

i.MX50 System
Development Guide

Supports
i.MX50

IMX50SDG
Rev. 0

7/2011

Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited. ARM Cortex A8 is the trademark of ARM
Limited.
© 2011 Freescale Semiconductor, Inc.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Document Number: IMX50SDG
Rev. 0, 7/2011

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor iii

Contents
Paragraph
Number Title

Page
Number

Contents

Audience .. xiii
Organization... xiii
Essential reference ... xiv
Suggested reading .. xiv

General information... xiv
Related documentation .. xiv

Conventions ... xiv
Signal conventions ...xv
Acronyms and abbreviations ...xv

Chapter 1
Design Checklist

1.1 Design checklist ... 1-1
1.2 Supplemental tables and figures .. 1-5

Chapter 2
Configuring JTAG Tools for Debugging

2.1 Accessing debug with a JTAG scan chain (ARM tools).. 2-1
2.2 Accessing debug with a JTAG scan chain (other JTAG tools) .. 2-4

Chapter 3
Avoiding Board Bring-Up Problems

3.1 Using a voltage report to avoid power pitfalls... 3-1
3.2 Using a current monitor to avoid power pitfalls .. 3-2
3.3 Checking for clock pitfalls... 3-2
3.4 Avoiding reset pitfalls .. 3-3
3.5 Sample board bring-up checklist ... 3-3

Chapter 4
Using the Clock Connectivity Table

4.1 External clock sources ... 4-1
4.2 Internal clock sources .. 4-1

Chapter 5
About the IOMUX Tool

5.1 IOMUX: What is it? .. 5-1

i.MX50 System Development User’s Guide, Rev. 0

iv Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

5.2 How the IOMUX tool helps application design .. 5-1
5.2.1 Assigning signals and resolving conflicts.. 5-1
5.2.2 Documentation features ... 5-2
5.2.3 Additional features... 5-2
5.3 Obtaining the IOMUX tool.. 5-2

Chapter 6
Setting up Power Management

6.1 i.MX50 power requirement.. 6-1
6.1.1 Voltage rail and current requirement for i.MX50 ... 6-1
6.1.2 Power-up sequence requirement for i.MX50... 6-2
6.2 MC34708 output capabilities... 6-2
6.2.1 Voltage rail and current capabilities... 6-2
6.2.2 Default power-up sequence of MC34708 customized for i.MX50 6-3
6.2.3 Power-up voltage rail... 6-4
6.3 i.MX50 interfaces to MC34708 ... 6-6
6.3.1 SPI interface between i.MX50 and MC34708... 6-6
6.3.2 Power rail interface between i.MX50 and MC34708 .. 6-7
6.3.3 Extra 3.15 V DCDC power supply .. 6-8
6.4 RT8011/A features .. 6-8
6.5 Additional device information ... 6-8

Chapter 7
Interfacing DDR Memories with the i.MX50 Processor

7.1 Overview.. 7-1
7.2 Connection between i.MX50 and DDR memories .. 7-2
7.3 Configuring the DDR JTAG script .. 7-5
7.3.1 Script file for LPDDR2 (266M).. 7-5
7.3.2 Script file for DDR2 (266M) .. 7-11

Chapter 8
Layout Recommendation

8.1 Basic design recommendations.. 8-1
8.2 DDR2 routing rules.. 8-6
8.3 ESD and radiated emissions recommendations ... 8-7

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor v

Contents
Paragraph
Number Title

Page
Number

Chapter 9
Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board

9.1 Obtaining the source code for the U-Boot ... 9-1
9.2 Preparing the code ... 9-1
9.3 Customizing the i.MX50 custom board code .. 9-2
9.3.1 Changing DRAM values for i.MX50 with LP-DDR2 initialization............................ 9-3
9.3.2 Booting with the modified U-Boot ... 9-3
9.3.3 Further customization at system boot .. 9-3
9.3.4 Customizing the printed board name... 9-4

Chapter 10
Porting the Android Kernel

10.1 Patching the Android kernel .. 10-1
10.2 Configuring Android release for customized platforms .. 10-1
10.2.1 Enabling and disabling default resources .. 10-2
10.2.2 Changing the configuration file ... 10-3
10.2.3 Android's memory map ... 10-3
10.3 Initializing Android.. 10-4
10.4 Modifying the init.rc partition locations .. 10-5
10.5 Android enhancements to the Linux kernel ... 10-5

Chapter 11
Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

11.1 Supported components... 11-1
11.2 Customizing OBDS for specific hardware .. 11-2
11.2.1 UART (serial port) test .. 11-2
11.2.2 DDR test .. 11-2
11.2.3 Audio test... 11-3
11.2.4 LCD display test .. 11-3
11.2.5 E-INK display test ... 11-3
11.2.6 I2C test ... 11-3
11.2.7 SD/MMC test... 11-4
11.2.8 SRTC test ... 11-4
11.2.9 Ethernet (FEC) loopback test... 11-4
11.2.10 SPI-NOR test ... 11-4
11.2.11 NAND Flash device ID test ... 11-5

i.MX50 System Development User’s Guide, Rev. 0

vi Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 12
Configuring the IOMUX Controller (IOMUXC)

12.1 Information for setting IOMUX controller registers ... 12-1
12.2 Setting up the IOMUXC in U-Boot ... 12-2
12.2.1 Defining the pads ... 12-2
12.2.2 Configuring IOMUX pins for initialization function .. 12-3
12.2.3 Example—setting a GPIO ... 12-3
12.3 Setting up the IOMUXC in Linux ... 12-4
12.3.1 IOMUX configuration definition... 12-4
12.3.2 Machine layer file .. 12-5
12.3.3 Example—setting a GPIO ... 12-5

Chapter 13
Registering a New UART Driver

13.1 Configuring UART pads on IOMUX .. 13-1
13.2 Enabling UART on kernel menuconfig ... 13-2
13.3 Testing the UART .. 13-2
13.4 File names and locations.. 13-2

Chapter 14
Adding Support for the i.MX50 ESDHC

14.1 Including support for SD1/SD2/SD3/SD4... 14-1
14.1.1 Creating platform device structures for the SD interfaces... 14-1
14.1.2 Configuring pins for SD function .. 14-2
14.1.3 Creating the platform data structure .. 14-2
14.1.4 Setting up card detection.. 14-4
14.2 Additional reference information... 14-5
14.2.1 ESDHC interface features.. 14-5
14.2.2 ESDHC operation modes supported by the i.MX50.. 14-6
14.2.3 Interface layouts... 14-7

Chapter 15
Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

15.1 Source code structure... 15-1
15.2 Configuration options .. 15-1
15.3 Selecting SPI NOR on the Linux image .. 15-2
15.4 Changing the SPI interface configuration.. 15-3

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor vii

Contents
Paragraph
Number Title

Page
Number

15.4.1 Connecting SPI NOR Fash to another CSPI interface... 15-3
15.4.2 Changing the CSPI interface.. 15-3
15.4.3 Changing the chip select .. 15-4
15.4.4 Changing the external signals .. 15-4
15.5 Hardware operation.. 15-4
15.6 Software operation ... 15-5

Chapter 16
Supporting the i.MX50 Reference Board LCD

16.1 Supported display interfaces .. 16-1
16.2 Adding support for an LCD panel ... 16-1
16.3 Modifying boot kernel parameters to support a new LCD .. 16-3
16.3.1 Setting the video kernel parameter .. 16-3
16.3.2 Modifying the bits per pixel setting... 16-4
16.4 Adding support for a new LCD ... 16-5
16.4.1 Adding a display entry in the ltib catalog .. 16-5
16.4.2 Creating the LCD panel file (initialization, reset, power settings, backlight) 16-5
16.4.3 Adding the compilation flag for the new display .. 16-7
16.4.4 Configuring LCD timings and the display interface.. 16-7

Chapter 17
Setting Up the Keypad Port (KPP)

17.1 Configuring keypad pins on IOMUX .. 17-1
17.2 Creating a custom keymap... 17-2
17.3 Configuring the pads with the machine layer file.. 17-2
17.4 Enabling the keypad... 17-3
17.5 Testing the keypad ... 17-3
17.5.1 Using cat to test the keypad ... 17-3
17.5.2 Using Evtest to test the keypad.. 17-3

Chapter 18
Porting Audio Drivers to a Custom Board

18.1 Common porting task... 18-1
18.2 Porting the reference BSP to a custom board (audio codec is the same as in the reference

design).. 18-2
18.3 Porting the reference BSP to a custom board (audio codec is different than the reference

design).. 18-2

i.MX50 System Development User’s Guide, Rev. 0

viii Freescale Semiconductor

Contents
Paragraph
Number Title

Page
Number

Chapter 19
Porting the Fast Ethernet Controller Driver

19.1 Pin configuration.. 19-1
19.2 Source code.. 19-2
19.3 Ethernet configuration ... 19-2

Chapter 20
Porting USB Host1 and USB OTG

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor ix

Figures
Figure
Number Title

Page
Number

Figures

1-1 Boot configuration bus isolation ... 1-6
1-2 Boot configuration bus isolation ... 1-6
2-1 Example of adding a device .. 2-2
2-2 Updating the CoreSight base address.. 2-3
2-3 i.MX/Cortex-A8 RVDS JTAG scan chain .. 2-4
6-1 i.MX50 power-up sequence .. 6-2
6-4 Power-up mode ... 6-4
6-5 SPI interface .. 6-6
6-6 Power rail interface ... 6-7
6-7 Ripley block diagram .. 6-9
7-1 Interfacing between i.MX50 and LPDDR2 .. 7-2
7-2 Interfacing between i.MX50 and DDR2... 7-3
7-3 Interfacing between i.MX50 and mDDR.. 7-4
7-4 Example LPDDR2 connection.. 7-5
8-1 i.MX50 top side view (400 MAPBGA 17 × 17 mm view)... 8-1
8-2 i.MX50 bottom side view.. 8-2
8-3 i.MX50 side view... 8-2
8-4 Stack-up example .. 8-3
8-5 Stack-up setting... 8-4
8-6 Top side fanout .. 8-5
8-7 Bottom side fanout .. 8-5
10-1 Linux kernel configuration menu.. 10-2
10-2 Android memory map (512 Mbyte system) .. 10-4
10-3 Linux kernel .. 10-5
10-4 Hardware abstraction layer ... 10-6
14-1 Example i.MX50 board SD interface layout... 14-7
14-2 Second example i.MX50 SD interface layout... 14-8
15-1 Components of a Flash-based file system... 15-5
16-1 Interface .. 16-2

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor xi

Tables
Table
Number Title

Page
Number

Tables

1-1 Design checklist .. 1-1
1-2 DDR Vref resistor sizing guideline ... 1-5
1-3 JTAG interface summary .. 1-5
3-1 Sample voltage report table... 3-1
3-2 Board bring-up checklist ... 3-3
6-1 Voltage rail and current requirements ... 6-1
6-2 Voltage rail and current capabilities.. 6-2
6-3 MC34708 power-up sequence... 6-3
8-1 Impedance control... 8-3
8-2 DDR2 routing by the same length... 8-6
8-3 DDR2 routing by byte group .. 8-6
10-1 Android enhancements ... 10-5
12-1 Configuration files .. 12-2
12-2 IOMUX configuration files... 12-4
13-1 Available files—first set.. 13-2
13-2 Available files—second set ... 13-3
13-3 Available files—third set... 13-3
14-1 Structure descriptions.. 14-3
14-2 ESDHC pins .. 14-6
14-3 ESDHC operation modes .. 14-7
15-1 Parameter variables ... 15-1
15-2 Device information ... 15-2
15-3 CSPI parameters.. 15-3
16-1 Available Interfaces... 16-1
16-2 Timing parameters .. 16-2
16-3 Parameter information... 16-3
16-4 VGA LCD example variables ... 16-4
16-5 Required functions .. 16-6
17-1 Files for adding/configuring a new keypad... 17-1
18-1 Required power supplies ... 18-2
18-2 Files for sgtl codec support ... 18-2
19-1 RMII signals.. 19-1
19-2 Source code files ... 19-2

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor xiii

About This Guide
From the family that introduced the market-leading i.MX508 applications processor for eReaders, the
expanded i.MX50 family is the latest addition to Freescale’s® Cortex™-A8 product portfolio. The
i.MX502, i.MX503 and i.MX507 derivatives can be targeted towards a variety of portable applications and
offers support for Electronic Paper Display (EPD) in addition to LCD. Along with its companion Freescale
MC34708 power management IC, the i.MX50 family delivers a low-power, streamlined solution for
customers seeking Cortex-A8 performance levels with flexible design features

This product is suitable for applications such as:

• eReaders

• Portable navigation devices

• Outdoor signage

• Patient/client monitoring

• Home and office automation

Freescale provides the i.MX50 board support package (BSP) and the i.MX50 EVK Board that facilitate
the rapid design-in of the i.MX50 applications processor. These tools allow the rapid prototyping of new
products prior to commitment to production-level designs. Once you have determined the precise features,
function, and physical parameters of your product, this document will guide you in the use of these
prototyping tools for the design, layout, and bring-up of your design.

Along with tips on designing your custom circuit board, this guide helps you customize Freescale provided
software utilizing the development tools provided in the BSP. This guide assumes that you have access to
generally available software tools as well as Freescale’s Linux Target Image Builder (LTIB).

Audience
This document is targeted to software and hardware engineers who desire to port the i.MX50 board support
package (BSP) to customer-specific products. The audience is expected to have a working understanding
of the ARM processor programming model, the C programming language, tools such as compilers and
assemblers, and program build tools such as MAKE. Familiarity with the use of commonly available
hardware test and debug tools such as oscilloscopes and logic analyzers is assumed. An understanding of
the architecture of the i.MX50 application processor is also assumed.

Organization
This guide is a compendium of application notes organized in two parts. The first part covers aspects of
hardware design and bring-up, and the second focuses on software development.

Part I, “Hardware Design and Bring-up” covers topics that aid you in the design of a custom printed circuit
board design utilizing the i.MX50.

About This Guide

i.MX50 System Development Guide, Rev. 0

xiv Freescale Semiconductor

Part II, “Software Development” aids you in software development for your product. The first four
chapters are organized in the way a developer might approach the task of porting Freescale's BSP to
support their target product board. The remaining chapters deal with porting selected integrated I/O
devices.

Essential reference
You should have access to an electronic copy of the latest version of the i.MX50 Multimedia Applications
Processor Reference Manual (MX50RM).

Suggested reading
This section lists additional reading that provides background for the information in this manual as well as
general information about the architecture.

General information

The following documentation provides useful information about the ARM processor architecture and
computer architecture in general:

• For information about the ARM Cortex-A8 processor see
http://www.arm.com/products/processors/cortex-a/cortex-a8.php

• Computer Architecture: A Quantitative Approach, Fourth Edition, by John L. Hennessy and
David A. Patterson

• Computer Organization and Design: The Hardware/Software Interface, Second Edition, by
David A. Patterson and John L. Hennessy

Related documentation

Freescale documentation is available from the sources listed on the back cover of this manual; the
document order numbers are included in parentheses for ease in ordering:

Additional literature is published as new Freescale products become available. For a current list of
documentation, refer to www.freescale.com.

Conventions
This document uses the following notational conventions:

Courier Used to indicate commands, command parameters, code examples, and file and
directory names.

Italics Italics indicates command or function parameters

Bold Function names are written in bold.

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of
one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold

About This Guide

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor xv

Book titles in text are set in italics

sig_name Internal signals are written in all lowercase

0x0 Prefix to denote hexadecimal number

0b0 Prefix to denote binary number

rA, rB Instruction syntax used to identify a source GPR

rD Instruction syntax used to identify a destination GPR

REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or
ranges appear in brackets. For example, MSR[LE] refers to the little-endian mode
enable bit in the machine state register.

x In some contexts, such as signal encodings, an unitalicized x indicates a don’t
care.

x An italicized x indicates an alphanumeric variable

n, m An italicized n indicates a numeric variable

NOTE
In this guide, notation for all logical, bit-wise, arithmetic, comparison, and
assignment operations follow C Language conventions.

Signal conventions

PWR_ON_RESET An overbar indicates that a signal is active when low

_b, _B Alternate notation indicating an active-low signal

signal_name Lowercase italics is used to indicate internal signals

Acronyms and abbreviations
The following table defines the acronyms and abbreviations used in this document.

Definitions and acronyms

Term Definition

Address
Translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

ARM® Advanced RISC Machines processor architecture

AUDMUX Digital audio multiplexer—provides a programmable interconnection for voice, audio, and synchronous data
routing between host serial interfaces and peripheral serial interfaces.

BCD Binary Coded Decimal

Bus A path between several devices through data lines.

Bus load The percentage of time a bus is busy.

About This Guide

i.MX50 System Development Guide, Rev. 0

xvi Freescale Semiconductor

CODEC Coder/decoder or compression/decompression algorithm—Used to encode and decode (or compress and
decompress) various types of data.

CPU Central Processing Unit—generic term used to describe a processing core.

