined callback functions are
not specified, standard NXP functions will be used

 u32SectorSize is the size of a sector of the Flash memory device, in bytes

 u8FlashDeviceType is a value indicating the type of Flash memory device,
one of:

 E_FL_CHIP_ST_M25P10_A (ST M25P10A)

 E_FL_CHIP_ST_M25P40_A (ST M25P40)

 E_FL_CHIP_SST_25VF010 (SST 25VF010)

 E_FL_CHIP_ATMEL_AT25F512 (Atmel AT25F512)

 E_FL_CHIP_CUSTOM (custom device)

 E_FL_CHIP_AUTO (auto-detection)

30.10.6 tsOTA_ImageNotifyCommand

The following structure contains the payload data for an Image Notify message issued
by the server when a new upgrade image is available for download:

typedef struct

{

 teOTA_ImageNotifyPayloadType ePayloadType;

 uint32 u32NewFileVersion;

 uint16 u16ImageType;

 uint16 u16ManufacturerCode;

 uint8 u8QueryJitter;

}tsOTA_ImageNotifyCommand;

where:

 ePayloadType is a value indicating the type of payload of the command
(enumerations are available - see Section 30.11.4)

 u32NewFileVersion is the file version of the client upgrade image that is
currently available for download (the wild card of 0xFFFFFFFF is used to
indicate that all clients should upgrade to this image)

 u16ImageType is a number indicating the type of image that is available for
download (the wild card of 0xFFFF is used to indicate that all image types are
involved)

 u16ManufacturerCode is a ZigBee-assigned number identifying the
manufacturer to which the available image is connected (if all manufacturers
are involved, this value should not be set)

 u8QueryJitter is a value between 1 and 100 (inclusive) which is used by the
receiving client to decide whether to reply to this Image Notify message - for
information on ‘Query Jitter’, refer to Section 30.6
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 651

Chapter 30
OTA Upgrade Cluster

30.10.7 tsOTA_QueryImageRequest

The following structure contains payload data for a Query Next Image Request issued
by a client to poll the server for an upgrade image or to respond to an Image Notify
message from the server:

typedef struct

{

 uint32 u32CurrentFileVersion;

 uint16 u16HardwareVersion;

 uint16 u16ImageType;

 uint16 u16ManufacturerCode;

 uint8 u8FieldControl;

}tsOTA_QueryImageRequest;

where:

 u32CurrentFileVersion is the file version of the application image that is
currently running on the client that sent the request

 u16HardwareVersion is the hardware version of the client device (this
information is optional - see u8FieldControl below)

 u16ImageType is a value in the range 0x0000-0xFFBF which identifies the
type of image currently running on the client

 u16ManufacturerCode is the ZigBee-assigned number identifying the
manufacturer of the client device

 u8FieldControl is a bitmap indicating whether certain optional information
about the client is included in this Query Next Image Request message.
Currently, this optional information consists only of the hardware version
(contained in u16HardwareVersion above) - bit 0 is set to ‘1’ if the hardware
version is included or to ‘0’ otherwise (all other bits are reserved)

30.10.8 tsOTA_QueryImageResponse

The following structure contains payload data for a Query Next Image Response
issued by the server (as the result of a Query Next Image Request from a client):

typedef struct

{

 uint32 u32ImageSize;

 uint32 u32FileVersion;

 uint16 u16ManufacturerCode;

 uint16 u16ImageType;

 uint8 u8Status;

}tsOTA_QueryImageResponse;
652 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
where:

 u32ImageSize is the total size of the available image, in bytes

 u32FileVersion is the file version of the available image

 u16ManufacturerCode is the manufacturer code that was received from the
client in the Query Next Image Request message

 u16ImageType is the image type that was received from the client in the
Query Next Image Request message

 u8Status indicates whether a suitable image is available for download:

 OTA_STATUS_SUCCESS: A suitable image is available

 OTA_STATUS_NO_IMAGE_AVAILABLE: No suitable image is available

The other elements of the structure are only included in the case of success.

30.10.9 tsOTA_BlockRequest

The following structure contains payload data for an Image Block Request issued by
a client to request an image data block from the server:

typedef struct

{

 uint64 u64RequestNodeAddress;

 uint32 u32FileOffset;

 uint32 u32FileVersion;

 uint16 u16ImageType;

 uint16 u16ManufactureCode;

 uint16 u16BlockRequestDelay;

 uint8 u8MaxDataSize;

 uint8 u8FieldControl;

}tsOTA_BlockRequest;

where:

 u64RequestNodeAddress is the IEEE/MAC address of the client device from
which the request originates (this information is optional - see
u8FieldControl below)

 u32FileOffset specifies the offset from the beginning of the upgrade image,
in bytes, of the requested data block (this value is therefore determined by the
amount of image data previously received)

 u32FileVersion is the file version of the upgrade image for which a data
block is being requested

 u16ImageType is a value in the range 0x0000-0xFFBF which identifies the
type of image for which a data block is being requested

 u16ManufactureCode is the ZigBee-assigned number identifying the
manufacturer of the client device from which the request originates
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 653

Chapter 30
OTA Upgrade Cluster

 u16BlockRequestDelay is used in ‘rate limiting’ to specify the value of the
‘block request delay’ attribute for the client - this is minimum time, in
milliseconds, that the client must wait between consecutive block requests (the
client will update the local attribute with this value). If the server does not
support rate limiting or does not need to limit the download rate to the client,
this field will be set to 0

 u8MaxDataSize specifies the maximum size, in bytes, of the data block that
the client can receive in one transfer (the server must therefore not send a data
block that is larger than indicated by this value)

 u8FieldControl is a bitmap indicating whether certain optional information
about the client is included in this Image Block Request message. Currently,
this optional information consists only of the IEEE/MAC address of the client
(contained in 64RequestNodeAddress above) - bit 0 is set to ‘1’ if this
address is included or to ‘0’ otherwise (all other bits are reserved)

30.10.10 tsOTA_ImagePageRequest

The following structure contains payload data for an Image Page Request issued by
a client to request a page of image data (multiple blocks) from the server:

typedef struct

{

 uint64 u64RequestNodeAddress;

 uint32 u32FileOffset;

 uint32 u32FileVersion;

 uint16 u16PageSize;

 uint16 u16ResponseSpacing;

 uint16 u16ImageType;

 uint16 u16ManufactureCode;

 uint8 u8MaxDataSize;

 uint8 u8FieldControl;

}tsOTA_ImagePageRequest;

where:

 u64RequestNodeAddress is the IEEE/MAC address of the client device from
which the request originates (this information is optional - see
u8FieldControl below)

 u32FileOffset specifies the offset from the beginning of the upgrade image,
in bytes, of the first data block of the requested page (this value is therefore
determined by the amount of image data previously received)

 u32FileVersion is the file version of the upgrade image for which data is
being requested

 u16PageSize is the total number of data bytes (in the page) to be returned by
the server before the next Image Page Request can be issued (this must be
larger than the value of u8MaxDataSize below)
654 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u16ResponseSpacing specifies the time-interval, in milliseconds, that the
server should introduce between consecutive transmissions of Image Block
Responses (which will be sent in response to the Image Page Request)

 u16ImageType is a value in the range 0x0000-0xFFBF which identifies the
type of image for which data is being requested

 u16ManufactureCode is the ZigBee-assigned number identifying the
manufacturer of the client device from which the request originates

 u8MaxDataSize specifies the maximum size, in bytes, of the data block that
the client can receive in one transfer (the server must therefore not send a data
block in an Image Block Response that is larger than indicated by this value)

 u8FieldControl is a bitmap indicating whether certain optional information
about the client is included in this Image Page Request message. Currently,
this optional information consists only of the IEEE/MAC address of the client
(contained in 64RequestNodeAddress above) - bit 0 is set to ‘1’ if this
address is included or to ‘0’ otherwise (all other bits are reserved)

30.10.11 tsOTA_ImageBlockResponsePayload

The following structure contains payload data for an Image Block Response issued by
the server (as the result of an Image Block Request from a client):

typedef struct

{

 uint8 u8Status;

 union

 {

 tsOTA_WaitForData sWaitForData;

 tsOTA_SuccessBlockResponsePayload sBlockPayloadSuccess;

 }uMessage;

}tsOTA_ImageBlockResponsePayload;

where:

 u8Status indicates whether a data block is included in the response:

 OTA_STATUS_SUCCESS: A data block is included

 OTA_STATUS_WAIT_FOR_DATA: No data block is included - client
should re-request a data block after a waiting time

 The element used from the union depends on the status reported above:

 sWaitForData is a structure containing information used to instruct the
requesting client to wait for a time before requesting the data block again
or requesting the next data block (see Section 30.10.15) - this information
is only provided in the case of the status
OTA_STATUS_WAIT_FOR_DATA

 sBlockPayloadSuccess is a structure containing a requested data
block and associated information (see Section 30.10.14) - this data is only
provided in the case of the status OTA_STATUS_SUCCESS
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 655

Chapter 30
OTA Upgrade Cluster

30.10.12 tsOTA_UpgradeEndRequestPayload

The following structure contains payload data for an Upgrade End Request issued by
a client to terminate/close an image download from the server:

typedef struct

{

 uint32 u32FileVersion;

 uint16 u16ImageType;

 uint16 u16ManufacturerCode;

 uint8 u8Status;

}tsOTA_UpgradeEndRequestPayload;

where:

 u32FileVersion is the file version of the upgrade image which has been
downloaded

 u16ImageType is the type of the upgrade image which has been downloaded

 u16ManufacturerCode is the ZigBee-assigned number identifying the
manufacturer of the client device from which the request originates

 u8Status is the reported status of the image download, one of:

 OTA_STATUS_SUCCESS (successfully downloaded and verified)

 OTA_STATUS_INVALID_IMAGE (downloaded but failed verification)

 OTA_REQUIRE_MORE_IMAGE (other images needed)

 OTA_STATUS_ABORT (download in progress is to be aborted)

30.10.13 tsOTA_UpgradeEndResponsePayload

The following structure contains payload data for an Upgrade End Response issued
by the server (as the result of an Upgrade End Request from a client):

typedef struct

{

 uint32 u32UpgradeTime;

 uint32 u32CurrentTime;

 uint32 u32FileVersion;

 uint16 u16ImageType;

 uint16 u16ManufacturerCode;

}tsOTA_UpgradeEndResponsePayload;

where:

 u32UpgradeTime is the UTC time, in seconds, at which the client should
upgrade the running image with the downloaded image. If the server does not
support UTC time (indicated by a zero value for u32CurrentTime), the client
should interpret this value as a time delay before performing the image upgrade
656 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u32CurrentTime is the current UTC time, in seconds, on the server. If UTC
time is not supported by the server, this value should be set to zero. If this value
is set to 0xFFFFFFFF, this indicates that the client should wait for an upgrade
command from the server before performing the image upgrade

 u32FileVersion is the file version of the downloaded application image (a
wild card value of 0xFFFFFFFF can be used when the same response is sent
to client devices from different manufacturers)

 u16ImageType is the type of the downloaded application image (a wild card
value of 0xFFFF can be used when the same response is sent to client devices
from different manufacturers)

 u16ManufacturerCode is the manufacturer code that was received from the
client in the Upgrade End Request message (a wild card value of 0xFFFF can
be used when the same response is sent to client devices from different
manufacturers)

30.10.14 tsOTA_SuccessBlockResponsePayload

The following structure contains payload data for an Image Block Response which
reports ‘success’ and therefore contains a block of image data (see Section 30.10.11):

typedef struct

{

 uint8* pu8Data;

 uint32 u32FileOffset;

 uint32 u32FileVersion;

 uint16 u16ImageType;

 uint16 u16ManufacturerCode;

 uint8 u8DataSize;

}tsOTA_SuccessBlockResponsePayload;

where:

 pu8Data is a pointer to the start of the data block being transferred

 u32FileOffset is the offset, in bytes, of the start of the data block from the
start of the image (normally, the same offset as specified in the Image Block
Request)

 u32FileVersion is the file version of the upgrade image to which the
included data block belongs

 u16ImageType is the type of the upgrade image to which the included data
block belongs

Note: If the client does not support UTC time but both of
the above time values are non-zero, the client will take
the difference between the two times as a time delay
before performing the image upgrade.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 657

Chapter 30
OTA Upgrade Cluster

 u16ManufacturerCode is the manufacturer code that was received from the
client in the Image Block Request

 u8DataSize is the length, in bytes, of the included data block (this must be
less than or equal to the maximum data block length for the client, specified in
the Image Block Request)

30.10.15 tsOTA_WaitForData

The following structure contains time information for an Image Block Response. It can
be used by a response which reports ‘failure’, to instruct the client to re-request the
data block after a certain waiting time (see Section 30.10.11). It can also be used in
‘rate limiting’ to specify a new value for the ‘block request delay’ attribute on the client.

typedef struct

{

 uint32 u32CurrentTime;

 uint32 u32RequestTime;

 uint16 u16BlockRequestDelayMs;

}tsOTA_WaitForData;

where:

 u32CurrentTime is the current UTC time, in seconds, on the server. If UTC
time is not supported by the server, this value should be set to zero

 u32RequestTime is the UTC time, in seconds, at which the client should re-
issue an Image Block Request. If the server does not support UTC time
(indicated by a zero value for u32CurrentTime), the client should interpret
this value as a time delay before re-issuing an Image Block Request

 u16BlockRequestDelayMs is used in ‘rate limiting’ to specify the value of the
‘block request delay’ attribute for the client - this is minimum time, in
milliseconds, that the client must wait between consecutive block requests (the
client will update the local attribute with this value). If the server does not
support rate limiting or does not need to limit the download rate to the client,
this field must be set to 0

Note: If the client does not support UTC time but both of
the above values are non-zero, the client will take the
difference between the two times as a time delay before
re-issuing an Image Block Request.
658 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.10.16 tsOTA_WaitForDataParams

The following structure is used in the tsOTA_CallBackMessage structure (see
Section 30.10.21) on an OTA Upgrade server. It contains the data needed to notify a
client that rate limiting is required or the client must wait to receive an upgrade image.

typedef struct

{

 bool_t bInitialized;

 uint16 u16ClientAddress;

 tsOTA_WaitForData sWaitForDataPyld;

}tsOTA_WaitForDataParams;

where:

 bInitialized is a boolean flag indicating the server’s request to the client:

TRUE - Implement rate limiting or wait to receive upgrade image

FALSE - Otherwise

 u16ClientAddress contains the 16-bit network address of the client

 sWaitForDataPyld is a structure containing the payload for an Image Block
Response with status OTA_STATUS_WAIT_FOR_DATA (see Section
30.10.15)

30.10.17 tsOTA_PageReqServerParams

The following structure is used in the tsOTA_CallBackMessage structure (see
Section 30.10.21) on an OTA Upgrade server. It contains the data from an Image
Page Request received from a client.

typedef struct

{

 uint8 u8TransactionNumber;

 bool_t bPageReqRespSpacing;

 uint16 u16DataSent;

 tsOTA_ImagePageRequest sPageReq;

 tsZCL_ReceiveEventAddress sReceiveEventAddress;

}tsOTA_PageReqServerParams;

where:

 u8TransactionNumber is the Transaction Sequence Number (TSN) which is
used in the Image Page Request

 bPageReqRespSpacing is a boolean used to request a spacing between
consecutive Image Block Responses:

TRUE - Implement spacing

FALSE - Otherwise
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 659

Chapter 30
OTA Upgrade Cluster

 u16DataSent indicates the number of data bytes contained in the Image Page
Request

 sPageReq is a structure containing the payload data from the Image Page
Request (see Section 30.10.10)

 sReceiveEventAddress contains the address of the OTA Upgrade client
that made the page request

30.10.18 tsOTA_PersistedData

The following structure contains the persisted data that is stored in Flash memory
using the JenOS PDM module:

typedef struct

{

 tsCLD_AS_Ota sAttributes;

 tsZCL_Address sDestinationAddress;

 uint32 u32FunctionPointer;

 uint32 u32RequestBlockRequestTime;

 uint32 u32CurrentFlashOffset;

 uint32 u32TagDataWritten;

 uint32 u32Step;

 uint16 u16ServerShortAddress;

#ifdef OTA_CLD_ATTR_REQUEST_DELAY

 bool_t bWaitForBlockReq;

#endif

 uint8 u8ActiveTag[OTA_TAG_HEADER_SIZE];

 uint8 u8PassiveTag[OTA_TAG_HEADER_SIZE];

#if JENNIC_CHIP_FAMILY == JN514x

 uint8 u8CurrentSigningCertificate [OTA_SIGNING_CERT_SIZE];

 uint8 u8CurrentSignature[OTA_SIGNITURE_SIZE];

#endif

 uint8 au8Header[OTA_MAX_HEADER_SIZE];

 uint8 u8Retry;

 uint8 u8RequestTransSeqNo;

 uint8 u8DstEndpoint;

 bool_t bIsCoProcessorImage;

 bool_t bIsSpecificFile;

 bool_t bIsNullImage;

 uint8 u8CoProcessorOTAHeaderIndex;

#if JENNIC_CHIP_FAMILY == JN514x

 AESSW_Block_u uClientHash;

 AESSW_Block_u uClientBufToHash;

 uint8 u8ClientRemainingLengthToHash;

#endif
660 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 uint32 u32CoProcessorImageSize;

 uint32 u32SpecificFileSize;

#ifdef OTA_PAGE_REQUEST_SUPPORT

 tsOTA_PageReqParams sPageReqParams;

#endif

#if (OTA_MAX_CO_PROCESSOR_IMAGES != 0)

 uint8 u8NumOfDownloadableImages;

#endif

#ifdef OTA_INTERNAL_STORAGE

 uint8 u8Buf[4];

#endif

}tsOTA_PersistedData;

The fields are for internal use and no knowledge of them is required.

30.10.19 tsOTA_QuerySpecificFileRequestPayload

The following structure contains the payload for a Query Specific File Request which
is issued by an OTA Upgrade client to request a device-specific file from the server.

typedef struct

{

 uint64 u64RequestNodeAddress;

 uint16 u16ManufacturerCode;

 uint16 u16ImageType;

 uint32 u32FileVersion;

 uint16 u16CurrentZibgeeStackVersion;

}tsOTA_QuerySpecificFileRequestPayload;

where:

 u64RequestNodeAddress is the IEEE/MAC address of the node requesting
the device-specific file from the server

 u16ManufactuerCode is the ZigBee-assigned manufacturer code of the
requesting node (0xFFFF is used to indicate any manufacturer)

 u16ImageType indicates the requested file type - one of the reserved values
that are assigned to the device-specific file types (the value should be in the
range 0xFFC0 to 0xFFFE, but only 0xFFC0 to 0xFFC2 are currently in use)

 32FileVersion contains the release and build numbers of the application
and stack that correspond to the device-specific file - for details of the format,
refer to the ZigBee Over-the-Air Upgrading Cluster Specification (095264)

 u16CurrentZigbeeStackVersion contains the version of ZigBee stack
that is currently running on the client
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 661

Chapter 30
OTA Upgrade Cluster

30.10.20 tsOTA_QuerySpecificFileResponsePayload

The following structure contains the payload for a Query Specific File Response which
is issued by an OTA Upgrade server in response to a request for a device-specific file.

typedef struct

{

 uint32 u32FileVersion;

 uint32 u32ImageSize;

 uint16 u16ImageType;

 uint16 u16ManufacturerCode;

 uint8 u8Status;

}tsOTA_QuerySpecificFileResponsePayload;

where:

 32FileVersion contains the release and build numbers of the application
and stack that correspond to the device-specific file - this field will take the
same value as the equivalent field in the corresponding Query Specific File
Request (see Section 30.10.19)

 u32ImageSize is the size of the requested file, in bytes

 u16ImageType indicates the requested file type - this field will take the same
value as the equivalent field in the corresponding Query Specific File Request
(see Section 30.10.19)

 u16ManufactuerCode is the ZigBee-assigned manufacturer code of the
requesting node - this field will take the same value as the equivalent field in
the corresponding Query Specific File Request (see Section 30.10.19)

 u8Status indicates whether a suitable file is available for download:

 OTA_STATUS_SUCCESS: A suitable file is available

 OTA_STATUS_NO_IMAGE_AVAILABLE: No suitable file is available

The other elements of the structure are only included in the case of success.
662 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.10.21 tsOTA_CallBackMessage

For an OTA event, the eEventType field of the tsZCL_CallBackEvent structure is
set to E_ZCL_CBET_CLUSTER_CUSTOM. This event structure also contains an
element sClusterCustomMessage, which is itself a structure containing a field
pvCustomData. This field is a pointer to the following tsOTA_CallBackMessage
structure:

typedef struct

{

 teOTA_UpgradeClusterEvents eEventId;

#ifdef OTA_CLIENT

 tsOTA_PersistedData sPersistedData;

 uint8 au8ReadOTAData[OTA_MAX_BLOCK_SIZE];

 uint8 u8NextFreeImageLocation;

 uint8 u8CurrentActiveImageLocation;

#endif

#ifdef OTA_SERVER

 tsCLD_PR_Ota
aServerPrams[OTA_MAX_IMAGES_PER_ENDPOINT+OTA_MAX_CO_PROCESSOR_IMAGES];

 tsOTA_AuthorisationStruct sAuthStruct;

 uint8 u8ServerImageStartSector;

 bool bIsOTAHeaderCopied;

 uint8 au8ServerOTAHeader[OTA_MAX_HEADER_SIZE+OTA_TAG_HEADER_SIZE];

 tsOTA_WaitForDataParams sWaitForDataParams;

#ifdef OTA_PAGE_REQUEST_SUPPORT

 tsOTA_PageReqServerParams sPageReqServerParams;

#endif

#endif

 uint8 u8ImageStartSector[OTA_MAX_IMAGES_PER_ENDPOINT];

 uint8 au8CAPublicKey[22];

 uint8 u8MaxNumberOfSectors;

 union

 {

 tsOTA_ImageNotifyCommand sImageNotifyPayload;

 tsOTA_QueryImageRequest sQueryImagePayload;

 tsOTA_QueryImageResponse sQueryImageResponsePayload;

 tsOTA_BlockRequest sBlockRequestPayload;

 tsOTA_ImagePageRequest sImagePageRequestPayload;

 tsOTA_ImageBlockResponsePayload sImageBlockResponsePayload;

 tsOTA_UpgradeEndRequestPayload sUpgradeEndRequestPayload;

 tsOTA_UpgradeEndResponsePayload sUpgradeResponsePayload;

 tsOTA_QuerySpecificFileRequestPayload sQuerySpFileRequestPayload;

 tsOTA_QuerySpecificFileResponsePayload
sQuerySpFileResponsePayload;

 teZCL_Status eQueryNextImgRspErrStatus;

 tsOTA_SignerMacVerify sSignerMacVerify;

 tsOTA_ImageVersionVerify sImageVersionVerify;

 tsOTA_UpgradeDowngradeVerify sUpgradeDowngradeVerify;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 663

Chapter 30
OTA Upgrade Cluster

 }uMessage;

}tsOTA_CallBackMessage;

where:

 eEventId is the OTA event type (enumerations are detailed in Section
30.11.2)

 sPersistedData is the structure (see Section 30.10.18) which contains the
persisted data that is stored in Flash memory using the JenOS PDM module on
the client

 au8ReadOTAData is an array containing the payload data from an Image
Block Response

 u8NextFreeImageLocation identifies the next free image location where a
new upgrade image can be stored

 u8CurrentActiveImageLocation identifies the location of the currently
active image on the client

 aServerPrams is an array containing the server data for each image which
can be updated by application

 sAuthStruct is a structure which stores the authorisation state and list of
client devices that are authorised for OTA upgrade

 u8ServerImageStartSector identifies the server self-image start-sector

 bIsOTAHeaderCopied specifies whether the new OTA header is copied
(TRUE) or not (FALSE)

 au8ServerOTAHeader specifies the current server OTA header

 sWaitForDataParams is a structure containing time information that may
need to be modified by the server for inclusion in an Image Block Response (for
more information, refer to Section 30.10.15)

 sPageReqServerParams is a structure containing page request information
that may need to be modified by the server

 u8ImageStartSector is used to store the image start-sector for each image
which is stored or will be stored in the JN516x external Flash memory - note
that this variable assumes a 32-Kbyte sector size and so, for example, if
64-Kbyte sectors are used, its value will be twice the actual start-sector value

 au8CAPublicKey specifies the CA public key

 u8MaxNumberOfSectors specifies the maximum number of sectors to be
used per image

 uMessage is a union containing the command payload in one of the following
forms (depending on the command specified by eEventId):

 sImageNotifyPayload is a structure containing the payload of an
Image Notify command

 sQueryImagePayload is a structure containing the payload of a Query
Next Image Request

 sQueryImageResponsePayload is a structure containing the payload of
a Query Next Image Response
664 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 sBlockRequestPayload is a structure containing the payload of an
Image Block Request

 sImagePageRequestPayload is a structure containing the payload of
an Image Page Request

 sImageBlockResponsePayload is a structure containing the payload of
an Image Block Response

 sUpgradeEndRequestPayload is a structure containing the payload of
an Upgrade End Request

 sUpgradeResponsePayload is a structure containing the payload of an
Upgrade End Response

 sQuerySpFileRequestPayload is a structure containing the payload of
a Query Specific File Request

 sQuerySpFileResponsePayload is a structure containing the payload
of a Query Specific File Response

 eQueryNextImgRspErrStatus is the status returned from the query
image response command handler and can be passed up to the
application when there is an error via the callback event
E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE_
ERROR. The returned status value will be either
E_ZCL_ERR_INVALID_IMAGE_SIZE or
E_ZCL_ERR_INVALID_IMAGE_VERSION

 sSignerMacVerify is a structure containing the signer’s IEEE/MAC
address from a new upgrade image and a status field (which is set by the
application after verifying the signer’s address)

 sImageVersionVerify is a structure containing the image version
received in the query next image response and status field (which is set by
the application after verifying the image version)

 sUpgradeDowngradeVerify is a structure containing the image version
received in the upgrade end response and a status field (which is set by
the application after verifying the image version)

30.10.22 tsCLD_PR_Ota

The following structure contains server parameter data that can be pre-set using the
function eOTA_SetServerParams() and obtained using eOTA_GetServerData():

typedef struct

{

 uint8* pu8Data;

 uint32 u32CurrentTime;

 uint32 u32RequestOrUpgradeTime;

 uint8 u8QueryJitter;

 uint8 u8DataSize;

} tsCLD_PR_Ota;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 665

Chapter 30
OTA Upgrade Cluster

where:

 pu8Data is a pointer to the start of a block of data

 u32CurrentTime is the current UTC time, in seconds, on the server. If UTC
time is not supported by the server, this value should be set to zero

 u32RequestOrUpgradeTime is used by the server as the ‘request time’ and
the ‘upgrade time’ when sending responses to clients:

 As a ‘request time’, the value may be included in an Image Block
Response (see Section 30.10.11 and Section 30.10.15)

 As an ‘upgrade time’, the value will be included in an Upgrade End
Response (see Section 30.10.13)

 u8QueryJitter is a value between 1 and 100 (inclusive) which is used by a
receiving client to decide whether to reply to an Image Notify message - for
information on ‘Query Jitter’, refer to Section 30.6

 u8DataSize is the length, in bytes, of the data block pointed to by pu8Data

30.10.23 tsCLD_AS_Ota

This structure contains attribute values which are stored as part of the persisted data
in Flash memory:

typedef struct

{

 uint64 u64UgradeServerID;

 uint32 u32FileOffset;

 uint32 u32CurrentFileVersion;

 uint16 u16CurrentStackVersion;

 uint32 u32DownloadedFileVersion;

 uint16 u16DownloadedStackVersion;

 uint8 u8ImageUpgradeStatus;

 uint16 u16ManfId;

 uint16 u16ImageType;

 uint16 u16MinBlockRequestDelay;

 uint32 u32ImageStamp;

} tsCLD_AS_Ota;

where the structure elements are OTA Upgrade cluster attribute values, as
described in Section 30.2.
666 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.10.24 tsOTA_ImageVersionVerify

The following structure contains the data for an event of the type
E_CLD_OTA_INTERNAL_COMMAND_VERIFY_IMAGE_VERSION.

typedef struct

{

 uint32 u32NotifiedImageVersion;

 uint32 u32CurrentImageVersion;

 teZCL_Status eImageVersionVerifyStatus;

}tsOTA_ImageVersionVerify;

where:

 u32NotifiedImageVersion is the version received in the query next image
response

 u32CurrentImageVersion is the version of the running image

 eImageVersionVerifyStatus is a status field which should be updated to
E_ZCL_SUCCESS or E_ZCL_FAIL by the application after checking the
received image version, to indicate whether the upgrade image has a valid
image version

30.10.25 tsOTA_UpgradeDowngradeVerify

The following structure contains the data for an event of the type
E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_UPGRADE_DOWNGRADE.

typedef struct

{

 uint32 u32DownloadImageVersion;

 uint32 u32CurrentImageVersion;

 teZCL_Status eUpgradeDowngradeStatus;

}tsOTA_UpgradeDowngradeVerify;

where:

 u32DownloadImageVersion is the version received in upgrade end
response

 u32CurrentImageVersion is the version of running image

 eImageVersionVerifyStatus is a status field which should be updated to
E_ZCL_SUCCESS or E_ZCL_FAIL by the application after checking the
received image version, to indicate whether the upgrade image has a valid
image version
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 667

Chapter 30
OTA Upgrade Cluster

30.11 Enumerations

30.11.1 teOTA_Cluster

The following enumerations represent the OTA Upgrade cluster attributes:

typedef enum

{

 E_CLD_OTA_ATTR_UPGRADE_SERVER_ID,

 E_CLD_OTA_ATTR_FILE_OFFSET,

 E_CLD_OTA_ATTR_CURRENT_FILE_VERSION,

 E_CLD_OTA_ATTR_CURRENT_ZIGBEE_STACK_VERSION,

 E_CLD_OTA_ATTR_DOWNLOADED_FILE_VERSION,

 E_CLD_OTA_ATTR_DOWNLOADED_ZIGBEE_STACK_VERSION,

 E_CLD_OTA_ATTR_IMAGE_UPGRADE_STATUS,

 E_CLD_OTA_ATTR_MANF_ID,

 E_CLD_OTA_ATTR_IMAGE_TYPE,

 E_CLD_OTA_ATTR_REQUEST_DELAY

}teOTA_Cluster;

The above enumerations are described in the table below.

The above attributes are described in Section 30.2.

 Enumeration Attribute

E_CLD_OTA_ATTR_UPGRADE_SERVER_ID Upgrade Server ID

E_CLD_OTA_ATTR_FILE_OFFSET File Offset

E_CLD_OTA_ATTR_CURRENT_FILE_VERSION Current File Version

E_CLD_OTA_ATTR_CURRENT_ZIGBEE_STACK_VERSION Current ZigBee Stack Version

E_CLD_OTA_ATTR_DOWNLOADED_FILE_VERSION Downloaded File Version

E_CLD_OTA_ATTR_DOWNLOADED_ZIGBEE_STACK_VERSION Downloaded ZigBee Stack Version

E_CLD_OTA_ATTR_IMAGE_UPGRADE_STATUS Image Upgrade Status

E_CLD_OTA_ATTR_MANF_ID Manufacturer ID

E_CLD_OTA_ATTR_IMAGE_TYPE Image Type

E_CLD_OTA_ATTR_REQUEST_DELAY Minimum Block Request Delay

Table 32: OTA Upgrade Cluster Attributes
668 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.11.2 teOTA_UpgradeClusterEvents

The following enumerations represent the OTA Upgrade cluster events:

typedef enum

{

 E_CLD_OTA_COMMAND_IMAGE_NOTIFY,

 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_REQUEST,

 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE,

 E_CLD_OTA_COMMAND_BLOCK_REQUEST,

 E_CLD_OTA_COMMAND_PAGE_REQUEST,

 E_CLD_OTA_COMMAND_BLOCK_RESPONSE,

 E_CLD_OTA_COMMAND_UPGRADE_END_REQUEST,

 E_CLD_OTA_COMMAND_UPGRADE_END_RESPONSE,

 E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_REQUEST,

 E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_RESPONSE,

 E_CLD_OTA_INTERNAL_COMMAND_TIMER_EXPIRED,

 E_CLD_OTA_INTERNAL_COMMAND_SAVE_CONTEXT,

 E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_ABORTED,

 E_CLD_OTA_INTERNAL_COMMAND_POLL_REQUIRED,

 E_CLD_OTA_INTERNAL_COMMAND_RESET_TO_UPGRADE,

 E_CLD_OTA_INTERNAL_COMMAND_LOCK_FLASH_MUTEX,

 E_CLD_OTA_INTERNAL_COMMAND_FREE_FLASH_MUTEX,

 E_CLD_OTA_INTERNAL_COMMAND_SEND_UPGRADE_END_RESPONSE,

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_BLOCK_RESPONSE,

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_DL_ABORT,

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_DL_COMPLETE,

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_SWITCH_TO_NEW_IMAGE,

 E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_BLOCK_REQUEST,

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_BLOCK_RESPONSE,

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_ABORT,

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_DL_COMPLETE,

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_USE_NEW_FILE,

 E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_FILE_NO_UPGRADE_END_RESPONSE,

 E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_RESPONSE_ERROR,

 E_CLD_OTA_INTERNAL_COMMAND_VERIFY_SIGNER_ADDRESS,

 E_CLD_OTA_INTERNAL_COMMAND_RCVD_DEFAULT_RESPONSE,

 E_CLD_OTA_INTERNAL_COMMAND_VERIFY_IMAGE_VERSION,

 E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_UPGRADE_DOWNGRADE,

 E_CLD_OTA_INTERNAL_COMMAND_REQUEST_QUERY_NEXT_IMAGES,

 E_CLD_OTA_INTERNAL_COMMAND_OTA_START_IMAGE_VERIFICATION_IN_LOW_PRIORITY,

 E_CLD_OTA_INTERNAL_COMMAND_FAILED_VALIDATING_UPGRADE_IMAGE,

 E_CLD_OTA_INTERNAL_COMMAND_FAILED_COPYING_SERIALIZATION_DATA

}teOTA_UpgradeClusterEvents;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 669

Chapter 30
OTA Upgrade Cluster

The above enumerations are described in the table below.

 Enumeration Event Description

E_CLD_OTA_COMMAND_IMAGE_NOTIFY Generated on client when an Image Notify message is
received from the server to indicate that a new applica-
tion image is available for download

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_
REQUEST

Generated on server when a Query Next Image
Request is received from a client to enquire whether a
new application image is available for download

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_
RESPONSE

Generated on client when a Query Next Image
Response is received from the server (in response to a
Query Next Image Request) to indicate whether a new
application image is available for download

E_CLD_OTA_COMMAND_BLOCK_REQUEST Generated on server when an Image Block Request is
received from a client to request a block of image data
as part of a download

E_CLD_OTA_COMMAND_PAGE_REQUEST Generated on server when an Image Page Request is
received from a client to request a page of image data
as part of a download

E_CLD_OTA_COMMAND_BLOCK_RESPONSE Generated on client when an Image Block Response is
received from the server (in response to an Image
Block Request) and contains a block of image data
which is part of a download

E_CLD_OTA_COMMAND_UPGRADE_END_
REQUEST

Generated on server when an Upgrade End Request is
received from a client to indicate that the complete
image has been downloaded and verified

E_CLD_OTA_COMMAND_UPGRADE_END_
RESPONSE

Generated on client when an Upgrade End Response
is received from the server (in response to an Upgrade
End Request) to confirm the end of a download

E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_
REQUEST

Generated on server when a Query Specific File
Request is received from a client to request a particular
application image

E_CLD_OTA_COMMAND_QUERY_SPECIFIC_FILE_
RESPONSE

Generated on client when a Query Specific File
Response is received from the server (in response to a
Query Specific File Request) to indicate whether the
requested application image is available for download

E_CLD_OTA_INTERNAL_COMMAND_TIMER_
EXPIRED

Generated on client to notify the application that the
local one-second timer has expired

E_CLD_OTA_INTERNAL_COMMAND_SAVE_
CONTEXT

Generated on server or client to prompt the application
to store context data in Flash memory

E_CLD_OTA_INTERNAL_COMMAND_OTA_DL_
ABORTED

Generated on a client if the received image is invalid or
the client has aborted the image download (allowing
the application to request the new image again)

E_CLD_OTA_INTERNAL_COMMAND_POLL_
REQUIRED

Generated on client to prompt the application to poll
the server for a new application image

Table 33: OTA Upgrade Cluster Events
670 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
E_CLD_OTA_INTERNAL_COMMAND_RESET_TO_
UPGRADE

Generated on client to notify the application that the
stack is going to reset the device

E_CLD_OTA_INTERNAL_COMMAND_LOCK_FLASH_
MUTEX

Generated on server or client to prompt the application
to lock the mutex used for accesses to Flash
memory

E_CLD_OTA_INTERNAL_COMMAND_FREE_FLASH_
MUTEX

Generated on server or client to prompt the application
to unlock the mutex used for accesses to Flash mem-
ory

E_CLD_OTA_INTERNAL_COMMAND_SEND_
UPGRADE_END_RESPONSE

Generated on server to notify the application that the
stack is going to send an Upgrade End Response to a
client

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_BLOCK_RESPONSE

Generated on client to notify the application that Image
Block Response has been received for co-processor
image

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_DL_ABORT

Generated on client to notify the application that down-
load of co-processor image from the server has been
aborted

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_IMAGE_DL_COMPLETE

Generated on client to notify the application that down-
load of co-processor image from the server has com-
pleted

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_SWITCH_TO_NEW_IMAGE

Generated on client to notify the application that the
upgrade time for a previously downloaded co-proces-
sor image has been reached (this event is generated
after receiving the Upgrade End Response which con-
tains the upgrade time)

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_IMAGE_BLOCK_REQUEST

Generated on server when an Image Block Request is
received from a client to request a block of image data
as part of a download and the server finds that the
required image is stored in the co-processor’s external
storage device

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_
FILE_BLOCK_RESPONSE

Generated on client when an Image Block Response is
received from server as part of a device-specific file
download - the event contains a block of file data which
the client stores in an appropriate location

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_
FILE_DL_ABORT

Generated on client when the final Image Block
Response of a device-specific file download has been
received from the server

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_
FILE_DL_COMPLETE

Generated on client following a device-specific file
download to indicate that the upgrade time has been
reached and the file can now be used by the client

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_
FILE_USE_NEW_FILE

Generated to indicate that a device-specific file down-
load is being aborted and any received data must be
discarded by the application

 Enumeration Event Description

Table 33: OTA Upgrade Cluster Events
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 671

Chapter 30
OTA Upgrade Cluster

The above events are described in more detail in Section 30.8.

