h -

L |

I.MX50 System
Development Guide

Supports
i.MX50

IMX50SDG
Rev. 0
7/2011

freesggdu!gm

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 169 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 35437 9125

support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 010 5879 8000

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

+1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARM Cortex A8 is the trademark of ARM
Limited.

© 2011 Freescale Semiconductor, Inc.

B POWERED

ARM
Document Number: IMX50SDG freescalewI

Rev. 0, 7/2011 semiconductor

Paragraph
Number

11
12

21
22

31
3.2
3.3
3.4
35

41
4.2

5.1

Contents

Page
Title Number
YN 0 (0 (1= o (o < Xiii
OFQANIZBLION.......c.e ettt ettt st e e se e es e b et es e e e bees e ee et eee e e ennennas Xiii
B SOt @l T O OO ..ot e e e e et ee e e ne e e ne e neeeneeenenn e Xiv
SUQGGESLE FEAAING ... ettt et ee ettt e e s e b e e Xiv
(€1 al= 1= 101K 0007 110 T TrUT O Xiv
Related AOCUMENTALIONeeeeeeeeeeeeeeeeeeeeee et e e e e ee e e e e e e e eees Xiv
(000]01Y/< 81010] I UTUTTTT T Xiv
SIGNAl CONVENTIONS.......eeiiieieeeiie ettt st ee et eb et es e e e e nn e sr s enen XV
Acronyms and abBreVialionsoooeieiiiei e XV

Chapter 1

Design Checklist

DESIGN CRECKITSE ...ttt sr e see e e nne s 1-1
Supplemental tableS and fIQUIEScceiiee e e e 1-5

Chapter 2

Configuring JTAG Tools for Debugging

Accessing debug with a JTAG scan chain (ARM tOOIS).......ccueiivriiieeneeie e 2-1
Accessing debug with a JTAG scan chain (other JTAG t0O0IS)ocvecverveiesieseericseeees 2-4

Chapter 3

Avoiding Board Bring-Up Problems

Using avoltage report to avoid power pitfallS........cccovvioeieeiiniec e 31
Using acurrent monitor to avoid power pitfallS.........oocoveviiieniiccn e 3-2
Checking for clock Pitfalls.........cooiiiiiiee e 3-2
AVOIdING reSet PItFallS......c.cceiiieeiee e 3-3
Sample board bring-up ChECKIIStccoeiee e 3-3

Chapter 4

Using the Clock Connectivity Table

EXTEINGI ClOCK SOUICES ...ttt et ee et e e e e e e eeeeeeeeneeemeeemeennennns 4-1
INEEINEAl ClOCK SOUICES ... e e e e e e e e e e ee e e e e eeeeeeeeeeeeeemeeeeennns 4-1

Chapter 5

About the IOMUX Tool

FOMUX : WG IS 17 oottt e e e e e e et et e e e e e e e e e e eeaes 51

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor iii

Contents

Paragraph Page
Number Title Number
52 How the IOMUX tool helps application deSignccceveienieeienciesee e 5-1
521 Assigning signals and resolving CONFlICES.......cc.uoiieiineiie s 5-1
522 DOCUMENEALION FEAIUINES........ee ittt ne e e ae s e e see e e enneas 5-2
523 AddItioNal FEALUIES.........oieeeeeeeee et sr e e ne e e enne s 5-2
5.3 Obtaining the IOMUX t00Ic.uoiieiiieeeee e sree e 5-2

Chapter 6

Setting up Power Management

6.1 1.IM X 50 POWES FEQUITEIMIENL.c.eeieiieeiieieene st s se e ee et sr e sr e ene e es e e e 6-1
6.1.1 Voltage rail and current requirement for i.MX50ccovreiiiineninesee e 6-1
6.1.2 Power-up sequence requirement for i.MX50........ccooiiiiriiinc e 6-2
6.2 MC34708 output CaPaAITITIES.eeveieeeieeee et e e 6-2
6.2.1 Voltage rail and current Capabilities............ccoiiiriieiiice s 6-2
6.2.2 Default power-up sequence of MC34708 customized for i.MX50ccccvvveiiiennnn. 6-3
6.2.3 POWEr-UP VOITAGE FAI1 ...t e s 6-4
6.3 .M X50 iNterfaceSto MC34708.........oce ettt srae s e e e enes 6-6
6.3.1 SPI interface between i.MX50 and MC34708..........cccccoeriririrenereeeeee e 6-6
6.3.2 Power rail interface between i.MX50 and MC34708..........ccoooeerereninenineeeeene, 6-7
6.3.3 Extra3.15V DCDC POWET SUPPIY ...eueeueieeiieiieeeiie st et se e snes e sees e sne e 6-8
6.4 RTBOLL/A TEALUIESeeeeeeeee ettt et sttt eeseeeseesae e e e neenseesaeeneeneens 6-8
6.5 Additional device iINfFOrMatioNooeiiieee e e e 6-8

Chapter 7

Interfacing DDR Memories with the i.MX50 Processor

7.1 (@7 VT S SSP 7-1
7.2 Connection between i.MX50 and DDR MEMOIIESc.ccereeieeierieeieeseeseeie e seesseeseenne 7-2
7.3 Configuring the DDR JTAG SCHPEccvviieeieieeieiie ettt 7-5
731 Script file for LPDDR2 (266M)........couuiiiieiieieeie ettt 7-5
7.3.2 SCript file for DDR2 (266M)ccueieeiieeeie ettt 7-11

Chapter 8

Layout Recommendation
8.1 BasiC design reCoOmMMENELIONS..........coeieeieeie e seee e reese e sees s e e e e e eneesseesaeeneesneas 8-1
8.2 DDR2 FOULING FUIES......vieeeeieie ettt stee sttt es e esee st e see s e e e ente s sseeseesneenneenseeneeneen 8-6
8.3 ESD and radiated emissions reCoOMMmMENEaLiONS............eeerieirreeiereeie e 8-7
i.MX50 System Development User’s Guide, Rev. 0

iv Freescale Semiconductor

Contents

Paragraph Page
Number Title Number
Chapter 9
Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board
9.1 Obtaining the source code for the U-BOOtcccuiiieriire e 9-1
9.2 Preparing the COUE ..o e 9-1
9.3 Customizing the i.MX50 custom board COdeccoririiirieeieee e, 9-2
931 Changing DRAM valuesfor i.MX50 with LP-DDR2 initialization...............cccceee.... 9-3
932 Booting with the modified U-BOOLcccueiiiiiirie e 9-3
9.33 Further customization at SyStemM DOOLc.ceiiiieiie e 9-3
934 Customizing the printed board NaMe...........cccoiii i 9-4
Chapter 10
Porting the Android Kernel
10.1 Patching the ANdroid KErnEl ... 10-1
10.2 Configuring Android release for customized platforms.........cccooeeevinevencecinneciecene 10-1
10.2.1 Enabling and disabling default rESOUICEScceiieiiieee e 10-2
10.2.2 Changing the configuration fil............oo i e 10-3
10.2.3 ANAroid'S MEMOTY MEP ...c.veieiie ettt ettt eb e se et e sre e sne e 10-3
10.3 INItIAlIZING ANAIOI....... et sr e 10-4
104 Modifying the init.rc partition [OCatIONS............ceoeiiririne e 10-5
10.5 Android enhancements to the Linux Kernel ... 10-5
Chapter 11
Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board
111 SUPPOITED COMPONENES......c.eeeeuteseeie et etee e e se e se et sr e ee e se e s ere et ene e e enee s 11-1
11.2 Customizing OBDS for speCifiC hardWarecoe i 11-2
1121 UART (Serial POIt) TESE ..ottt s 11-2
11.2.2 D o (= TSP RURURPRRRN 11-2
11.2.3 N E o [0 (= SRS 11-3
11.24 LCD diSPlay tESE ...ttt sttt e e e 11-3
11.25 E-INK diSPlay tESE ...t e e e 11-3
11.2.6 J2C LESE covvvvnne et 11-3
11.2.7 S DY Y O (= TSRS 11-4
11.2.8 S O == USRS 11-4
11.2.9 Ethernet (FEC) 100phaCK TESL.........ocviieieee e 11-4
11.2.10 S I AN (O 1= TS 11-4
11.2.11 NAND Flash deViCe ID tES.......coiiiieeeeiee et e e e 11-5

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor '

Contents

Paragraph Page
Number Title Number
Chapter 12
Configuring the IOMUX Controller (IOMUXC)

121 Information for setting IOMUX controller registers ... 12-1
122 Setting up the IOMUXC iN U-BOOL.........oiiiiiieeieecie e e 12-2
1221 DEfiNING tNE PAAS........eee et e e ene e 12-2
1222 Configuring IOMUX pinsfor initiaization funCtionccccceeeviieninie e 12-3
1223 Example—seatting @ GPIO ... 12-3
12.3 Setting Up the TOMUXC N LINUX .eoiviiiieirieiieeeee e s e e 12-4
1231 IOMUX configuration definitioN............cc.oiieieiiie e 12-4
12.3.2 MaCHINE LAYEN Tl . e 12-5
12.3.3 Example—seatting @ GPIO ..o 12-5
Chapter 13
Registering a New UART Driver
131 Configuring UART pads 0N ITOMUX ..ot 13-1
13.2 Enabling UART on Kernel MenUCONTIQc.ooireierere et 13-2
133 TeSHNG tNEUART ... bbb sr e ene e 13-2
134 File NameS and I0CELIONS..........ccuiieieeeie et 13-2
Chapter 14
Adding Support for the i.MX50 ESDHC
141 Including support for SDL/SD2/SD3/SDA........cccouiiiiiiine et 14-1
1411 Creating platform device structures for the SD interfaces..........cccovvveeveneienenenns 14-1
14.1.2 Configuring PiNSfor SD fUNCHIONcouiiiriie e e 14-2
14.1.3 Creating the platform data SITUCLUIEcoeiueieire e 14-2
1414 SEtting UP Card AELECLION.oouieeceiee et s 14-4
14.2 Additional reference iNfOrMEaLIoN............coceeirieieiiree e e 14-5
1421 ESDHC iNterface fEAUIES.........cccouiieee ettt 14-5
14.2.2 ESDHC operation modes supported by the i.MX50..........ccceoeriiininininecireeees 14-6
14.2.3 INEEITACE |AYOULS.......ceiie ettt s 14-7
Chapter 15
Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver
151 SOUNCE COUE SEIUCLUIE.........cueiecete sttt ettt se e et sn et sn e sr et s e 15-1
15.2 CoNfIQUIatioN OPLIONSceeuiieiie ettt ettt et sr e eb e nn s 15-1
153 Selecting SPI NOR 0N the LiNUX IMa0E.......ccueiireeieieerie e 15-2
154 Changing the SPI interface ConfiguIration............cooeierireeinieeie e 15-3
i.MX50 System Development User’s Guide, Rev. 0
vi Freescale Semiconductor

Paragraph
Number

154.1
154.2
154.3
154.4
155
15.6

16.1
16.2
16.3
16.3.1
16.3.2
164
164.1
16.4.2
16.4.3
16.4.4

171
17.2
17.3
174
175
1751
17.5.2

18.1
18.2

18.3

Contents

Page
Title Number
Connecting SPI NOR Fash to another CSPI interface..........ccccoovveeveieciccccceieene 15-3
Changing the CSPI INTEITACE. ..o e 15-3
Changing the Chip SEIECT ..o e 15-4
Changing the external SIgNalS.........cc.ooeeiire e 15-4
HarAWare OPEIELION.cueieiie ettt sr e eb e 15-4
SOftWEAIE OPEIBLION ...ttt ettt et r et se et sn e sr et ene e s 15-5

Chapter 16

Supporting the i.MX50 Reference Board LCD

Supported display INLEITACES.cceereiee e e 16-1
Adding support for an LCD Pan@lcoeeeeeie e 16-1
Modifying boot kernel parameters to support anew LCDccccoeeeveeveeeieeneeie e 16-3
Setting the video Kernel parameterooeveevieienceee e 16-3
Modifying the bits per piXel SEINGcccveereee e e 16-4
Adding SUPPOIt fOr @NEW LCDcc.ooiiiee et s 16-5
Adding adisplay entry inthe [tib Catalog.........cvorvereeerie e 16-5
Creating the LCD panel file (initialization, reset, power settings, backlight) 16-5
Adding the compilation flag for the new displaycccoveererieerceciese e 16-7
Configuring LCD timings and the display interface..........c.ccocvevevnvinceiece e 16-7

Chapter 17

Setting Up the Keypad Port (KPP)

Configuring keypad pinS oN IOMUXccooiiiiiiieieseee et 17-1
Creating & CUSLOM KEYMIBP........cceiieiieeieee sttt s sreesee e enneenee s 17-2
Configuring the pads with the machine layer file..........ccov oo 17-2
ENabling the KEYPAD...........couiiie ettt e s e 17-3
Testing the KEYPAUooueeeeeeee et e enes 17-3
Using cat to test the KeYpadoceieeeeie e e 17-3
Using Evtest to test the KEYPad........cooveierie e s 17-3

Chapter 18

Porting Audio Drivers to a Custom Board
COMMON POITING TASK.......eeevieseieseeeeesieee ettt st e e sseeseeesee e e e s e enseeseesseeseeeneenneas 18-1
Porting the reference BSP to a custom board (audio codec is the same as in the reference
(0155 o) OSSR 18-2
Porting the reference BSP to a custom board (audio codec is different than the reference

(0155 o) OSSR 18-2

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor vii

Contents

Paragraph Page
Number Title Number
Chapter 19
Porting the Fast Ethernet Controller Driver
191 PN CONFIGUIALTON. ...ttt e ettt n e 19-1
19.2 S0 ol o (=SSR 19-2
19.3 Ethernet CONFIQUIaLioNcoeiiiiiiee et 19-2
Chapter 20
Porting USB Host1 and USB OTG
i.MX50 System Development User’s Guide, Rev. 0
viii Freescale Semiconductor

Figure Page
Number Title Number
1-1 Boot configuration DUS ISOIEHIONc.eiieuiiieie et 1-6
1-2 Boot configuration DUS ISOIEHIONc.eiieiiieie e 1-6
2-1 Example of adding @0eViCe..........cooiiiiee e 2-2
2-2 Updating the CoreSight base address............oooeiiiieii e 2-3
2-3 .M X/Cortex-A8 RVDS JTAG SCaN CAINcoeiiiirieiie e 2-4
6-1 1.IM X 50 POWES-UPD SEQUENICEeeneeuiereerte sttt etee e esteses e essese et see s sbe s ese e e essesran e seennesresaeenenneas 6-2
6-4 POWEI-UD MOTE ...ttt et h et se et en e eb et s et 6-4
6-5 SPIINEEITACEt e e et e et er e e h et 6-6
6-6 POWES T8I TNEEITACE ...t e sn e eb et 6-7
6-7 Ripley DIOCK QIagramc.viiieeee e 6-9
7-1 Interfacing between i.MX50 and LPDDR2 ..o 7-2
7-2 Interfacing between i.MX50 and DDR2..........cooiiiiiiieece e 7-3
7-3 Interfacing between i.MX50 and MDDR.........coooiiiii e 7-4
7-4 Example LPDDR2 CONNECHION.ccutiiiieiiereeie st e sses e e e se e sne e sne e ne e 7-5
8-1 i.MX50 top side view (400 MAPBGA 17 X 17 MM VIEW)coviieiiriiieneenie s 8-1
8-2 1.IM X 50 DOOM SIOE VIBW. ...ttt 8-2
8-3 TIMXE0 SIOB VIBW ...ttt sttt ettt es et ee e et eenee e 8-2
8-4 SLACK-UP EXAIMPIE ...ttt ettt se e et b s nn s 8-3
8-5 SHACK-UPD SEEEING .ttt ettt ee et er e et en e e 8-4
8-6 TOP SIAE TANOUL ...ttt e ettt e e er e bt ene e 8-5
8-7 BOLOM SIAE TANOUL ...ttt 8-5
10-1 Linux kernel configuration MENU............ooeiireierenie e e 10-2
10-2 Android memory map (512 MDYLE SYSIEM)c.eeveieieieiie st 10-4
10-3 LINUX KEIMEL ... e ettt e se e et n e 10-5
10-4 Hardware aDSIraCtion YNcoiiiiiiee e e e 10-6
14-1 Example i.MX50 board SD interface |ayOuL.............cccooiieririeiieeeeee e 14-7
14-2 Second example i.MX50 SD interface [ayOut...........ccoooiiiriiinieeiece e 14-8
15-1 Components of a Flash-based file SyStem.........c.oo e 15-5
16-1 INEEITAICE ... et e e e et e e 16-2

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor ix

Table
Number

1-1
1-2
1-3
3-1
3-2
6-1
6-2
6-3
8-1
8-2
8-3
10-1
12-1
12-2
13-1
13-2
13-3
14-1
14-2
14-3
151
15-2
15-3
16-1
16-2
16-3
16-4
16-5
17-1
18-1
18-2
19-1
19-2

Page

Title Number

DESIGN CRECKITSE ...t et ee et e et sb et en e e e 1-1
DDR Vref resstor SIZing QUIAEITNE.........oeiiiiie e 1-5
JTAG INEEITACE SUMIMEIYeiiiitiieeiiee ettt sttt e se et e b es e e nn s 1-5
Sample voltage report tal€...... ..o e 31
Board bring-up ChECKIISE ..o e e 3-3
Voltage rail and Current reqUITEMENTScuoieuereerieie et 6-1
Voltage rail and current CapabilitiES. ..o e 6-2
MC34708 POWEN-UD SEUENCE.c.ueereeeurearresreesseseesseseeseassessesssesssesseensesssessesssessesseennesssessens 6-3
IMPEAANCE CONEIOL ...ttt et e sn e er e e 8-3
DDR2 routing by the same length.............coooiii e 8-6
DDR2 routing DY DYLE GrOUDcouiiiiieieee et e 8-6
ANAroid ENNBNCEIMENLSco.eiiiieie e e e sr e e enes 10-5
CONFIGUIBLTION TITES ... e e e 12-2
[OMUX coNfiguration FIlES.......cc.eiiieiieee e 12-4
AVAEDIE FIES—FITSE SBL......cceeiece e e 13-2
Available fIllES—SBCONA SEL ..o e e 13-3
Avallable fIlES—third SEL.........ocoieie e s 13-3
SITUCTUIE AESCITPEIONS. ...ttt ettt sttt se e e sr et st ebe e e e 14-3
ESDHC PINS...c ittt ettt ee e e et bt s et en bt en et en e e 14-6
ESDHC OpEration MOUES........cc.coueriiiieieeeeeie sttt sr e e b esse e s 14-7
Parameter VariablES...........oov i e 15-1
DEVICEINTOIMELTON ...ttt er e er et eb e e 15-2
CSPl PAIAIMELENS. ...ttt ettt sr et et s sreesr e e e e e e enneeneenn e 15-3
AVAH DI INTEITACES..... et e e 16-1
TIMING PAIAMELENSot e re e e b bt es et e et e enes 16-2
Parameter INFOIMELON. ..o e e se e e 16-3
VGA LCD example Variables............ooiiiiieeeee e 16-4
REQUITE TUNCLIONS ...ttt et 16-6
Filesfor adding/configuring anew Keypad............ccccoeiirerinieciiece e 17-1
ReqUITEd POWET SUPPIIES. ...ttt ettt se e sr e 18-2
Filesfor Sgtl COUEC SUPPOITccueiiieieeeee e s s 18-2
RIMIT SIGNEIS. ...ttt e bt ne et en et ea et es e 19-1
SOUICE COUE FIIES ...t e e bt se e e 19-2

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor Xi

About This Guide

From the family that introduced the market-leading i.M X508 applications processor for eReaders, the
expanded i.M X50 family is the latest addition to Freescale’s® Cortex™-A8 product portfolio. The

.M X502, .M X503 and i.M X507 derivatives can be targeted towards avariety of portable applications and
offerssupport for Electronic Paper Display (EPD) inadditionto LCD. Along with its companion Freescale
MC34708 power management 1C, the i.MX50 family deliversa low-power, streamlined solution for
customers seeking Cortex-A8 performance levels with flexible design features

This product is suitable for applications such as:
* eReaders
» Portable navigation devices
* Outdoor signage
» Patient/client monitoring
* Home and office automation

Freescale provides the i.MX50 board support package (BSP) and thei.MX50 EVK Board that facilitate
the rapid design-in of the i.MX50 applications processor. These tools allow the rapid prototyping of new
products prior to commitment to production-level designs. Once you have determined the precise features,
function, and physical parameters of your product, this document will guide you in the use of these
prototyping tools for the design, layout, and bring-up of your design.

Along with tipson designing your custom circuit board, thisguide helpsyou customize Freescal e provided
software utilizing the devel opment tools provided in the BSP. This guide assumes that you have access to
generally available software tools aswell as Freescale’s Linux Target Image Builder (LTIB).

Audience

Thisdocument istargeted to software and hardware engineerswho desire to port thei.M X 50 board support
package (BSP) to customer-specific products. The audience is expected to have a working understanding
of the ARM processor programming model, the C programming language, tools such as compilers and
assemblers, and program build tools such as MAKE. Familiarity with the use of commonly available
hardware test and debug tools such as oscilloscopes and logic analyzersis assumed. An understanding of
the architecture of the i.MX50 application processor is also assumed.

Organization

This guide is a compendium of application notes organized in two parts. The first part covers aspects of
hardware design and bring-up, and the second focuses on software development.

Part |, “Hardware Design and Bring-up” coverstopicsthat aid you in the design of acustom printed circuit
board design utilizing the i.M X50.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor xiii

About This Guide

Part 11, “ Software Development” aids you in software development for your product. The first four
chapters are organized in the way a developer might approach the task of porting Freescale's BSP to
support their target product board. The remaining chapters deal with porting selected integrated 1/0
devices.

Essential reference

You should have access to an el ectronic copy of the latest version of the i.MX50 Multimedia Applications
Processor Reference Manual (MX50RM).

Suggested reading

This section listsadditional reading that provides background for the information in this manual aswell as
genera information about the architecture.

General information
The following documentation provides useful information about the ARM processor architecture and
computer architecture in general:

» For information about the ARM Cortex-A8 processor see
http://www.arm.com/products/processors/cortex-a/cortex-a3.php

» Computer Architecture: A Quantitative Approach, Fourth Edition, by John L. Hennessy and
David A. Patterson

» Computer Organization and Design: The Hardware/Software Interface, Second Edition, by
David A. Patterson and John L. Hennessy

Related documentation

Freescal e documentation is available from the sources listed on the back cover of this manual; the
document order numbers are included in parentheses for ease in ordering:

Additional literature is published as new Freescale products become available. For a current list of
documentation, refer to www.freescale.com.

Conventions

This document uses the following notational conventions:

Couri er Used to indicate commands, command parameters, code examples, and file and
directory names.

Italics Italics indicates command or function parameters

Bold Function names are written in bold.

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of
one, it issaid to be set.

mnemonics Instruction mnemonics are shown in lowercase bold

i.MX50 System Development Guide, Rev. 0

Xiv Freescale Semiconductor

sig_name
0x0

Ob0

rA,rB

rb
REG[FIELD]

About This Guide

Book titlesin text are set initalics

Internal signals are written in all lowercase

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR
Instruction syntax used to identify a destination GPR

Abbreviations for registers are shown in uppercase text. Specific bits, fields, or
ranges appear in brackets. For example, MSR[LE] refersto thelittle-endian mode
enable bit in the machine state register.

In some contexts, such as signal encodings, an unitalicized x indicates adon’t
care.

Anitalicized x indicates an alphanumeric variable
Anitalicized n indicates anumeric variable

NOTE

In this guide, notation for all logical, bit-wise, arithmetic, comparison, and
assignment operations follow C Language conventions.

Signal conventions

PWR ON_RESET

b, B
signal_name

An overbar indicates that asignal is active when low
Alternate notation indicating an active-low signal
Lowercaseitalicsis used to indicate internal signals

Acronyms and abbreviations

The following table defines the acronyms and abbreviations used in this document.

Definitions and acronyms

Term Definition
Address Address conversion from virtual domain to physical domain
Translation
API Application Programming Interface
ARM® Advanced RISC Machines processor architecture
AUDMUX Digital audio multiplexer—provides a programmable interconnection for voice, audio, and synchronous data
routing between host serial interfaces and peripheral serial interfaces.
BCD Binary Coded Decimal
Bus A path between several devices through data lines.
Bus load The percentage of time a bus is busy.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor XV

About This Guide

Definitions and acronyms (continued)

Term Definition
CODEC Coder/decoder or compression/decompression algorithm—Used to encode and decode (or compress and
decompress) various types of data.

CPU Central Processing Unit—generic term used to describe a processing core.

CRC Cyclic Redundancy Check—ABit error protection method for data communication.

(O] Camera Sensor Interface
DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers.
DRAM Dynamic Random Access Memory
EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program) from all
the masters in the system.
Endian Refers to byte ordering of data in memory. Little Endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In Big Endian, the order of the bytes is reversed.

EPD Electronic Paper Display

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention.

ePXP Enhanced Pixel Pipeline

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards published by
the National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards or solutions.

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard 140-2(FIPS
140-2) is a standard that describes US Federal government requirements that IT products should meet for
Sensitive, But Unclassified (SBU) use.

Flash A non-volatile storage device similar to EEPROM, but where erasing can only be done in blocks of the entire
chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application.

Flush A procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command.

GPIO General Purpose Input/Output

Hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and
is generated by a formula in such a way that it is extremely unlikely that some other text will produce the
same hash value.

1/0 Input/Output
ICE In-Circuit Emulation
IP Intellectual Property.

i.MX50 System Development Guide, Rev. 0

XVi

Freescale Semiconductor

About This Guide

Definitions and acronyms (continued)

Term Definition
IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted specifications
for infrared wireless communication.
ISR Interrupt Service Routine.
JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant
devices on a printed circuit board.
Kill Abort a memory access.
KPP KeyPad Port—a 16-bit peripheral that can be used as a keypad matrix interface or as general purpose
input/output (1/0).
line Refers to a unit of information in the cache that is associated with a tag.
LRU Least Recently Used—a policy for line replacement in the cache.
MMU Memory Management Unit—a component responsible for memory protection and address translation.
MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video compression

and audio. It is also the name of the algorithms used to compress moving pictures and video.

MPEG standards

There are several standards of compression for moving pictures and video.

MPEG-1 is optimized for CD-ROM and is the basis for MP3.

MPEG-2 is defined for broadcast quality video in applications such as digital television set-top boxes and
DVD.

MPEG-3 was merged into MPEG-2.

MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web.

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals.
MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other being NOR)
used in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offer faster erase, write,
and read capabilities over NOR architecture.

NOR Flash See NAND Flash.

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that has

developed a standard for small, credit card-sized devices, called PC Cards. There are three types of
PCMCIA cards that have the same rectangular size (85.6 by 54 millimeters), but different widths.

Physical address

The address by which the memory in the system is physically accessed.

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant phase
angle (a lock) on the frequency of an input, or reference, signal.
RAM Random Access Memory
RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application
RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined in

various ways to create other colors. The abbreviation RGB come from the three primary colors in additive
light models.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor Xvii

About This Guide

Definitions and acronyms (continued)

Term Definition

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and
is unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color you place,
the lighter the picture gets. PNG is the best known image format that uses the RGBA color space.

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit pseudo random
numbers as part of the security module.

ROM Read Only Memory

ROM bootstrap

Internal boot code encompassing the main boot flow as well as exception vectors.

RTIC Real-time integrity checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking mechanism.

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting
low-/medium-bandwidth external devices using four wires. SPI devices communicate using a master/slave
relationship over two data lines and two control lines: Also see SS, SCLK, MISO, and MOSI.

SRAM Static Random Access Memory
SSI Synchronous-Serial Interface—standardized interface for serial data transfer
TBD To Be Determined
UART Universal Asynchronous Receiver/Transmitter—this module provides asynchronous serial communication
to external devices.

uiD Unique ID-a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12Mb/s and USB 2.0 has a maximum transfer rate of
480 Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems,
and keyboards. USB also supports Plug-and-Play installation and hot plugging.

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC.

Word A group of bits comprising 32 bits

i.MX50 System Development Guide, Rev. 0

Xviii

Freescale Semiconductor

Part |
Hardware Design and Bring-up

The chapters that follow cover topics that aid you in the hardware design, bring-up, and debug of your
custom printed circuit board utilizing the i.M X50.

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor

Chapter 1
Design Checklist

1.1 Design checklist

This chapter provides a design checklist for i.MX50-based systems. The design checklist contains

recommendationsfor optimal design. Where appropriate, the checklist a so provides an explanation so that
users have a greater understanding of why certain techniques are recommended. All supplemental tables
referenced by the checklist appear in Section 1.2, “ Supplemental tables and figures,” following the design

checklist table.

Table 1-1. Design checklist

Recommendation

Explanation/supplemental recommendations

DDR Recommendations

1. Tie DDR_VREF to a precision external resistor
divider with a resistor to GND and a resistor to
NVCC_EMI_DRAM.

Note: For mDDR, leave this pin floating.

When using DDR, the nominal reference voltage must be half of the
NVCC_EMI_DRAM supply. The resistors be sized to account for the
i.MX50 DDR_VREF input current plus memory input current. This
current drawn from the divider affects the reference voltage. See Table
1-2.

Also consider:

e Shunting each resistor with a closely-mounted capacitor. The
decouple cap connected in parallel the resistor connected to
NVCC_EMI_DRAM may be required. This depends on the layout and
the additional supply.