CRC Cyclic Redundancy Check—Bit error protection method for data communication.

CSI Camera Sensor Interface

DMA Direct Memory Access—an independent block that can initiate memory-to-memory data transfers.

DRAM Dynamic Random Access Memory

EMI External Memory Interface—controls all IC external memory accesses (read/write/erase/program) from all
the masters in the system.

Endian Refers to byte ordering of data in memory. Little Endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In Big Endian, the order of the bytes is reversed.

EPD Electronic Paper Display

EPIT Enhanced Periodic Interrupt Timer—a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention.

ePXP Enhanced Pixel Pipeline

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards—United States Government technical standards published by
the National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards or solutions.

FIPS-140 Security requirements for cryptographic modules—Federal Information Processing Standard 140-2(FIPS
140-2) is a standard that describes US Federal government requirements that IT products should meet for
Sensitive, But Unclassified (SBU) use.

Flash A non-volatile storage device similar to EEPROM, but where erasing can only be done in blocks of the entire
chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application.

Flush A procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command.

GPIO General Purpose Input/Output

Hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and
is generated by a formula in such a way that it is extremely unlikely that some other text will produce the
same hash value.

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property.

Definitions and acronyms (continued)

Term Definition

About This Guide

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor xvii

IrDA Infrared Data Association—a nonprofit organization whose goal is to develop globally adopted specifications
for infrared wireless communication.

ISR Interrupt Service Routine.

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant
devices on a printed circuit board.

Kill Abort a memory access.

KPP KeyPad Port—a 16-bit peripheral that can be used as a keypad matrix interface or as general purpose
input/output (I/O).

line Refers to a unit of information in the cache that is associated with a tag.

LRU Least Recently Used—a policy for line replacement in the cache.

MMU Memory Management Unit—a component responsible for memory protection and address translation.

MPEG Moving Picture Experts Group—an ISO committee that generates standards for digital video compression
and audio. It is also the name of the algorithms used to compress moving pictures and video.

MPEG standards There are several standards of compression for moving pictures and video.
MPEG-1 is optimized for CD-ROM and is the basis for MP3.
MPEG-2 is defined for broadcast quality video in applications such as digital television set-top boxes and
DVD.
MPEG-3 was merged into MPEG-2.
MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web.

MQSPI Multiple Queue Serial Peripheral Interface—used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals.

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology—NAND Flash architecture is one of two flash technologies (the other being NOR)
used in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offer faster erase, write,
and read capabilities over NOR architecture.

NOR Flash See NAND Flash.

PCMCIA Personal Computer Memory Card International Association—a multi-company organization that has
developed a standard for small, credit card-sized devices, called PC Cards. There are three types of
PCMCIA cards that have the same rectangular size (85.6 by 54 millimeters), but different widths.

Physical address The address by which the memory in the system is physically accessed.

PLL Phase Locked Loop—an electronic circuit controlling an oscillator so that it maintains a constant phase
angle (a lock) on the frequency of an input, or reference, signal.

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined in
various ways to create other colors. The abbreviation RGB come from the three primary colors in additive
light models.

Definitions and acronyms (continued)

Term Definition

About This Guide

i.MX50 System Development Guide, Rev. 0

xviii Freescale Semiconductor

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and
is unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color you place,
the lighter the picture gets. PNG is the best known image format that uses the RGBA color space.

RNGA Random Number Generator Accelerator—a security hardware module that produces 32-bit pseudo random
numbers as part of the security module.

ROM Read Only Memory

ROM bootstrap Internal boot code encompassing the main boot flow as well as exception vectors.

RTIC Real-time integrity checker—a security hardware module

SCC SeCurity Controller—a security hardware module

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter—a three-to-one IP-Bus arbiter, with a resource-locking mechanism.

SPI Serial Peripheral Interface—a full-duplex synchronous serial interface for connecting
low-/medium-bandwidth external devices using four wires. SPI devices communicate using a master/slave
relationship over two data lines and two control lines: Also see SS, SCLK, MISO, and MOSI.

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface—standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter—this module provides asynchronous serial communication
to external devices.

UID Unique ID–a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus—an external bus standard that supports high speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12Mb/s and USB 2.0 has a maximum transfer rate of
480 Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems,
and keyboards. USB also supports Plug-and-Play installation and hot plugging.

USBOTG USB On The Go—an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC.

Word A group of bits comprising 32 bits

Definitions and acronyms (continued)

Term Definition

i.MX50 System Development User’s Guide, Rev. 0

Freescale Semiconductor I-1

Part I
Hardware Design and Bring-up
The chapters that follow cover topics that aid you in the hardware design, bring-up, and debug of your
custom printed circuit board utilizing the i.MX50.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 1-1

Chapter 1
Design Checklist

1.1 Design checklist
This chapter provides a design checklist for i.MX50-based systems. The design checklist contains
recommendations for optimal design. Where appropriate, the checklist also provides an explanation so that
users have a greater understanding of why certain techniques are recommended. All supplemental tables
referenced by the checklist appear in Section 1.2, “Supplemental tables and figures,” following the design
checklist table.

Table 1-1. Design checklist

Recommendation Explanation/supplemental recommendations

DDR Recommendations

1. Tie DDR_VREF to a precision external resistor
divider with a resistor to GND and a resistor to
NVCC_EMI_DRAM.
Note: For mDDR, leave this pin floating.

When using DDR, the nominal reference voltage must be half of the
NVCC_EMI_DRAM supply. The resistors be sized to account for the
i.MX50 DDR_VREF input current plus memory input current. This
current drawn from the divider affects the reference voltage. See Table
1-2.

Also consider:
 • Shunting each resistor with a closely-mounted capacitor. The

decouple cap connected in parallel the resistor connected to
NVCC_EMI_DRAM may be required. This depends on the layout and
the additional supply.

 • Bypassing Vref at source and destinations.

2. Use the following values for the
DRAM_CALIBRATION input:
 • For DDR2, connect 240 Ω 1% to GND.
 • For LPDDR1, connect 300 Ω 1% to GND.

The DRAM_CALIBRATION input requires an external resistor used as
reference during DRAM output buffer driver calibration. This resistor
must be mounted close to the associated BGA ball.

EIM Recommendations

3. When EIM boot signals are used as the system’s
EIM signals or GPIO outputs after boot, use a passive
resistor network to select the desired boot mode for
development boards.

Because only resistors are used, EIM bus loads can cause current drain,
leading to higher (false) supply current measurements. Each EIM boot
signal should connect to a series resistor to isolate the bus from the
resistors and/or switchers. See Figure 1-1 and Figure 1-2 for the
implementation. Each configured EIM boot signal sees either a 14.7 kΩ
pull-down or a 4.7 kΩ pull-up. For each switch-enabled pulled-up signal,
the supply is presented with a 10 kΩ current load.

Design Checklist

i.MX50 System Development Guide, Rev. 0

1-2 Freescale Semiconductor

4. To reduce incorrect boot-up mode selections, do
one of the following:
 • Use EIM boot interface lines as processor outputs.
 • If an EIM boot signal must be configured as an

input, isolate the EIM signal from the target driving
source with one analog switch and apply the logic
value with a second analog switch. Alternately,
peripheral devices with tri-state outputs may be
used. Ensure the output is high-impedance during
the boot up interval.

Using EIM boot interface lines as inputs may result in a wrong boot up
due to the source overcoming the pull resistor value. A peripheral device
may require the EIM signal to have an external or on-chip resistor to
minimize signal floating. If the usage of the EIM boot signal affects the
peripheral device, an analog switch, open collector buffer, or equivalent
should isolate the path. A pull-up or pull-down resistor at the peripheral
device may be required to maintain the desired logic level. Review the
switch or device data sheet for operating specifications.

5. Ensure EIM boot interface lines used as outputs
are not loaded down such that the level is interpreted
as low during power up, when the intent is to be a high
level, or vice versa.

__

I2C Recommendations

6. Verify the target I2C interface clock rates. Remember the bus can only operate as fast as the slowest peripheral on
the bus.

7. Verify the target I2C address range is supported
and not conflicting with other peripherals. If there is an
unavoidable address conflict, move the offending
device to another I2C port.

The i.MX50 supports up to three I2C ports. If it is undesirable to move a
conflicting device to another I2C port, review the peripheral operation to
see if it supports re-mapping the addresses.

8. Do not place more than one set of pull-up resistors
on the I2C lines.

This can result in excessive loading. Good design practice is to place a
pair of pull-ups only on the schematic page that has the i.MX50 symbol.
Do not place pull-ups on the pages with the I2C peripherals.

JTAG Recommendations

9. Do not use external pull-up or pull-down resistors
on JTAG_TDO.

JTAG_TDO is configured with an on-chip keeper circuit An external pull
resistor on JTAG_TDO is detrimental.
See Table 1-3 for a summary of the JTAG interface.

10. Ensure that the on-chip pull-up/down
configuration is followed If external resistors are used
with non-JTAG_TDO signals. For example, do not use
an external pull-down on an input that has on-chip
pull-up.

External resistors can be used with non-JTAG_TDO signals, but they do
not need to be used.
See Table 1-3 for a summary of the JTAG interface.

Clock Amplifier (CAMP) Recommendations

11. After initialization, disable unused clock amplifiers
(CAMPs) within the CCM registers
(CCM_CCR[CAMPx_EN]).

CKIH1 and CKIH2 are inputs feeding CAMPs that have on-chip AC
coupling, eliminating the need for external coupling capacitors. The
CAMPs are enabled by default; however, the main clocks feeding the
on-chip clock tree are sourced from XTAL/EXTAL upon power up. Using
low jitter external oscillators to feed CKIH1 or CKIH2 is not required, but
it can be advantageous if low jitter or special frequency clock sources are
required by modules driven by CKIH1 or CKIH2.
See the CCM chapter in the i.MX50 reference manual for details about
the respective clock trees.

12. Tie CKIH1/CKIH2 to GND if they are unused. If disabled, the on-chip CAMP output is low.

Table 1-1. Design checklist (continued)

Recommendation Explanation/supplemental recommendations

Design Checklist

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 1-3

Miscellaneous Signal Recommendations

14. Float TEST_MODE or tie it to GND. TEST_MODE is for Freescale factory use only. This signal is internally
connected to an on-chip pull-down device.

15. Float the USB_H1_GPANAIO and
USB_OTG_GPANAIO outputs.

USB_H1_GPANAIO and USB_OTG_GPANAIO are reserved for
Freescale manufacturing use.

16. For Ethernet access, the MAC address may be
stored in the processor’s eFuse/OTP bank 4.

__

USB Recommendations

17. USB_H1_RREFEXT and USB_OTG_RREFEXT
require a separate external 6.04 kΩ 1% resistors to
GND.

USB_H1_RREFEXT and USB_OTG_RREFEXT determine reference
currents for USB PHY band gap references that generate driver current.
RREFEXT values are critical as they affect most of transmitter
parameters.
Additional recommendations for resistor connection are as follows:
 • The connection must be made through a short trace.
 • The resistance of the connection line should be as low as possible

(<1).
 • Both of the RREFEXT resistors and connections should be placed

away from noisy regions; Freescale recommends 2× to 3× adjacent
keep out and GND plane immediately below the trace to reduce
coupling.

18. Do not connect the VBUS contacts on the
processor directly to the VBUS contact on the
associated USB connector.

The user must employ a series 47 Ω resistor followed with a 1 μF
capacitor mounted directly at the processor VBUS BGA ball. In addition,
external ESD (electrostatic discharge) and EOS (electrical overstress)
protection is required at the VBUS BGA ball.

19. USB I/O D+, D–, and UID contacts on the i.MX
device require external ESD (electro-static discharge)
damage protection.

Only use a special ESD diode designed for high-speed signals.

Power Recommendations

20. Comply with the power-up and power-down
sequence guidelines as described in the data sheet to
guarantee reliable operation of the device.

Any deviation from these sequences may result in the following
situations:
 • Excessive current during power-up phase
 • Prevention of the device from booting
 • Irreversible damage to the i.MX50 processor (worst-case scenario)

21. To configure CKIL and ECKIL as an oscillator, tie
a 32.768 kHz crystal with <50 kΩ ESR (equivalent
series resistance) and approximately 9 pF load
between CKIL and ECKIL. Do not use an external
biasing resistor.

The capacitors implemented on either side of the crystal are about twice
the crystal load capacitor. To hit the target oscillation frequency, board
capacitors need to be reduced to compensate for board and chip
parasitic capacitance, so 15–16 pF can be employed.
The integrated oscillation amplifier has an on-chip self-biasing scheme,
but is high-impedance (relatively weak) to minimize power consumption.
Care must be taken to limit parasitic leakage from CKIL and ECKIL to
either power or ground (> 20 M) as this negatively affects the amplifier
bias and causes a reduction of startup margin.
Use short traces between the crystal and the processor, with a ground
plane under the crystal, load capacitors, and associated traces. Typically
CKIL and ECKIL should bias to approximately 0.5 V

Table 1-1. Design checklist (continued)

Recommendation Explanation/supplemental recommendations

Design Checklist

i.MX50 System Development Guide, Rev. 0

1-4 Freescale Semiconductor

1.2 Supplemental tables and figures

22. If feeding an external clock into the device, ECKIL
can be driven DC-coupled with CKIL floated.

The logic high level driven into CKIL should be approximately
NVCC_SRTC. Do not exceed NVCC_SRTC_POW or damage or
malfunction may occur. The CKIL signal should not be driven if the
NVCC_SRTC_POW supply is off. This can lead to damage or
malfunction. Driving ECKIL is allowed but is not optimal because ECKIL
is the output of the on-chip amplifier.

23. Place a 24 MHz fundamental-mode crystal
across XTAL/EXTAL. The crystal must be rated for a
maximum drive level of 100 μW or higher. An ESR of
80 Ω or less is recommended. Freescale board
support package (BSP) software requires 24 MHz on
EXTAL.

If an external oscillator is available, the crystal can be eliminated. In this
case, EXTAL must be directly driven by the external oscillator and XTAL
is floated. The EXTAL signal level must swing from NVCC_SRTC to
GND. If the clock is used for USB, there are strict jitter requirements: <
50 ps peak-to-peak below 1.2 MHz and < 100 ps peak-to-peak above 1.2
MHz for the USB PHY. The COSC_EN bit in the CCM (clock control
module) must be cleared to put the on-chip oscillator circuit in bypass
mode, which allows EXTAL to be externally driven. COSC_EN is bit 12
in the CCR register of the CCM.

Reset Recommendations

24. A reset switch may be wired to the i.MX50
POR_B, which is a cold-reset negative-logic input that
resets all modules and logic in the IC.

The POR_B input must be asserted at power-up and remain asserted
until after the last power rail is at its working voltage.

25. Typically, RESET_IN_B is wired to the JTAG reset
signal. Alternately, connect POR_B to JTAG reset. In
this case assertion of JTAG reset reboots the
processor.

RESET_IN_B is a warm reset negative logic input that resets all modules
and logic except for the following:
 • Test logic (JTAG, IOMUXC, DAP)
 • SRTC
 • Memory repair—Configuration of memory repair per fuse settings
 • Cold reset logic of WDOG—Some WDOG logic is only reset by

POR_B. See the WDOG chapter in the i.MX50 reference manual for
details.

Table 1-2. DDR Vref resistor sizing guideline

Number of DRAM packages with 2 μA Vref input current Resistor divider value (2 resistors)

LPDDR2 1.0 kΩ 1%

DDR2 (2 pcs) 1.21 kΩ 1%

DDR2 (4 pcs) 768 Ω 1%

mDDR Float

Table 1-1. Design checklist (continued)

Recommendation Explanation/supplemental recommendations

Design Checklist

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 1-5

Figure 1-1. Boot configuration bus isolation

Table 1-3. JTAG interface summary

JTAG signal i.MX50 I/O type
On-Chip termination

to NVCC_JTAG or GND External termination

JTAG_TCK Input 100 kΩ pull down Not required
Can use 10 kΩ pull up

JTAG_TMS Input 47 kΩ pull up Not required
Can use 10 kΩ pull up

JTAG_TDI Input 47 kΩ pull up Not required
Can use 10 kΩ pull up

JTAG_TDO State output Keeper Do not use pull up

JTAG_TRSTB Input 47 kΩ pull up Not required
Can use 10 kΩ pull up

JTAG_MOD Input 100 kΩ pull down Required
Use 0 to 6.8 kΩ pull down

Design Checklist

i.MX50 System Development Guide, Rev. 0

1-6 Freescale Semiconductor

Figure 1-2. Boot configuration bus isolation

Configuring JTAG Tools for Debugging

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 2-1

Chapter 2
Configuring JTAG Tools for Debugging
This chapter explains how to configure JTAG tools for debugging. The JTAG module is a standard JEDEC
debug peripheral. It provides debug access to important hardware blocks, such as the ARM processor and
the system bus, which can give users access and control over the entire SoC. Because of this, unsecured
JTAG modules are vulnerable to JTAG manipulation, a known hacker’s method of executing unauthorized
program code, gaining control over secure applications, and running code in privileged modes. To properly
secure the system, unauthorized JTAG usage must be strictly forbidden.