E_CLD_OTA_INTERNAL_COMMAND_SPECIFIC_
FILE_NO_UPGRADE_END_RESPONSE

Generated to indicate that no Upgrade End Response
has been received for a device-specific file download
(after three attempts to obtain one)

E_CLD_OTA_COMMAND_QUERY_NEXT_IMAGE_
RESPONSE_ERROR

This event is generated on the client when a Query
Next Image Response message is received
from the server, in response to a Query Next Image
Request with a status of Invalid Image Size.

E_CLD_OTA_INTERNAL_COMMAND_RCVD_
DEFAULT_RESPONSE

This event is generated on the client when a default
response message is received from the server, in
response to a Query Next Image Request, Image
Block Request or Upgrade End Request. This is an
internal ZCL event that results in an OTA download
being aborted, thus activating the callback function for
the event E_CLD_OTA_INTERNAL_COMMAND_
OTA_DL_ABORTED.

E_CLD_OTA_INTERNAL_COMMAND_VERIFY_
IMAGE_VERSION

This event is generated to prompt the application to
verify the image version received in a Query Next
Image Response. This event allows the application to
verify that the new upgrade image has a valid image
version. After checking the image versoin, the applica-
tion should set the status field of the event to
E_ZCL_SUCCESS (valid version) or E_ZCL_FAIL
(invalid version).

E_CLD_OTA_INTERNAL_COMMAND_SWITCH_TO_
UPGRADE_DOWNGRADE

This event is generated to prompt the application to
verify the image version received in an upgrade end
response. This event allows the application to verify
that the new upgrade image has a valid image version.
After checking the image version, the application
should set the status field of the event to
E_ZCL_SUCCESS (valid version) or E_ZCL_FAIL
(invalid version).

E_CLD_OTA_INTERNAL_COMMAND_REQUEST_
QUERY_NEXT_IMAGES

This event is generated on the client when a co-pro-
cessor image also requires the client to update its own
image. After the first file is downloaded (co-processor
image) this event notifies the application to allow it to
send a Query Next Image command for its own
upgrade image, using the function
eOTA_ClientQueryNextImageRequest().

E_CLD_OTA_INTERNAL_COMMAND_FAILED_
VALIDATING_UPGRADE_IMAGE

This event is generated on the client when the valida-
tion of a new upgrade image fails. This validation takes
place when the upgrade time is reached.

E_CLD_OTA_INTERNAL_COMMAND_FAILED_
COPYING_SERIALIZATION_DATA

This event is generated on the client when the copying
of serialisation data from the active image to the new
upgrade image fails. This process takes place after
image validation (if applicable) are completed success-
fully.

 Enumeration Event Description

Table 33: OTA Upgrade Cluster Events
672 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.11.3 eOTA_AuthorisationState

The following enumerations represent the authorisation options concerning which
clients are allowed to obtain upgrade images from the server:

typedef enum

{

 E_CLD_OTA_STATE_ALLOW_ALL,

 E_CLD_OTA_STATE_USE_LIST

}eOTA_AuthorisationState;

The above enumerations are described in the table below.

30.11.4 teOTA_ImageNotifyPayloadType

The following enumerations represent the payload options for an Image Notify
message issued by the server:

typedef enum

{

 E_CLD_OTA_QUERY_JITTER,

 E_CLD_OTA_MANUFACTURER_ID_AND_JITTER,

 E_CLD_OTA_ITYPE_MDID_JITTER,

 E_CLD_OTA_ITYPE_MDID_FVERSION_JITTER

}teOTA_ImageNotifyPayloadType;

The above enumerations are described in the table below.

 Enumeration Description

E_CLD_OTA_STATE_ALLOW_ALL Allow all clients to obtain upgrade images from this server

E_CLD_OTA_STATE_USE_LIST Only allow clients in authorisation list to obtain upgrade images from
this server

Table 34: Client Authorisation Options

 Enumeration Description

E_CLD_OTA_QUERY_JITTER Include only ‘Query Jitter’ in payload

E_CLD_OTA_MANUFACTURER_ID_AND_JITTER Include ‘Manufacturer Code’ and ‘Query Jitter’ in payload

E_CLD_OTA_ITYPE_MDID_JITTER Include ‘Image Type’, ‘Manufacturer Code’ and ‘Query Jit-
ter’ in payload

E_CLD_OTA_ITYPE_MDID_FVERSION_JITTER Include ‘Image Type’, ‘Manufacturer Code’, ‘File Version’
and ‘Query Jitter’ in payload

Table 35: Image Notify Payload Options
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 673

Chapter 30
OTA Upgrade Cluster

30.12 Compile-Time Options

To enable the OTA Upgrade cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_OTA

In addition, to enable the cluster as a client or server or both, it is also necessary to
add one or both of the following to the same file:

#define OTA_CLIENT

#define OTA_SERVER

The following may also be defined in the zcl_options.h file.

Optional Attributes (Client only)

The OTA Upgrade cluster has attributes on the client side only. The optional attributes
may be specified by defining some or all of the following.

Add this line to enable the optional File Offset attribute:

#define OTA_CLD_ATTR_FILE_OFFSET

Add this line to enable the optional Current File Version attribute:

#define OTA_CLD_ATTR_CURRENT_FILE_VERSION

Add this line to enable the optional Current ZigBee Stack Version attribute:

#define OTA_CLD_ATTR_CURRENT_ZIGBEE_STACK_VERSION

Add this line to enable the optional Downloaded File Version attribute:

#define OTA_CLD_ATTR_DOWNLOADED_FILE_VERSION

Add this line to enable the optional Downloaded ZigBee Stack Version attribute:

#define OTA_CLD_ATTR_DOWNLOADED_ZIGBEE_STACK_VERSION

Add this line to enable the optional Manufacturer ID attribute:

#define OTA_CLD_MANF_ID

Note: The OTA Upgrade cluster must be enabled as a
client or server, as appropriate, in the application
images to be downloaded using the cluster. The
relevant cluster options (see below) should also be
enabled for the image.
674 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Add this line to enable the optional Image Type attribute:

#define OTA_CLD_IMAGE_TYPE

Add this line to enable the optional Minimum Block Request Delay attribute:

#define OTA_CLD_ATTR_REQUEST_DELAY

Add this line to enable the optional Image Stamp attribute:

#define OTA_CLD_ATTR_IMAGE_STAMP

Number of Images

The maximum number of images that can be stored in the external Flash memory of
the JN516x device of a server or client node must be specified as follows, where in
this example the maximum is two images:

#define OTA_MAX_IMAGES_PER_ENDPOINT 2

The smallest value that should be used for a client or server is 1, since the active
image is stored in JN516x internal Flash memory and does not need to be included.

In the case of a dual-processor client or server node, the maximum number of images
that can be stored in the co-processor’s external storage device must be specified as
follows, where in this example the maximum is one image:

#define OTA_MAX_CO_PROCESSOR_IMAGES 1

OTA Block Size

The maximum size of a block of image data to be transferred over the air is defined,
in bytes, as follows:

#define OTA_MAX_BLOCK_SIZE 48

Guidance on block size is provided in Section 30.7.3.

Page Requests

The ‘page request’ feature can be enabled on the server and client by adding the line:

#define OTA_PAGE_REQUEST_SUPPORT

If the page request feature is enabled then the page size (in bytes) and ‘response
spacing’ (in milliseconds) to be inserted into the Image Page Requests can be
configured by defining the following macros on the client:

#define OTA_PAGE_REQ_PAGE_SIZE 512

#define OTA_PAGE_REQ_RESPONSE_SPACING 300

The above example definitions contain the default values of 512 bytes and 300 ms.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 675

Chapter 30
OTA Upgrade Cluster

Hardware Versions in OTA Header

If hardware versions will be present in the OTA header then in order to enable checks
of the hardware versions on the OTA server and client, add:

#define OTA_CLD_HARDWARE_VERSIONS_PRESENT

Custom Serialisation Data

To maintain custom serialisation data associated with binary images during upgrades
on the server or client, add:

#define OTA_MAINTAIN_CUSTOM_SERIALISATION_DATA

OTA Command Acks

To disable APS acknowledgements for OTA commands on the server or client, add:

 #define OTA_ACKS_ON FALSE

If the above define is not included, APS acks will be enabled by default. They must
be enabled for ZigBee certification, but for increased download speed it may be
convenient to disable them during application development. However, they must not
be disabled if using fragmentation.

Frequency of Requests (Client only)

To avoid flooding the network with continuous packet exchanges, the request
messages from the client can be throttled by defining a time interval, in seconds,
between consecutive requests. For example, a one-second interval is defined as
follows:

#define OTA_TIME_INTERVAL_BETWEEN_REQUESTS 1

If this time interval is not defined then the time interval, in seconds, between
consecutive retries of an unthrottled message request should be defined. For
example, a ten-second retry interval is defined as follows:

#define OTA_TIME_INTERVAL_BETWEEN_RETRIES 10

(valid only if OTA_TIME_INTERVAL_BETWEEN_REQUESTS is not defined)

Upper Limit on Minimum Block Request Delay

An upper limit on the value of the Minimum Block Request Delay attribute is defined,
in milliseconds, as follows:

#define OTA_BLOCK_REQUEST_DELAY_MAX_VALUE 1000

In the above example, the limit is set to 1000 ms (one second). If no value is defined,
the default value of this limit is 5000 ms (five seconds).
676 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Device Address Copying

On a JN516x device whose application image is to be upgraded (client or server), the
OTA Upgrade cluster must copy the IEEE/MAC address of the device from the old
image to the new image. This copy must be enabled on the device by adding the line:

#define OTA_COPY_MAC_ADDRESS

No Security Certificate

For HA and ZLL, it is necessary to remove references to the Certicom security
certificate by including the following definition:

#define OTA_NO_CERTIFICATE

Internal Storage of OTA Upgrade Image on Client

An OTA upgrade image can be stored in internal Flash memory on an OTA Upgrade
cluster client by including the following definition (this option is mainly relevant to the
JN5169 chip):

#define OTA_INTERNAL_STORAGE

In addition, if the OTA upgrade image is encrypted then it needs to be decrypted
before being stored in internal Flash memory. This decryption can be enabled by
including the following definition:

#define INTERNAL_ENCRYPTED

Omission of Cyclic Redundancy Check (CRC)

By default, a Cyclic Redundancy Check (CRC) value is included in an OTA upgrade
image. It can, however, be optionally omitted when the image is prepared using the
JN51xx Encryption Tool (JET) - see Section 30.13.4. In this case, the processing of
the CRC value must be disabled by including the following definition:

#define OTA_IGNORE_CRC_CHECK
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 677

Chapter 30
OTA Upgrade Cluster

30.13 Build Process

Special build requirements must be implemented when building applications that are
to participate in OTA upgrades:

1. Certain lines must be included in the makefiles for the applications - see
Section 30.13.1

2. The server and client applications must then be built - see Section 30.13.2

3. The (initial) client application must now be prepared and loaded into Flash
memory of the client device - see Section 30.13.3

4. The server application must now be prepared and loaded into Flash memory
of the server device - see Section 30.13.4

30.13.1 Modifying Makefiles

In the makefiles for all applications (for server and all clients), replace the following
lines:

$(OBJCOPY) -j .version -j .bir -j .flashheader -j .vsr_table
-j .vsr_handlers -j .rodata -j .text -j .data -j .bss -j .heap
-j .stack -S -O binary $< $@

with:

$(OBJCOPY) -j .version -j .bir -j .flashheader -j .vsr_table
-j .vsr_handlers -j .ro_mac_address -j .ro_ota_header -j .rodata
-j .text -j .data -j .bss -j .heap -j .stack -S -O binary $< $@

30.13.2 Building Applications

The server and client applications must be built with the makefiles adapted for OTA
upgrade (see Section 30.13.1). A build can be conducted from the BeyondStudio for
NXP IDE, as for any ZigBee PRO application - refer to the BeyondStudio for NXP
Installation and User Guide (JN-UG-3098).

The resulting binary files must then be prepared and loaded into Flash memory as
described in Section 30.13.3 and Section 30.13.4.

30.13.3 Preparing and Downloading Initial Client Image

The first time that the client is programmed with an application, the binary image must
be loaded into Flash memory on the client device using a Flash programming tool such
as the JN516x Flash Programmer within BeyondStudio for NXP (normally only used
in a development environment) or the Atomic Programming AP-114 device.

After this initial image has been loaded, all subsequent client images will be
downloaded from the server to the client via the OTA Upgrade cluster.
678 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
30.13.4 Preparing and Downloading Server Image

The server device is programmed by loading a binary image into Flash memory using
a Flash programming tool such as the JN516x Flash Programmer within
BeyondStudio for NXP (normally only used in a development environment) or the
Atomic Programming AP-114 device.

When a new client image becomes available for the server to distribute, this image
must be loaded into the server.

 In a deployed and running system, this image may be supplied via a backhaul
network.

 In a development environment, it may be loaded into Flash memory using a
Flash programming tool such as the JN516x Flash Programmer within
BeyondStudio for NXP.

However, the JN516x Flash Programmer only allows programming from the
start of Flash memory. Therefore, the server application must be re-
programmed into the Flash memory as well as the new client image. The server
application binary and client application binary must be combined into a single
binary image using the JN51xx Encryption Tool (JET) before being loaded into
the server. This tool is provided in the SDK and is described in the JET User
Guide (JN-UG-3081).

Note 1: If desired, the initial server image can also
include the initial client application. Although there is no
need for the server to download this first client
application to the client(s), it may be stored in the server
in case there is any subsequent need to re-load it into a
client.

Note 2: The OTA upgrade image normally includes a
Cyclic Redundancy Check (CRC) value. This is used as
the value of the u32ImageStamp attribute, if enabled.
However, the CRC value can be omitted from the
upgrade image, as described in the JET User Guide
(JN-UG-3081). In this case, the processing of the CRC
value must be disabled in the compile-time options, as
described in Section 30.12.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 679

Chapter 30
OTA Upgrade Cluster

680 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
31. Diagnostics Cluster

This chapter describes the Diagnostics cluster. This cluster is not officially a part of the
ZCL but is described in this manual as it can be included in any ZigBee application
profile (but most notably Home Automation).

The Diagnostics cluster has a Cluster ID of 0x0B05.

31.1 Overview

The Diagnostics cluster allows the operation of the ZigBee PRO stack to be followed
over time. It provides a tool for monitoring the performance of individual network
nodes, including the routing of packets through these nodes.

To use the functionality of this cluster, you must include the file Diagnostics.h in your
application and enable the cluster by defining CLD_DIAGNOSTICS in the
zcl_options.h file.

A Diagnostics cluster instance can act as a client or a server. The inclusion of the client
or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server
must also be specified when creating the cluster instance).

The compile-time options for the Diagnostics cluster are fully detailed in Section 31.5.

The information that can potentially be stored in this cluster is organised into the
following attribute sets:

 Hardware Information

 Stack/Network Information

Currently, only three attributes from the Stack/Network Information attribute set are
supported (see Section 31.2).

This cluster has no associated events. However, reads and writes of the cluster
attributes may give rise to ZCL events (the application is responsible for checking that
a written value is within the valid range for the target attribute).

Note: The Diagnostics cluster is currently partially
implemented in the NXP ZigBee Home Automation
profile. Only three cluster attributes are presently
supported (see Section 31.2).

Note: It is strongly recommended that Diagnostics
cluster server attributes are stored in persistent memory
to allow performance data to be preserved through a
device reset or power interruption.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 681

Chapter 31
Diagnostics Cluster

31.2 Diagnostics Structure and Attributes

The structure definition for the Diagnostics cluster is:

typedef struct

{

 /* Hardware Information attribute set*/

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NUMBER_OF_RESETS

 uint16 u16NumberOfResets;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_PERSISTENT_MEMORY_WRITES

 uint16 u16PersistentMemoryWrites;

 #endif

 /* Stack/Network Information attribute set */

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_RX_BCAST

 uint32 u32MacRxBcast;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_BCAST

 uint32 u32MacTxBcast;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_RX_UCAST

 uint32 u32MacRxUcast;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST

 uint32 u32MacTxUcast;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST_RETRY

 uint16 u16MacTxUcastRetry;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST_FAIL

 uint16 u16MacTxUcastFail;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_RX_BCAST

 uint16 u16ApsRxBcast;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_TX_BCAST

 uint16 u16ApsTxBcast;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_RX_UCAST

 uint16 u16ApsRxUcast;
682 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_SUCCESS

 uint16 u16ApsTxUcastSuccess;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_RETRY

 uint16 u16ApsTxUcastRetry;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_FAIL

 uint16 u16ApsTxUcastFail;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_ROUTE_DISC_INITIATED

 uint16 u16RouteDiscInitiated;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_ADDED

 uint16 u16NeighborAdded;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_REMOVED

 uint16 u16NeighborRemoved;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_STALE

 uint16 u16NeighborStale;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_JOIN_INDICATION

 uint16 u16JoinIndication;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_CHILD_MOVED

 uint16 u16ChildMoved;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NWK_FC_FAILURE

 uint16 u16NWKFCFailure;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_FC_FAILURE

 uint16 u16APSFCFailure;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_UNAUTHORIZED_KEY

 uint16 u16APSUnauthorizedKey;

 #endif
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 683

Chapter 31
Diagnostics Cluster

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_NWK_DECRYPT_FAILURE

 uint16 u16NWKDecryptFailure;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_APS_DECRYPT_FAILURE

 uint16 u16APSDecryptFailure;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_PACKET_BUFFER_ALLOCATE_FAILURE

 uint16 u16PacketBufferAllocateFailure;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_RELAYED_UCAST

 uint16 u16RelayedUcast;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_PHY_TO_MAC_QUEUE_LIMIT_REACHED

 uint16 u16PhyToMACQueueLimitReached;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_PACKET_VALIDATE_DROP_COUNT

 uint16 u16PacketValidateDropCount;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_AVERAGE_MAC_RETRY_PER_APS_MESSAGE_SENT

 uint16 u16AverageMACRetryPerAPSMessageSent;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_LQI

 uint8 u8LastMessageLQI;

 #endif

 #ifdef CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_RSSI

 int8 i8LastMessageRSSI;

 #endif

} tsCLD_Diagnostics;

where:

‘Hardware Information’ Attribute Set

The following two attributes can be maintained by the application using the Attribute
Access functions detailed in Section 33.2.

 u16NumberOfResets is an optional attribute which acts as a counter of
device resets/restarts (note that a factory reset will clear this attribute) - thus,
the attribute value must be incremented on each restart.

 u16PersistentMemoryWrites is an optional attribute which acts as a
counter of the number of writes to persistent memory - thus, the attribute value
must be incremented on each write.
684 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
‘Stack/Network Information’ Attribute Set

The following attributes must be updated by the application by calling the function
eCLD_DiagnosticsUpdate() (see Section 31.3) either periodically (at the highest rate
possible) or on receiving an appropriate event from the stack.

 u32MacRxBcast is reserved for future use

 u32MacTxBcast is reserved for future use

 u32MacRxUcast is reserved for future use

 u32MacTxUcast is reserved for future use

 u16MacTxUcastRetry is reserved for future use

 u16MacTxUcastFail is reserved for future use

 u16ApsRxBcast is reserved for future use

 u16ApsTxBcast is reserved for future use

 u16ApsRxUcast is reserved for future use

 u16ApsTxUcastSuccess is reserved for future use

 u16ApsTxUcastRetry is reserved for future use

 u16ApsTxUcastFail is reserved for future use

 u16RouteDiscInitiated is reserved for future use

 u16NeighborAdded is reserved for future use

 u16NeighborRemoved is reserved for future use

 u16NeighborStale is reserved for future use

 u16JoinIndication is reserved for future use

 u16ChildMoved is reserved for future use

 u16NWKFCFailure is reserved for future use

 u16APSFCFailure is reserved for future use

 u16APSUnauthorizedKey is reserved for future use

 u16NWKDecryptFailure is reserved for future use

 u16APSDecryptFailure is reserved for future use

 u16PacketBufferAllocateFailure is reserved for future use

 u16RelayedUcast is reserved for future use

 u16PhyToMACQueueLimitReached is reserved for future use

 u16PacketValidateDropCount is reserved for future use

 u16AverageMACRetryPerAPSMessageSent is an optional attribute which is
used to maintain a record of the average number of IEEE802.15.4 MAC-level
retries needed to send a message from the APS layer of the stack.

 u8LastMessageLQI is an optional attribute containing the LQI (Link Quality
Indicator) value for the last message received, as a value in the range 0 to 255
where 0 indicates the worst link quality and 255 indicates the best link quality.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 685

Chapter 31
Diagnostics Cluster

 i8LastMessageRSSI is an optional attribute containing the RSSI (Receive
Signal Strength Indication) value of the last message received.

31.3 Functions

The following Diagnostics cluster functions are provided:

Function Page

eCLD_DiagnosticsCreateDiagnostics 687

eCLD_DiagnosticsUpdate 689

The cluster attributes can also all be accessed using the general attribute read/write
functions, as described in Section 2.2.

Note: If the value of u8LastMessageLQI or
i8LastMessageRSSI is read remotely, the returned
value will relate to the received message that contained
the instruction to read the attribute.
686 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_DiagnosticsCreateDiagnostics

Description

This function creates an instance of the Diagnostics cluster on an endpoint. The
cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Diagnostics cluster instance on
the endpoint, but instances of other clusters may also be created on the same
endpoint by calling their corresponding creation functions.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

Parameters

psClusterInstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bIsServer Type of cluster instance (server or client) to be created:

 TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Diagnostics cluster. This
parameter can refer to a pre-filled structure called
sCLD_Diagnostics which is provided in the
Diagnostics.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Diagnostics which defines

teZCL_Status eCLD_DiagnosticsCreateDiagnostics(
 tsZCL_ClusterInstance *psClusterInstance,
 bool_t bIsServer,
 tsZCL_ClusterDefinition *psClusterDefinition,
 void *pvEndPointSharedStructPtr,
 uint8 *pu8AttributeControlBits);

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 687

Chapter 31
Diagnostics Cluster

the attributes of Diagnostics cluster. The function will
initialise the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

Returns

E_ZCL_SUCCESS

E_ZCL_FAIL

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_INVALID_VALUE
688 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eCLD_DiagnosticsUpdate

Description

This function updates the (three) Stack/Network Information attributes (see Section
31.2). It should be called periodically by the application (on the cluster server) at the
highest rate possible or when an appropriate stack event occurs.

The attributes can otherwise be accessed (e.g.read) using the Attribute Access
functions detailed in Section 33.2.

Parameters

u8SourceEndPointId Number of the local endpoint on which cluster
server resides

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

teZCL_Status eCLD_DiagnosticsUpdate(
 uint8 u8SourceEndPointId);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 689

Chapter 31
Diagnostics Cluster

31.4 Enumerations

31.4.1 teCLD_Diagnostics_AttributeId

The following structure contains the enumerations used to identify the attributes of the
Diagnostics cluster.

typedef enum

{

 /* Hardware Information attribute IDs */

 E_CLD_DIAGNOSTICS_ATTR_ID_NUMBER_OF_RESETS = 0x0000,

 E_CLD_DIAGNOSTICS_ATTR_ID_PERSISTENT_MEMORY_WRITES,

 /* Stack/Network Information attribute IDs */

 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_RX_BCAST = 0x0100,

 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_BCAST,

 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_RX_UCAST,

 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST,

 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST_RETRY,

 E_CLD_DIAGNOSTICS_ATTR_ID_MAC_TX_UCAST_FAIL,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_RX_BCAST,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_TX_BCAST,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_RX_UCAST,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_SUCCESS,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_RETRY,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_TX_UCAST_FAIL,

 E_CLD_DIAGNOSTICS_ATTR_ID_ROUTE_DISC_INITIATED,

 E_CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_ADDED,

 E_CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_REMOVED,

 E_CLD_DIAGNOSTICS_ATTR_ID_NEIGHBOR_STALE,

 E_CLD_DIAGNOSTICS_ATTR_ID_JOIN_INDICATION,

 E_CLD_DIAGNOSTICS_ATTR_ID_CHILD_MOVED,

 E_CLD_DIAGNOSTICS_ATTR_ID_NWK_FC_FAILURE,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_FC_FAILURE,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_UNAUTHORIZED_KEY,

 E_CLD_DIAGNOSTICS_ATTR_ID_NWK_DECRYPT_FAILURE,

 E_CLD_DIAGNOSTICS_ATTR_ID_APS_DECRYPT_FAILURE,

 E_CLD_DIAGNOSTICS_ATTR_ID_PACKET_BUFFER_ALLOCATE_FAILURE,

 E_CLD_DIAGNOSTICS_ATTR_ID_RELAYED_UCAST,

 E_CLD_DIAGNOSTICS_ATTR_ID_PHY_TO_MAC_QUEUE_LIMIT_REACHED,

 E_CLD_DIAGNOSTICS_ATTR_ID_PACKET_VALIDATE_DROP_COUNT,

 E_CLD_DIAGNOSTICS_ATTR_ID_AVERAGE_MAC_RETRY_PER_APS_MESSAGE_SENT,

 E_CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_LQI,

 E_CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_RSSI

} teCLD_Diagnostics_AttributeId;
690 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
31.5 Compile-time Options

To enable the Diagnostics cluster in the code to be built, it is necessary to add the
following to the zcl_options.h file:

#define CLD_DIAGNOSTICS

In addition, to include the software for a cluster client or server or both, it is necessary
to add one of the following to the same file:

#define DIAGNOSTICS_CLIENT

#define DIAGNOSTICS_SERVER

Optional Attributes

The optional attributes for the Diagnostics cluster (currently, only a small subset of the
attributes are supported; see Section 31.2) are enabled by defining:

 CLD_DIAGNOSTICS_ATTR_ID_AVERAGE_MAC_RETRY_PER_APS_MESSAGE_SENT

 CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_LQI

 CLD_DIAGNOSTICS_ATTR_ID_LAST_MESSAGE_RSSI
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 691

Chapter 31
Diagnostics Cluster

692 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
32. EZ-mode Commissioning Module

This chapter describes the EZ-mode Commissioning module (EZ is pronounced
‘easy’), which can be used by an application to facilitate device commissioning.

32.1 Overview

The EZ-mode Commissioning module provides a means of introducing a new device
into a network and pairing it for use with one or more other devices in the network. This
commissioning method involves user interactions, such as button-presses, on the
physical devices.

The commissioning is divided into two parts:

1. Introducing a new node to the network (network joining or forming) - resources
for this phase are provided in files haEzJoin.c/.h

2. Binding or grouping nodes to perform operational functions - resources for this
phase are provided in files haEzFindAndBind.c/.h

Therefore, to use the EZ-mode Commissioning module, you must include the files
haEzJoin.c/.h and haEzFindAndBind.c/.h in your application. These files are
supplied in the NXP Application Notes that use EZ-mode Commissioning. You must
also modify your makefile to include these source files. Compile-time options for this
module are detailed in Section 32.9.

Note: The EZ-mode Commissioning module is not
strictly a part of the ZigBee Cluster Library. It is defined
in the ZigBee Home Automation 1.2 profile and its
resources are provided with the NXP Application Notes
that use it. Currently, it is only available for Home
Automation.

Note: The Identify cluster from the ZCL must also be
enabled to allow a node to identify itself (e.g. by flashing
a light) during commissioning. If group commissioning is
required, the Groups cluster must also be enabled. The
Identify cluster is described in Chapter 7 and the Groups
cluster is described in Chapter 8.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 693

Chapter 32
EZ-mode Commissioning Module

Timer Requirements

The supplied code for EZ-mode Commissioning requires the following software timers
which need to be included in the JenOS configuration diagram for the device:

 APP_JoinTimer: Needed by haEzJoin.c file to time the joining process

 APP_BackOffTimer: Needed by haEzJoin.c to time the back-off during the
joining process

 App_EZFindAndBindTimer: Needed by haEzFindAndBind.c to time the
binding or grouping process

32.2 Commissioning Process and Stages

The EZ-mode Commissioning process consists of three basic stages, as follows:

1. Invocation

2. Network Steering

3. ‘Find and Bind’ or Grouping

Invocation and Network Steering are covered by the code supplied in haEzJoin.c/.h,
and ‘Find and Bind’/Grouping is covered by the code supplied in
haEzFindAndBind.c/.h (see Section 32.1).

The above three states are described in the sub-sections below.

A set of user actions (possibly initiated by button-presses) that can be performed
within the above stages have been defined by ZigBee along with recommended
terminology to refer to them. These actions/terminology are:

 Join Network

 Form Network

 Allow Others To Join Network

 Restore Factory Fresh Settings

 Pair Devices

 Enable Identify Mode

The descriptions of the above actions from the Home Automation specification are
provided in Appendix F.

Note: During any of the above three stages, you can
obtain the current commissioning state/status by calling
the relevant ‘Get state’ function: eEZ_GetJoinState()
during Invocation and Network Steering, or
eEZ_GetFindAndBindState() during ‘Find and Bind’
and Grouping.
694 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
32.2.1 Invocation

On the device to be introduced into the network, the application must start the
commissioning process by initialising the device state to E_EZ_START using the
function eEZ_UpdateEZState() and starting the software timer APP_JoinTimer. The
function vEZ_EZModeNWKJoinHandler() must then be called from the main task on
expiry of the timer. This function will start the ZigBee stack, if it is not already running,
and then initiate the Network Steering phase (if the stack fails to start, the timer must
be restarted and the above repeated).

The function vEZ_EZModeNWKJoinHandler() will subsequently be called on the
occurrence of stack events. On each call, it will proceed with its state machine and
change the EZ-mode state according to the result of subsequent stack events. The
joining states are listed and described in Section 32.4.

32.2.2 Network Steering

The objective of the Network Steering stage is to join the local device to a network.
Therefore, the path taken during this phase depends on whether the device is already
a member of a network, as described in Section 32.2.2.1 and Section 32.2.2.2 below.

The end of this stage will be indicated by a change of device state to
E_EZ_DEVICE_IN_NETWORK.

Compile-time options are provided to configure the number of attempts and the
timeout for each action performed while joining (see Section 32.9). If the device is not
able to join the network within 15 minutes, it will back off for 15 minutes. This is the
timeout value recommended in the ZigBee HA specification, but it can be re-defined
at compile-time using the macro BACKOFF_TIME_IN_MINUTE.

Note: Before vEZ_EZModeNWKJoinHandler() is
called, it is possible to change the ‘Set-Up policy’ (from
the default one) using vEZ_SetUpPolicy(). For details,
refer to the function description on page 706. The
default policy is assumed here, in which a Co-ordinator
will always form a new network and a Router or End
Device will always search for a network to join.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 695

Chapter 32
EZ-mode Commissioning Module

32.2.2.1 Not a Network Member

If the device is not already a member of a network, the following process is followed:

1. This step depends on the ZigBee node type of the new device.

If the device is a Co-ordinator, it will attempt to form a network. It will select an
operating channel from those specified in its ZPS configuration.

If the device is a Router or End Device:

a) The device will perform a ‘network discovery’ in which it will scan the
channels specified in its ZPS configuration. If configured, the ‘primary’
channels 11, 14, 15, 19, 20, 24 and 25 will be scanned first. If no suitable
network is found in any of these channels, the device will scan any other
configured channels.

b) The device will join the network with the best RSSI (Received Signal
Strength Indicator) value.

2. This step is only applicable to a Co-ordinator or Router.

After successfully forming/joining a network, the device will enable its ‘permit
joining’ functionality for a duration of EZ_MODE_TIME (default is 3 minutes)
and will broadcast this ‘permit joining’ time. Thus, the device will allow other
devices to join it during this time.

3. On successful completion of the Network Steering phase, the device state will
change to E_EZ_DEVICE_IN_NETWORK in order to inform the application
on the device.

Signalling Progress

During the above process, it is recommended that the device signals its progress to
the user by indicating when it is in the following states:

 Searching for or joining a network

 Has successfully joined a network

 Must become the Co-ordinator of a new network

A range of visual or aural methods can be adopted to signal to the user, such as
flashing a green light on the device.

Note: During this stage, the device state can be
obtained using the function eEZ_UpdateEZState().
696 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
32.2.2.2 Already a Network Member

If the device is already a member of the network, the Network Steering process
involves opening the network to allow other nodes to join it. This can be achieved by
either or both of the following methods:

 Calling the stack function ZPS_eAplZdoPermitJoining() to enable joining on
the local (Router) node by setting the ‘permit joining’ time to EZ_MODE_TIME

 Calling the stack function ZPS_eAplZdpMgmtPermitJoiningRequest() to
broadcast a request to other (Router) nodes to enable joining by setting their
‘permit joining’ time to EZ_MODE_TIME

32.2.3 Find and Bind

Once a new node has been introduced into a network (as described in Section 32.2.2),
the ‘Find and Bind’ stage allows the node to be paired with another node - for example,
a new lamp may need to be paired with a controller device, to allow control of the lamp.
The objective of this phase is to bind an endpoint on the new device to a compatible
endpoint on an existing device in the network (depending on the supported clusters).

In the Find and Bind stage (and Grouping stage), a device can have one of two roles
in EZ-mode Commissioning:

 Initiator: This device can either create a local binding with a remote endpoint
or request that the remote endpoint is added to a group

 Target: This device identifies itself, and receives and responds to requests
from the initiator

The intended outcome is a pairing between the initiator and the target. Usually, the
initiator is a controller device.

The ability of a device to perform one or both of the above commissioning roles must
be configured in the application makefile (see Section 32.9).

Note 1: During the Find and Bind stage, it is necessary
to put into ‘identification’ mode (of the Identify cluster) all
of the target devices with which the initiator will be
paired. For example, if a light-switch is to control three
new lamps then all three lamps must be put into
identification mode (e.g. by pressing buttons).

Note 2: Events generated during the 'Find and Bind'
stage can be handled by the user callback function
vEZ_EZModeCb() to perform any further actions.
These events are listed and described in Section 32.5.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 697

Chapter 32
EZ-mode Commissioning Module

The ‘Find and Bind’ process is as follows:

1. On the target device(s), put the devices into identification mode by calling the
function eEZ_FindAndBind() with the option E_EZ_TARGET. This function
call will be prompted by a user action, such as pressing a button. The
device(s) will remain in this mode for a duration, in minutes, equal to the value
of EZ_MODE_TIME.

2. On the initiator device, enter the ‘Find and Bind’ stage by calling the function
eEZ_FindAndBind() with the option E_EZ_INITIATOR. Again, this function
call will be prompted by a user action, such as pressing a button. The device
will remain in this mode for a duration, in minutes, equal to the value of
EZ_MODE_TIME.

3. The initiator and target devices will then exchange messages as follows:

a) The initiator will broadcast an Identify Query request and wait for Identify
Query responses for a time equal to the value of EZ_RESPONSE_TIME
(default is 10 seconds). If no response is received within this time, the
initiator will repeatedly broadcast an Identify Query request every
EZ_RESPONSE_TIME seconds until either a response is received or the
EZ_MODE_TIME timeout has expired.

b) On receiving an Identify Query response, the initiator will check whether
the IEEE address of the originating target device is already known. If this
address is not known, the initiator will send an IEEE Address request to
the target. On receiving the IEEE Address response, the initiator will save
the address details and will send a Simple Descriptor request to the target.
This must be done within the time EZ_RESPONSE_TIME from the initial
Identify Query request.

c) On receiving a Simple Descriptor response, the initiator will check for
client/server matches between the clusters supported by itself and the
originating target device. If there is a cluster match, the initiator creates a
local Binding table entry for the target/cluster and the event
E_EZ_BIND_CREATED_FOR_TARGET is generated. Note that a cluster
can be excluded from this matching and binding process by calling the
function eEZ_ExcludeClusterFromEZBinding() before the Find and Bind
stage is started (this function can be called multiple times to exclude
multiple clusters).