» Bypassing Vref at source and destinations.

2. Use the following values for the
DRAM_CALIBRATION input:

e For DDR2, connect 240 Q 1% to GND.

e For LPDDR1, connect 300 Q 1% to GND.

The DRAM_CALIBRATION input requires an external resistor used as
reference during DRAM output buffer driver calibration. This resistor
must be mounted close to the associated BGA ball.

EIM Recommendations

3. When EIM boot signals are used as the system’s
EIM signals or GPIO outputs after boot, use a passive
resistor network to select the desired boot mode for
development boards.

Because only resistors are used, EIM bus loads can cause current drain,
leading to higher (false) supply current measurements. Each EIM boot
signal should connect to a series resistor to isolate the bus from the
resistors and/or switchers. See Figure 1-1 and Figure 1-2 for the
implementation. Each configured EIM boot signal sees either a 14.7 kQ
pull-down or a 4.7 kQ pull-up. For each switch-enabled pulled-up signal,
the supply is presented with a 10 kQ current load.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

1-1

Design Checklist

Table 1-1. Design checklist (continued)

Recommendation

Explanation/supplemental recommendations

4. To reduce incorrect boot-up mode selections, do

one of the following:

* Use EIM boot interface lines as processor outputs.

* If an EIM boot signal must be configured as an
input, isolate the EIM signal from the target driving
source with one analog switch and apply the logic
value with a second analog switch. Alternately,
peripheral devices with tri-state outputs may be
used. Ensure the output is high-impedance during
the boot up interval.

Using EIM boot interface lines as inputs may result in a wrong boot up
due to the source overcoming the pull resistor value. A peripheral device
may require the EIM signal to have an external or on-chip resistor to
minimize signal floating. If the usage of the EIM boot signal affects the
peripheral device, an analog switch, open collector buffer, or equivalent
should isolate the path. A pull-up or pull-down resistor at the peripheral
device may be required to maintain the desired logic level. Review the
switch or device data sheet for operating specifications.

5. Ensure EIM boot interface lines used as outputs
are not loaded down such that the level is interpreted
as low during power up, when the intent is to be a high
level, or vice versa.

I2C Recommendations

6. Verify the target I°C interface clock rates.

Remember the bus can only operate as fast as the slowest peripheral on
the bus.

7. Verify the target I°C address range is supported
and not conflicting with other peripherals. If there is an
unavoidable address conflict, move the offending
device to another I2C port.

The i.MX50 supports up to three 12C ports. If it is undesirable to move a
conflicting device to another I12C port, review the peripheral operation to
see if it supports re-mapping the addresses.

8. Do not place more than one set of pull-up resistors
on the I2C lines.

This can result in excessive loading. Good design practice is to place a
pair of pull-ups only on the schematic page that has the i.MX50 symbol.
Do not place pull-ups on the pages with the I12C peripherals.

JTAG Recommendations

9. Do not use external pull-up or pull-down resistors
on JTAG_TDO.

JTAG_TDO is configured with an on-chip keeper circuit An external pull
resistor on JTAG_TDO is detrimental.
See Table 1-3 for a summary of the JTAG interface.

10. Ensure that the on-chip pull-up/down
configuration is followed If external resistors are used
with non-JTAG_TDO signals. For example, do not use
an external pull-down on an input that has on-chip

pull-up.

External resistors can be used with non-JTAG_TDO signals, but they do
not need to be used.
See Table 1-3 for a summary of the JTAG interface.

Clock Amplifier (CAMP) Recommendations

11. After initialization, disable unused clock amplifiers
(CAMPs) within the CCM registers
(CCM_CCR[CAMPx_EN]).

CKIH1 and CKIH2 are inputs feeding CAMPs that have on-chip AC
coupling, eliminating the need for external coupling capacitors. The
CAMPs are enabled by default; however, the main clocks feeding the
on-chip clock tree are sourced from XTAL/EXTAL upon power up. Using
low jitter external oscillators to feed CKIH1 or CKIH2 is not required, but
it can be advantageous if low jitter or special frequency clock sources are
required by modules driven by CKIH1 or CKIH2.

See the CCM chapter in the i.MX50 reference manual for details about
the respective clock trees.

12. Tie CKIH1/CKIH2 to GND if they are unused.

If disabled, the on-chip CAMP output is low.

i.MX50 System Development Guide, Rev. 0

1-2

Freescale Semiconductor

Design Checklist

Table 1-1. Design checklist (continued)

Recommendation

Explanation/supplemental recommendations

Miscellaneous Signal Recommendations

14. Float TEST_MODE or tie it to GND.

TEST_MODE is for Freescale factory use only. This signal is internally
connected to an on-chip pull-down device.

15. Float the USB_H1_GPANAIO and
USB_OTG_GPANAIO outputs.

USB_H1_GPANAIO and USB_OTG_GPANAIO are reserved for
Freescale manufacturing use.

16. For Ethernet access, the MAC address may be
stored in the processor’'s eFuse/OTP bank 4.

USB Recommendations

17. USB_H1_RREFEXT and USB_OTG_RREFEXT
require a separate external 6.04 kQ 1% resistors to
GND.

USB_H1_RREFEXT and USB_OTG_RREFEXT determine reference
currents for USB PHY band gap references that generate driver current.
RREFEXT values are critical as they affect most of transmitter
parameters.

Additional recommendations for resistor connection are as follows:

* The connection must be made through a short trace.

* The resistance of the connection line should be as low as possible
(<1).

* Both of the RREFEXT resistors and connections should be placed
away from noisy regions; Freescale recommends 2x to 3x adjacent
keep out and GND plane immediately below the trace to reduce
coupling.

18. Do not connect the VBUS contacts on the
processor directly to the VBUS contact on the
associated USB connector.

The user must employ a series 47 Q resistor followed with a 1 uF
capacitor mounted directly at the processor VBUS BGA ball. In addition,
external ESD (electrostatic discharge) and EOS (electrical overstress)
protection is required at the VBUS BGA ball.

19. USB I/O D+, D—, and UID contacts on the i.MX
device require external ESD (electro-static discharge)
damage protection.

Only use a special ESD diode designed for high-speed signals.

Power Recommendations

20. Comply with the power-up and power-down
sequence guidelines as described in the data sheet to
guarantee reliable operation of the device.

Any deviation from these sequences may result in the following
situations:

» Excessive current during power-up phase

* Prevention of the device from booting

* Irreversible damage to the i.MX50 processor (worst-case scenario)

21. To configure CKIL and ECKIL as an oscillator, tie
a 32.768 kHz crystal with <50 kQ ESR (equivalent
series resistance) and approximately 9 pF load
between CKIL and ECKIL. Do not use an external
biasing resistor.

The capacitors implemented on either side of the crystal are about twice
the crystal load capacitor. To hit the target oscillation frequency, board
capacitors need to be reduced to compensate for board and chip
parasitic capacitance, so 15-16 pF can be employed.

The integrated oscillation amplifier has an on-chip self-biasing scheme,
but is high-impedance (relatively weak) to minimize power consumption.
Care must be taken to limit parasitic leakage from CKIL and ECKIL to
either power or ground (> 20 M) as this negatively affects the amplifier
bias and causes a reduction of startup margin.

Use short traces between the crystal and the processor, with a ground
plane under the crystal, load capacitors, and associated traces. Typically

CKIL and ECKIL should bias to approximately 0.5 V

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

1-3

Design Checklist

Table 1-1. Design checklist (continued)

Recommendation

Explanation/supplemental recommendations

22. If feeding an external clock into the device, ECKIL
can be driven DC-coupled with CKIL floated.

The logic high level driven into CKIL should be approximately
NVCC_SRTC. Do not exceed NVCC_SRTC_POW or damage or
malfunction may occur. The CKIL signal should not be driven if the
NVCC_SRTC_POW supply is off. This can lead to damage or
malfunction. Driving ECKIL is allowed but is not optimal because ECKIL
is the output of the on-chip amplifier.

23. Place a 24 MHz fundamental-mode crystal
across XTAL/EXTAL. The crystal must be rated for a
maximum drive level of 100 uW or higher. An ESR of
80 Q or less is recommended. Freescale board
support package (BSP) software requires 24 MHz on
EXTAL.

If an external oscillator is available, the crystal can be eliminated. In this
case, EXTAL must be directly driven by the external oscillator and XTAL
is floated. The EXTAL signal level must swing from NVCC_SRTC to
GNBD. If the clock is used for USB, there are strict jitter requirements: <
50 ps peak-to-peak below 1.2 MHz and < 100 ps peak-to-peak above 1.2
MHz for the USB PHY. The COSC_EN bit in the CCM (clock control
module) must be cleared to put the on-chip oscillator circuit in bypass
mode, which allows EXTAL to be externally driven. COSC_EN is bit 12
in the CCR register of the CCM.

Res

et Recommendations

24. A reset switch may be wired to the i.MX50
POR_B, which is a cold-reset negative-logic input that
resets all modules and logic in the IC.

The POR_B input must be asserted at power-up and remain asserted
until after the last power rail is at its working voltage.

25. Typically, RESET_IN_B is wired to the JTAG reset
signal. Alternately, connect POR_B to JTAG reset. In
this case assertion of JTAG reset reboots the
processor.

RESET_IN_B is a warm reset negative logic input that resets all modules

and logic except for the following:

* Test logic (JTAG, IOMUXC, DAP)

* SRTC

* Memory repair—Configuration of memory repair per fuse settings

* Cold reset logic of WDOG—Some WDOG logic is only reset by
POR_B. See the WDOG chapter in the i.MX50 reference manual for
details.

1.2 Supplemental tables an

d figures

Table 1-2. DDR Vref resistor sizing guideline

Number of DRAM packages with 2 pA Vref input current Resistor divider value (2 resistors)
LPDDR2 1.0 kQ 1%
DDR2 (2 pcs) 1.21kQ 1%
DDR2 (4 pcs) 768 Q1%
mDDR Float
i.MX50 System Development Guide, Rev. 0
1-4 Freescale Semiconductor

Table 1-3. JTAG interface summary

Design Checklist

. . On-Chip termination I
JTAG signal i.MX50 I/O type External termination
9 yp to NVCC_JTAG or GND
JTAG_TCK Input 100 kQ pull down Not required
Can use 10 kQ pull up
JTAG_TMS Input 47 kQ pull up Not required
Can use 10 kQ pull up
JTAG_TDI Input 47 kQ pull up Not required
Can use 10 kQ pull up
JTAG_TDO State output Keeper Do not use pull up
JTAG_TRSTB Input 47 kQ pull up Not required
Can use 10 kQ pull up
JTAG_MOD Input 100 kQ pull down Required
Use 0 to 6.8 kQ2 pull down
IS SNAA 1NE_SWE
135 Ri36
K 1K
o ||t k|- = [o o | = | e o |ealet f— |2 ! | = BOOT_MODEN (pa10)
o e cud o = o ool = it =] == BOOT_MODE! (pgiD)
| .- . G | - - . S .- . . S5 Stt_DIP-2r5hd
dHaHa g | == HHERHE G | == [RHRH T | oms
Rl bl e il ' | o =) —le el == —e= o (e s |1
oD
GG Ok Fda? 4.7 BT1_CFGO
o v TE s
R4~ 10K aqﬁ’y’\\/\’\ﬁ:? BTI_CF iG]
N e
R153% 0K B3 3
e N L
AL i Fickitiy, a7
R154° 0 RG5> “4.7K BT CFGO
RAG1® i RA287 . “47K__ BTZ CFG1
R163° il Rk d 4.7 BTZ CFGZ
RS 0K RAOS A7K_ B2 CFG
LTI Rl BT o
Ri7z 10 RA03 . AT BTZ LRG0
R174. o Rdd, 4.7 BTZ CFGY
RI77E 1] BT3 CFGO R17E 4.7 EM_C52 (paly
L e 1 Sacs et
Rig4 0 BT3_CFGI Righg a7 Em—%%% gg}}'}?m
A i BT:_CFGd R127, 4.7 > El_ EB1 111317
R18a° 10 BT CFGE R140 17 S pglLis,17)
R181° 10 T3 CFG6 RIGZT. 4T EM_WAT - (pg1LIT
LW EIM_BCLE pa11,17)
R193 i T3 _CFG7 Rmigd, a7 CCEM_RDT (pgi1)

o

=
=1

Figure 1-1. Boot configuration bus isolation

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

PR 4

Design Checklist

Les
WEE
BT1_CFG0 2
BT]_CFG al v
BTl CFG2 B
BTl CFGa 14 1
e o IR B L
BT1_CFG4 11
Al IV
BTl CFG5
BT1_CFGG 151 e Il
ALK T 1 e
s 1 I
10E
I0E
10
_[C LGN
= TALTIA4AF

A5 SuHA

50

:g EM_0A0

Ie R DA
Ehd Dii
EM_DAG

4 Ehd_Did

! EM DA
EMD6
b D7

(pg10 17,23

BTz CFGO
BT: CFGI
BT: CFGZ
BT: CFG3

BT: CFG4
BT: CFGS
BT2 CFGE

uzg
YT
2
s LR
e Bl L
143 112
1A 174
2 2w
T R
M3 2V
4 24
T0E
I0E
GHD
FALVTIHRAF

Figure 1-2. Boot configuration bus isolation

i.MX50 System Development Guide, Rev. 0

S5 S

20

}g Elbd_048

I El_ D22
Elhi_ DAID

IhA_D1id 1

g Elhd_ Dz

! IhA_ D1
EI_DA14
Elhi_DAl5

fpall 2,171
fpali 217
(pall,12,17)
ipai1,12,17)
(pgl1.12.17)
fpatl 1217
fpa11 1217
pgi1,17)

Freescale Semiconductor

Configuring JTAG Tools for Debugging

Chapter 2
Configuring JTAG Tools for Debugging

This chapter explains how to configure JTAG toolsfor debugging. The JTAG moduleisastandard JEDEC
debug peripheral. It provides debug access to important hardware blocks, such asthe ARM processor and
the system bus, which can give users access and control over the entire SoC. Because of this, unsecured
JTAG modulesare vulnerable to JTAG manipulation, aknown hacker’s method of executing unauthorized
program code, gaining control over secure applications, and running codein privileged modes. To properly
secure the system, unauthorized JTAG usage must be strictly forbidden.

To prevent JTAG manipul ation while allowing access for manufacturing tests and software debugging, the
i.MX50 processor incorporates a secure JTAG controller for regulating JTAG access. The secure JTAG
controller providesfour different JTAG security modes, which are selected by an e-fuse configuration. For
more information about the security modes, see the “ Security” section in the “ System JTAG Controller
(SIC)” chapter of the i.MX50 reference manual.

NOTE
By default all parts are shipped with security disabled.

The JTAG port must be accessible during platform initial validation bring-up and for software debugging.
It isaccessiblein al development kits from Freescale. Multiple tools are available for accessing the JTAG
port for tests and software debugging. Freescale recommends use of the ARM JTAG tools for
compatibility with the ARM core. However, the JTAG chain described in the following sections should
work for non-ARM JTAG tools. For more information about non-ARM tools, contact the third party tool
vendors for support.

2.1 Accessing debug with a JTAG scan chain (ARM tools)

This section shows how to use the ARM tools to connect to the i.MX50 processor, using a JTAG scan
chain. The example uses the RealView ICE (RVI1) and RVDS ARM tools. RVI provides the hardware
interface between the host PC and the JTAG port on the development kit (see
http://www.arm.com/products/tool /rvi-and-rvt2.php for more information). RVDS is the software
development kit that runs on the host PC. Its primary components consist of the ARM compiler, an Eclipse
based IDE, and the Real View Debugger (for more information, see

http://www.arm.com/products/tool s/software-devel opment-tool s.php).

NOTE

Users must have the latest recommended ARM firmware installed on their RVI box to be able to connect

to the Cortex-A8 on the i.M X50.

Once thelatest firmwareisinstalled, follow these steps to configure the JTAG scan chain on the RV box:
1. Connect RVI to thei.MX50 board using the JTAG ribbon cable.

2. Using the order shown below, configure the scan chain with the following connections: TDI —
Unknown — Unknown — ARMCS-DP — Cortex-A8 (see Figure 2-1).

a) Add Device > Custom Device> UNKNOWN > IR Length=5
b) Add Device> Custom Device > UNKNOWN > IR Length =4

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 2-1

Configuring JTAG Tools for Debugging

c) Add Device > Registered Device > CoreSight > ARMCS-DP
d) Add Device > Registered Device > Cortex > Cortex-A8

[= RVConfig - C:\Documents and Settings\r65652\Application Dat’

File View Help
= Real/iew ICE: [1USE RYIOT13070804)

o Devices ; :
} Registered Devices
e fdwanced O Reg

Device

3

DI] = ARM

#-ARM SecurCore
& ARM10

& ARM11

--.t’-‘n.F!M'I'I UTAG-AP]
& ARM7

7 ARM7 [TAG-2P]
& ARMZ

ICE --AHMS UTAG-AP]
- CoreSight

(%) Custom Device

Dievice Name [UNENDWN v

IF Length i

TDO

+ [0K] [Cancel l [Help l :

[Auto Configure Scan Chain J JTAG Clock Speed [10.000 MHz Add Device. .. Remove Device

Uge ddaptive Clock if detected Mowe Left tove Right

Device Properties .| | Configuration ..

Figure 2-1. Example of adding a device

3. Update the CoreSight base address (see Figure 2-2):
a) Right click on Cortex-A8 Device.
b) Select configuration.
c) Set CoreSight base address to = 0xC0008000.

i.MX50 System Development Guide, Rev. 0

2-2 Freescale Semiconductor

Configuring JTAG Tools for Debugging

“* RV¥Config - C:\Documents and Settings\r65652\Application Data\ARMYrvdebugh3. 1\RVI_1_0.rvc *
Sile Wiew Help

= Riealiew ICE: [USE RYI0113070204)

Device: Cortex-28 using the Cortex-48 template vergion 1:0:0

=8 D,avices
E LINKNN Itemn Yalue
UNENOWH
ARMCS-DP CoreSight &P index 000000001
; Cortex-A8 CoreSight baze address I0:CO003000)
- bdvanced Code Sequences Enabled] TruesFalse
Code Sequence Address 0x0007FFE0
Code Sequence Size [bytes) 000000020
Code Sequence Timeout [mz) 100
Bypags memory protection when in debug True/Falze
Clear breakpoint hardware on connect True/Falze
Urwind wectar when halt on Swi True/Falze
|anare debua privilege enars when starting core [True/False
JTAG timeouts enabled True/Falze

Figure 2-2. Updating the CoreSight base address

4. Savethe configuration.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 2-3

Configuring JTAG Tools for Debugging

After following the recommended steps, the RV DS JTAG scan chain should look like Figure 2-3. Notethis
screenshot shows the resulting scan chain when using ARM RVDS v3.1 tools.

| = RVConfig - C:WProgram Files\iRMWRYDACoret3. TVEB wwin_32-pentiumieteind. rvc l=JICY
Fle Wi Halp |
- Aealiew I_I:E USE 13
- Dewcas
LIMEMCrT — .
LINENDWN -) LINENDWN) UMEMCN ¥ .ﬁhHL,:u-Ll-'I I-l:.-_nlg-emi_
AAMCSOP | |
Carbex-AB
Bydhanced
"
o
£ >
| Bk Conhgure Scan Chain JTAG Clock Speed S.000MHz | w | Bdd Dewacs.. | il'l:mm-:l:h:w:el
#| Uze Adaplive Clack ¥ defecied | Movelefi | | Move Bight | |
;:lz'm:e Frapesti=s | El::n‘:qma:nr.. |
€ *

Figure 2-3. i.MX/Cortex-A8 RVDS JTAG scan chain

After setting up the JTAG scan chain, RV can connect to thei.MX50's core. Thisisthe only required step;
no initialization scripts are necessary.

Once connected, test code can be loaded immediately into the internal RAM space, which starts at
OxF800_0000 (for more details refer to the i.MX50 memory map in the i.MX50 reference manual).
Additionally, ARM provides. bcd filesfor somei.M X products, which can be used with RVDSto provide
enumerated views of registers and/or peripheralson thetarget hardware along with the entire memory map
of the target processor. Available . bed configuration files are located at

http://infocenter.arm com hel p/i ndex.jsp?topi c=/ com arm doc. dui 0182] / Bj efhi gi . ht m

2.2 Accessing debug with a JTAG scan chain (other JTAG tools)

The JTAG scan chain described in Section 2.1, “ Accessing debug with a JTAG scan chain (ARM tools),”
isnot specific to ARM tools. It can be used with any JTAG tool to connect to the i.MX50 processor. The
IR lengths of each component in the JTAG scan chain are provided so that the steps can be repeated when
using adifferent tool.

i.MX50 System Development Guide, Rev. 0

2-4 Freescale Semiconductor

Avoiding Board Bring-Up Problems

Chapter 3
Avoiding Board Bring-Up Problems

This chapter provides recommendations for avoiding typical mistakes when bringing up a board for the
first time. These recommendations consist of basic techniques that have proven useful in the past for
detecting board issues and address the three most typical bring-up pitfalls: power, clocks, and reset. A
sample bring-up checklist is provided at the end of the chapter.

3.1 Using a voltage report to avoid power pitfalls

Using incorrect voltage rails is acommon power pitfall. To help avoid this mistake, create a basic table
called avoltage report prior to bringing up your board. This table helps validate that your supplies are
coming to the expected level.
To create a voltage report, list the following:

* Your board voltage sources

» Default power-up values for the board voltage sources

» Best place on the board to measure the voltage level of each supply
Be careful when determining the best place to measure each supply. Depending on the location you take
your measurement, a large voltage drop (IR drop) on the board may cause you to measure inaccurate
levels.
The following guidelines help prevent this:

* Measure closest to the load (in this case the i.MX50 processor).

* Make two measurements: the first after initial board power-up and the second while running a

heavy use-case that stresses the i.MX50.

The suppliesthat power thei.M X50 should all meet the DC electrical specificationsaslisted in thei.M X50
data sheet.

Table 3-1 shows a sample voltage report table.
Table 3-1. Sample voltage report table

Signal name I\E/;rue:?\el? Actual value (V) Test point Comments
5V_main 5.0 5.06 Pin1 of J5
LI-ON_Battery 4.2 418 Pin3 of J5
DCDC_3V15 3.15 3.14 R326
NVCC_SRTC 1.2 1.19 R73
VCC 1.2 1.19 R94
VDDA 1.2 1.19 R96
VDDAL 1.2 1.19 R96

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

3-1

Avoiding Board Bring-Up Problems

Table 3-1. Sample voltage report table (continued)

Signal name I\E/;rue:?\el? Actual value (V) Test point Comments
VDDGP 1.05 1.09 R91
VDDO25 2.5 2.49 R370
NVCC_EMI_DRAM 1.8 1.79 R97
VREF 0.9 0.9 R201
NVCC (3.3 V 10) 3.15 3.14 R368
VDD3PO 3.15 3.14 R412
USB_OTG_VDDAS33 3.15 3.14 R98
USB_H1_VDDAS33 3.15 3.14 R98
NVCC (1.8 V 10) 1.8 1.79 R460
NVCC_RESET (LVIO) 1.8 1.79 R460
VDD2P5 2.5 2.49 R92
USB_OTG_VDDA25 25 2.49 R100
USB_H1_VDDA25 2.5 2.49 R100
VDD1P8 1.8 1.79 R93
VDD1P2 1.2 1.19 R95

3.2 Using a current monitor to avoid power pitfalls

Excessive current can cause damage to the board. Avoid this problem by using a current-limiting

laboratory supply that has a current read-out to power the main power to the board when bringing up the
board for the first time. This allows the main power to be monitored, which makes it easy to detect any
excessive current.

3.3 Checking for clock pitfalls

Problems with the external clocks are another common source of board bring-up issues. Ensurethat all of
your clock sources are running as expected. The EXTAL/XTAL and the ECKIL/CKIL clocksarethemain
clock sourcesfor 24 MHz and 32 kHz reference clocks respectively on thei.MX50. Although not required,
the use of low jitter external oscillators to feed CKIH1 or CKIH2 on the i.MX50 can be an advantage if
low jitter or special frequency clock sources arerequired by modulesdriven by CKIH1 or CKIH2. Seethe
CCM chapter in the i.MX50 reference manual for details.

When checking crystal frequencies, use an active probe to avoid excessive loading. A parasitic probe
typically inhibits the 32.768 kHz oscillator from starting up. Use the following guidelines:
» CKIL clock should be running at 32.768 kHz (can be generated internally or applied externally)
» EXTAL/EXTAL should be running at 24 MHz (used for the PLL reference)

i.MX50 System Development Guide, Rev. 0

3-2 Freescale Semiconductor

Avoiding Board Bring-Up Problems

* CKIHY/CKIHZ2 can be used as oscillator inputs for low jitter specia frequency sources.
* CKIH1 and CKIH2 are optional.

In addition to probing the external input clocks, you can check internal clocks by outputting them at the
debug signals CLKO1 and CLKO2. Seethe CCM chapter in thei.MX50 reference manual for more details
about which clock sources can be output to those debug signals.

3.4 Avoiding reset pitfalls

Follow these guidelines to ensure that you use the correct boot mode to boot.

» During initial power on while asserting the POR_B reset signal, ensure that both your reference
clocks are active before releasing POR_B.

» Follow the recommended power-up sequence specified in the i.MX50 reference manual .

The GPIOsand internal fuses control thei.MX50 boots. For amore detail ed description about the different
boot modes, refer to the system boot chapter of the i.MX50 reference manual.

3.5 Sample board bring-up checklist

Table 3-2 provides a sample board bring-up checklist. Note that the checklist incorporates the
recommendations described in the previous sections. Blank cells should be filled in during bring-up as

appropriate.

Table 3-2. Board bring-up checklist

Checklist

Item details

Owner

Findings and
status

Note: The following items must be completed serially.

1. Perform a visual inspection.

Check major components to make sure nothing has been
misplaced or rotated before applying power.

2. Verify all i.MX50 voltage rails.

Confirm that the voltages match the data sheet’s requirements. Be
sure to check voltages not only at the voltage source, but also as
close to the i.MX50 as possible (like on a bypass capacitor). This
reveals any IR drops on the board that will cause issues later.
Ideally all of the i.MX50 voltage rails should be checked, but
VDDGP, VCC, and VDDA are particularly important voltages.
These are the core logic voltages and must fall within the
parameters provided in the i.MX50 data sheet.

NVCC_SRTC, NVCC_RESET, NVCC_JTAG, and
NVCC_EMI_DRAM are also critical to the i.MX50 boot up.

3. Verify power up sequence.

Verify that power on reset (POR) is de-asserted (high) after all
power rails have come up and are stable. Refer to the i.MX50 data
sheet for details about power up sequencing.

This is an important process as many complex processors are
sensitive to the proper power up sequencing.

4. Measure/probe input clocks (32 kHz, 24
MHz, others).

Without a properly running clock, the i.MX50 does not function
properly. Look for voltage, jitter, and noise.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

3-3

Avoiding Board Bring-Up Problems

Table 3-2. Board bring-up checklist (continued)

Checklist

Item details

Owner

Findings and
status

5. Check JTAG connectivity (RV-ICE).

This is one of the most fundamental and basic access points to the
i.MX50 to allow the debug and execution of low level code.

Note: The followin

g items may be worked on in parallel with other bring up tasks.

6. Access internal RAM.

Verify basic operation of the i.MX50 in system. The on-chip
internal RAM starts at address 0xF800_0000 and is 128 Kbytes in
density. Perform a basic test by performing a write-read-verify to
the internal RAM. No software initialization is necessary to access
internal RAM.

7. Verify CLKO outputs (measure and verify
default clock frequencies for desired clock
output options) if the board design supports
probing of the CLKO pin.

This ensures that the corresponding clock is working and that the
PLLs are working.

Note that this step requires chip initialization—for example via the
JTAG debugger—to properly set up the IOMUX to output CLKO
and to set up the clock control module to output the desired clock.
Refer to the reference manual for more details.

8. Measure boot mode frequencies. Set

the boot mode switch for each boot mode

and measure the following (depending on

system availability):

* NAND (probe CE to verify boot,
measure RE frequency)

¢ SPI-NOR (probe slave select and
measure clock frequency)

¢ MMC/SD (measure clock frequency)

This verifies the specified signals’ connectivity between the
i.MX50 and boot device and that the boot mode signals are
properly set. Refer to the “Boot Modes for the i.MX50” section in
the i.MX50 reference manual for details about configuring the
various boot modes.

9. Run basic DDR initialization and test
memory.

—_

. Assuming the use of a JTAG debugger, run the DDR
initialization and open a debugger memory window pointing to
the DDR memory map starting address.

2. Try writing a few words and verify that they can be read

correctly.

3. If not, recheck the DDR initialization sequence and whether the

DDR has been correctly soldered onto the board.

Itis also recommended that users recheck the schematic and PCB

layout to ensure that the DDR memory has been connected to the

i.MX50 correctly.

i.MX50 System Development Guide, Rev. 0

3-4

Freescale Semiconductor

Using the Clock Connectivity Table

Chapter 4
Using the Clock Connectivity Table

This chapter explains how to use the i.M X50 clocking connectivity. You can use thisinformation to save
power by disabling clocks to unused modules.

4.1 External clock sources

The following list describes the external clock sources:

*+ RTC 32.768KHz CKIL/ECKIL crystal—Thisisa32.768 kHz crystal input for the i.MX50. By
default, ECKIL comes from Ripley PMIC outpui.

* 24 MHz XTAL/EXTAL crystal—Thisisa24 MHz input for the i.MX50. The required accuracy
of thiscrystal is50 ppm.