To prevent JTAG manipulation while allowing access for manufacturing tests and software debugging, the
i.MX50 processor incorporates a secure JTAG controller for regulating JTAG access. The secure JTAG
controller provides four different JTAG security modes, which are selected by an e-fuse configuration. For
more information about the security modes, see the “Security” section in the “System JTAG Controller
(SJC)” chapter of the i.MX50 reference manual.

NOTE
By default all parts are shipped with security disabled.

The JTAG port must be accessible during platform initial validation bring-up and for software debugging.
It is accessible in all development kits from Freescale. Multiple tools are available for accessing the JTAG
port for tests and software debugging. Freescale recommends use of the ARM JTAG tools for
compatibility with the ARM core. However, the JTAG chain described in the following sections should
work for non-ARM JTAG tools. For more information about non-ARM tools, contact the third party tool
vendors for support.

2.1 Accessing debug with a JTAG scan chain (ARM tools)
This section shows how to use the ARM tools to connect to the i.MX50 processor, using a JTAG scan
chain. The example uses the RealView ICE (RVI) and RVDS ARM tools. RVI provides the hardware
interface between the host PC and the JTAG port on the development kit (see
http://www.arm.com/products/tools/rvi-and-rvt2.php for more information). RVDS is the software
development kit that runs on the host PC. Its primary components consist of the ARM compiler, an Eclipse
based IDE, and the RealView Debugger (for more information, see
http://www.arm.com/products/tools/software-development-tools.php).

NOTE

Users must have the latest recommended ARM firmware installed on their RVI box to be able to connect
to the Cortex-A8 on the i.MX50.

Once the latest firmware is installed, follow these steps to configure the JTAG scan chain on the RVI box:

1. Connect RVI to the i.MX50 board using the JTAG ribbon cable.

2. Using the order shown below, configure the scan chain with the following connections: TDI →
Unknown → Unknown → ARMCS-DP → Cortex-A8 (see Figure 2-1).

a) Add Device > Custom Device > UNKNOWN > IR Length = 5

b) Add Device > Custom Device > UNKNOWN > IR Length = 4

Configuring JTAG Tools for Debugging

i.MX50 System Development Guide, Rev. 0

2-2 Freescale Semiconductor

c) Add Device > Registered Device > CoreSight > ARMCS-DP

d) Add Device > Registered Device > Cortex > Cortex-A8

Figure 2-1. Example of adding a device

3. Update the CoreSight base address (see Figure 2-2):

a) Right click on Cortex-A8 Device.

b) Select configuration.

c) Set CoreSight base address to = 0xC0008000.

Configuring JTAG Tools for Debugging

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 2-3

Figure 2-2. Updating the CoreSight base address

4. Save the configuration.

Configuring JTAG Tools for Debugging

i.MX50 System Development Guide, Rev. 0

2-4 Freescale Semiconductor

After following the recommended steps, the RVDS JTAG scan chain should look like Figure 2-3. Note this
screenshot shows the resulting scan chain when using ARM RVDS v3.1 tools.

Figure 2-3. i.MX/Cortex-A8 RVDS JTAG scan chain

After setting up the JTAG scan chain, RVI can connect to the i.MX50’s core. This is the only required step;
no initialization scripts are necessary.

Once connected, test code can be loaded immediately into the internal RAM space, which starts at
0xF800_0000 (for more details refer to the i.MX50 memory map in the i.MX50 reference manual).
Additionally, ARM provides .bcd files for some i.MX products, which can be used with RVDS to provide
enumerated views of registers and/or peripherals on the target hardware along with the entire memory map
of the target processor. Available .bcd configuration files are located at
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0182l/Bjefhigi.html

2.2 Accessing debug with a JTAG scan chain (other JTAG tools)
 The JTAG scan chain described in Section 2.1, “Accessing debug with a JTAG scan chain (ARM tools),”
is not specific to ARM tools. It can be used with any JTAG tool to connect to the i.MX50 processor. The
IR lengths of each component in the JTAG scan chain are provided so that the steps can be repeated when
using a different tool.

Avoiding Board Bring-Up Problems

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 3-1

Chapter 3
Avoiding Board Bring-Up Problems
This chapter provides recommendations for avoiding typical mistakes when bringing up a board for the
first time. These recommendations consist of basic techniques that have proven useful in the past for
detecting board issues and address the three most typical bring-up pitfalls: power, clocks, and reset. A
sample bring-up checklist is provided at the end of the chapter.

3.1 Using a voltage report to avoid power pitfalls
Using incorrect voltage rails is a common power pitfall. To help avoid this mistake, create a basic table
called a voltage report prior to bringing up your board. This table helps validate that your supplies are
coming to the expected level.

To create a voltage report, list the following:

• Your board voltage sources

• Default power-up values for the board voltage sources

• Best place on the board to measure the voltage level of each supply

Be careful when determining the best place to measure each supply. Depending on the location you take
your measurement, a large voltage drop (IR drop) on the board may cause you to measure inaccurate
levels.

The following guidelines help prevent this:

• Measure closest to the load (in this case the i.MX50 processor).

• Make two measurements: the first after initial board power-up and the second while running a
heavy use-case that stresses the i.MX50.

The supplies that power the i.MX50 should all meet the DC electrical specifications as listed in the i.MX50
data sheet.

Table 3-1 shows a sample voltage report table.

Table 3-1. Sample voltage report table

Signal name Expected
value (V)

Actual value (V) Test point Comments

5V_main 5.0 5.06 Pin1 of J5

LI-ON_Battery 4.2 4.18 Pin3 of J5

DCDC_3V15 3.15 3.14 R326

NVCC_SRTC 1.2 1.19 R73

VCC 1.2 1.19 R94

VDDA 1.2 1.19 R96

VDDAL 1.2 1.19 R96

Avoiding Board Bring-Up Problems

i.MX50 System Development Guide, Rev. 0

3-2 Freescale Semiconductor

3.2 Using a current monitor to avoid power pitfalls
Excessive current can cause damage to the board. Avoid this problem by using a current-limiting
laboratory supply that has a current read-out to power the main power to the board when bringing up the
board for the first time. This allows the main power to be monitored, which makes it easy to detect any
excessive current.

3.3 Checking for clock pitfalls
Problems with the external clocks are another common source of board bring-up issues. Ensure that all of
your clock sources are running as expected. The EXTAL/XTAL and the ECKIL/CKIL clocks are the main
clock sources for 24 MHz and 32 kHz reference clocks respectively on the i.MX50. Although not required,
the use of low jitter external oscillators to feed CKIH1 or CKIH2 on the i.MX50 can be an advantage if
low jitter or special frequency clock sources are required by modules driven by CKIH1 or CKIH2. See the
CCM chapter in the i.MX50 reference manual for details.

When checking crystal frequencies, use an active probe to avoid excessive loading. A parasitic probe
typically inhibits the 32.768 kHz oscillator from starting up. Use the following guidelines:

• CKIL clock should be running at 32.768 kHz (can be generated internally or applied externally)

• EXTAL/EXTAL should be running at 24 MHz (used for the PLL reference)

VDDGP 1.05 1.09 R91

VDDO25 2.5 2.49 R370

NVCC_EMI_DRAM 1.8 1.79 R97

VREF 0.9 0.9 R201

NVCC (3.3 V IO) 3.15 3.14 R368

VDD3P0 3.15 3.14 R412

USB_OTG_VDDA33 3.15 3.14 R98

USB_H1_VDDA33 3.15 3.14 R98

NVCC (1.8 V IO) 1.8 1.79 R460

NVCC_RESET (LVIO) 1.8 1.79 R460

VDD2P5 2.5 2.49 R92

USB_OTG_VDDA25 2.5 2.49 R100

USB_H1_VDDA25 2.5 2.49 R100

VDD1P8 1.8 1.79 R93

VDD1P2 1.2 1.19 R95

Table 3-1. Sample voltage report table (continued)

Signal name
Expected
value (V)

Actual value (V) Test point Comments

Avoiding Board Bring-Up Problems

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 3-3

• CKIH1/CKIH2 can be used as oscillator inputs for low jitter special frequency sources.

• CKIH1 and CKIH2 are optional.

In addition to probing the external input clocks, you can check internal clocks by outputting them at the
debug signals CLKO1 and CLKO2. See the CCM chapter in the i.MX50 reference manual for more details
about which clock sources can be output to those debug signals.

3.4 Avoiding reset pitfalls
Follow these guidelines to ensure that you use the correct boot mode to boot.

• During initial power on while asserting the POR_B reset signal, ensure that both your reference
clocks are active before releasing POR_B.

• Follow the recommended power-up sequence specified in the i.MX50 reference manual.

The GPIOs and internal fuses control the i.MX50 boots. For a more detailed description about the different
boot modes, refer to the system boot chapter of the i.MX50 reference manual.

3.5 Sample board bring-up checklist
Table 3-2 provides a sample board bring-up checklist. Note that the checklist incorporates the
recommendations described in the previous sections. Blank cells should be filled in during bring-up as
appropriate.

Table 3-2. Board bring-up checklist

Checklist Item details Owner
Findings and

status

Note: The following items must be completed serially.

1. Perform a visual inspection. Check major components to make sure nothing has been
misplaced or rotated before applying power.

2. Verify all i.MX50 voltage rails. Confirm that the voltages match the data sheet’s requirements. Be
sure to check voltages not only at the voltage source, but also as
close to the i.MX50 as possible (like on a bypass capacitor). This
reveals any IR drops on the board that will cause issues later.
Ideally all of the i.MX50 voltage rails should be checked, but
VDDGP, VCC, and VDDA are particularly important voltages.
These are the core logic voltages and must fall within the
parameters provided in the i.MX50 data sheet.
NVCC_SRTC, NVCC_RESET, NVCC_JTAG, and
NVCC_EMI_DRAM are also critical to the i.MX50 boot up.

3. Verify power up sequence. Verify that power on reset (POR) is de-asserted (high) after all
power rails have come up and are stable. Refer to the i.MX50 data
sheet for details about power up sequencing.
This is an important process as many complex processors are
sensitive to the proper power up sequencing.

4. Measure/probe input clocks (32 kHz, 24
MHz, others).

Without a properly running clock, the i.MX50 does not function
properly. Look for voltage, jitter, and noise.

Avoiding Board Bring-Up Problems

i.MX50 System Development Guide, Rev. 0

3-4 Freescale Semiconductor

5. Check JTAG connectivity (RV-ICE). This is one of the most fundamental and basic access points to the
i.MX50 to allow the debug and execution of low level code.

Note: The following items may be worked on in parallel with other bring up tasks.

6. Access internal RAM. Verify basic operation of the i.MX50 in system. The on-chip
internal RAM starts at address 0xF800_0000 and is 128 Kbytes in
density. Perform a basic test by performing a write-read-verify to
the internal RAM. No software initialization is necessary to access
internal RAM.

7. Verify CLKO outputs (measure and verify
default clock frequencies for desired clock
output options) if the board design supports
probing of the CLKO pin.

This ensures that the corresponding clock is working and that the
PLLs are working.
Note that this step requires chip initialization—for example via the
JTAG debugger—to properly set up the IOMUX to output CLKO
and to set up the clock control module to output the desired clock.
Refer to the reference manual for more details.

8. Measure boot mode frequencies. Set
the boot mode switch for each boot mode
and measure the following (depending on
system availability):
 • NAND (probe CE to verify boot,

measure RE frequency)
 • SPI-NOR (probe slave select and

measure clock frequency)
 • MMC/SD (measure clock frequency)

This verifies the specified signals’ connectivity between the
i.MX50 and boot device and that the boot mode signals are
properly set. Refer to the “Boot Modes for the i.MX50” section in
the i.MX50 reference manual for details about configuring the
various boot modes.

9. Run basic DDR initialization and test
memory.

1. Assuming the use of a JTAG debugger, run the DDR
initialization and open a debugger memory window pointing to
the DDR memory map starting address.

2. Try writing a few words and verify that they can be read
correctly.

3. If not, recheck the DDR initialization sequence and whether the
DDR has been correctly soldered onto the board.

It is also recommended that users recheck the schematic and PCB
layout to ensure that the DDR memory has been connected to the
i.MX50 correctly.

Table 3-2. Board bring-up checklist (continued)

Checklist Item details Owner
Findings and

status

 Using the Clock Connectivity Table

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 4-1

Chapter 4
Using the Clock Connectivity Table
This chapter explains how to use the i.MX50 clocking connectivity. You can use this information to save
power by disabling clocks to unused modules.

4.1 External clock sources
The following list describes the external clock sources:

• RTC 32.768KHz CKIL/ECKIL crystal—This is a 32.768 kHz crystal input for the i.MX50. By
default, ECKIL comes from Ripley PMIC output.

• 24 MHz XTAL/EXTAL crystal—This is a 24 MHz input for the i.MX50. The required accuracy
of this crystal is 50 ppm.

• 12.288 MHz oscillator—This oscillator is for the audio codec. The required accuracy of this crystal
is 30 ppm.

• 50 MHz oscillator—This oscillator is for Ethernet. The required accuracy of this crystal is 30 ppm.

4.2 Internal clock sources
For information about how the root clocks are generated, see the clock generation diagrams in the CCM
chapter of the i.MX50 reference manual. In some cases, the CCM does not generate the clock, and the
clock may come directly from the IO pad.

The following list shows a reference setting for the CCM registers.

• mx50 pll1: 800 MHz

• mx50 pll2: 400 MHz

• mx50 pll3: 216 MHz

• ipg clock : 66666666 Hz

• ipg per clock : 66666666 Hz

• uart clock : 24000000 Hz

• ahb clock : 133333333 Hz

• axi_a clock : 400000000 Hz

• axi_b clock : 200000000 Hz

• weim_clock : 100000000 Hz

• ddr clock : 266666666 Hz

• esdhc1 clock : 80000000 Hz

• esdhc2 clock : 80000000 Hz

• esdhc3 clock : 80000000 Hz

• esdhc4 clock : 80000000 Hz

• GPMI clock : 24000000 Hz

• BCH clock : 24000000 Hz

 Using the Clock Connectivity Table

i.MX50 System Development Guide, Rev. 0

4-2 Freescale Semiconductor

• [53fd4000]: 000012FF

• [53fd4004]: 00000000

• [53fd4008]: 00000034

• [53fd400c]: 00000000

• [53fd4010]: 00000000

• [53fd4014]: 02C80900

• [53fd4018]: 00010005

• [53fd401c]: F321F120

• [53fd4020]: 00000000

• [53fd4024]: 01040000

• [53fd4028]: 00400040

• [53fd402c]: 00400040

• [53fd4030]: 00000000

• [53fd4034]: 00000000

• [53fd4038]: 02080000

• [53fd403c]: 00000000

• [53fd4040]: 00000000

• [53fd4044]: 00000000

• [53fd4048]: 00000000

• [53fd404c]: 00000000

• [53fd4050]: 00000000

• [53fd4054]: 00000061

• [53fd4058]: 00000000

• [53fd405c]: FFFFFFFF

• [53fd4060]: 000a00F0

• [53fd4064]: 00000000

• [53fd4068]: FFFFFFFF

• [53fd406c]: FFFFFFFF

• [53fd4070]: FFFFFFFF

• [53fd4074]: FFFFFFFF

• [53fd4078]: FFFFFFFF

• [53fd407c]: FFFFFFFF

• [53fd4080]: FFFFFFFF

• [53fd4084]: FFFFFFFF

• [53fd4088]: FFFFFFFF

• [53fd408c]: 00000000

• [53fd4090]: 00000003

 Using the Clock Connectivity Table

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 4-3

• [53fd4094]: A0000044

• [53fd4098]: 80000003

• [53fd409c]: 00001001

• [53fd40a0]: 00001001

• [53fd40a4]: 00000001

• [53fd40a8]: 00000001

• [53fd40ac]: 80000001

• [53fd40b0]: 80000001

• [53fd40b4]: 00000001

Clock connectivity is described in the “System Clocks Connectivity” section in the CCM chapter of the
i.MX50 reference manual. This section contains a series of tables that describe the clock inputs of each
module and which clock is connected to it. In most cases, the clocks are CCM root clocks. However, some
clocks come from IO pins (mainly though IOMUX) and not from CCM.

Clock gating is done with the low power clock gating (LPCG) module based on a combination of the clock
enable signals. For more information about how the clock gating signals are logically combined, refer to
the LPCG section in the CCM chapter of the i.MX50 reference manual.

NOTE
In some cases, a clock is part of a protocol and is sourced from a pad (mainly
through IOMUX). Such clocks do not appear in the clock connectivity table.
They are found in the “External Signals and Pin Multiplexing” chapter.