Note 1: On generation of the event
E_EZ_BIND_CREATED_FOR_TARGET, the application
on the initiator can optionally call the function
eCLD_IdentifyCommandIdentifyRequestSend() of
the Identify cluster in order to request the target device
to exit identification mode.

Note 2: If the compile-time option
EZ_CHECK_FOR_BINDING_GROUPING is defined,
the event E_EZ_CHECK_FOR_BIND_FOR_TARGET
will first be generated to give the application the
opportunity to block the binding (see Section 32.5).
698 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
4. After a time EZ_MODE_TIME on each device (initiator or target), the device
will exit EZ-mode Commissioning and will generate the event
E_EZ_TIMEOUT to inform the application. It is recommended that the event
handler indicates the successful completion of the Find and Bind phase to the
user by some visual means, such as flashing an LED.

32.2.4 Grouping

The ‘Grouping’ stage is an alternative to the ‘Find and Bind’ stage, and also employs
an initiator device and target devices (as described in Section 32.2.3). Grouping is
recommended instead of Find and Bind when the initiator device needs to be bound
to more than five target devices. In this case, the targets are assigned a group address
which, during normal operation, will be used to broadcast to all the targets (rather than
unicast to the individual targets).

To use the Grouping feature, the macro EZ_ENABLE_GROUP must be defined in the
makefiles for the initiator and target devices (if this macro is not included, ‘Find and
Bind’ is assumed, by default).

Note 1: EZ-mode Commissioning can be exited at any
time using the function vEZ_Exit(). This function may be
called as the result of a user action, such as a button-
press. This is useful if all binding completes well before
the EZ_MODE_TIME timeout expires.

Note 2: The EZ-mode Commissioning configuration can
subsequently be reset using the function
vEZ_FactoryReset(). This will remove all Binding table
entries when called on the initiator device.

Note 1: The Grouping feature requires the Groups
cluster to be enabled on the participating devices. The
Groups cluster is described in Chapter 8.

Note 2: During the Grouping stage, it is necessary to
put into ‘identification’ mode (of the Identify cluster) all of
the nodes with which the initiator will be paired. For
example, if a new light-switch is to control six lamps
then all six lamps must be put into identification mode
(e.g. by pressing buttons).

Note 3: During the Network Steering stage, a default
Group ID is set on any device which can become an
initiator and may need to create a group. This default
value is set to the 16-bit network address of the device.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 699

Chapter 32
EZ-mode Commissioning Module

The ‘Grouping’ process is as follows:

1. On the target device(s), put the devices into identification mode by calling the
function eEZ_Group() with the option E_EZ_TARGET. This function call will
be prompted by a user action, such as pressing a button. The device(s) will
remain in this mode for a duration, in minutes, equal to the value of
EZ_MODE_TIME.

2. On the initiator device, enter the ‘Grouping’ stage by calling the function
eEZ_Group() with the option E_EZ_INITIATOR. Again, this function call will
be prompted by a user action, such as pressing a button. The device will
remain in this mode for a duration, in minutes, equal to the value of
EZ_MODE_TIME.

3. The initiator and target devices will then exchange messages as follows:

a) The initiator will broadcast an Identify Query request and wait for Identify
Query responses for a time equal to the value of EZ_RESPONSE_TIME
(default is 10 seconds). If no response is received within this time, the
initiator will repeatedly broadcast an Identify Query request every
EZ_RESPONSE_TIME seconds until either a response is received or the
EZ_MODE_TIME timeout has expired.

b) On receiving an Identify Query response, the initiator will check whether
the IEEE address of the originating target device is already known. If this
address is not known, the initiator will send an IEEE Address request to
the target. On receiving the IEEE Address response, the initiator will save
the address details and will send a Simple Descriptor request to the target.
This must be done within the time EZ_RESPONSE_TIME from the initial
Identify Query request.

c) On receiving a Simple Descriptor response, the initiator will check for
client/server matches between the clusters supported by itself and the
originating target device. If there is a cluster match, the initiator sends an
'Add Group If Identifying' command to the target device. The event
E_EZ_GROUP_CREATED_FOR_TARGET is also generated. The initiator
identifies the group using either its default Group ID or, if specified through
a call to vEZ_SetGroupId(), a custom Group ID.

Note: If a custom Group ID is to used (instead of the
default Group ID set during the Network Steering stage)
then this should be set by calling the function
vEZ_SetGroupId() on the initiator before eEZ_Group().

Note: On generation of the event
E_EZ_GROUP_CREATED_FOR_TARGET, the
application on the initiator can optionally call the function
eCLD_IdentifyCommandIdentifyRequestSend() of
the Identify cluster in order to request the grouped target
device to exit identification mode.
700 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
d) On receiving an 'Add Group If Identifying' command, a target device will
add the group into its Group table.

e) The initiator will remain in this mode for EZ_MODE_TIME and repeatedly
broadcast an Identify Query request every EZ_RESPONSE_TIME
seconds until the EZ_MODE_TIME timeout has expired.

32.3 Persisting Commissioning Data

It is important to persist commissioning data by saving it in non-volatile memory on the
local device, so that commissioned bindings and/or groupings are not lost during a
power outage or sleep without RAM held. This data preservation should normally be
handled using the JenOS Persistent Data Manager (PDM). Binding tables and Group
tables should be saved and recovered by PDM.

The JenOS PDM is detailed in the JenOS User Guide (JN-UG-3075).

Note : If the compile-time option
EZ_CHECK_FOR_BINDING_GROUPING is defined,
the event E_EZ_CHECK_FOR_BIND_FOR_TARGET
will first be generated to give the application the
opportunity to block the grouping (see Section 32.5).

Note 1: EZ-mode Commissioning can be exited at any
time using the function vEZ_Exit(). This function may be
called as the result of a user action, such as a button-
press. This is useful if all grouping completes well
before the EZ_MODE_TIME timeout expires.

Note 2: The EZ-mode Commissioning configuration can
subsequently be reset using the function
vEZ_FactoryReset(). This will remove all Group table
entries when called on a target device and will clear the
group address when called on the initiator device.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 701

Chapter 32
EZ-mode Commissioning Module

32.4 Joining States

At any time while the device is attempting to join the network (during the Invocation
and Network Steering stages), the device state can be obtained by calling the function
eEZ_GetJoinState(). This function will return any one of the codes listed and
described below.

Joining State Description

E_EZ_START Device is starting the EZ-mode Invocation/Network Steering stage.

A new device should set this initial state using the function
eEZ_UpdateEZState() before attempting to call
vEZ_EZModeNWKJoinHandler() that starts the joining process.

E_EZ_WAIT_DISCOVERY_TIMEOUT Device is looking for a network to join and this discovery phase has not
yet timed out.

E_EZ_JOINING_NETWORK Device is joining the network.

E_EZ_DEVICE_IN_NETWORK Device has joined the network.

The first time that the device enters this state following the start-up, the
application should perform a PDM context data save to retain all the
stack settings for future power cycling. When a device that is already in
the network is rebooted, the device state should be set to this value
using the function eEZ_UpdateEZState().

E_EZ_NWK_FORMATION_TIMEOUT A Co-ordinator has timed out of the network formation phase.

E_EZ_BACKOFF Device has backed off and will not attempt to join while in this state.

Table 36: Joining States
702 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
32.5 EZ-mode Commissioning Events

EZ-mode Commissioning events can be generated during the ‘Find and Bind’/
Grouping stage. These events report progress to the application and are defined in the
structure teEZ_Events, which is part of the structure tsEZ_FindAndBindEvent.
The application is notified of an event through the callback function
vEZ_EZModeCb().

The EZ-mode Commissioning events are as follows:

 E_EZ_NONE

 E_EZ_NO_DEVICE_IN_IDENTIFY_MODE

 E_EZ_BIND_CREATED_FOR_TARGET

 E_EZ_GROUP_CREATED_FOR_TARGET

 E_EZ_BIND_FAILED

 E_EZ_TIMEOUT

 E_EZ_CHECK_FOR_BIND_FOR_TARGET

 E_EZ_CHECK_FOR_GROUP_FOR_TARGET

The above events are described below.

E_EZ_NONE

This a dummy code used to indicate that no events have occurred.

E_EZ_NO_DEVICE_IN_IDENTIFY_MODE

This event indicates that there is no target device in identify mode during the ‘Find and
Bind’ phase.

E_EZ_BIND_CREATED_FOR_TARGET

This event is generated during the ‘Find and Bind’ stage on an initiator device when
the device creates a local binding to the target node. The application can access the
details of the bound device through the structure tsEZ_FindAndBindEvent (see
Section 32.8.1) which is passed to the application via the callback function
vEZ_vEZModeCb().

Tip: On occurrence of this event, it would be good
practice for the application to send an Identify command
with zero identify time to the target node so that the
latter will no longer participate in the ‘Find and Bind’
process, allowing other devices to be discovered and
bound more promptly.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 703

Chapter 32
EZ-mode Commissioning Module

E_EZ_GROUP_CREATED_FOR_TARGET

This event is generated during the Grouping stage on an initiator device (invoked
using the function eEZ_Group()) when the device sends a request to add a target
device to a group. The application can access the details of the target device for
grouping through the structure tsEZ_FindAndBindEvent (see Section 32.8.1)
during execution of the callback function vEZ_EZModeCb().

E_EZ_BIND_FAILED

This event indicates that an attempt to bind to a target device has been unsuccessful
during the ‘Find and Bind’ stage.

E_EZ_TIMEOUT

This event indicates that the initiator has timed out.

E_EZ_CHECK_FOR_BIND_FOR_TARGET

This event indicates that a service discovery has returned a matching cluster (on a
remote device) which can potentially be bound to (from the local device). The
application can then decide whether to permit the binding.

The tsEZ_FindAndBindEvent structure of the event contains a Boolean field
bAllowBindOrGroup which, by default, is set to TRUE before reaching the
application. The application can then cancel the binding by setting this field to FALSE.

To generate this event, the macro EZ_CHECK_FOR_BINDING_GROUPING must be
included in the compile-time options (see Section 32.9).

E_EZ_CHECK_FOR_GROUP_FOR_TARGET

This event indicates that a service discovery has returned a matching cluster (on a
remote device) which can potentially be added to a group (on the local device). The
application can then decide whether to permit this addition.

The tsEZ_FindAndBindEvent structure of the event contains a Boolean field
bAllowBindOrGroup which, by default, is set to TRUE before reaching the
application. The application can then cancel the grouping by setting this field to
FALSE.

To generate this event, the macro EZ_CHECK_FOR_BINDING_GROUPING must be
included in the compile-time options (see Section 32.9).

Tip: On occurrence of this event, it would be good
practice for the application to send an Identify command
with zero identify time to the target node so that the
latter will no longer participate in the ‘Grouping’ process,
allowing other devices to be discovered and grouped
more promptly.
704 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
32.6 Functions

This section details the EZ-mode Commissioning functions. They are divided into
those functions used in joining (Invocation and Network Steering) and those used in
‘Find and Bind’/Grouping.

 Section 32.6.1 details the joining functions

 Section 32.6.2 details the ‘Find and Bind’/Grouping functions

32.6.1 Joining Functions

The EZ-mode Commissioning functions used in the Invocation and Network Steering
stages are listed below along with page references to their descriptions.

Function Page

vEZ_SetUpPolicy 706

vEZ_FormNWK 707

eEZ_UpdateEZState 708

vEZ_EZModeNWKJoinHandler 709

eEZ_GetJoinState 710

vEZ_ReJoinOnLastKnownCh 711

vEZ_RestoreDefaultAIBChMask 712

vEZ_SetDefaultAIBChMask 713
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 705

Chapter 32
EZ-mode Commissioning Module

vEZ_SetUpPolicy

Description

This function can be used to set the commissioning policy on a device before
vEZ_EZModeNWKJoinHandler() is called. The possible policies are as follows:

 E_EZ_JOIN_OR_FORM_BASED_ON_DEVICE_TYPE (default): A Co-ordinator
device will always form a network. A Router or End Device will always search for a
suitable network to join.

 E_EZ_JOIN_ELSE_FORM_IF_NO_NETWORK: A Co-ordinator device will first search
for a suitable network to join. If no network is available, the device will form a network.

Since the first policy above is used by default, a call to this function is only required
if the second policy is to be adopted (which is only applicable on a Co-ordinator).

Parameters

ePolicy Set-Up policy to use (see above), one of:

E_EZ_JOIN_OR_FORM_BASED_ON_DEVICE_TYPE

E_EZ_JOIN_ELSE_FORM_IF_NO_NETWORK

Returns

None

void vEZ_SetUpPolicy(eEZ_SetUpPolicy ePolicy);
706 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vEZ_FormNWK

Description

This function sets a flag to indicate that the local device has the capability to form a
network. The function is used in conjunction with vEZ_SetUpPolicy().

The function should be called only on devices that are capable of forming a network.
Generally, a Router should first attempt to join the network. If this is unsuccessful
then the application can call this function so that the device will attempt to form a
network at the next joining/forming attempt.

Parameters

None

Returns

None

void vEZ_FormNWK(void);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 707

Chapter 32
EZ-mode Commissioning Module

eEZ_UpdateEZState

Description

This function is used to update the EZ-mode Commissioning state for the device
(when it is out of reset) based on the node state.

This state setting determines the action taken when the function
vEZ_EZModeNWKJoinHandler() is invoked:

 If the node is not yet part of the network, the state should be set to E_EZ_START so
that the discovery process is started

 If the device is already a part of the network, the state should be set to
E_EZ_DEVICE_IN_NETWORK so that the ZigBee stack is started

Parameters

eEZState EZ-mode device state to be set, one of:
E_EZ_START
E_EZ_WAIT_DISCOVERY_TIMEOUT
E_EZ_JOINING_NETWORK
E_EZ_DEVICE_IN_NETWORK
E_EZ_NWK_FORMATION_TIMEOUT
E_EZ_BACKOFF

Returns

E_ZCL_FAIL

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

ZPS_teStatus eEZ_UpdateEZState(teEZ_State eEZState);
708 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vEZ_EZModeNWKJoinHandler

Description

This function is used to start the network joining/forming stage (Invocation and
Network Steering) of EZ-mode Commissioning on the device to be commissioned. It
must be called from the main task of the application on the device. A stack event is
passed to it via a parameter.

The type of join action to be performed must also be specified:

 If the device was not previously a member of a network, the option E_EZ_JOIN is
required to indicate that the device will join the network (if a Router or End Device) or
form a new network (if a Co-ordinator)

 If the device was previously a member of a network, the option E_EZ_REJOIN is
required to indicate that the device will rejoin the network

If the device is not already a member of a network, the function will start the ZigBee
stack (if necessary) and initiate a ‘network discovery’, after which the device will join
a network (if a Router or End Device) or form a network (if a Co-ordinator).

The function is non-blocking and returns immediately. The successful completion of
network joining or forming is indicated by the device state changing to
E_EZ_DEVICE_IN_NETWORK.

For more details of the use of this function, refer to Section 32.2.1.

Parameters

pZPSeventvoid Pointer to structure containing stack event to be passed to the
function

teJoinAction Type of join action to be performed, one of:

E_EZ_JOIN (Join or form the network)
E_EZ_REJOIN (Rejoin the network)

Returns

None

void vEZ_EZModeNWKJoinHandler(
ZPS_tsAfEvent *pZPSeventvoid,
teEZ_JoinAction teJoinAction);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 709

Chapter 32
EZ-mode Commissioning Module

eEZ_GetJoinState

Description

This function is used to obtain the EZ-mode Commissioning device state during
joining (Invocation and Network Steering).

For further information on the join states, refer to Section 32.4.

Parameters

None

Returns

E_EZ_START

E_EZ_INPROGRESS

E_EZ_WAIT_FOR_SCAN

E_EZ_WAIT_DISCOVERY_TIMEOUT

E_EZ_JOINING_NETWORK

E_EZ_DEVICE_IN_NETWORK

E_EZ_NWK_FORMATION_TIMEOUT

E_EZ_BACKOFF

E_EZ_COMPLETED

teEZ_State eEZ_GetJoinState(void);
710 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vEZ_ReJoinOnLastKnownCh

Description

This function can be used to select the last known channel while trying to rejoin a
network (this was the channel used by the device when it previously joined the
network).

The function should be used only on an End Device.

Parameters

None

Returns

None

void vEZ_ReJoinOnLastKnownCh(void);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 711

Chapter 32
EZ-mode Commissioning Module

vEZ_RestoreDefaultAIBChMask

Description

This function can be used to re-store the channel mask to the default channel mask
configured using the ZPS Configuration Editor.

If used, this function must be called before ZPS_eAplAfInit().

Parameters

None

Returns

None

void vEZ_RestoreDefaultAIBChMask(void);
712 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vEZ_SetDefaultAIBChMask

Description

This function can be used to set the channel mask to the last persisted channel on
the device (this is the channel on which the device previously joined or formed a
network).

If used, this function must be called after ZPS_eAplAfInit().

Parameters

None

Returns

None

void vEZ_SetDefaultAIBChMask(void);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 713

Chapter 32
EZ-mode Commissioning Module

32.6.2 ‘Find and Bind’/Grouping Functions

The EZ-mode Commissioning functions used in the ‘Find and Bind’/Grouping stage
are listed below along with page references to their descriptions.

Function Page

eEZ_ExcludeClusterFromEZBinding 715

eEZ_FindAndBind 716

eEZ_Group 717

vEZ_SetGroupId 718

u16EZ_GetGroupId 719

eEZ_GetFindAndBindState 720

vEZ_Exit 721

vEZ_FactoryReset 722

vEZ_EZModeNWKFindAndBindHandler 723

vEZ_EPCallBackHandler 724

vEZ_EZModeCb 725
714 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eEZ_ExcludeClusterFromEZBinding

Description

This function can be called on the initiator to exclude the specified cluster from the
binding process during the Find and Bind stage. During this stage, the initiator will
bind with any endpoint (on a target device) with a suitable client/server cluster match.
If it is not appropriate to include a particular cluster (even if a match exists), the
cluster can be excluded from the process using this function. This allows the use of
the local Binding table to be optimised.

If this function is required, it must be called before the Find and Bind stage is started
using eEZ_FindAndBind().

If more than one cluster needs to be excluded, the function can be called multiple
times. The function internally stores an array of clusters that are excluded from
binding. The array size is configurable using the macro
EZ_MAX_CLUSTER_EXCLUSION_SIZE (the default is 5). If an attempt is made to
exceed this limit, the function will return E_EZ_EXCLUSION_TABLE_FULL.

Parameters

u16ClusterID Cluster ID of cluster to be excluded

bServer Type of cluster instance to be excluded (server or client):

TRUE: Server
FALSE: Client

Returns

E_EZ_CLUSTER_EXCLUSION_SUCCESS

E_EZ_EXCLUSION_TABLE_FULL

teEZ_ClusterExcludeStatus eEZ_ExcludeClusterFromEZBinding(
uint16 u16ClusterID,
bool_t bServer);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 715

Chapter 32
EZ-mode Commissioning Module

eEZ_FindAndBind

Description

This function is used to start the ‘Find and Bind’ phase of EZ-mode Commissioning
on the initiator device or a target device:

 On the initiator device, the function must be called with the option E_EZ_INITIATOR.
The function enables the initiator to send requests in order to find suitable endpoints
with which to pair and to perform this pairing.

 On a target device, the function must be called with the option E_EZ_TARGET. The
function puts the device into ‘identification’ mode (of the Identify cluster) and enables
the device to respond to requests from an initiator device.

In both cases, the function call will be prompted by a user action, such as pressing a
button. The device will remain in this mode for a duration, in seconds, equal to the
value of EZ_MODE_TIME (default is 3 minutes).

For more details of the use of this function in the Find and Bind stage of EZ-mode
Commissioning, refer to Section 32.2.3.

Parameters

u8SourceEndpoint Number of endpoint on which this function is called

eEZMode Type of commissioning node (initiator or target) on
which this function is called, one of:

E_EZ_INITIATOR
E_EZ_TARGET

Returns

E_EZ_IDLE

E_EZ_FIND_AND_BIND_IN_PROGRESS

E_EZ_GROUPING_IN_PROGRESS

E_EZ_BUSY

E_EZ_ERROR

teEZ_Status eEZ_FindAndBind(uint8 u8SourceEndpoint,
teEZ_Mode eEZMode);
716 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eEZ_Group

Description

This function is used to start the ‘Grouping’ stage of EZ-mode Commissioning on the
initiator device or a target device:

 On the initiator device, the function must be called with the option E_EZ_INITIATOR.
The function enables the initiator to send requests in order to find target endpoints with
which to pair and collect into a group.

 On a target device, the function must be called with the option E_EZ_TARGET. The
function puts the device into ‘identification’ mode (of the Identify cluster) and enables
the device to respond to requests/commands from an initiator device.

In both cases, the function call will be prompted by a user action, such as pressing a
button. The device will remain in this mode for a duration, in seconds, equal to the
value of EZ_MODE_TIME (default is 3 minutes).

For more details of the use of this function in the Grouping phase of EZ-mode
Commissioning, refer to Section 32.2.4.

Parameters

u8SourceEndpoint Number of endpoint on which this function is called

eEZMode Type of commissioning node (initiator or target) on
which this function is called, one of:

E_EZ_INITIATOR
E_EZ_TARGET

Returns

E_EZ_IDLE

E_EZ_FIND_AND_BIND_IN_PROGRESS

E_EZ_GROUPING_IN_PROGRESS

E_EZ_BUSY

E_EZ_ERROR

teEZ_Status eEZ_Group(uint8 u8SourceEndpoint,
eEZ_Mode eEZMode);

Note: To use the Grouping feature, the macro
EZ_ENABLE_GROUP must be defined in the makefiles for
the initiator and target devices (if this macro is not included,
‘Find and Bind’ is assumed, by default).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 717

Chapter 32
EZ-mode Commissioning Module

vEZ_SetGroupId

Description

This function can be used on the initiator to specify a Group ID which will be used in
the ‘Grouping’ phase of EZ-mode Commissioning. The specified 16-bit identifier will
be allocated to the group that is created when eEZ_Group() is called.

If required, the vEZ_SetGroupId() function must be called before eEZ_Group() at
the start of the Grouping stage. It may be required in either of the following
circumstances:

 A custom Group ID is to used instead of the default Group ID which was set during the
Network Steering phase of EZ-mode Commissioning (this default Group ID was set to
the 16-bit network address of the device when it joined or formed the network)

 A custom Group ID is required because the device did not join or form the network via
EZ-mode Commissioning and therefore has no default Group ID

Parameters

u16GroupID 16-bit Group ID to be assigned to group

Returns

None

void vEZ_SetGroupId(uint16 u16GroupID);
718 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
u16EZ_GetGroupId

Description

This function can be used to obtain the group ID used during the Grouping stage.

Parameters

None

Returns

None

uint16 u16EZ_GetGroupId(void);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 719

Chapter 32
EZ-mode Commissioning Module

eEZ_GetFindAndBindState

Description

This function can be used during the ‘Find and Bind’ or Grouping stage to request the
current EZ-mode Commissioning state of the local device. This state relates to one
of the following:

 Initial state

 Find and Bind

 Grouping

Parameters

u8SourceEndpoint Number of endpoint on which this function is called

Returns

E_EZ_FIND_AND_BIND_INITIAL_STATE

E_EZ_FIND_AND_BIND_INITIATOR_IN_PROGRESS

E_EZ_GROUPING_IN_PROGRESS_STATE

E_EZ_FIND_AND_BIND_TARGET_IN_PROGRESS

teEZ_FindAndBindState eEZ_GetFindAndBindState(
uint8 u8SourceEndpoint);
720 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vEZ_Exit

Description

This function can be used to exit EZ-mode Commissioning. This is likely to be as the
result of a user action such as a button-press. The function is useful during the ‘Find
and Bind’ or ‘Grouping’ stage to avoid waiting for the EZ_MODE_TIME timeout to
expire - for example, if there are few nodes to bind or group and the binding/grouping
operation is completed well before the timeout.

Parameters

u8SourceEndpoint Number of endpoint on which this function is called

Returns

None

void vEZ_Exit(uint8 u8SourceEndpoint);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 721

Chapter 32
EZ-mode Commissioning Module

vEZ_FactoryReset

Description

This function is used to reset the EZ-mode Commissioning configuration on the local
node.

 It will remove all Binding table entries when called on the initiator device

 If the ‘Grouping’ feature is enabled, it will remove all Group table entries when called on
the target devices and will clear the group address when called on the initiator device

Parameters

u8SourceEndpoint Number of endpoint on which this function is called

Returns

None

void vEZ_FactoryReset(uint8 u8SourceEndpoint);
722 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vEZ_EZModeNWKFindAndBindHandler

Description

This function is the handler for stack events during the ‘Find and Bind’ or Grouping
stage on an initiator node. The function must be called from the main task of the
application. The stack event is passed to the function via its parameter.

The function mainly handles the IEEE Address response and Simple Descriptor
response from the target device.

Parameters

pZPSevent Pointer to structure containing stack event to be passed to the
function

Returns

None

void vEZ_EZModeNWKFindAndBindHandler(
ZPS_tsAfEvent *pZPSevent);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 723

Chapter 32
EZ-mode Commissioning Module

vEZ_EPCallBackHandler

Description

This function is the handler for endpoint callback events associated with the ‘Find and
Bind’ or Grouping stage. This handler must be called from each endpoint callback
function that needs to participate in the ‘Find and Bind’ or Grouping process.

The function handles the Identify Query response from the target and populate a
discovery table, which is used by the vEZ_EZModeNWKFindAndBindHandler() for
further processing.

Parameters

pCallBackEvent Pointer to structure containing endpoint callback event to be
passed to the function

Returns

None

void vEZ_EPCallBackHandler(
tsZCL_CallBackEvent *pCallBackEvent);
724 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vEZ_EZModeCb

Description

This function is a user-defined callback function that can be invoked when an event
occurs during the ‘Find and Bind’ or Grouping stage. For example, these events may
indicate when a binding or grouping has occurred for individual target devices. Other
occurrences such as the saving of context data can also be indicated in this way.

Parameters

pCallBackEvent Pointer to structure containing callback event to be passed to
the function

Returns

None

void vEZ_EZModeCb(tsEZ_FindAndBindEvent
*psCallBackEvent);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 725

Chapter 32
EZ-mode Commissioning Module

32.7 Enumerations

32.7.1 ‘Set-Up Policy’ Enumerations

The following enumerations are used to specify the ‘Set-Up policy’ to use (which can
be set using the function vEZ_SetUpPolicy()).

typedef enum

{

 E_EZ_JOIN_OR_FORM_BASED_ON_DEVICE_TYPE,

 E_EZ_JOIN_ELSE_FORM_IF_NO_NETWORK

}eEZ_SetUpPolicy;

The enumerations are described in the table below.

32.7.2 Status Enumerations (‘Find and Bind’ Return Codes)

The following enumerations are the return codes for the ‘Find and Bind’/Grouping
functions (see Section 32.6.2).

typedef enum

{

 E_EZ_IDLE,

 E_EZ_FIND_AND_BIND_IN_PROGRESS,

 E_EZ_GROUPING_IN_PROGRESS,

 E_EZ_BUSY,

 E_EZ_ERROR

}teEZ_Status;

The enumerations are described in the table below.

Enumeration Description

E_EZ_JOIN_OR_FORM_BASED_ON_DEVICE_TYPE A Co-ordinator device will always form a network. A
Router or End Device will always search for a suitable
network to join.

E_EZ_JOIN_ELSE_FORM_IF_NO_NETWORK A Co-ordinator device will first search for a suitable net-
work to join. If no network is found after a certain time
(checking that eEZ_GetJoinState() returns a state other
than E_EZ_DEVICE_IN_NETWORK), the application
can call vEZ_FormNW() to form a network.
This policy can be used only on a Co-ordinator

Table 37: ‘Set-Up Policy’ Enumerations
726 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
32.7.3 ‘Cluster Exclude’ Enumerations

The following enumerations are used to indicate the outcome of an attempt to exclude
a cluster from the binding process.

typedef enum

{

 E_EZ_CLUSTER_EXCLUSION_SUCCESS,

 E_EZ_EXCLUSION_TABLE_FULL

}teEZ_ClusterExcludeStatus;

The enumerations are described in the table below.

Enumeration Description

E_EZ_IDLE No EZ-mode Commissioning in progress

E_EZ_FIND_AND_BIND_IN_PROGRESS Find and Bind stage in progress

E_EZ_GROUPING_IN_PROGRESS Grouping stage in progress

E_EZ_BUSY EZ-mode Commissioning in progress and cannot be re-started

E_EZ_ERROR EZ mode Commissioning endpoint is not in range or resources are
not available

Table 38: Status Enumerations

Enumeration Description

E_EZ_CLUSTER_EXCLUSION_SUCCESS Cluster was successfully excluded

E_EZ_EXCLUSION_TABLE_FULL Cluster was not excluded because the ‘exclusion table’
is full - the number of entries has reached the limit set by
the macro EZ_MAX_CLUSTER_EXCLUSION_SIZE

Table 39: ‘Cluster Exclude’ Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 727

Chapter 32
EZ-mode Commissioning Module

32.7.4 ‘Join Action’ Enumerations

The following enumerations are used to indicate the type of join action to be
performed.

typedef enum

{

 E_EZ_JOIN,

 E_EZ_REJOIN

}teEZ_JoinAction;

The enumerations are described in the table below.

32.7.5 Event Enumerations

Thee following enumerations represent the EZ-mode Commissioning events that
relate to the ‘Find and Bind’/Grouping stage.

typedef enum

{

 E_EZ_NONE,

 E_EZ_NO_DEVICE_IN_IDENTIFY_MODE,

 E_EZ_BIND_CREATED_FOR_TARGET,

 E_EZ_GROUP_CREATED_FOR_TARGET,

 E_EZ_BIND_FAILED,

 E_EZ_TIMEOUT

#ifdef EZ_CHECK_FOR_BINDING_GROUPING

 ,

 E_EZ_CHECK_FOR_BIND_FOR_TARGET,

 E_EZ_CHECK_FOR_GROUP_FOR_TARGET

#endif

}teEZ_Events;

The EZ-mode Commissioning events are described in Section 32.5.

Enumeration Description

E_EZ_JOIN The device was not previously a member of a network and will join the network (if a Router
or End Device) or form a new network (if a Co-ordinator)

E_EZ_REJOIN The device was previously a member of the network and will rejoin the network

Table 40: ‘Join Action’ Enumerations
728 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
32.8 Structures

32.8.1 tsEZ_FindAndBindEvent

This structure contains the details of a binding or grouping made with a cluster on an
endpoint of a target device.

typedef struct{

 teEZ_Events eEventType;

 uint8 u8InitiatorEp;

 uint8 u8TargetEp;

 uint16 u16TargetAddress;

 union {

 uint16 u16ClusterId;

 uint16 u16GroupId;

 }uEvent;

#ifdef EZ_CHECK_FOR_BINDING_GROUPING

 ZPS_tsAfEvent *pZPSevent;

 bool bAllowBindOrGroup;

 bool bGroupCast;

#endif

}tsEZ_FindAndBindEvent;

where:

 eEventType is the event type - one of:

 E_EZ_BIND_CREATED_FOR_TARGET (for ‘Find and Bind’)

 E_EZ_GROUP_CREATED_FOR_TARGET (for Grouping)

 u8InitiatorEp is the number of the endpoint on the initiator device for which
the event has occurred.

 u8TargetEp is the number of the endpoint on the target device for which the
binding or grouping is required

 u16TargetAddress is the 16-bit network address of the target device

 uEvent is a union which can take either of the following values:

 u16ClusterID is the Cluster ID for which the binding is performed in the
case of an E_EZ_BIND_CREATED_FOR_TARGET event

 u16GroupId is the Group ID for which the grouping is performed in the
case of an E_EZ_GROUP_CREATED_FOR_TARGET event
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 729

Chapter 32
EZ-mode Commissioning Module

 The following fields are only enabled if the compile-time option
EZ_CHECK_FOR_BINDING_GROUPING is defined (see Section 32.9):

 pZPSevent is a pointer to the ZigBee PRO stack event containing the
matched Simple Descriptor

 bAllowBindOrGroup is a Boolean indicating whether the proposed
binding or grouping will be allowed (TRUE) or disallowed (FALSE). This
field is initially set to TRUE and the application must set it to FALSE only if
the binding/grouping is to be disallowed.

 bGroupCast is a Boolean indicating whether an ‘Add Group If Identifying’
command (for an allowed grouping) is to be sent as a groupcast (TRUE) or
unicast (FALSE). This field is initially set to FALSE and the application
must set it to TRUE only if the command is to be groupcast.

32.9 Compile-Time Options

This section describes the compile-time options that may be selected in the makefile
of an application that uses the EZ-mode Commissioning module.

To enable the EZ-mode Commissioning module in the code to be built, it is necessary
to add one or both of the following lines to the makefile, depending on whether the
device can be an initiator or a target during the ‘Find and Bind’ or ‘Grouping’ stage of
commissioning:

EZ_MODE_INITIATOR

EZ_MODE_TARGET

The EZ-mode Commissioning module contains macros that may be optionally
specified at compile-time by adding some or all the following lines to the makefile.

EZ-mode Commissioning duration

The time, in minutes, for which the device will remain in EZ-mode Commissioning can
be set (to t) by including the following line:

#define EZ_MODE_TIME t

The default value is 3 minutes.

Joining back-off time

The back-off time, in minutes, before a node re-starts the joining process after an
unsuccessful attempt can be set (to t) by including the following line:

#define BACKOFF_TIME_IN_MINUTES t

The default value is 15 minutes.
730 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Network formation timeout

When network formation is required as part of EZ-mode Commissioning, the
maximum time, in milliseconds, that the device will allow to successfully create a
network before trying again can be set (to t) by including the following line:

#define NWK_FORMATION_TIMEOUT_IN_MS t

The default value is 5000 ms.

Maximum discovery attempts per channel

The maximum number of scan attempts in a channel (before moving on to the next
channel) is set (to n) by including the following line:

#define MAX_DISCOVERY_ATTEMPT_PER_CHANNEL n

The default value is 3.

Network Steering re-start time

The time, in milliseconds, between Network Steering failing (e.g. due to a failed
discovery or failed join) and being re-started (device state becoming E_EZ_START)
can be set (to t) by including the following line:

#define RESTART_TIME_IN_MS t

The default value is 100 ms.

Time between consecutive discoveries

The time, in milliseconds, between one scan failing and the next one starting can be
set (to t) by including the following line:

#define DISCOVERY_TIMEOUT_IN_MS t

The default value is 1000 ms.

Maximum number of Network Descriptors per discovery

The maximum number of Network Descriptors that can be handled as the result of a
scan attempt in a single channel (this corresponds to the maximum number of
beacons that can be handled) is set (to n) by including the following line:

#define EZ_MAX_NETWORK_DESCRIPTOR n

The default value is 8.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 731

Chapter 32
EZ-mode Commissioning Module

Joining timeout

The timeout, in milliseconds, for an attempt to join a discovered network can be set (to
t) by including the following line:

#define JOINING_TIMEOUT_IN_MS t

The default value is 5000 ms.

Timeout for ‘Identify Query’ response

The maximum time, in seconds, for which the initiator will wait for an Identify Query
response (after broadcasting an Identify Query request) can be set (to t) by including
the following line:

#define EZ_RESPONSE_TIME t

The default value is 10 seconds.

Maximum number of target devices for binding

The maximum number of target devices to which the initiator can be bound can be set
(to n) by including the following line:

#define EZ_MAX_TARGET_DEVICE n

The default value is 10.

Maximum number of clusters excluded from binding

The maximum number of clusters that can be excluded from cluster client/server
matching in the binding process can be set (to n) by including the following line:

#define EZ_MAX_CLUSTER_EXCLUSION_SIZE n

The default value is 5.

Enable Grouping

The Grouping stage can be enabled (to replace the ‘Find and Bind’ stage) by including
the following line:

#define EZ_ENABLE_GROUP

Maximum number of endpoints

The maximum number of endpoints supported on the local device can be set (to n) by
including the following line:

#define EZ_NUMBER_OF_ENDPOINTS n

The default value is the value of HA_NUMBER_OF_ENDPOINTS set in the
application.
732 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Enable Bind and Group Check

A check (by the application) to determine whether a possible binding or grouping is to
be performed can be enabled by including the following line:

#define EZ_CHECK_FOR_BINDING_GROUPING

This line allows the events E_EZ_CHECK_FOR_BIND_FOR_TARGET and
E_EZ_CHECK_FOR_GROUP_FOR_TARGET to be generated (see Section 32.5).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 733

Chapter 32
EZ-mode Commissioning Module

734 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Part III:
General Reference

Information
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 735

736 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
33. ZCL Functions

This chapter details the core functions of the ZCL that may be needed irrespective of
the clusters used. These functions include:

 General functions - see Section 33.1

 Attribute Access functions - see Section 33.2

 Command Discovery functions - see Section 33.3

33.1 General Functions

This section details a set of general ZCL functions that deal with endpoint registration,
event handling and error handling:

Function Page

eZCL_Register 738

vZCL_EventHandler 739

eZCL_GetLastZpsError 740
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 737

Chapter 33
ZCL Functions

eZCL_Register

Description

This function is used to register an endpoint with the ZCL. The function validates the
clusters and corresponding attributes supported by the endpoint, and registers the
endpoint.