» 12.288 MHz oscillator—Thisoscillator isfor the audio codec. Therequired accuracy of thiscrystal
is 30 ppm.
* 50 MHz oscillator—Thisoscillator isfor Ethernet. Therequired accuracy of thiscrystal is30 ppm.

4.2 Internal clock sources

For information about how the root clocks are generated, see the clock generation diagramsin the CCM
chapter of the i.MX50 reference manual. In some cases, the CCM does not generate the clock, and the
clock may come directly from the IO pad.
The following list shows a reference setting for the CCM registers.

* mx50 pll1: 800 MHz

* mx50 pll2: 400 MHz

* mx50 pll3: 216 MHz

* ipgclock : 66666666 Hz

* ipg per clock : 66666666 Hz

* uartclock : 24000000 Hz

o ahbclock : 133333333 Hz

e axi_aclock :400000000Hz

e axi_bclock :200000000 Hz

* weim_clock :100000000 Hz

* ddrclock : 266666666 Hz

» esdhel clock : 80000000 Hz

» esdhc2 clock : 80000000 Hz

» esdhc3 clock : 80000000 Hz

» esdhc4 clock : 80000000 Hz

 GPMI clock : 24000000 Hz

« BCHclock :24000000Hz

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 4-1

Using the Clock Connectivity Table

[53fd4000]:
[53fd4004]:
[53fd4008]:
[53fd400c]:
[53fd4010]:
[53fd4014]:
[53fd4018]:
[53fd401d]:
[53fd4020]:
[53fd4024]:
[53fd4028]:
[53fd402c]:
[53fd4030]:
[53fd4034):
[53fd4038]:
[53fd403c]:
[53fd4040]:
[53fd4044]:
[53fd4048]:
[53fd404c]:
[53fd4050]:
[53fd4054]:
[53fd4058]:
[53fd405q]:
[53fd4060]:
[53fd4064]:
[53fd4068]:
[53fd4060]:
[53fd4070]:
[53fd4074]:
[53fd4078]:
[53fd407d):
[53fd4080]:
[53fd4084]:
[53fd4088]:
[53fd408c]:
[53fd4090]:

000012FF
00000000
00000034
00000000
00000000
02C80900
00010005
F321F120
00000000
01040000
00400040
00400040
00000000
00000000
02080000
00000000
00000000
00000000
00000000
00000000
00000000
00000061
00000000
FFFFFFFF
000a00F0
00000000
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
00000000
00000003

i.MX50 System Development Guide, Rev. 0

4-2

Freescale Semiconductor

Using the Clock Connectivity Table

o [53fd4094]: A0000044

* [53fd4098]: 80000003

e [53fd409c]: 00001001

* [53fd40a0]: 00001001

* [53fd40a4]: 00000001

* [53fd40a8]: 00000001

» [53fd40ac]: 80000001

* [53fd40b0]: 80000001

* [53fd40b4]: 00000001
Clock connectivity is described in the “ System Clocks Connectivity” section in the CCM chapter of the
i.MX50 reference manual. This section contains a series of tables that describe the clock inputs of each

module and which clock is connected to it. In most cases, the clocksare CCM root clocks. However, some
clocks come from 10 pins (mainly though IOMUX) and not from CCM.

Clock gating is donewith thelow power clock gating (L PCG) modul e based on acombination of the clock
enable signals. For more information about how the clock gating signals are logically combined, refer to
the LPCG section in the CCM chapter of the i.MX50 reference manual.

NOTE

In some cases, aclock ispart of aprotocol and is sourced from apad (mainly
through IOMUX). Such clocksdo not appear in the clock connectivity table.
They arefound in the “ External Signals and Pin Multiplexing” chapter.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 4-3

-

Using the Clock Connectivity Table

i.MX50 System Development Guide, Rev. 0

4-4 Freescale Semiconductor

Chapter 5
About the IOMUX Tool

5.1 IOMUX: What is it?

Thei.MX applications processor has a limited number of 10 connections relative to all possible signals
availableto the on-chip peripherals. Theinput-output multiplexer (IOMUX) isthe on-chip multiplexer that
connects the package pins or balls to the internal peripheral signals.

Each 10 connection has the following three registers:

* MUX control register—controls which internal signal is connected to a particular external 10

connection

» Pad control register—controls the electrical behavior of the 10 cell connected to the external 10
connection

* Input select register—control s the connection between an internal input signal and the external 10
connection.

Every signal that is routed through the IOMUX requires that the first two registers be properly set. In
addition, if the input select register isnot properly configured, the external input will not be connected to
theinternal peripheral (an omission often made by those unfamiliar with configuring the IOMUX).

For more specific information about the IOMUX module, refer to the appropriate i.M X applications
processor’s reference manual.

5.2 How the IOMUX tool helps application design

It isdifficult to make all the assignments for an application without introducing conflicts between signals
and 1O connections. If not caught before a board was produced, such conflicts may even require board
revisions to correct. The IOMUX tool was developed to help the hardware system designer make these
signal assignments and to resolve conflicts more easily. A secondary purpose of the tool isto provide
system documentation for the hardware and software developers.

5.2.1 Assigning signals and resolving conflicts

The main purpose of the IOMUX tool isto alow real time assignment with immediate conflict detection.
A Windows GUI interface consisting of nested check boxes allows users to assign individual signals or
whole peripherals. For each signal, users can choose a specific external 10 connection (ball or pin). If the
assignment results in a definite conflict, the tool highlights the conflicting signals in orange. If the
assignment results in a potential conflict, the tool highlights the potentially conflicting signal in yellow.
Users can then avoid the conflict either by avoiding that particular signal assignment or if that particular
external 10 connection is desired, reassigning the existing assignment(s).

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 5-1

About the IOMUX Tool

Contextual information boxes are available when the mouse hovers over the different portions of the GUI.
These boxes provide information that hel ps users avoid and/or resolve assignment conflicts. A pictorial
diagram of the device packageis also provided so that the relative location of the signalsand their external
1O connection assignments can be inspected.

5.2.2 Documentation features

The IOMUX tool alows adesign to be saved to and loaded from afile to alow multi-session design
development. It also alows the creation of derivative boards based on an existing design.

A novel feature of the IOMUX tool isthe ability to annotate signal assignments with “ Signal Notes.” One
such use is to associate application specific signal names with each signal assignment so the intended use
can berelated to thei.M X device's 10 connections and internal signals. General information about the
application, revision level, contact information, and other design related information may be entered as
well.

In addition to the ability to load and save a design in the native XML format, application design
information can be printed or saved aseither plain text or richtext format (RTF). The plain text information
can then be pasted into the schematic files, readily providing the assignment information during hardware
debug. The plain text information may also be pasted into the application software source repository,
providing software developers with the assignment information all in one place.

The output includes the GPIO signals that are available at every external 10 connection. Thisinformation
can be useful during board bring-up because it readily allowsindividual 10 connections to be wiggled to
diagnose connectivity issues at the board level without needing to run a stack to support the functional
operation of a peripheral.

5.2.3 Additional features

Mismatches between the signal levels at the board level and the IO connections of the i.MX applications
processor can occur when peripheral signals are assigned to external 10 connections that are not supplied
by the same power supply rails. To help users ensure that signal levels match between the device and the
rest of the board, the IOMUX tool allows the assignment of voltages to each power supply. For each
peripheral used in the design, the user will be alerted where a mismatch in power supply voltages for a
peripheral exists.

5.3 Obtaining the IOMUX tool

The IOMUX tool may be downloaded from the Freescale web page at the [IOMUX Tool download
location. M ore compl ete documentation about the tool and itsfeatures areincluded in the download (about
1 MBinsze).

i.MX50 System Development Guide, Rev. 0

5-2 Freescale Semiconductor

https://www.freescale.com/webapp/Download?colCode=IO_MUX_TOOL&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search
https://www.freescale.com/webapp/Download?colCode=IO_MUX_TOOL&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search

Chapter 6
Setting up Power Management

This chapter discusses how to supply and interface the i.MX50 multimedia applications processor with
power management integrated circuits (PMICs): MC34708 from Freescale.

Setting up Power Management

The interface requires the addition of an extra RT8011A regulator to supply the external DCDC 3.15 V
power domain. Note that the DCDC is needed only when a large current external device exists, such as
WIFI or 3G. Otherwise, we can use the supply from the PMIC.

6.1

6.1

i.MX50 power requirement

1 Voltage rail and current requirement for i.MX50

Table 6-1. Voltage rail and current requirements

Power Rail of i.MX50 Power domain Max current (mA) Voltage (V)
NVCC_SRTC 32 kHz osc. power (when chip off) TBD! 1.20
VCC LP Transistor power 400 1.20
VDDA Peripheral Memory + L2 Cache power 250 1.20
VDDAL1 L1 Cache power 250 1.20
VDDGP Core and G Transistor power 1250 1.00
VDDO2P5 Predriver for EMI pads 150 2.50
NVCC_EMI_DRAM Power to EMI pins 350 1.20
VREF DRAM Reference 2~4 uA 0.9
All 3.3V 10 NVCC 3.0V 1/Os — —
VDD3PO VDD2P5 LDO input + power to Bandgap, ~10 3.00
DCDC predriver, tempsensor, 480 MHz PLL
USB_OTG_VDDA33 Power to USB Host 16 3.30
USB_H1_VDDAS33 Power to USB OTG 16 3.30
All 1.8V 10 NVCC 1.8V 1/Os — —
NVCC_RESET (LVIO) Power to POR_B,RESET_IN_B, FeW(TBD)1 TBD!
TESTMODE, & BOOTMODE[0:1]
VDD2P5 Power to 24 MHz osc, efuse, xtalok, ~10 2.50
32 kHz osc. power mux
USB_OTG_VDDA25 Power to USB Host 50 2.50
USB_H1_VDDA25 Power to USB OTG 50 2.50
VDD1P8 Power to all PLLs ~10 1.80
i.MX50 System Development Guide, Rev. 0
Freescale Semiconductor 6-1

Setting up Power Management

Table 6-1. Voltage rail and current requirements (continued)

Power Rail of i.MX50 Power domain Max current (mA) Voltage (V)
VDD1P2 Power to all PLL digital, 32 kHz osc. ~10 1.20
(when chip on), much of analog, digital
1. TBD means to refer to the actual design load.
6.1.2 Power-up sequence requirement for i.MX50
NVCC_SRTC
VCC
Y (Y A Y \
Yiplor NVCC_EIM USB_OTG_VDDA25
VDD3PO VDDO2P5 = = =
VDDGF VDDALT NVCC_EPDC USB_H1_VDDA25
NVCC_JTAG
— B_OTG_VDDA
¢ ¢ NVCC_KEYPAD USB_OTG 33
NVCC_LCD USB_H1_VDDA33
VDD2P5 NVCC_EMI_DRAM NVCC_MISC
NVCC_NANDF
) Y Y NVCC_RESET
VDD1P8|[VDD1P2 VREF NVCC_SD1
NVCC_SD2
NVCC_SSI
NVCC_UART
Note:

No power-up sequence dependencies exist between the supplies shown shaded in gray.

Figure 6-1. i.MX50 power-up sequence

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

6.2 MC34708 output capabilities

Setting up Power Management

6.2.1 Voltage rail and current capabilities
Table 6-2. Voltage rail and current capabilities
. S Output voltage Load capability
Suppl Purpose (typical application
pply P (typ PP) V) (mA)
SWi1 Buck switcher for processor VDDGP 0.650 — 1.4375 2000
domain
SW2 Buck switcher for processor VCC 0.650 — 1.4375 1000
domain
SW3 Buck switcher for processor VDD 0.6500 — 1.425 500
domain and peripherals
SW4A Buck switcher for DDR memory and 1.200 — 1.975: 2.5/3.15/3.3 500
peripherals
SW4B Buck switcher for DDR memory and 1.200 — 1.975: 2.5/3.15/3.3 500
peripherals
SW5 Buck switcher for I/O domin 1.200 - 1.975 1000
SWBST | Boost switcher for USB OTG 5.00/5.05/5.10/5.15 380
VSRTC Secure real-time clock supply 1.2 .050
VPLL Quiet analog supply 1.2/1.25/1.5/1.8 50
VREFDDR | DDR ref supply 0.6-09V 10
VDAC TV DAC supply, external PNP 2.5/2.6/2.7/2.775 250
VUSB2 | VUSB/peripherals supply, internal 2.5/2.6/2.75/3.0 65
PMOS
VUSB./peripherals external PNP 2.5/2.6/2.75/3.0 350
VGEN1 General peripheral supply #1 1.2/1.25/1.3/1.35/1.4/1.45/1.5/1.55 250
VGEN2 | General peripherals supply #2, 2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3 50
internal PMOS
General peripherals supply #2, 2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3 250
external PNP
VUSB USB transceiver supply 3.3 100
6.2.2 Default power-up sequence of MC34708 customized for i.MX50

Table 6-3. MC34708 power-up sequence

Tap PUMS[4:1] = [1010, 1011, 1100, 1101, 1110, 1111]
x 2 ms (i.MX50)
0 Sw2
1 SW3

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

6-3

Setting up Power Management

Table 6-3. MC34708 power-up sequence (continued)

Tap
x2ms

PUMSI[4:1] = [1010, 1011, 1100, 1101, 1110, 1111]
(i.MX50)

SW1A/B

VDAC

SW4A/B, VREFDDR

SW5

VGEN2

VPLL

VGEN1

| o N| OO | WOW| DN

VUSB (2), VUSB2

1 The VUSB regulator is only enabled if 5 V is present on the VBUS pin. By default, VUSB is supplied by the VBUS pin.

6.2.3 Power-up voltage rail

MC34708 isaPMIC designed to support the i.MX family. MC34708 sets the specific power-up sequence
by 5 GPIO. The voltage level of PUMS[5:1] decides the power-up sequence mode.

Power Up Mode

WOOREDIG

AV
[C=Ne

ra
L

-

g:z' £ R

[l 1]

i
AN
e
5

(=1 I N B =

e
1]

AN
evm
5

.
[|
= i
v

0
=
(]

Figure 6-4. Power-up mode

i.MX50 System Development Guide, Rev. 0

6-4

Freescale Semiconductor

Setting up Power Management

For details, see the MC34708 reference manual. For the i.MX50, the MC34708 has 6 modes for usto
select. Select the power-up mode according to our application. The following mode marked with ared oval
isapplied on MX50 EVK board.

N

] 53 53 53 53 53 / a
i.MX 37151 | 37151 | 37151 | 37I51 35 LPM DDR2 DDR3 | LVDDR3 | LPDDR2 50 50 50 50 5 50
PUM3[4:1] | 0000 | 0001 0010 | 0011 | 0100 | 0101 | 0110 | 0111 1000 1001 1010 | 1011 1100 | 1101 /111b 11
PUMS5=0
VUSB2 PEI:;It? PElsld P PEI:l(It:‘ PEI:l(It:‘ PE rxﬁ: PElet: PEN% PEN% ExtPMP | B PNP PENXt P PElsld P PEN% PEN% PEN% FF let:
WGEN2
PUMS5=1 Internal Intemal Intemal Internal Internal Internal Internal Internal Intemal Internal Intemal Intemal Internal Internal Internal Irternal
ﬁgﬁﬁ PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS PMOS
SW1A
(/DDGP) 1.05 1.05 1.05 1.05 1.35 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
SW1B
(/DDGP) 1.05 1.05 1.05 1.05 1.35 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
SW2 (1)
0fCC) 1.225 | 1.225 | 1.225 | 1225 1.2 1.225 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2
SW3 (1
NDDA)(! 1.2 1.2 1.2 1.2 off 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
SWAA (1)
(DDRISYS) 315 315 1.8 25 3.15 15 1.8 15 1.35 12 1.8 1.2 315 315 315 315
SWAB (1)
(DDRISYS) 315 1.8 1.8 1.8 3.15 15 1.8 15 1.35 1.2 1.8 1.2 1.2 1.8 1.2 1.8
SW5 (1)
{10} 1.8 1.8 1.8 1.8 1.8 1.8 1.8 18 18 1.8 1.8 1.8 1.8 1.8 1.8 1.8
SWBST off Off Off Off 5 Off Off Off Off Off Off off off Off Off Off
VUSB 33 33 3.3 33 33 33 33 33 33 33 33 33 3.3 33 33 33

{2) (2) (2) (2) (3) {2}] (2) {2 (2) {2 (2 (2] (2) (2) (2)
VvUsSB2 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
VSRTC 1.2 1.2 1.2 1.2 1.2 1.2 1.3 13 1.3 13 1.2 1.2 1.2 1.2 \ 1.2 I 1.2
VPLL 1.8 1.8 1.8 1.8 15 1.8 1.8 18 18 1.8 1.8 1.8 1.8 1.8 \ 1.8[1.8
VYREFDOR on On On On off On On On On On On On On On \ OnI On
VDAC 2FTE | 2775 | 2775 | 2775 | 2775 | 2775 | 2775 | 2775 | 2775 2775 25 25 25 25 \ 2.5/ 25
VGEN1 Off Off Off Off off 1.2 13 13 13 13 12 1.2 1.2 1.2 \12(1.2
VGEN2 Off Off 315 3.15 3.15 25 25 25 25 25 A 3l 31 £ \Zﬁ 25
(1) The switchers S\Wix are activated in APSKIP mode when enabled by the startup sequencer. N
{2y WUSE regulator is only enabled if 5V is present on VBUS. By default VIUSE will be supplied by VBUS
{3y SWBST = 5V powers up and so does VIUSB regardless of 5Y present on UVBUS. By default VUSB will be supplied by SWEST

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

6-5

Setting up Power Management

6.3 i.MX50 interfaces to MC34708

6.3.1 SPI interface between i.MX50 and MC34708

W15 SW4A
* R46
1.75V~3.6V (C8) 0]
SPI: Hold low when cold =tart
I2C: Hold high when cold start. F4
W SPIVCC
CSPI_SS0 > * R49 & 0 G2 CSs
CSPI_SCLK R48 sl SARNI
51 0 F1
CSPI_MISO RS1 4 MISO
- R52 0 F3
CSPI_MOS > . MOSI
.—
+r RE4 C159 [C161
4.7K * *
0.1UF [MuF
- a
GND GND

Figure 6-5. SPI interface

i.MX50 System Development Guide, Rev. 0

6-6 Freescale Semiconductor

Setting up Power Management

6.3.2 Power rail interface between i.MX50 and MC34708

5.0V 4.2V
Regulator

Li-ION

Battery

SWA4/B (500mA)

SWS5 (1000mA)

SWA1A/B (1600mA)
un SW2 (1000mA)
SW3 (500mA)

VDAC (250mA)
VGEN2 (250mA)

VGENT (250mA)
VPLL (50mA)
VUSB (100mA)

SWA/A (500mA)
VUSB2 (250mA)

Ripley

1.2v

1.2V

1.8V

[11

2.5V
2.5V

315V
VIN VOUT (1.54) }—

3.15V

3.3v
Regulator

NVCC_EMI_DRAM

POP_LPDDR2 18V
NVCC_RESET
NVCC_JTAG
VDDGP

VCC

VDDA
VDDAL1

VDDO2P3

VDD2P3
USB_VDDAZ25

VDD1P2
VDD1P8

USE_VDDA3Z3

VDD3PO
NVCC_MISC
NVCC_SPI
NVCC_SD1
NVCC_SD2
POP_NAND_VCC
NVCC_NANDF
NVCC_KEYPAD
NVCC_SSI

NVCC_UART
NVCC_LCD
NVCC_EPDC

i.MX50

CODEC

Figure 6-6. Power rail interface

HDMI

ETHERNET

3G PCle

R3-232

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

6-7

Setting up Power Management

6.3.3 Extra 3.15 V DCDC power supply

For system stability, it isrecommended that you use an extra3.15 V DCDC power supply to support large
current requirements (for example a 3G module or Wi-fi card). The MC34708 has limited 3.15 V output
ability.

The RT8011/A is ahigh efficiency synchronous, step-down DC/DC converter. Itsinput voltage range is
from 2.6 V t0 5.5V, and it provides an adjustable regulated output voltage from 0.8 V to 5V while
delivering up to 2 A of output current.

Theinternal synchronouslow on-resistance power switchesincrease efficiency and eliminate the need for
an external Schottky diode. The switching frequency is either set by an external resistor or synchronized
to an external clock. A 100% duty cycle provides low dropout operation, which extends battery lifein
portable systems. Current mode operation with external compensation allows the transient response to be
optimized over awide range of loads and output capacitors.

6.4 RT8011/A features

The RT8011/A has the following features:

High efficiency: up to 95%

Low RDS(on) internal switches: 110 mQ

Programmable frequency: 300 kHz to 4 MHz (no Schottky diode required)
* 0.8V reference allows low output voltage

» Forced continuous mode operation

* Low dropout operation: 100% duty cycle

* ROHS compliant and 100% lead (Pb)-free

6.5 Additional device information
This section provides additional product information for the MC34708 PMIC subsystem.

MC34708 is the power management and user interface component for the Freescale i.MX53, i.MX50,
i.MX51, 37, and 35 application processors. A high level block diagram is presented below to illustrate
functional content which includes:

» Switching charger system for wall charging and USB charging, with auxiliary charge path
» Auto charge detection of CEA936/Apple/USB Host

» UART/Audio switching to USB D+/D—and ID pins

» 10bit ADC for monitoring battery and other inputs plus Coulomb Counter support module
* 4 Wire Resistive Touchscreen Interface

* Buck switchersfor direct supply of the processor core and memory

» Boost switcher and regulators for USB PHY with OTG support

» Regulators with internal and external pass devices for thermal budget optimization

» Power control logic with processor interface and event detection

i.MX50 System Development Guide, Rev. 0

6-8 Freescale Semiconductor

h

Setting up Power Management

* Real time clock and crystal oscillator circuitry with coin cell backup

» Support for external secure real time clock on a companion system processor |C
» Single SPI/I12C busfor control and register access

» Four general purpose low voltage I/O’swith interrupt capability

* Two PWM outputs

» Driversfor signa LEDs

" A?JJLIETIIEEEENT 5 BUCK 81LDO 5\ BOOST
e SWITCHERS | REGULATORS SWITCHER
P naing Frocessor Cones SRTC LSE 0T Supply

Mgl S LSA . .
SplE P
Dintection 2] F Oarng i Perpherals

Coih celi Chawmet
Conlornb Counter

10 BIT GPADC LED DRIVERS
Chaming Manitaring REFERENCES Charger Sign of Lig
General Pumose Trnmed Bandoap
TOUChSCRER

GEMERAL MC34708 POVER
Purpose 110 CONTROL LOGIC

PWM Outputs PMIC State Machine

ﬁz;"ﬁ.'iﬁw'f"f PROCESSOR CONTROL I,??EH FIFR n?;LE
2 SOt
ot INTERF ACING SR

Figure 6-7. MC34708 block diagram

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 6-9

Interfacing DDR Memories with the i.MX50 Processor

Chapter 7
Interfacing DDR Memories with the i.MX50 Processor

71 Overview

The i.MX50 supports off-chip DRAM storage using the DRAM MC, which is connected to the internal
AXI bus. The DRAM MC supports multiple external memory types, including:

e Standard 1.8V DDR2
* 1.8V Mobile DDR1 (LP-DDR1)
« 1.2V Mobile DDR2 (LP-DDR2)

The DRAM MC consists of three major components:

* AXI businterface

» DRAM controller

* DRAM PHY
The DRAM MC uses three primary clocks: the AHB bus clock (HCLK), the AX1 bus clock (AXI_CLK),
and the DDR interface clock (DDR_CLK). The AX1_CLK and DDR_CLK can be configured as either
synchronous or asynchronous, but the HCLK and AX1_CLK are always treated asynchronougly.
The DRAM MC supportsthe following clock frequencies:

* Upto 266 MHz at the DDR interface (532 MHz data rate)

* Upto 266 MHz at the AXI interface

* Upto 133 MHz at the AHB interface

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-1

Interfacing DDR Memories with the i.MX50 Processor

7.2 Connection between i.MX50 and DDR memories

Figure 7-1-Figure 7-3 show various interfaces between i.MX50 and DDR memories.

i.MX50 LPDDR2

DRAM A[12:0

DRAM_A[12:0] i e——— DRAM_A[12:0]
RRAM DI31:0]

DRAM D[31:0] DRAM D[31:0]

DRAM DQS[3:0] I
|

1

1 1

1 |

I DRAM_DQS_B[3:0] | Control :DRAM_DQS_B[3:O] :
| |

————e——— | "

: DRAM_DQM[3:0]: I DRAM DQM[3:0]

I [1 [

t DRAM_CS[10] | | CS[1:0] !

Figure 7-1. Interfacing between i.MX50 and LPDDR2

i.MX50 System Development Guide, Rev. 0

7-2 Freescale Semiconductor

1L.MXS50

DRAM A[12:0]
DRAM D[31:0]
DRAM SDBA[2:0]

| DRAM_CLK[1:0]
: DRAM_CLK_B[1:0]

DMM_DQS[3:0]:
DRAM DQS B[3:0];
DRAM DQM[3
DRAM CS[1
DRAM SDODT][!

DRAM_A[12:0]
DRAM D[31:0]

Interfacing DDR Memories with the i.MX50 Processor

| SDCKE

=== ===="9

I/RAS/CAS/WE

|

1 DRAM_DQS[1:0] :

| DRAM_DQS_B[1:0] !

| DRAM_DQM[1:0] |
|

IDRAM_CS0 I
|

L 2 /
2
=
>z
)
=

v
o]
=
3
2

|

IDRAM_CLKI

|

1 DRAM CLK_BI

v

[m—————————
1/RAS,/CAS,/WE

| DRAM DQS[3:2]

v

| DRAM_DQM[3:2]

|

|

|

|

| DRAM_DQS_B[3:2] !
|

|

|

| DRAM_CS] 1
|

Figure 7-2. Interfacing between i.MX50 and DDR2

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

7-3

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 mDDR
DRAM_A[12:0]
DRAM A[12:0] DRAM A[12:0]
DRAM D[31:0] |l i |DR AM_DJ[31:0]
DRAM SDBA[2:0] j———— | B A [2:0]
DRAM_CLK[1:0] DRAM_CLKO
DRAM CLK B[1:0] Clock— DRAM_CLK B0
SDCKE SDCKE
DRAM_RAS/CAS/WE /RAS,/CAS,/WE
DRAM_DQSJ[3:0] Control DRAM_DQSJ[3:0]
DRAM DQS B[3:0] [—————— | RAM DQS B[3:0]
DRAM_DQM]J3:0] DRAM_DQM]J3:0]
DRAM_CS[1:0] DRAM_CS0
DRAM_SDODT[1:0]

Figure 7-3. Interfacing between i.MX50 and mDDR

When using DDR, the nominal reference voltage must be half of the NVCC_EMI_DRAM supply. The
resistors must be sized to account for the i.MX50 DDR_V REF input current plus the memory input
current. This current, drawn from the divider, affects the reference voltage.

Consider:
» Shunting each resistor with a closely-mounted capacitor. The decouple cap connected in parallel
to the resistor connected to NVCC_EMI_DRAM may be required.

» TieDDR_VREF to aprecision external resistor divider with aresistor to GND and aresistor to
NVCC_EMI|_DRAM.

For the resistors selection, please refer to Table 1-2.

i.MX50 System Development Guide, Rev. 0

7-4 Freescale Semiconductor

Interfacing DDR Memories with the i.MX50 Processor

The following shows an example LPDDR2 connection.

1WZ2_DDR_BAMNK
o

Figure 7-4. Example LPDDR2 connection

The DRAM_CALIBRATION input requiresthat an external resistor be used as areference during DRAM
output buffer driver calibration. This resistor must be mounted close to the associated BGA ball.

Use the following values for the DRAM calibration input:
e [For LPDDR1, connect 300 Q2 1% to GND.
e For DDR2, connect 240 QQ 1% to GND.