 Using the Clock Connectivity Table

i.MX50 System Development Guide, Rev. 0

4-4 Freescale Semiconductor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 5-1

Chapter 5
About the IOMUX Tool

5.1 IOMUX: What is it?
The i.MX applications processor has a limited number of IO connections relative to all possible signals
available to the on-chip peripherals. The input-output multiplexer (IOMUX) is the on-chip multiplexer that
connects the package pins or balls to the internal peripheral signals.

Each IO connection has the following three registers:

• MUX control register—controls which internal signal is connected to a particular external IO
connection

• Pad control register—controls the electrical behavior of the IO cell connected to the external IO
connection

• Input select register—controls the connection between an internal input signal and the external IO
connection.

Every signal that is routed through the IOMUX requires that the first two registers be properly set. In
addition, if the input select register is not properly configured, the external input will not be connected to
the internal peripheral (an omission often made by those unfamiliar with configuring the IOMUX).

For more specific information about the IOMUX module, refer to the appropriate i.MX applications
processor’s reference manual.

5.2 How the IOMUX tool helps application design
It is difficult to make all the assignments for an application without introducing conflicts between signals
and IO connections. If not caught before a board was produced, such conflicts may even require board
revisions to correct. The IOMUX tool was developed to help the hardware system designer make these
signal assignments and to resolve conflicts more easily. A secondary purpose of the tool is to provide
system documentation for the hardware and software developers.

5.2.1 Assigning signals and resolving conflicts

The main purpose of the IOMUX tool is to allow real time assignment with immediate conflict detection.
A Windows GUI interface consisting of nested check boxes allows users to assign individual signals or
whole peripherals. For each signal, users can choose a specific external IO connection (ball or pin). If the
assignment results in a definite conflict, the tool highlights the conflicting signals in orange. If the
assignment results in a potential conflict, the tool highlights the potentially conflicting signal in yellow.
Users can then avoid the conflict either by avoiding that particular signal assignment or if that particular
external IO connection is desired, reassigning the existing assignment(s).

About the IOMUX Tool

i.MX50 System Development Guide, Rev. 0

5-2 Freescale Semiconductor

Contextual information boxes are available when the mouse hovers over the different portions of the GUI.
These boxes provide information that helps users avoid and/or resolve assignment conflicts. A pictorial
diagram of the device package is also provided so that the relative location of the signals and their external
IO connection assignments can be inspected.

5.2.2 Documentation features

The IOMUX tool allows a design to be saved to and loaded from a file to allow multi-session design
development. It also allows the creation of derivative boards based on an existing design.

A novel feature of the IOMUX tool is the ability to annotate signal assignments with “Signal Notes.” One
such use is to associate application specific signal names with each signal assignment so the intended use
can be related to the i.MX device’s IO connections and internal signals. General information about the
application, revision level, contact information, and other design related information may be entered as
well.

In addition to the ability to load and save a design in the native XML format, application design
information can be printed or saved as either plain text or rich text format (RTF). The plain text information
can then be pasted into the schematic files, readily providing the assignment information during hardware
debug. The plain text information may also be pasted into the application software source repository,
providing software developers with the assignment information all in one place.

The output includes the GPIO signals that are available at every external IO connection. This information
can be useful during board bring-up because it readily allows individual IO connections to be wiggled to
diagnose connectivity issues at the board level without needing to run a stack to support the functional
operation of a peripheral.

5.2.3 Additional features

Mismatches between the signal levels at the board level and the IO connections of the i.MX applications
processor can occur when peripheral signals are assigned to external IO connections that are not supplied
by the same power supply rails. To help users ensure that signal levels match between the device and the
rest of the board, the IOMUX tool allows the assignment of voltages to each power supply. For each
peripheral used in the design, the user will be alerted where a mismatch in power supply voltages for a
peripheral exists.

5.3 Obtaining the IOMUX tool
The IOMUX tool may be downloaded from the Freescale web page at the IOMUX Tool download
location. More complete documentation about the tool and its features are included in the download (about
1 MB in size).

https://www.freescale.com/webapp/Download?colCode=IO_MUX_TOOL&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search
https://www.freescale.com/webapp/Download?colCode=IO_MUX_TOOL&appType=license&location=null&fsrch=1&sr=1&Parent_nodeId=from%20search&Parent_pageType=from%20search

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 6-1

Chapter 6
Setting up Power Management
This chapter discusses how to supply and interface the i.MX50 multimedia applications processor with
power management integrated circuits (PMICs): MC34708 from Freescale.

The interface requires the addition of an extra RT8011A regulator to supply the external DCDC 3.15 V
power domain. Note that the DCDC is needed only when a large current external device exists, such as
WIFI or 3G. Otherwise, we can use the supply from the PMIC.

6.1 i.MX50 power requirement

6.1.1 Voltage rail and current requirement for i.MX50

Table 6-1. Voltage rail and current requirements

Power Rail of i.MX50 Power domain Max current (mA) Voltage (V)

NVCC_SRTC 32 kHz osc. power (when chip off) TBD1 1.20

VCC LP Transistor power 400 1.20

VDDA Peripheral Memory + L2 Cache power 250 1.20

VDDAL1 L1 Cache power 250 1.20

VDDGP Core and G Transistor power 1250 1.00

VDDO2P5 Predriver for EMI pads 150 2.50

NVCC_EMI_DRAM Power to EMI pins 350 1.20

VREF DRAM Reference 2~4 μA 0.9

All 3.3 V IO NVCC 3.0 V I/Os — —

VDD3P0 VDD2P5 LDO input + power to Bandgap,
DCDC predriver, tempsensor, 480 MHz PLL

~10 3.00

USB_OTG_VDDA33 Power to USB Host 16 3.30

USB_H1_VDDA33 Power to USB OTG 16 3.30

All 1.8V IO NVCC 1.8 V I/Os — —

NVCC_RESET (LVIO) Power to POR_B,RESET_IN_B,
TESTMODE, & BOOTMODE[0:1]

 Few(TBD)1 TBD1

VDD2P5 Power to 24 MHz osc, efuse, xtalok,
32 kHz osc. power mux

~10 2.50

USB_OTG_VDDA25 Power to USB Host 50 2.50

USB_H1_VDDA25 Power to USB OTG 50 2.50

VDD1P8 Power to all PLLs ~10 1.80

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

6-2 Freescale Semiconductor

6.1.2 Power-up sequence requirement for i.MX50

Figure 6-1. i.MX50 power-up sequence

VDD1P2 Power to all PLL digital, 32 kHz osc.
(when chip on), much of analog, digital

~10 1.20

1. TBD means to refer to the actual design load.

Table 6-1. Voltage rail and current requirements (continued)

Power Rail of i.MX50 Power domain Max current (mA) Voltage (V)

NVCC_SRTC

VCC

VDDGP
VDDA
VDDAL1 VDD3P0 VDDO2P5

VDD2P5

VDD1P8 VDD1P2

NVCC_EMI_DRAM

VREF

USB_OTG_VDDA25
USB_H1_VDDA25

USB_OTG_VDDA33

USB_H1_VDDA33

Note:
No power-up sequence dependencies exist between the supplies shown shaded in gray.

NVCC_EIM
NVCC_EPDC
NVCC_JTAG
NVCC_KEYPAD
NVCC_LCD
NVCC_MISC
NVCC_NANDF

NVCC_RESET
NVCC_SD1
NVCC_SD2
NVCC_SSI
NVCC_UART

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 6-3

6.2 MC34708 output capabilities

6.2.1 Voltage rail and current capabilities

6.2.2 Default power-up sequence of MC34708 customized for i.MX50

Table 6-2. Voltage rail and current capabilities

Supply Purpose (typical application)
Output voltage

(V)
Load capability

(mA)

SW1 Buck switcher for processor VDDGP
domain

0.650 – 1.4375 2000

SW2 Buck switcher for processor VCC
domain

0.650 – 1.4375 1000

SW3 Buck switcher for processor VDD
domain and peripherals

0.6500 – 1.425 500

SW4A Buck switcher for DDR memory and
peripherals

1.200 – 1.975 : 2.5/3.15/3.3 500

SW4B Buck switcher for DDR memory and
peripherals

1.200 – 1.975: 2.5/3.15/3.3 500

SW5 Buck switcher for I/O domin 1.200 – 1.975 1000

SWBST Boost switcher for USB OTG 5.00/5.05/5.10/5.15 380

VSRTC Secure real-time clock supply 1.2 .050

VPLL Quiet analog supply 1.2/1.25/1.5/1.8 50

VREFDDR DDR ref supply 0.6–0.9 V 10

VDAC TV DAC supply, external PNP 2.5/2.6/2.7/2.775 250

VUSB2 VUSB/peripherals supply, internal
PMOS

2.5/2.6/2.75/3.0 65

VUSB./peripherals external PNP 2.5/2.6/2.75/3.0 350

VGEN1 General peripheral supply #1 1.2/1.25/1.3/1.35/1.4/1.45/1.5/1.55 250

VGEN2 General peripherals supply #2,
internal PMOS

2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3 50

General peripherals supply #2,
external PNP

2.5/2.7/2.8/2.9/3.0/3.1/3.15/3.3 250

VUSB USB transceiver supply 3.3 100

Table 6-3. MC34708 power-up sequence

Tap
× 2 ms

PUMS[4:1] = [1010, 1011, 1100, 1101, 1110, 1111]
(i.MX50)

0 SW2

1 SW3

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

6-4 Freescale Semiconductor

6.2.3 Power-up voltage rail

MC34708 is a PMIC designed to support the i.MX family. MC34708 sets the specific power-up sequence
by 5 GPIO. The voltage level of PUMS[5:1] decides the power-up sequence mode.

Figure 6-4. Power-up mode

2 SW1A/B

3 VDAC

4 SW4A/B, VREFDDR

5 SW5

6 VGEN2

7 VPLL

8 VGEN1

9 VUSB (2), VUSB2

1 The VUSB regulator is only enabled if 5 V is present on the VBUS pin. By default, VUSB is supplied by the VBUS pin.

Table 6-3. MC34708 power-up sequence (continued)

Tap
× 2 ms

PUMS[4:1] = [1010, 1011, 1100, 1101, 1110, 1111]
(i.MX50)

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 6-5

For details, see the MC34708 reference manual. For the i.MX50, the MC34708 has 6 modes for us to
select. Select the power-up mode according to our application. The following mode marked with a red oval
is applied on MX50 EVK board.

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

6-6 Freescale Semiconductor

6.3 i.MX50 interfaces to MC34708

6.3.1 SPI interface between i.MX50 and MC34708

Figure 6-5. SPI interface

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 6-7

6.3.2 Power rail interface between i.MX50 and MC34708

Figure 6-6. Power rail interface

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

6-8 Freescale Semiconductor

6.3.3 Extra 3.15 V DCDC power supply

For system stability, it is recommended that you use an extra 3.15 V DCDC power supply to support large
current requirements (for example a 3G module or Wi-fi card). The MC34708 has limited 3.15 V output
ability.

The RT8011/A is a high efficiency synchronous, step-down DC/DC converter. Its input voltage range is
from 2.6 V to 5.5 V, and it provides an adjustable regulated output voltage from 0.8 V to 5 V while
delivering up to 2 A of output current.

The internal synchronous low on-resistance power switches increase efficiency and eliminate the need for
an external Schottky diode. The switching frequency is either set by an external resistor or synchronized
to an external clock. A 100% duty cycle provides low dropout operation, which extends battery life in
portable systems. Current mode operation with external compensation allows the transient response to be
optimized over a wide range of loads and output capacitors.

6.4 RT8011/A features
The RT8011/A has the following features:

• High efficiency: up to 95%

• Low RDS(on) internal switches: 110 mΩ
• Programmable frequency: 300 kHz to 4 MHz (no Schottky diode required)

• 0.8 V reference allows low output voltage

• Forced continuous mode operation

• Low dropout operation: 100% duty cycle

• RoHS compliant and 100% lead (Pb)-free

6.5 Additional device information
This section provides additional product information for the MC34708 PMIC subsystem.

MC34708 is the power management and user interface component for the Freescale i.MX53, i.MX50,
i.MX51, 37, and 35 application processors. A high level block diagram is presented below to illustrate
functional content which includes:

• Switching charger system for wall charging and USB charging, with auxiliary charge path

• Auto charge detection of CEA936/Apple/USB Host

• UART/Audio switching to USB D+/D– and ID pins

• 10bit ADC for monitoring battery and other inputs plus Coulomb Counter support module

• 4 Wire Resistive Touchscreen Interface

• Buck switchers for direct supply of the processor core and memory

• Boost switcher and regulators for USB PHY with OTG support

• Regulators with internal and external pass devices for thermal budget optimization

• Power control logic with processor interface and event detection

Setting up Power Management

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 6-9

• Real time clock and crystal oscillator circuitry with coin cell backup

• Support for external secure real time clock on a companion system processor IC

• Single SPI/I2C bus for control and register access

• Four general purpose low voltage I/O’s with interrupt capability

• Two PWM outputs

• Drivers for signal LEDs

Figure 6-7. MC34708 block diagram

MC34708

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-1

Chapter 7
Interfacing DDR Memories with the i.MX50 Processor

7.1 Overview
The i.MX50 supports off-chip DRAM storage using the DRAM MC, which is connected to the internal
AXI bus. The DRAM MC supports multiple external memory types, including:

• Standard 1.8 V DDR2

• 1.8 V Mobile DDR1 (LP-DDR1)

• 1.2 V Mobile DDR2 (LP-DDR2)

The DRAM MC consists of three major components:

• AXI bus interface

• DRAM controller

• DRAM PHY

The DRAM MC uses three primary clocks: the AHB bus clock (HCLK), the AXI bus clock (AXI_CLK),
and the DDR interface clock (DDR_CLK). The AXI_CLK and DDR_CLK can be configured as either
synchronous or asynchronous, but the HCLK and AXI_CLK are always treated asynchronously.

The DRAM MC supports the following clock frequencies:

• Up to 266 MHz at the DDR interface (532 MHz data rate)

• Up to 266 MHz at the AXI interface

• Up to 133 MHz at the AHB interface

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

7-2 Freescale Semiconductor

7.2 Connection between i.MX50 and DDR memories
Figure 7-1–Figure 7-3 show various interfaces between i.MX50 and DDR memories.

Figure 7-1. Interfacing between i.MX50 and LPDDR2

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-3

Figure 7-2. Interfacing between i.MX50 and DDR2

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

7-4 Freescale Semiconductor

Figure 7-3. Interfacing between i.MX50 and mDDR

When using DDR, the nominal reference voltage must be half of the NVCC_EMI_DRAM supply. The
resistors must be sized to account for the i.MX50 DDR_VREF input current plus the memory input
current. This current, drawn from the divider, affects the reference voltage.

Consider:
• Shunting each resistor with a closely-mounted capacitor. The decouple cap connected in parallel

to the resistor connected to NVCC_EMI_DRAM may be required.

• Tie DDR_VREF to a precision external resistor divider with a resistor to GND and a resistor to
NVCC_EMI_DRAM.

For the resistors selection, please refer to Table 1-2.

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-5

The following shows an example LPDDR2 connection.

Figure 7-4. Example LPDDR2 connection

The DRAM_CALIBRATION input requires that an external resistor be used as a reference during DRAM
output buffer driver calibration. This resistor must be mounted close to the associated BGA ball.

Use the following values for the DRAM calibration input:

• For LPDDR1, connect 300 Ω 1% to GND.

• For DDR2, connect 240 Ω 1% to GND.