The function should only be called to register a custom endpoint (which does not
contain one of the standard ZigBee device types). It should be called for each custom
endpoint on the local node. The function is not required when using a standard
ZigBee device (e.g. On/Off Switch of the HA profile) on an endpoint - in this case, the
appropriate device registration function should be used.

Parameters

psEndPointDefinition Pointer to tsZCL_EndPointDefinition structure for the
endpoint to be registered (see Section 34.1.1)

Returns

 E_ZCL_SUCCESS

 E_ZCL_FAIL

 E_ZCL_ERR_PARAMETER_NULL

 E_ZCL_ERR_PARAMETER_RANGE

 E_ZCL_ERR_HEAP_FAIL

 E_ZCL_ERR_EP_RANGE

 E_ZCL_ERR_EP_UNKNOWN

 E_ZCL_ERR_SECURITY_RANGE

 E_ZCL_ERR_CLUSTER_0

 E_ZCL_ERR_CLUSTER_NULL

 E_ZCL_ERR_CLUSTER_NOT_FOUND

 E_ZCL_ERR_CLUSTER_ID_RANGE

 E_ZCL_ERR_ATTRIBUTES_NULL

 E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED,

 E_ZCL_ERR_ATTRIBUTE_NOT_FOUND,

 E_ZCL_ERR_CALLBACK_NULL

teZCL_Status eZCL_Register(
tsZCL_EndPointDefinition *psEndPointDefinition);
738 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
vZCL_EventHandler

Description

This function should be called when an event (ZigBee stack, peripheral or cluster
event) occurs. The function is used to pass the event to the ZCL. The ZCL will then
process the event, including a call to any necessary callback function.

The event is passed into the function in a tsZCL_CallBackEvent structure, which
the application must fill in - refer to Section 34.2 for details of this structure.

Parameters

psZCLCallBackEvent Pointer to a tsZCL_CallBackEvent event structure (see
Section 34.2) containing the event to process

Returns

None

void vZCL_EventHandler(
tsZCL_CallBackEvent *psZCLCallBackEvent);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 739

Chapter 33
ZCL Functions

eZCL_GetLastZpsError

Description

This function returns the last error code generated by the ZigBee PRO stack when
accessed from the ZCL.

For example, if a call to the On/Off cluster function eCLD_OnOffCommandSend()
returns E_ZCL_ERR_ZTRANSMIT_FAIL (because the ZigBee PRO API function
that was used to transmit the command failed), the eZCL_GetLastZpsError()
function can be called to obtain the return code from the ZigBee PRO stack.

Note that the error code is not updated on a successful call to the ZigBee PRO stack.
Also, there is only a single instance of the error code, so subsequent errors will over-
write the current value.

Parameters

None

Returns

The error code of the last ZigBee PRO stack error - see the Return/Status Codes
chapter of the ZigBee PRO Stack User Guide (JN-UG-3101 or JN-UG-3048)

ZPS_teStatus eZCL_GetLastZpsError(void);

Note: If an error occurs when a command is received, an
event of type E_ZCL_CBET_ERROR is generated on the
receiving node. A ‘default response’ may also be returned to
the source node of the received command. The possible ZCL
status codes in the error event and in the default response are
detailed in Section 4.2.
740 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
33.2 Attribute Access Functions

The following functions are provided in the ZCL for accessing cluster attributes on a
remote device:

Function Page

eZCL_SendReadAttributesRequest 742

eZCL_SendWriteAttributesRequest 744

eZCL_SendWriteAttributesNoResponseRequest 746

eZCL_SendWriteAttributesUndividedRequest 748

eZCL_SendDiscoverAttributesRequest 750

eZCL_SendDiscoverAttributesExtendedRequest 752

eZCL_SendConfigureReportingCommand 754

eZCL_SendReadReportingConfigurationCommand 756

eZCL_ReportAllAttributes 758

eZCL_CreateLocalReport 759

eZCL_SetReportableFlag 760

eZCL_HandleReadAttributesResponse 761

eZCL_ReadLocalAttributeValue 762

eZCL_WriteLocalAttributeValue 764

eZCL_OverrideClusterControlFlags 766

eZCL_SetSupportedSecurity 767

Note: In addition to the general function
eZCL_SendReadAttributesRequest(), there are
cluster-specific ‘read attributes’ functions for some
clusters.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 741

Chapter 33
ZCL Functions

eZCL_SendReadAttributesRequest

Description

This function can be used to send a ‘read attributes’ request to a cluster on a remote
endpoint. Note that read access to cluster attributes on the remote node must be
enabled at compile-time as described in Section 1.2.

You must specify the endpoint on the local node from which the request is to be sent.

You must also specify the address of the destination node, the destination endpoint
number and the cluster from which attributes are to be read. It is possible to use this
function to send a request to bound endpoints or to a group of endpoints on remote
nodes - in the latter case, a group address must be specified. Note that when sending
requests to multiple endpoints through a single call to this function, multiple
responses will subsequently be received from the remote endpoints.

The function allows you to read selected attributes from the remote cluster. You are
required to specify the number of attributes to be read and to identify the required
attributes by means of an array of identifiers - this array must be created by the
application (the memory space for the array only needs to persist for the duration of
this function call). The attributes can be manufacturer-specific or as defined in the
relevant ZigBee-defined application profile.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

On receiving the ‘read attributes’ response, the obtained attribute values are
automatically written to the local copy of the shared device structure for the remote
device and an E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE
event is then generated for each attribute updated. Note that the response may not
contain values for all requested attributes. Finally, once all received attribute values
have been parsed, the event E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE is
generated.

teZCL_Status eZCL_SendReadAttributesRequest(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8NumberOfAttributesInRequest,
bool_t bIsManufacturerSpecific,

 uint16 u16ManufacturerCode,
uint16 *pu16AttributeRequestList);
742 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent. Note that this parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

u16ClusterId Identifier of the cluster to be read (see the
macros section in the cluster header file)

bDirectionIsServerToClient Direction of request:
TRUE: Cluster server to client
FALSE: Cluster client to server

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8NumberOfAttributesInRequest Number of attributes to be read

bIsManufacturerSpecific Indicates whether attributes are manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attributes are manufacturer-specific
FALSE: Attributes are from ZigBee profile

u16ManufacturerCode ZigBee Alliance code for the manufacturer that
defined proprietary attributes (set to zero if
attributes are from the ZigBee-defined profile -
that is, if bIsManufacturerSpecific is set to
FALSE)

pu16AttributeRequestList Pointer to an array which lists the attributes to be
read. The attributes are identified by means of
enumerations (listed in the ‘Enumerations’
section of each cluster-specific chapter)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_WO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 743

Chapter 33
ZCL Functions

eZCL_SendWriteAttributesRequest

Description

This function can be used to send a ‘write attributes’ request to a cluster on a remote
endpoint. The function also demands a ‘write attributes’ response from the remote
endpoint, listing any attributes that could not be updated (see below). Note that write
access to cluster attributes on the remote node must be enabled at compile-time as
described in Section 1.2.

You must specify the endpoint on the local node from which the request is to be sent.

You must also specify the address of the destination node, the destination endpoint
number and the cluster to which attributes are to be written. It is possible to use this
function to send a request to bound endpoints or to a group of endpoints on remote
nodes - in the latter case, a group address must be specified. Note that when sending
requests to multiple endpoints through a single call to this function, multiple
responses will subsequently be received from the remote endpoints.

The function allows you to write selected attributes to the remote cluster. You are
required to specify the number of attributes to be written and to identify the required
attributes by means of an array of identifiers - this array must be created by the
application (the memory space for the array only needs to be valid for the duration of
this function call). The attributes can be manufacturer-specific or as defined in the
relevant ZigBee-defined application profile.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Following a ‘write attributes’ response from the remote endpoint, the event
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE is generated for
each attribute that was not successfully updated on the remote endpoint. Finally, the
event E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE is generated when
processing of the response is complete. If required, these events can be handled in
the user-defined callback function which is specified when the (requesting) endpoint
is registered using the appropriate endpoint registration function (e.g. from the Home
Automation or ZigBee Light Link library).

teZCL_Status eZCL_SendWriteAttributesRequest(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8NumberOfAttributesInRequest,
bool_t bIsManufacturerSpecific,

 uint16 u16ManufacturerCode,
tsZCL_WriteAttributeRecord *pu16AttributeRequestList);
744 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent. Note that this parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

u16ClusterId Identifier of the cluster to be written to (see the
macros section in the cluster header file)

bDirectionIsServerToClient Direction of request:
TRUE: Cluster server to client
FALSE: Cluster client to server

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8NumberOfAttributesInRequest Number of attributes to be written

bIsManufacturerSpecific Indicates whether attributes are manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attributes are manufacturer-specific
FALSE: Attributes are from application profile

u16ManufacturerCode ZigBee Alliance code for the manufacturer that
defined proprietary attributes (set to zero if
attributes are from the ZigBee-defined profile -
that is, if bIsManufacturerSpecific is set to
FALSE)

pu16AttributeRequestList Pointer to an array of structures containing the
attribute data to be written (see Section 34.1.21)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_RO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 745

Chapter 33
ZCL Functions

eZCL_SendWriteAttributesNoResponseRequest

Description

This function can be used to send a ‘write attributes’ request to a cluster on a remote
endpoint without requiring a response. If you need a response to your request, use
the function eZCL_SendWriteAttributesRequest() instead. Note that write access
to cluster attributes on the remote node must be enabled at compile-time as
described in Section 1.2.

You must specify the endpoint on the local node from which the request is to be sent.

You must also specify the address of the destination node, the destination endpoint
number and the cluster to which attributes are to be written. It is possible to use this
function to send a request to bound endpoints or to a group of endpoints on remote
nodes - in the latter case, a group address must be specified.

The function allows you to write selected attributes to the remote cluster. You are
required to specify the number of attributes to be written and to identify the required
attributes by means of an array of identifiers - this array must be created by the
application (the memory space for the array only needs to be valid for the duration of
this function call). The attributes can be manufacturer-specific or as defined in the
relevant ZigBee-defined application profile.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent. Note that this parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

u16ClusterId Identifier of the cluster to be written to (see the
macros section in the cluster header file)

bDirectionIsServerToClient Direction of request:
TRUE: Cluster server to client
FALSE: Cluster client to server

teZCL_Status
eZCL_SendWriteAttributesNoResponseRequest(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8NumberOfAttributesInRequest,
bool_t bIsManufacturerSpecific,

 uint16 u16ManufacturerCode,
tsZCL_WriteAttributeRecord *pu16AttributeRequestList);
746 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8NumberOfAttributesInRequest Number of attributes to be written

bIsManufacturerSpecific Indicates whether attributes are manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attributes are manufacturer-specific
FALSE: Attributes are from ZigBee profile

u16ManufacturerCode ZigBee Alliance code for the manufacturer that
defined proprietary attributes (set to zero if
attributes are from the ZigBee-defined profile -
that is, if bIsManufacturerSpecific is set to
FALSE)

pu16AttributeRequestList Pointer to an array of structures containing the
attribute data to be written (see Section 34.1.21).

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_RO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 747

Chapter 33
ZCL Functions

eZCL_SendWriteAttributesUndividedRequest

Description

This function can be used to send an ‘undivided write attributes’ request to a cluster
on a remote endpoint. This requests that all the specified attributes are updated on
the remote endpoint or none at all - that is, if one of the attributes cannot be written
then none of them are updated. The function also demands a ‘write attributes’
response from the remote endpoint, indicating success or failure. Note that write
access to cluster attributes on the remote node must be enabled at compile-time as
described in Section 1.2.

You must specify the endpoint on the local node from which the request is to be sent.

You must also specify the address of the destination node, the destination endpoint
number and the cluster to which attributes are to be written. It is possible to use this
function to send a request to bound endpoints or to a group of endpoints on remote
nodes - in the latter case, a group address must be specified. Note that when sending
requests to multiple endpoints through a single call to this function, multiple
responses will subsequently be received from the remote endpoints.

The function allows you to write selected attributes to the remote cluster. You are
required to specify the number of attributes to be written and to identify the required
attributes by means of an array of identifiers - this array must be created by the
application (the memory space for the array only needs to be valid for the duration of
this function call). The attributes can be manufacturer-specific or as defined in the
relevant ZigBee-defined application profile.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Following a ‘write attributes’ response from the remote endpoint, the event
E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE is generated to indicate
success or failure. This event can be handled in the user-defined callback function
which is specified when the (requesting) endpoint is registered using the appropriate
endpoint registration function (e.g. from the Home Automation or ZigBee Light Link
library).

teZCL_Status eZCL_SendWriteAttributesUndividedRequest(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8NumberOfAttributesInRequest,
bool_t bIsManufacturerSpecific,

 uint16 u16ManufacturerCode,
tsZCL_WriteAttributeRecord *pu16AttributeRequestList);
748 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent. Note that this parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

u16ClusterId Identifier of the cluster to be written to (see the
macros section in the cluster header file)

bDirectionIsServerToClient Direction of request:
TRUE: Cluster server to client
FALSE: Cluster client to server

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8NumberOfAttributesInRequest Number of attributes to be written

bIsManufacturerSpecific Indicates whether attributes are manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attributes are manufacturer-specific
FALSE: Attributes are from ZigBee profile

u16ManufacturerCode ZigBee Alliance code for the manufacturer that
defined proprietary attributes (set to zero if
attributes are from the ZigBee-defined profile -
that is, if bIsManufacturerSpecific is set to
FALSE)

pu16AttributeRequestList Pointer to an array of structures containing the
attribute data to be written (see Section 34.1.21)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_RO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 749

Chapter 33
ZCL Functions

eZCL_SendDiscoverAttributesRequest

Description

This function can be used to send a ‘discover attributes’ request to a cluster (normally
a cluster server) on a remote device. The range of attributes of interest (within the
standard set of cluster attributes) must be defined by specifying the identifier of the
‘start’ attribute and the number of attributes in the range. The function will return
immediately and the results of the request will later be received in a ‘discover
attributes’ response.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

On receiving the ‘discover attributes’ response, the event

E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE

is generated for each attribute reported in the response. Therefore, multiple events
will normally result from a single function call (‘discover attributes’ request). Following
the event for the final attribute reported, the event

E_ZCL_CBET_DISCOVER_ATTRIBUTES_RESPONSE

is generated to indicate that all attributes from the discover attributes response have
been reported.

Attribute discovery is fully described in Section 2.2.3.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

u16ClusterId Identifier of the cluster to be queried (see the
macros section in the cluster header file)

bDirectionIsServerToClient Direction of request:
TRUE: Cluster server to client
FALSE: Cluster client to server

teZCL_Status eZCL_SendDiscoverAttributesRequest(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint16 u16AttributeId,
bool_t bIsManufacturerSpecific,
uint16 u16ManufacturerCode,
uint8 u8MaximumNumberOfIdentifiers);
750 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u16AttributeId Identifier of ‘start’ attribute of interest

bIsManufacturerSpecific Indicates whether attributes are manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attributes are manufacturer-specific
FALSE: Attributes are from ZigBee profile

u16ManufacturerCode ZigBee Alliance code for the manufacturer that
defined proprietary attributes (set to zero if
attributes are from the ZigBee-defined profile -
that is, if bIsManufacturerSpecific is set to
FALSE)

u8MaximumNumberOfIdentifiers Number of attributes in attribute range of interest
(maximum number of attributes to report in
response)

 Returns

E_ZCL_SUCCESS
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 751

Chapter 33
ZCL Functions

eZCL_SendDiscoverAttributesExtendedRequest

Description

This function can be used to send a ‘discover attributes extended’ request to a cluster
(normally a cluster server) on a remote device. The range of attributes of interest
(within the standard set of cluster attributes) must be defined by specifying the
identifier of the ‘start’ attribute and the number of attributes in the range. The function
will return immediately and the results of the request will later be received in a
‘discover attributes extended’ response.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

On receiving the ‘discover attributes extended’ response, the event

E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_RESPONSE

is generated for each attribute reported in the response. Therefore, multiple events
will normally result from a single function call (‘discover attributes extended’ request).
Within this event, the details of the reported attribute are contained in a structure of
the type tsZCL_AttributeDiscoveryExtendedResponse (see Section
34.1.11).

Following the event for the final attribute reported, the event

E_ZCL_CBET_DISCOVER_ATTRIBUTES_EXTENDED_RESPONSE

is generated to indicate that all attributes from the discover attributes extended
response have been reported.

Extended attribute discovery is fully described in Appendix C.

teZCL_Status
eZCL_SendDiscoverAttributesExtendedRequest(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint16 u16AttributeId,
bool_t bIsManufacturerSpecific,
uint16 u16ManufacturerCode,
uint8 u8MaximumNumberOfIdentifiers);

Note: An ‘extended’ attribute discovery is similar to a normal
attribute discovery except the accessibility of each attribute is
additionally indicated as being ‘read’, ‘write’ or ‘reportable’.
752 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

u16ClusterId Identifier of the cluster to be queried (see the
macros section in the cluster header file)

bDirectionIsServerToClient Direction of request:
TRUE: Cluster server to client
FALSE: Cluster client to server

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u16AttributeId Identifier of ‘start’ attribute of interest

bIsManufacturerSpecific Indicates whether attributes are manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attributes are manufacturer-specific
FALSE: Attributes are from ZigBee profile

u16ManufacturerCode ZigBee Alliance code for the manufacturer that
defined proprietary attributes (set to zero if
attributes are from the ZigBee-defined profile -
that is, if bIsManufacturerSpecific is set to
FALSE)

u8MaximumNumberOfIdentifiers Number of attributes in attribute range of interest
(maximum number of attributes to report in
response)

 Returns

E_ZCL_SUCCESS
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 753

Chapter 33
ZCL Functions

eZCL_SendConfigureReportingCommand

Description

This function can be used on a cluster client to send a ‘configure reporting’ command
to a cluster server, in order to request automatic reporting to be configured for a set
of attributes. The configuration information is provided to the function in an array of
structures, where each structure contains the configuration data for a single attribute.
The function will return immediately and the results of the request will later be
received in a ‘configure reporting’ response.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

On receiving the ‘configure reporting’ response, the event

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE_RESPONSE

is generated for each attribute in the response. Therefore, multiple events will
normally result from a single function call (‘configure reporting’ command). Following
the event for the final attribute, the event

E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE_RESPONSE

is generated to indicate that the configuration outcomes for all the attributes from the
‘configure reporting’ command have been reported.

Attribute reporting is fully described in Appendix B.

teZCL_Status eZCL_SendConfigureReportingCommand(
uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8NumberOfAttributesInRequest,
bool_t bIsManufacturerSpecific,
uint16 u16ManufacturerCode,
tsZCL_AttributeReportingConfigurationRecord
 *psAttributeReportingConfigurationRecord);

Note: In order for automatic reporting to be successfully
configured for an attribute using this function, the ‘reportable
flag’ for the attribute must have been set on the cluster server
using the function eZCL_SetReportableFlag().
754 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent

u16ClusterId Identifier of the cluster to be configured (see the
macros section in the cluster header file)

bDirectionIsServerToClient Direction of request:
TRUE: Cluster server to client
FALSE: Cluster client to server

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8NumberOfAttributesInRequest Number of attributes for which reporting is to be
configured as a result of the request

bIsManufacturerSpecific Indicates whether attributes are manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attributes are manufacturer-specific
FALSE: Attributes are from ZigBee profile

u16ManufacturerCode ZigBee Alliance code for the manufacturer that
defined proprietary attributes (set to zero if
attributes are from the ZigBee-defined profile -
that is, if bIsManufacturerSpecific is set to
FALSE)

psAttributeReportingConfigurationRecord

Pointer to array of structures, where each
structure contains the attributing reporting
configuration data for a single attribute (see
Section 34.1.5)

 Returns

E_ZCL_SUCCESS
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 755

Chapter 33
ZCL Functions

eZCL_SendReadReportingConfigurationCommand

Description

This function can be used on a cluster client to send a ‘read reporting configuration’
command to a cluster server, in order to request the attribute reporting configuration
data for a set of attributes. For each attribute, configuration data can be requested
relating to either sending or receiving an attribute report. The required configuration
data is specified to the function in an array of structures, where each structure
contains the requirements for a single attribute. The function will return immediately
and the results of the request will later be received in a ‘read reporting configuration’
response.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

On receiving the ‘read reporting configuration’ response, the event

E_ZCL_CBET_REPORT_READ_INDIVIDUAL_ATTRIBUTE_CONFIGURATION_RESPONSE

is generated for each attribute in the response. Therefore, multiple events will
normally result from a single function call (‘read reporting configuration’ command).
Following the event for the final attribute reported, the event

E_ZCL_CBET_REPORT_READ_ATTRIBUTE_CONFIGURATION_RESPONSE

is generated to indicate that the configuration outcomes for all the attributes from the
‘configure reporting’ command have been reported.

Attribute reporting is fully described in Appendix B.

Parameters

u8SourceEndPointId Number of the local endpoint through which the
request will be sent

u8DestinationEndPointId Number of the remote endpoint to which the
request will be sent.

u16ClusterId Identifier of the cluster containing the attributes
(see the macros section in the cluster header file)

teZCL_Status
eZCL_SendReadReportingConfigurationCommand(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8NumberOfAttributesInRequest,
bool_t bIsManufacturerSpecific,
uint16 u16ManufacturerCode,
tsZCL_AttributeReadReportingConfigurationRecord
 *psAttributeReadReportingConfigurationRecord);
756 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
bDirectionIsServerToClient Direction of request:
TRUE: Cluster server to client
FALSE: Cluster client to server

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8NumberOfAttributesInRequest Number of attributes for which reporting is to be
configured as a result of the request

bIsManufacturerSpecific Indicates whether attributes are manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attributes are manufacturer-specific
FALSE: Attributes are from ZigBee profile

u16ManufacturerCode ZigBee Alliance code for the manufacturer that
defined proprietary attributes (set to zero if
attributes are from the ZigBee-defined profile -
that is, if bIsManufacturerSpecific is set to
FALSE)

psAttributeReportingConfigurationRecord

Pointer to array of structures, where each
structure indicates the required configuration
data for a single attribute (see Section 34.1.7)

 Returns

E_ZCL_SUCCESS
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 757

Chapter 33
ZCL Functions

eZCL_ReportAllAttributes

Description

This function can be used on the cluster server to issue an attribute report for all the
reportable attributes on the server. Only the standard attributes are reported - this
does not include manufacturer-specific attributes.

Use of this function requires no special configuration on the cluster server but the
target client must be enabled to receive attribute reports (via the compile-time option
ZCL_ATTRIBUTE_REPORTING_CLIENT_SUPPORTED - see Appendix B.2.1).

After this function has been called and before the attribute report is sent, the event
E_ZCL_CBET_REPORT_REQUEST is automatically generated on the server,
allowing the application to update the attribute values in the shared structure, if
required.

Attribute reporting is fully described in Appendix B.

Parameters

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the attribute report will be sent

u16ClusterID Identifier of the cluster containing the attributes to
be reported (see the macros section in the
cluster header file)

u8SrcEndPoint Number of endpoint on server from which
attribute report will be sent

u8DestEndPoint Number of endpoint on target client to which
attribute report will be sent

hAPduInst Handle of APDU instance that will contain the
attribute report

 Returns

E_ZCL_SUCCESS

teZCL_Status eZCL_ReportAllAttributes(
tsZCL_Address *psDestinationAddress,
uint16 u16ClusterID,
uint8 u8SrcEndPoint,
uint8 u8DestEndPoint,
PDUM_thAPduInstance hAPduInst);
758 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eZCL_CreateLocalReport

Description

This function can be used on a cluster server during a ‘cold start’ to register attribute
reporting configuration data (with the ZCL) that has been retrieved from Non-Volatile
Memory (NVM) using the JenOS Persistent Data Manager (PDM). Each call of the
function registers the Attribute Reporting Configuration Record for a single attribute.
This configuration record is supplied to the function in a structure that has been
populated using the JenOS PDM. The function should only be called after the ZCL
has been initialised. Following this function call, automatic attribute reporting can
resume for the relevant attribute (e.g. following a power loss or device reset).

The function must not be called for attributes that have not been configured for
automatic attribute reporting (e.g. those for which the maximum reporting interval is
set to REPORTING_MAXIMUM_TURNED_OFF).

Attribute reporting is fully described in Appendix B.

Parameters

u8SourceEndPointId Number of endpoint on which the relevant cluster
is located

u16ClusterId Identifier of the cluster containing the attribute for
which retrieved attribute reporting configuration
data is to be registered (see the macros section
in the cluster header file)

bManufacturerSpecific Indicates whether attribute is manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attribute is manufacturer-specific
FALSE: Attribute is from ZigBee profile

bIsServerAttribute Indicates whether the attribute is located on the
cluster server (or client):

TRUE: Attribute is on cluster server
FALSE: Attribute is on cluster client

psAttributeReportingConfigurationRecord

Pointer to structure (see Section 34.1.5)
containing the reporting configuration data for
the attribute

 Returns

E_ZCL_SUCCESS

teZCL_Status eZCL_CreateLocalReport(
uint8 u8SourceEndPointId,
uint16 u16ClusterId,
bool_t bManufacturerSpecific,
bool_t bIsServerAttribute,
tsZCL_AttributeReportingConfigurationRecord

 *psAttributeReportingConfigurationRecord);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 759

Chapter 33
ZCL Functions

eZCL_SetReportableFlag

Description

This function can be used on a cluster server to set (to ‘1’) the ‘reportable flag’
(E_ZCL_ACF_RP bit) for an attribute. Setting this flag will allow automatic reporting
to be configured and implemented for the attribute.

The cluster on which the attribute resides must be specified. The flag will be set for
the specified attribute on all endpoints, but a single endpoint must be nominated
which will be used to search for the attribute definition and to check that the specified
cluster has been registered with the ZCL.

Attribute reporting is fully described in Appendix B.

Parameters

u8SourceEndPointId Number of endpoint to be used to search for the
attribute definition and to check the cluster

u16ClusterId Identifier of the cluster containing the attribute for
which the flag is to be set (see the macros
section in the cluster header file)

bIsServerClusterInstance Type of cluster instance to be set:
TRUE: Cluster Server
FALSE: Cluster Client

bIsManufacturerSpecific Indicates whether attribute is manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attribute is manufacturer-specific
FALSE: Attribute is from ZigBee profile

u16AttributeId Identifier of attribute for which the flag is to be set

 Returns

E_ZCL_SUCCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_EP_RANGE

teZCL_Status eZCL_SetReportableFlag(
uint8 u8SrcEndPoint,
uint16 u16ClusterID,
bool bIsServerClusterInstance,
bool bIsManufacturerSpecific,
uint16 u16AttributeId);

Note: It is not necessary to set this flag for attribute reports
generated through calls to eZCL_ReportAllAttributes(),
since the flag only affects the processing of ‘configure
reporting’ commands.
760 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eZCL_HandleReadAttributesResponse

Description

This function can be used to examine the response to a 'read attributes' request for
a remote cluster and determine whether the response is complete - that is, whether
the 'read attributes' response contains all the relevant attribute values (it may be
incomplete if the returned data is too large to fit into a single APDU).

eZCL_HandleReadAttributesResponse() should normally be included in the user-
defined callback function that is invoked on generation of the event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE. The callback function must
pass the generated event into eZCL_HandleReadAttributesResponse().

If the 'read attributes' response is not complete, the function will re-send 'read
attributes' requests until all relevant attribute values have been received.

You are also required to provide a pointer to a location to receive a Transaction
Sequence Number (TSN) for the request. The TSN in the response will be set to
match the TSN in the request, allowing an incoming response to be paired with a
request. This is useful when sending more than one request to the same destination
endpoint.

Parameters

psEvent Pointer to generated event of the type
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_WO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE

teZCL_Status eZCL_HandleReadAttributesResponse(
tsZCL_CallBackEvent *psEvent,
uint8 *pu8TransactionSequenceNumber);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 761

Chapter 33
ZCL Functions

eZCL_ReadLocalAttributeValue

Description

This function can be used to read a local attribute value of the specified cluster on
the specified endpoint. Before reading the attribute value, the function checks that
the attribute and cluster actually reside on the endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint on which the read
will be performed

u16ClusterId Identifier of the cluster to be read (see the
macros section in the cluster header file)

bIsServerClusterInstance Type of cluster instance to be read:
TRUE: Cluster server
FALSE: Cluster client

bIsManufacturerSpecific Indicates whether attribute is manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attribute is manufacturer-specific
FALSE: Attribute is from ZigBee profile

blsClientAttribute Type of attribute to be read (client or server):
TRUE: Client attribute
FALSE: Server attribute

u16AttributeId Identifier of the attribute to be read

pvAttributeValue Pointer to location to receive the read attribute
value

ZPS_teStatus eZCL_ReadLocalAttributeValue(
uint8 u8SourceEndPointId,
uint16 u16ClusterId,
bool bIsServerClusterInstance,
bool bIsManufacturerSpecific,
bool_t blsClientAttribute,
uint16 u16AttributeId,
void *pvAttributeValue);
762 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_WO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 763

Chapter 33
ZCL Functions

eZCL_WriteLocalAttributeValue

Description

This function can be used to write a value to a local attribute value of the specified
cluster on the specified endpoint. Before writing the attribute value, the function
checks that the attribute and cluster actually reside on the endpoint.

Parameters

u8SourceEndPointId Number of the local endpoint on which the write
will be performed

u16ClusterId Identifier of the cluster to be written to (see the
macros section in the cluster header file)

bIsServerClusterInstance Type of cluster instance to be written to:
TRUE: Cluster server
FALSE: Cluster client

bIsManufacturerSpecific Indicates whether attribute is manufacturer-
specific or as defined in relevant ZigBee profile:
TRUE: Attribute is manufacturer-specific
FALSE: Attribute is from ZigBee profile

blsClientAttribute Type of attribute to be written to (client or server):
TRUE: Client attribute
FALSE: Server attribute

u16AttributeId Identifier of the attribute to be written to

pvAttributeValue Pointer to location containing the attribute value
to be written

ZPS_teStatus eZCL_WriteLocalAttributeValue(
uint8 u8SourceEndPointId,
uint16 u16ClusterId,
bool bIsServerClusterInstance,
bool bIsManufacturerSpecific,
bool_t blsClientAttribute,
uint16 u16AttributeId,
void *pvAttributeValue);
764 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_CLUSTER_ID_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_ATTRIBUTE_WO

E_ZCL_ERR_ATTRIBUTES_ACCESS

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_PARAMETER_RANGE
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 765

Chapter 33
ZCL Functions

eZCL_OverrideClusterControlFlags

Description

This function can be used to over-ride the control flag setting for the specified cluster
(it can be used for any cluster). If required, this function can be called immediately
after the relevant endpoint registration function (e.g. for an HA Light Sensor device,
eHA_RegisterLightSensorEndPoint()) or at any subsequent point in the
application.

In particular, this function can be used by the application to change the default
security level for a cluster.

Parameters

u8SourceEndPointId Number of the local endpoint on which the
control flag is to be over-ridden

u16ClusterId Identifier of the cluster to have control flag over-
ridden (see the macros section in the cluster
header file)

bIsServerClusterInstance Type of cluster instance:
TRUE: Cluster server
FALSE: Cluster client

u8ClusterControlFlags Value to be written to control flag, one of:
E_ZCL_SECURITY_NETWORK
E_ZCL_SECURITY_APPLINK

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_PARAMETER_NULL

teZCL_Status eZCL_OverrideClusterControlFlags(
uint8 u8SrcEndpoint,
uint16 u16ClusterId,
bool bIsServerClusterInstance,
uint8 u8ClusterControlFlags);
766 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eZCL_SetSupportedSecurity

Description

This function can be used to set the security level for future transmissions from the
local device. The possible levels are:

 Application-level security, which uses an application link key that is unique to the pair of
nodes in communication

 Network-level security, which uses a network key that is shared by the whole network

By default, application-level security is enabled. In practice, you may want to use this
function to disable application-level security on the local device so that the device will
send all future communications with only network-level security. This is useful when
transmitted packets need to be easily accessed, e.g. during over-air tests performed
using a packet sniffer.

Parameters

eSecuritySupported Required level of security, one of:
E_ZCL_SECURITY_NETWORK - network-level security
E_ZCL_SECURITY_APPLINK - application-level security

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_RANGE

teZCL_Status eZCL_SetSupportedSecurity(
teZCL_ZCLSendSecurity eSecuritySupported);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 767

Chapter 33
ZCL Functions

33.3 Command Discovery Functions

The following functions are provided in the ZCL for performing command discovery:

Function Page

eZCL_SendDiscoverCommandReceivedRequest 769

eZCL_SendDiscoverCommandGeneratedRequest 771

Note: In order to use these functions, Command
Discovery must be enabled in the compile-time options.
For more details, refer to the introduction to Command
Discovery in Section 2.6.
768 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eZCL_SendDiscoverCommandReceivedRequest

Description

This function sends a request to initiate a command discovery on a remote cluster
instance to obtain a list of commands that can be received by the cluster instance.

Commands are represented by their Command IDs and the first Command ID from
which the discovery is to start must be specified. The maximum number of
commands to be reported must also be specified. This allows the function can be
called multiple times to discover the commands in stages (see below).

The function also allows commands to be searched for that are associated with a
particular manufacturer code. Alternatively, the manufacturer code can be searched
for, along with the commands.

The target cluster will return a response containing the requested information. On
receiving this response, the following events will be generated on the local device:

 E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_RESPONSE: This
event is generated for each individual command reported in the response. The reported
information is contained in a structure of the type
tsZCL_CommandDiscoveryIndividualResponse (see Section 34.1.17).

 E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE: This event is
generated after all the above individual events, in order to indicate the end of these
events. The reported information is contained in a structure of the type
tsZCL_CommandDiscoveryResponse (see Section 34.1.18).

The tsZCL_CommandDiscoveryResponse structure in the last event contains a
flag which indicates whether there are still commands to be discovered. If this is the
case, the function can be called again with a new starting point (first Command ID).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Command discovery is described in Section 2.6.

teZCL_Status
eZCL_SendDiscoverCommandReceivedRequest(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8CommandId,
bool_t bIsManufacturerSpecific,
uint16 u16ManufacturerCode,
uint8 u8MaximumNumberOfCommands);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 769

Chapter 33
ZCL Functions

Parameters

u8SourceEndPointId Number of the local endpoint through which
the request will be sent

u8DestinationEndPointId Number of the remote endpoint (hosting the
target cluster instance) to which the request
will be sent

u16ClusterId Identifier of the cluster for which a command
discovery is requested

bDirectionIsServerToClient Boolean indicating the type of request in
terms of source and target clusters:
TRUE - server sending request to client
FALSE - client sending request to server

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8CommandId Command ID which will be the starting point
for the command discovery

bIsManufacturerSpecific Boolean indicating whether a manufacturer
code will be specified in the parameter
u16ManufacturerCode below:
TRUE - u16ManufacturerCode is used
FALSE - u16ManufacturerCode is not used

u16ManufacturerCode A manufacturer-specific code (depends on
the setting of bIsManufacturerSpecific
above). 0xFFFF is a wildcard value indicating
that the manufacturer code should be
discovered along with the commands

u8MaximumNumberOfCommands Maximum number of commands to be
discovered

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_PARAMETER_NULL
770 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
eZCL_SendDiscoverCommandGeneratedRequest

Description

This function sends a request to initiate a command discovery on a remote cluster
instance to obtain a list of commands that can be generated by the cluster instance.

Commands are represented by their Command IDs and the first Command ID from
which the discovery is to start must be specified. The maximum number of
commands to be reported must also be specified. This allows the function can be
called multiple times to discover the commands in several stages.

The function also allows commands to be searched for that are associated with a
particular manufacturer code. Alternatively, the manufacturer code can be searched
for, along with the commands.

The target cluster will return a response containing the requested information. On
receiving this response, the following events will be generated on the local device:

 E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_RESPONSE:
This event is generated for each individual command reported in the response. The
reported information is contained in a structure of the type
tsZCL_CommandDiscoveryIndividualResponse (see Section 34.1.17).

 E_ZCL_CBET_DISCOVER_COMMAND_GENERATED_RESPONSE: This event is
generated after all the above individual events, in order to indicate the end of these
events. The reported information is contained in a structure of the type
tsZCL_CommandDiscoveryResponse (see Section 34.1.18).