7.3 Configuring the DDR JTAG script

7.3.1 Script file for LPDDR2 (266M)

/ / e e e e i i pp——
/1 Revision History

/1 vO1

/1 vO0l works stable with LPDDR2 CPU board (EVB)

/1 vO02

/1 v02 works stable with RD board (EVK)

/1 1. 1OMJX: change dse from bl00 to b110

/1 2. DLL: change parameter phase_detect_sel from b00l1 to b011

/1 3. back-to-back tinmng: renove extra additional back-to-back timng
/1 v03 by MKke.K

/1 Updated for the EVK

/1 Tweaked timngs for WRLAT and TRAS MAX to match | pddr2 data sheet
/1 Updated drive strength to 100 (0x02000000) to inprove stability
/1 Update TBST_I NT_I NTERVAL from Ox2 to Ox4 to inprove stability

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-5

Interfacing DDR Memories with the i.MX50 Processor

/1 v04 by Marek

/1 Add the | oading ZQ operation

/1 Reduce TRAS MAX a little to be | ess than 70000ns @66Mz;
0x48D0

/1 v05 by Marek

/1 Update the ZzQ init for TOL.1.1; It's NOT conpliant with TOL. 0

/1 Change DDR drive-strength fromb011 to bl1l01

from Ox48EB to

/1 ddr stress test fail when dse=b011 && ddr_cl k >= 200MHz

/1 ddr stress test pass when dse=bl01

/1 v06 by Marek

/1 Fix the ZQ | oad bug

/1 Change DSE=b011

/1 vO7 by Marek

/1 Update ddr settings to match the ddr configuration guide

/1

// e e e e i i pp——

wait = on
//*:::
/1 init ARM
//*:::
//*:::
/1 Disabl e WDOG

setmem /16 0x53f 98000

/1 Enabl e

setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32

al |

0x53f d4068 =
= Oxffffffff
0x53f d4070 =
0x53f d4074 =
0x53f d4078 =
= Oxffffffff
0x53f d4080 =
0x53f d4084 =

0x53f d406¢

0x53f d407c

0x30

Oxffffffff

Oxffffffff
Oxffffffff
Oxffffffff

Oxffffffff
Oxffffffff

cl ocks (they are disabled by ROM code)

i.MX50 System Development Guide, Rev. 0

7-6

Freescale Semiconductor

/1 DDR cl ock setting
set mem / 32 0x53FD4098 = 0x80000003

/1 DDR PAD TYPE: DDR_SEL[26: 25]

setmem / 32
setmem / 32
/1 [9]
setmem / 32
/1 [9]
setmem / 32
11 [7]

PKE=0 (Al
/1 Drive-Strength:

0x53f a86ac
0x53f a866¢C

0x53f a868c

0x53f a8670

0x04000000
0x00000200

DDR | NPUT=1 (DQ@s: differenti al

0x00000000

0x00000000

ddr pads except
DSE[21: 19]

b0O0:

Interfacing DDR Memories with the i.MX50 Processor

LPDDR1/ DDR2; b10: LPDDR2

/11 OMUXC_SW PAD CTL_GRP_DDR_TYPE
/11 OMUXC_SW PAD_CTL_GRP_DDRMODE_CTL
i nput node)

/11 OMUXC_SW PAD_CTL_GRP_DDRMODE

DDR | NPUT=0 (DATA: CMOS i nput type)

/11 OMUXC_SW PAD_CTL_GRP_DDRPKE

BOS)

setmem / 32 0x53fa86a4 = 0x00200000 //I| OMUXC_SW PAD CTL_GRP_CTLDS
setmem / 32 0x53fa8668 = 0x00200000 //I| OMUXC_SW PAD CTL_GRP_ADDDS
setmem / 32 0x53fa8698 = 0x00200000 //| OMUXC_SW PAD CTL_GRP_BODS

setmem /32 0x53fa86a0 = 0x00200000 //| OMUXC_SW PAD CTL_GRP_B1DS

setmem / 32 0x53fa86a8 = 0x00200000 //| OMUXC_SW PAD CTL_GRP_B2DS

setmem / 32 0x53f a86b4 = 0x00200000 //| OMUXC_SW PAD CTL_GRP_B3DS

setmem / 32 0x53fa8490 = 0x00200000 //I| OMUXC_SW PAD CTL_PAD DRAM OPEN
set mem / 32 0x53f a8494 = 0x00200000 //1 OMUXC_SW PAD CTL_PAD_DRAM OPENFB
setmem / 32 0x53fa8498 = 0x00200000 //| OMUXC_SW PAD CTL_PAD DRAM SDCLK_1
setmem / 32 0x53f a849c = 0x00200000 //| OMUXC_SW PAD CTL_PAD DRAM SDCLK_O
set mem / 32 0x53fa84f0 = 0x00200000 //| OMUXC SW PAD CTL_PAD_DRAM DQWD
setmem / 32 0x53f a8500 = 0x00200000 //| OMUXC_SW PAD CTL_PAD DRAM DQML
setmem / 32 0x53fa84c8 = 0x00200000 //I OMUXC _SW PAD CTL_PAD DRAM DQWR
setmem / 32 0x53f a8528 = 0x00200000 //| OMUXC_SW PAD CTL_PAD DRAM DQVB

/| DSE[21:19], PKE[7], PUE 6]

setmem / 32 0x53f a84f4 = 0x00200000 //I| OMUXC_SW PAD CTL_PAD DRAM SDQSO
setmem / 32 0x53fa84fc = 0x00200000 //IOMUXC _SW PAD CTL_PAD DRAM SDQS1
setmem / 32 0x53fa84cc = 0x00200000 //IOMUXC _SW PAD CTL_PAD DRAM SDQS2
setmem / 32 0x53f a8524 = 0x00200000 //I| OMUXC_SW PAD CTL_PAD DRAM SDQS3
//*:::
/1 Load ZQ
//*:::
setmem /32 0x1400012C = 0x00000817 // pd<<8, pu<<0

setmem /32 0x14000128 = 0x09180000 // (pd+1)<<24, (pu+l)<<16

/1 load PU, pu_pd_sel =0

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-7

Interfacing DDR Memories with the i.MX50 Processor

setmem /32 0x14000124 = 0x00310000 // software |oad ZQ 3<<20, 1<<16
setmem /32 0x14000124 0x00200000 // clear for next |oad

/1 load PD, pu_pd_sel =
setmem /32 0x14000128
setmem /32 0x14000124
setmem /32 0x14000124

[T ||

0x09180010 // (pd+l)<<24, (pu+l)<<l6, 1<<4
0x00310000 // software |load ZQ 3<<20, 1<<16
0x00200000 // clear for next |oad

// R R R R R R R R R I I I I O R R R R R I R R R
)

//; DDR Controller Registers
//;**
/1; Device: ELPIDA EDB4032B1PB(PoP) / SAMSUNG K4P4G304EC(PoP)

/1; Density: 2G bits/chip-select

/1; Organi zation: 8M words x 32 bits x 8 banks

/1; Row address: RO to R13

/1; Columm address: CO to C8

// R R R R R R R R R R R R I R R I R R R R I R R O
)

/1; Config: CAS=6, BL=4, 266MHz

// ' EE R R I R I S I I S S R R S I R R O I S S R I

set mem /32 0x14000000 = 0x00000500 // [11:8] DRAM CLASS

/1 HW DRAM CTLO1 (0x14000004) Read-only, don't wite

set mem /32 0x14000008 = 0x0000001b // [23:0] TINIT: For LPDDR2, M nimum CKE LOW
time after conpletion of voltage ranp > 100 ns

set mem /32 0x1400000c = 0x0000d056 // [23:0] TINIT3: For LPDDR2, Mninmumidle tine
after first CKE assertion > 200us

setmem /32 0x14000010 = 0x0000010b // [23:0] TINIT4: For LPDDR2, Mnimumidle tinme
after RESET comand > 1us

setmem /32 0x14000014 = 0x00000a6b // [23:0] TINIT5: For LPDDR2, Maxinmum duration
of device auto initialization < 10us

set mem /32 0x14000018 = 0x02020d0c // [28:24] TCCD, [19:16] WRLAT, [12:38]
CASLAT LI N _GATE, [4:0] CASLAT LIN

setmem /32 0x1400001c 0x0c110302 // [2:0] TBST_I NT_I NTERVAL

set mem /32 0x14000020 = 0x05020503

set mem /32 0x14000024 = 0x0048eb05

set mem / 32 0x14000028 = 0x00000606 // [24] CONCURRENTAP, [12:8] TCKESR, [2:0] TCKE
/1 Modified: disabl e CONCURRENTAP feature CONCURRENTAP=0

/1 Modified: Enlarge the TCKESR & TCKE

set mem / 32 0x1400002c 0x09040501

setmem /32 0x14000030 = 0x02000000

setmem / 32 0x14000034 = 0x00000e02

setmem /32 0x14000038 = 0x00000006

set mem /32 0x1400003c = 0x00002301 // [17:8] TRFC

setmem /32 0x14000040 = 0x00050408 // [15:0] tref: auto-refresh time; 3.9us for
LPDDR2 devi ce ecbh240abacn (ELPI DA)

set mem / 32 0x14000044 = 0x00000300

set mem / 32 0x14000048 = 0x00260026

set mem /32 0x1400004c = 0x00010000

i.MX50 System Development Guide, Rev. 0

7-8 Freescale Semiconductor

Interfacing DDR Memories with the i.MX50 Processor

setmem /32 0x14000050 = 0x00000000 // | owpower node
setmem / 32 0x14000054 = 0x00000000 // | owpower node
setmem /32 0x14000058 = 0x00000000 // | owpower node
set mem /32 0x1400005¢c = 0x02000000
setmem /32 0x14000060 = 0x00000002 // [8] wite-node-reg; [3:0] CKSRX
setmem /32 0x14000064 = 0x00000000 // [16:0] read-node-reg
setmem / 32 0x14000068 = 0x00000000 // [31:16] MRO_DATA 0; [15:0] MRR_DATA
set mem /32 0x1400006c = 0x00040042 // [31:16] MR2_DATA 0; [15:0] MR1_DATA O
setmem /32 0x14000070 = 0x00000001 // [31:16] MR16_DATA 0; [15:0] MR3_DATA 0
set mem /32 0x14000074 = 0x00000000 // [31:16] MRO_DATA 1; [15:0] MR17_DATA O
set mem /32 0x14000078 = 0x00040042 // [31:16] MR2_DATA 1; [15:0] MR1_DATA 1
set mem /32 0x1400007¢ = 0x00000001 // [31:16] MR16_DATA 1; [15:0] MR3_DATA 1
set mem /32 0x14000080 = 0x010b0000 // [27:16] ZQ NIT; [15:0] MR17_DATA 1
setmem / 32 0x14000084 = 0x00000060 // ZQ
setmem / 32 0x14000088 = 0x02400018 // ZQ
setmem /32 0x1400008c = 0x01000e00 // ZQ
set mem /32 0x14000090 = 0x0a010101 // [18:16] COLUMN SIZE; [10:8] ADDR-PINS; [0]
El GHT_BANK_MODE
setmem /32 0x14000094 = 0x01011f 1f
setmem /32 0x14000098 = 0x01010101
set mem /32 0x1400009c¢ = 0x00030101 // [24] REDUC. select 16/32-bit node; [17:16]
CS_MAP
setmem /32 0x140000a0 = 0x00010000 // [16] LPDDR2_S4=1
set mem /32 0x140000a4 = 0x00010000 // [16] RESYNC DLL_PER AREF_EN, [8] RESYNC DLL
setmem /32 0x140000a8 = 0x00000000 // [25:16] INT_ACK; [10:0] |NT_STATUS
set mem /32 0x140000ac = 0x00000fff // [210:0] | NT_MASK
/1 HW DRAM CTL44~49 (0x140000b0~c4) Read-only, don't wite
setmem /32 0x140000c8 = 0x02020101 // ODT
set mem /32 0x140000cc = 0x01000000 // ODT
set mem /32 0x140000d0 = 0x01000201 // Additonal Del ay
set mem /32 0x140000d4 = 0x00000200 // Additonal Del ay
setmem /32 0x140000d8 = 0x00000102
set mem /32 0x140000dc = O0x0000ffff // [17:16] AXI0_FI FO TYPE_REG
/1 Modified:
set mem /32 0x140000e0 = 0x0000ff00 // No neaning for this MC
setmem / 32 0x140000e4 = 0x02020000 // AXl O
setmem / 32 0x140000e8 = 0x02020202 // AXl O
setmem / 32 0x140000ec = 0x00000202 // AXl O
setmem / 32 0x140000f 0 = 0x01010064 // AXl1
setmem / 32 0x140000f 4 = 0x01010101 // AXl1
setmem / 32 0x140000f 8 = 0x00010101 // AXI O
setmem / 32 0x140000f c = 0x00000064 // [16] CKE_STATUS
setmem /32 0x14000100 = 0x00000000
setmem /32 0x14000104 = 0x02000802 // DF
setmem /32 0x14000108 = 0x04080000 // DF
setmem /32 0x1400010c = 0x04080408 // DF
setmem /32 0x14000110 = 0x04080408 // DF
i.MX50 System Development Guide, Rev. 0
Freescale Semiconductor 7-9

Interfacing DDR Memories with the i.MX50 Processor

setmem /32

0x14000114

0x03060408

/1 Modified: WRLAT ADJ from2 to 3

setmem /32 0x14000118 = 0x00010002 // [24] ODT_ALT_EN=0

/1 Modified: ODT_ALT EN nmust be O

set mem /32 0x1400011c = 0x00001000 // [12] AXI O_H DE_BRESP=1; [8] MDDR CKE_SEL;
[0] AXI 0_AWCOBUF=0

/1 Modified: Reconmend AXIO_H DE BRESP = 1
//*:::
/1 DDR PHY settings
//*:::
setmem /32 0x14000200 = 0x00000000 // RESERVED

setmem /32 0x14000204 = 0x00000000 // on-chip ODT

/] [26:24] RD_DLY_SEL: [15:12] DQS_CE START; [11:8] DQS_OE END; [6:4]

DATA OE_START; [2:0] DATA OE_END

setmem /32 0x14000208 = 0x35003a27 // data-slice-0: PHY _CTRL_REG 0_BO

setmem /32 0x14000210 = 0x35003a27 // data-slice-1: PHY CTRL_REG 0 Bl

setmem /32 0x14000218 = 0x35003a27 // data-slice-2: PHY CTRL_REG 0_B2

setmem /32 0x14000220 = 0x35003a27 // data-slice-3: PHY _CTRL_REG 0_B3

setmem /32 0x14000228 = 0x35003a27 // data-slice-CA: PHY _CTRL_REG 0_CA

/] [8:6] GATE_ERR DELAY; [5:4] GATE CLOSE CFG [2:0] GATE_CFG

setmem /32 0x1400020c = 0x380002el // data-slice-0: PHY CTRL_REG 1 BO

setmem / 32 0x14000214 = 0x380002el // data-slice-1: PHY_CTRL_REG 1_B1

setmem /32 0x1400021c = 0x380002el // data-slice-2: PHY CTRL_REG 1 B2

setmem /32 0x14000224 = 0x380002el // data-slice-3: PHY CTRL_REG 1 B3

setmem /32 0x1400022c = 0x380002el // data-slice-CA: PHY CTRL_REG 1 CA

setmem /32 0x14000230 = 0x00000000 // RESERVED

/] [23] DFI_MOBILE EN=1; [16] DDR SEL=1; [3:0] DFI _RDDATA VALID >= RD DLY_SEL + 1
setmem /32 0x14000234 = 0x00810006 // PHY_CTRL_REG 2

/1 [31:29] PHASE DETECT SEL; [28] DLL_BYPASS MODE; [23:15] DLL_RD DELAY_ BYPASS;
[14:8] DLL_RD DELAY; [7:0] DLL_START_PO NT

setmem /32 0x14000238 = 0x60101014 // data-slice-0: DLL_CTRL_REG 0_BO

setmem /32 0x14000240 = 0x60101014 // data-slice-1: DLL_CTRL_REG 0_B1

setmem /32 0x14000248 = 0x60101014 // data-slice-2: DLL_CTRL_REG 0_B2

setmem /32 0x14000250 = 0x60101014 // data-slice-3: DLL_CTRL_REG 0_B3

setmem /32 0x14000258 = 0x60101014 // data-slice-CA: DLL_CTRL_REG 0_CA

/1 [23:15] DLL_WR DELAY_BYPASS; [14:8] DLL_WR DELAY; [7:0] DLL_INCR

setmem /32 0x1400023c = 0x00100b01 // data-slice-0: DLL_CTRL_REG 1 BO

setmem / 32 0x14000244 = 0x00100b01 // data-slice-1: DLL_CTRL_REG 1_B1

setmem / 32 0x1400024c = 0x00100b01 // data-slice-2: DLL_CTRL_REG 1_B2

setmem /32 0x14000254 = 0x00100b01 // data-slice-3: DLL_CTRL_REG 1 B3

setmem /32 0x1400025c = 0x00100b01 // data-slice-CA: DLL_CTRL_REG 1 _CA

11

[27:24] WRLAT_ADJ; [20: 16]

RDLAT_ADJ

i.MX50 System Development Guide, Rev. 0

7-10

Freescale Semiconductor

Interfacing DDR Memories with the i.MX50 Processor

/1 Start ddr init sequence

setmem /32 0x14000000 = 0x00000501 // bit[0]: start

7.3.2 Script file for DDR2 (266M)

/1 Revision History
/1 v0l by Tomy

/1 v0l works stable on TOL. O

/1 v02 by Marek

/1 Update the ZzQinit for TOL.1.1; It's NOT conpliant with TOL. 0

/1 v03 by Marek

/1 Update ddr settings to match the ddr configrati on guide

// e e e e i i pp——

wait = on
//*:::
/] init ARM

setmem /16 0x53f 98000 = 0x30

/1 Enable all clocks (they are disabl ed by ROM code)

setmem /32 0x53f d4068 = Oxffffffff
setmem / 32 0x53f d406c = Oxffffffff
setmem /32 0x53fd4070 = Oxffffffff
setmem /32 0x53fd4074 = Oxffffffff
setmem /32 0x53fd4078 = Oxffffffff

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-11

Interfacing DDR Memories with the i.MX50 Processor

set mem / 32 0x53f d407c
set mem /32 0x53f d4080
set mem / 32 0x53f d4084

Oxffffffff
Oxffffffff
Oxffffffff

/1 DDR cl ock setting

set mem / 32 0x53FD4098 0x80000003

// DDR PAD TYPE: DDR SEL[26:25] -- b00: LPDDR1/DDR2; bl1l0: LPDDR2
setmem / 32 0x53fa86ac = 0x00000000 //IOMUXC SW PAD CTL_GRP_DDR TYPE
//[9] DDR_INPUT=1 (DQ: differential input nopde)

setmem / 32 0x53fa866c = 0x00000200 //1 OMUXC_SW PAD CTL_GRP_DDRMODE CTL
//1[9] DDR_INPUT=0 (DATA: CMOS input type)

set mem /32 0x53f a868c =

/1[7] PKE=0 (Al
setmem /32 0x53fa8670

/1 Drive-Strength:

ddr pads except

0x00000000

0x00000000

DSE[21: 19]

/11 OMUXC_SW PAD CTL_GRP_DDRMODE

DQS)

/11 OMUXC_SW PAD_CTL_GRP_DDRPKE

setmem / 32 0x53fa86a4 = 0x00200000 //I| OMUXC_SW PAD CTL_GRP_CTLDS
setmem / 32 0x53fa8668 = 0x00200000 //I| OMUXC_SW PAD CTL_GRP_ADDDS
setmem /32 0x53fa8698 = 0x00200000 //| OMUXC_SW PAD CTL_GRP_BODS

setmem / 32 0x53fa86a0 = 0x00200000 //| OMUXC_SW PAD CTL_GRP_B1DS

setmem / 32 0x53fa86a8 = 0x00200000 //| OMUXC_SW PAD CTL_GRP_B2DS

setmem / 32 0x53f a86b4 = 0x00200000 //| OMUXC_SW PAD CTL_GRP_B3DS

setmem / 32 0x53fa8490 = 0x00200000 //I| OMUXC_SW PAD CTL_PAD DRAM OPEN
set mem / 32 0x53f a8494 = 0x00200000 //1 OMUXC_SW PAD CTL_PAD_DRAM OPENFB
setmem / 32 0x53fa8498 = 0x00200000 //| OMUXC_SW PAD CTL_PAD DRAM SDCLK_1
setmem / 32 0x53f a849c = 0x00200000 //| OMUXC_SW PAD CTL_PAD DRAM SDCLK_0O
set mem / 32 0x53fa84f0 = 0x00200000 //| OMUXC SW PAD CTL_PAD_DRAM DQWVD
setmem / 32 0x53f a8500 = 0x00200000 //| OMUXC_SW PAD CTL_PAD DRAM DQML
setmem / 32 0x53fa84c8 = 0x00200000 //I OMUXC _SW PAD CTL_PAD DRAM DQWR
setmem / 32 0x53f a8528 = 0x00200000 //| OMUXC_SW PAD CTL_PAD DRAM DQVB

/| DSE[21:19], PKE[7], PUE[6]

setmem / 32 0x53f a84f4 = 0x00200080 //| OMUXC_SW PAD CTL_PAD DRAM SDQSO0
setmem / 32 0x53fa84fc = 0x00200080 //I OMUXC _SW PAD CTL_PAD DRAM SDQS1
setmem / 32 0x53fa84cc = 0x00200080 //I OMUXC _SW PAD CTL_PAD DRAM SDQS2
setmem / 32 0x53f a8524 = 0x00200080 //| OMUXC_SW PAD CTL_PAD DRAM SDQS3

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

Interfacing DDR Memories with the i.MX50 Processor

/1 Load ZQ
//*:::
setmem /32 0x1400012C = 0x0000070d // pd<<8, pu<<0

set mem /32 0x14000128 = 0x080e0000 // (pd+l)<<24, (pu+l)<<16

/1 load PU, pu_pd_sel =0

setmem /32 0x14000124 = 0x00310000 // software |oad ZQ 3<<20, 1<<16
setmem /32 0x14000124 = 0x00200000 // clear for next |oad

/1 load PD, pu_pd_sel=1

set mem /32 0x14000128 = 0x080e0010 // (pd+l)<<24, (pu+l)<<l6, 1<<4
setmem /32 0x14000124 = 0x00310000 // software |oad ZQ 3<<20, 1<<16
setmem /32 0x14000124 = 0x00200000 // clear for next |oad

//**

//DDR Controller Registers
//**
/1 Devi ce: ELPI DA EDE2116ACBG

/1 Density: 2G bits x 2/chip-sel ect

/1 Organi zati on: 16Mwords x 16 bits x 8 banks

// Row addr ess: A0 to Al3

/1 Col um address: A0 to A9

//**

/1 Config: CAS=5, BL=4, 266Mz

//**

setmem /32 0x14000000 = 0x00000400 // [11:8] DRAM CLASS
// HW DRAM CTLO1 (0x14000004) Read-only, don't wite

setmem/ 32 0x14000008 = 0x00000080 // [23:0] TINIT: For this specific device, 400ns
wait tinme before issuing out any command to dram device

//Modified: tinit > 400ns

set mem / 32 0x1400000c = 0x00000000 // No neaning for LPDDR1l/ DDR2

set mem /32 0x14000010 = 0x00000000 // No neaning for LPDDR1l/ DDR2

setmem /32 0x14000014 = 0x02000000 // [27:24] |IN TAREF: For LPDDR1/DDR2, defines

the nunber of auto-refresh commands needed by the DRAM devices to satisfy the
initialization sequence
set mem /32 0x14000018 = 0x02030808 // [28:24] TCCD, [19:16] WRLAT, [12:38]
CASLAT LI N_GATE, [4:0] CASLAT_LIN
setmem /32 0x1400001c = 0x0c100302 // [2:0] TBST_I NT_I NTERVAL
set mem /32 0x14000020 = 0x02020402 // [11:8] TRP
setmem /32 0x14000024 = 0x0048eb04 // [23:8] TRAS MAX
set mem /32 0x14000028 = 0x00000606 // [24] CONCURRENTAP, [12:8] TCKESR, [2:0] TCKE
/1 Modi fied: disabl e CONCURRENTAP feat ure CONCURRENTAP=0
/1 Modi fied: Enlarge the TCKESR & TCKE
set mem /32 0x1400002c¢ = 0x08040401 // [11:8] TRCD
set mem /32 0x14000030 = 0x000000c8
i.MX50 System Development Guide, Rev. 0
Freescale Semiconductor 7-13

Interfacing DDR Memories with the i.MX50 Processor

setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32

0x14000034

0x14000038 =
= 0x00003401
0x14000040 =
0x14000044 =
0x14000048 =
= 0x00010000
0x14000050 =
0x14000054 =
0x14000058 =
= 0x03000000
0x14000060 =
0x14000064 =
0x14000068 =
= 0x00000000
0x14000070 =
0x14000074 =
0x14000078 =
= 0x00000000
0x14000080 =
0x14000084 =
0x14000088 =
= 0x01000000

0x1400003c

0x1400004c

0x1400005c

0x1400006¢

0x1400007c

0x1400008c

set mem /32 0x14000090

El GHT_BANK_

setmem /32
setmem / 32
setmem / 32
CS_MAP

setmem / 32
setmem / 32
setmem / 32
setmem / 32

MODE
0x14000094

0x14000098 =

0x1400009c

0x140000a0
0x140000a4

0x140000a8 =

0x140000ac

0x006b0c02
0x00000005

0x0005081b
0x00000000
0x003700c8

0x00000000
0x00000000
0x00000000

0x00000003
0x00000000
0x06420000

0x00000000
0x06420000
0x00000000

0x02000000
0x00000100
0x02400040

0x0a000101

0x01011f 1f
0x01010101
0x00030103

0x00000000
0x00010000
0x00000000
0x0000f f f f

/ | HW DRAM CTL44~49 (0x140000b0~c4)

setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32

// Modi fied:

setmem / 32
setmem / 32
setmem / 32
setmem / 32

0x140000c8
0x140000cc

0x140000d4

0x02020101

= 0x01000000
0x140000d0 =

0x140000d8 =

0x140000dc

0x140000e0
0x140000e4

0x140000e8 =

0x140000ec

0x01010201
0x00000200
0x00000101
0x0000f f f f

0x0000f fff
0x02020000
0x02020202
0x00000202

/1 [17:8] TRFC

/1 [15:0] tref: auto-refresh tine

/1 | owpower node

/1 | owpower node

/1 | owpower node

/1 [8] wite-nmode-reg; [3:0] CKSRX

/1 [16:0] read-node-reg

/1 [31:16] MRO_DATA 0; [15:0] MRR_DATA
/1 [31:16] MR2_DATA 0; [15:0] MR1_DATA O
/1 [31:16] MR16_DATA 0; [15:0] MR3_DATA 0
/1 [31:16] MRO_DATA 1; [15:0] MR17_DATA 0
/1 [31:16] MR2_DATA 1; [15:0] MRL_DATA 1
/1 [31:16] MR16_DATA 1; [15:0] MR3_DATA 1
[l [27:16] ZQNIT; [15:0] MR1L7_DATA 1

Il ZQ

Il ZQ

Il ZQ

// [18:16] COLUWN SIZE; [10:8] ADDR-PINS; [O0]
/1 [24] REDUC. select 16/32-bit npde; [17:16]
/1 [16] LPDDR2_S4=0

/1 [16] RESYNC DLL_PER AREF EN. [8] RESYNC DLL
/1 [25:16] INT_ACK; [10:0] |NT_STATUS

/1 [10:0] I NT_MASK

Read-only, don't wite

/1 ODT

/1 ODT

/1 Addi tonal Del ay

/1 Addi tonal Del ay

/1 [17:16] AXI O_FI FO TYPE_REG

/1 No nmeaning for this MC

/1 AXI 0

/1 AXI0

/1 AXI0

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
// Modi fied:
setmem / 32

0x140000f 0

0x140000f 4 =
0x140000f 8 =
= 0x00000064
0x14000100 =
0x14000104 =
0x14000108 =
= 0x081b081b

0x140000f ¢

0x1400010c

0x14000110 =
0x14000114 =

0x14000118

ODT_ALT_EN nust

0x1400011c

[0] AXI 0_AWCOBUF=0
/1 Modi fied: Recommend AXI 0 _H DE_BRESP = 1

0x01010064
0x01010101
0x00010101

0x00000000
0x02000702
0x081b0000

0x081b081b
0x0304081b
0x00010002
be 0

0x00001000

11
11
11
11

11
11
11
11
11
11

11

Interfacing DDR Memories with the i.MX50 Processor

AXI 1
AXI 1
AXI 0
[16] CKE_STATUS

[27:24] WRLAT_ADJ;
[24] ODT_ALT_EN=0

[20:16] RDLAT_ADJ

[12] AXI O_HI DE_BRESP=1

[8] MDDR_CKE_SEL;

//**

// DDR PHY Regi sters

//**

setmem /32 0x14000200 = 0x00000000

setmem /32
/1]26:24]

DATA_OE_START;

setmem / 32
setmem / 32
setmem / 32
setmem /32
setmem / 32

0x14000204

RD_DLY_SEL;
[2:0] DATA OE_END

0x14000208
0x14000210
0x14000218
0x14000220
0x14000228

/1[8:6] GATE_ERR _DELAY;

setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
setmem / 32
/1[23] DFI_
setmem / 32
/1]31:29]
[14:8] DLL_
setmem /32
setmem / 32
setmem / 32
setmem / 32
setmem /32
/1]23:15]
setmem / 32

0x1400020c

0x14000214 =

0x1400021c

0x14000224 =

0x1400022c
0x14000230

MOBI LE_EN=1;

0x14000234

RD_DELAY;
0x14000238
0x14000240
0x14000248
0x14000250
0x14000258

0x1400023c

/1 RESERVED
0x00000000 // on-chip ODT
[15:12] DQS_OE_START; [11:8] DQS_OE END; [6:4]
0x34013a27 [// data-slice-0: PHY _CTRL_REG 0_BO
0x34013a27 // data-slice-1: PHY CTRL_REG 0 Bl
0x34013a27 [// data-slice-2: PHY _CTRL_REG 0_B2
0x34013a27 [// data-slice-3: PHY _CTRL_REG 0_B3
0x34013a27 // data-slice-CA: PHY CTRL_REG 0_CA
[5:4] GATE_CLOSE_CFG [2:0] GATE_CFG
0x26c002c0 // data-slice-0: PHY CTRL_REG 1 BO
0x26c002c0 // data-slice-1: PHY CTRL_REG 1 Bl
= 0x26¢002c0 // data-slice-2: PHY_CTRL_REG 1 B2
0x26c002c0 // data-slice-3: PHY_CTRL_REG 1 B3
= 0x26¢002c0 // data-slice-CA: PHY CTRL_REG 1 CA
0x00000000 // RESERVED
[16] DDR_SEL=1; [3:0] DFI _RDDATA VALID >= RD DLY_SEL + 1
0x00000005 // PHY_CTRL_REG 2

PHASE_DETECT_SEL;
[7:0]

DLL_WR _DELAY_BYPASS;

[28]

0x60101414
0x60101414
0x60101414
0x60101414
0x60101414

0x00101401

DLL_BYPASS_MODE;
DLL_START_PO NT

11
11
11
11
11

[14: 8]

11

[23:15] DLL_RD DELAY_BYPASS;

dat a-sli ce-0:
dat a-slice-1:

DLL_CTRL_REG 0_BO

DLL_CTRL_REG 0_B1
data-slice-2: DLL_CTRL_REG 0_B2
data-slice-3: DLL CTRL_REG 0_B3
data-slice-CA: DLL _CTRL _REG 0 _CA

DLL_WR DELAY; [7:0] DLL_INCR
data-slice-0: DLL_CTRL_REG 1 BO

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

7-15

PR 4

Interfacing DDR Memories with the i.MX50 Processor

set mem /32 0x14000244
set mem /32 0x1400024c
set mem /32 0x14000254
setmem / 32 0x1400025c

0x00101401 // data-slice-1: DLL_CTRL_REG 1 _B1
0x00101401 // data-slice-2: DLL_CTRL_REG 1_B2
0x00101401 // data-slice-3: DLL_CTRL_REG 1_B3
0x00101401 // data-slice-CA: DLL_CTRL_REG 1_CA

/1 Start ddr init sequence

setmem /32 0x14000000 = 0x00000401 // bit[0]: start

i.MX50 System Development Guide, Rev. 0

7-16 Freescale Semiconductor

Layout Recommendation

Chapter 8
Layout Recommendation

This chapter provides recommendations to assist design engineers with the correct layout of their

i.M X50-based system. The majority of the chapter discusses the implementation of the DDR interface.
This chapter usesthe i.MX50 EVK board asits reference when illustrating the key concepts. Refer to the
existing i.MX50 EVK board layout files as a companion to this chapter.