7.3 Configuring the DDR JTAG script

7.3.1 Script file for LPDDR2 (266M)

//===
//init script for codex LPDDR2-266MHz CPU board
//===
// Revision History
// v01
// v01 works stable with LPDDR2 CPU board (EVB)
// v02
// v02 works stable with RD board (EVK)
// 1. IOMUX: change dse from b100 to b110
// 2. DLL: change parameter phase_detect_sel from b001 to b011
// 3. back-to-back timing: remove extra additional back-to-back timing
// v03 by Mike.K
// Updated for the EVK
// Tweaked timings for WRLAT and TRAS_MAX to match lpddr2 data sheet
// Updated drive strength to 100 (0x02000000) to improve stability
// Update TBST_INT_INTERVAL from 0x2 to 0x4 to improve stability

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

7-6 Freescale Semiconductor

// v04 by Marek
// Add the loading ZQ operation
// Reduce TRAS_MAX a little to be less than 70000ns @266MHz; from 0x48EB to
0x48D0
// v05 by Marek
// Update the ZQ init for TO1.1.1; It's NOT compliant with TO1.0
// Change DDR drive-strength from b011 to b101
// ddr stress test fail when dse=b011 && ddr_clk >= 200MHz
// ddr stress test pass when dse=b101
// v06 by Marek
// Fix the ZQ load bug
// Change DSE=b011
// v07 by Marek
// Update ddr settings to match the ddr configuration guide
//
//===

wait = on

//*===
===============
// init ARM
//*===
===============

//*===
===============
// Disable WDOG
//*===
===============
 setmem /16 0x53f98000 = 0x30

//*===
===============
// Enable all clocks (they are disabled by ROM code)
//*===
===============
setmem /32 0x53fd4068 = 0xffffffff
setmem /32 0x53fd406c = 0xffffffff
setmem /32 0x53fd4070 = 0xffffffff
setmem /32 0x53fd4074 = 0xffffffff
setmem /32 0x53fd4078 = 0xffffffff
setmem /32 0x53fd407c = 0xffffffff
setmem /32 0x53fd4080 = 0xffffffff
setmem /32 0x53fd4084 = 0xffffffff

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-7

//DDR clock setting
setmem /32 0x53FD4098 = 0x80000003

//*===
===============
// IOMUX
//*===
===============
// DDR PAD TYPE: DDR_SEL[26:25] -- b00: LPDDR1/DDR2; b10: LPDDR2
setmem /32 0x53fa86ac = 0x04000000 //IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE
setmem /32 0x53fa866c = 0x00000200 //IOMUXC_SW_PAD_CTL_GRP_DDRMODE_CTL
// [9] DDR_INPUT=1 (DQS: differential input mode)
setmem /32 0x53fa868c = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRMODE
// [9] DDR_INPUT=0 (DATA: CMOS input type)
setmem /32 0x53fa8670 = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRPKE
// [7] PKE=0 (All ddr pads except DQS)
// Drive-Strength: DSE[21:19]
setmem /32 0x53fa86a4 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_CTLDS
setmem /32 0x53fa8668 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_ADDDS
setmem /32 0x53fa8698 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_B0DS
setmem /32 0x53fa86a0 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_B1DS
setmem /32 0x53fa86a8 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_B2DS
setmem /32 0x53fa86b4 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_B3DS
setmem /32 0x53fa8490 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_OPEN
setmem /32 0x53fa8494 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_OPENFB
setmem /32 0x53fa8498 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_1
setmem /32 0x53fa849c = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_0
setmem /32 0x53fa84f0 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM0
setmem /32 0x53fa8500 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM1
setmem /32 0x53fa84c8 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM2
setmem /32 0x53fa8528 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM3

// DSE[21:19], PKE[7], PUE[6]
setmem /32 0x53fa84f4 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0
setmem /32 0x53fa84fc = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1
setmem /32 0x53fa84cc = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2
setmem /32 0x53fa8524 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3

//*===
===============
// Load ZQ
//*===
===============
setmem /32 0x1400012C = 0x00000817 // pd<<8, pu<<0
setmem /32 0x14000128 = 0x09180000 // (pd+1)<<24, (pu+1)<<16
// load PU, pu_pd_sel=0

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

7-8 Freescale Semiconductor

setmem /32 0x14000124 = 0x00310000 // software load ZQ: 3<<20, 1<<16
setmem /32 0x14000124 = 0x00200000 // clear for next load
// load PD, pu_pd_sel=1
setmem /32 0x14000128 = 0x09180010 // (pd+1)<<24, (pu+1)<<16, 1<<4
setmem /32 0x14000124 = 0x00310000 // software load ZQ: 3<<20, 1<<16
setmem /32 0x14000124 = 0x00200000 // clear for next load

//;**
//; DDR Controller Registers
//;**
//; Device: ELPIDA EDB4032B1PB(PoP) / SAMSUNG K4P4G304EC(PoP)
//; Density: 2G bits/chip-select
//; Organization: 8M words × 32 bits × 8 banks
//; Row address: R0 to R13
//; Column address: C0 to C8
//;**
//; Config: CAS=6, BL=4, 266MHz
//;**
setmem /32 0x14000000 = 0x00000500 // [11:8] DRAM_CLASS
// HW_DRAM_CTL01 (0x14000004) Read-only, don't write
setmem /32 0x14000008 = 0x0000001b // [23:0] TINIT: For LPDDR2, Minimum CKE LOW
time after completion of voltage ramp > 100 ns
setmem /32 0x1400000c = 0x0000d056 // [23:0] TINIT3: For LPDDR2, Minimum idle time
after first CKE assertion > 200us
setmem /32 0x14000010 = 0x0000010b // [23:0] TINIT4: For LPDDR2, Minimum idle time
after RESET command > 1us
setmem /32 0x14000014 = 0x00000a6b // [23:0] TINIT5: For LPDDR2, Maximum duration
of device auto initialization < 10us
setmem /32 0x14000018 = 0x02020d0c // [28:24] TCCD, [19:16] WRLAT, [12:8]
CASLAT_LIN_GATE, [4:0] CASLAT_LIN
setmem /32 0x1400001c = 0x0c110302 // [2:0] TBST_INT_INTERVAL
setmem /32 0x14000020 = 0x05020503
setmem /32 0x14000024 = 0x0048eb05
setmem /32 0x14000028 = 0x00000606 // [24] CONCURRENTAP, [12:8] TCKESR, [2:0] TCKE
// Modified: disable CONCURRENTAP feature CONCURRENTAP=0
// Modified: Enlarge the TCKESR & TCKE
setmem /32 0x1400002c = 0x09040501
setmem /32 0x14000030 = 0x02000000
setmem /32 0x14000034 = 0x00000e02
setmem /32 0x14000038 = 0x00000006
setmem /32 0x1400003c = 0x00002301 // [17:8] TRFC
setmem /32 0x14000040 = 0x00050408 // [15:0] tref: auto-refresh time; 3.9us for
LPDDR2 device ecb240abacn (ELPIDA)
setmem /32 0x14000044 = 0x00000300
setmem /32 0x14000048 = 0x00260026
setmem /32 0x1400004c = 0x00010000

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-9

setmem /32 0x14000050 = 0x00000000 // lowpower mode
setmem /32 0x14000054 = 0x00000000 // lowpower mode
setmem /32 0x14000058 = 0x00000000 // lowpower mode
setmem /32 0x1400005c = 0x02000000
setmem /32 0x14000060 = 0x00000002 // [8] write-mode-reg; [3:0] CKSRX
setmem /32 0x14000064 = 0x00000000 // [16:0] read-mode-reg
setmem /32 0x14000068 = 0x00000000 // [31:16] MR0_DATA_0; [15:0] MRR_DATA
setmem /32 0x1400006c = 0x00040042 // [31:16] MR2_DATA_0; [15:0] MR1_DATA_0
setmem /32 0x14000070 = 0x00000001 // [31:16] MR16_DATA_0; [15:0] MR3_DATA_0
setmem /32 0x14000074 = 0x00000000 // [31:16] MR0_DATA_1; [15:0] MR17_DATA_0
setmem /32 0x14000078 = 0x00040042 // [31:16] MR2_DATA_1; [15:0] MR1_DATA_1
setmem /32 0x1400007c = 0x00000001 // [31:16] MR16_DATA_1; [15:0] MR3_DATA_1
setmem /32 0x14000080 = 0x010b0000 // [27:16] ZQINIT; [15:0] MR17_DATA_1
setmem /32 0x14000084 = 0x00000060 // ZQ
setmem /32 0x14000088 = 0x02400018 // ZQ
setmem /32 0x1400008c = 0x01000e00 // ZQ
setmem /32 0x14000090 = 0x0a010101 // [18:16] COLUMN_SIZE; [10:8] ADDR-PINS; [0]
EIGHT_BANK_MODE
setmem /32 0x14000094 = 0x01011f1f
setmem /32 0x14000098 = 0x01010101
setmem /32 0x1400009c = 0x00030101 // [24] REDUC: select 16/32-bit mode; [17:16]
CS_MAP
setmem /32 0x140000a0 = 0x00010000 // [16] LPDDR2_S4=1
setmem /32 0x140000a4 = 0x00010000 // [16] RESYNC_DLL_PER_AREF_EN; [8] RESYNC_DLL
setmem /32 0x140000a8 = 0x00000000 // [25:16] INT_ACK; [10:0] INT_STATUS
setmem /32 0x140000ac = 0x00000fff // [10:0] INT_MASK
// HW_DRAM_CTL44~49 (0x140000b0~c4) Read-only, don't write
setmem /32 0x140000c8 = 0x02020101 // ODT
setmem /32 0x140000cc = 0x01000000 // ODT
setmem /32 0x140000d0 = 0x01000201 // Additonal Delay
setmem /32 0x140000d4 = 0x00000200 // Additonal Delay
setmem /32 0x140000d8 = 0x00000102
setmem /32 0x140000dc = 0x0000ffff // [17:16] AXI0_FIFO_TYPE_REG
// Modified:
setmem /32 0x140000e0 = 0x0000ff00 // No meaning for this MC
setmem /32 0x140000e4 = 0x02020000 // AXI0
setmem /32 0x140000e8 = 0x02020202 // AXI0
setmem /32 0x140000ec = 0x00000202 // AXI0
setmem /32 0x140000f0 = 0x01010064 // AXI1
setmem /32 0x140000f4 = 0x01010101 // AXI1
setmem /32 0x140000f8 = 0x00010101 // AXI0
setmem /32 0x140000fc = 0x00000064 // [16] CKE_STATUS
setmem /32 0x14000100 = 0x00000000
setmem /32 0x14000104 = 0x02000802 // DFI
setmem /32 0x14000108 = 0x04080000 // DFI
setmem /32 0x1400010c = 0x04080408 // DFI
setmem /32 0x14000110 = 0x04080408 // DFI

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

7-10 Freescale Semiconductor

setmem /32 0x14000114 = 0x03060408 // [27:24] WRLAT_ADJ; [20:16] RDLAT_ADJ
// Modified: WRLAT_ADJ from 2 to 3
setmem /32 0x14000118 = 0x00010002 // [24] ODT_ALT_EN=0
// Modified: ODT_ALT_EN must be 0
setmem /32 0x1400011c = 0x00001000 // [12] AXI0_HIDE_BRESP=1; [8] MDDR_CKE_SEL;
[0] AXI0_AWCOBUF=0
// Modified: Recommend AXI0_HIDE_BRESP = 1

//*===
===============
// DDR PHY settings
//*===
===============
setmem /32 0x14000200 = 0x00000000 // RESERVED
setmem /32 0x14000204 = 0x00000000 // on-chip ODT
// [26:24] RD_DLY_SEL; [15:12] DQS_OE_START; [11:8] DQS_OE_END; [6:4]
DATA_OE_START; [2:0] DATA_OE_END
setmem /32 0x14000208 = 0x35003a27 // data-slice-0: PHY_CTRL_REG_0_B0
setmem /32 0x14000210 = 0x35003a27 // data-slice-1: PHY_CTRL_REG_0_B1
setmem /32 0x14000218 = 0x35003a27 // data-slice-2: PHY_CTRL_REG_0_B2
setmem /32 0x14000220 = 0x35003a27 // data-slice-3: PHY_CTRL_REG_0_B3
setmem /32 0x14000228 = 0x35003a27 // data-slice-CA: PHY_CTRL_REG_0_CA
// [8:6] GATE_ERR_DELAY; [5:4] GATE_CLOSE_CFG; [2:0] GATE_CFG
setmem /32 0x1400020c = 0x380002e1 // data-slice-0: PHY_CTRL_REG_1_B0
setmem /32 0x14000214 = 0x380002e1 // data-slice-1: PHY_CTRL_REG_1_B1
setmem /32 0x1400021c = 0x380002e1 // data-slice-2: PHY_CTRL_REG_1_B2
setmem /32 0x14000224 = 0x380002e1 // data-slice-3: PHY_CTRL_REG_1_B3
setmem /32 0x1400022c = 0x380002e1 // data-slice-CA: PHY_CTRL_REG_1_CA
setmem /32 0x14000230 = 0x00000000 // RESERVED
// [23] DFI_MOBILE_EN=1; [16] DDR_SEL=1; [3:0] DFI_RDDATA_VALID >= RD_DLY_SEL + 1
setmem /32 0x14000234 = 0x00810006 // PHY_CTRL_REG_2
// [31:29] PHASE_DETECT_SEL; [28] DLL_BYPASS_MODE; [23:15] DLL_RD_DELAY_BYPASS;
[14:8] DLL_RD_DELAY; [7:0] DLL_START_POINT
setmem /32 0x14000238 = 0x60101014 // data-slice-0: DLL_CTRL_REG_0_B0
setmem /32 0x14000240 = 0x60101014 // data-slice-1: DLL_CTRL_REG_0_B1
setmem /32 0x14000248 = 0x60101014 // data-slice-2: DLL_CTRL_REG_0_B2
setmem /32 0x14000250 = 0x60101014 // data-slice-3: DLL_CTRL_REG_0_B3
setmem /32 0x14000258 = 0x60101014 // data-slice-CA: DLL_CTRL_REG_0_CA
// [23:15] DLL_WR_DELAY_BYPASS; [14:8] DLL_WR_DELAY; [7:0] DLL_INCR
setmem /32 0x1400023c = 0x00100b01 // data-slice-0: DLL_CTRL_REG_1_B0
setmem /32 0x14000244 = 0x00100b01 // data-slice-1: DLL_CTRL_REG_1_B1
setmem /32 0x1400024c = 0x00100b01 // data-slice-2: DLL_CTRL_REG_1_B2
setmem /32 0x14000254 = 0x00100b01 // data-slice-3: DLL_CTRL_REG_1_B3
setmem /32 0x1400025c = 0x00100b01 // data-slice-CA: DLL_CTRL_REG_1_CA

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-11

//*===
===============
// Start ddr init sequence
//*===
===============
setmem /32 0x14000000 = 0x00000501 // bit[0]: start

7.3.2 Script file for DDR2 (266M)

//===
//init script for codex DDR2-266MHz
//===
// Revision History
// v01 by Tommy
// v01 works stable on TO1.0
// v02 by Marek
// Update the ZQ init for TO1.1.1; It's NOT compliant with TO1.0
// v03 by Marek
// Update ddr settings to match the ddr configration guide
//===

wait = on

//*===
===============
// init ARM
//*===
===============

//*===
===============
// Disable WDOG
//*===
===============
 setmem /16 0x53f98000 = 0x30

//*===
===============
// Enable all clocks (they are disabled by ROM code)
//*===
===============
setmem /32 0x53fd4068 = 0xffffffff
setmem /32 0x53fd406c = 0xffffffff
setmem /32 0x53fd4070 = 0xffffffff
setmem /32 0x53fd4074 = 0xffffffff
setmem /32 0x53fd4078 = 0xffffffff

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

7-12 Freescale Semiconductor

setmem /32 0x53fd407c = 0xffffffff
setmem /32 0x53fd4080 = 0xffffffff
setmem /32 0x53fd4084 = 0xffffffff

//DDR clock setting
setmem /32 0x53FD4098 = 0x80000003

//*===
===============
// IOMUX
//*===
===============
//DDR PAD TYPE: DDR_SEL[26:25] -- b00: LPDDR1/DDR2; b10: LPDDR2
setmem /32 0x53fa86ac = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDR_TYPE
//[9] DDR_INPUT=1 (DQS: differential input mode)
setmem /32 0x53fa866c = 0x00000200 //IOMUXC_SW_PAD_CTL_GRP_DDRMODE_CTL
//[9] DDR_INPUT=0 (DATA: CMOS input type)
setmem /32 0x53fa868c = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRMODE
//[7] PKE=0 (All ddr pads except DQS)
setmem /32 0x53fa8670 = 0x00000000 //IOMUXC_SW_PAD_CTL_GRP_DDRPKE

//Drive-Strength: DSE[21:19]
setmem /32 0x53fa86a4 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_CTLDS
setmem /32 0x53fa8668 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_ADDDS
setmem /32 0x53fa8698 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_B0DS
setmem /32 0x53fa86a0 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_B1DS
setmem /32 0x53fa86a8 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_B2DS
setmem /32 0x53fa86b4 = 0x00200000 //IOMUXC_SW_PAD_CTL_GRP_B3DS
setmem /32 0x53fa8490 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_OPEN
setmem /32 0x53fa8494 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_OPENFB
setmem /32 0x53fa8498 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_1
setmem /32 0x53fa849c = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDCLK_0
setmem /32 0x53fa84f0 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM0
setmem /32 0x53fa8500 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM1
setmem /32 0x53fa84c8 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM2
setmem /32 0x53fa8528 = 0x00200000 //IOMUXC_SW_PAD_CTL_PAD_DRAM_DQM3

//DSE[21:19], PKE[7], PUE[6]
setmem /32 0x53fa84f4 = 0x00200080 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS0
setmem /32 0x53fa84fc = 0x00200080 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS1
setmem /32 0x53fa84cc = 0x00200080 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS2
setmem /32 0x53fa8524 = 0x00200080 //IOMUXC_SW_PAD_CTL_PAD_DRAM_SDQS3