The tsZCL_CommandDiscoveryResponse structure in the last event contains a
flag which indicates whether there are still commands to be discovered. If this is the
case, the function can be called again with a new starting point (first Command ID).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Command discovery is described in Section 2.6.

teZCL_Status
eZCL_SendDiscoverCommandGeneratedRequest(

uint8 u8SourceEndPointId,
uint8 u8DestinationEndPointId,
uint16 u16ClusterId,
bool_t bDirectionIsServerToClient,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
uint8 u8CommandId,
bool_t bIsManufacturerSpecific,
uint16 u16ManufacturerCode,
uint8 u8MaximumNumberOfCommands);
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 771

Chapter 33
ZCL Functions

Parameters

u8SourceEndPointId Number of the local endpoint through which
the request will be sent

u8DestinationEndPointId Number of the remote endpoint (hosting the
target cluster instance) to which the request
will be sent

u16ClusterId Identifier of the cluster for which a command
discovery is requested

bDirectionIsServerToClient Boolean indicating the type of request in
terms of source and target clusters:
TRUE - server sending request to client
FALSE - client sending request to server

psDestinationAddress Pointer to a structure (see Section 34.1.4)
containing the address of the remote node to
which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to store the Transaction
Sequence Number (TSN) of the request

u8CommandId Command ID which will be the starting point
for the command discovery

bIsManufacturerSpecific Boolean indicating whether a manufacturer
code will be specified in the parameter
u16ManufacturerCode below:
TRUE - u16ManufacturerCode is used
FALSE - u16ManufacturerCode is not used

u16ManufacturerCode A manufacturer-specific code (depends on
the setting of bIsManufacturerSpecific
above). 0xFFFF is a wildcard value indicating
that the manufacturer code should be
discovered along with the commands

u8MaximumNumberOfCommands Maximum number of commands to be
discovered

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_PARAMETER_NULL
772 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
34. ZCL Structures

This chapter details the structures that are not specific to any particular ZCL cluster.

34.1 General Structures

34.1.1 tsZCL_EndPointDefinition

This structure defines the endpoint for an application:

struct tsZCL_EndPointDefinition

{

 uint8 u8EndPointNumber;

 uint16 u16ManufacturerCode;

 uint16 u16ProfileEnum;

 bool_t bIsManufacturerSpecificProfile;

 uint16 u16NumberOfClusters;

 tsZCL_ClusterInstance *psClusterInstance;

 bool_t bDisableDefaultResponse;

 tfpZCL_ZCLCallBackFunction pCallBackFunctions;

};

where:

 u8EndPointNumber is the endpoint number between 1 and 240 (0 is
reserved)

 u16ManufacturerCode is the manufacturer code (only valid when
bIsManufacturerSpecificProfile is set to TRUE)

 u16ProfileEnum is the ZigBee application profile ID

 bIsManufacturerSpecificProfile indicates whether the application
profile is proprietary (TRUE) or from the ZigBee Alliance (FALSE)

 u16NumberOfClusters is the number of clusters on the endpoint

 psClusterInstance is a pointer to an array of cluster instance structures

 bDisableDefaultResponse can be used to disable the requirement for
default responses to be returned for commands sent from the endpoint
(TRUE=disable, FALSE=enable)

 pCallBackFunctions is a pointer to the callback functions for the endpoint

Note: Cluster-specific structures are detailed in the
chapters for the respective clusters.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 773

Chapter 34
ZCL Structures

34.1.2 tsZCL_ClusterDefinition

This structure defines a cluster used on a device:

typedef struct

{

 uint16 u16ClusterEnum;

 bool_t bIsManufacturerSpecificCluster;

 uint8 u8ClusterControlFlags;

 uint16 u16NumberOfAttributes;

 tsZCL_AttributeDefinition *psAttributeDefinition;

 tsZCL_SceneExtensionTable *psSceneExtensionTable;

#ifdef ZCL_COMMAND_DISCOVERY_SUPPORTED

 uint8 u8NumberOfCommands;

 tsZCL_CommandDefinition *psCommandDefinition;

#endif

} tsZCL_ClusterDefinition;

where:

 u16ClusterEnum is the Cluster ID

 bIsManufacturerSpecificCluster indicates whether the cluster is
specific to a manufacturer (proprietary):

 TRUE - proprietary cluster

 FALSE - ZigBee cluster

 u8ClusterControlFlags is a bitmap containing control bits in two parts, as
follows:

 u16NumberOfAttributes indicates the number of attributes in the cluster

 psAttributeDefinition is a pointer to an array of attribute definition
structures - see Section 34.1.3

Bits Description Values

0 - 3 Type of security Indicates the type of security key used via one of the following
teZCL_ZCLSendSecurity enumerations (see Section 35.1.6):

• E_ZCL_SECURITY_NETWORK

• E_ZCL_SECURITY_APPLINK

• E_ZCL_SECURITY_TEMP_APPLINK
(this option is for internal use only)

4 - 7 Cluster mirror Used internally to indicate whether the cluster is mirrored,
as follows:

• 0000b - Not mirrored

• 1000b - Mirrored

All other values are reserved
774 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 psSceneExtensionTable is a pointer to a structure containing a Scene
Extension table - see Section 34.1.20

 The following optional pair of fields are related to the Command Discovery
feature (see Section 2.6):

 u8NumberOfCommands is the number of supported commands in the
Command Definition table (see below)

 psCommandDefinition is a pointer to a Command Definition table
which contains a list of the commands supported by the cluster - each
entry of the table contains the details of a supported command in a
tsZCL_CommandDefinition structure (see Section 34.1.19)

34.1.3 tsZCL_AttributeDefinition

This structure defines an attribute used in a cluster:

struct tsZCL_AttributeDefinition

{

 uint16 u16AttributeEnum;

 uint8 u8AttributeFlags;

 teZCL_ZCLAttributeType eAttributeDataType;

 uint16 u16OffsetFromStructBase;

 uint16 u16AttributeArrayLength;

};

where:

 u16AttributeEnum is the Attribute ID

 u8AttributeFlags is a bitmap of flags relating to the attribute

 eAttributeDataType is the data type of the attribute - see Section 35.1.3

 u16OffsetFromStructBase is the offset of the attribute’s location from the
start of the cluster

 u16AttributeArrayLength is the number of consecutive attributes of the
same type
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 775

Chapter 34
ZCL Structures

34.1.4 tsZCL_Address

This structure is used to specify the addressing mode and address for a
communication with a remote node:

typedef struct PACK

{

 teZCL_AddressMode eAddressMode;

 union {

 zuint16 u16GroupAddress;

 zuint16 u16DestinationAddress;

 zuint64 u64DestinationAddress;

 teAplAfBroadcastMode eBroadcastMode;

 } uAddress;

} tsZCL_Address;

where:

 eAddressMode is the addressing mode to be used (see Section 35.1.1)

 uAddress is a union containing the necessary address information (only one
of the following must be set, depending on the addressing mode selected):

 u16GroupAddress is the 16-bit group address for the target nodes

 u16DestinationAddress is the 16-bit network address of the target

 u64DestinationAddress is the 64-bit IEEE/MAC address of the target

 eBroadcastMode is the required broadcast mode (see Section 35.1.2)

34.1.5 tsZCL_AttributeReportingConfigurationRecord

This structure contains the configuration record for automatic reporting of an attribute.

typedef struct

{

 uint8 u8DirectionIsReceived;

 teZCL_ZCLAttributeType eAttributeDataType;

 uint16 u16AttributeEnum;

 uint16 u16MinimumReportingInterval;

 uint16 u16MaximumReportingInterval;

 uint16 u16TimeoutPeriodField;

 tuZCL_AttributeReportable uAttributeReportableChange;

} tsZCL_AttributeReportingConfigurationRecord;
776 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
where:

 u8DirectionIsReceived indicates whether the record configures how
attribute reports will be received or sent:

 0x00: Configures how attribute reports will be sent by the server - the
following fields are included in the message payload:
eAttributeDataType, u16MinimumReportingInterval,
u16MaximumReportingInterval, uAttributeReportableChange

 0x01: Configures how attribute reports will be received by the client -
u16TimeoutPeriodField is included in the message payload

 eAttributeDataType indicates the data type of the attribute

 u16AttributeEnum is the identifier of the attribute to which the configuration
record relates

 u16MinimumReportingInterval is the minimum time-interval, in seconds,
between consecutive reports for the attribute - the value 0x0000 indicates no
minimum (REPORTING_MINIMUM_LIMIT_NONE)

 u16MaximumReportingInterval is the time-interval, in seconds, between
consecutive reports for periodic reporting - the following special values can also
be set:

 0x0000 indicates that periodic reporting is to be disabled for the attribute
(REPORTING_MAXIMUM_PERIODIC_TURNED_OFF)

 0xFFFF indicates that automatic reporting is to be completely disabled for
the attribute (REPORTING_MAXIMUM_TURNED_OFF)

 u16TimeoutPeriodField is the timeout value, in seconds, for an attribute
report - if the time elapsed since the last report exceeds this value (without
receiving another report), it may be assumed that there is a problem with the
attribute reporting - the value 0x0000 indicates that no timeout will be applied
(REPORTS_OF_ATTRIBUTE_NOT_SUBJECT_TO_TIMEOUT)

 uAttributeReportableChange is the minimum change in the attribute
value that will cause an attribute report to be issued

Note: For successful attribute reporting, the timeout on
the receiving client must be set to a higher value than
the maximum reporting interval for the attribute on the
sending server.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 777

Chapter 34
ZCL Structures

34.1.6 tsZCL_AttributeReportingConfigurationResponse

This structure contains information from a ‘configure reporting’ response.

typedef struct

{

 teZCL_CommandStatus eCommandStatus;

 tsZCL_AttributeReportingConfigurationRecord
 sAttributeReportingConfigurationRecord;

}tsZCL_AttributeReportingConfigurationResponse;

where:

 eCommandStatus is an enumeration representing the status from the
response (see Section 35.1.4)

 sAttributeReportingConfigurationRecord is a configuration record
structure (see Section 34.1.5), but only the fields u16AttributeEnum and
u8DirectionIsReceived are used in the response

34.1.7 tsZCL_AttributeReadReportingConfigurationRecord

This structure contains the details of a reporting configuration query for one attribute,
to be included in a ‘read reporting configuration’ command:

typedef struct

{

 uint8 u8DirectionIsReceived;

 uint16 u16AttributeEnum;

} tsZCL_AttributeReadReportingConfigurationRecord;

where:

 u8DirectionIsReceived specifies whether the required reporting
configuration information details how the attribute reports will be received or
sent

 0x00: Specifies that required information details how a report will be sent
by the server

 0x01: Specifies that required information details how a report will be
received by the client

 u16AttributeEnum is the identifier of the attribute to which the required
reporting configuration information relates
778 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
34.1.8 tsZCL_IndividualAttributesResponse

This structure is contained in a ZCL event of type
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE (see Section):

typedef struct PACK {

 uint16 u16AttributeEnum;

 teZCL_ZCLAttributeType eAttributeDataType;

 teZCL_CommandStatus eAttributeStatus;

 void *pvAttributeData;

} tsZCL_IndividualAttributesResponse;

where:

 u16AttributeEnum identifies the attribute that has been read (the relevant
enumerations are listed in the ‘Enumerations’ section of each cluster-specific
chapter)

 eAttributeDataType is the ZCL data type of the read attribute (see Section
35.1.3)

 eAttributeStatus is the status of the read operation (0x00 for success or
an error code - see Section 35.1.4 for enumerations)

 pvAttributeData is a pointer to the read attribute data which (if the read
was successful) has been inserted by the ZCL into the shared device structure

The above structure is contained in the tsZCL_CallBackEvent event structure,
detailed in Section 34.2, when the field eEventType is set to
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE.

34.1.9 tsZCL_DefaultResponse

This structure is contained in a ZCL event of type
E_ZCL_CBET_DEFAULT_RESPONSE (see Section):

 typedef struct PACK {

 uint8 u8CommandId;

 uint8 u8StatusCode;

} tsZCL_DefaultResponse;

where:

 u8CommandId is the ZCL identifier of the command that triggered the default
response message

 u8StatusCode is the status code from the default response message (0x00
for OK or an error code defined in the ZCL Specification - see Section 4.2)

The above structure is contained in the tsZCL_CallBackEvent event structure,
detailed in Section 34.2, when the field eEventType is set to
E_ZCL_CBET_DEFAULT_RESPONSE.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 779

Chapter 34
ZCL Structures

34.1.10 tsZCL_AttributeDiscoveryResponse

This structure contains details of an attribute reported in a ‘discover attributes’
response. It is contained in a ZCL event of type
E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE.

typedef struct

{

 bool_t bDiscoveryComplete;

 uint16 u16AttributeEnum;

 teZCL_ZCLAttributeType eAttributeDataType;

} tsZCL_AttributeDiscoveryResponse;

where:

 bDiscoveryComplete indicates whether this is the final attribute from a
‘discover attributes’ to be reported:

 TRUE - final attribute

 FALSE - not final attribute

 u16AttributeEnum is the identifier of the attribute being reported

 eAttributeDataType indicates the data type of the attribute being reported
(see Section 35.1.3)

The above structure is contained in the tsZCL_CallBackEvent event structure,
detailed in Section 34.2, when the field eEventType is set to
E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE.

34.1.11 tsZCL_AttributeDiscoveryExtendedResponse

This structure contains details of an attribute reported in a ‘discover attributes
extended’ response. It is contained in a ZCL event of type
E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_RESPONSE.

typedef struct

{

 bool_t bDiscoveryComplete;

 uint16 u16AttributeEnum;

 teZCL_ZCLAttributeType eAttributeDataType;

 uint8 u8AttributeFlags;

}tsZCL_AttributeDiscoveryExtendedResponse;

where:

 bDiscoveryComplete indicates whether this is the final attribute from a
‘discover attributes’ to be reported:

 TRUE - final attribute

 FALSE - not final attribute
780 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 u16AttributeEnum is the identifier of the attribute being reported

 eAttributeDataType indicates the data type of the attribute being reported
(see Section 35.1.3)

 u8AttributeFlags is a 3-bit bitmap indicating the accessibility of the
reported attribute - a bit is set to ‘1’ if the corresponding access type is
supported, as follows:

The above structure is contained in the tsZCL_CallBackEvent event structure,
detailed in Section 34.2, when the field eEventType is set to
E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_RESPONSE.

34.1.12 tsZCL_ReportAttributeMirror

This structure contains information relating to a report attribute command:

typedef struct

{

 uint8 u8DestinationEndPoint;

 uint16 u16ClusterId;

 uint64 u64RemoteIeeeAddress;

 teZCL_ReportAttributeStatus eStatus;

}tsZCL_ReportAttributeMirror;

where:

 u8DestinationEndPoint is the number of target endpoint for the attribute
report (this is the endpoint on which the mirror for the device resides)

 u16ClusterId is the ID of the cluster for which information is to be mirrored

 u64RemoteIeeeAddress is the IEEE/MAC address of the target device for
the attribute report (which contains the mirror for the device)

 eStatus indicates the status of the attribute report (see Section 35.1.5)

Bit Access Type

0 Read

1 Write

2 Reportable

3-7 Reserved
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 781

Chapter 34
ZCL Structures

34.1.13 tsZCL_OctetString

This structure contains information on a ZCL octet (byte) string. This string is of the
format:

which contains N+1 octets, where the leading octet indicates the number of octets (N)
of data in the remainder of the string (valid values are from 0x00 to 0xFE).

The tsZCL_OctetString structure incorporates this information as follows:

typedef struct

{

 uint8 u8MaxLength;

 uint8 u8Length;

 uint8 *pu8Data;

} tsZCL_OctetString;

where:

 u8MaxLength is the maximum number of data octets in an octet string

 u8Length is the actual number of data octets (N) in this octet string

 pu8Data is a pointer to the first data octet of this string

Note that there is also a tsZCL_LongOctetString structure in which the octet
count (N) is represented by two octets, thus allowing double the number of data octets.

Octet Count, N
(1 octet)

Data
(N octets)
782 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
34.1.14 tsZCL_CharacterString

This structure contains information on a ZCL character string. This string is of the
format:

which contains L+1 bytes, where the leading byte indicates the number of bytes (L) of
character data in the remainder of the string (valid values are from 0x00 to 0xFE). This
value represents the number of characters in the string only if the character set used
encodes each character using one byte (this is the case for ISO 646 ASCII but not in
all character sets, e.g. UTF8).

The tsZCL_CharacterString structure incorporates this information as follows:

typedef struct

{

 uint8 u8MaxLength;

 uint8 u8Length;

 uint8 *pu8Data;

} tsZCL_CharacterString;

where:

 u8MaxLength is the maximum number of character data bytes

 u8Length is the actual number of character data bytes (L) in this string

 pu8Data is a pointer to the first character data byte of this string

The string is not null-terminated and may therefore contain null characters mid-string.

Note that there is also a sZCL_LongCharacterString structure in which the
character data length (L) is represented by two bytes, thus allowing double the number
of characters.

34.1.15 tsZCL_ClusterCustomMessage

This structure contains a cluster custom message:

typedef struct {

 uint16 u16ClusterId;

 void *pvCustomData;

} tsZCL_ClusterCustomMessage;

where:

 u16ClusterId is the Cluster ID

 pvCustomData is a pointer to the start of the data contained in the message

Character Data Length, L
(1 byte)

Character Data
(L bytes)
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 783

Chapter 34
ZCL Structures

34.1.16 tsZCL_ClusterInstance

This structure contains information about an instance of a cluster on a device:

struct tsZCL_ClusterInstance

{

 bool_t bIsServer;

 tsZCL_ClusterDefinition *psClusterDefinition;

 void *pvEndPointSharedStructPtr;

 uint8 *pu8AttributeControlBits;

 void *pvEndPointCustomStructPtr;

 tfpZCL_ZCLCustomcallCallBackFunction
 pCustomcallCallBackFunction;

};

where:

 bIsServer indicates whether the cluster instance is a server or client:

 TRUE - server

 FALSE - client

 psClusterDefinition is a pointer to the cluster definition structure - see
Section 34.1.2

 pvEndPointSharedStructPtr is a pointer to the shared device structure
that contains the cluster’s attributes

 pu8AttributeControlBits is a pointer to an array of bitmaps, one for each
attribute in the relevant cluster - for internal cluster definition use only, array
should be initialised to 0

 pvEndPointCustomStructPtr is a pointer to any custom data (only
relevant to a user-defined cluster)

 pCustomcallCallBackFunction is a pointer to a custom callback function
(only relevant to a user-defined cluster)
784 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
34.1.17 tsZCL_CommandDiscoveryIndividualResponse

This structure contains information about an individual command reported in a
Command Discovery response (see Section 2.6).

typedef struct

{

 uint8 u8CommandEnum;

 uint8 u8CommandIndex;

} tsZCL_CommandDiscoveryIndividualResponse;

where:

 u8CommandEnum is the Command ID of the reported command

 u8CommandIndex is the index of the reported command in the response
payload

The above structure is contained in the tsZCL_CallBackEvent event structure,
detailed in Section 34.2, when the field eEventType is set to
E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_RESPONSE or
E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_RESPONSE.

34.1.18 tsZCL_CommandDiscoveryResponse

This structure contains information about a Command Discovery response (see
Section 2.6).

typedef struct

{

 bool_t bDiscoveryComplete;

 uint8 u8NumberOfCommands;

} tsZCL_CommandDiscoveryResponse;

where:

 bDiscoveryComplete is a Boolean flag which indicates whether the
Command Discovery is complete, i.e. whether there are any commands
remaining to be discovered:

 TRUE - all commands have been discovered

 FALSE - there are further commands to be discovered

 u8NumberOfCommands is the number of discovered commands reported in
the response (the individual commands are reported in a structure of the type
tsZCL_CommandDiscoveryIndividualResponse - see Section 34.1.17)

The above structure is contained in the tsZCL_CallBackEvent event structure,
detailed in Section 34.2, when the field eEventType is set to
E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE or
E_ZCL_CBET_DISCOVER_COMMAND_GENERATED_RESPONSE.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 785

Chapter 34
ZCL Structures

34.1.19 tsZCL_CommandDefinition

This structure contains the details of a command which is supported by the cluster
(and can be reported in Command Discovery).

struct tsZCL_CommandDefinition

{

 uint8 u8CommandEnum;

 uint8 u8CommandFlags;

};

where:

 u8CommandEnum is the Command ID within the cluster

 u8CommandFlags is a bitmap containing a set of control flags, as follows:

34.1.20 tsZCL_SceneExtensionTable

This structure contains a Scenes Extension table.

typedef struct

{

 tfpZCL_SceneEventHandler pSceneEventHandler;

 uint16 u16NumberOfAttributes;

 uint16 au16Attributes[];

} tsZCL_SceneExtensionTable;

where:

 pSceneEventHandler is a pointer a Scenes event handler function

 u16NumberOfAttributes is the number of attributes in the Scene extension

 au16Attributes is an array of the attribute IDs of the attributes in the Scene
extension

Bits Enumeration Description

0 E_ZCL_CF_RX Command is generated by the client and received by the server

1 E_ZCL_CF_TX Command is generated by the server and received by the client

2 - Reserved

3 E_ZCL_CF_MS Command is manufacturer-specific

4 - 7 - Reserved
786 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
34.1.21 tsZCL_WriteAttributeRecord

This structure contains the details for a ‘write attribute’ operation.

typedef struct

{

 teZCL_ZCLAttributeType eAttributeDataType;

 uint16 u16AttributeEnum;

 uint8 *pu8AttributeData;

}tsZCL_WriteAttributeRecord;

where:

 eAttributeDataType is an enumeration indicating the attribute data type
(for the enumerations, refer to Section 35.1.3)

 u16AttributeEnum is an enumeration for the attribute identifier (for the
relevant ‘Attribute ID’ enumerations, refer to the ‘Enumerations’ section of each
cluster-specific chapter)

 pu8AttributeData is a pointer to the attribute data to be written

34.1.22 tsZCL_PersistDataHeader (SE 1.2.2 only)

This structure is used in Smart Energy 1.2.2 in relation to the persistent storage of
cluster attributes. It is included within the cluster structure that contains the attributes
and is used to determine whether the persistently stored values are valid.

typedef struct

{

 uint8 au8MagicNumber[4];

 uint32 u32VersionNumber;

 uint16 u16ClusterId;

} tsZCL_PersistDataHeader;

where:

 au8MagicNumber[] is an array of 8-bit magic numbers

 u32VersionNumber is a version number that is updated every time the
cluster structure that contains the attributes is updated

 u16ClusterId is the Cluster ID
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 787

Chapter 34
ZCL Structures

34.2 Event Structure (tsZCL_CallBackEvent)

A ZCL event must be wrapped in the following tsZCL_CallBackEvent structure
before being passed into the function vZCL_EventHandler():

typedef struct

{

 teZCL_CallBackEventType eEventType;
 uint8 u8TransactionSequenceNumber;
 uint8 u8EndPoint;
 teZCL_Status eZCL_Status;

 union {
 tsZCL_IndividualAttributesResponse sIndividualAttributeResponse;
 tsZCL_DefaultResponse sDefaultResponse;
 tsZCL_TimerMessage sTimerMessage;
 tsZCL_ClusterCustomMessage sClusterCustomMessage;
 tsZCL_AttributeReportingConfigurationRecord
sAttributeReportingConfigurationRecord;
 tsZCL_AttributeReportingConfigurationResponse
sAttributeReportingConfigurationResponse;
 tsZCL_AttributeDiscoveryResponse sAttributeDiscoveryResponse;
 tsZCL_AttributeStatusRecord sReportingConfigurationResponse;
 tsZCL_ReportAttributeMirror sReportAttributeMirror;
 uint32 u32TimerPeriodMs;
#ifdef EZ_MODE_COMMISSIONING
 tsZCL_EZModeBindDetails sEZBindDetails;
 tsZCL_EZModeGroupDetails sEZGroupDetails;
#endif
 tsZCL_CommandDiscoveryIndividualResponse
 sCommandsReceivedDiscoveryIndividualResponse;
 tsZCL_CommandDiscoveryResponse sCommandsReceivedDiscoveryResponse;
 tsZCL_CommandDiscoveryIndividualResponse
 sCommandsGeneratedDiscoveryIndividualResponse;
 tsZCL_CommandDiscoveryResponse sCommandsGeneratedDiscoveryResponse;
 tsZCL_AttributeDiscoveryExtendedResponse
 sAttributeDiscoveryExtenedResponse;
 }uMessage;

 ZPS_tsAfEvent *pZPSevent;
 tsZCL_ClusterInstance *psClusterInstance;
} tsZCL_CallBackEvent;

where

 eEventType specifies the type of event generated - see Section 35.3

 u8TransactionSequenceNumber is the Transaction Sequence Number
(TSN) of the incoming ZCL message (if any) which triggered the ZCL event

 u8EndPoint is the endpoint on which the ZCL message (if any) was received

 eZCL_Status is the status of the operation that the event reports - see
Section 35.2
788 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 uMessage is a union containing information that is only valid for specific
events:

 sIndividualAttributeResponse contains the response to a ‘read
attributes’ or ‘write attributes’ request - see Section 34.1.8

 sDefaultResponse contains the response to a request (other than a
read request) - see Section 34.1.9

 sTimerMessage contains the details of a timer event - this feature is
included for future use

 sClusterCustomMessage contains details of a cluster custom
command - see Section 34.1.15

 sAttributeReportingConfigurationRecord contains the attribute
reporting configuration data from the ‘configure reporting’ request for an
attribute - see Section 34.1.5

 sAttributeReportingConfigurationResponse is reserved for
future use

 sAttributeDiscoveryResponse contains the details of an attribute
reported in a ‘discover attributes’ response - see Section 34.1.10

 sReportingConfigurationResponse is reserved for future use

 sReportAttributeMirror contains information on the device from
which a ZCL ‘report attribute’ command has been received

 u32TimerPeriodMs contains the timed period of the millisecond timer
which is enabled by the application when the event
E_ZCL_CBET_ENABLE_MS_TIMER occurs

 sEZBindDetails is only available if the EZ-mode Commissioning
module is enabled (EZ_MODE_COMMISSIONING is TRUE) and contains
details of a binding made with a cluster on a remote endpoint - see Section
32.9

 sEZGroupDetails is only available if the EZ-mode Commissioning
module is enabled (EZ_MODE_COMMISSIONING is TRUE) and contains
details of the addition of a remote endpoint to a group - see Section 32.9

 sCommandsReceivedDiscoveryIndividualResponse contains
information about an individual command (that can be received) reported
in a Command Discovery response - see Section 34.1.17

 sCommandsReceivedDiscoveryResponse contains information about
a Command Discovery response which reports commands that can be
recieved - see Section 34.1.18

 sCommandsGeneratedDiscoveryIndividualResponse contains
information about an individual command (that can be generated) reported
in a Command Discovery response - see Section 34.1.17

 sCommandsGeneratedDiscoveryResponse contains information
about a Command Discovery response which reports commands that can
be generated - see Section 34.1.18

 sAttributeDiscoveryExtenedResponse contains information from a
Discover Attributes Extended response - see Section 34.1.11
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 789

Chapter 34
ZCL Structures

The remaining fields are common to more than one event type but are not valid for all
events:

 pZPSevent is a pointer to the stack event (if any) which caused the ZCL event

 psClusterInstance is a pointer to the cluster instance structure which holds
the information relating to the cluster being accessed
790 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
35. Enumerations and Status Codes

This chapter details the enumerations and status codes provided in the NXP
implementation of the ZCL or provided in the ZigBee PRO APIs and used by the ZCL.

35.1 General Enumerations

35.1.1 Addressing Modes (teZCL_AddressMode)

The following enumerations are used to specify the addressing mode to be used in a
communication with a remote node:

typedef enum

{

 E_ZCL_AM_BOUND,

 E_ZCL_AM_GROUP,

 E_ZCL_AM_SHORT,

 E_ZCL_AM_IEEE,

 E_ZCL_AM_BROADCAST,

 E_ZCL_AM_NO_TRANSMIT,

 E_ZCL_AM_BOUND_NO_ACK,

 E_ZCL_AM_SHORT_NO_ACK,

 E_ZCL_AM_IEEE_NO_ACK,

 E_ZCL_AM_BOUND_NON_BLOCKING,

 E_ZCL_AM_BOUND_NON_BLOCKING_NO_ACK,

 E_ZCL_AM_ENUM_END, /* enum End */

} teZCL_AddressMode;

The above enumerations are described in the table below.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 791

Chapter 35
Enumerations and Status Codes

The required addressing mode is specified in the structure tsZCL_Address (see
Section 34.1.4).

 Enumeration Description

E_ZCL_AM_BOUND Use one or more bound nodes/endpoints, with acknowl-
edgements

E_ZCL_AM_GROUP Use a pre-defined group address, with acknowledgements

E_ZCL_AM_SHORT Use a 16-bit network address, with acknowledgements

E_ZCL_AM_IEEE Use a 64-bit IEEE/MAC address, with acknowledgements

E_ZCL_AM_BROADCAST Perform a broadcast (see Section 35.1.2)

E_ZCL_AM_NO_TRANSMIT Do not transmit

E_ZCL_AM_BOUND_NO_ACK Perform a bound transmission, with no acknowledgements

E_ZCL_AM_SHORT_NO_ACK Perform a transmission using a 16-bit network address, with
no acknowledgements

E_ZCL_AM_IEEE_NO_ACK Perform a transmission using a 64-bit IEEE/MAC address,
with no acknowledgements

E_ZCL_AM_BOUND_NON_BLOCKING Perform a non-blocking bound transmission, with acknowl-
edgements

E_ZCL_AM_BOUND_NON_BLOCKING_NO_ACK Perform a non-blocking bound transmission, with no
acknowledgements

Table 41: Addressing Mode Enumerations
792 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
35.1.2 Broadcast Modes (ZPS_teAplAfBroadcastMode)

The following enumerations are used to specify the type of broadcast (when the
addressing mode for a communication has been set to E_ZCL_AM_BROADCAST
(see Section 35.1.1)):

typedef enum

{

 ZPS_E_APL_AF_BROADCAST_ALL,

 ZPS_E_APL_AF_BROADCAST_RX_ON,

 ZPS_E_APL_AF_BROADCAST_ZC_ZR

} ZPS_teAplAfBroadcastMode;

The above enumerations are described in the table below.

The required broadcast mode is specified in the structure tsZCL_Address (see
Section 34.1.4).

 Enumeration Description

ZPS_E_APL_AF_BROADCAST_ALL All End Devices

ZPS_E_APL_AF_BROADCAST_RX_ON Nodes on which the radio receiver remains enabled
when the node is idle (e.g. sleeping)

ZPS_E_APL_AF_BROADCAST_ZC_ZR Only the Co-ordinator and Routers

Table 42: Broadcast Mode Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 793

Chapter 35
Enumerations and Status Codes

35.1.3 Attribute Types (teZCL_ZCLAttributeType)

The following enumerations are used to represent the attribute types in the/ZCL
clusters:

typedef enum
{
 /* Null */
 E_ZCL_NULL = 0x00,

 /* General Data */
 E_ZCL_GINT8 = 0x08, // General 8 bit - not specified if signed
 E_ZCL_GINT16,
 E_ZCL_GINT24,
 E_ZCL_GINT32,
 E_ZCL_GINT40,
 E_ZCL_GINT48,
 E_ZCL_GINT56,
 E_ZCL_GINT64,

 /* Logical */
 E_ZCL_BOOL = 0x10,

 /* Bitmap */
 E_ZCL_BMAP8 = 0x18, // 8 bit bitmap
 E_ZCL_BMAP16,
 E_ZCL_BMAP24,
 E_ZCL_BMAP32,
 E_ZCL_BMAP40,
 E_ZCL_BMAP48,
 E_ZCL_BMAP56,
 E_ZCL_BMAP64,

 /* Unsigned Integer */
 E_ZCL_UINT8 = 0x20, // Unsigned 8 bit
 E_ZCL_UINT16,
 E_ZCL_UINT24,
 E_ZCL_UINT32,
 E_ZCL_UINT40,
 E_ZCL_UINT48,
 E_ZCL_UINT56,
 E_ZCL_UINT64,

 /* Signed Integer */
 E_ZCL_INT8 = 0x28, // Signed 8 bit
 E_ZCL_INT16,
 E_ZCL_INT24,
 E_ZCL_INT32,
 E_ZCL_INT40,
 E_ZCL_INT48,
 E_ZCL_INT56,
 E_ZCL_INT64,

 /* Enumeration */
 E_ZCL_ENUM8 = 0x30, // 8 Bit enumeration
 E_ZCL_ENUM16,

 /* Floating Point */
794 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 E_ZCL_FLOAT_SEMI = 0x38, // Semi precision
 E_ZCL_FLOAT_SINGLE, // Single precision
 E_ZCL_FLOAT_DOUBLE, // Double precision

 /* String */
 E_ZCL_OSTRING = 0x41, // Octet string
 E_ZCL_CSTRING, // Character string
 E_ZCL_LOSTRING, // Long octet string
 E_ZCL_LCSTRING, // Long character string

 /* Ordered Sequence */
 E_ZCL_ARRAY = 0x48,
 E_ZCL_STRUCT = 0x4c,

 E_ZCL_SET = 0x50,
 E_ZCL_BAG = 0x51,

 /* Time */
 E_ZCL_TOD = 0xe0, // Time of day
 E_ZCL_DATE, // Date
 E_ZCL_UTCT, // UTC Time

 /* Identifier */
 E_ZCL_CLUSTER_ID = 0xe8, // Cluster ID
 E_ZCL_ATTRIBUTE_ID, // Attribute ID
 E_ZCL_BACNET_OID, // BACnet OID

 /* Miscellaneous */
 E_ZCL_IEEE_ADDR = 0xf0, // 64 Bit IEEE Address
 E_ZCL_KEY_128, // 128 Bit security key

 /* Unknown */
 E_ZCL_UNKNOWN = 0xff

} teZCL_ZCLAttributeType;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 795

Chapter 35
Enumerations and Status Codes

35.1.4 Command Status (teZCL_CommandStatus)

The following enumerations are used to indicate the status of a command:

typedef enum

{

 E_ZCL_CMDS_SUCCESS =0x00,

 E_ZCL_CMDS_FAILURE,

 E_ZCL_CMDS_NOT_AUTHORIZED =0x7e,

 E_ZCL_CMDS_RESERVED_FIELD_NOT_ZERO,

 E_ZCL_CMDS_MALFORMED_COMMAND =0x80,

 E_ZCL_CMDS_UNSUP_CLUSTER_COMMAND,

 E_ZCL_CMDS_UNSUP_GENERAL_COMMAND,

 E_ZCL_CMDS_UNSUP_MANUF_CLUSTER_COMMAND,

 E_ZCL_CMDS_UNSUP_MANUF_GENERAL_COMMAND,

 E_ZCL_CMDS_INVALID_FIELD,

 E_ZCL_CMDS_UNSUPPORTED_ATTRIBUTE,

 E_ZCL_CMDS_INVALID_VALUE,

 E_ZCL_CMDS_READ_ONLY,

 E_ZCL_CMDS_INSUFFICIENT_SPACE,

 E_ZCL_CMDS_DUPLICATE_EXISTS,

 E_ZCL_CMDS_NOT_FOUND,

 E_ZCL_CMDS_UNREPORTABLE_ATTRIBUTE,

 E_ZCL_CMDS_INVALID_DATA_TYPE,

 E_ZCL_CMDS_INVALID_SELECTOR,

 E_ZCL_CMDS_WRITE_ONLY,

 E_ZCL_CMDS_INCONSISTENT_STARTUP_STATE,

 E_ZCL_CMDS_DEFINED_OUT_OF_BAND,

 E_ZCL_CMDS_HARDWARE_FAILURE =0xc0,

 E_ZCL_CMDS_SOFTWARE_FAILURE,

 E_ZCL_CMDS_CALIBRATION_ERROR

} teZCL_CommandStatus;

The above enumerations are described in the table below.

Enumeration Description

E_ZCL_CMDS_SUCCESS Command was successful

E_ZCL_CMDS_FAILURE Command was unsuccessful

E_ZCL_CMDS_NOT_AUTHORIZED Sender does not have authorisation to issue the
command

E_ZCL_CMDS_RESERVED_FIELD_NOT_ZERO A reserved field of command is not set to zero

Table 43: Command Status Enumerations
796 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
E_ZCL_CMDS_MALFORMED_COMMAND Command has missing fields or invalid field values

E_ZCL_CMDS_UNSUP_CLUSTER_COMMAND The specified cluster has not been registered with
the ZCL on the device

E_ZCL_CMDS_UNSUP_GENERAL_COMMAND A command that acts across all profiles does not
have a handler enabled in the zcl_options.h file

E_ZCL_CMDS_UNSUP_MANUF_CLUSTER_COMMAND Manufacturer-specific cluster command is not sup-
ported or has unknown manufacturer code

E_ZCL_CMDS_UNSUP_MANUF_GENERAL_COMMAND Manufacturer-specific ZCL command is not sup-
ported or has unknown manufacturer code

E_ZCL_CMDS_INVALID_FIELD Command has field which contains invalid value

E_ZCL_CMDS_UNSUPPORTED_ATTRIBUTE Specified attribute is not supported on the device

E_ZCL_CMDS_INVALID_VALUE Specified attribute value is out of range or a reserved
value

E_ZCL_CMDS_READ_ONLY Attempt to write to read-only attribute

E_ZCL_CMDS_INSUFFICIENT_SPACE Not enough memory space to perform requested
operation

E_ZCL_CMDS_DUPLICATE_EXISTS Attempt made to create a table entry that already
exists in the target table

E_ZCL_CMDS_NOT_FOUND Requested information cannot be found

E_ZCL_CMDS_UNREPORTABLE_ATTRIBUTE Periodic reports cannot be produced for this attribute

E_ZCL_CMDS_INVALID_DATA_TYPE Invalid data type specified for attribute

E_ZCL_CMDS_INVALID_SELECTOR Incorrect selector for this attribute

E_ZCL_CMDS_WRITE_ONLY Issuer of command does not have authorisation to
read specified attribute

E_ZCL_CMDS_INCONSISTENT_STARTUP_STATE Setting the specified values would put device into an
inconsistent state on start-up

E_ZCL_CMDS_DEFINED_OUT_OF_BAND Attempt has been made to write to attribute using an
out-of-band method or not over-air

E_ZCL_CMDS_HARDWARE_FAILURE Command was unsuccessful due to hardware failure

E_ZCL_CMDS_SOFTWARE_FAILURE Command was unsuccessful due to software failure

E_ZCL_CMDS_CALIBRATION_ERROR Error occurred during calibration

Enumeration Description

Table 43: Command Status Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 797

Chapter 35
Enumerations and Status Codes

35.1.5 Report Attribute Status (teZCL_ReportAttributeStatus)

The following enumerations are used to indicate the status of a report attribute
command.

typedef enum

{

 E_ZCL_ATTR_REPORT_OK = 0x00,

 E_ZCL_ATTR_REPORT_EP_MISMATCH,

 E_ZCL_ATTR_REPORT_ADDR_MISMATCH,

 E_ZCL_ATTR_REPORT_ERR

} teZCL_ReportAttributeStatus;

The above enumerations are described in the table below.