8.1 Basic desigh recommendations

Thei.MX50 EVK board comesinal7 x 17 mm MAPBGA package with 0.8 mm ball pitch. The ball-grid
array contains 20 rows and 20 columns, making it a400 ball BGA package. For detailed information about
the package, see the i.MX50 data sheet.

Figure 8-1 provides an illustration of the ball-grid array. Figure 8-2 and Figure 8-3 illustrates additional

package information.
- [77]

A1 IMNDEX AREA

x|y ods

Top Wiew

Figure 8-1. i.MX50 top side view (400 MAPBGA 17 x 17 mm view)

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 8-1

-

Layout Recommendation

M3IA 3AIS

p——

DRSS 19X 0.8

- 0.45
A00x E&D.Eﬁ

Z‘I 880 e $mD.15®|A|B|C|

.

rOCGOMTMOIcxrExOomac S E
e

A1 INDEX AREA
BOTTOM VIEW

Figure 8-2. i.MX50 bottom side view

* | >

|
| .
%UMUM#.%.%MHMH.H—

| ! -8 [1
= _
a 2 g8 [> &2 B
e = Q
s

MOTES:

1. ALL DIMENSIONS IM MILLIMETERS.
2. DIMEMSIOMIMG AMD TOLERAMCIMG PER ASME Y14.8M—1904.

5}, MAXIMUM Z0LDER BALL DIAMETER MEASURED PARALLEL TO DATLM A

/ﬂ}\ DATUM A, THE SEATING FLAME, 1S DETERMINED BY THE SPHERICZAL CROWMS OF THE
SOLDER BaLLS.

A58 PARALLELISM MEASUREMENT SHALL EXCLUDE AMY EFFECT OF MARK ON TOP SURFACE
OF PACKAGE

Figure 8-3. i.MX50 side view

i.MX50 System Development Guide, Rev. 0

8-2

Freescale Semiconductor

Layout Recommendation

Maintaining the recommended footprint of a 12 mils pad, which alows an air gap of 19.5-mils between
pads, is critical for ease of fanout.
If using the Allegro tool, the optimal practiceisto use the footprint as created by Freescale. If not using
the Allegro tool, use the Allegro footprint export feature, which is supported by many tools. If export is
not possible, create the footprint as per the package mechanical dimensions outlined in the product data

shest.

Figure 8-4 shows the stack-up example for the LPDDR2 application.

| | Layer 1 Component side 1/2to 1 oz
| | Layer 2 Ground plane 1 0z
| | Layer3 Internal 1 1/2 0z
| | Layer4 Internal 2 1/2 oz
| | Layer 5 Power plane 10z
| | Layer 6 Solder side 1/2t0 10z
Figure 8-4. Stack-up example
Table 8-1 shows the impedance control file:
Table 8-1. Impedance control
Layers Single ended Differential
Trace_width Impedance Trace_width :r:::_s;tg: Impedance Trace_width :La;:::;: Impedance
(Mils) (Q) (Mils) (Mils) (Q) (Mils) (Mils) (Q)
Top 4 50 3.9 4.1 90 3.7 4.3 100
L2_GND — — — — — — — —
L3_Signal 4 50 3.9 4.1 90 3.7 4.3 100
L4_Signal 4 50 3.9 4.1 90 3.7 4.3 100
L5_power — — — — — — — —
Bottom 4 50 3.9 4.1 90 3.7 4.3 100

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

8-3

Layout Recommendation

Figure 8-5 shows the stack-up setting in Allegro:

B
| Subclazz Name Type td aterial Thickness Conductivity Diglectric Loss Megative Shield Wwidth
! [k b] [mhadzn) Constant Tahgent Artwork [k b]
i SURFALCE AR 1 I -
TOR CONDUCTOR d COFFER - 0.03048 595300 4.5 I [m] 01000 |
DIELECTRIC d FR-4 - 02032 I 4.5 0.035
GND d COFFER - 0.03048 595300 4.5 0.035 [m] =
DIELECTRIC d FR-4 - 02032 I 4.5 0.035
INT1 COWDUCTOR d COFFER - 0.03048 555300 4.5 0.035 [m] 0.1:300
DIELECTRIC d FR-4 - 02032 I 4.5 0.035
INT2 COWDUCTOR d COFFER - 0.03048 555300 4.5 0.035 [m] 01000
| DIELECTRIC hd FR-4 - 0.2032 I 45 0.035
PR hd COFFER - 0.03048 R55300 45 0.035 [m] =
DIELECTRIC hd FR-4 - 0.2032 I 45 0.035
. BOTTOM COWDUCTOR hd COFFER - 0.03048 R55300 45 I [m] 0.1000
SURFALCE AR 1 I
4 | _'I_I

Total Thickness: Layer Type M aterial Field to Set WYalue to Set " Show Single Impedance
119888 MM faLL [=l [thickness =] Epeaalisls I~ Show Diff Impedance

ak, I Apply | Cancel | Refrezh Materialz -» | Help |

Figure 8-5. Stack-up setting

i.MX50 System Development Guide, Rev. 0

8-4 Freescale Semiconductor

Layout Recommendation

The following shows the fanouts for the i.MX50 for two different layers.

Figure 8-6. Top side fanout

-
-
&

Figure 8-7. Bottom side fanout

The fanout scheme creates afour quadrant structure that facilitates the placement of decoupling capacitors
on the bottom side of the PCB. This keeps them closer to the power balls, which iscritical for minimizing
inductance and ensuring high-speed transient current demand by the processor.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 8-5

Layout Recommendation

A correct viasizeiscritical for preserving adeguate routing space. The recommended geometry for thevia
padsis. pad size 16 milsand drill 8 mils.

The constraints for the trace size may depend on a number of factors, such as the board stackup and
associated di-electric and copper thickness, required impedance, and required current (for power traces).

On the Freescale reference design, the minimum trace width of 3 milsis used for the DDR routing.

8.2 DDR2 routing rules

DDR2 routing can be accomplished two different ways: routing all signals at the same length or routing

by byte group.

Routing all signals at the same length can be more difficult at first because of the tight space between the
DDR and the processor and the large number of required interconnects. However, it is the better way
becauseit makessignal timing analysis straightforward. Table 8-2 explainshow to route the signals by the

same length.
Table 8-2. DDR2 routing by the same length
Signals Length Considerations
Address and bank Clock length Match the signals + 25 mils of the value specified in the length column
Data and buffer Clock length
Control signals Clock length

Clock

Lcritical (3 inches)

Match the signals of clocks signals + 5 mils.

DQS and DQS_B

Clock length

Match the signals of DQS signals + 10 mils of the value specified in
the length column.

Routing by byte group requires better control of the signals of each group. It isalso alittle more difficult
for analysis and constraint settings. However, its advantage is that the constraint to match lengths can be
applied to asmaller group of signals. Thisis often more achievable once the constraints are properly set.
Table 8-3 explains how to route the signals by byte group.

Table 8-3. DDR2 routing by byte group

Length
Signals Group Considerations
Min Max
DRAM_SDCLK]1:0] Clock Short as possible 2 inches Match the signals + 5 mils.
DRAM_SDCLK_BJ[1:0] 2 inches is recommended.
DRAM_A[15:0] Address and Clock (min) — 200 Clock (min) Match the signals + 25 mils.
DRAM_SDBA[2:0] Command
DRAM_RAS
DRAM_CAS
DRAM_SDWE

i.MX50 System Development Guide, Rev. 0

8-6

Freescale Semiconductor

Table 8-3. DDR2 routing by byte group (continued)

Layout Recommendation

Signals

Group

Length

Min

Max

Considerations

DRAM_DI[7:0]
DRAM_DQMO
DRAM_SDQS0
DRAM_SDQSO0_B

Byte Group 1

Clock (min)

DRAM_DI[15:8]

DRAM_DQMf

DRAM_SDQST1
DRAM_SDQS1_B

Byte Group 2

Clock (min)

DRAM_DI[23:16]
DRAM_DQM?2
DRAM_SDQS2
DRAM_SDQS2_B

Byte Group 3

Clock (min)

DRAM_DI[31:24]
DRAM_DQM3
DRAM_SDQS3
DRAM_SDQS3_B

Byte Group 4

Clock (min)

Match the signals of each byte
group + 25 mils.

All byte groups (1 to 4) matched
+ 50 mils

Match the differential signals of
DQS + 10 mils.

DRAM_CS[1:0]
DRAM_SDCKE[1:0]
DRAM_SDODT[1:0]

Control signals

Clock (min) — 200

Clock (min)

Match the signals + 50 mils.

8.3 ESD and radiated emissions recommendations

The PCB design should use 6 or more layers, with solid power and ground planes. The recommendations
for ESD immunity and radiated emissions performance are:

» All components with ground chassis shields (such as USB jack and buttons) should connect the
shield to the PCB chassis ground ring.

» Ferrite beads should be placed on each signal line connecting to an external cable. These ferrite
beads must be placed as close to the PCB jack as possible.

NOTE

Ferrite beads should have a minimum impedance of 500 €2 at 100 MHz with
the exception of the ferriteon USB_5V.

* Ferrite beads should NOT be placed on the USB D+/D—signal lines as this can cause USB signal
integrity problems. For radiated emissions problems due to USB, a common mode choke may be
placed on the D+/D—signal lines. However, it should not be required if the PCB layout is
satisfactory. Ideally, the common mode choke should be approved for high speed USB use or tested
thoroughly to verify that no signal integrity issues are created.

» Itishighly recommended that ESD protection devices be used on ports connecting to external
connectors. Refer to the reference schematic (available on the Freescale website) for detailed
information about ESD protection implementation on the USB.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

8-7

-

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

8-8 Freescale Semiconductor

Part I
Software Development

The chapters that follow aid you in software development for your product utilizing the i.MX50 Board
Support Package.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

Chapter 9
Porting U-Boot from an i.MX50 Reference Board to an
i.MX50 Custom Board

This chapter provides a step-by-step guide that explains how to add i.MX50 custom board support to
U-Boot. This developer's guideis based on U-Boot versionrel_imx_2.6.35_11.04.01, whichis present as
apackage on the LTIB-based Linux BSP at http://opensource.freescal e.com/git?p=imx/uboot-imx.git.

For an introduction to the use of U-Boot firmware with i.MX processors, read AN4173, “U-Boot for
i.MX51 Based Designs,” which is available on the Freescale website.

9.1 Obtaining the source code for the U-Boot

The following steps explain how to obtain the source code.
1. Install LTIB asusual. Make sure you deselect U-Boot from compilation.
2. Manually unpack u-boot: ./Itib -mprep -p u-boot.

The U-Boot code is now located at r pm BUI LD/ u- boot - <ver si on nunber >. The guide will now refer to the
U-Boot main directory as <usoor_bi R> and assumes that your shell working directory is <uscor_bi R>.

9.2 Preparing the code

The following steps explain how to prepare the code.

1. Make acopy of the board directory, using the following instruction:
$cp -R board/ freescal e/ nx50_<r ef erence board name> board/ freescal e/ mx50_<cust om board
nane>

2. Copy theexisting m50_<r ef er ence board name>. h board configuration fileasmx50_<cust om boar d
name>. h, using the following instruction.
$cp include/ configs/ nx50_<reference board name>. h incl ude/ configs/ mx50_<cust om board
nane>. h

3. Create oneentry in <usooT_Di R>/ Makef i | e for the new .M X50-based configuration. Thisfileisin
alphabetical order. The instruction to useis as follows:
mx50_<cust om board nane>_config : unconfig

@(MKCONFI G) $(@ _config=) armarmcortexa8 nmx50_<cust om board nanme> freescal e nx50

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 9-1

http://opensource.freescale.com/git?p=imx/uboot-imx.git

Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board

NOTE

U-Boot project devel opers recommend adding any new board to the
MAKEALL script and to run this script in order to validate that the new
code has not broken any other’s platform build. Thisisarequirement if you
plan to submit a patch back to the U-Boot community. For further
information, consult the U-Boot README file.

4. Renameboard/ freescal e/ mx50_<cust om boar d name>/ nk50_<r ef erence board name>.c as
boar d/ freescal e/ nk50_<cust om board nane>/ nk50_<cust om board nanme>. c.
5. Adapt any fixed paths. In this case, the linker script boar d/ f reescal e/ m50_<cust om boar d
name>/ u- boot . | ds has at least two paths that must be changed
— Change boar d/ fr eescal e/ nx50_<r ef er ence board name>/fl ash_header. o tO
boar d/ freescal e/ nk50_<cust om board nane>/fl ash_header .o

— Changeboar d/ freescal e/ nx50_<r ef erence board name>/ | i bnx50_<r ef erence board name>. a
tO boar d/ freescal e/ mk50_<cust om boar d nane>/1i bmx50_<cust om board nane>. a

6. ChangethelinecoBis := nmx50_<reference board name>.o (insde
boar d/ f r eescal e/ nk50_<cust om board name>/ Makefile) tO COBJS := nx50_<cust om board
nane>. o
NOTE

The remaining instructions build the U-Boot manually and do not use LTIB.

~

Create a shell script under <usoor_bi R> named bui | d_u- boot . sh.

Thefile's contents are now:

#! / bi n/ bash

export ARCH=arm

export CROSS_COWPI LE=<path to cross conpiler/prefix> (e.g.

PATH: / opt/ freescal e/ usr/l ocal / gcc-4.4.4-glibc-2.11. 1-multilib-1.0/armfsl-1inux-gnueabi
/ bi n/ arm none- | i nux- gnueabi -

export PATH=$PATH: <path to conpiler>

make nmx50_<cust om board nanme>_config
make

8. Compile U-Boot using $. / bui | d_u- boot . sh

9. If everything iscorrect, you should seethefileu- boot . bi n as proof that your build setup is correct
and ready to be customized.

The new i.MX50 custom board that you have created is an exact copy of thei.MX50 reference board, but
the boards are two independent builds. Thisallows you to proceed to the next step: customizing the code
to suit the new hardware design.

9.3 Customizing the i.MX50 custom board code

The new i.MX50 custom board is part of the U-Boot sourcetree, but it is a duplicate of the i.MX50
reference board code and needs to be customized.

The DDR technology is a potential key difference between the two boards. If there isa differencein the
DDR technology between the two boards, the DDR initialization needsto be ported. DDR initialization is

i.MX50 System Development Guide, Rev. 0

9-2 Freescale Semiconductor

http://wiki.freescale.net/display/MADCPOIMX/MX53+Armadillo+board+code+customization+for+U-boot

Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board

coded in the plug-in code, inside the boot header of the U-Boot image. When porting bootloader, kernel or
driver code, you must have the schematics easily accessible for reference.

9.3.1 Changing DRAM values for i.MX50 with LP-DDR2 initialization

Initializing the memory interface requires configuring the relevant 1/0 pins with the right mode and
impedance and initializing the DATABAHN module.

1. To port to the custom board, the appropriate DDR initialization needsto be used. Thisisthe same
initialization as would be used in a JTAG initialization script.

2. Openthefileboard/ freescal e/ m50_<custom board name>/f| ash_header. S
Modify the required IOMUX register values with the right mode and impedance values

4. Modify the DDR settings to match the memory specifications, no need to modify thedo_zq_calib
macro routine

w

Thisisthe new board/ f reescal e/ mx50_<cust om board name>/ f | ash_header . S customized for LP-DDR2.

9.3.2 Booting with the modified U-Boot

If the plug-in code (board/freescale/mx50_<custom board name>/flash_header.S) was modified
successfully, you can compile and write u- boot . bi n to an SD card. To test this, insert the SD card into the
SD card socket of the CPU board and power cycle the board.

A message like this should be printed in the console:
U-Boot 2009.08 (Jul 29 2010 - 15:17:24)

CPU: Freescale i.MX50 famly 1.0V at 800 MHz
Boar d: Unkown board idl:11

Boot Reason: [POR]

Boot Device: SD

12C r eady

DRAM 1GB

MMC: FSL_ESDHC. 0, FSL_ESDHC: 1

Card did not respond to voltage select!

MVMC init failed

I n: seri al
Qut: seri al
Err: seri al
Net : FECO

<ref erence board nane>: U Boot >

9.3.3 Further customization at system boot

To further customize your U-Boot board project, use the first function that system boot calls on:

start_arnmboot in "lib_arn board. c".
board_init()

All board initialization is executed inside this function. It starts by running through the init_sequence[]
array of function pointers.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 9-3

http://wiki.freescale.net/download/attachments/27004907/flash_header.S?version=2&modificationDate=1280352605000

Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board

The first board dependent function inside init_sequence|] array is board_init(). board_init() is
implemented inside boar d/ f r eescal e/ m50_<cust om board name>. c.

At this point the most important tip is the following line of code:

gd- >bd->bi _arch_nunber = MACH TYPE_MX50_<reference board nane>; /* board id for Linux */

To customize your board ID, go to the registration process at
http://www.arm.linux.org.uk/devel oper/machines/

Thistutorial will continue touse MACH_TYPE_MX50_<reference board name>.

9.3.4 Customizing the printed board name

To customize the printed board name, use the checkboar d() function. This function is called from the
init_sequencel] array implemented inside boar d/ fr eescal e/ nx50_<cust om board nane>. c. There are two
ways to use checkboar d() to customize the printed board name from Boar d: Unknown board id1: 11 tO
Boar d: MX50 CPU3 on <cust om boar d name>2: the brute forceway or by using amore flexibleidentification
method if implemented on the custom board.

To customize the brute force way, inside checkboard() and replaceprint f (" Board: "); with
printf("Board: MX50 CPU3 on <custom board>\n");

Alternatively, if the custom board provides a method to detect the board type via an external signal this
can be detected in the checkboard() function and the according information is printed.

Once this has been done, recompile U-Boot and deploy u-boot.bin to the SD card. The new prompt
message should be as follows:

U-Boot 2009.08 (Jul 30 2010 - 14:44:00)

CPU: Freescale i.MX50 famly 1.0V at 800 MHz
Board: MX50 CPU3 on <custom board nane>

Boot Reason: [POR]

Boot Device: SD

12C r eady

DRAM 1 GB

MMC: FSL_ESDHC. 0, FSL_ESDHC: 1

Card did not respond to voltage select!

MVC init failed

In: seri al
Qut: seri al
Err: seri al
Net : FECO

Ref erence Board: U Boot >

i.MX50 System Development Guide, Rev. 0

9-4 Freescale Semiconductor

http://www.arm.linux.org.uk/developer/machines/

Chapter 10
Porting the Android Kernel

Android releases for the i.MX50 processor are divided into three main parts. the bootloader (U-Boot or
redboot), the kernel, and the Android framework. This chapter explains how to port an Android kernel to
any platform that is based on the .M X50 chip. The easiest way to apply kernel modificationsto any i.MX
platform isto use an existing Android release either for the i.MX50 or i.MX53 processor. See the i.MX
Android-rx user guide (where rx stands for the release version) inside the Freescale Android release
package for further details.

10.1 Patching the Android kernel

Before configuring the Android kernel, locate the BSP patchesin theimx-android-rx folder, where x stands
for the release version. Thisfolder contains al BSP patches needed for the different i.MX platforms. It
also contains patches for some of the libraries implemented on the hardware abstraction layer. Apply the
relevant patches to the kernel.

10.2 Configuring Android release for customized platforms

Once the patches have been applied to the kernel, go to myandr oi d/ ker nel _i mx/ . Use the command nake
i mx5_andr oi d_def confi g tO prepare the configuration for your platform.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 10-1

Porting the Android Kernel

10.2.1 Enabling and disabling default resources

Users can disable resources that are enabled by default on the EVK board configuration by entering make
nenuconf i g Under nyandr oi d/ ker nel _i mx. Thismenu allows usersto enable and disablethe driversthat are
part of the Android framework’s included Linux image. Figure 10-1 shows the menu option screen.

Figure 10-1. Linux kernel configuration menu

Make your selections and exit the menu.

After you exit, the system creates the .config file, which contains the variables used to configure different
interfaces and peripherals on the chip. It also contains variables for libraries and tools that are part of a
Linux image.

i.MX50 System Development Guide, Rev. 0

10-2 Freescale Semiconductor

Porting the Android Kernel

10.2.2 Changing the configuration file

After the system has created the .config file, users can manually edit the configuration file to enable the
environment variables required by the Android image. Configuration filesfor different platforms are
located at: myandr oi d/ ker nel -i mx/ ar ch/ arnf confi g/

Choose the appropriate configuration file for your platform and double check the .config file for the
following variables:

* CONFIG_PANIC TIMEOUT=0

* CONFIG_BINDER=y

« CONFIG_LOW_MEMORY_KILLER=y

« CONFIG_ANDROID_PARANOID_NETWORK=y

« CONFIG_ANDROID_LOGGER=y

* CONFIG_ANDROID_PMEM=y

« CONFIG_PMEM_SIZE=24

« CONFIG_ANDROID_RAM_CONSOLE=y

« CONFIG_ANDROID_RAM_CONSOLE_ENABLE_VERBOSE=y

« CONFIG_ANDROID_BINDER_|IPC=y

« CONFIG_CRYPTO DEFLATE=y

« CONFIG_CRYPTO LZO=y

* CONFIG_DEVMEM=y

« CONFIG_LZO COMPRESS=y

« CONFIG_LZO DECOMPRESS=y

* CONFIG_ASHMEM=y

10.2.3 Android's memory map

Android's memory map is divided into four main blocks:
« GPU
* PMEM for GPU
 PMEM
e System memory
The total amount of memory is passed through a parameter called mem. This parameter usually contains

all the memory available on the platform, and it is passed on the bootloader as the following configuration
line.

setenv bootargs_android 'setenv bootargs $bootargs init=/init androi dboot. consol e=ttymcO
di O_primary calibration i p=dhcp nem=512M

NOTE
By default thei.MX50 EVK board is set with 512 Mbytes.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 10-3

Porting the Android Kernel

Android's memory map hardcodes three of its four main blocks to a specific value. The final block uses
whatever memory remains after the other three blocks have defined their boundaries. Thisremaining block
of memory is used by the system memory as standard RAM memory for loading the kernel and apps
execution.

Figure 10-2 shows how the Android's memory map is organized on a 512 Mbyte system.

0x 90008000 ———p Kemel's entry
point
4
3
1 2
P A
s h d
y d
M B a S r
B |
Ox ABOGO00O L
16
T % | GPUDevice ‘
0 8 I
t 0 0x ACO00000
M
0x AEO00000
MB

Figure 10-2. Android memory map (512 Mbyte system)

Thismemory map is defined under / nyandr oi d/ ker nel _i mx/ ar ch/ ar mf mach- mx5/ nx50_<r ef er ence boar d
name>. ¢ on the functioninit fi xup_nmxc_board.

10.3 |Initializing Android

After the kernel boots, the init application is the first program executed on the system. The init program
directly mountsall file systemsand devices, using either hard-coded file names or device names generated
by probing the sysfsfile system. This eliminates the need for a/etc/fstab file in Android.

After the device/system files are mounted, init reads/etc/ini t. rc, whichisatext filethat contains
parameters and commands executed by the init program. These commands are executed sequentially and
load some of the main services of Android. The file can aso create and mount directories where the
system, cache, and data partitions reside.
Init and init.rc load the following services:

* app_process application—Ilaunches Zygote

* rild daemon application—manages al radio GSM support

* mediaserver—handles al media, including audio and video

» ts calibrator—provides the touch screen calibration app

i.MX50 System Development Guide, Rev. 0

10-4 Freescale Semiconductor

Porting the Android Kernel

10.4 Modifying the init.rc partition locations

Theinit.rcfile mountsthe three main partitions—system, cache, and data—on theimage. By default, these

partitions are mounted from the SD/MMC controller.

If you have these partitions stored on another Flash source, modify the following lines to choose from the

specific NVM.

» To mount the /system directory:

mount ext3 /dev/bl ock/ mrthbl kOp2 /system
mount ext3 /dev/bl ock/ mtbl kOp2 /system ro renount

» To mount the /data directory:

mount ext3 /dev/ bl ock/ mrtbl kOp5 /data nosui d nodev
» To mounts the /recovery directory:

mount ext3 /dev/ bl ock/ bl kOp6 /cache nosuid nodev

You also can modify the partition number where the directories and files are stored.

10.5 Android enhancements to the Linux kernel
Most Android porting is performed on the kernel side, as shown in Figure 10-3.
LiNuXx KERMNEL

Display
Driver

Flash Memory Binder {IPC)

Camera Driver Dover Driver

ey Audio Power
WiFi Driver Drivers Management

Keypad Driver

Figure 10-3. Linux kernel

By patching the Android kernel, Android adds enhancements to the Linux kernel in order to give upper
layers services like interprocess communication and power management policies. Table 10-1 shows the

enhancements.
Table 10-1. Android enhancements
Enhancement Purpose
Alarm Provide timers functionality to wake up and sleep the device
Ashmem Asynchronous shared memory share memory across process.
Binder Ipc binder driver for interprocess communication

Power Management New stack power management to increase performance

Low Memory Killer Provides the functionality for android memory management
Kernel Debugger Debug purposes
Logger Debug purposes

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

10-5

h

Porting the Android Kernel

Most enhancement implementations are located at ker nel / dri ver s/ st agi ng/ andr oi d.

NOTE

Android also handles the hardware abstraction layer (HAL) between the
Linux kernel and the android library stack. These drivers are related to
specific hardware modules such as GPS, Bluetooth, or radio.

LIBRARIES ANDROID RUNTIME

SQLite WebKit Core Libraries

Surface Media
Manager Framework

Audio

OpenGLIES Manager

FreeType 55L
HARDWARE ABSTRACTION LAYER

Graphics Camera Bluetooth GPS Radio (RIL) WiFi

Figure 10-4. Hardware abstraction layer

This chapter does not cover these implementations. For information about HAL porting, please refer tothe
Android developer website at http://source.android.com.

i.MX50 System Development Guide, Rev. 0

10-6 Freescale Semiconductor

http://source.android.com/

Chapter 11
Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom
Board

The on-board diagnostic suite (OBDS) isaset of validation software used during the board bring up phase
and to validate the boards produced during mass manufacturing for defects. OBDS isrun to test out
specific IP blocks of thei.MX50 SoC and the associated hardware on the board.

In atypical scenario, abasic set of the hardware components are tested to be functional, prior to engaging
the software team to bring up the bootloader and the BSP.

Prior to reading this document, be familiar with the following chapters in the i.MX50 Applications
Processor Reference Manual:

* Chapter 1, “Introduction”

» Chapter 4, “Externa Signals and Pin Multiplexing”

» Chapter 5, “Clock Control Module (CCM)”

» Chapter 7, “ System Debug”

» Chapter 35, “IOMUX Controller (IOMUX)”

11.1 Supported components

The OBDS package for Freescale’'s i.MX50 reference board provides support for the following SoC
internal functional blocks and hardware on the reference board:

* Debug UART test (used for communication with the host PC)
* DDRtest

* Audio Out test

* LCD display test

« EINK display test

« 12C peripheral connectivity test

* MMC/SD test for SD Slot 2, where SD Slot 1 isimplicitly tested as OBDS boots from SD1
o SRTCtest

» Ethernet loopback test

* SPI-NOR test

» USBH1 device enumeration test

* NAND Fash devicelD test

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 11-1

V¥ ¢
i

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

11.2 Customizing OBDS for specific hardware

This section explains how to customize the OBDS for the following hardware modules:
o Section 11.2.1, “UART (seria port) test”
e Section11.2.2, “DDR test”
* Section 11.2.3, “Audio test”
* Section 11.2.4, “LCD display test
» Section 11.2.5, “E-INK display test
* Section 11.2.6, “1°C test”
* Section 11.2.7, “SD/MMC test”
e Section 11.2.8, “SRTC test
e Section 11.2.9, “Ethernet (FEC) loopback test”
e Section 11.2.10, “SPI-NOR test”
e Section 11.2.11, “NAND Flash device ID test

11.2.1 UART (serial port) test

The UART port is the primary communications channel between the reference board and host PC. The
UART test tests the transmission capabilities of the serial port and verifiesits receive capabilities by
prompting the user to input a character from the host PC to the serial port. Typing the character “X” exits
this test and moves to the next test.