//*===
===============

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-13

// Load ZQ
//*===
===============
setmem /32 0x1400012C = 0x0000070d // pd<<8, pu<<0
setmem /32 0x14000128 = 0x080e0000 // (pd+1)<<24, (pu+1)<<16
// load PU, pu_pd_sel=0
setmem /32 0x14000124 = 0x00310000 // software load ZQ: 3<<20, 1<<16
setmem /32 0x14000124 = 0x00200000 // clear for next load
// load PD, pu_pd_sel=1
setmem /32 0x14000128 = 0x080e0010 // (pd+1)<<24, (pu+1)<<16, 1<<4
setmem /32 0x14000124 = 0x00310000 // software load ZQ: 3<<20, 1<<16
setmem /32 0x14000124 = 0x00200000 // clear for next load

//**
//DDR Controller Registers
//**
//Device: ELPIDA EDE2116ACBG
//Density: 2G bits × 2/chip-select
//Organization: 16M words × 16 bits × 8 banks
//Row address: A0 to A13
//Column address: A0 to A9
//**
//Config: CAS=5, BL=4, 266MHz
//**
setmem /32 0x14000000 = 0x00000400 // [11:8] DRAM_CLASS

//HW_DRAM_CTL01 (0x14000004) Read-only, don't write

setmem /32 0x14000008 = 0x00000080 // [23:0] TINIT: For this specific device, 400ns
wait time before issuing out any command to dram device
//Modified: tinit > 400ns
setmem /32 0x1400000c = 0x00000000 // No meaning for LPDDR1/DDR2
setmem /32 0x14000010 = 0x00000000 // No meaning for LPDDR1/DDR2
setmem /32 0x14000014 = 0x02000000 // [27:24] INITAREF: For LPDDR1/DDR2, defines
the number of auto-refresh commands needed by the DRAM devices to satisfy the
initialization sequence
setmem /32 0x14000018 = 0x02030808 // [28:24] TCCD, [19:16] WRLAT, [12:8]
CASLAT_LIN_GATE, [4:0] CASLAT_LIN
setmem /32 0x1400001c = 0x0c100302 // [2:0] TBST_INT_INTERVAL
setmem /32 0x14000020 = 0x02020402 // [11:8] TRP
setmem /32 0x14000024 = 0x0048eb04 // [23:8] TRAS_MAX
setmem /32 0x14000028 = 0x00000606 // [24] CONCURRENTAP, [12:8] TCKESR, [2:0] TCKE
//Modified: disable CONCURRENTAP feature CONCURRENTAP=0
//Modified: Enlarge the TCKESR & TCKE
setmem /32 0x1400002c = 0x08040401 // [11:8] TRCD
setmem /32 0x14000030 = 0x000000c8

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

7-14 Freescale Semiconductor

setmem /32 0x14000034 = 0x006b0c02
setmem /32 0x14000038 = 0x00000005
setmem /32 0x1400003c = 0x00003401 // [17:8] TRFC
setmem /32 0x14000040 = 0x0005081b // [15:0] tref: auto-refresh time
setmem /32 0x14000044 = 0x00000000
setmem /32 0x14000048 = 0x003700c8
setmem /32 0x1400004c = 0x00010000
setmem /32 0x14000050 = 0x00000000 // lowpower mode
setmem /32 0x14000054 = 0x00000000 // lowpower mode
setmem /32 0x14000058 = 0x00000000 // lowpower mode
setmem /32 0x1400005c = 0x03000000
setmem /32 0x14000060 = 0x00000003 // [8] write-mode-reg; [3:0] CKSRX
setmem /32 0x14000064 = 0x00000000 // [16:0] read-mode-reg
setmem /32 0x14000068 = 0x06420000 // [31:16] MR0_DATA_0; [15:0] MRR_DATA
setmem /32 0x1400006c = 0x00000000 // [31:16] MR2_DATA_0; [15:0] MR1_DATA_0
setmem /32 0x14000070 = 0x00000000 // [31:16] MR16_DATA_0; [15:0] MR3_DATA_0
setmem /32 0x14000074 = 0x06420000 // [31:16] MR0_DATA_1; [15:0] MR17_DATA_0
setmem /32 0x14000078 = 0x00000000 // [31:16] MR2_DATA_1; [15:0] MR1_DATA_1
setmem /32 0x1400007c = 0x00000000 // [31:16] MR16_DATA_1; [15:0] MR3_DATA_1
setmem /32 0x14000080 = 0x02000000 // [27:16] ZQINIT; [15:0] MR17_DATA_1
setmem /32 0x14000084 = 0x00000100 // ZQ
setmem /32 0x14000088 = 0x02400040 // ZQ
setmem /32 0x1400008c = 0x01000000 // ZQ
setmem /32 0x14000090 = 0x0a000101 // [18:16] COLUMN_SIZE; [10:8] ADDR-PINS; [0]
EIGHT_BANK_MODE
setmem /32 0x14000094 = 0x01011f1f
setmem /32 0x14000098 = 0x01010101
setmem /32 0x1400009c = 0x00030103 // [24] REDUC: select 16/32-bit mode; [17:16]
CS_MAP
setmem /32 0x140000a0 = 0x00000000 // [16] LPDDR2_S4=0
setmem /32 0x140000a4 = 0x00010000 // [16] RESYNC_DLL_PER_AREF_EN; [8] RESYNC_DLL
setmem /32 0x140000a8 = 0x00000000 // [25:16] INT_ACK; [10:0] INT_STATUS
setmem /32 0x140000ac = 0x0000ffff // [10:0] INT_MASK

//HW_DRAM_CTL44~49 (0x140000b0~c4) Read-only, don't write

setmem /32 0x140000c8 = 0x02020101 // ODT
setmem /32 0x140000cc = 0x01000000 // ODT
setmem /32 0x140000d0 = 0x01010201 // Additonal Delay
setmem /32 0x140000d4 = 0x00000200 // Additonal Delay
setmem /32 0x140000d8 = 0x00000101
setmem /32 0x140000dc = 0x0000ffff // [17:16] AXI0_FIFO_TYPE_REG
//Modified:
setmem /32 0x140000e0 = 0x0000ffff // No meaning for this MC
setmem /32 0x140000e4 = 0x02020000 // AXI0
setmem /32 0x140000e8 = 0x02020202 // AXI0
setmem /32 0x140000ec = 0x00000202 // AXI0

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 7-15

setmem /32 0x140000f0 = 0x01010064 // AXI1
setmem /32 0x140000f4 = 0x01010101 // AXI1
setmem /32 0x140000f8 = 0x00010101 // AXI0
setmem /32 0x140000fc = 0x00000064 // [16] CKE_STATUS
setmem /32 0x14000100 = 0x00000000
setmem /32 0x14000104 = 0x02000702 // DFI
setmem /32 0x14000108 = 0x081b0000 // DFI
setmem /32 0x1400010c = 0x081b081b // DFI
setmem /32 0x14000110 = 0x081b081b // DFI
setmem /32 0x14000114 = 0x0304081b // [27:24] WRLAT_ADJ; [20:16] RDLAT_ADJ
setmem /32 0x14000118 = 0x00010002 // [24] ODT_ALT_EN=0
//Modified: ODT_ALT_EN must be 0
setmem /32 0x1400011c = 0x00001000 // [12] AXI0_HIDE_BRESP=1; [8] MDDR_CKE_SEL;
[0] AXI0_AWCOBUF=0
//Modified: Recommend AXI0_HIDE_BRESP = 1

//**
//DDR PHY Registers
//**
setmem /32 0x14000200 = 0x00000000 // RESERVED
setmem /32 0x14000204 = 0x00000000 // on-chip ODT
//[26:24] RD_DLY_SEL; [15:12] DQS_OE_START; [11:8] DQS_OE_END; [6:4]
DATA_OE_START; [2:0] DATA_OE_END
setmem /32 0x14000208 = 0x34013a27 // data-slice-0: PHY_CTRL_REG_0_B0
setmem /32 0x14000210 = 0x34013a27 // data-slice-1: PHY_CTRL_REG_0_B1
setmem /32 0x14000218 = 0x34013a27 // data-slice-2: PHY_CTRL_REG_0_B2
setmem /32 0x14000220 = 0x34013a27 // data-slice-3: PHY_CTRL_REG_0_B3
setmem /32 0x14000228 = 0x34013a27 // data-slice-CA: PHY_CTRL_REG_0_CA
//[8:6] GATE_ERR_DELAY; [5:4] GATE_CLOSE_CFG; [2:0] GATE_CFG
setmem /32 0x1400020c = 0x26c002c0 // data-slice-0: PHY_CTRL_REG_1_B0
setmem /32 0x14000214 = 0x26c002c0 // data-slice-1: PHY_CTRL_REG_1_B1
setmem /32 0x1400021c = 0x26c002c0 // data-slice-2: PHY_CTRL_REG_1_B2
setmem /32 0x14000224 = 0x26c002c0 // data-slice-3: PHY_CTRL_REG_1_B3
setmem /32 0x1400022c = 0x26c002c0 // data-slice-CA: PHY_CTRL_REG_1_CA
setmem /32 0x14000230 = 0x00000000 // RESERVED
//[23] DFI_MOBILE_EN=1; [16] DDR_SEL=1; [3:0] DFI_RDDATA_VALID >= RD_DLY_SEL + 1
setmem /32 0x14000234 = 0x00000005 // PHY_CTRL_REG_2
//[31:29] PHASE_DETECT_SEL; [28] DLL_BYPASS_MODE; [23:15] DLL_RD_DELAY_BYPASS;
[14:8] DLL_RD_DELAY; [7:0] DLL_START_POINT
setmem /32 0x14000238 = 0x60101414 // data-slice-0: DLL_CTRL_REG_0_B0
setmem /32 0x14000240 = 0x60101414 // data-slice-1: DLL_CTRL_REG_0_B1
setmem /32 0x14000248 = 0x60101414 // data-slice-2: DLL_CTRL_REG_0_B2
setmem /32 0x14000250 = 0x60101414 // data-slice-3: DLL_CTRL_REG_0_B3
setmem /32 0x14000258 = 0x60101414 // data-slice-CA: DLL_CTRL_REG_0_CA
//[23:15] DLL_WR_DELAY_BYPASS; [14:8] DLL_WR_DELAY; [7:0] DLL_INCR
setmem /32 0x1400023c = 0x00101401 // data-slice-0: DLL_CTRL_REG_1_B0

Interfacing DDR Memories with the i.MX50 Processor

i.MX50 System Development Guide, Rev. 0

7-16 Freescale Semiconductor

setmem /32 0x14000244 = 0x00101401 // data-slice-1: DLL_CTRL_REG_1_B1
setmem /32 0x1400024c = 0x00101401 // data-slice-2: DLL_CTRL_REG_1_B2
setmem /32 0x14000254 = 0x00101401 // data-slice-3: DLL_CTRL_REG_1_B3
setmem /32 0x1400025c = 0x00101401 // data-slice-CA: DLL_CTRL_REG_1_CA

//*===
===============
// Start ddr init sequence
//*===
===============
setmem /32 0x14000000 = 0x00000401 // bit[0]: start

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 8-1

Chapter 8
Layout Recommendation
This chapter provides recommendations to assist design engineers with the correct layout of their
i.MX50-based system. The majority of the chapter discusses the implementation of the DDR interface.
This chapter uses the i.MX50 EVK board as its reference when illustrating the key concepts. Refer to the
existing i.MX50 EVK board layout files as a companion to this chapter.

8.1 Basic design recommendations
The i.MX50 EVK board comes in a 17 × 17 mm MAPBGA package with 0.8 mm ball pitch. The ball-grid
array contains 20 rows and 20 columns, making it a 400 ball BGA package. For detailed information about
the package, see the i.MX50 data sheet.

Figure 8-1 provides an illustration of the ball-grid array. Figure 8-2 and Figure 8-3 illustrates additional
package information.

Figure 8-1. i.MX50 top side view (400 MAPBGA 17 × 17 mm view)

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

8-2 Freescale Semiconductor

Figure 8-2. i.MX50 bottom side view

Figure 8-3. i.MX50 side view

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 8-3

Maintaining the recommended footprint of a 12 mils pad, which allows an air gap of 19.5-mils between
pads, is critical for ease of fanout.
If using the Allegro tool, the optimal practice is to use the footprint as created by Freescale. If not using
the Allegro tool, use the Allegro footprint export feature, which is supported by many tools. If export is
not possible, create the footprint as per the package mechanical dimensions outlined in the product data
sheet.

Figure 8-4 shows the stack-up example for the LPDDR2 application.

Figure 8-4. Stack-up example

Table 8-1 shows the impedance control file:

Table 8-1. Impedance control

Layers Single ended Differential

Trace width
(Mils)

Impedance
(Ω)

Trace width
(Mils)

Trace pitch
edge-edge

(Mils)

Impedance
(Ω)

Trace width
(Mils)

Trace pitch
edge-edge

(Mils)

Impedance
(Ω)

Top 4 50 3.9 4.1 90 3.7 4.3 100

L2_GND — — — — — — — —

L3_Signal 4 50 3.9 4.1 90 3.7 4.3 100

L4_Signal 4 50 3.9 4.1 90 3.7 4.3 100

L5_power — — — — — — — —

Bottom 4 50 3.9 4.1 90 3.7 4.3 100

Layer 1 Component side 1/2 to 1 oz

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Ground plane

Internal 1

Internal 2

Power plane

Solder side

1 oz

1/2 oz

1/2 oz

1 oz

1/2 to 1 oz

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

8-4 Freescale Semiconductor

Figure 8-5 shows the stack-up setting in Allegro:

Figure 8-5. Stack-up setting

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 8-5

The following shows the fanouts for the i.MX50 for two different layers.

Figure 8-6. Top side fanout

Figure 8-7. Bottom side fanout

The fanout scheme creates a four quadrant structure that facilitates the placement of decoupling capacitors
on the bottom side of the PCB. This keeps them closer to the power balls, which is critical for minimizing
inductance and ensuring high-speed transient current demand by the processor.

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

8-6 Freescale Semiconductor

A correct via size is critical for preserving adequate routing space. The recommended geometry for the via
pads is: pad size 16 mils and drill 8 mils.

The constraints for the trace size may depend on a number of factors, such as the board stackup and
associated di-electric and copper thickness, required impedance, and required current (for power traces).

On the Freescale reference design, the minimum trace width of 3 mils is used for the DDR routing.

8.2 DDR2 routing rules
DDR2 routing can be accomplished two different ways: routing all signals at the same length or routing
by byte group.

Routing all signals at the same length can be more difficult at first because of the tight space between the
DDR and the processor and the large number of required interconnects. However, it is the better way
because it makes signal timing analysis straightforward. Table 8-2 explains how to route the signals by the
same length.

Routing by byte group requires better control of the signals of each group. It is also a little more difficult
for analysis and constraint settings. However, its advantage is that the constraint to match lengths can be
applied to a smaller group of signals. This is often more achievable once the constraints are properly set.
Table 8-3 explains how to route the signals by byte group.

Table 8-2. DDR2 routing by the same length

Signals Length Considerations

Address and bank Clock length Match the signals ± 25 mils of the value specified in the length column

Data and buffer Clock length

Control signals Clock length

Clock Lcritical (3 inches) Match the signals of clocks signals ± 5 mils.

DQS and DQS_B Clock length Match the signals of DQS signals ± 10 mils of the value specified in
the length column.

Table 8-3. DDR2 routing by byte group

 Signals Group
Length

Considerations
Min Max

DRAM_SDCLK[1:0]
DRAM_SDCLK_B[1:0]

Clock Short as possible 2 inches Match the signals ± 5 mils.
2 inches is recommended.

DRAM_A[15:0]
DRAM_SDBA[2:0]

DRAM_RAS
DRAM_CAS

DRAM_SDWE

Address and
Command

Clock (min) – 200 Clock (min) Match the signals ± 25 mils.

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 8-7

8.3 ESD and radiated emissions recommendations
The PCB design should use 6 or more layers, with solid power and ground planes. The recommendations
for ESD immunity and radiated emissions performance are:

• All components with ground chassis shields (such as USB jack and buttons) should connect the
shield to the PCB chassis ground ring.

• Ferrite beads should be placed on each signal line connecting to an external cable. These ferrite
beads must be placed as close to the PCB jack as possible.

NOTE
Ferrite beads should have a minimum impedance of 500 Ω at 100 MHz with
the exception of the ferrite on USB_5V.

• Ferrite beads should NOT be placed on the USB D+/D– signal lines as this can cause USB signal
integrity problems. For radiated emissions problems due to USB, a common mode choke may be
placed on the D+/D– signal lines. However, it should not be required if the PCB layout is
satisfactory. Ideally, the common mode choke should be approved for high speed USB use or tested
thoroughly to verify that no signal integrity issues are created.

• It is highly recommended that ESD protection devices be used on ports connecting to external
connectors. Refer to the reference schematic (available on the Freescale website) for detailed
information about ESD protection implementation on the USB.

DRAM_D[7:0]
DRAM_DQM0
DRAM_SDQS0

DRAM_SDQS0_B

Byte Group 1 __ Clock (min) Match the signals of each byte
group ± 25 mils.
All byte groups (1 to 4) matched
 ± 50 mils
Match the differential signals of
DQS ± 10 mils.