 Enumeration Description

E_ZCL_ATTR_REPORT_OK Indicates that report is valid

E_ZCL_ATTR_REPORT_EP_MISMATCH Indicates that source endpoint does not match endpoint in mirror

E_ZCL_ATTR_REPORT_ADDR_MISMATCH Indicates that source address does not match address in mirror

E_ZCL_ATTR_REPORT_ERR Indicates that there is an error in the report

Table 44: Report Attribute Status Enumerations
798 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
35.1.6 Security Level (teZCL_ZCLSendSecurity)

The following enumerations are used to indicate the security level for transmissions:

typedef enum

{

 E_ZCL_SECURITY_NETWORK = 0x00,

 E_ZCL_SECURITY_APPLINK,

 E_ZCL_SECURITY_TEMP_APPLINK,

 E_ZCL_SECURITY_ENUM_END

} teZCL_ZCLSendSecurity;

The above enumerations are described in the table below.

 Enumeration Description

E_ZCL_SECURITY_NETWORK Network-level security, using a network key

E_ZCL_SECURITY_APPLINK Application-level security, using an application link key

E_ZCL_SECURITY_TEMP_APPLINK Temporary application-level security for situations in which an applica-
tion link key is to be used temporarily, such as for an individual com-
munication (this option is for internal use only)

Table 45: Security Level Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 799

Chapter 35
Enumerations and Status Codes

35.2 General Return Codes (ZCL Status)

The following ZCL status enumerations are returned by many API functions to indicate
the outcome of the function call.

typedef enum

{

 // General

 E_ZCL_SUCCESS = 0x0,

 E_ZCL_FAIL, // 01

 E_ZCL_ERR_PARAMETER_NULL, // 02

 E_ZCL_ERR_PARAMETER_RANGE, // 03

 E_ZCL_ERR_HEAP_FAIL, // 04

 // Specific ZCL status codes

 E_ZCL_ERR_EP_RANGE, // 05

 E_ZCL_ERR_EP_UNKNOWN, // 06

 E_ZCL_ERR_SECURITY_RANGE, // 07

 E_ZCL_ERR_CLUSTER_0, // 08

 E_ZCL_ERR_CLUSTER_NULL, // 09

 E_ZCL_ERR_CLUSTER_NOT_FOUND, // 10

 E_ZCL_ERR_CLUSTER_ID_RANGE, // 11

 E_ZCL_ERR_ATTRIBUTES_NULL, // 12

 E_ZCL_ERR_ATTRIBUTES_0, // 13

 E_ZCL_ERR_ATTRIBUTE_WO, // 14

 E_ZCL_ERR_ATTRIBUTE_RO, // 15

 E_ZCL_ERR_ATTRIBUTES_ACCESS, // 16

 E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED, // 17

 E_ZCL_ERR_ATTRIBUTE_NOT_FOUND, // 18

 E_ZCL_ERR_CALLBACK_NULL, // 19

 E_ZCL_ERR_ZBUFFER_FAIL, // 20

 E_ZCL_ERR_ZTRANSMIT_FAIL, // 21

 E_ZCL_ERR_CLIENT_SERVER_STATUS, // 22

 E_ZCL_ERR_TIMER_RESOURCE, // 23

 E_ZCL_ERR_ATTRIBUTE_IS_CLIENT, // 24

 E_ZCL_ERR_ATTRIBUTE_IS_SERVER, // 25

 E_ZCL_ERR_ATTRIBUTE_RANGE, // 26

 E_ZCL_ERR_ATTRIBUTE_MISMATCH, // 27

 E_ZCL_ERR_KEY_ESTABLISHMENT_MORE_THAN_ONE_CLUSTER, // 28

 E_ZCL_ERR_INSUFFICIENT_SPACE, // 29

 E_ZCL_ERR_NO_REPORTABLE_CHANGE, // 30

 E_ZCL_ERR_NO_REPORT_ENTRIES, // 31

 E_ZCL_ERR_ATTRIBUTE_NOT_REPORTABLE, // 32

 E_ZCL_ERR_ATTRIBUTE_ID_ORDER, // 33

 E_ZCL_ERR_MALFORMED_MESSAGE, // 34

 E_ZCL_ERR_MANUFACTURER_SPECIFIC, // 35

 E_ZCL_ERR_PROFILE_ID, // 36

 E_ZCL_ERR_INVALID_VALUE, // 37

 E_ZCL_ERR_CERT_NOT_FOUND, // 38

 E_ZCL_ERR_CUSTOM_DATA_NULL, // 39

 E_ZCL_ERR_TIME_NOT_SYNCHRONISED, // 40
800 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
 E_ZCL_ERR_SIGNATURE_VERIFY_FAILED, // 41

 E_ZCL_ERR_ZRECEIVE_FAIL, // 42

 E_ZCL_ERR_KEY_ESTABLISHMENT_END_POINT_NOT_FOUND, // 43

 E_ZCL_ERR_KEY_ESTABLISHMENT_CLUSTER_ENTRY_NOT_FOUND, // 44

 E_ZCL_ERR_KEY_ESTABLISHMENT_CALLBACK_ERROR, // 45

 E_ZCL_ERR_SECURITY_INSUFFICIENT_FOR_CLUSTER, // 46

 E_ZCL_ERR_CUSTOM_COMMAND_HANDLER_NULL_OR_RETURNED_ERROR, // 47

 E_ZCL_ERR_INVALID_IMAGE_SIZE, // 48

 E_ZCL_ERR_INVALID_IMAGE_VERSION, // 49

 E_ZCL_READ_ATTR_REQ_NOT_FINISHED, // 50

 E_ZCL_DENY_ATTRIBUTE_ACCESS, // 51

 E_ZCL_ERR_ENUM_END

} teZCL_Status;

Enumeration Description

E_ZCL_SUCCESS Function call was successful in its purpose

E_ZCL_FAIL Function call failed in its purpose and no other error code is
appropriate

E_ZCL_ERR_PARAMETER_NULL Specified parameter pointer was null

E_ZCL_ERR_PARAMETER_RANGE A parameter value was out-of-range

E_ZCL_ERR_HEAP_FAIL ZCL heap is out-of-memory

E_ZCL_ERR_EP_RANGE Specified endpoint number was out-of-range

E_ZCL_ERR_EP_UNKNOWN Specified endpoint has not been registered with the ZCL
(but endpoint number was in-range)

E_ZCL_ERR_SECURITY_RANGE Security value is out-of-range

E_ZCL_ERR_CLUSTER_0 Specified endpoint has no clusters

E_ZCL_ERR_CLUSTER_NULL Specified pointer to a cluster was null

E_ZCL_ERR_CLUSTER_NOT_FOUND Specified cluster has not been registered with the ZCL

E_ZCL_ERR_CLUSTER_ID_RANGE Specified cluster ID was out-of-range

E_ZCL_ERR_ATTRIBUTES_NULL Specified pointer to an attribute was null

E_ZCL_ERR_ATTRIBUTES_0 List of attributes to be read was empty

E_ZCL_ERR_ATTRIBUTE_WO Attempt was made to read write-only attribute

E_ZCL_ERR_ATTRIBUTE_RO Attempt was made to write to read-only attribute

E_ZCL_ERR_ATTRIBUTES_ACCESS Error occurred while accessing attribute

E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED Specified attribute was of unsupported type

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND Specified attribute was not found

E_ZCL_ERR_CALLBACK_NULL Specified pointer to a callback function was null

E_ZCL_ERR_ZBUFFER_FAIL No buffer available to transmit message

E_ZCL_ERR_ZTRANSMIT_FAIL * ZigBee PRO stack has reported a transmission error

E_ZCL_ERR_CLIENT_SERVER_STATUS Cluster instance of wrong kind (e.g. client instead of server)

Table 46: General Return Code Enumerations
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 801

Chapter 35
Enumerations and Status Codes

* ZigBee PRO stack raises an error which can be retrieved using eZCL_GetLastZpsError().

** This error code is returned by eZCL_Register(), used in designing custom clusters

E_ZCL_ERR_TIMER_RESOURCE No timer resource was available

E_ZCL_ERR_ATTRIBUTE_IS_CLIENT Attempt made by a cluster client to read a client attribute

E_ZCL_ERR_ATTRIBUTE_IS_SERVER Attempt made by a cluster server to read a server attribute

E_ZCL_ERR_ATTRIBUTE_RANGE Attribute value is out-of-range

E_ZCL_ERR_KEY_ESTABLISHMENT_
MORE_THAN_ONE_CLUSTER

Attempt made to register more than one Key Establishment
cluster on the device (only one is permitted per device)

E_ZCL_ERR_MANUFACTURER_SPECIFIC ** Inconsistency in a manufacturer-specific cluster definition
has been found

E_ZCL_ERR_PROFILE_ID ** Profile ID of a cluster is not valid - for example, the cluster
being registered is not manufacturer-specific but the profile
ID is in range reserved for manufacturer-specific profiles

E_ZCL_ERR_INVALID_VALUE An invalid value has been detected. This return code is
returned from application profile (e.g. HA) function calls

E_ZCL_ERR_CERT_NOT_FOUND Reserved for future use

E_ZCL_ERR_CUSTOM_DATA_NULL Custom data associated with cluster is NULL

E_ZCL_ERR_TIME_NOT_SYNCHRONISED Time has not been synchronised by calling
vZCL_SetUTCTime(). This error code is returned by func-
tions that require time to be synchronised,
e.g. eSE_PriceAddPriceEntry()

E_ZCL_ERR_SIGNATURE_VERIFY_FAILED Reserved for future use

E_ZCL_ERR_ZRECEIVE_FAIL * ZigBee PRO stack has reported a receive error

E_ZCL_ERR_KEY_ESTABLISHMENT_
END_POINT_NOT_FOUND

Key Establishment endpoint has not been registered cor-
rectly

E_ZCL_ERR_KEY_ESTABLISHMENT_
CLUSTER_ENTRY_NOT_FOUND

Key Establishment cluster has not been registered cor-
rectly

E_ZCL_ERR_KEY_ESTABLISHMENT_
CALLBACK_ERROR

Key Establishment cluster callback function has returned
an error

E_ZCL_ERR_SECURITY_INSUFFICIENT_
FOR_CLUSTER

Cluster that requires application-level (APS) security has
been accessed using a packet that has not been encrypted
with the application link key

E_ZCL_ERR_CUSTOM_COMMAND_HANDLER_
NULL_OR_RETURNED_ERROR

No custom handler has been registered for the command
or the custom handler for the command has not returned
E_ZCL_SUCCESS

E_ZCL_ERR_INVALID_IMAGE_SIZE OTA image size is not in the correct range

E_ZCL_ERR_INVALID_IMAGE_VERSION OTA image version is not in the correct range

E_ZCL_READ_ATTR_REQ_NOT_FINISHED ‘Read attributes’ request not completely fulfilled

E_ZCL_DENY_ATTRIBUTE_ACCESS Write access to attribute is denied

Enumeration Description

Table 46: General Return Code Enumerations
802 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
35.3 ZCL Event Enumerations

The ZCL event types are enumerated in the teZCL_CallBackEventType structure
below and described in Table 47. An event must be wrapped in a structure of type
tsZCL_CallBackEvent, detailed in Section 34.2, with the eEventType field set to
one of the enumerations in the table. The event must be passed into the ZCL using
the function vZCL_EventHandler(), detailed in Section 33.1. Event handling is fully
described in Chapter 3.

typedef enum

{

 E_ZCL_CBET_LOCK_MUTEX = 0x0,

 E_ZCL_CBET_UNLOCK_MUTEX,

 E_ZCL_CBET_UNHANDLED_EVENT,

 E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE,

 E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE,

 E_ZCL_CBET_READ_REQUEST,

 E_ZCL_CBET_REPORT_REQUEST,

 E_ZCL_CBET_DEFAULT_RESPONSE,

 E_ZCL_CBET_ERROR,

 E_ZCL_CBET_TIMER,

 E_ZCL_CBET_ZIGBEE_EVENT,

 E_ZCL_CBET_CLUSTER_CUSTOM,

 E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE,

 E_ZCL_CBET_WRITE_ATTRIBUTES,

 E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE,

 E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE,

 E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE,

 E_ZCL_CBET_REPORT_TIMEOUT,

 E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTE,

 E_ZCL_CBET_REPORT_ATTRIBUTES,

 E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE_RESPONSE,

 E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE,

 E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE,

 E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE_RESPONSE,

 E_ZCL_CBET_REPORT_READ_INDIVIDUAL_ATTRIBUTE_CONFIGURATION_RESPONSE,

 E_ZCL_CBET_REPORT_READ_ATTRIBUTE_CONFIGURATION_RESPONSE,

 E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE,

 E_ZCL_CBET_DISCOVER_ATTRIBUTES_RESPONSE,

 E_ZCL_CBET_CLUSTER_UPDATE,

 E_ZCL_CBET_ATTRIBUTE_REPORT_MIRROR,

 E_ZCL_CBET_REPORT_REQUEST,

 E_ZCL_CBET_ENABLE_MS_TIMER,

 E_ZCL_CBET_DISABLE_MS_TIMER,

 E_ZCL_CBET_TIMER_MS,

 E_ZCL_CBET_ZGP_DATA_IND_ERROR,

 E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_RESPONSE,

 E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE,

 E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_RESPONSE,
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 803

Chapter 35
Enumerations and Status Codes

 E_ZCL_CBET_DISCOVER_COMMAND_GENERATED_RESPONSE,

 E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_RESPONSE,

 E_ZCL_CBET_DISCOVER_ATTRIBUTES_EXTENDED_RESPONSE,

 E_ZCL_CBET_ENUM_END

} teZCL_CallBackEventType;

The above enumerations are described in the table below.

Event Type Enumeration Description

E_ZCL_CBET_LOCK_MUTEX Indicates that a mutex needs to be locked by the appli-
cation. This event can be disabled for an application with
cooperative tasks (HA/ZLL only) by specifying the
COOPERATIVE compile-time option (see Section 1.2)

E_ZCL_CBET_UNLOCK_MUTEX Indicates that a mutex needs to be unlocked by the
application. This event can be disabled for an application
with cooperative tasks (HA/ZLL only) by specifying the
COOPERATIVE compile-time option (see Section 1.2)

E_ZCL_CBET_UNHANDLED_EVENT Indicates that a stack event has been received that can-
not be handled by the ZCL (e.g. a Data Confirm)

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_
RESPONSE

Generated for each attribute included in a ‘read attrib-
utes’ response

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE Indicates that a ‘read attributes’ response has been
received

E_ZCL_CBET_READ_REQUEST Indicates that a ‘read attributes’ request has been
received (giving an opportunity for the local application
to update the shared structure before it is read)

E_ZCL_CBET_DEFAULT_RESPONSE Indicates that a ZCL default response message has
been received (which indicates an error or that a com-
mand has been processed)

E_ZCL_CBET_ERROR Indicates that a stack event has been received that can-
not be handled by the ZCL

E_ZCL_CBET_TIMER Indicates that a one-second tick of the real-time clock
has occurred or that the ZCL timer has expired

E_ZCL_CBET_ZIGBEE_EVENT Indicates that a ZigBee PRO stack event has occurred

E_ZCL_CBET_CLUSTER_CUSTOM Indicates that a custom event which is specific to a clus-
ter has occurred

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE Indicates that an attempt has been made to write an
attribute in the shared structure, following a ‘write attrib-
utes’ request, and indicates success or failure

E_ZCL_CBET_WRITE_ATTRIBUTES Indicates that all the relevant attributes have been writ-
ten in the shared structure, following a ‘write attributes’
request

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_
RESPONSE

Generated for each attribute included in a ‘write attrib-
utes’ response (this event contains only those attributes
for which the writes have failed)

Table 47: ZCL Event Types
804 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE Indicates that a ‘write attributes’ response has been
received and has been parsed

E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE Generated for each attribute included in a received ‘write
attributes’ request, and prompts the application to per-
form a range-check on the new attribute value and to
decide whether a write access to the relevant attribute in
the shared structure will be allowed or disallowed

E_ZCL_CBET_REPORT_TIMEOUT Indicates that an attribute report is overdue

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTE Generated for each attribute included in a received
attribute report

E_ZCL_CBET_REPORT_ATTRIBUTES Indicates that all attributes included in a received attrib-
ute report have been parsed

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_
CONFIGURE_RESPONSE

Generated for each attribute included in a ‘configure
attributes’ response

E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE Indicates that all attributes included in a ‘configure
reporting’ request have been parsed

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_
CONFIGURE

Generated for each attribute included in a ‘configure
reporting’ request

E_ZCL_CBET_REPORT_ATTRIBUTES_
CONFIGURE_RESPONSE

Indicates that all attributes included in a ‘configure
reporting’ response have been reported

E_ZCL_CBET_REPORT_READ_INDIVIDUAL
_ATTRIBUTE_CONFIGURATION_RESPONSE

Generated for each attribute included in a ‘read reporting
configuration’ response

E_ZCL_CBET_REPORT_READ_ATTRIBUTE
_CONFIGURATION_RESPONSE

Indicates that all attributes included in a ‘read reporting
configuration’ response have been reported

E_ZCL_CBET_DISCOVER_INDIVIDUAL
_ATTRIBUTE_RESPONSE

Generated for each attribute included in a ‘discover
attributes’ response

E_ZCL_CBET_DISCOVER_ATTRIBUTES
_RESPONSE

Indicates that all attributes included in a ‘discover attrib-
utes’ response have been reported

E_ZCL_CBET_CLUSTER_UPDATE Indicates that a cluster attribute value may have been
changed on the local device

E_ZCL_CBET_ENABLE_MS_TIMER Indicates that a millisecond timer needs to be started

E_ZCL_CBET_DISABLE_MS_TIMER Indicates that a millisecond timer needs to be stopped

E_ZCL_CBET_TIMER_MS Indicates that a millisecond timer has expired

E_ZCL_CBET_ZGP_DATA_IND_ERROR Indicates that a ZigBee Green Power data indication
error has occurred

E_ZCL_CBET_DISCOVER_INDIVIDUAL_
COMMAND_RECEIVED_RESPONSE

Generated for each command (that can be received)
included in a ‘command discovery‘ response

E_ZCL_CBET_DISCOVER_COMMAND_RECEIVED_
RESPONSE

Indicates that all commands (that can be received)
included in a ‘command discovery’ response have been
reported

Event Type Enumeration Description

Table 47: ZCL Event Types
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 805

Chapter 35
Enumerations and Status Codes

E_ZCL_CBET_DISCOVER_INDIVIDUAL_
COMMAND_GENERATED_RESPONSE

Generated for each command (that can be generated)
included in a ‘command discovery‘ response

E_ZCL_CBET_DISCOVER_COMMAND_
GENERATED_RESPONSE

Indicates that all commands (that can be generated)
included in a ‘command discovery’ response have been
reported

E_ZCL_CBET_DISCOVER_INDIVIDUAL_
ATTRIBUTE_EXTENDED_RESPONSE

Generated for each attribute included in a ‘discover
attributes extended’ response

E_ZCL_CBET_DISCOVER_ATTRIBUTES_
EXTENDED_RESPONSE

Indicates that all attributes included in a ‘discover attrib-
utes extended’ response have been reported

Note: The structure teZCL_CallBackEventType is
extended by the EZ-mode Commissioning module with
the events listed and described in Section 32.5. These
events are only included if this module is used, in which
case they are added after E_ZCL_CBET_ENUM_END.

Event Type Enumeration Description

Table 47: ZCL Event Types
806 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Part IV:
Appendices
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 807

808 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
A. Mutex Callbacks

The mutexes provided by JenOS (Jennic Operating System) are designed such that
a call to OS_eEnterCriticalSection() must be followed by a call to
OS_eExitCriticalSection(), and must not be followed by another call to
OS_eEnterCriticalSection(), i.e. the mutexes are binary rather than counting. This
can cause problems if the ZCL takes a mutex via the callback function and then the
application wants to lock the mutex to access the shared device structures. Some ZCL
clusters also invoke the callback function with E_ZCL_CBET_LOCK_MUTEX multiple
times.

The counting mutex code below should be used in the application code. When the
application wants to access the shared structure, it should call the vLockZCLMutex()
function (shown in the code extract below), rather than OS_eEnterCriticalSection(),
so that it also participates in the counting mutex rather than directly taking the binary
OS critical section. Similarly, the shared structure should be released using
vUnlockZCLMutex().

The code below uses a single OS resource for all endpoints and the general callback
function. It defines a file scope counter that is the mutex count related to the OS
resource.

At the top of the application source file, create the count and lock/unlock mutex
function prototypes (these prototypes may be placed in a header file, if desired):

uint32 u32ZCLMutexCount = 0;

void vLockZCLMutex(void);

void vUnlockZCLMutex(void);

In both cbZCL_GeneralCallback() and cbZCL_EndpointCallback(), make the calls:

switch(psEvent->eEventType)

{

case E_ZCL_CBET_LOCK_MUTEX:

 vLockZCLMutex();

break;

case E_ZCL_CBET_UNLOCK_MUTEX:

 vUnlockZCLMutex();

break;
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 809

Appendices
Define the lock/unlock mutex functions and call them from the application when
accessing any ZCL shared structure:

void vLockZCLMutex(void)

{

 if (u32ZCLMutexCount == 0)

 {

 OS_eEnterCriticalSection(mutexZCL);

 }

 u32ZCLMutexCount++;

}

void vUnlockZCLMutex(void)

{

 u32ZCLMutexCount--;

 if (u32ZCLMutexCount == 0)

 {

 OS_eExitCriticalSection(mutexZCL);

 }

}

810 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
B. Attribute Reporting

Attribute reporting involves sending attribute values unsolicited from the cluster server
to a client - that is, pushing values from server to client without the client needing to
request the values. This mechanism reduces network traffic compared with the client
polling the server for attribute values. It also allows a sleeping server to report its
attribute values while it is awake.

The server sends an ‘attribute report’ to the client, where this report can be issued in
one of the following ways:

 by a function call in the user application (on the server device)

 automatically by the ZCL (triggered by a change in the attribute value or
periodically)

The rules for automatic reporting (see Appendix B.1) can be configured by a remote
device by sending a ‘configure reporting’ command to the server - see Appendix B.2.
Remote devices can also query the attribute reporting configuration of the server - see
Appendix B.5. Sending and receiving attribute reports are described in Appendix B.3
and Appendix B.4.

Attribute reporting is an optional feature and is not supported by all devices.

B.1 Automatic Attribute Reporting

Automatic attribute reporting involves two mechanisms:

 A report is triggered by a change in the attribute value of at least a configured
minimum amount

 Reports are issued for the attribute periodically at a configured frequency

These mechanisms can operate at the same time. In this case, reports will be issued
periodically and additional reports will be issued between periodic reports if triggered
by changes in the attribute value.

If reports are triggered by frequent changes in the attribute value, they may add
significantly to the network traffic. To manage this traffic, the production of reports for
an attribute can be ‘throttled’. This involves defining a minimum time-interval between
consecutive reports for the attribute. If the attribute value changes within this time-
interval since the last report, a new report will not be generated.

Periodic reporting can be disabled, leaving only triggered reports to be automatically
generated. Automatic reporting can also be disabled altogether (both mechanisms).
For information on the configuration of automatic reporting, refer to Appendix B.2.

Note: If triggered reports are throttled, periodic reports
will still be produced as scheduled.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 811

Appendices
B.2 Configuring Attribute Reporting

If attribute reporting is to be used by a cluster then the feature must be enabled at
compile-time, as detailed in Appendix B.2.1.

If attribute reports are to be prompted purely by the application then no further
configuration is required. However, if automatic attribute reporting is to be
implemented then the reports must be configured as described in Appendix B.2.2.

B.2.1 Compile-time Options

Attribute reporting is enabled at compile-time by setting the appropriate macros in
zcl_options.h. The compile-time options relevant to the cluster server and client are
listed separately below.

Server Options

To enable a server to generate attribute reports according to configured reporting
rules, add the following option:

#define ZCL_ATTRIBUTE_REPORTING_SERVER_SUPPORTED

To enable a server to handle ‘configure reporting’ commands and reply with ‘configure
reporting’ responses, add the following option:

#define ZCL_CONFIGURE_ATTRIBUTE_REPORTING_SERVER_SUPPORTED

To enable a server to handle ‘read reporting configuration’ commands and reply with
‘read reporting configuration’ responses, add the following option:

#define ZCL_READ_ATTRIBUTE_REPORTING_CONFIGURATION_SERVER_SUPPORTED

To disable APS acknowledgements for bound transmissions performed as part of the
‘attribute reporting’ feature, add the following option:

#define ZCL_REPORTING_WITH_APS_ACK_DISABLED

Client Options

To enable a client to receive attribute reports from a server, add the following option:

#define ZCL_ATTRIBUTE_REPORTING_CLIENT_SUPPORTED

To enable a client to send ‘configure reporting’ commands and handle the ‘configure
reporting’ responses, add the following option:

#define ZCL_CONFIGURE_ATTRIBUTE_REPORTING_CLIENT_SUPPORTED

Note: Attribute reporting does not need to be enabled
with this macro if the reports will only be generated via
function calls.
812 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
To enable a client to send ‘read reporting configuration’ commands and handle the
‘read reporting configuration’ responses, add the following option:

#define ZCL_READ_ATTRIBUTE_REPORTING_CONFIGURATION_CLIENT_SUPPORTED

General (Server and Client) Options

If attribute reporting is to report any attributes of the ‘floating point’ type, the following
macro must also be enabled in zcl_options.h on both the server and client:

#define ZCL_ENABLE_FLOAT

This enables the use of the floating point library to calculate differences in attribute
values. If this library is not already used by the application code, enabling it in this way
increases the build size of the application by approximately 5 Kbytes.

B.2.2 ‘Attribute Report Configuration’ Commands

If automatic attribute reporting is to be employed between a cluster server and client,
the reporting rules must be configured. These rules are profile-specific (refer to the
appropriate ZigBee profile specification) but generally include the following
parameters for each attribute:

 Time-interval between consecutive reports in periodic reporting

 Minimum time-interval between consecutive triggered attribute reports

 Minimum change in the attribute value that will trigger an attribute report

This configuration is conducted on the cluster server but is normally directed from a
remote device via ‘configure reporting’ commands.

The configuration of automatic attribute reporting follows the process:

1. The client sends a ‘configure reporting’ command to the server.

2. The server receives and processes the command, configures the attribute
reporting and generates a ‘configure reporting’ response, which it sends back
to the requesting client.

3. The client receives the ‘configure reporting’ response and the ZCL generates
events to indicate the status of the request to the client.

These steps are described separately below.

Note 1: Setting the periodic reporting time-interval to the
special value of 0x0000 disables periodic reporting for
the attribute. Setting this time-interval to the special
value of 0xFFFF disables automatic reporting
completely (periodic and triggered) for the attribute.

Note 2: Before automatic reporting can be configured
on an attribute, the ‘reportable flag’ must be set for the
attribute on the cluster server (if it is not pre-set in the
profile) using the function eZCL_SetReportableFlag().
Also refer to Appendix B.7.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 813

Appendices
1. Sending a ‘Configure Reporting’ Command (from Client)

The application on the cluster client device can configure attribute reporting for a set
of attributes on the cluster server using the function
eZCL_SendConfigureReportingCommand(). This function sends a ‘configure
reporting’ command to the server.

In this function call, a tsZCL_AttributeReportingConfigurationRecord
structure must be specified which contains the details of the required configuration -
this structure includes a pointer to an array of configuration records, one record per
attribute for which reporting is to be configured (see Section 34.1.5).

2. Receiving a ‘Configure Reporting’ Command (on Server)

The server will automatically process an incoming ‘configure reporting’ command and
perform the required configuration without assistance from the application. For each
attribute (in the configuration request), the reporting configuration values are parsed,
after which the ZCL generates an event of the type:

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE

In the tsZCL_CallBackEvent structure (see Section 34.2) for this event:

 The uMessage field contains a structure of the type
tsZCL_AttributeReportingConfigurationRecord (see Section
34.1.5).

 The eZCL_Status field indicates the outcome of parsing the configuration
values for the attribute (success or failure)

Thus, the configuration of reporting for a set of attributes will result in a sequence of
events of the above type, one for each attribute. The application should copy the
contents of the tsZCL_AttributeReportingConfigurationRecord structure
for each attribute to RAM (for information on storage format, refer to Appendix B.6.2).

Once attribute reporting has been configured for all the attributes (in the request), a
single event is generated of the type:

E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE

Finally, the server generates a ‘configure reporting’ response and sends it back to the
requesting client.

Note: The application and ZCL hold the attribute
reporting configuration data in RAM. To preserve this
data through episodes of power loss, the application
should also save the data to NVM using the JenOS
PDM, as described in Appendix B.6.
814 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
3. Receiving a ‘Configure Reporting’ Response (on Client)

A ‘configure reporting’ response from the cluster server contains an Attribute Status
Record for each attribute that was included in the corresponding ‘configure reporting’
command. For each attribute in the response, the ZCL on the client generates an
event of the type:

E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE_RESPONSE

In the tsZCL_CallBackEvent structure (see Section 34.2) for this event, the
uMessage field contains a structure of the type
tsZCL_AttributeReportingConfigurationResponse (see Section 34.1.6). In
this structure:

 The eCommandStatus field indicates the status of the attribute reporting
configuration for the attribute.

 The tsZCL_AttributeReportingConfigurationRecord structure
(Section 34.1.5) contains other data but only the following fields are used:

 u16AttributeEnum which identifies the attribute

 u8DirectionIsReceived which should read 0x01 to indicate that
reports of the attribute value will be received by the client

Once the above event has been generated for each valid attribute in the response, a
single E_ZCL_CBET_REPORT_ATTRIBUTES_CONFIGURE_RESPONSE event is
generated to conclude the response.

B.3 Sending Attribute Reports

If automatic attribute reporting has been configured between the cluster server and a
client (as described in Appendix B.2), the reporting of the relevant attributes will begin
immediately after configuration. Attribute reports will be automatically generated:

 periodically with the configured time-interval between consecutive reports

 when the attribute value changes by at least the configured minimum amount

Automatic reporting normally employs both of the above mechanisms simultaneously
but can be configured to operate without periodic reporting, if required.

If a periodic report becomes overdue, the event E_ZCL_CBET_REPORT_TIMEOUT
is generated on the server.

The application on the server can also generate attribute reports for all its reportable
attributes, when needed, by calling the function eZCL_ReportAllAttributes(). This
function sends an attribute report containing the current attribute values to one or
more clients specified in the function call. Only the standard attributes are reported -
this does not include manufacturer-specific attributes. Use of this function for attribute
reporting requires no special configuration on the server (but a recipient client will
need attribute reporting to be enabled in its compile-time options).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 815

Appendices

B.4 Receiving Attribute Reports

In order to receive and parse attribute reports from the cluster server, a client must
have attribute reporting enabled in its compile-time options (see Appendix B.2.1).

When an attribute report is received from the server, events are generated and the
ZCL software performs the following steps:

1. For each attribute in the attribute report, the ZCL generates an
E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTE message for the
endpoint callback function, which may or may not take action on this
message.

2. On completion of the parsing of the attribute response, the ZCL generates a
single E_ZCL_CBET_REPORT_ATTRIBUTES message for the endpoint
callback function, which may or may not take action on this message.

Note that:

 The E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTE event has the same
fields as the E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE
event. In the uMessage field of the tsZCL_CallBackEvent structure (see
Section 34.2) for these events, the same structure is used, which is of the type
tsZCL_IndividualAttributesResponse. However, the
eAttributeStatus field is not updated for an attribute report (only for a ‘read
attributes’ response).

 The E_ZCL_CBET_REPORT_ATTRIBUTES event has the same fields as the
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE event.

Note: The event E_ZCL_CBET_REPORT_REQUEST
is automatically generated on the server before sending
an attribute report, allowing the application to update the
attribute values in the shared structure, if required.

Caution: The application must not rely on the above
event as a prompt to update the shared structure when
an attribute changes its value. The event is only
generated when the change in attribute value is large
enough for an attribute report to be produced. Smaller
changes will not result in the event or a report.
816 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
B.5 Querying Attribute Reporting Configuration

Any authorised device in a ZigBee wireless network can obtain the attribute reporting
configuration of a cluster server. Such a query follows the process below:

1. The cluster client sends a ‘read reporting configuration’ command to the
server.

2. The server receives and processes the command, retrieves the required
configuration information and generates a ‘read reporting configuration’
response, which it sends back to requesting client.

3. The client receives the ‘read reporting configuration’ response and the ZCL
generates events to inform the application of the reporting configuration.

These steps are described separately below.

Sending a ‘Read Reporting Configuration’ Command (from Client)

The application on the cluster client device can request the attribute reporting
configuration on the server using eZCL_SendConfigureReportingCommand(). This
function sends a ‘read reporting configuration’ command to the server.

In this function call, a tsZCL_AttributeReadReportingConfigurationRecord
structure must be specified which indicates the required configuration information -
this structure includes a pointer to an array of records, one per attribute for which
reporting configuration information is needed (see Section 34.1.7).

Receiving a ‘Read Reporting Configuration’ Command (on Server)

The server will automatically process an incoming ‘read reporting configuration’
command without assistance from the application. Callback events are not generated.
However, the server will generate a ‘read reporting configuration’ response and send
it back to the requesting client.

Receiving a ‘Read Reporting Configuration’ Response (on Client)

A ‘read reporting configuration’ response from the cluster server contains an Attribute
Reporting Configuration Record for each attribute that was included in the
corresponding ‘read reporting configuration’ command. For each attribute in the
response, the ZCL on the client generates an event of the type:

E_ZCL_CBET_REPORT_READ_INDIVIDUAL_ATTRIBUTE_CONFIGURATION_RESPONSE

In the tsZCL_CallBackEvent structure (see Section 34.2) for this event, the
uMessage field contains a structure of the type
tsZCL_AttributeReportingConfigurationResponse (see Section 34.1.6) -
this is the same structure as used in attribute reporting configuration, described in
Appendix B.2.2.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 817

Appendices
In this structure:

 The eCommandStatus field indicates the status of the request.

 The tsZCL_AttributeReportingConfigurationRecord structure (see
Section 34.1.5) includes:

 u16AttributeEnum which identifies the attribute

 other fields containing the attribute reporting configuration information

Once the above event has been generated for each valid attribute in the response, a
single E_ZCL_CBET_REPORT_READ_ATTRIBUTE_CONFIGURATION_RESPONSE
event is generated to conclude the response.

B.6 Storing an Attribute Reporting Configuration

During the configuration of automatic attribute reporting, described in Appendix B.2.2,
the application on the server must store attribute reporting configuration data in RAM
and, optionally, in Non-Volatile Memory (NVM). The storage of this data is described
in the sub-sections below.

B.6.1 Persisting an Attribute Reporting Configuration

The attribute reporting configuration data is stored in RAM on the cluster server. To
allow the server device to recover from an interruption of service involving a loss of
power, this configuration data should also be saved in Non-Volatile Memory (NVM). In
this case, the attribute reporting configuration data can be recovered from NVM during
a ‘cold start’ of the JN516x device and automatic attribute reporting can resume
without further configuration.

The storage of attribute reporting configuration data in NVM should be performed
during the updates of this data on the server, described in Appendix B.2.2. When an
E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE event is
generated for an attribute, the contents of the incorporated structure
tsZCL_AttributeReportingConfigurationRecord should be saved to NVM
as well as to RAM (for information on storage format, refer to Appendix B.6.2). Data
storage in NVM can be performed under application control using the JenOS
Persistent Data Manager (PDM), described in the JenOS User Guide (JN-UG-3075).