On the i.MX50 reference board, the UART1 TXD and RXD pins are routed to the UART1_TXD and
UART1 RXD pinsviathe [OMUX (seethe~/ di ag- obds/ src/ x50/ har dwar e. ¢ file). In addition, thefile
~/ di ag- obds/ src/ mx50/ mx50. ¢ definesthe debug_uart variable to UART1 (as seen below):

static struct hw_nodul e *debug_uart = &uart1;

If adifferent UART port is used, make the required IOMUX changes to the routine debug_uar t _i omux()
function found in ~/ di ag- obds/ sr ¢/ mx50/ har dwar e. ¢ and update the debug_uart variable:

voi d debug_uart _i omux(voi d)

{

/1 UART1

/1 TXD

writel (ALTO, | OMUXC_SW MUX_CTL_PAD UART1_TXD);
writel (OXE4, | OMUXC_SW PAD_CTL_PAD UART1_TXD);
writel (0x0, | OMUXC_SW PAD CTL_GRP_UART);

/1 RXD

writel (ALTO, | OMUXC _SW MUX_CTL_PAD UART1_RXD);
writel (OXE4, | OMUXC_SW PAD_CTL_PAD UART1_RXD);
writel (0x1, | OMUXC UART1_| PP_UART_RXD MJX_SELECT | NPUT);
}

11.2.2 DDR test

The DDR test verifies the interface connectivity between thei.MX50 and the DDR memory. Thistest
should not be confused with a stress test that validates robust signal integrity of theinterface. Instead, this

i.MX50 System Development Guide, Rev. 0

11-2 Freescale Semiconductor

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

test ensures the proper assembly of the memory and i.MX50 by testing for opens and shorts on the
interface.

Eachtypeof i.MX50 reference boardsusesadifferent DDR configuration. If the custom board implements
aDDR that has a different configuration than the reference boards, refer to the data sheet of the specific
DDR and make the necessary changes to the DDR configurationsin the

~/ di ag- obds/ src/i ncl ude/ mx50/ pl at _st art up. h file. Thisfile sets up the IOMUX and DDR specific
configurations.

11.2.3 Audio test

The audio test first performs 12C communications between the i.MX 50 and the SGTL5000 audio codec.
The test then outputs audio data via the SSI/12S interface to the audio codec. The
~/ di ag- obds/ src/dri vers/ audi o folder contains the files that implement the audio test.

If adifferent SSI port and 1°C port is used, make the necessary IOMUX changes to the
~/ di ag- obds/ sr ¢/ mx50/ har dwar e. ¢ file.

11.2.4 LCD display test
This test outputs an image to the 4.3” WV GA LCD Display.

Refer tothehar dwar e. ¢ filefor changesin IOMUX when different pinsare used to interface with the LCD
panel. The code in the ~/ di ag- obds/ src/ dri vers/ 1 cdc/ mxc_l cdc. ¢ file has details on implementation of
thistest. The display’s data sheet provides the information for the different parameters.

11.2.5 E-INK display test
This test outputs an image to the E-INK display.

Refer to the har dwar e. ¢ filefor changesin IOMUX when different pins are used to interface with the
E-INK panel. The codein the ~/ di ag- obds/ src/ dri ver s/ epd folder contains the files that implement this
test.

11.2.6 I12C test

This tests performs an 1°C communications test with one or more devices on the 1°C bus (reads back the
device ID). ~/ di ag- obds/ src/ dri vers/i 2 folder contains the driver for the 1°C module. Refer to

har dvar e. ¢ for 12C IOMUX setup. The test code to communicate with the different 1°C devices can be
found at ~/ di ag- obds/ src/ nx50/i 2c_dev_tests.c

If another 12C port is needed, add anew entry for the other 1°C IOMUX setti ngsat har dwar e. ¢ and change
the 1°C device test code depending on the 1“C devices on the custom board.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 11-3

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

11.2.7 SD/MMC test

Thistest performs aread/write test to the MM C/SD card plugged into the SD slot. Thistest configuresand
uses the ESDHCV 2-2 module on the i.MX50 reference boards. The
~/ di ag- obds/ src/ dri vers/ mrc_sd/ i mx_mme folder contains the files necessary to test the MM C/SD port.

Refer to the ~/ di ag- obds/ sr c/ mx50/ har dwar e. ¢ filefor changesin IOMUX when a different ESDHC
module is used to interface with the SD slot or if different pins are used than the ones used in the i.MX50
reference design.

11.2.8 SRTC test

This test ensures that the SRTC low power and high power domain counters are running. The test details
can be found at the ~/ di ag- obds/ src/drivers/timer/im_tinmer folder.

11.2.9 Ethernet (FEC) loopback test

The test requires aloopback Ethernet cable. There is only one FEC in the i.MX50 SoC. Refer to the
har dwar e. ¢ file for changesin IOMUX in case pins other than the i.MX50 reference design are used to
interface with the network interface.

11.2.10 SPI-NOR test

This test verifies the interface between the i.M X50 CSPI module and the SPI-NOR flash. The

~/ di ag- obds/ src/ dri vers/spinor folder contains the files necessary to test the SPI-NOR Flash available
on the i.MX50 reference board, using the i.MX50 CSPI module and CSPI SS1. Change

~/ di ag- obds/ src/ dri vers/ spinor/i m_spi _nor.c When using a different SPI-NOR device. See the
following example implementation for the Atmel AT45DB321D SPI-NOR Flash.

struct chip_id AT45DB321D id =

{ .id0 = 0x01, // Atnel AT45DB321D
.idl = 0x27,
.id2 = oxif

}
The following calls are specific to the Atmel Flash:

spi _nor_status_at nel

® spi_nor_wite_atmel

If another ECSPI port is used to connect to the SPI-NOR (for example when connecting the SPI-NOR to
ECSPI-1), make the following changes:

1. Inside -~/ di ag- obds/ src/ x50/ mx50. ¢, edit the code as shown in the bullet list below:
platform.init()

{

i mMx_spi _nor. base CSPI 1_BASE_ADDR,;

i mk_spi_nor.freq 25000000;

i mx_spi_nor.ss_pol = I MX_SPlI _ACTI VE_LOW
i mk_spi_nor.ss = 1;

i mk_spi_nor.fifo_sz = 32;

i mx_spi_nor.us_delay = 0;

i.MX50 System Development Guide, Rev. 0

11-4 Freescale Semiconductor

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

spi_init_flash
spi _xfer_flash

i mk_cspi_init;
i mk_cspi _xfer;

change the following:

— CSPI 1_BASE_ADDR tO ECSPI 1_BASE_ADDR
— imx_cspi _init tOim_ecspi_init
— inmx_cspi _xfer tO inx_ecspi_xfer.
2. Add changesto the IOMUX settings for the other CSPI portsin

~/ di ag- obds/ src/ mx50/ har dwar e. c.

11.2.11 NAND Flash device ID test

This test reads the NAND device's ID and comparesit to alist of NAND device IDs maintained inside
~/ di ag- obds/ src/ dri vers/ nand/ supported_nand_parts.inl . If thetest finds an unrecognized NAND ID,
it printsthat 1D and asks the user to confirm it from the NAND device's data sheet.

~/ di ag- obds/ src/dri vers/nand/ st np_nand contains the driver for the NAND module.

Refer to ~/ di ag- obds/ src/ mx50/ har dwar e. ¢ for changes in IOMUX if pins are used to interface with the
NAND device other than the ones used in the i.M X50 reference design.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 11-5

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX50 System Development Guide, Rev. 0

11-6 Freescale Semiconductor

Chapter 12
Configuring the IOMUX Controller (IOMUXC)

Before using the i.MX50 pins (or pads), users must select the desired function and correct values for
characteristics such as voltage level, drive strength, and hysteresis. They do this by configuring a set of
registers from the IOMUXC.

For detailed information about each pin, see the “ External Signals and Pin Multiplexing” chapter in the
i.MX50 Applications Processor Reference Manual. For additional information about the lOMUXC block,
see the “*IOMUX Controller IOMUXC)” chapter in the i.MX50 Applications Processor Reference
Manual.

12.1 Information for setting IOMUX controller registers

The IOMUX controller contains four sets of registers that affect the i.MX50 registers, as follows:

* General-purposeregisters (IOMUXC_GPRx)—consist of three registers that control PLL
frequency, voltage, and other general purpose sets.

» “Daisy Chain” control registers IOMUXC_<Instance_port> SELECT_INPUT)—control the
input path to a module when more than one pad may drive the module’s input

* MUX control registers (changing pad modes):
— Select which of the pad's 8 different functions (also called ALT modes) is used.
— Can set pad’s functions individually or by group using one of the following registers:
— IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>
— IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>
» Pad control registers (changing pad characteristics):
— Set pad characteristics individually or by group using one of the following registers:
— IOMUXC_SW_PAD CTL_PAD <PAD NAME>
— IOMUXC_SW_PAD CTL_GRP_<GROUP NAME>
— Pad characteristics are:

— SRE (1 bit dew rate control)—Slew rate control bit; selectsbetween FAST/SLOW dew rate
output. Fast slew rate is used for high frequency designs.

— DSE (2 bitsdrive strength control)—Drive strength control bits; select the drive strength
(low, medium, high, or max).
— ODE (1 bit open drain control)—Open drain enable bit; selects open drain or CMOS output.

— HYS(1 bit hysteresis control)—Sel ects between CMOS or Schmitt Trigger when pad isan
input.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 12-1

Configuring the IOMUX Controller IOMUXC)

— PUS (2 bits pull up/down configuration value)—Sel ects between pull up or down and its
value.

— PUE (1 bit pull/keep sel ect)—Sel ects between pull up or keeper. A keeper circuit help assure
that a pin staysin the last logic state when the pin is no longer being driven.

— PKE (1 bit enable/disable pull up, pull down or keeper capability)—Enable or disable pull
up, pull down, or keeper.

— DDR_MODE_SEL (1 bit ddr_mode control)—Needed when interfacing DDR memories.
— DDR_INPUT (1 bit ddr_input control)—Needed when interfacing DDR memories.

12.2 Setting up the IOMUXC in U-Boot
To set up the IOMUXC and configure the pads on U-Boot, use the four files described in Table 12-1:

Table 12-1. Configuration files

Path Filename Description
cpu/arm_cortexa8/mx50/ iomux.c lomux functions (no need to change)
include/asm-arm/arch-mx50/ iomux.h lomux definitions (no need to change)
include/asm-arm/arch-mx50/ mx50_pins.h Definition of all processor's pads
board/freescale/mx50_<reference board name>/ | mx50_<reference board Board initialization file

name>.c

12.2.1 Defining the pads

The iomux.c file contains each pad’s IOMUXC definitions. Use the following code to see the default
definitions:

enum i omux_pi ns {

MX50_PI N_KEY_COLO
MX50_PI N_KEY_ROWD

_MXC BU LD GPIOPIN(3, 6 1, 0x24, 0x34C),
_MXC BU LD GPIO PIN(3, 7, 1, 0x28, 0x350),

}
To change the values for each pad according to your hardware configuration, use the following:
MX50_PI N_<PI N NAME> = _MXC BU LD _GPI O PIN(gp, gi, ga, m, pi)
Where:
* gp—IOPIN
* gi—IO Instance
* ga—MUX Mode
* mi—MUX Control Offset

i.MX50 System Development Guide, Rev. 0

12-2 Freescale Semiconductor

Configuring the IOMUX Controller (IOMUXC)

* pi—PAD Control Offset

12.2.2 Configuring IOMUX pins for initialization function

The mx50_<reference board name>.c file contains the initialization functions for all peripherals (such as
UART, I?C, and Ethernet). Configure the relevant pins for each initializing function, using the following:

mxc_request _i omux(<pi n nane>, <ionux config>);
mxc_i omux_set _i nput (<nux input select>, <mux input config>);
mxc_i omux_set _pad(<pi n nane>, <ionux pad config>);

Where the following applies:

<pin name> See all pins definitions on file mx50_pins.h

<iomux config> See parameters defined at iomux_config enumeration on file iomux.h
<iomux input select> See parameters defined at iomux_input_select enumeration on file iomux.h
<iomux input config> See parameters defined at iomux_input_config enumeration on file iomux.h
<iomux pad config> See parameters defined at iomux_pad_config enumeration on file iomux.h

12.2.3 Example—setting a GPIO
For an example, configure and use pin PATA_DA_1 (PIN L3) asageneral GPIO and toggle its signal.

Add the following code to the file mx50_<reference board name>.c, function board_init:

/] Request ownership for an 10 pin.
mxc_request _i omux(MX50_PI N_ECSPI 1_SCLK, | OMUX_CONFI G_ALT1);

/'l Set pin as O

reg = readl (GPI O4_BASE_ADDR + 0xO0);
reg & ~0x80;

witel (reg, GPl O4_BASE_ADDR + 0x0);

/] Set pin direction as output

reg = readl (GPl O4_BASE_ADDR + 0x4);
reg | = 0x80;

witel (reg, GPl 04_BASE _ADDR + 0x4);

/1 Delay 0.5 seconds
udel ay(500000) ;

/l Set pin as 1

reg = readl (GPI O4_BASE_ADDR + 0x0);
reg | = 0x80;

witel (reg, GPl 04_BASE _ADDR + 0xO);

/1 Delay 0.5 seconds
udel ay(500000) ;

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 12-3

Configuring the IOMUX Controller IOMUXC)

/'l Set pin as O

reg = readl (GPI O7_BASE_ADDR + 0xO0);
reg & ~0x80;

witel (reg, GPl O7_BASE_ADDR + 0xO);

If done correctly, the pin ECSPI_SCLK on the i.M X 50 toggles when booting.

12.3 Setting up the IOMUXC in Linux

Thefolder 1 i nux/ ar ch/ ar m mach- <pl at f or m name> containsthe specific machinelayer filefor your custom
board. For example, the machine layer file used on the i.MX50 <reference> boards are

l'i nux/ ar ch/ ar m mach- nx5/ mx50_<r ef erence board name>. c. Thisplatform isused in the examplesin this
section. The machine layer filesinclude the IOMUX configuration information for peripherals used on a
specific board.

To set up the IOMUXC and configure the pads, change the two files described in Table 12-2:
Table 12-2. IOMUX configuration files

Path File name Description
linux/arch/arm/plat-mxc/include/mach/ iomux-mx50.h IOMUX configuration definitions
linux/arch/arm/mach-mx5 mx50_<r ef er ence | Machine Layer File. Contains IOMUX configuration

board nanme>.c structures

12.3.1 IOMUX configuration definition

The iomux-mx50.h file contains definitions for all i.MX50 pins. Pin names are formed according to the
formula <SoC>PAD<Pad Name>_GPIO<Instance name>_<Port name>. Definitions are created with the
following line code.

| OMUX_PAD(PAD Control O fset, MJUX Control Offset, MJX Mbde, Select Input Offset, Select |nput,
Pad Control)

The variables are defined as follows:

PAD Control Offset Address offset to pad control register
(IOMUXC_SW_PAD _CTL_PAD <PAD NAME>)

MUX Control Offset Address offset to MUX control register
(IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>)

MUX Mode MUX mode data, defined on MUX control registers

Select Input Offset Address offset to MUX control register
(IOMUXC _<Instance _port>_SELECT_INPUT)

Select Input Select Input data, defined on select input registers
Pad Control Pad Control data, defined on Pad control registers

Definitions can be added or changed, as shown in the following example code:
#define MX50 PAD SD1_D3_ SD1_D3I OMUX_PAD(Ox3A4, O0xF8, 0, 0x0, 0, MX50_SD PAD CTRL)

i.MX50 System Development Guide, Rev. 0

12-4 Freescale Semiconductor

Configuring the IOMUX Controller (IOMUXC)

For all addresses and register values, check the IOMUX chapter in the i.MX50 Applications Processor
Reference Manual.

12.3.2 Machine layer file

The mx50_<reference board name>.c file contains structures for configuring the pads. They are declared
asfollows:

static struct pad_desc nx50_rdp[] = {

MX50_PAD SD1_D1__SD1_Di,
MX50_PAD_SD1_D2__SD1_D2,
MX50_PAD_SD1_D3__SD1_D3,

¥
Add the pad's definitions from iomux-mx50.h to the above code.

Oninit function (in thisexample “mx50_<reference board name>_io_init” function), set up the pads using
the following function:

mxc_i omux_v3_setup_mnultiple_pads(nx50_rdp, ARRAY_SI ZE(nx50_rdp));
12.3.3 Example—setting a GPIO

For an example, configure the pin PATA_DA_1 (PIN L3) asageneral GPIO and toggleits signal.
On Kernel menuconfig, add sysfs interface support for GPIO with the following code:

Device Drivers --->
[*] GPI O Support --->
[*] /sys/class/gpio/... (sysfs interface)

Define the pad on iomux-mx50.h file as follows:

#define MX50_ PAD ECSPI2_SSO__ GPl O 4_191 OMUX_PAD(0x38C, OxEO, 1, 0x0, 0, MX50_SD_PAD CTRL)

Parameters:
e 0x614—PAD Control Offset
e 0x294—MUX Control Offset
e 1—MUX Mode
* 0x000—Select Input Offset
o 0—Select Input
« NO_PAD_CTRL—Pad Control

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 12-5

Configuring the IOMUX Controller IOMUXC)

Toregister the pad, add the previously defined pin to the pad description structure in the mx50_<reference
board name>.c file, as shown in the following code.

static struct pad_desc nx50_rdp[] = {
MX50_PAD ECSPI 2_SSO__ GPI O 4 19,

)
To usethe pad as GPIO, go to thei.MX50 Linux command line. On thisline, itis possibleto test the GPIO
exporting its number on/ sys/ cl ass/ gpi o/ export .

This number isformed by <GPIO Instance— 1> x 32 + <GPI O Port number>. In thisexample GPIO4_19
isbeing used, so its number is (4 — 1) x 32 + 19= 115.

Export the GPIO4_19:

echo 115 > /sys/cl ass/ gpi o/ export

Set GPIO115 as outpult:

echo out > /sys/class/gpio/gpioll5/direction

Set output as 1 or O:

echo 1 > /sys/class/gpi o/ gpi 0115/ val ue
echo 0 > /sys/class/gpi o/ gpi 0115/ val ue

If the steps above were performed correctly, the ecspi 2_sso toggles.

i.MX50 System Development Guide, Rev. 0

12-6 Freescale Semiconductor

Chapter 13
Registering a New UART Driver

Because Linux already has a UART driver for the i.MX50, configure the UART pads on the IOMUX
registers. This chapter explains how to configure the UART pads, enable the UART driver, and test that
the UART was set up correctly.

13.1 Configuring UART pads on IOMUX

The lOMUX register must be set up correctly beforethe UART function can be used. This section provides
example code to show how to do this.

Pads are configured using thefile1i nux/ ar ch/ ar nf mach- mx5/ <pl at f or me. ¢, With <platform> replaced by
the appropriate platform file name (see Section 13.4, “File names and locations,” for the platform file
names). For example, the machine layer file used on the i.MX50 reference boards are

I'i nux/ ar ch/ ar m mach- mx5/ nx50_<r ef erence board nane>. c.

Theiomux-mx50.hfile containsthe definitionsfor all i.MX50 pads. Configure the UART padsasfollows:

#define MX50_PAD UART1_TXD GPI O 6_61 OMUX_PAD(0x330, 0x84, 1, 0x0, 0, NO_PAD CTRL)
#define MX50_PAD UART1_RXD_GPI O 6_71 OMUX_PAD(0x334, 0x88, 1, 0x0, 0, NO _PAD CTRL)

#define MX50_PAD UART1_CTS _GPI O 6_81 OMUX_PAD(0x338, 0x8C, 1, 0x0, 0, NO PAD CTRL)
#def i ne MX50_PAD_UART1

RTS__GPI O_6_91 OMJX_PAD(0x33C, 0x90, 1, 0x0, 0, NO _PAD CTRL)

The structures for configuring the pads are contained in the mx50_<reference board name>.c file. Update
them so that they match the configured pads’ definition as shown above. The code below shows the
non-updated structures:

static struct pad_desc nx50_rdp[] = {

/* UART pad setting */
MX50_PAD_UART1_RXD__UART1_RXD,
MX50_PAD _UART1_RTS__UART1_RTS,

b
Use the following function to set up the pads on the init function ms0_rdp_i o_i ni t (found in the
nx50_<ref erence board name>.c file).

mxc_i omux_v3_setup_mul ti pl e_pads(nx50_r dp, ARRAY_SI ZE(nx50_rdp));
The UART driver is now implemented and needs to be enabled.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 13-1

Registering a New UART Driver

13.2 Enabling UART on kernel menuconfig
Enable the UART driver on Linux menuconfig. Thisoption islocated at:

-> Device Drivers
-> Character devices
-> Serial drivers
<*> MXC Internal serial port support

[*] Support for console on a MXC/ MX27/ MX21 Internal serial port
After enabling the UART driver, build the Linux kernel and boot the board.

13.3 Testing the UART

By default, the UART is configured as follows:
» Baud Rate: 115,200

» Databhits: 8
» Parity: None
 Stophits: 1

* Fow Control: None

If the user used adifferent UART configuration for adevice that needsto connect to thei.MX50 processor,
connection and communication will fail. There is asimple way to test whether the UART is properly
configured and enabled.

On thei.MX50 Linux command line, type the following:

echo “test” > /dev/ttynmxc2

13.4 File names and locations
There are three Linux source code directories that contain relevant UART files.

Table 13-1 lists the UART files that are available on the directory <linux source code
directory>/drivers/serial/

Table 13-1. Available files—first set

File Description
mxc_uart.c Low level driver
serial_core.c Core driver that is included as part of standard Linux
mxc_uart_reg.h Register values
mxc_uart_early.c Source file to support early serial console for UART

i.MX50 System Development Guide, Rev. 0

13-2 Freescale Semiconductor

Registering a New UART Driver

Table 13-2 lists the UART files that are available on the directory <1 i nux source code
di rectory>/ arch/arm pl at - mxc/ i ncl ude/ mach/

Table 13-2. Available files—second set

File Description
mxc_uart.h UART header containing UART configuration and data structures
iomux-<platform>.h IOMUX pads definitions

Table 13-3 lists the UART files that are available on the directory <1 i nux source code
di rect ory>/ arch/ armf mach- mx5/

Table 13-3. Available files—third set

File Description
serial.c UART configuration data and calls
serial.h Serial header file
<platform>.c Machine layer file

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 13-3

-

Registering a New UART Driver

i.MX50 System Development Guide, Rev. 0

13-4 Freescale Semiconductor

Chapter 14
Adding Support for the i.MX50 ESDHC

This chapter explains how to add support for the i.MX50 ESDHCV 2-1/2/4 and ESDHCV 3-3 contrallers.

The multimedia card (MMC)/secure digital (SD)/secure digital input output (SDIO) host driver
implements a standard Linux driver interface for the enhanced MMC/SD host controller (ESDHC). The
host driver is part of the Linux kernel MMC framework.

The MMC driver has the following features:
* 1-bit or 4-bit operation for SD and SDIO cards
» Supports card insertion and removal detections
» Supports the standard MM C commands
* PIO and DMA datatransfers
* Power management
» Supports 1/4/8-bit operations for MMC cards
» Support eMMC4.4 SDR and DDR mode

14.1 Including support for SD1/SD2/SD3/SD4

Thei.MX50 BSPincludes reference code for SD1, SD2, and SD3. Hardware that includes connectivity to
any SD interface may require making changes to include this SD support. Make the required changes in
the mach-mx5 folder at <I ti b>/1i nux/ arch/ ar mf mach- mx5 by following the steps bel ow.

1. Createthepl atformdevice struct for the SD interfaces.

2. Configure the SD interface pins.

3. Createstruct mxc_mmc_pl at f or m dat a.

4. Set up card detection.

These steps are discussed in detail in the following subsections.

14.1.1 Creating platform device structures for the SD interfaces

To create the required platform device structures, open<i ti b>/ 1 i nux/ ar ch/ ar m mach- mx5/ devi ces. c. Use
the following code to ensure that your BSP includes all required platform device structures needed by the
SD driver.

static struct resource nxcsdhcXX_resources[] = {
{
.start = MMC_SDHCXX_BASE_ADDR,
.end = MMC_SDHCXX_BASE _ADDR + SZ 4K - 1,
.flags = | ORESOURCE_MEM

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 14-1

Adding Support for the i.MX50 ESDHC

{
.start = MXC_I NT_MMC_SDHCXX,
.end = MXC_I NT_MMC_SDHCXX,
.flags = | ORESOURCE_I RQ

}

{
.flags = | ORESOURCE_I RQ

}

struct platformdevice nkcsdhcXX device = {
.nane = "nxsdhci ",
Lid =Yy,
.num resources = ARRAY_SI ZE(mxcsdhcXX_resour ces),
.resource = nmxcsdhcXX_resources,

Variables have values as follows:
» XX canbel, 2, 3, or 4 depending on the SD interface.
e YY canhaveavauebetween0and 3. SD1'sID is0; SD2'sIDis1; SD3'sIDis2; and SD4'sID is3.

Declare the structures as externsin <i ti b>/ I i nux/ ar ch/ ar m mach- mx5/ devi ces. h with the following code.

extern struct platformdevice nxcsdhcl_devi ce;
extern struct platformdevice nxcsdhc2_devi ce;
extern struct platformdevice mkcsdhc3_devi ce;
extern struct platformdevice nmkcsdhc4_devi ce;

14.1.2 Configuring pins for SD function

IOMUX allows several configurations, each with dlight variancesin the pins. The iomux-mx50.h file
contains the definitionsfor all i.MX50 pads. Add entriesin thisfileto define the configuration for the SD
function. See Chapter 12, “Configuring the IOMUX Controller IOMUXC),” for a description of how to
set up the IOMUX and pads for routing signals as desired.

14.1.3 Creating the platform data structure

After pin out configuration, SD card characteristics need to be described in an mxc_mmc_platform_data
structure. Create one structure per SD in the system: mmcl_data, mmc2_data, mmc3_data, and/or
mmc4_data. These structures must be placed in <i ti b>/1i nux/ ar ch/ ar m mach- mx5/ mx50_<boar d name>. c.

static struct mkc_mmt_platformdata mrc4_data = {
.ocr_mask = MMC_VDD 27_28 | MMC VDD 28 29 | MMC_VDD 29 30
| MMC_VDD 31_32,
.caps = MMC_CAP_4_BI T_DATA | MMC_CAP_8_ BI T_DATA,
.mn_cl k = 400000,
.max_cl k = 50000000,
.card_inserted_state = 0,
.status = sdhc_get_card_det _st at us,
.wp_status = sdhc_write_protect,
.clock_mrt = "esdhc_cl k",

i.MX50 System Development Guide, Rev. 0

14-2 Freescale Semiconductor

Adding Support for the i.MX50 ESDHC

The preceding example shows the an example of an SD4 structure for a custom board. The SD4 interface
supportseither 4 bit or 8 bit datatransfers (SD4_DAT][7:0]). Clock frequency can be set to avalue between
400 KHz and 50 MHz. sdhc_get _card_det _status() andsdhc_wite_protect () functionsare used for

card detection and write protection.

Thenxc_mt_pl at form dat a Structure isdefined at
/<I'tib>/rpm BU LD/l inux/arch/arm plat-nxc/include/ mach/ me. h and is shown below

struct mxc_mmc_pl
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

atformdata {

/* u32 (*transl ate_vdd) (struct device *,

nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt
nt

ocr _mask;
vendor _ver;
caps;

m n_cl k;
max_cl k;
clk_flag; /*
cl k_al ways_on;
dl | _override_en;
dl | _del ay_cel Is;
reserved: 16;
card_fi xed: 1;

card_inserted_state: 1;

1 clock

/* avail abl e voltages */

enable, 0 not */

Needed by SDI O cards and etc */

Enabl e dl| override delay line */

The nunmber of delay cells (0-0x3f) */

unsi gned int);*/

unsigned int (*status) (struct device *);
int (*wp_status) (struct device *);

char *power _mmt;
char *cl ock_mmt;

Table 14-1. Structure descriptions

Struct member

Description

ocr_mask Control the voltage on SD pads to be high voltage (around 3.0 V) or low voltage (around
1.8 V). ‘0’ stands for low voltage range Optional output
vendor_ver Vendor version
caps Modes of operation - data transfer modes
min_clk Minimum SD operating frequency in Hz.
max_clk Maximum SD operating frequency in Hz.
clk_flg 0 clock disabled, 1 Clock enabled.

clk_always_on

Ensures the ESDHC modules clock is always enabled

dll_override_en

1 enables manual override for slave delay chain; uses value specified in dll_delay_cells field

dll_delay_cells

Value for the fixed delay used in the override mode

reserved

reserved (unused)

card_fixed

0 Read Only Memory (ROM) cards, 1 Read/Write (RW) cards.

card_inserted_state

1 SD card inserted in the slot, 0 there is no SD card attached to the socket.

status

Function pointer to the card detection status routine.

wp_status

Function pointer to the card write protection routine.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

14-3

Adding Support for the i.MX50 ESDHC

Table 14-1. Structure descriptions (continued)

Struct member

Description

power_mmc

power supply for ESDHC

clock_mmc

Current MMC clock

14.1.4 Setting up card detection

The SD connector includes an output pin (CD) that changesits state according to the card insertion status.
In some cases, CD isnot connected to the processor. I n those cases, the function should return trueto signal
that the card is always connected. When CD is connected, the SD card connector triggers the load of the
SD into the available devices. After insertion, the system detects the SD and |oads the MM C device under
/dev folder (/dev/mcthbl k*).