DRAM_D[15:8]
DRAM_DQM1
DRAM_SDQS1

DRAM_SDQS1_B

Byte Group 2 __ Clock (min)

DRAM_D[23:16]
DRAM_DQM2
DRAM_SDQS2

DRAM_SDQS2_B

Byte Group 3 __ Clock (min)

DRAM_D[31:24]
DRAM_DQM3
DRAM_SDQS3

DRAM_SDQS3_B

Byte Group 4 __ Clock (min)

DRAM_CS[1:0]
DRAM_SDCKE[1:0]
DRAM_SDODT[1:0]

Control signals Clock (min) – 200 Clock (min) Match the signals ± 50 mils.

Table 8-3. DDR2 routing by byte group (continued)

 Signals Group
Length

Considerations
Min Max

Layout Recommendation

i.MX50 System Development Guide, Rev. 0

8-8 Freescale Semiconductor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor -1

Part II
Software Development
The chapters that follow aid you in software development for your product utilizing the i.MX50 Board
Support Package.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 9-1

Chapter 9
Porting U-Boot from an i.MX50 Reference Board to an
i.MX50 Custom Board
This chapter provides a step-by-step guide that explains how to add i.MX50 custom board support to
U-Boot. This developer's guide is based on U-Boot version rel_imx_2.6.35_11.04.01, which is present as
a package on the LTIB-based Linux BSP at http://opensource.freescale.com/git?p=imx/uboot-imx.git.

For an introduction to the use of U-Boot firmware with i.MX processors, read AN4173, “U-Boot for
i.MX51 Based Designs,” which is available on the Freescale website.

9.1 Obtaining the source code for the U-Boot
The following steps explain how to obtain the source code.

1. Install LTIB as usual. Make sure you deselect U-Boot from compilation.

2. Manually unpack u-boot: ./ltib -m prep -p u-boot.

The U-Boot code is now located at rpm/BUILD/u-boot-<version number>. The guide will now refer to the
U-Boot main directory as <UBOOT_DIR> and assumes that your shell working directory is <UBOOT_DIR>.

9.2 Preparing the code
The following steps explain how to prepare the code.

1. Make a copy of the board directory, using the following instruction:
$cp -R board/freescale/mx50_<reference board name> board/freescale/mx50_<custom board

name>

2. Copy the existing mx50_<reference board name>.h board configuration file as mx50_<custom board
name>.h, using the following instruction.
$cp include/configs/mx50_<reference board name>.h include/configs/mx50_<custom board

name>.h

3. Create one entry in <UBOOT_DIR>/Makefile for the new i.MX50-based configuration. This file is in
alphabetical order. The instruction to use is as follows:
mx50_<custom board name>_config : unconfig

@$(MKCONFIG) $(@:_config=) arm arm_cortexa8 mx50_<custom board name> freescale mx50

http://opensource.freescale.com/git?p=imx/uboot-imx.git

Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board

i.MX50 System Development Guide, Rev. 0

9-2 Freescale Semiconductor

NOTE
U-Boot project developers recommend adding any new board to the
MAKEALL script and to run this script in order to validate that the new
code has not broken any other’s platform build. This is a requirement if you
plan to submit a patch back to the U-Boot community. For further
information, consult the U-Boot README file.

4. Rename board/freescale/mx50_<custom board name>/mx50_<reference board name>.c as
board/freescale/mx50_<custom board name>/mx50_<custom board name>.c.

5. Adapt any fixed paths. In this case, the linker script board/freescale/mx50_<custom board
name>/u-boot.lds has at least two paths that must be changed

— Change board/freescale/mx50_<reference board name>/flash_header.o to
board/freescale/mx50_<custom board name>/flash_header.o

— Change board/freescale/mx50_<reference board name>/libmx50_<reference board name>.a
to board/freescale/mx50_<custom board name>/libmx50_<custom board name>.a

6. Change the line COBJS := mx50_<reference board name>.o (inside
board/freescale/mx50_<custom board name>/Makefile) to COBJS := mx50_<custom board
name>.o

NOTE
The remaining instructions build the U-Boot manually and do not use LTIB.

7. Create a shell script under <UBOOT_DIR> named build_u-boot.sh.

The file’s contents are now:
#!/bin/bash
export ARCH=arm
export CROSS_COMPILE=<path to cross compiler/prefix> (e.g.
PATH:/opt/freescale/usr/local/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi
/bin/arm-none-linux-gnueabi-
export PATH=$PATH:<path to compiler>

make mx50_<custom board name>_config
make

8. Compile U-Boot using $./build_u-boot.sh

9. If everything is correct, you should see the file u-boot.bin as proof that your build setup is correct
and ready to be customized.

The new i.MX50 custom board that you have created is an exact copy of the i.MX50 reference board, but
the boards are two independent builds. This allows you to proceed to the next step: customizing the code
to suit the new hardware design.

9.3 Customizing the i.MX50 custom board code
The new i.MX50 custom board is part of the U-Boot source tree, but it is a duplicate of the i.MX50
reference board code and needs to be customized.

The DDR technology is a potential key difference between the two boards. If there is a difference in the
DDR technology between the two boards, the DDR initialization needs to be ported. DDR initialization is

http://wiki.freescale.net/display/MADCPOIMX/MX53+Armadillo+board+code+customization+for+U-boot

Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 9-3

coded in the plug-in code, inside the boot header of the U-Boot image. When porting bootloader, kernel or
driver code, you must have the schematics easily accessible for reference.

9.3.1 Changing DRAM values for i.MX50 with LP-DDR2 initialization

Initializing the memory interface requires configuring the relevant I/O pins with the right mode and
impedance and initializing the DATABAHN module.

1. To port to the custom board, the appropriate DDR initialization needs to be used. This is the same
initialization as would be used in a JTAG initialization script.

2. Open the file board/freescale/mx50_<custom board name>/flash_header.S

3. Modify the required IOMUX register values with the right mode and impedance values

4. Modify the DDR settings to match the memory specifications, no need to modify the do_zq_calib
macro routine

This is the new board/freescale/mx50_<custom board name>/flash_header.S customized for LP-DDR2.

9.3.2 Booting with the modified U-Boot

If the plug-in code (board/freescale/mx50_<custom board name>/flash_header.S) was modified
successfully, you can compile and write u-boot.bin to an SD card. To test this, insert the SD card into the
SD card socket of the CPU board and power cycle the board.

A message like this should be printed in the console:
U-Boot 2009.08 (Jul 29 2010 - 15:17:24)

CPU: Freescale i.MX50 family 1.0V at 800 MHz
Board: Unkown board id1:11
Boot Reason: [POR]
Boot Device: SD
I2C: ready
DRAM: 1 GB
MMC: FSL_ESDHC: 0, FSL_ESDHC: 1
Card did not respond to voltage select!
MMC init failed
In: serial
Out: serial
Err: serial
Net: FEC0
<reference board name>: U-Boot >

9.3.3 Further customization at system boot

To further customize your U-Boot board project, use the first function that system boot calls on:
start_armboot in "lib_arm/board.c".
board_init()

All board initialization is executed inside this function. It starts by running through the init_sequence[]
array of function pointers.

http://wiki.freescale.net/download/attachments/27004907/flash_header.S?version=2&modificationDate=1280352605000

Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board

i.MX50 System Development Guide, Rev. 0

9-4 Freescale Semiconductor

The first board dependent function inside init_sequence[] array is board_init(). board_init() is
implemented inside board/freescale/mx50_<custom board name>.c.

At this point the most important tip is the following line of code:
...

gd->bd->bi_arch_number = MACH_TYPE_MX50_<reference board name>; /* board id for Linux */

...

To customize your board ID, go to the registration process at
http://www.arm.linux.org.uk/developer/machines/

This tutorial will continue to use MACH_TYPE_MX50_<reference board name>.

9.3.4 Customizing the printed board name

To customize the printed board name, use the checkboard() function. This function is called from the
init_sequence[] array implemented inside board/freescale/mx50_<custom board name>.c. There are two
ways to use checkboard() to customize the printed board name from Board: Unknown board id1:11 to
Board: MX50 CPU3 on <custom board name>2: the brute force way or by using a more flexible identification
method if implemented on the custom board.

To customize the brute force way, inside checkboard() and replace printf("Board: "); with
printf("Board: MX50 CPU3 on <custom board>\n");

Alternatively, if the custom board provides a method to detect the board type via an external signal this
can be detected in the checkboard() function and the according information is printed.

Once this has been done, recompile U-Boot and deploy u-boot.bin to the SD card. The new prompt
message should be as follows:

U-Boot 2009.08 (Jul 30 2010 - 14:44:00)

CPU: Freescale i.MX50 family 1.0V at 800 MHz
Board: MX50 CPU3 on <custom board name>
Boot Reason: [POR]
Boot Device: SD
I2C: ready
DRAM: 1 GB
MMC: FSL_ESDHC: 0, FSL_ESDHC: 1
Card did not respond to voltage select!
MMC init failed
In: serial
Out: serial
Err: serial
Net: FEC0
Reference Board: U-Boot >

http://www.arm.linux.org.uk/developer/machines/

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 10-1

Chapter 10
Porting the Android Kernel
Android releases for the i.MX50 processor are divided into three main parts: the bootloader (U-Boot or
redboot), the kernel, and the Android framework. This chapter explains how to port an Android kernel to
any platform that is based on the i.MX50 chip. The easiest way to apply kernel modifications to any i.MX
platform is to use an existing Android release either for the i.MX50 or i.MX53 processor. See the i.MX
Android-rx user guide (where rx stands for the release version) inside the Freescale Android release
package for further details.

10.1 Patching the Android kernel
Before configuring the Android kernel, locate the BSP patches in the imx-android-rx folder, where x stands
for the release version. This folder contains all BSP patches needed for the different i.MX platforms. It
also contains patches for some of the libraries implemented on the hardware abstraction layer. Apply the
relevant patches to the kernel.

10.2 Configuring Android release for customized platforms
Once the patches have been applied to the kernel, go to myandroid/kernel_imx/. Use the command make
imx5_android_defconfig to prepare the configuration for your platform.

Porting the Android Kernel

i.MX50 System Development Guide, Rev. 0

10-2 Freescale Semiconductor

10.2.1 Enabling and disabling default resources

Users can disable resources that are enabled by default on the EVK board configuration by entering make
menuconfig under myandroid/kernel_imx. This menu allows users to enable and disable the drivers that are
part of the Android framework’s included Linux image. Figure 10-1 shows the menu option screen.

Figure 10-1. Linux kernel configuration menu

Make your selections and exit the menu.

After you exit, the system creates the .config file, which contains the variables used to configure different
interfaces and peripherals on the chip. It also contains variables for libraries and tools that are part of a
Linux image.

Porting the Android Kernel

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 10-3

10.2.2 Changing the configuration file

After the system has created the .config file, users can manually edit the configuration file to enable the
environment variables required by the Android image. Configuration files for different platforms are
located at: myandroid/kernel-imx/arch/arm/config/

Choose the appropriate configuration file for your platform and double check the .config file for the
following variables:

• CONFIG_PANIC_TIMEOUT=0

• CONFIG_BINDER=y

• CONFIG_LOW_MEMORY_KILLER=y

• CONFIG_ANDROID_PARANOID_NETWORK=y

• CONFIG_ANDROID_LOGGER=y

• CONFIG_ANDROID_PMEM=y

• CONFIG_PMEM_SIZE=24

• CONFIG_ANDROID_RAM_CONSOLE=y

• CONFIG_ANDROID_RAM_CONSOLE_ENABLE_VERBOSE=y

• CONFIG_ANDROID_BINDER_IPC=y

• CONFIG_CRYPTO_DEFLATE=y

• CONFIG_CRYPTO_LZO=y

• CONFIG_DEVMEM=y

• CONFIG_LZO_COMPRESS=y

• CONFIG_LZO_DECOMPRESS=y

• CONFIG_ASHMEM=y

10.2.3 Android's memory map

Android's memory map is divided into four main blocks:

• GPU

• PMEM for GPU

• PMEM

• System memory

The total amount of memory is passed through a parameter called mem. This parameter usually contains
all the memory available on the platform, and it is passed on the bootloader as the following configuration
line.

setenv bootargs_android 'setenv bootargs $bootargs init=/init androidboot.console=ttymxc0
di0_primary calibration ip=dhcp mem=512M'

NOTE
By default the i.MX50 EVK board is set with 512 Mbytes.

Porting the Android Kernel

i.MX50 System Development Guide, Rev. 0

10-4 Freescale Semiconductor

Android's memory map hardcodes three of its four main blocks to a specific value. The final block uses
whatever memory remains after the other three blocks have defined their boundaries. This remaining block
of memory is used by the system memory as standard RAM memory for loading the kernel and apps
execution.

Figure 10-2 shows how the Android's memory map is organized on a 512 Mbyte system.

Figure 10-2. Android memory map (512 Mbyte system)

This memory map is defined under /myandroid/kernel_imx/arch/arm/mach-mx5/mx50_<reference board
name>.c on the function init fixup_mxc_board.

10.3 Initializing Android
After the kernel boots, the init application is the first program executed on the system. The init program
directly mounts all file systems and devices, using either hard-coded file names or device names generated
by probing the sysfs file system. This eliminates the need for a /etc/fstab file in Android.

After the device/system files are mounted, init reads /etc/init.rc, which is a text file that contains
parameters and commands executed by the init program. These commands are executed sequentially and
load some of the main services of Android. The file can also create and mount directories where the
system, cache, and data partitions reside.

Init and init.rc load the following services:

• app_process application—launches Zygote

• rild daemon application—manages all radio GSM support

• mediaserver—handles all media, including audio and video

• ts_calibrator—provides the touch screen calibration app

Porting the Android Kernel

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 10-5

10.4 Modifying the init.rc partition locations
The init.rc file mounts the three main partitions—system, cache, and data—on the image. By default, these
partitions are mounted from the SD/MMC controller.

If you have these partitions stored on another Flash source, modify the following lines to choose from the
specific NVM.

• To mount the /system directory:
mount ext3 /dev/block/mmcblk0p2 /system
mount ext3 /dev/block/mmcblk0p2 /system ro remount

• To mount the /data directory:
mount ext3 /dev/block/mmcblk0p5 /data nosuid nodev

• To mounts the /recovery directory:
mount ext3 /dev/block/mmcblk0p6 /cache nosuid nodev

You also can modify the partition number where the directories and files are stored.

10.5 Android enhancements to the Linux kernel
Most Android porting is performed on the kernel side, as shown in Figure 10-3.

Figure 10-3. Linux kernel

By patching the Android kernel, Android adds enhancements to the Linux kernel in order to give upper
layers services like interprocess communication and power management policies. Table 10-1 shows the
enhancements.

Table 10-1. Android enhancements

Enhancement Purpose

Alarm Provide timers functionality to wake up and sleep the device

Ashmem Asynchronous shared memory share memory across process.

Binder Ipc binder driver for interprocess communication

Power Management New stack power management to increase performance

Low Memory Killer Provides the functionality for android memory management

Kernel Debugger Debug purposes

Logger Debug purposes

Porting the Android Kernel

i.MX50 System Development Guide, Rev. 0

10-6 Freescale Semiconductor

Most enhancement implementations are located at kernel/drivers/staging/android.

NOTE
Android also handles the hardware abstraction layer (HAL) between the
Linux kernel and the android library stack. These drivers are related to
specific hardware modules such as GPS, Bluetooth, or radio.

Figure 10-4. Hardware abstraction layer

This chapter does not cover these implementations. For information about HAL porting, please refer to the
Android developer website at http://source.android.com.

http://source.android.com/

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 11-1

Chapter 11
Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom
Board
The on-board diagnostic suite (OBDS) is a set of validation software used during the board bring up phase
and to validate the boards produced during mass manufacturing for defects. OBDS is run to test out
specific IP blocks of the i.MX50 SoC and the associated hardware on the board.

In a typical scenario, a basic set of the hardware components are tested to be functional, prior to engaging
the software team to bring up the bootloader and the BSP.

Prior to reading this document, be familiar with the following chapters in the i.MX50 Applications
Processor Reference Manual:

• Chapter 1, “Introduction”

• Chapter 4, “External Signals and Pin Multiplexing”

• Chapter 5, “Clock Control Module (CCM)”

• Chapter 7, “System Debug”

• Chapter 35, “IOMUX Controller (IOMUX)”

11.1 Supported components
The OBDS package for Freescale’s i.MX50 reference board provides support for the following SoC
internal functional blocks and hardware on the reference board:

• Debug UART test (used for communication with the host PC)

• DDR test

• Audio Out test

• LCD display test

• EINK display test

• I2C peripheral connectivity test

• MMC/SD test for SD Slot 2, where SD Slot 1 is implicitly tested as OBDS boots from SD1

• SRTC test

• Ethernet loopback test

• SPI-NOR test

• USBH1 device enumeration test

• NAND Flash device ID test

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX50 System Development Guide, Rev. 0

11-2 Freescale Semiconductor

11.2 Customizing OBDS for specific hardware
This section explains how to customize the OBDS for the following hardware modules:

• Section 11.2.1, “UART (serial port) test”

• Section 11.2.2, “DDR test”

• Section 11.2.3, “Audio test”

• Section 11.2.4, “LCD display test

• Section 11.2.5, “E-INK display test

• Section 11.2.6, “I2C test”

• Section 11.2.7, “SD/MMC test”

• Section 11.2.8, “SRTC test

• Section 11.2.9, “Ethernet (FEC) loopback test”

• Section 11.2.10, “SPI-NOR test”

• Section 11.2.11, “NAND Flash device ID test

11.2.1 UART (serial port) test

The UART port is the primary communications channel between the reference board and host PC. The
UART test tests the transmission capabilities of the serial port and verifies its receive capabilities by
prompting the user to input a character from the host PC to the serial port. Typing the character “X” exits
this test and moves to the next test.