On a ‘cold start’ of the JN516x device, the application must retrieve the Attribute
Reporting Configuration Record for each attribute from NVM and update the ZCL with
the reporting configuration (this must be done after the ZCL has been initialised). To
do this, the JenOS PDM can be used to retrieve the configuration record for an
attribute and the function eZCL_CreateLocalReport() must then be called to register
this data with the ZCL. This function must not be called for attributes that have not
been configured for automatic attribute reporting (e.g. those for which the maximum
reporting interval is set to REPORTING_MAXIMUM_TURNED_OFF).
818 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
B.6.2 Formatting an Attribute Reporting Configuration Record

The format in which the server application stores attribute reporting configuration data
in RAM and, optionally, in NVM is at the discretion of the application developer.

The most general method is to store this data in an array of structures, in which there
is one array element for each attribute for which automatic reporting is implemented
(the size of this array should correspond to the value of the compile-time option
SE_NUMBER_OF_REPORTS - see Appendix B.2.1). The information stored for each
attribute may include the relevant cluster ID and endpoint number, as well as details
of the configured change that can result in an attribute report. However, this method
of data storage may require significant memory space and may only be necessary for
more complex applications.

Alternative storage formats for this data are possible which economise on the memory
requirements. These methods are outlined below.

Reduced Data Storage

A simple extension of the above general scheme uses application knowledge of the
attributes being reported. In this case, certain static information about the reportable
attributes is built into the compiled application and only the changeable information
about these attributes is saved to an array in RAM (and NVM). In this way, the required
memory space to store the attribute reporting configuration data is reduced.

An example of this method with five reportable attributes is given below.

#define SE_NUMBER_OF_REPORTS 5

typedef struct

 {

 uint16 u16Min;

 uint16 u16Max;

 tuZCL_AttributeReportable uChangeValue;

 } tsLocalStruct;

static tsLocalStruct asLocalConfigStruct[SE_NUMBER_OF_REPORTS];

Note: The maximum reporting interval in NVM must be
set to REPORTING_MAXIMUM_TURNED_OFF
(0xFFFF) during a factory reset in order to prevent
reporting from being enabled for attributes for which
reporting was not previously enabled.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 819

Appendices
typedef struct

 {

 uint16 u16AttEnum;

 teZCL_ZCLAttributeType eAttType;

 } tsLocalDefs;

static const tsLocalDefs asLocalDefs[SE_NUMBER_OF_REPORTS] = {

 {TPRC_MATCH_1,E_ZCL_UINT32},

 {TPRC_MATCH_6,E_ZCL_BMAP48},

 {TPRC_MATCH_7,E_ZCL_GINT56},

 {TPRC_MATCH_5,E_ZCL_UINT56},

 {TPRC_MATCH_3,E_ZCL_BOOL}

 };

In the above example:

 The fixed data (attribute identifier and type) is held in an array of tsLocalDefs
structures, with one array element per attribute - this array is defined at
compile-time and therefore does not need to be updated in RAM or persisted in
NVM.

 The attribute reporting configuration data is held in an array of
tsLocalStruct structures, with one array element per attribute - only this
array needs to be updated in RAM and persisted in NVM, thus saving storage
space.

Note that both arrays have SE_NUMBER_OF_REPORTS elements and there is a
one-to-one correspondence between the elements of the two arrays - elements with
the same number relate to the same attribute.

Minimised Data Storage

It may be possible to optimise the format in which the attribute reporting configuration
data is saved in order to suit the attributes reported. For example, if there are only two
attributes to be reported then it may be sufficient to store the attribute reporting
configuration data in a single structure, like the following:

typedef struct

{

 uint16 u16MinimumReportingIntervalForAttA;

 uint16 u16MaximumReportingIntervalForAttA;

 zint32 u32AttAReportableChange;

 uint16 u16MinimumReportingIntervalForAttB;

 uint16 u16MaximumReportingIntervalForAttB;

// Attribute B is a discrete type (e.g. a bitmap), so does not have
a reportable change

} tsZCL_PersistedAttributeReportingConfigurationRecord;
820 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
B.7 Profile Initialisation of Attribute Reporting

This section summarises the calls and definitions related to attribute reporting that are
used within an application profile.

Each attribute for which automatic reporting is enabled requires a
tsZCL_ReportRecord structure. These structures are maintained internally by the
ZCL and space for them is allocated on the ZCL heap. The heap is allocated by a
profile using the u32ZCL_Heap macro - for example:

PRIVATE uint32 u32ZCL_Heap[
ZCL_HEAP_SIZE(HA_NUMBER_OF_ENDPOINTS,

HA_NUMBER_OF_TIMERS,
HA_NUMBER_OF_REPORTS)];

The number of reportable attributes and the maximum/minimum reporting intervals
are passed into the internal eZCL_CreateZCL structure via the sConfig parameter
- for example:

sConfig.u8NumberOfReports = HA_NUMBER_OF_REPORTS;

sConfig.u16SystemMinimumReportingInterval =
 HA_SYSTEM_MIN_REPORT_INTERVAL;

sConfig.u16SystemMaximumReportingInterval =
 HA_SYSTEM_MAX_REPORT_INTERVAL;

The default value for HA_NUMBER_OF_REPORTS is 10 but this can be over-ridden
in the application’s zcl_options.h file - see Appendix B.2.1.

A server that supports automatic attribute reporting should have the ‘reportable flag’
(E_ZCL_AF_RP configuration bit) set for any attributes that are reportable. If a server
receives a ‘configure reporting’ command for an attribute that does not have this flag
set, it will return an error and not allow the attribute to be reported. This bit setting is
not required for attribute reports generated through calls to the function
eZCL_ReportAllAttributes(), as the flag only affects the processing of a ‘configure
reporting’ command.

Attribute definitions that are part of standard profiles, such as Home Automation and
ZigBee Light Link, will not normally have the reportable flag set. The application on the
server should set this flag for those attributes on which reporting is to be permitted.
This can be done using the function eZCL_SetReportableFlag().

Note: The information in this section is only useful to
developers who are creating their own application
profiles.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 821

Appendices
C. Extended Attribute Discovery

‘Extended’ attribute discovery is similar to the normal attribute discovery described in
Section 2.2.3 except the accessibility of each attribute is additionally indicated as
being ‘read’, ‘write’ or ‘reportable’. The application coding details and compile-time
options are different, and are described below.

C.1 Compile-time Options

If required, the extended attribute discovery feature must be explicitly enabled on the
cluster server and client at compile-time by respectively including the following defines
in the zcl_options.h files:

#define ZCL_ATTRIBUTE_DISCOVERY_EXTENDED_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_DISCOVERY_EXTENDED_CLIENT_SUPPORTED

C.2 Application Coding

The application on a cluster client can initiate an extended attribute discovery on the
cluster server by calling the eZCL_SendDiscoverAttributesExtendedRequest()
function, which sends a ‘discover attributes extended’ request to the server. This
function allows a range of attributes to be searched for, defined by:

 The ‘start’ attribute in the range (the attribute identifier must be specified)

 The number of attributes in the range

Initially, the start attribute should be set to the first attribute of the cluster. If the
discovery request does not return all the attributes used on the cluster server, the
above function should be called again with the start attribute set to the next
‘undiscovered’ attribute. Multiple function calls may be required to discover all of the
attributes used on the server.

On receiving a discover attributes extended request, the server handles the request
automatically (provided that extended attribute discovery has been enabled in the
compile-time options - see above) and replies with a ‘discover attributes extended’
response containing the requested information.

The arrival of the response at the client results in the event
E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_EXTENDED_RESPONSE
for each attribute reported in the response. Therefore, multiple events will normally
result from a single discover attributes extended request. This event contains details
of the reported attribute in a tsZCL_AttributeDiscoveryExtendedResponse
structure (see Section 34.1.11).

Following the event for the final attribute reported, the event
E_ZCL_CBET_DISCOVER_ATTRIBUTES_EXTENDED_RESPONSE is generated
to indicate that all attributes from the discover attributes extended response have been
reported.
822 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
D. JN516x Bootloader

This appendix outlines the operation of the JN516x bootloader.

During start-up, the JN516x bootloader (provided in internal Flash memory) searches
for a valid application image in internal Flash memory. If one is present then the device
will boot directly from Flash memory. If no image is found then the bootloader will
seach through an external Flash device for an image header.

An application image can be stored in any sector of external Flash memory, except
the final sector (if it has been reserved for persistent data storage by the application).
The bootloader searches through the Flash memory, looking at the start of each sector
for the image header that identifies the current application image. If a valid header is
detected then the image is loaded into internal Flash memory and executed.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 823

Appendices
E. OTA Extension for Dual-Processor Nodes

This appendix describes use of the Over-the-Air (OTA) Upgrade cluster (introduced in
Chapter 30) for a ZigBee PRO network consisting of dual-processor nodes that each
contain a JN516x wireless microcontroller and a co-processor.

The co-processor is connected to the JN516x device via a serial interface and may
have its own external storage device, as depicted in Figure 7 below.

The OTA Upgrade cluster may be used to upgrade the application which runs on the
co-processor as well as the application which runs on the JN516x device. In this case,
the OTA upgrade process is outlined below.

1. On the OTA server node (which is typically also the ZigBee Co-ordinator), the
co-processor receives a new software image for the ZigBee PRO network.

2. The co-processor on the OTA server node either saves the received software
image in its own storage device or (normally) passes the image to the JN516x
microcontroller for storage in its external Flash memory device.

3. The OTA Upgrade cluster server running on the JN516x device distributes the
software update over-the-air to the appropriate ZigBee PRO network nodes,
as described in Section 30.3.

4. On a target node, the OTA Upgrade cluster client running on the JN516x
microcontroller either stores the received software image in its own Flash
memory device or passes it to the co-processor for storage in the co-
processor’s own storage device, depending on whether the application in the
update is destined for the JN516x device or the co-processor.

5. The OTA Upgrade cluster client running on the JN516x device then either
performs the upgrade of the application running on itself or signals to the co-
processor to initiate an upgrade of its own application, as appropriate.

Figure 7: Dual-Processor Node

JN516x
Wireless

Microcontroller
Co-processor

Serial Connection
(e.g. via UART)

JN516x External
Flash Memory

Co-processor
External Storage

SPI Any interface

ZigBee PRO Network Node
824 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
The above process is illustrated in Figure 8 below for the case of a Home Automation
network in which the co-processor application on a Dimmable Light (OTA client) is
updated from an external source via an ‘Internet of Things’ (IoT) Gateway (OTA
server) and the image is stored in the target co-processor’s own storage device.

Figure 8: Example of OTA Upgrade of Co-processor Application

IoT Gateway / OTA Server

JN516x Co-processor

Dimmable Light / OTA Client

JN516x Co-processor

OTA distribution of
upgrade application
for co-processor
on Dimmable Light

From
external
source

JN516x External
Flash Memory

Co-processor
External Storage

JN516x External
Flash Memory

Co-processor
External Storage
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 825

Appendices
E.1 Application Upgrades for Different Target Processors

In a ZigBee PRO network containing dual-processor nodes (with a JN516x
microcontroller and a co-processor), an application upgrade can be targeted at any of
the following processors:

 OTA server node processors:

 JN516x microcontroller

 Co-processor

 OTA client node processors:

 JN516x microcontroller

 Co-processor

Only application upgrades for the OTA client node processors need the new software
image to be distributed over-the-air.

The following table describes the roles of the different processors (and their
associated memory devices) during the different application upgrades.

* If insufficient space in Flash memory, image may be stored in co-processor storage - see Appendix E.3

The case of the co-processor on the OTA server node updating its own application is
not described any further in this manual, as this upgrade mechanism is specific to the
co-processor. The other three application upgrade scenarios are described in
Appendix E.2.

Target Processor
for Application
Upgrade

Intermediate Processors during Application Upgrade

OTA Server OTA Client

Co-processor JN516x JN516x Co-processor

OTA Server
Co-processor

Co-processor saves
new image to its
external storage and
performs update

- - -

OTA Server
JN516x

Co-processor
passes new image
to server JN516x
device *

JN516x saves
image to Flash
memory and per-
forms update *

- -

OTA Client
JN516x

Co-processor
passes new image
to server JN516x
device *

JN516x saves
image to Flash
memory and then
sends it over-the-air
to client *

JN516x receives
image, saves it to
Flash memory and
performs update

-

OTA Client
Co-processor

Co-processor
passes new image
to server JN516x
device *

JN516x saves
image to Flash
memory and then
sends it over-the-air
to client *

JN516x receives
image and saves it
to Flash memory or
to co-processor
storage device

Co-processor per-
forms update

Table 48: Processor Roles in Application Upgrade
826 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
E.2 Application Upgrade Scenarios

In the application upgrade scenarios described in this section, a new software image
is:

1. received from an external source by the co-processor in the OTA server node

2. passed from the co-processor via a serial connection to the JN516x
microcontroller in the OTA server node (see Note 1 below)

3. saved by the JN516x device to its external Flash memory

Once saved to Flash memory, the fate of the new software image depends on which
processor is to have its application updated - JN516x device in the OTA server,
JN516x device in an OTA client or the co-processor in an OTA client. If the target
processor is in an OTA client, the server must transmit the image over-the-air.

The OTA server may need to store different upgrade images for different nodes
(possibly from different manufacturers). The maximum number of such images that
can be stored must be specified as a compile-time option in the zcl_options.h file by
defining the values of:

 OTA_MAX_IMAGES_PER_ENDPOINT which represents the maximum
number of images that may be stored in JN516x external Flash memory

 OTA_MAX_CO_PROCESSOR_IMAGES which represents the maximum
number of images that may be stored in co-processor external storage

The upgrade images stored on the server are indexed from zero, with the Flash
memory images numbered first - for further details, refer to Appendix E.4.

Flash memory sectors are allocated to upgrade images using the OTA function
eOTA_AllocateEndpointOTASpace(). This function takes as input the maximum
number of images to be stored in Flash memory and the number of sectors to be
allocated per image. The start sectors for the images must also be specified in an
array, where the array index identifies the image (see Appendix E.4). The JN516x
application is responsible for deciding which index value and therefore which Flash
sectors are allocated to a new upgrade image.

Note 1: If the Flash memory of the JN516x device has
insufficient free space to store a new software image,
the image may be saved to the external storage device
of the co-processor. The JN516x application must make
the decision of where the image will be stored. Refer to
Appendix E.3 for more details of this scenario.

Note 2: This section does not describe the case of the
co-processor on the OTA server node updating its own
application, as this upgrade mechanism is specific to the
co-processor.

Note 3: The OTA functions referenced in this section
are fully detailed in Section 30.9.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 827

Appendices
When a new software image is acquired by the co-processor on the OTA server node
(e.g. from the utility company) and this image is to be passed to the JN516x device for
storage in its external Flash memory, the co-processor application must prompt the
JN516x application to perform this storage. The co-processor application must send
custom messages via the serial interface to the JN516x application in order to request
certain OTA function calls, as follows:

1. The Flash memory sectors that will be used to store the new image must first
be erased by specifying the relevant image index in a call to the function
eOTA_EraseFlashSectorsForNewImage().

2. If the new image is a client image, the current equivalent image in Flash
memory should now be invalidated using the function
eOTA_InvalidateStoredImage().

3. On receiving each block of the new image from the co-processor, the function
eOTA_FlashWriteNewImageBlock() must be called to write the block to the
relevant sector of Flash memory.

4. After receiving the final block of the new image, the co-processor will indicate
the end of the image and the next function call depends on whether the image
is destined for the server itself or for one or more clients. The required function
calls are specified in the subsections below.

The above process is illustrated in Figure 9 below.

Figure 9: Saving a New Upgrade Image to Flash Memory on Server

Co-processor
Application

JN516x
Application

OTA Upgrade
Cluster Server

Erase Sectors

eOTA_EraseFlashSectorsForNewImage()

Invalidate current image (if for client)

eOTA_InvalidateStoredImage()

Provides new upgrade image

eOTA_FlashWriteNewImageBlock()

Block by block

End of image

Function call depends on target for image

Co-processor JN516x

Block by block
828 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Once the new upgrade image is available in Flash memory on the OTA server node,
it can be distributed by the server according to which processor(s) it is intended for:

 JN516x device in the OTA server - see Appendix E.2.1

 JN516x device in one or more OTA clients - see Appendix E.2.2

 Co-processor in one or more OTA clients - see Appendix E.2.3

E.2.1 Loading Image into JN516x in OTA Server Node

This section describes how an application image which is destined for the JN516x
device on the OTA server node is loaded into internal Flash memory or RAM on the
device and run. It is assumed that the image has been saved to the external Flash
memory of the JN516x device, as illustrated in Figure 9.

Once all the image blocks have been transferred into Flash memory and the end of
the image has been signalled by the co-processor, the JN516x application must call
the function eOTA_ServerSwitchToNewImage(). This function will reset the JN516x
device and cause the device to boot from the new image in Flash memory, as
described in the last two steps of the upgrade process detailed in Section 30.6. Thus,
the JN516x device will now be running the upgrade application.

The old application image in Flash memory is no longer needed and its sectors can
now be re-used to store another upgrade image for the server or clients. The old image
must first be invalidated using the function eOTA_InvalidateStoredImage().

E.2.2 Distributing Image to JN516x in OTA Client Node(s)

This section describes how an application image which is destined for the JN516x
device on an OTA client node is downloaded from the OTA Upgrade server and run
on the target JN516x device. It is assumed that the image has been saved to the
external Flash memory of the JN516x device on the OTA server node, as illustrated in
Figure 9.

Once all the image blocks have been transferred into Flash memory on the OTA
server node and the end of the image has been signalled by the co-processor, the
OTA Upgrade server must advertise the new client image so that clients can request
the new image to be downloaded, save it to local Flash memory and then reboot the
JN516x device from this image - this process is exactly as described in Section 30.6.

Note 1: The JN516x device on an OTA client node must
also be able to identify upgrade images that are
destined for the co-processor. This identification is
performed using image header information that is
registered at node initialisation - see Appendix E.2.3.

Note 2: The maximum number of images that can be
stored on the OTA client node must be defined in the
zcl_options.h file, as described in the compile-time
options in Section 30.12 (also refer to Appendix E.4).
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 829

Appendices
E.2.3 Distributing Image to Co-processor in OTA Client Node(s)

This section describes how an application image which is destined for the co-
processor on an OTA client node is downloaded from the OTA Upgrade server and
run on the target device. It is assumed that the image has been saved to the external
Flash memory of the JN516x device on the OTA server node, as illustrated in Figure 9.

Once all the image blocks have been transferred into Flash memory on the OTA
server node and the end of the image has been signalled by the co-processor, the new
upgrade image can be distributed to the relevant OTA client nodes as follows:

1. The new upgrade image is advertised to a client as described in Steps 1 to 3
in Section 30.6

2. On receiving the Query Next Image Response from the server, the OTA
Upgrade cluster client analyses the image details contained in the response,
from which it determines whether the image is relevant to either the JN516x
device or the co-processor in the node.

This assessment is performed using image header information that has been
registered with the OTA Upgrade cluster client. During initialisation of the OTA
client node, the co-processor application must notify the JN516x application of
the header information for the co-processor application image(s). The JN516x
application must then register this information with the OTA Upgrade cluster
client by calling the function eOTA_UpdateCoProcessorOTAHeader().

An upgrade image for the co-processor can be stored in the external Flash
memory of the JN516x device or in the external storage device of the co-
processor. It is the responsibility of an application (JN516x or co-processor) to
store an image in its own external storage device. In order to store an image in
its associated Flash memory, the JN516x application needs the image index
and start sector for the Flash memory space where the image is to be stored.
It can obtain this information from the u8NextFreeImageLocation and
u8ImageStartSector fields of the tsOTA_CallBackMessage structure
(see Section 30.10.21) in the Query Next Image Response event.

Note 1: On an OTA client node, the image may be
stored in the external Flash memory of the JN516x
device or in the external storage device of the co-
processor - the storage device used is determined by
the application. Both possibilities are covered in the
process below.

Note 2: The maximum number of images that can be
stored on the OTA client node must be defined in the
zcl_options.h file, as described in the compile-time
options in Section 30.12 (also refer to Appendix E.4).

Note 3: In the OTA header of the co-processor
application image, ensure that the “Manufacturer Code”
and “Image Type” are different from those in the JN516x
OTA headers.
830 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
3. If the new image is destined for the co-processor, the OTA Upgrade cluster
client will automatically request the upgrade image one block at a time by
sending Image Block Requests to the server.

On arrival at the server, an Image Block Request message triggers an Image
Block Request event.

4. The server automatically responds to each block request with an Image Block
Response containing a block of image data.

After each image block received, the cluster client generates the event
E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_BLOCK_RESPONSE. The client
uses this event to confirm that the received block is part of the image being
downloaded for the co-processor. If this is the case, the JN516x application
must do one of the following, depending on where the image is being stored:

 Pass the image block to the co-processor application for storage in the co-
processor’s own storage device

 Call Flash memory access (read, write and erase) functions to save the
image block to the relevant place in JN516x Flash memory

5. The client determines when the entire image has been received (by referring
to the image size that was quoted in the Query Next Image Response before
the download started). Once all the image blocks have been received:

a) An E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_IMAGE_DL_COMPLETE
is generated by the client to indicate that the image transfer is complete.

b) The image can optionally be verified - if saved in JN516x Flash memory
then it can be verified using the function eOTA_VerifyImage(), but if saved
in the co-processor storage device then the co-processor must be
requested to perform the verification.

c) The client sends an Upgrade End Request to the server to indicate that the
download is complete, where this request is the result of an application call
to the function eOTA_CoProcessorUpgradeEndRequest() - if the image
was saved to the co-processor storage device then this call must be
prompted by the co-processor application. On arrival at the server, the
Upgrade End Request message triggers an Upgrade End Request event.

Note: To perform Flash memory access operations, the
JN516x application can call user-defined functions (if
any) provided through vOTA_FlashInit() (see Section
30.5) or Integrated Peripherals API functions, such as
bAHI_FullFlashProgram() and bAHI_FullFlashRead()
- for an example, refer to Appendix G.1. The start
address in Flash memory for each image block must be
tracked by the application.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 831

Appendices
6. The server replies to the request with an Upgrade End Response containing
an instruction of when the client should use the downloaded image to upgrade
the running software on the node (the message contains both the current time
and the upgrade time, and hence an implied delay).

On arrival at the client, the Upgrade End Response message triggers an
Upgrade End Response event.

7. The client will then count down to the upgrade time (in the Upgrade End
Response) and on reaching it, will generate the event
E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_SWITCH_TO_NEW_IMAGE.

If the upgrade time has been set to an indefinite value (represented by
0xFFFFFFFF), the client should poll the server for an Upgrade Command at
least once per minute and start the upgrade once this command has been
received.

8. Finally, it is the responsibility of the co-processor application to update itself
with the new image. This upgrade mechanism is specific to the co-processor.

Steps 4-7 are illustrated below in Figure 10 for the case of saving to the JN516x Flash
memory device and in Figure 11 for the case of saving to the co-processor storage
device.

Figure 10: Downloading Co-processor Image to JN516x Flash Memory

Co-processor
Application

JN516x
Application

OTA Upgrade
Cluster Client

Provide OTA header information for
co-processor application image(s)

eOTA_UpdateCoProcessorOTAHeader()

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_BLOCK_RESPONSE

eOTA_CoProcessorUpgradeEndRequest()

Co-processor JN516x

Image blocks received
and application writes to
JN516x Flash memory

block by block

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_IMAGE_DL_COMPLETE

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_SWITCH_TO_NEW_IMAGE

Switch to new co-processor application image

eOTA_VerifyImage()
832 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Figure 11: Downloading Co-processor Image to Own Storage Device

Co-processor
Application

JN51xx
Application

OTA Upgrade
Cluster Client

Provide OTA header information for
co-processor application image(s)

eOTA_UpdateCoProcessorOTAHeader()

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_BLOCK_RESPONSE

Upgrade End Request

eOTA_CoProcessorUpgradeEndRequest()

Image blocks saved to
co-processor storage device

block by block

Co-processor JN51xx

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_IMAGE_DL_COMPLETE

Verify image

E_CLD_OTA_INTERNAL_COMMAND_
CO_PROCESSOR_SWITCH_TO_NEW_IMAGE

Switch to new co-processor application image

Image blocks received
block by block
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 833

Appendices
E.3 Storing Upgrade Images in Co-processor Storage on Server

When the co-processor on the OTA server node receives a new OTA upgrade image
from an external source (such as a utility company), if the image is not for the co-
processor itself then it is normally passed to the JN516x device for storage in the
attached Flash memory device. However, if there is insufficient storage space in
Flash memory then the new image will need to be stored in the storage device of the
co-processor:

 When the co-processor application notifies the JN516x application of the arrival
of a new image, the JN516x application must check whether there is sufficient
Flash memory space for the image.

 If there is insufficient Flash memory space, the JN516x application must inform
the co-processor that it should store the image in its own storage device.

The maximum number of images that can be stored in the co-processor’s storage
device on the OTA server node must be specified as a compile-time option in the
zcl_options.h file through the macro OTA_MAX_CO_PROCESSOR_IMAGES.

The OTA Upgrade cluster server will require knowledge of any OTA upgrade images
stored in the co-processor’s storage device - the cluster server must be able to
advertise the availability of the image to cluster clients and be able to process requests
for the image from clients. To facilitate this role, once the image has been saved, the
co-processor must provide the OTA image header information to the JN516x
application. The latter application can then register this header information with the
cluster server by calling the function eOTA_NewImageLoaded().

When an Image Block Request from a cluster client is received by the cluster server
for an image stored in the co-processor’s storage device, the event
E_CLD_OTA_INTERNAL_COMMAND_CO_PRECOSSOR_IMAGE_BLOCK_REQUEST is
generated on the JN516x device. After requesting and receiving the required image
block from the co-processor, the JN516x application must send the block to the
relevant client by calling the function eOTA_ServerImageBlockResponse() to issue
an Image Block Response.
834 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
E.4 Use of Image Indices

Each OTA upgrade image that is stored in non-volatile memory in a node is identified
by an index number. This image index number is actually associated with the memory
space allocated to a single image, rather than with a particular image. For example,
the image index number 1 may correspond to sectors 3 and 4 of the Flash memory
attached to the JN516x device.

The maximum number of images that can be stored in JN516x external Flash memory
is set at compile-time by defining a value for OTA_MAX_IMAGES_PER_ENDPOINT
in the zcl_options.h file. The minimum value that can be used is 1, since the active
image is held in JN516x internal Flash memory and does not need to be included.

Since the image indices are numbered from zero, they can take values in the range:

0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1)

In the case of a dual-processor node, OTA upgrade images may also be stored in the
co-processor’s external storage device. The maximum number images that can be
stored in this device is set at compile-time by defining a value for
OTA_MAX_CO_PROCESSOR_IMAGES in the zcl_options.h file.

The maximum number of images that can be stored across the two storage devices is:

OTA_MAX_IMAGES_PER_ENDPOINT + OTA_MAX_CO_PROCESSOR_IMAGES

and the image indices can take values in the range:

0 to (OTA_MAX_IMAGES_PER_ENDPOINT + OTA_MAX_CO_PROCESSOR_IMAGES - 1)

In fact, the indices of the images stored in JN516x external Flash memory still take
values in the range:

0 to (OTA_MAX_IMAGES_PER_ENDPOINT - 1)

while the indices of the images stored in co-processor external storage take values in
the range:

OTA_MAX_IMAGES_PER_ENDPOINT to
(OTA_MAX_IMAGES_PER_ENDPOINT + OTA_MAX_CO_PROCESSOR_IMAGES - 1)

Note: In the case of JN516x external Flash memory, an
image index number is linked with the start sector of the
memory allocated to a single image when the function
eOTA_AllocateEndpointOTASpace() is called.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 835

Appendices
E.5 Multiple OTA Download Files

This section describes how multiple OTA files can be downloaded into a single device,
where these files can be either dependent on or independent of each other.

E.5.1 Multiple Independent OTA Files

This section describes how multiple independent OTA files can be downloaded,
e.g. when a co-processor is connected to the JN516x and the image upgrades are
independent of each other. This configuration must be specified when registering the
co-processor OTA header, by calling the eOTA_UpdateCoProcessorOTAHeader()
function with the bIsCoProcessorImageUpgradeDependent parameter set to FALSE.

On receiving an Image Notify command, the OTA client will send a Query Next Image
Request command for both its own upgrade image and for any relevant co-processor
images. If it receives a Query Next Image Response with status of SUCCESS for any
one image then it will start a download of that image. If this is a JN516x image then
the client will follow the steps detailed in Section 30.6. If it is a co-processor image then
the client will follow the steps in Appendix E.2.3. On completion of a download, the
client will return to its normal state.

E.5.2 Multiple Dependent OTA Files

This section describes how multiple dependent OTA files can be downloaded,
e.g. when a co-processor is connected to the JN516x and the image upgrades are
dependent on each other. This configuration must be specified when registering the
co-processor OTA header, by calling the eOTA_UpdateCoProcessorOTAHeader()
function with the bIsCoProcessorImageUpgradeDependent parameter set to TRUE.

On receiving an Image Notify command, the OTA client will send a Query Next Image
command for its own upgrade image first, process the download and save it in external
Flash memory. On completion, it will send an Upgrade End Request command with a
status of REQUIRE_MORE_IMAGE and will generate the callback event
E_CLD_OTA_INTERNAL_COMMAND_REQUEST_QUERY_NEXT_IMAGES. On
actioning this event, the application must send a Query Next Image command for the
next image by calling the eOTA_ClientQueryNextImageRequest() function. The
client will then download and save the image as per steps 4 and 5 of Appendix E.2.3.

Once all dependant images have been downloaded, the OTA client will send an
Upgrade End Request command with a status of SUCCESS.

After receiving the Upgrade End Response command, the client will count down to the
upgrade time (specified in the Upgrade End Response) and, upon reaching it, will
generate the event E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_
SWITCH_TO_NEW_IMAGE. Finally, it is the responsibility of the application to update
the JN516x and co-processor images with the newly downloaded images.

In order to initiate an upgrade of the JN516x device, the application should call the
function eOTA_ClientSwitchToNewImage().
836 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
F. EZ-mode Commissioning Actions and Terminology

In the Home Automation Specification 1.2, ZigBee recommend terminology to be used
in describing EZ-mode commissioning in HA product documentation. The aim of these
recommendations is to ensure consistency between products and manufacturers,
which will in turn provide users with a uniform experience of HA products.

The recommended terminology describes a number of actions that may be performed
on an HA device (note that an individual action may not be valid on all device types).
The recommended phrases for the actions are listed below in Table 49 - a description
of each action is provided. The phrases and corresponding descriptions are quoted
directly from the ZigBee Home Automation Specification 1.2.

If a device does not support an action, the action must be listed in the device’s
documentation as “Not Supported”.

ZigBee Action User Action (bold) and Description (italics)

Join Network Press the Network button.
Go find and join the first available HA network.

Form Network Press and hold the Network button.
For devices that can start a network.

Allow Others To Join Network Press the Network button.
For routers and coordinators only. Allows you to add more nodes to an existing
network. This must have a mandatory timeout of 60 seconds.

Restore Factory Fresh Settings Press and hold the Reset button.
Restore the device settings to fresh state (also performs leave).

Pair Devices Press the Binding button.
End Device Bind Request. Bind to any device you can find matching clusters on.
This will toggle the bind each time you do it. The ZigBee coordinator does the
pairing.

Example: a user would like to pair two devices (for example, a switch and a light).

• A button on each device is pressed and the “pairing” is done using the end
device bind request.

• It is required that the Coordinator include the “bind manager”/End device
response. The Bind manager uses the ZDP bind/unbind request to create the
source binding in the devices.

• If a device does not contain buttons, a proprietary remote control could be used
to initiate the same function by sending a datagram to the device (emulating a
button press).

Enable Identify Mode Press the Binding button followed by a press on the selected user button
(EP) to set to Identify.
Sets the device in Identify mode for 60 seconds. This is used for adding devices
to a group or creating a scene.

Table 49: Recommended Phrases for Commissioning Actions
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 837

Appendices
G. Example Code Fragments

This appendix contains fragments of example code.

G.1 Code Fragment for Flash Memory Access

The code fragment in this section is concerned with writing an OTA co-processor
image to the Flash memory associated with a JN516x device, using the standard
function bAHI_FullFlashProgram() of the Integrated Peripherals API, detailed in the
JN516x Integrated Peripherals API User Guides (JN-UG-3087). The code below
relates to the description in Appendix E.2.3.

tsOTA_CallBackMessage * psOTAMessage =
(tsOTA_CallBackMessage*)psEvent->uMessage.sClusterCustomMessage.pvCustomData;
if(psOTAMessage ->eEventId ==
E_CLD_OTA_INTERNAL_COMMAND_CO_PROCESSOR_BLOCK_RESPONSE)
{
if(psOTAMessage->uMessage.sImageBlockResponsePayload.u8Status ==
E_ZCL_SUCCESS)
{
bool_t bWriteStatus;
uint32 u32FlashOffset;
uint8 i;
if(psOTAMessage-
>uMessage.sImageBlockResponsePayload.uMessage.sBlockPayloadSuccess.u32FileOffset ==
0)
{ /* Erase the Flash sectors before start to write */
for(i=0;i<psOTAMessage->u8MaxNumberOfSectors;i++)
{
bAHI_FlashEraseSector(psOTAMessage->u8ImageStartSector[psOTAMessage-
>u8NextFreeImageLocation]+i);
}
}
u32FlashOffset = (psOTAMessage->u8ImageStartSector[psOTAMessage-
>u8NextFreeImageLocation] *(64*1024)) ;
u32FlashOffset += psOTAMessage-
>uMessage.sImageBlockResponsePayload.uMessage.sBlockPayloadSuccess.u32FileOffset;
bWriteStatus = bAHI_FullFlashProgram(u32FlashOffset,
psOTAMessage-
>uMessage.sImageBlockResponsePayload.uMessage.sBlockPayloadSuccess.u8DataSize,
psOTAMessage-
>uMessage.sImageBlockResponsePayload.uMessage.sBlockPayloadSuccess.pu8Data);
if(bWriteStatus == FALSE)
{
DBG_vPrintf(TRACE_ZCL_TASK, "Event : OTA flash write fail\n");
}
}
}

In the case of a dependent multiple-file download,
psOTAMessage->u8NextFreeImageLocation cannot be used as an image
location.

A JN516x application can use any image location except 0, since this location is used
to store the JN516x upgrade image:

OTA_MAX_IMAGES_PER_ENDPOINT must be defined as
1+OTA_MAX_CO_PROCESSOR_IMAGES
838 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
H. Glossary

Term Description

Address A numeric value that is used to identify a network node. In ZigBee, the
device’s 64-bit IEEE/MAC address or 16-bit network address is used.

AIB APS Information Base: A database for the Application Support (APS) layer
of the ZigBee stack, containing attributes concerned with system security.

APDU Application Protocol Data Unit: Part of a wireless network message that is
handled by the application and contains user data.

API Application Programming Interface: A set of programming functions that
can be incorporated in application code to provide an easy-to-use interface
to underlying functionality and resources.

APS Application Support: A sub-layer of the Application layer of the ZigBee
stack, relating to communications with applications, binding and security.

Application The program that deals with the input/output/processing requirements of
the node, as well as high-level interfacing to the network.

Application Profile A collection of device descriptors that characterise an application for a par-
ticular market sector. An application profile can be public or private. A pub-
lic profile is identified by a 16-bit number, assigned by the ZigBee Alliance.

Attribute A data entity used by an application, e.g. a temperature measurement. It is
part of a ‘cluster’ along with a set of commands which can be used to pass
attribute values between applications or modify attributes.

Binding The process of associating an endpoint on one node with an endpoint on
another node, so that communications from the source endpoint are auto-
matically routed to the destination endpoint without specifying addresses.

Channel A narrow frequency range within the designated radio band - for example,
the IEEE 802.15.4 2400-MHz band is divided into 16 channels. A wireless
network operates in a single channel which is determined at network initial-
isation.

Child A node which is connected directly to a parent node and for which the par-
ent node provides routing functionality. A child can be an End Device or
Router. Also see Parent.

Cluster A collection of attributes and commands that define a functional building
block for a ZigBee device. The commands are used to communicate or
modify attribute values. A cluster has input/server and output/client sides -
a cluster client issues a command which is received and acted on by a
cluster server.

Context Data Data which reflects the current state of the node. The context data must be
preserved during sleep (of an End Device).

Co-ordinator The node through which a network is started, initialised and formed - the
Co-ordinator acts as the seed from which the network grows, as it is joined
by other nodes. The Co-ordinator also usually provides a routing function.
All networks must have one and only one Co-ordinator.

End Device A node which has no networking role (such as routing) and is only con-
cerned with data input/output/processing. As such, an End Device cannot
be a parent but can sleep to conserve power.
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 839

Appendices
Endpoint A software entity that acts as a communications port for an application on a
ZigBee node. A node can support up to 240 endpoints, numbered 1 to 240.
Two special endpoints are also supported - endpoint 0 is used by the ZDO
and endpoint 255 is used for a broadcast to all endpoints on the node.

Extended PAN ID
(EPID)

A 64-bit identifier for a ZigBee PRO network that is assigned when the net-
work is started. A value can be pre-set or, alternatively, the IEEE/MAC
address of the Co-ordinator can be used as the EPID.

IEEE 802.15.4 A standard network protocol that is used as the lowest level of the ZigBee
software stack. Among other functionality, it provides the physical interface
to the network’s transmission medium (radio).