To set up card detection, first modify sdhc_get_card_det_status() function by adding an entry for your SD
device for detecting when the SD card has been inserted in the dot. Thisfunction islocated under your
platform at <I ti b>/ 1 i nux/ ar ch/ ar mf mach- nx5/ nx50_<board name>. c

static unsigned int sdhc_get_card_det_status(struct device *dev)

{

int ret = 0;

if (to_platformdevice(dev)->id ==

ret = gpi o_get_val ue(SD1_CD);
else if (to_platformdevice(dev)->id

ret = gpio_get_val ue(SD2_CD);
else if (to_platformdevice(dev)->id

ret

return ret;

}

2)

Next, configure the card detect pin as a genera purpose input in thefile located at
<l ti b>/1i nux/ ar ch/ armf mach- mx5/ nx50_<board name>. c. Below is an example that shows the SD2 card
detect pin configuration on the i.M X50 reference board.

#define SD2_CD(4*32 + 17) /*GPIO 5 17 */

static struct pad_desc

[* SD2 */

mx50_rdp[] = {

MX50_PAD_SD2_CD__ GPI O 5_17,

b

static void __init nx50_rdp_io_init(void)

{

gpi o_request (SD2_CD, "sdhc2-cd");
gpi o_direction_input (SD2_CD);

i.MX50 System Development Guide, Rev. 0

14-4

Freescale Semiconductor

Adding Support for the i.MX50 ESDHC

Then link GPIO interrupts with start and end functions in the resource structure of the SD interface in the
mx50_<board name>.c file located at <I ti b>/ 1 i nux/ ar ch/ ar if mach- nx5/ nx50_<boar d name>. ¢
static void __init mxc_board_init(void)

{
/* SD card detect irgs */

mxcsdhcl_devi ce.resource[2].start = 1OMIX_TO | RQ V3(SD1_CD);
mxcsdhcl_device.resource[2].end = | OMUX_TO | RQ V3(SD1_CD);
mxcsdhc2_devi ce.resource[2].start = 1OMIX_TO | RQ V3(SD2_CD);
mxcsdhc2_devi ce.resource[2].end = | OMUX_TO_ | RQ V3(SD2_CD);

Interfaces without card detection pins do not require any GPIO configuration. However, they need card
detection forced to the kernel by setting the card_inserted_state field. An example is shown below:

static void __init mxc_board_init(void)

{
/* SD card detect irgs */

/1 SDHCA Card support for i.MX50 custom board
mrt4_data.card_inserted_state = 1;

mrt4_data. status = NULL;

mrt4_dat a. wp_st at us = NULL;

NOTE

SD interfaces without card detection are intended to be used as a soldered

device, such asthe MovieNAND. For thisreason, SD without card_detect
isonly loaded during driver load (boot up time) if they are present. Be sure
that you have inserted the card prior to the ESDHC driver initialization.

14.2 Additional reference information

This section describes the ESDHC interface features, explains thei.MX50 support for ESDHC, and shows
the interface layouts.

14.2.1 ESDHC interface features

The ESDHC has 15 associate I/O signals with the following functions.
» TheSD_CLK isan internally generated clock used to drive the MMC, SD, SDIO cards.

 The CMD I/Oisused to send commands and receive responses to/from the card. Eight data lines
(DAT7-DATO) are used to perform data transfers between the ESDHC and the card.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 14-5

Adding Support for the i.MX50 ESDHC

» TheSD_CD#and SD_WP are card detection and write protection signals directly routed from the
socket. A low on SD_CD# meansthat acard isinserted and ahigh on SD_WP meansthat the write
protect switch is active.

+ SD_ODisanoutput signal generated in SoC level outside ESDHC and is used to select the external
open drain resistor.

» SD _LCTL isan output signal used to drive an external LED to indicate that the SD interfaceis
busy.
SD_CD#, SD_WPR SD_OD, SD_LCTL areal optional for system implementation. If the ESDHC is
configured to support a4-bit data transfer, DAT7-DAT4 can also be optional and tied to high.

Table 14-2. ESDHC pins

Pin Function
SD_CLK Clock for MMC/SD/SDIO card
SD_CMD CMD line connect to card
SD_DAT7 DAT?7 line in 8-bit mode—not used in other modes
SD_DAT6 DAT®6 line in 8-bit mode—not used in other modes
SD_DAT5 DATS line in 8-bit mode—not used in other modes
SD_DAT4 DAT4 line in 8-bit mode—not used in other modes
SD_DAT3 DATS3 line in 4/8-bit mode or configured as card detection pin. May be configured as card detection pin
in 1-bit mode.
SD_DAT2 DAT2 line or Read Wait in 4-bit mode. Read Wait in 1-bit mode.
SD_DAT1 DAT1 line in 4/8-bit mode. Also used to detect interrupt in 1/4-bit mode.
SD_DATO0 DATO line in all modes. Also used to detect busy state.
SD_CD# Card detection pin. If not used, tie high.
SD_WP Card write protect detect. If not used, tie low.
SD_OD Open drain select (not generated within the ESDHC). Optional output
SD_LCTL LED control used to drive an external LED. Active high. Fully controlled by the driver. Optional output
SD_VS Control the voltage on SD pads to be high voltage (around 3.0 V) or low voltage (around 1.8 V). 0
stands for low voltage range optional output.

14.2.2 ESDHC operation modes supported by the i.MX50

The ESDHC acts as a bridge, passing host bus transactions to the SD/SDIO/MMC cards by sending
commands and performing data accesses to and from the cards. It handles the SD/SDIO/MMC protocols
at the transmission level. Thei.MX50 ESDHC includes three instances of the Enhanced Secured Digital
Host Controller Version 2 (ESDHCv2) within the ports 1, 2 and 4. ESDHC port 3 on the i.MX50 can be
configured to work either as ESDHCv3 or ESDHCv2.

i.MX50 System Development Guide, Rev. 0

14-6 Freescale Semiconductor

http://wiki.freescale.net/download/attachments/30967044/mx53_evk_gpio.c?version=1&modificationDate=1288912519000

Adding Support for the i.MX50 ESDHC

Table 14-3 shows the supported operation modes.
Table 14-3. ESDHC operation modes

Modes of Operation Data Transfer Modes Frequency
MMC 1-bit, 4-bits or 8-bits full-speed (up to 20 MHz) high-speed (up to 52 MHz)
SD/SDIO 1-bit or 4-bit full-speed (up to 25 MHz) high-speed (up to 50 MHz)
CE-ATA 1-bit, 4-bit, or 8-bit —
Identification Mode — up to 400 kHz

SD Memory Cards support at least the two bus modes 1-bit or 4-bit width. The SD host sends a command
to the SD card to request a bus width change.

14.2.3 Interface layouts
Figure 14-1 shows an example of an i.MX50 SD interface layout.

i.MX50
ONTOP__ DAT[3:0] (4-bit defauit)
SD h
4.0 | Slot1 CLK
GB <
sSD < CMD
CD
| — WP
DAT[7:0] (8-bit default)
SD h
40 | glot2 CLK
GB <
sSD < CMD
CD
— WP
On Bottom

Figure 14-1. Example i.MX50 board SD interface layout

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 14-7

Adding Support for the i.MX50 ESDHC

Figure 14-2 shows another example i.MX50 SD interface layout.

i.MX50 CPU Board i MX50 i.MX50 CPU Board
On Top DAT[7:0] (8-bit default) cp —onTop
SD - ~ WP
ég Slot 1 ~ CLK 5 \T[3:0] . é-g
CMD -bitf default)
SD - Sk Slot1 |sD
CD R >
— WP L CMD_
DAT([3:0] (4-bit default) DAT[3:0]. |
sD < > t-bit defgt@ 40
40 | St ~ CLK > sD |GB
GB ~ovD CMD Slot2 | SD
SD < co
CD N
— WP _ WP
On Bottom On Bottom

Figure 14-2. Second example i.MX50 SD interface layout

Note that some SD interface card detection and write protection pins are not propagated from the SD card
tothei.MX50in all hardware implementations. Also note that SD4 is shared with PATA pins. The second
example board provides the connection to the four SD interfaces provided by the ESDHC in the i.MX50.

i.MX50 System Development Guide, Rev. 0

14-8 Freescale Semiconductor

Chapter 15
Configuring the SPI NOR Flash Memory Technology Device
(MTD) Driver

This chapter explains how to set up the SPI NOR Flash memory technology device (MTD) driver. This
driver uses the SPI interface to support Atmel data Flash. By default, the SPI NOR Flash MTD driver
creates static MTD partitions to support Atmel data Flash.

The NOR MTD implementation provides necessary information for the upper layer MTD driver.

15.1 Source code structure

The SPI NOR MTD driver isimplemented in the following directory:
<I'tib_dir> rpm BU LD |'i nux/drivers/nmtd/devi ces/ mxc_dat afl ash. c

15.2 Configuration options

BSP freescal e supports the following ATMEL SPI NOR Flash models:
» "AT45DB011B" "at45db011d"
» "AT45DB021B" "at45db021d"
» "AT45DB041x" "at45db041d"
» "AT45DB081B" "at45db081d"
» "AT45DB161x" "at45dbl161d"
» "AT45DB321x" "at45db321d"
» "AT45DB642x" "at45db642d"

Those models are defined in the structurest atic struct flash_info _ devinitdata dataflash_data[],
located at <l tib_di r>/rpm BU LD/ | i nux/ drivers/ ntd/ devi ces/ nkc_dat af | ash. c.

The parameters are as follows:
"at45db011d", 0x1f2200, 512, 256, 8, SUP_POWRPS | | S _POW2PS

Table 15-1 defines the variables.

Table 15-1. Parameter variables

Variable Definition
"at45db011d" Flash Name model
Ox1F_2200 [5:4]Manufacter ID, [3:2]Device ID
512 Number of pages

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 15-1

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

Table 15-1. Parameter variables (continued)

Variable Definition
256 Number of bytes per page
8 Offset

NOTE

If you want to use another data flash model, add it on the last structure. Be
sure the flash models are compatible with the Atmel data flashes.

15.3 Selecting SPI NOR on the Linux image

Table 15-2 provides information for each supported device.

Table 15-2. Device information

Device Density ID Code #Pages PageSize Offset
AT45DB011B 1 Mbit (128K) xx0011xx (0x0C) 512 264 9
AT45DB021B 2 Mbit (256K) xx0101xx (0x14) 1024 264 9
AT45DB041B 4 Mbit (512K) xx0111xx (0x1C) 2048 264 9
AT45DB081B 8 Mbit (1M) xx1001xx (0x24) 4096 264 9
AT45DB0161B 16 Mbit (2M) xx1011xx (0x2C) 4096 528 10
AT45DB0321B 32 Mbit (4M) xx1101xx (0x34) 8192 528 10
AT45DB0642 64 Mbit (8M) xx111xxx (0x3C) 8192 1056 11
AT45DB1282 128 Mbit (16M) xx0100xx (0x10) 16384 1056 11

Follow these stepsto select the desired data flash from Table 15-2.
1. Open the mx50_<board name>.c file (located at ar ch/ ar m mach- mx5/ mx50_<board name>. c) and
modify the structure called static struct flash_platform data mxc_spi _flash_data[]
2. Write the name of the data flash desired on the .type variable of this structure. This name must be
exactly the same asit appears on the dat af | ash_dat a[] _ Structure.
3. Set the number of partitionsyou want to use on the SPI NOR Flash. On the mx50_<board name>.c
file, gotothe structure called static struct nmtd_partition nxc_dataflash_partitions[]

Each partition has three elements: the name of the partition, the offset, and the size. By default,
these elements are partitioned into a bootloader section and akernel section, and defined as:

.name = "boot| oader",
.offset = 0,
.size = 0x000100000,

.name = "kernel",

.offset = MIDPART_OFS_APPEND,
.size = MIDPART SI Z FULL,

i.MX50 System Development Guide, Rev. 0

15-2 Freescale Semiconductor

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

Bootloader startsfrom address 0 and hasasize of 1 Mbyte. Kernel startsfrom address 1 Mbyteand
has a size of 3 Mbytes.
NOTE
You may create more partitions or modify the size and names of these ones.
To add more partitions, define another structure on the
nxc_dat af | ash_parti ti ons variable.
4. Togettothe SPl NOR MTD driver, usethecommand . /1tib -c whenlocated inthe<itib dir>.
On the screen displayed, select Configure the kernel and exit.
6. When the next screen appears, select the following option to enable the SPI NOR MTD driver:
CONFI G_MTD_MXC_DATAFLASH

This config enables access to the Atmel DataFl ash chips, using FSL SPI. In menuconfig, this
option is available under Devi ce Drivers > Menory Technol ogy Device (MID) support >
Sel f-contai ned MID device drivers > Support for AT DataFl ash via FSL SPI interface

o

15.4 Changing the SPI interface configuration

The .M X50 chip has three CSPI interfaces: one CSPI and two ECSPI. By default, the i.MX50 BSP
configures ECSPI-1 interface in the master mode to connect to the SPI NOR Flash. It also uses
chip select 1 from this ECSPI interface (SS1).

The main difference between CSPI and ECSPI is the supported baud rate. CSPI supports up to 16 Mbps
in master mode and ECSPI supports up to 66 Mbps.

15.4.1 Connecting SPI NOR Flash to another CSPI interface

Before connecting SPI NOR Flash to another CSPI, define the three things listed below:
* CSPI interface (between CSPI, ECSPI-1 or ECSPI-2).
* Chip select (between SS[3:0]).
* External signals

15.4.2 Changing the CSPI interface

To change the CSPI interface used, use the following procedure:
1. Locatethefileat arch/ ar mf mach- mx5/ nk50_<boar d nanme>. c
2. Look for thelinemxc_regi ster_devi ce(&mxcspi 1_device, &mxcspi1_data);

3. Usethefunctionstatic void __init mxc_board_init(void) toregister the CSPI-1 interface. To
enable the other CSPI interface, replace the first parameter as shown in Table 15-3:

Table 15-3. CSPI parameters

CSPI Parameter name

ECSPI-1 &mxcspil_device

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 15-3

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

Table 15-3. CSPI parameters (continued)

CSPI Parameter name
ECSPI-2 &mxcspi2_device
CSPI &mxcspi3_device

15.4.3 Changing the chip select

To change the chip select used, locate the file at ar ch/ ar m mach- nx5/ mx50_<boar d nane>. ¢ and use the
static struct spi_board_info nxc_dataflash_device[] __initdata structure.

Replace the value of ".chip_select” variable with the desired chip select value. For example,
.chi p_sel ect = 3 setsthe chip select to number 3 on the CSPI interface.

15.4.4 Changing the external signals

The iomux-mx50.h file contains the definitions for all i.MX50 pads. Add entriesin thisfile to define the
configuration for the CSPI function. See Chapter 13, “ Configuring the [IOMUX Controller IOMUXC),”
for adescription of how to set up the IOMUX and pads for routing signals as desired.

NOTE

Check the mxc_iomux_pins structure to ensure that the chosen signal
chosen is not used by another interface before configuration.

15.5 Hardware operation

SPI NOR Flash is SPI compatible with frequencies up to 66 MHz. The memory is organized in pages of
512 bytes or 528 bytes. SPI NOR Flash aso contains two SRAM buffers of 512/528 bytes each, which
allows datareception while a page in the main memory is being reprogrammed as well asthe writing of a
continuous data stream.

Unlike conventional Flash memories that are accessed randomly, the SPI NOR Flash accesses data
sequentially. It operates from asingle 2.7-3.6 V power supply for program and read operations.

SPI NOR Flashes are enabled through a chip select pin and accessed through athree-wireinterface: seria
input, serial output, and serial clock.

i.MX50 System Development Guide, Rev. 0

15-4 Freescale Semiconductor

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

15.6 Software operation

In a Flash-based embedded Linux system, a number of Linux technologies work together to implement a
file system. Figure 15-1 illustrates the relationships between standard components.

r-r-—-—-—---"----"-"-" - - - -"=-="-"-"-"-"-"-"=-"=-"-=-"=-"=-"=-"=-—"=-=-= I
| |
| |
! |
| USER Root File System |
|

|
! |
! |
l_ _ _ _ _ _ - - - - - - - - - -‘-_--“d-————— o
| i l |
| v |
I JFFS2 CRAMFS RAMFS |
| I | |
I KERNEL I
| Y |
| MTD |
| DRIVERS |
l_ - - - - - - - - - - - - s lr-e—_—_————_rss s |
T T T I T T S T
| I
I \ :
: y
| HARDWARE NOR RAM I
I Flash :
I

Figure 15-1. Components of a Flash-based file system

The MTD subsystem for Linux is a generic interface to memory devices, such as Flash and RAM, which
provides simple read, write, and erase access to physical memory devices. Devices called mtdblock
devices can be mounted by JFFS, JFFS2, and CRAMFSfile systems. The SPI NOR MTD driver is based
on the MTD data Flash driver in the kernel by adding SPI accesses.

In the initialization phase, the SPI NOR MTD driver detects a data Flash by reading the JEDEC ID. The
driver then adds the MTD device. The SPI NOR MTD driver aso provides the interfaces to read, write,
erase NOR Flash.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 15-5

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX50 System Development Guide, Rev. 0

15-6 Freescale Semiconductor

Chapter 16
Supporting the i.MX50 Reference Board LCD

This chapter explains how to support a new LCD on an i.MX50-based board. There are two options for
adding support for anew LCD panel without modifying the BSP: letting the BSP cal culate the timings
using VESA defaults or reducing the blanking time. VESA and reduced blanking work for many LCDs
but fail for some devicesbecause of timing configuration constraints. For those devices, we need to modify
the BSP and set the proper timing values. Modifying the boot arguments also allows usto include support
for the new driver and load the driver by using the boot arguments.

This chapter focuses on the ELCDIF display interface. Common display cards can be attached to this
interface. It provides connectivity for the Setko 43WVF1G-0 WV GA LCD panel and the Chunghwa
CLAAQ70VC01 WVGA LCD pandl.

NOTE

FSL i.MX50 reference design boards use some EL CDIF related pins for
Ethernet pins, so if you would like to enable an LCD panel on these
platforms, you need to disable Ethernet support in kernel menuconfig.

16.1 Supported display interfaces
The i.MX50 processor supports the E-INK display interfaces shown in Table 16-1.

Table 16-1. Available Interfaces

Feature ELCDIF (in i.MX50)
Number of ports Single display port
Legacy I/F Parallel and serial

* Synchronous (for display refresh) and asynchronous (to memory)
Note: Serial display is not supported in the BSP because there is no available smart LCD
panel to be connected.

ITU-R BT.656 mode * Called digital video interface or DVI mode
* includes progressive-to-interlace feature and RGB to YCbCr 4:2:2 color space
conversion to support 525/60
Note: This mode is not supported in the BSP because the reference design boards do
not support the interface.

16.2 Adding support for an LCD panel

To provide an exampl e of how to add support for an LCD panel, this section showsthe code and commands
used for adding support for the CLAAO70VCO01 WV GA LCD panel. CLAAO70VCOlisa 7" color
TFT-LCD (thin film transistor liquid crystal display) module. It iscomposed of an LCD panel, driver ICs,
control circuit, touch screen, and LED backlight. The 7" screen produces a high resolution image that is

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 16-1

Supporting the i.MX50 Reference Board LCD

composed of 800 x 480 pixel elementsin astripe arrangement. It usesa 16 bit RGB signal input to display
262144 colors.

Figure 16-1 shows the interface between an i.M X50-based board and Chunghwa CLAAQ70VCO01 7"
WVGA LCD.

R4-R0
RGB565
G5-G0
B4-B0
VSYMC
HSYNC Chunsghwra
DCLK CLAAOTOVCOL
CRDY /DE
PRI ADJ
PRML Brightness control for LED B/L S
YO | X0 Y1 | X1
TSX1 3V3
TSX2 O
SPI —# TSY1
MC34708 Tsv2
i. ME50

Figure 16-1. Interface

The LCD pandl requiresHSYNC, VSYNC, DE, PIXCLK, and part of the RGB data interface
(DISPB_DATA[15:0]). No additional signals, such asareset signal or serial interfaceinitialization routine
commands (SPI or 12C), are required. The backlight unit is controlled by a PWM signal generated by the
i.MX50 (PWM module), and the PMIC controls the touch panel interface. The display card includes a
connection for this panel.

Table 16-2 shows the timing parameters.

Table 16-2. Timing parameters

Parameter Symbol Min Typ Max Unit
Vertical period VP 490 500 520 Line
Vertical valid A% — 480 — Line

i.MX50 System Development Guide, Rev. 0

16-2 Freescale Semiconductor

Supporting the i.MX50 Reference Board LCD

Table 16-2. Timing parameters (continued)

Parameter Symbol Min Typ Max Unit
Vertical blank VBK 10 20 40 Line
Vertical front porch VFP 1 11 46 Line
Vertical refresh rate FV 55 60 65 Hz
Horizontal period HP 850 900 950 PIXCLK
Horizontal valid HV — — — PIXCLK
Horizontal blank HBK 50 100 150 PIXCLK
Horizontal front porch HFP 64 114 214 PIXCLK
Dot clock FCLK 25 27 32.11 MHz

16.3 Modifying boot kernel parameters to support a new LCD

Users can use the video mode parameter to change all timing and interface aspect ratios without writing a
single line of code by changing the settings through the default driver.

16.3.1 Setting the video kernel parameter
The video kernel parameter isamultipurpose parameter used to configure display features. It controlsthe
following features:

» Display resolution

» Pixel color depth

* Refreshrate

» ELCDIF output interface format

See the modedb.txt file located at Docunent at i on/ f b/ modedb. t xt for specific parameter information.

To set the parameter information for the video argument, use the following format. Variables between
square brackets are optional .

vi deo=nxc_el cdi f _fb: <xres>x<yres>[M [R] [- <bpp>] [@refresh>][i][mM <nanme>[- <bpp>] [@r ef resh>]
Table 16-3 defines the variables.

Table 16-3. Parameter information

Argument name Definition Units Values
name Video mode name NA String name
Xres Horizontal resolution Pixels Decimal value
yres Vertical resolution Lines Decimal value
M Timing calculated using VESA(TM) NA M
R Timing using reduced blanking NA R

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 16-3

Supporting the i.MX50 Reference Board LCD

Table 16-3. Parameter information (continued)

Argument name Definition Units Values
bpp Bits per pixel on frame buffer Bits Decimal value (16 or 24)
refresh LCD refresh rate Hz Decimal value

When <name> isincluded in the mode_option argument parameters, the timing is not calculated. Instead,
it isextracted from BSP code. Valid default modes can befound at | i nux/ dri ver s/ vi deo/ nodedb. ¢ and in
filesplaced at 1 i nux/ drivers/video/ mxc fol der.

Example 16-1. CLAA070VC01 WVGA LCD

For aCLAAQ70VC01 WVGA LCD connected to ELCDIF display port, the kernel command is
vi deo=nmxc_el cdi f _f b: CLAA- WGA (r econmended)

vi deo=nxc_el cdi f _f b: 800x480M@&5, bpp=32

Table 16-4 shows how the valuesin this example correspond to the argument names defined in Table 16-3.
Table 16-4. VGA LCD example variables

Argument Name Value Definition
name CLAA-WVGA Reflects the video mode defined in frame buffer platform data
xres 800 800 pixels (horizontal)
yres 480 480 lines (vertical)
M M Timing calculated using VESA (TM)
R Not used in this command | —
bpp 32 Frame buffer is 32 bits per pixel
refresh 55 55 Hz

16.3.2 Modifying the bits per pixel setting

The default bits per pixel setting is 16 bits. To change the default value to another depth, modify the bpp
parameter in video mode, for example bpp = 32. Please refer to Table 16-5.

Check the frame buffer bpp and other settings in the /sys/class folder. The output should look like the
following:

root @reescal e ~$ cd /sys/cl ass/ graphi cs/fb0/
root @reescal e /sys/devices/platform nkc_el cdi f_fb/graphi cs/fb0$ cat bits_per_pixel
32

Note that the final line shows the bits per pixel to be 32, reflecting our change from the default of 16 bpp.

i.MX50 System Development Guide, Rev. 0

16-4 Freescale Semiconductor

Supporting the i.MX50 Reference Board LCD

16.4 Adding support for a new LCD

Add the support for the new LCD inthe BSPif neither VESA nor reducing the blanking cal culation works
for your LCD, or if you need a special function.
Perform the following steps to modify the i.MX50 BSP to add support for synchronous panels:

1. Addadisplay entry intheltib catalog.

2. Create the madglobal LCD panel file.

3. Add compilation flag for the new display.

4. Configure LCD timings and display interface.

5. Use boot command to select the new LCD.

The following subsections describe these steps in detail .

16.4.1 Adding a display entry in the Itib catalog

To add an entry for anew LCD, perform the following steps:

1. Enter thei.MX50 display specific folder as follows.
$ cd <ltib dir>/rpm BU LD/ linux/drivers/video/ nxc
2. Open the Kconfig file with the command gedit Kconfig &
3. Usethe following code to add the entry where you want it to appear.

config FB_MXC CLAA SYNC PANEL
depends on FB_MXC_SYNC_PANEL
tristate "CLAA WGA Panel "

16.4.2 Creating the LCD panel file (initialization, reset, power settings,
backlight)

Because power settings are handled by the ATLAS APL PMIC and other voltage regulators, the display
driver must configure the APL PMIC during initialization to set up the power voltage configuration if this
has not aready been done. Also, the reset waveform and initialization routine must be included. To do
these tasks, create an LCD file with panel-specific functions at the following location:

<ltib dir>rpm BU LD |inux/drivers/video/ mc/ mkcfb_CLAA wga.c

WARNING

Before connecting an LCD panel to the i.MX50 board, check whether the
LCD is powered with the proper supply voltages and whether the display
datainterface has the correct V10O value. Incorrect voltages and values may
harm the device.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 16-5

Supporting the i.MX50 Reference Board LCD

The LCD file must include the definition of four basic functions described in Table 16-5 and can include
other functions and macros as needed.

Table 16-5. Required functions

Function name

Function declaration

Description

lcd_probe static int __devinit lcd_probe(struct Called when the LCD module is loaded. It should contain, pmic
platform_device *pdev) configuration, reset, power on sequence and the initialization
routine.
lcd_remove static int __devexit lcd_remove(struct Called when the LCD module is removed. It should contain the
platform_device *pdev) power off PMIC configuration, the power off sequence, and the
de-initialization routine.
lcd_suspend | static int lcd_suspend(struct Not always implemented, but used to enhance low power modes
platform_device *pdev, pm_message_t on the device. Usually called when the system enters suspend
state) mode.
lcd_resume | static int lcd_resume(struct Not always implemented, but used to enhance low power modes

platform_device *pdev)

on the device. Usually called when the system returns from
suspend mode.

Next, create a platform device that can be loaded and unloaded. This example declares the new platform
device using the devices.h and devices.c files|ocated at:

<lItib dir>//rpm BU LD/ | i nux/ arch/ arnm mach- nx5/

1. Addanew entry on madglobal:devices.c using the following:

struct platformdevice | cd_wga_device

{

.nane =
.id =0,

},
}s

"lcd_cl aa",

={

Be careful to use the same name for the new platform device entry as the nameincluded in
madglobal:mxcfb_claa wvga.c for the driver.

static struct platformdriver |cd_driver

.driver = {
.name = "lcd_claa"},
. probe = | cd_probe,
.renmove = __devexit_p(lcd_renove),
.suspend = | cd_suspend,
.resume = | cd_resune,

}

2. I’?egister thedeviceat < tib

={

di r>//rpm BU LD/ | i nux/ arch/ ar m mach- mx5/ madgl obal : mx50_<r ef er ence boar d nanme>. ¢ by using
the following code:

static int __init mxc_init_fb(void)

{

mxc_regi ster_device(& cd_wga_device, NULL);

return O;

}

i.MX50 System Development Guide, Rev. 0

16-6

Freescale Semiconductor

Supporting the i.MX50 Reference Board LCD

16.4.3 Adding the compilation flag for the new display

After the LCD file has been created and the entry has been added to the Kconfig file, modify the makefile
to include the LCD file in the compilation by using the code shown below. The makefileisin the same
folder asthenew LCD file: <Itib dir>/rpm BU LD/ | i nux/dri vers/ vi deo/ nxc/ makefil e

i feq ($(CONFI G_ARCH MX21) $(CONFI G_ARCH_MX27) $(CONFI G_ARCH_MX25) , y)

obj - $(CONFI G_FB_MXC_TVOUT) += fs453. 0
obj - $(CONFI G_FB_MXC_SYNC_PANEL) += mx2f b. o nxcfb_nodedb. o
obj - $(CONFI G_FB_MXC_EPSON_PANEL) += mx2f b_epson. o
el se
ifeq ($(CONFI G MXC | PU_V1),Y)
obj - $(CONFI G_FB_MXC_SYNC_PANEL) += nmxcfb. o nmxcfb_nodedb. o
el se
obj - $(CONFI G_FB_MXC_SYNC_PANEL) += mxc_ipuv3_fb.o
endi f
obj - $(CONFI G_FB_MXC_EPSON_PANEL) += nmxcf b_epson. o
obj - $(CONFI G_FB_MXC_EPSON_QVGA_PANEL) += mxcf b_epson_qgvga. o
obj - $(CONFI G_FB_MXC_TOSHI BA_ QVGA_PANEL) += nxcfb_t oshi ba_qgvga. o
obj - $(CONFI G_FB_MXC_SHARP_128 PANEL) += nmxcf b_sharp_128x128. o
endi f

obj - $(CONFI G_FB_MXC_EPSON_VGA_ SYNC_PANEL) += nxcf b_epson_vga. o
obj - $(CONFI G_FB_MXC_CLAA W/GA_SYNC_PANEL) += nmxcfb_cl aa_wga. o

obj - $(CONFI G_FB_MXC_TVOUT _CH7024) += ch7024.0
obj - $(CONFI G_FB_MXC_TVOUT_TVE) += tve. o
obj - $(CONFI G_FB_MXC_LDB) += | db. o
obj - $(CONFI G_FB_MXC_CH7026) += nxcfb_ch7026. 0

#obj - $(CONFI G_FB_MODE_HEL PERS) += nxc_edid.o

Note that a new object, mxcfb_claa wvga.o, is created when the

CONFIG_FB_MXC _CLAA_WVGA_SYNC_PANEL flagisset. The LCD modulewith theinitialization
and de-initialization routinesis only available to the kernel after this object has been created. If the LCD
does not need a particular configuration, you may omit the usage of the LCD file and discard any changes
on Kconfig and Makefile.

16.4.4 Configuring LCD timings and the display interface

To support the new LCD, include the specification for the following LCD characteristicsin the
madgl obal : nx50_<r ef er ence board name>. ¢ file (located at
<ltib dir>//rpm BU LD/ | i nux/ ar ch/ arm mach- nk5/ madgl obal : mx50_<boar d name>. c):

» Display resolution

» Pixel color depth

* Refreshrate

* RGB display waveform description.

» ELCDIF display output interface format

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 16-7

Supporting the i.MX50 Reference Board LCD

For the display, resolution, refresh rate, and RGB display waveform descriptions, add anew f b_vi deonode
struct into the video_modeq[] array based on the LCD timing and waveforms. See the CLAA-WVGA
entry on the following example code.

static struct fb_vi deonode video_nodes[] = {

{
/* NTSC TV out put */

"TV-NTSC', 60, 720, 480, 74074,

122, 15,
18, 26,
1, 1,

FB_SYNC_HOR HI GH ACT | FB_SYNC VERT H GH ACT | FB_SYNC EXT,
FB_VMODE_| NTERLACED,
0,},

/* 800x480 @57 Hz */
" CLAA- WGA", 57, 800, 480, 37037, 40, 60, 10, 10, 20, 10,
FB_SYNC CLK_LAT_FALL,
FB_VMODE_NONI NTERLACED,
0,}.
}s

The driver and platform data link can be done by using an mxc_f b_pl at f orm dat a struct When the frame
buffer deviceisregistered, asfollows.

static struct nxc_fb_platformdata CLAAO57VAOLICT fb_data =

{
.interface_pix_fm = VAL2_PI X_FMI_RGB565,
.mode_str = "CLAA- WG&A",
.mode = vi deo_nodes,
.num nodes = ARRAY_SI ZE(vi deo_nvpdes),
b

i.MX50 System Development Guide, Rev. 0

16-8 Freescale Semiconductor

Chapter 17

Setting Up the Keypad Port (KPP)

The KPPisdesigned to interface with the keypad matrix with 2-point contact or 3-point contact keys. The
KPP is designed to simplify the software task of scanning a keypad matrix. With appropriate software

support, the KPP is capable of detecting, debouncing, and decoding one or multiple keys pressed
simultaneously on the keypad.

Because Linux aready contains adriver for the i.MX50 keypad, all users must do to add and configure a
new custom keypad isto configure the keypad pins on the IOMUX registers and register the driver in the
platform file located at | i nux/ ar ch/ ar m mach- mx5/ <your _pl at f or . ¢

Table 17-1 lists the files used in the setup process:
Table 17-1. Files for adding/configuring a new keypad

File Location Description
linux/drivers/input/keyboard/mxc_keyb.c Device driver file
linux/arch/arm/mach-mx5/devices.c Implements the driver registries
linux/arch/arm/mach-mx5/<platform>.c Machine Layer file
linux/include/usr/include/linux/input.h Input key codes include file
linux/arch/arm/plat-mxc/include/mach/iomux-<platform>.h IOMUX pads definitions

17.1 Configuring keypad pins on IOMUX

To use the keypad function, users must first set up the keypad pins on the IOMUX registers. The pad pins
can be configured on file1i nux/ ar ch/ ar nf mach- mx5/ <pl at f or m>. ¢, Where <platform> is replaced by the
appropriate platform file name. For example, the machine layer file used on the i.MX50 reference boards
IS1inux/arch/ ar m mach- nx5/ mx50_<r ef erence board nane>.c. Thisplatformisused in the example
procedure in this section.

The iomux-mx50.h file contains definitions for all i.MX50 pins. Configure the keypad pins as follows:
#def i ne MX50_PAD_KEY_COLO__GPl O 4_0I OVUX_PAD(0x2CC, 0x20, 1, 0x0, 0, NO PAD CTRL)

#define MX50_PAD KEY ROW)__GPI O 4_11 OMUX_PAD(0x2D0, 0x24, 1, 0x0, 0, NO _PAD CTRL)
#define MX50_PAD KEY COL1__GPI O 4 2| OMUX_PAD(0x2D4, 0x28, 1, 0x0, 0, NO _PAD CTRL)
#define MX50_PAD KEY ROWL__GPI O 4 31 OMUX_PAD(0x2D8, 0x2C, 1, 0x0, 0, NO _PAD CTRL)
#define MX50_PAD KEY COL2__GPI O 4_4]1 OMUX_PAD(0x2DC, 0x30, 1, 0x0, 0, MX50_SD PAD CTRL)
#define MX50_PAD KEY ROW2__GPI O 4 5| OMUX_PAD(Ox2EO, 0x34, 1, 0x0, 0, NO _PAD CTRL)
#def i ne MX50_PAD KEY COL3__GPI O 4_61 OMUX_PAD(Ox2E4, 0x38, 1, 0x0, 0, NO _PAD CTRL)
#define MX50_PAD KEY ROWB__GPI O 4 71 OMUX_PAD(Ox2E8, 0x3C, 1, 0x0, 0, NO _PAD CTRL)

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 17-1

Setting Up the Keypad Port (KPP)

17.2 Creating a custom keymap

The input.h file defines codes for general keyboards, as follows.

#def i ne KEY_HOVE 102
#define KEY_UP 103
#def i ne KEY_PAGEUP 104
#define KEY_LEFT 105
#def i ne KEY_RI GHT 106
#def i ne KEY_END 107
#def i ne KEY_DOMWN 108
#def i ne KEY_PAGEDOMN 109
#def i ne KEY_I NSERT 110
#def i ne KEY_DELETE 111

Use these |abels or add new onesto create your custom keymap.

17.3 Configuring the pads with the machine layer file

The mx50_<board name>.c file contains the structures to configure the pads. They are as follows:
static struct pad_desc nx50_rdp[] = {

/* Keypad */
MX50_PAD_KEY_COLO__KEY_COLO,
MX50_PAD_KEY_COLO__KEY_COLO,
MX50_PAD _KEY_ROW__KEY_ROWD,
MX50_PAD KEY_COL1__KEY_COL1,
MX50_PAD KEY_ROM__KEY_ROA,
MX50_PAD KEY_COL2__KEY_COL2,
MX50_PAD _KEY_ROW2__KEY_ROAZ,
MX50_PAD KEY_COL3__KEY_COL3,
MX50_PAD _KEY_ROWB__KEY_ROWB,

¥
Use the following procedure to configure the pads:
1. Add the configured pin's definitions from the iomux-mx50.h files to the structures in the
mx50_<board name>.c file.
NOTE

Remove any entry that can cause pin conflict. i.e.
MX50 PAD KEY_COL2 _KEY COL2 conflicts with
MX50 PAD_KEY_COL2 TXCAN1.

2. Oninit function, set up the pads using the function below:
mxc_i omux_v3_setup_nul tipl e_pads(mk50_rdp, ARRAY_SI ZE(nx50_rdp));

i.MX50 System Development Guide, Rev. 0

17-2 Freescale Semiconductor

Setting Up the Keypad Port (KPP)

3. Add the keymapping matrix as follows:

static ulé keymappi ng[16] = {
KEY_UP, KEY_DOAN, KEY_MENU, KEY_BACK,
KEY_RI GHT, KEY_LEFT, KEY_SELECT, KEY_ENTER,
KEY_F1, KEY_F3, KEY_1, KEY_3,
KEY_F2, KEY_F4, KEY_2, KEY_4,
b
4. Change the KEY S according to input.h labels and your keypad layout.
5. Add the following structure to configure the keypad:

static struct keypad_data keypad_plat_data = {
.rowmax = 4,
.col max = 4,
.learning = 0,
.delay = 2,
.matri x = keymappi ng,
b
6. Register the keypad device. On the same machine layer file, add the following line on function
mxc_board_init:

mxc_regi ster_devi ce(&mxc_keypad_devi ce, &keypad_pl at_dat a) ;

The new keypad is now implemented.

17.4 Enabling the keypad
Select the keypad on Linux menuconfig. This option islocated at:

---> Device Drivers
---> I nput device support
---> Keyboar ds
---> MXC Keypad Driver

Build the Linux kernel and boot the board.

17.5 Testing the keypad
There are two simple ways to test the keypad: using cat and using Evtest.

17.5.1 Using cat to test the keypad

On thei.MX50 Linux command line, type the following:
cat /dev/input/keyboardO

ASCII characters are displayed when keys are pressed.

17.5.2 Using Evtest to test the keypad

Evtest is asimple software to test inputs. Build it by selecting the respective package on the Itib package
list.

On the i.MX50 Linux command line, type the following:
evtest /dev/input/keyboardO

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 17-3

PR 4

Setting Up the Keypad Port (KPP)

Evtest displays the information of every key event.

Event: tinme 862.980003, type 1 (Key), code 106 (Right), value 1
Event: time 863.110002, type 1 (Key), code 106 (Right), value 0
Event: tinme 863.620003, type 1 (Key), code 158 (Back), value 1
Event: tinme 863.750002, type 1 (Key), code 158 (Back), value O
Event: tinme 865.560003, type 1 (Key), code 139 (Menu), value 1
Event: tinme 865.730002, type 1 (Key), code 139 (Menu), value O
Event: tinme 866.150003, type 1 (Key), code 28 (Enter), value 1
Event: tinme 866.350002, type 1 (Key), code 28 (Enter), value 0O
i.MX50 System Development Guide, Rev. 0
17-4 Freescale Semiconductor

Chapter 18
Porting Audio Drivers to a Custom Board

This chapter explains how to port audio driversfrom the Freescale reference BSP to a custom board. This
procedure varies depending on whether the audio codec on the custom board is the same as or different
than the audio codec on the Freescal e reference design. This chapter first explains the common porting
task and then the different porting tasks.

18.1 Common porting task

The mxc_audio_platform_data structure must be defined and filled appropriately for the custom board
before doing any other porting tasks. An example of afilled structure can be found in the file located at
I'i nux/ ar ch/ ar m mach- mx5/ nx50_<board nane>.c
static struct nxc_audi o_pl atformdata sgtl5000_data = {

.Ssi_num = 1,

.src_port = 2,

.ext_port = 3,

.hp_irg = | OMUX_TO_| RQ V3(HP_DETECT),

.hp_status = headphone_det _st at us,

.anmp_enabl e = mxc_sgtl 5000_anp_enabl e,

.clock_enable = mxc_sgtl 5000_cl ock_enabl e,

.syscl k = 12288000,

b
Customize the structure according to the following definitions:
Ssi_num The ssi used for this codec

src_port The digital audio mux (DAM) port used for the internal SSI interface
(for details about the internal functionality of the DAM please refer to the
AUDMUX chapter of the i.MX50 Applications Processor Reference Manual)

ext_port The digital audio mux (DAM) port used for the external device audio interface
(for details about the internal functionality of the DAM please refer to the
AUDMUX chapter of the i.MX50 Applications Processor Reference Manual)

hp_irq The IRQ line used for headphone detection

hp_status A pointer to afunction that returns the current headphone detect status. If a
different mechanism or GPIO is used for headphone detect in the custom board,
this function must be modified to accurately reflect the headphone presence.

amp_enable A pointer to afunction that enables/disables the audio codec. For example, this
function can be used to turn on or turn off the regulator supplying the audio codec.
init The initialization routine for the audio codec. Any setup necessary for the audio

codec should be implemented in this function.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 18-1

Porting Audio Drivers to a Custom Board

18.2 Porting the reference BSP to a custom board (audio codec is the
same as in the reference design)
When the audio codec isthe same in the reference design and the custom board, users must ensure that the

I/0O signals and the power supplies to the codec are properly initialized in order to port the reference BSP
to the custom board.

The iomux-mx50.h file contains the definitions for all pads. Add entriesin thisfileto define the
configuration for the audio codec signals. See Chapter 13, “Configuring the IOMUX Controller
(IOMUXC),” for adescription of how to set up the IOMUX and pads for routing signals as desired.
The necessary signals for the sgt|5000 codec, which is used on the reference board, are as follows:

 1°Cinterface signals

 1°Sinterface signals

» SSl external clock input to i.MX50
Table 18-1 shows the required power supplies for the sgt|5000 codec.

Table 18-1. Required power supplies

Power Supply Name Definition Value
vVDDD Digital voltage 1.98V
VDDIO Digital 10 voltage 36V
VDDA Analog voltage 3.6V

18.3 Porting the reference BSP to a custom board (audio codec is
different than the reference design)

When adding support for an audio codec that is different than the one on the Freescal e reference design,
users must create new AL SA driversin order to port the reference BSP to a custom board. The ALSA
drivers plug into the ALSA sound framework, which allows the standard AL SA interface to be used to
control the codec. Details about the ALSA infrastructure and developing AL SA drivers can be found at
http://www.al sa-proj ect.org/main/index.php/A SoC.

The source code for the ALSA driver islocated in the Linux kernel source tree at | i nux/ sound/ soc.
Table 18-2 shows the files used for the sgtl codec support:

Table 18-2. Files for sgtl codec support

File Name Definition

imx-pcm.c * Shared by the stereo ALSA SoC driver, the 5.1 ALSA SoC driver, and the Bluetooth codec driver.
* Responsible for preallocating DMA buffers and managing DMA channels.

imx-ssi.c * Registers the CPU DAI driver for the stereo ALSA SoC
* Configures the on-chip SSI interfaces

i.MX50 System Development Guide, Rev. 0

18-2 Freescale Semiconductor

http://www.alsa-project.org/main/index.php/ASoC

Porting Audio Drivers to a Custom Board

Table 18-2. Files for sgtl codec support

File Name Definition

sgtl5000.c * Registers the stereo codec and Hi-Fi DAI drivers.
* Responsible for all direct hardware operations on the stereo codec.

imx-3stack-sgtl5000.c | * Machine layer code
* Creates the driver device
Registers the stereo sound card.

NOTE

If using adifferent codec, adapt the driver architecture shownin Table 18-2
accordingly. The exact adaptation will depend on the codec chosen. Obtain
the codec-specific software from the codec vendor.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 18-3

-

Porting Audio Drivers to a Custom Board

i.MX50 System Development Guide, Rev. 0

18-4 Freescale Semiconductor

Chapter 19
Porting the Fast Ethernet Controller Driver
This chapter explains how to port the fast Ethernet controller (FEC) driver to thei.M X50 processor. Using

Freescale's standard (FEC) driver makes porting to the i.MX50 simple. Porting needs to address the
following three areas:

» Pin configuration
» Source code
» Ethernet connection configuration

19.1 Pin configuration

The FEC supports three different standard physical media interfaces: a reduced media independent
interface (RMI1), a mediaindependent interface (MI1), and a 7-wire serial interface.

The Freescale hardware reference platform directly supports RMI1, which has a reduced pin-count
compared to MII. Therefore, RMII is the recommended interface.

Table 19-1 shows the signals used by the RMI1 interface.
Table 19-1. RMII signals

Signal name Definition
FEC_TX_CLK (In, Synchronous clock reference)
FEC_TX_EN (Out, Transmit Enable)
FEC_TXDI[0:1] (Out, Transmit Data)
FEC_RX_DV (In, Carrier Sense/Receive Data Valid)
FEC_RXDI[0:1] (In, Receive Data)
FEC_RX_ER (In, Receive Error)

FEC_MDC (Out, Management Data Clock)

FEC_MDIO (In/Out, Management Data Input/Output)

FEC_PHY_RESET_B (In, PHY reset)

Because thei.MX50 has more functionality than it has physical 1/0 pins, it uses /O pin multiplexing. The
genera-purpose 1/0 pins (gpiol GPIO[22—31]) default to ALT1.

The FEC_PHY_RESET_B signal comes up by default as gpio2 (pin #0), which is ALT function 1. This
particular signal/pin isused as a simple GPIO to reset the FEC PHY. To use the pins as FEC signals
mentioned above, configure them as the ALTO function in the I/O multiplexer, except for
FEC_PHY_RESET B.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 19-1

V¥ ¢
i

Porting the Fast Ethernet Controller Driver
19.2 Source code

The source code for the Freescale FEC Linux environment is located under the
../1tib/rpm BU LD/l i nux/drivers/net directory. |t containsthefollowingfiles:

Table 19-2. Source code files

File Names
FEC low-level Ethernet driver: e fec.h
e fec.c
MAC Switch software ¢ fec_switch.h

¢ fec_switch.c

IEEE 1588 PTP (network time sync) » fec_1588.h
» fec_1588.c
MPC52xx PowerPC Ethernet Driver * fec_mpc52xx.h

» fec_mpc52xx.c
» fec_mpc52xx_phy.c

Of those files, only the FEC low-level Ethernet driver code (fec.[ch]) congtitutes the Linux i.MX50 FEC
driver.

The driver uses the following compile definitions:
CONFIG_FEC 1588 Set for IEEE 1588 network time synchronization.

CONFIG_M5272 PowerPC information. Can be safely ignored and should not be set.
CONFIG_MXC IMXxx parts. Should be defined.
CONFIG_MXS Legacy MXS part. Should generally not be defined.

19.3 Ethernet configuration

This section covers aspects such as duplex and speed configurations.

The two most common issues are as follows:

* MAC addressis missing or invalid

» Ethernet connection (duplex, speed)
By default, the Ethernet driver reads the burned-in MAC address, which isfound in code from the fec.c
filelocated in the function fec_get_mac(). If no MAC address existsin the hardware, the MAC isread as

all zeros, which creates problems. If this occurs, modify the code to read the MAC address from Flash or
elsewhere.

The FEC driver and hardware are designed to comply to the IEEE standards for Ethernet auto-negotiation.
See the FEC chapter in the i.MX50 Applications Processor Reference Manual for a description of using
flow control in full duplex and more.

i.MX50 System Development Guide, Rev. 0

19-2 Freescale Semiconductor

Chapter 20

Porting USB Host1 and USB OTG

The USB Host1 and the USB OTG signals do not multiplex with other pins on the processor. Therefore,

it is not necessary to port IOMUX settings for these interfaces when moving to a new platform.

The only required setup is as follows:

For the USB Hostl PHY

— Supply USB_H1 VDDA33 with 3.3V
— Supply USB_H1 VDDA25 with 2.5V

For theUSB OTG PHY

— Supply USB_OTG_VDDA33 with 3.3V
— Supply USB_OTG_VDDA25 with 2.5V

The USB Hostl PHY uses the following signals:

USB_H1 GPANAIO
USB_H1 RREFEXT
USB_H1 DP
USB_H1 VDDA33
USB_H1 DN
USB_H1 VDDAZ25
USB_H1 VBUS

The USB OTG PHY uses the following signals:

USB_OTG_VBUS
USB_OTG_ID
USB_OTG_VDDA25
USB_OTG DN
USB_OTG_VDDA33
USB_OTG_DP
USB_OTG_RREFEXT
USB_OTG_GPANAIO

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor

20-1

	i.MX50 System Development Guide
	Contents
	Figures
	Tables
	About This Guide
	Audience
	Organization
	Essential reference
	Suggested reading
	General information
	Related documentation

	Conventions
	Signal conventions
	Acronyms and abbreviations

	Part I Hardware Design and Bring-up
	Chapter 1 Design Checklist
	1.1 Design checklist
	Table 1-1. Design checklist

	1.2 Supplemental tables and figures
	Table 1-2. DDR Vref resistor sizing guideline
	Table 1-3. JTAG interface summary
	Figure 1-1. Boot configuration bus isolation
	Figure 1-2. Boot configuration bus isolation

	Chapter 2 Configuring JTAG Tools for Debugging
	2.1 Accessing debug with a JTAG scan chain (ARM tools)
	Figure 2-1. Example of adding a device
	Figure 2-2. Updating the CoreSight base address
	Figure 2-3. i.MX/Cortex-A8 RVDS JTAG scan chain

	2.2 Accessing debug with a JTAG scan chain (other JTAG tools)

	Chapter 3 Avoiding Board Bring-Up Problems
	3.1 Using a voltage report to avoid power pitfalls
	Table 3-1. Sample voltage report table

	3.2 Using a current monitor to avoid power pitfalls
	3.3 Checking for clock pitfalls
	3.4 Avoiding reset pitfalls
	3.5 Sample board bring-up checklist
	Table 3-2. Board bring-up checklist

	Chapter 4 Using the Clock Connectivity Table
	4.1 External clock sources
	4.2 Internal clock sources

	Chapter 5 About the IOMUX Tool
	5.1 IOMUX: What is it?
	5.2 How the IOMUX tool helps application design
	5.2.1 Assigning signals and resolving conflicts
	5.2.2 Documentation features
	5.2.3 Additional features

	5.3 Obtaining the IOMUX tool

	Chapter 6 Setting up Power Management
	6.1 i.MX50 power requirement
	6.1.1 Voltage rail and current requirement for i.MX50
	Table 6-1. Voltage rail and current requirements

	6.1.2 Power-up sequence requirement for i.MX50
	Figure 6-1. i.MX50 power-up sequence

	6.2 MC34708 output capabilities
	6.2.1 Voltage rail and current capabilities
	Table 6-2. Voltage rail and current capabilities

	6.2.2 Default power-up sequence of MC34708 customized for i.MX50
	Table 6-3. MC34708 power-up sequence

	6.2.3 Power-up voltage rail
	Figure 6-4. Power-up mode

	6.3 i.MX50 interfaces to MC34708
	6.3.1 SPI interface between i.MX50 and MC34708
	Figure 6-5. SPI interface

	6.3.2 Power rail interface between i.MX50 and MC34708
	Figure 6-6. Power rail interface

	6.3.3 Extra 3.15 V DCDC power supply

	6.4 RT8011/A features
	6.5 Additional device information
	Figure 6-7. MC34708 block diagram

	Chapter 7 Interfacing DDR Memories with the i.MX50 Processor
	7.1 Overview
	7.2 Connection between i.MX50 and DDR memories
	Figure 7-1. Interfacing between i.MX50 and LPDDR2
	Figure 7-2. Interfacing between i.MX50 and DDR2
	Figure 7-3. Interfacing between i.MX50 and mDDR
	Figure 7-4. Example LPDDR2 connection

	7.3 Configuring the DDR JTAG script
	7.3.1 Script file for LPDDR2 (266M)
	7.3.2 Script file for DDR2 (266M)

	Chapter 8 Layout Recommendation
	8.1 Basic design recommendations
	Figure 8-1. i.MX50 top side view (400 MAPBGA 17 ° 17 mm view)
	Figure 8-2. i.MX50 bottom side view
	Figure 8-3. i.MX50 side view
	Figure 8-4. Stack-up example
	Table 8-1. Impedance control
	Figure 8-5. Stack-up setting
	Figure 8-6. Top side fanout
	Figure 8-7. Bottom side fanout

	8.2 DDR2 routing rules
	Table 8-2. DDR2 routing by the same length
	Table 8-3. DDR2 routing by byte group

	8.3 ESD and radiated emissions recommendations

	Part II Software Development
	Chapter 9 Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board
	9.1 Obtaining the source code for the U-Boot
	9.2 Preparing the code
	9.3 Customizing the i.MX50 custom board code
	9.3.1 Changing DRAM values for i.MX50 with LP-DDR2 initialization
	9.3.2 Booting with the modified U-Boot
	9.3.3 Further customization at system boot
	9.3.4 Customizing the printed board name

	Chapter 10 Porting the Android Kernel
	10.1 Patching the Android kernel
	10.2 Configuring Android release for customized platforms
	10.2.1 Enabling and disabling default resources
	Figure 10-1. Linux kernel configuration menu

	10.2.2 Changing the configuration file
	10.2.3 Android's memory map
	Figure 10-2. Android memory map (512 Mbyte system)

	10.3 Initializing Android
	10.4 Modifying the init.rc partition locations
	10.5 Android enhancements to the Linux kernel
	Figure 10-3. Linux kernel
	Table 10-1. Android enhancements
	Figure 10-4. Hardware abstraction layer

	Chapter 11 Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board
	11.1 Supported components
	11.2 Customizing OBDS for specific hardware
	11.2.1 UART (serial port) test
	11.2.2 DDR test
	11.2.3 Audio test
	11.2.4 LCD display test
	11.2.5 E-INK display test
	11.2.6 I2C test
	11.2.7 SD/MMC test
	11.2.8 SRTC test
	11.2.9 Ethernet (FEC) loopback test
	11.2.10 SPI-NOR test
	11.2.11 NAND Flash device ID test

	Chapter 12 Configuring the IOMUX Controller (IOMUXC)
	12.1 Information for setting IOMUX controller registers
	12.2 Setting up the IOMUXC in U-Boot
	Table 12-1. Configuration files
	12.2.1 Defining the pads
	12.2.2 Configuring IOMUX pins for initialization function
	12.2.3 Example-setting a GPIO

	12.3 Setting up the IOMUXC in Linux
	Table 12-2. IOMUX configuration files
	12.3.1 IOMUX configuration definition
	12.3.2 Machine layer file
	12.3.3 Example -setting a GPIO

	Chapter 13 Registering a New UART Driver
	13.1 Configuring UART pads on IOMUX
	13.2 Enabling UART on kernel menuconfig
	13.3 Testing the UART
	13.4 File names and locations
	Table 13-1. Available files-first set
	Table 13-2. Available files-second set
	Table 13-3. Available files-third set

	Chapter 14 Adding Support for the i.MX50 ESDHC
	14.1 Including support for SD1/SD2/SD3/SD4
	14.1.1 Creating platform device structures for the SD interfaces
	14.1.2 Configuring pins for SD function
	14.1.3 Creating the platform data structure
	Table 14-1. Structure descriptions

	14.1.4 Setting up card detection

	14.2 Additional reference information
	14.2.1 ESDHC interface features
	Table 14-2. ESDHC pins

	14.2.2 ESDHC operation modes supported by the i.MX50
	Table 14-3. ESDHC operation modes

	14.2.3 Interface layouts
	Figure 14-1. Example i.MX50 board SD interface layout
	Figure 14-2. Second example i.MX50 SD interface layout

	Chapter 15 Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver
	15.1 Source code structure
	15.2 Configuration options
	Table 15-1. Parameter variables

	15.3 Selecting SPI NOR on the Linux image
	Table 15-2. Device information

	15.4 Changing the SPI interface configuration
	15.4.1 Connecting SPI NOR Flash to another CSPI interface
	15.4.2 Changing the CSPI interface
	Table 15-3. CSPI parameters

	15.4.3 Changing the chip select
	15.4.4 Changing the external signals

	15.5 Hardware operation
	15.6 Software operation
	Figure 15-1. Components of a Flash-based file system

	Chapter 16 Supporting the i.MX50 Reference Board LCD
	16.1 Supported display interfaces
	Table 16-1. Available Interfaces

	16.2 Adding support for an LCD panel
	Figure 16-1. Interface
	Table 16-2. Timing parameters

	16.3 Modifying boot kernel parameters to support a new LCD
	16.3.1 Setting the video kernel parameter
	Table 16-3. Parameter information
	Table 16-4. VGA LCD example variables

	16.3.2 Modifying the bits per pixel setting

	16.4 Adding support for a new LCD
	16.4.1 Adding a display entry in the ltib catalog
	16.4.2 Creating the LCD panel file (initialization, reset, power settings, backlight)
	Table 16-5. Required functions

	16.4.3 Adding the compilation flag for the new display
	16.4.4 Configuring LCD timings and the display interface

	Chapter 17 Setting Up the Keypad Port (KPP)
	Table 17-1. Files for adding/configuring a new keypad
	17.1 Configuring keypad pins on IOMUX
	17.2 Creating a custom keymap
	17.3 Configuring the pads with the machine layer file
	17.4 Enabling the keypad
	17.5 Testing the keypad
	17.5.1 Using cat to test the keypad
	17.5.2 Using Evtest to test the keypad

	Chapter 18 Porting Audio Drivers to a Custom Board
	18.1 Common porting task
	18.2 Porting the reference BSP to a custom board (audio codec is the same as in the reference design)
	Table 18-1. Required power supplies

	18.3 Porting the reference BSP to a custom board (audio codec is different than the reference design)
	Table 18-2. Files for sgtl codec support

	Chapter 19 Porting the Fast Ethernet Controller Driver
	19.1 Pin configuration
	Table 19-1. RMII signals

	19.2 Source code
	Table 19-2. Source code files

	19.3 Ethernet configuration

	Chapter 20 Porting USB Host1 and USB OTG