IEEE/MAC Address A unique 64-bit address that is allocated to a device at the time of manufac-
ture and is retained by the device for its lifetime. No two devices in the
world can have the same IEEE/MAC address.

Joining The process by which a device becomes a node of a network. The device
transmits a joining request. If this is received and accepted by a parent
node (Co-ordinator or Router), the device becomes a child of the parent.
Note that the parent must have “permit joining” enabled.

Mesh Network A wireless network topology in which all routing nodes (Routers and the
Co-ordinator) can communicate directly with each other, provided that they
are within radio range. This allows optimal and flexible routing, with alterna-
tive routes if the most direct route is not available.

Network Address A 16-bit address that is allocated to a ZigBee node when it joins a network.
The Co-ordinator always has the network address 0x0000. In IEEE
802.15.4 terminology, it is called the short address.

NIB NWK Information Base: A database containing attributes needed in the
management of the Network (NWK) layer of the ZigBee stack.

Node Descriptor A set of information about the capabilities of a node.

Node Power
Descriptor

A set of information about a node’s current and potential power supply.

NPDU Network Protocol Data Unit: The transmitted form of a wireless network
message (incorporates APDU and header/footer information from stack).

PAN ID Personal Area Network Identifier: This is a 16-bit value that uniquely identi-
fies the network - all neighbouring networks must have different PAN IDs.

Parent A node which allows other nodes (children) to join the network through it
and provides a routing function for these child nodes. A parent can be a
Router or the Co-ordinator. Also see Child.

Router A node which provides routing functionality (in addition to input/output/pro-
cessing) if used as a parent node. Also see Routing.

Routing The ability of a node to pass messages from one node to another, acting as
a stepping stone from the source node to the target node. Routing function-
ality is provided by Routers and the Co-ordinator. Routing is handled by the
network level software and is transparent to the application on the node.

Simple Descriptor A set of assorted information about a particular application/endpoint.

Term Description
840 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Sleep Mode An operating state of a node in which the device consumes minimal power.
During sleep, the only activity of the node may be to time the sleep duration
to determine when to wake up and resume normal operation. Only End
Devices can sleep.

Stack The hierarchical set of software layers used to operate a system. The high-
level user application is at the top of the stack and the low-level interface to
the transmission medium is at the bottom of the stack.

Stack Profile The set of features implemented from the ZigBee specification - that is, all
the mandatory features together with a subset of the optional features. The
ZigBee Alliance define two Stack Profiles for use with public Application
Profiles - ZigBee and ZigBee PRO.

UART Universal Asynchronous Receiver Transmitter: A standard interface used
for cabled serial communications between two devices (each device must
have a UART).

User Descriptor A user-defined description of a node (e.g. “KitchenLight“).

ZigBee Certified
Product

An end-product that uses ZigBee Compliant Platforms and public Applica-
tion Profiles, and which has been tested for ZigBee compliance and subse-
quently authorised to carry the ZigBee Alliance logo.

ZigBee Cluster
Library (ZCL)

A collection of clusters that can be individually employed in ZigBee
devices, as required, to implement the functionality of a device.

ZigBee Compliant
Platform

A component (such as a module) that has been tested for ZigBee compli-
ance and authorised to be used as a building block for a ZigBee end-prod-
uct.

ZigBee Device
Objects (ZDO)

A special application which resides in the Application Layer on all nodes
and performs various standard tasks (e.g. device discovery, binding). The
ZDO communicates via endpoint 0.

Term Description
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 841

Appendices
842 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

 ZigBee Cluster Library
User Guide
Revision History

Version Date Comments

1.0 11-May-2015 First release of this User Guide which supports the optimised ZCL
supplied in the combined JN516x SDK for the ZigBee Light Link and
Home Automation profiles (JN-SW-4168).

This User Guide has been created and updated from JN-UG-3077
v2.0, which it replaces for the above ZCL version.

1.1 6-Sep-2016 Added:

• eCLD_BasicCommandResetToFactoryDefaultsSend() function to
the Basic cluster

• New address modes to teZCL_AddressMode

• Guidelines on OTA image block sizes and the use of fragmented
data frames

• Information on increasing the CPU stack size for OTA upgrade

• Information on the OTA upgrade of applications for a co-processor
(that operates in conjunction with the JN516x device)

1.2 19-Sep-2016 Added u32ImageStamp attribute to the OTA Upgrade cluster and
updated the eOTA_UpdateClientAttributes() function.

1.3 30-Nov-2016 Updated for use with ZigBee Smart Energy 1.2.2 (restricted release)
and a glossary added. Also for use with ZigBee Smart Energy 1.2.1.

1.4 25-Apr-2017 • Updated to allow the CRC value to be optionally excluded from
OTA upgrade images

• Added chapter on the Fan Control cluster
JN-UG-3103 v1.4 © NXP Laboratories UK 2017 843

ZigBee Cluster Library
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Semiconductors

For online support resources and contact details of your local NXP office or distributor, refer to:

www.nxp.com
844 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

	Contents
	Preface
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks
	Chip Compatibility

	Part I: General and Development Information
	1. ZigBee Cluster Library (ZCL)
	1.1 Member Clusters
	1.2 Compile-time Options

	2. ZCL Fundamentals and Features
	2.1 Shared Device Structures
	2.2 Accessing Attributes
	2.2.1 Reading Attributes
	2.2.2 Writing Attributes
	2.2.3 Attribute Discovery
	2.2.4 Attribute Reporting

	2.3 Attribute Storage by Application (SE 1.2.2 only)
	2.4 Default Responses
	2.5 Bound Transmission Management
	2.6 Command Discovery
	2.6.1 Discovering Command Sets
	2.6.2 Compile-time Options

	3. Event Handling
	3.1 Event Structure
	3.2 Processing Events
	3.3 Events

	4. Error Handling
	4.1 Last Stack Error
	4.2 Error/Command Status on Receiving Command

	Part II: Clusters and Modules
	5. Basic Cluster
	5.1 Overview
	5.2 Basic Cluster Structure and Attributes
	5.3 Mandatory Attribute Settings
	5.4 Functions
	eCLD_BasicCreateBasic
	eCLD_BasicCommandResetToFactoryDefaultsSend

	5.5 Enumerations
	5.5.1 teCLD_BAS_ClusterID
	5.5.2 teCLD_BAS_PowerSource
	5.5.3 teCLD_BAS_ApplicationProfileType

	5.6 Compile-Time Options

	6. Power Configuration Cluster
	6.1 Overview
	6.2 Power Configuration Cluster Structure and Attributes
	6.3 Functions
	eCLD_PowerConfigurationCreatePowerConfiguration

	6.4 Enumerations and Defines
	6.4.1 teCLD_PWRCFG_AttributeId
	6.4.2 teCLD_PWRCFG_BatterySize
	6.4.3 Defines for Voltage Alarms

	6.5 Compile-Time Options

	7. Identify Cluster
	7.1 Overview
	7.2 Identify Cluster Structure and Attribute
	7.3 Initialisation
	7.4 Sending Commands
	7.4.1 Starting and Stopping Identification Mode
	7.4.2 Requesting Identification Effects (ZLL Only)
	7.4.3 Inquiring about Identification Mode
	7.4.4 Using EZ-mode Commissioning Features (HA only)

	7.5 Sleeping Devices in Identification Mode
	7.6 Functions
	eCLD_IdentifyCreateIdentify
	eCLD_IdentifyCommandIdentifyRequestSend
	eCLD_IdentifyCommandTriggerEffectSend
	eCLD_IdentifyCommandIdentifyQueryRequestSend
	eCLD_IdentifyEZModeInvokeCommandSend
	eCLD_IdentifyUpdateCommissionStateCommandSend

	7.7 Structures
	7.7.1 Custom Data Structure
	7.7.2 Custom Command Payloads
	7.7.3 Custom Command Responses
	7.7.4 EZ-mode Commissioning Command Payloads

	7.8 Enumerations
	7.8.1 teCLD_Identify_ClusterID

	7.9 Compile-Time Options

	8. Groups Cluster
	8.1 Overview
	8.2 Groups Cluster Structure and Attribute
	8.3 Initialisation
	8.4 Sending Commands
	8.4.1 Adding Endpoints to Groups
	8.4.2 Removing Endpoints from Groups
	8.4.3 Obtaining Information about Groups

	8.5 Functions
	eCLD_GroupsCreateGroups
	eCLD_GroupsAdd
	eCLD_GroupsCommandAddGroupRequestSend
	eCLD_GroupsCommandViewGroupRequestSend
	eCLD_GroupsCommandGetGroupMembershipRequestSend
	eCLD_GroupsCommandRemoveGroupRequestSend
	eCLD_GroupsCommandRemoveAllGroupsRequestSend
	eCLD_GroupsCommandAddGroupIfIdentifyingRequestSend

	8.6 Structures
	8.6.1 Custom Data Structure
	8.6.2 Group Table Entry
	8.6.3 Custom Command Payloads
	8.6.4 Custom Command Responses

	8.7 Enumerations
	8.7.1 teCLD_Groups_ClusterID

	8.8 Compile-Time Options

	9. Scenes Cluster
	9.1 Overview
	9.2 Scenes Cluster Structure and Attributes
	9.3 Initialisation
	9.4 Sending Remote Commands
	9.4.1 Creating a Scene
	9.4.2 Copying a Scene (ZLL Only)
	9.4.3 Applying a Scene
	9.4.4 Deleting a Scene
	9.4.5 Obtaining Information about Scenes

	9.5 Issuing Local Commands
	9.5.1 Creating a Scene
	9.5.2 Applying a Scene

	9.6 Functions
	eCLD_ScenesCreateScenes
	eCLD_ScenesAdd
	eCLD_ScenesStore
	eCLD_ScenesRecall
	eCLD_ScenesCommandAddSceneRequestSend
	eCLD_ScenesCommandViewSceneRequestSend
	eCLD_ScenesCommandRemoveSceneRequestSend
	eCLD_ScenesCommandRemoveAllScenesRequestSend
	eCLD_ScenesCommandStoreSceneRequestSend
	eCLD_ScenesCommandRecallSceneRequestSend
	eCLD_ScenesCommandGetSceneMembershipRequestSend
	eCLD_ScenesCommandEnhancedAddSceneRequestSend
	eCLD_ScenesCommandEnhancedViewSceneRequestSend
	eCLD_ScenesCommandCopySceneSceneRequestSend

	9.7 Structures
	9.7.1 Custom Data Structure
	9.7.2 Custom Command Payloads
	9.7.3 Custom Command Responses

	9.8 Enumerations
	9.8.1 teCLD_Scenes_ClusterID

	9.9 Compile-Time Options

	10. On/Off Cluster
	10.1 Overview
	10.2 On/Off Cluster Structure and Attribute
	10.3 Initialisation
	10.4 Sending Commands
	10.4.1 Switching On and Off
	10.4.2 Switching Off Lights with Effect (ZLL Only)
	10.4.3 Switching On Timed Lights (ZLL Only)

	10.5 Saving Light Settings (ZLL Only)
	10.6 Functions
	eCLD_OnOffCreateOnOff
	eCLD_OnOffCommandSend
	eCLD_OnOffCommandOffWithEffectSend
	eCLD_OnOffCommandOnWithTimedOffSend

	10.7 Structures
	10.7.1 Custom Data Structure
	10.7.2 Custom Command Payloads

	10.8 Enumerations
	10.8.1 teCLD_OnOff_ClusterID
	10.8.2 teCLD_OOSC_SwitchType (On/Off Switch Types)
	10.8.3 teCLD_OOSC_SwitchAction (On/Off Switch Actions)

	10.9 Compile-Time Options

	11. On/Off Switch Configuration Cluster
	11.1 Overview
	11.2 On/Off Switch Config Cluster Structure and Attribute
	11.3 Initialisation
	11.4 Functions
	eCLD_OOSCCreateOnOffSwitchConfig

	11.5 Enumerations
	11.5.1 teCLD_OOSC_ClusterID

	11.6 Compile-Time Options

	12. Level Control Cluster
	12.1 Overview
	12.2 Level Control Cluster Structure and Attributes
	12.3 Initialisation
	12.4 Sending Remote Commands
	12.4.1 Changing Level
	12.4.2 Stopping a Level Change

	12.5 Issuing Local Commands
	12.5.1 Setting Level
	12.5.2 Obtaining Level

	12.6 Functions
	eCLD_LevelControlCreateLevelControl
	eCLD_LevelControlSetLevel
	eCLD_LevelControlGetLevel
	eCLD_LevelControlCommandMoveToLevelCommandSend
	eCLD_LevelControlCommandMoveCommandSend
	eCLD_LevelControlCommandStepCommandSend
	eCLD_LevelControlCommandStopCommandSend
	eCLD_LevelControlCommandStopWithOnOffCommandSend

	12.7 Structures
	12.7.1 Custom Data Structure
	12.7.2 Custom Command Payloads

	12.8 Enumerations
	12.8.1 teCLD_LevelControl_ClusterID

	12.9 Compile-Time Options

	13. Alarms Cluster
	13.1 Overview
	13.2 Alarms Cluster Structure and Attributes
	13.3 Initialisation
	13.4 Alarm Operations
	13.4.1 Raising an Alarm
	13.4.2 Clearing an Alarm (from Server)
	13.4.3 Resetting Alarms (from Client)

	13.5 Alarms Events
	13.6 Functions
	eCLD_AlarmsCreateAlarms
	eCLD_AlarmsCommandResetAlarmCommandSend
	eCLD_AlarmsCommandResetAllAlarmsCommandSend
	eCLD_AlarmsCommandGetAlarmCommandSend
	eCLD_AlarmsCommandResetAlarmLogCommandSend
	eCLD_AlarmsResetAlarmLog
	eCLD_AlarmsAddAlarmToLog
	eCLD_AlarmsGetAlarmFromLog
	eCLD_AlarmsSignalAlarm
	eCLD_AlarmsClearAlarm

	13.7 Structures
	13.7.1 Event Callback Message Structure
	13.7.2 Custom Data Structure
	13.7.3 Custom Command Payloads
	13.7.4 Custom Response Payloads
	13.7.5 Alarms Table Entry

	13.8 Enumerations
	13.8.1 teCLD_Alarms_AttributeID

	13.9 Compile-Time Options

	14. Time Cluster and ZCL Time
	14.1 Overview
	14.2 Time Cluster Structure and Attributes
	14.3 Attribute Settings
	14.3.1 Mandatory Attributes
	14.3.2 Optional Attributes

	14.4 Maintaining ZCL Time
	14.4.1 Updating ZCL Time Following Sleep
	14.4.2 ZCL Time Synchronisation

	14.5 Time-Synchronisation of Devices
	14.5.1 Initialising and Maintaining Master Time
	14.5.2 Initial Synchronisation of Devices
	14.5.3 Re-synchronisation of Devices

	14.6 Time Event
	14.7 Functions
	eCLD_TimeCreateTime
	vZCL_SetUTCTime
	u32ZCL_GetUTCTime
	bZCL_GetTimeHasBeenSynchronised
	vZCL_ClearTimeHasBeenSynchronised

	14.8 Return Codes
	14.9 Enumerations
	14.9.1 teCLD_TM_AttributeID

	14.10 Compile-Time Options

	15. Binary Input (Basic) Cluster
	15.1 Overview
	15.2 Binary Input (Basic) Structure and Attribute
	15.3 Functions
	eCLD_BinaryInputBasicCreateBinaryInputBasic

	15.4 Enumerations
	15.4.1 teCLD_BinaryInputBasicCluster_AttrID
	15.4.2 teCLD_BinaryInputBasic_Polarity
	15.4.3 teCLD_BinaryInputBasic_Reliability

	15.5 Compile-Time Options

	16. Commissioning Cluster
	16.1 Overview
	16.2 Commissioning Cluster Structure and Attributes
	16.3 Attribute Settings
	16.4 Functions
	16.5 Enumerations
	16.5.1 teCLD_Commissioning_AttributeID

	16.6 Compile-Time Options

	17. Door Lock Cluster
	17.1 Overview
	17.2 Door Lock Cluster Structure and Attributes
	17.3 Door Lock Events
	17.4 Functions
	eCLD_DoorLockCreateDoorLock
	eCLD_DoorLockSetLockState
	eCLD_DoorLockGetLockState
	eCLD_DoorLockCommandLockUnlockRequestSend
	eCLD_DoorLockSetSecurityLevel

	17.5 Return Codes
	17.6 Enumerations
	17.6.1 ‘Attribute ID’ Enumerations
	17.6.2 ‘Lock State’ Enumerations
	17.6.3 ‘Lock Type’ Enumerations
	17.6.4 ‘Door State’ Enumerations
	17.6.5 ‘Command ID’ Enumerations

	17.7 Structures
	17.7.1 tsCLD_DoorLockCallBackMessage
	17.7.2 tsCLD_DoorLock_LockUnlockResponsePayload

	17.8 Compile-Time Options

	18. Thermostat Cluster
	18.1 Overview
	18.2 Thermostat Cluster Structure and Attributes
	18.3 Thermostat Operations
	18.3.1 Initialisation
	18.3.2 Recording and Reporting the Local Temperature
	18.3.3 Configuring Heating and Cooling Setpoints

	18.4 Thermostat Events
	18.5 Functions
	eCLD_ThermostatCreateThermostat
	eCLD_ThermostatSetAttribute
	eCLD_ThermostatStartReportingLocalTemperature
	eCLD_ThermostatCommandSetpointRaiseOrLowerSend

	18.6 Return Codes
	18.7 Enumerations
	18.7.1 ‘Attribute ID’ Enumerations
	18.7.2 ‘Operating Capabilities’ Enumerations
	18.7.3 ‘Command ID’ Enumerations
	18.7.4 ‘Setpoint Raise Or Lower’ Enumerations

	18.8 Structures
	18.8.1 Custom Data Structure
	18.8.2 tsCLD_ThermostatCallBackMessage
	18.8.3 tsCLD_Thermostat_SetpointRaiseOrLowerPayload

	18.9 Compile-Time Options

	19. Fan Control Cluster
	19.1 Overview
	19.2 Fan Control Structure and Attributes
	19.3 Initialisation
	19.4 Functions
	eCLD_FanControlCreateFanControl

	19.5 Enumerations
	19.5.1 teCLD_FanControl_Cluster_AttrID
	19.5.2 teCLD_FanControl_FanMode
	19.5.3 teCLD_FanControl_ModeSequence

	19.6 Compile-Time Options

	20. Thermostat UI Configuration Cluster
	20.1 Overview
	20.2 Cluster Structure and Attributes
	20.3 Initialisation
	20.4 Functions
	eCLD_ThermostatUIConfigCreateThermostatUIConfig
	eCLD_ThermostatUIConfigConvertTemp

	20.5 Return Codes
	20.6 Enumerations
	20.6.1 ‘Attribute ID’ Enumerations
	20.6.2 ‘Temperature Display Mode’ Enumerations
	20.6.3 ‘Keypad Functionality’ Enumerations

	20.7 Compile-Time Options

	21. Colour Control Cluster
	21.1 Overview
	21.2 Colour Control Cluster Structure and Attributes
	21.3 Initialisation
	21.4 Sending Commands
	21.4.1 Controlling Hue
	21.4.2 Controlling Saturation
	21.4.3 Controlling Colour (CIE x and y Chromaticities)
	21.4.4 Controlling Colour Temperature
	21.4.5 Controlling ‘Enhanced’ Hue (ZLL Only)
	21.4.6 Controlling a Colour Loop (ZLL Only)
	21.4.7 Controlling Hue and Saturation

	21.5 Functions
	eCLD_ColourControlCreateColourControl
	eCLD_ColourControlCommandMoveToHueCommandSend
	eCLD_ColourControlCommandMoveHueCommandSend
	eCLD_ColourControlCommandStepHueCommandSend
	eCLD_ColourControlCommandMoveToSaturationCommandSend
	eCLD_ColourControlCommandMoveSaturationCommandSend
	eCLD_ColourControlCommandStepSaturationCommandSend
	eCLD_ColourControlCommandMoveToHueAndSaturationCommandSend
	eCLD_ColourControlCommandMoveToColourCommandSend
	eCLD_ColourControlCommandMoveColourCommandSend
	eCLD_ColourControlCommandStepColourCommandSend
	eCLD_ColourControlCommandEnhancedMoveToHueCommandSend
	eCLD_ColourControlCommandEnhancedMoveHueCommandSend
	eCLD_ColourControlCommandEnhancedStepHueCommandSend
	eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend
	eCLD_ColourControlCommandColourLoopSetCommandSend
	eCLD_ColourControlCommandStopMoveStepCommandSend
	eCLD_ColourControlCommandMoveToColourTemperatureCommandSend
	eCLD_ColourControlCommandMoveColourTemperatureCommandSend
	eCLD_ColourControlCommandStepColourTemperatureCommandSend
	eCLD_ColourControl_GetRGB

	21.6 Structures
	21.6.1 Custom Data Structure
	21.6.2 Custom Command Payloads

	21.7 Enumerations
	21.7.1 teCLD_ColourControl_ClusterID

	21.8 Compile-Time Options

	22. Illuminance Measurement Cluster
	22.1 Overview
	22.2 Illuminance Measurement Structure and Attributes
	22.3 Functions
	eCLD_IlluminanceMeasurementCreateIlluminanceMeasurement

	22.4 Enumerations
	22.4.1 teCLD_IM_ClusterID

	22.5 Compile-Time Options

	23. Illuminance Level Sensing Cluster
	23.1 Overview
	23.2 Cluster Structure and Attributes
	23.3 Functions
	eCLD_IlluminanceLevelSensingCreateIlluminanceLevelSensing

	23.4 Enumerations
	23.4.1 teCLD_ILS_ClusterID
	23.4.2 teCLD_ILS_LightSensorType
	23.4.3 teCLD_ILS_LightLevelStatus

	23.5 Compile-Time Options

	24. Temperature Measurement Cluster
	24.1 Overview
	24.2 Temperature Measurement Structure and Attributes
	24.3 Functions
	eCLD_TemperatureMeasurementCreateTemperatureMeasurement

	24.4 Enumerations
	24.4.1 teCLD_TemperatureMeasurement_AttributeID

	24.5 Compile-Time Options

	25. Relative Humidity Measurement Cluster
	25.1 Overview
	25.2 RH Measurement Structure and Attributes
	25.3 Functions
	eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement

	25.4 Enumerations
	25.4.1 teCLD_RHM_ClusterID

	25.5 Compile-Time Options

	26. Occupancy Sensing Cluster
	26.1 Overview
	26.2 Occupancy Sensing Structure and Attributes
	26.3 Functions
	eCLD_OccupancySensingCreateOccupancySensing

	26.4 Enumerations
	26.4.1 teCLD_OS_ClusterID

	26.5 Compile-Time Options

	27. IAS Zone Cluster
	27.1 Overview
	27.2 IAS Zone Structure and Attributes
	27.3 Enrollment
	27.3.1 Trip-to-Pair
	27.3.2 Auto-Enroll-Response
	27.3.3 Auto-Enroll-Request

	27.4 IAS Zone Events
	27.5 Functions
	eCLD_IASZoneCreateIASZone
	eCLD_IASZoneUpdateZoneStatus
	eCLD_IASZoneUpdateZoneState
	eCLD_IASZoneUpdateZoneType
	eCLD_IASZoneUpdateZoneID
	eCLD_IASZoneUpdateCIEAddress
	eCLD_IASZoneEnrollReqSend
	eCLD_IASZoneEnrollRespSend
	eCLD_IASZoneStatusChangeNotificationSend
	eCLD_IASZoneNormalOperationModeReqSend
	eCLD_IASZoneTestModeReqSend

	27.6 Structures
	27.6.1 Custom Data Structure
	27.6.2 Custom Command Payloads

	27.7 Compile-Time Options

	28. IAS Ancillary Control Equipment Cluster
	28.1 Overview
	28.2 IAS ACE Structure and Attributes
	28.3 Table and Parameters
	28.4 Command Summary
	28.5 IAS ACE Events
	28.6 Functions
	eCLD_IASACECreateIASACE
	eCLD_IASACEAddZoneEntry
	eCLD_IASACERemoveZoneEntry
	eCLD_IASACEGetZoneTableEntry
	eCLD_IASACEGetEnrolledZones
	eCLD_IASACESetPanelParameter
	eCLD_IASACEGetPanelParameter
	eCLD_IASACESetZoneParameter
	eCLD_IASACESetZoneParameterValue
	eCLD_IASACEGetZoneParameter
	eCLD_IASACE_ArmSend
	eCLD_IASACE_BypassSend
	eCLD_IASACE_EmergencySend
	eCLD_IASACE_FireSend
	eCLD_IASACE_PanicSend
	eCLD_IASACE_GetZoneIDMapSend
	eCLD_IASACE_GetZoneInfoSend
	eCLD_IASACE_GetPanelStatusSend
	eCLD_IASACE_SetBypassedZoneListSend
	eCLD_IASACE_GetBypassedZoneListSend
	eCLD_IASACE_GetZoneStatusSend
	eCLD_IASACE_ZoneStatusChangedSend
	eCLD_IASACE_PanelStatusChanged

	28.7 Structures
	28.7.1 Custom Data Structure
	28.7.2 Zone Table Entry
	28.7.3 Zone Parameters
	28.7.4 Panel Parameters
	28.7.5 Custom Command Payloads
	28.7.6 Event Data Structures

	28.8 Enumerations
	28.8.1 teCLD_IASACE_ArmMode
	28.8.2 teCLD_IASACE_PanelStatus
	28.8.3 teCLD_IASACE_AlarmStatus
	28.8.4 teCLD_IASACE_AudibleNotification

	28.9 Compile-Time Options

	29. IAS Warning Device Cluster
	29.1 Overview
	29.2 IAS WD Structure and Attribute
	29.3 Issuing Warnings
	29.4 IAS WD Events
	29.5 Functions
	eCLD_IASWDCreateIASWD
	eCLD_IASWDUpdate
	eCLD_IASWDUpdateMaxDuration
	eCLD_IASWDStartWarningReqSend
	eCLD_IASWDSquawkReqSend

	29.6 Structures
	29.6.1 Custom Data Structure
	29.6.2 Custom Command Payloads
	29.6.3 Event Data Structures

	29.7 Compile-Time Options

	30. OTA Upgrade Cluster
	30.1 Overview
	30.2 OTA Upgrade Cluster Structure and Attributes
	30.3 Basic Principles
	30.3.1 OTA Upgrade Cluster Server
	30.3.2 OTA Upgrade Cluster Client

	30.4 Application Requirements
	30.5 Initialisation
	30.6 Implementing OTA Upgrade Mechanism
	30.7 Ancillary Features and Resources for OTA Upgrade
	30.7.1 Rate Limiting
	30.7.2 Device-Specific File Downloads
	30.7.3 Image Block Size and Fragmentation
	30.7.4 Page Requests
	30.7.5 Persistent Data Management
	30.7.6 Mutex for Flash Memory Access
	30.7.7 External Flash Memory Organisation
	30.7.8 Low-Voltage Flag

	30.8 OTA Upgrade Events
	30.8.1 Server-side Events
	30.8.2 Client-side Events
	30.8.3 Server-side and Client-side Events

	30.9 Functions
	30.9.1 General Functions
	eOTA_Create
	vOTA_FlashInit
	eOTA_AllocateEndpointOTASpace
	vOTA_GenerateHash
	eOTA_GetCurrentOtaHeader

	30.9.2 Server Functions
	eOTA_SetServerAuthorisation
	eOTA_SetServerParams
	eOTA_GetServerData
	eOTA_EraseFlashSectorsForNewImage
	eOTA_FlashWriteNewImageBlock
	eOTA_NewImageLoaded
	eOTA_ServerImageNotify
	eOTA_ServerQueryNextImageResponse
	eOTA_ServerImageBlockResponse
	eOTA_SetWaitForDataParams
	eOTA_ServerUpgradeEndResponse
	eOTA_ServerSwitchToNewImage
	eOTA_InvalidateStoredImage
	eOTA_ServerQuerySpecificFileResponse

	30.9.3 Client Functions
	eOTA_SetServerAddress
	eOTA_ClientQueryNextImageRequest
	eOTA_ClientImageBlockRequest
	eOTA_ClientImagePageRequest
	eOTA_ClientUpgradeEndRequest
	eOTA_HandleImageVerification
	eOTA_UpdateCoProcessorOTAHeader
	eOTA_CoProcessorUpgradeEndRequest
	eOTA_ClientSwitchToNewImage
	eOTA_UpdateClientAttributes
	eOTA_RestoreClientData
	vOTA_SetImageValidityFlag
	eOTA_ClientQuerySpecificFileRequest
	eOTA_SpecificFileUpgradeEndRequest
	vOTA_SetLowVoltageFlag

	30.10 Structures
	30.10.1 tsOTA_ImageHeader
	30.10.2 tsOTA_CoProcessorOTAHeader
	30.10.3 tsOTA_Common
	30.10.4 tsOTA_HwFncTable
	30.10.5 tsNvmDefs
	30.10.6 tsOTA_ImageNotifyCommand
	30.10.7 tsOTA_QueryImageRequest
	30.10.8 tsOTA_QueryImageResponse
	30.10.9 tsOTA_BlockRequest
	30.10.10 tsOTA_ImagePageRequest
	30.10.11 tsOTA_ImageBlockResponsePayload
	30.10.12 tsOTA_UpgradeEndRequestPayload
	30.10.13 tsOTA_UpgradeEndResponsePayload
	30.10.14 tsOTA_SuccessBlockResponsePayload
	30.10.15 tsOTA_WaitForData
	30.10.16 tsOTA_WaitForDataParams
	30.10.17 tsOTA_PageReqServerParams
	30.10.18 tsOTA_PersistedData
	30.10.19 tsOTA_QuerySpecificFileRequestPayload
	30.10.20 tsOTA_QuerySpecificFileResponsePayload
	30.10.21 tsOTA_CallBackMessage
	30.10.22 tsCLD_PR_Ota
	30.10.23 tsCLD_AS_Ota
	30.10.24 tsOTA_ImageVersionVerify
	30.10.25 tsOTA_UpgradeDowngradeVerify

	30.11 Enumerations
	30.11.1 teOTA_Cluster
	30.11.2 teOTA_UpgradeClusterEvents
	30.11.3 eOTA_AuthorisationState
	30.11.4 teOTA_ImageNotifyPayloadType

	30.12 Compile-Time Options
	30.13 Build Process
	30.13.1 Modifying Makefiles
	30.13.2 Building Applications
	30.13.3 Preparing and Downloading Initial Client Image
	30.13.4 Preparing and Downloading Server Image

	31. Diagnostics Cluster
	31.1 Overview
	31.2 Diagnostics Structure and Attributes
	31.3 Functions
	eCLD_DiagnosticsCreateDiagnostics
	eCLD_DiagnosticsUpdate

	31.4 Enumerations
	31.4.1 teCLD_Diagnostics_AttributeId

	31.5 Compile-time Options

	32. EZ-mode Commissioning Module
	32.1 Overview
	32.2 Commissioning Process and Stages
	32.2.1 Invocation
	32.2.2 Network Steering
	32.2.3 Find and Bind
	32.2.4 Grouping

	32.3 Persisting Commissioning Data
	32.4 Joining States
	32.5 EZ-mode Commissioning Events
	32.6 Functions
	32.6.1 Joining Functions
	vEZ_SetUpPolicy
	vEZ_FormNWK
	eEZ_UpdateEZState
	vEZ_EZModeNWKJoinHandler
	eEZ_GetJoinState
	vEZ_ReJoinOnLastKnownCh
	vEZ_RestoreDefaultAIBChMask
	vEZ_SetDefaultAIBChMask

	32.6.2 ‘Find and Bind’/Grouping Functions
	eEZ_ExcludeClusterFromEZBinding
	eEZ_FindAndBind
	eEZ_Group
	vEZ_SetGroupId
	u16EZ_GetGroupId
	eEZ_GetFindAndBindState
	vEZ_Exit
	vEZ_FactoryReset
	vEZ_EZModeNWKFindAndBindHandler
	vEZ_EPCallBackHandler
	vEZ_EZModeCb

	32.7 Enumerations
	32.7.1 ‘Set-Up Policy’ Enumerations
	32.7.2 Status Enumerations (‘Find and Bind’ Return Codes)
	32.7.3 ‘Cluster Exclude’ Enumerations
	32.7.4 ‘Join Action’ Enumerations
	32.7.5 Event Enumerations

	32.8 Structures
	32.8.1 tsEZ_FindAndBindEvent

	32.9 Compile-Time Options

	Part III: General Reference Information
	33. ZCL Functions
	33.1 General Functions
	eZCL_Register
	vZCL_EventHandler
	eZCL_GetLastZpsError

	33.2 Attribute Access Functions
	eZCL_SendReadAttributesRequest
	eZCL_SendWriteAttributesRequest
	eZCL_SendWriteAttributesNoResponseRequest
	eZCL_SendWriteAttributesUndividedRequest
	eZCL_SendDiscoverAttributesRequest
	eZCL_SendDiscoverAttributesExtendedRequest
	eZCL_SendConfigureReportingCommand
	eZCL_SendReadReportingConfigurationCommand
	eZCL_ReportAllAttributes
	eZCL_CreateLocalReport
	eZCL_SetReportableFlag
	eZCL_HandleReadAttributesResponse
	eZCL_ReadLocalAttributeValue
	eZCL_WriteLocalAttributeValue
	eZCL_OverrideClusterControlFlags
	eZCL_SetSupportedSecurity

	33.3 Command Discovery Functions
	eZCL_SendDiscoverCommandReceivedRequest
	eZCL_SendDiscoverCommandGeneratedRequest

	34. ZCL Structures
	34.1 General Structures
	34.1.1 tsZCL_EndPointDefinition
	34.1.2 tsZCL_ClusterDefinition
	34.1.3 tsZCL_AttributeDefinition
	34.1.4 tsZCL_Address
	34.1.5 tsZCL_AttributeReportingConfigurationRecord
	34.1.6 tsZCL_AttributeReportingConfigurationResponse
	34.1.7 tsZCL_AttributeReadReportingConfigurationRecord
	34.1.8 tsZCL_IndividualAttributesResponse
	34.1.9 tsZCL_DefaultResponse
	34.1.10 tsZCL_AttributeDiscoveryResponse
	34.1.11 tsZCL_AttributeDiscoveryExtendedResponse
	34.1.12 tsZCL_ReportAttributeMirror
	34.1.13 tsZCL_OctetString
	34.1.14 tsZCL_CharacterString
	34.1.15 tsZCL_ClusterCustomMessage
	34.1.16 tsZCL_ClusterInstance
	34.1.17 tsZCL_CommandDiscoveryIndividualResponse
	34.1.18 tsZCL_CommandDiscoveryResponse
	34.1.19 tsZCL_CommandDefinition
	34.1.20 tsZCL_SceneExtensionTable
	34.1.21 tsZCL_WriteAttributeRecord
	34.1.22 tsZCL_PersistDataHeader (SE 1.2.2 only)

	34.2 Event Structure (tsZCL_CallBackEvent)

	35. Enumerations and Status Codes
	35.1 General Enumerations
	35.1.1 Addressing Modes (teZCL_AddressMode)
	35.1.2 Broadcast Modes (ZPS_teAplAfBroadcastMode)
	35.1.3 Attribute Types (teZCL_ZCLAttributeType)
	35.1.4 Command Status (teZCL_CommandStatus)
	35.1.5 Report Attribute Status (teZCL_ReportAttributeStatus)
	35.1.6 Security Level (teZCL_ZCLSendSecurity)

	35.2 General Return Codes (ZCL Status)
	35.3 ZCL Event Enumerations

	Part IV: Appendices
	A. Mutex Callbacks
	B. Attribute Reporting
	B.1 Automatic Attribute Reporting
	B.2 Configuring Attribute Reporting
	B.2.1 Compile-time Options
	B.2.2 ‘Attribute Report Configuration’ Commands

	B.3 Sending Attribute Reports
	B.4 Receiving Attribute Reports
	B.5 Querying Attribute Reporting Configuration
	B.6 Storing an Attribute Reporting Configuration
	B.6.1 Persisting an Attribute Reporting Configuration
	B.6.2 Formatting an Attribute Reporting Configuration Record

	B.7 Profile Initialisation of Attribute Reporting

	C. Extended Attribute Discovery
	C.1 Compile-time Options
	C.2 Application Coding

	D. JN516x Bootloader
	E. OTA Extension for Dual-Processor Nodes
	E.1 Application Upgrades for Different Target Processors
	E.2 Application Upgrade Scenarios
	E.2.1 Loading Image into JN516x in OTA Server Node
	E.2.2 Distributing Image to JN516x in OTA Client Node(s)
	E.2.3 Distributing Image to Co-processor in OTA Client Node(s)

	E.3 Storing Upgrade Images in Co-processor Storage on Server
	E.4 Use of Image Indices
	E.5 Multiple OTA Download Files
	E.5.1 Multiple Independent OTA Files
	E.5.2 Multiple Dependent OTA Files

	F. EZ-mode Commissioning Actions and Terminology
	G. Example Code Fragments
	G.1 Code Fragment for Flash Memory Access

	H. Glossary