On the i.MX50 reference board, the UART1 TXD and RXD pins are routed to the UART1_TXD and
UART1_RXD pins via the IOMUX (see the ~/diag-obds/src/mx50/hardware.c file). In addition, the file
~/diag-obds/src/mx50/mx50.c defines the debug_uart variable to UART1 (as seen below):

static struct hw_module *debug_uart = &uart1;

If a different UART port is used, make the required IOMUX changes to the routine debug_uart_iomux()
function found in ~/diag-obds/src/mx50/hardware.c and update the debug_uart variable:
void debug_uart_iomux(void)
{
//UART1
//TXD
writel(ALT0, IOMUXC_SW_MUX_CTL_PAD_UART1_TXD);
writel(0xE4, IOMUXC_SW_PAD_CTL_PAD_UART1_TXD);
writel(0x0, IOMUXC_SW_PAD_CTL_GRP_UART);
//RXD
writel(ALT0, IOMUXC_SW_MUX_CTL_PAD_UART1_RXD);
writel(0xE4, IOMUXC_SW_PAD_CTL_PAD_UART1_RXD);
writel(0x1, IOMUXC_UART1_IPP_UART_RXD_MUX_SELECT_INPUT);
}

11.2.2 DDR test

The DDR test verifies the interface connectivity between the i.MX50 and the DDR memory. This test
should not be confused with a stress test that validates robust signal integrity of the interface. Instead, this

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 11-3

test ensures the proper assembly of the memory and i.MX50 by testing for opens and shorts on the
interface.

Each type of i.MX50 reference boards uses a different DDR configuration. If the custom board implements
a DDR that has a different configuration than the reference boards, refer to the data sheet of the specific
DDR and make the necessary changes to the DDR configurations in the
~/diag-obds/src/include/mx50/plat_startup.h file. This file sets up the IOMUX and DDR specific
configurations.

11.2.3 Audio test

The audio test first performs I2C communications between the i.MX50 and the SGTL5000 audio codec.
The test then outputs audio data via the SSI/I2S interface to the audio codec. The
~/diag-obds/src/drivers/audio folder contains the files that implement the audio test.

If a different SSI port and I2C port is used, make the necessary IOMUX changes to the
~/diag-obds/src/mx50/hardware.c file.

11.2.4 LCD display test

This test outputs an image to the 4.3” WVGA LCD Display.

Refer to the hardware.c file for changes in IOMUX when different pins are used to interface with the LCD
panel. The code in the ~/diag-obds/src/drivers/lcdc/mxc_lcdc.c file has details on implementation of
this test. The display’s data sheet provides the information for the different parameters.

11.2.5 E-INK display test

This test outputs an image to the E-INK display.

Refer to the hardware.c file for changes in IOMUX when different pins are used to interface with the
E-INK panel. The code in the ~/diag-obds/src/drivers/epd folder contains the files that implement this
test.

11.2.6 I2C test

This tests performs an I2C communications test with one or more devices on the I2C bus (reads back the
device ID). ~/diag-obds/src/drivers/i2c folder contains the driver for the I2C module. Refer to
hardware.c for I2C IOMUX setup. The test code to communicate with the different I2C devices can be
found at ~/diag-obds/src/mx50/i2c_dev_tests.c

If another I2C port is needed, add a new entry for the other I2C IOMUX settings at hardware.c and change
the I2C device test code depending on the I2C devices on the custom board.

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX50 System Development Guide, Rev. 0

11-4 Freescale Semiconductor

11.2.7 SD/MMC test

This test performs a read/write test to the MMC/SD card plugged into the SD slot. This test configures and
uses the ESDHCV2-2 module on the i.MX50 reference boards. The
~/diag-obds/src/drivers/mmc_sd/imx_mmc folder contains the files necessary to test the MMC/SD port.

Refer to the ~/diag-obds/src/mx50/hardware.c file for changes in IOMUX when a different ESDHC
module is used to interface with the SD slot or if different pins are used than the ones used in the i.MX50
reference design.

11.2.8 SRTC test

This test ensures that the SRTC low power and high power domain counters are running. The test details
can be found at the ~/diag-obds/src/drivers/timer/imx_timer folder.

11.2.9 Ethernet (FEC) loopback test

The test requires a loopback Ethernet cable. There is only one FEC in the i.MX50 SoC. Refer to the
hardware.c file for changes in IOMUX in case pins other than the i.MX50 reference design are used to
interface with the network interface.

11.2.10 SPI-NOR test

This test verifies the interface between the i.MX50 CSPI module and the SPI-NOR flash. The
~/diag-obds/src/drivers/spinor folder contains the files necessary to test the SPI-NOR Flash available
on the i.MX50 reference board, using the i.MX50 CSPI module and CSPI SS1. Change
~/diag-obds/src/drivers/spinor/imx_spi_nor.c when using a different SPI-NOR device. See the
following example implementation for the Atmel AT45DB321D SPI-NOR Flash.
struct chip_id AT45DB321D_id =
{ .id0 = 0x01, // Atmel AT45DB321D
 .id1 = 0x27,
 .id2 = 0x1f
}
The following calls are specific to the Atmel Flash:

• spi_nor_status_atmel

• spi_nor_write_atmel

If another ECSPI port is used to connect to the SPI-NOR (for example when connecting the SPI-NOR to
ECSPI-1), make the following changes:

1. Inside ~/diag-obds/src/mx50/mx50.c, edit the code as shown in the bullet list below:
platform_init()
{
...
imx_spi_nor.base = CSPI1_BASE_ADDR;
imx_spi_nor.freq = 25000000;
imx_spi_nor.ss_pol = IMX_SPI_ACTIVE_LOW;
imx_spi_nor.ss = 1;
imx_spi_nor.fifo_sz = 32;
imx_spi_nor.us_delay = 0;

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 11-5

spi_init_flash = imx_cspi_init;
spi_xfer_flash = imx_cspi_xfer;
...
}

change the following:

— CSPI1_BASE_ADDR to ECSPI1_BASE_ADDR

— imx_cspi_init to imx_ecspi_init

— imx_cspi_xfer to imx_ecspi_xfer.

2. Add changes to the IOMUX settings for the other CSPI ports in
~/diag-obds/src/mx50/hardware.c.

11.2.11 NAND Flash device ID test

This test reads the NAND device’s ID and compares it to a list of NAND device IDs maintained inside
~/diag-obds/src/drivers/nand/supported_nand_parts.inl. If the test finds an unrecognized NAND ID,
it prints that ID and asks the user to confirm it from the NAND device’s data sheet.
~/diag-obds/src/drivers/nand/stmp_nand contains the driver for the NAND module.

Refer to ~/diag-obds/src/mx50/hardware.c for changes in IOMUX if pins are used to interface with the
NAND device other than the ones used in the i.MX50 reference design.

Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board

i.MX50 System Development Guide, Rev. 0

11-6 Freescale Semiconductor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 12-1

Chapter 12
Configuring the IOMUX Controller (IOMUXC)
Before using the i.MX50 pins (or pads), users must select the desired function and correct values for
characteristics such as voltage level, drive strength, and hysteresis. They do this by configuring a set of
registers from the IOMUXC.

For detailed information about each pin, see the “External Signals and Pin Multiplexing” chapter in the
i.MX50 Applications Processor Reference Manual. For additional information about the IOMUXC block,
see the “IOMUX Controller (IOMUXC)” chapter in the i.MX50 Applications Processor Reference
Manual.

12.1 Information for setting IOMUX controller registers
The IOMUX controller contains four sets of registers that affect the i.MX50 registers, as follows:

• General-purpose registers (IOMUXC_GPRx)—consist of three registers that control PLL
frequency, voltage, and other general purpose sets.

• “Daisy Chain” control registers (IOMUXC_<Instance_port>_SELECT_INPUT)—control the
input path to a module when more than one pad may drive the module’s input

• MUX control registers (changing pad modes):

— Select which of the pad’s 8 different functions (also called ALT modes) is used.

— Can set pad’s functions individually or by group using one of the following registers:

– IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>

– IOMUXC_SW_MUX_CTL_GRP_<GROUP NAME>

• Pad control registers (changing pad characteristics):

— Set pad characteristics individually or by group using one of the following registers:

– IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>

– IOMUXC_SW_PAD_CTL_GRP_<GROUP NAME>

— Pad characteristics are:

– SRE (1 bit slew rate control)—Slew rate control bit; selects between FAST/SLOW slew rate
output. Fast slew rate is used for high frequency designs.

– DSE (2 bits drive strength control)—Drive strength control bits; select the drive strength
(low, medium, high, or max).

– ODE (1 bit open drain control)—Open drain enable bit; selects open drain or CMOS output.

– HYS (1 bit hysteresis control)—Selects between CMOS or Schmitt Trigger when pad is an
input.

Configuring the IOMUX Controller (IOMUXC)

i.MX50 System Development Guide, Rev. 0

12-2 Freescale Semiconductor

– PUS (2 bits pull up/down configuration value)—Selects between pull up or down and its
value.

– PUE (1 bit pull/keep select)—Selects between pull up or keeper. A keeper circuit help assure
that a pin stays in the last logic state when the pin is no longer being driven.

– PKE (1 bit enable/disable pull up, pull down or keeper capability)—Enable or disable pull
up, pull down, or keeper.

– DDR_MODE_SEL (1 bit ddr_mode control)—Needed when interfacing DDR memories.

– DDR_INPUT (1 bit ddr_input control)—Needed when interfacing DDR memories.

12.2 Setting up the IOMUXC in U-Boot
To set up the IOMUXC and configure the pads on U-Boot, use the four files described in Table 12-1:

12.2.1 Defining the pads

The iomux.c file contains each pad’s IOMUXC definitions. Use the following code to see the default
definitions:

enum iomux_pins {
...
...
...
MX50_PIN_KEY_COL0 = _MXC_BUILD_GPIO_PIN(3, 6, 1, 0x24, 0x34C),
MX50_PIN_KEY_ROW0 = _MXC_BUILD_GPIO_PIN(3, 7, 1, 0x28, 0x350),
...
...
...
}

To change the values for each pad according to your hardware configuration, use the following:
MX50_PIN_<PIN NAME> = _MXC_BUILD_GPIO_PIN(gp, gi, ga, mi, pi)

Where:

• gp—IO Pin

• gi—IO Instance

• ga—MUX Mode

• mi—MUX Control Offset

Table 12-1. Configuration files

Path Filename Description

cpu/arm_cortexa8/mx50/ iomux.c Iomux functions (no need to change)

include/asm-arm/arch-mx50/ iomux.h Iomux definitions (no need to change)

include/asm-arm/arch-mx50/ mx50_pins.h Definition of all processor's pads

board/freescale/mx50_<reference board name>/ mx50_<reference board
name>.c

Board initialization file

Configuring the IOMUX Controller (IOMUXC)

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 12-3

• pi—PAD Control Offset

12.2.2 Configuring IOMUX pins for initialization function

The mx50_<reference board name>.c file contains the initialization functions for all peripherals (such as
UART, I2C, and Ethernet). Configure the relevant pins for each initializing function, using the following:
mxc_request_iomux(<pin name>, <iomux config>);
mxc_iomux_set_input(<mux input select>, <mux input config>);
mxc_iomux_set_pad(<pin name>, <iomux pad config>);

Where the following applies:

<pin name> See all pins definitions on file mx50_pins.h

<iomux config> See parameters defined at iomux_config enumeration on file iomux.h

<iomux input select> See parameters defined at iomux_input_select enumeration on file iomux.h

<iomux input config> See parameters defined at iomux_input_config enumeration on file iomux.h

<iomux pad config> See parameters defined at iomux_pad_config enumeration on file iomux.h

12.2.3 Example—setting a GPIO

For an example, configure and use pin PATA_DA_1 (PIN L3) as a general GPIO and toggle its signal.

Add the following code to the file mx50_<reference board name>.c, function board_init:

// Request ownership for an IO pin.
mxc_request_iomux(MX50_PIN_ECSPI1_SCLK, IOMUX_CONFIG_ALT1);

// Set pin as 0
reg = readl(GPIO4_BASE_ADDR + 0x0);
reg &= ~0x80;
writel(reg, GPIO4_BASE_ADDR + 0x0);

// Set pin direction as output
reg = readl(GPIO4_BASE_ADDR + 0x4);
reg |= 0x80;
writel(reg, GPIO4_BASE_ADDR + 0x4);

// Delay 0.5 seconds
udelay(500000);

// Set pin as 1
reg = readl(GPIO4_BASE_ADDR + 0x0);
reg |= 0x80;
writel(reg, GPIO4_BASE_ADDR + 0x0);

// Delay 0.5 seconds
udelay(500000);

Configuring the IOMUX Controller (IOMUXC)

i.MX50 System Development Guide, Rev. 0

12-4 Freescale Semiconductor

// Set pin as 0
reg = readl(GPIO7_BASE_ADDR + 0x0);
reg &= ~0x80;
writel(reg, GPIO7_BASE_ADDR + 0x0);

If done correctly, the pin ECSPI_SCLK on the i.MX50 toggles when booting.

12.3 Setting up the IOMUXC in Linux
The folder linux/arch/arm/mach-<platform name> contains the specific machine layer file for your custom
board. For example, the machine layer file used on the i.MX50 <reference> boards are
linux/arch/arm/mach-mx5/mx50_<reference board name>.c. This platform is used in the examples in this
section. The machine layer files include the IOMUX configuration information for peripherals used on a
specific board.

To set up the IOMUXC and configure the pads, change the two files described in Table 12-2:

12.3.1 IOMUX configuration definition

The iomux-mx50.h file contains definitions for all i.MX50 pins. Pin names are formed according to the
formula <SoC>PAD<Pad Name>_GPIO<Instance name>_<Port name>. Definitions are created with the
following line code.

IOMUX_PAD(PAD Control Offset, MUX Control Offset, MUX Mode, Select Input Offset, Select Input,
Pad Control)

The variables are defined as follows:

PAD Control Offset Address offset to pad control register
(IOMUXC_SW_PAD_CTL_PAD_<PAD_NAME>)

MUX Control Offset Address offset to MUX control register
(IOMUXC_SW_MUX_CTL_PAD_<PAD NAME>)

MUX Mode MUX mode data, defined on MUX control registers

Select Input Offset Address offset to MUX control register
(IOMUXC_<Instance_port>_SELECT_INPUT)

Select Input Select Input data, defined on select input registers

Pad Control Pad Control data, defined on Pad control registers

Definitions can be added or changed, as shown in the following example code:
#define MX50_PAD_SD1_D3__SD1_D3IOMUX_PAD(0x3A4, 0xF8, 0, 0x0, 0, MX50_SD_PAD_CTRL)

Table 12-2. IOMUX configuration files

Path File name Description

linux/arch/arm/plat-mxc/include/mach/ iomux-mx50.h IOMUX configuration definitions

linux/arch/arm/mach-mx5 mx50_<reference
board name>.c

Machine Layer File. Contains IOMUX configuration
structures

Configuring the IOMUX Controller (IOMUXC)

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 12-5

For all addresses and register values, check the IOMUX chapter in the i.MX50 Applications Processor
Reference Manual.

12.3.2 Machine layer file

The mx50_<reference board name>.c file contains structures for configuring the pads. They are declared
as follows:

static struct pad_desc mx50_rdp[] = {
…
…
…
MX50_PAD_SD1_D1__SD1_D1,
MX50_PAD_SD1_D2__SD1_D2,
MX50_PAD_SD1_D3__SD1_D3,
…
…
…
};

Add the pad's definitions from iomux-mx50.h to the above code.

On init function (in this example “mx50_<reference board name>_io_init” function), set up the pads using
the following function:

mxc_iomux_v3_setup_multiple_pads(mx50_rdp, ARRAY_SIZE(mx50_rdp));

12.3.3 Example—setting a GPIO

For an example, configure the pin PATA_DA_1 (PIN L3) as a general GPIO and toggle its signal.

On Kernel menuconfig, add sysfs interface support for GPIO with the following code:
Device Drivers --->
 [*] GPIO Support --->
 [*] /sys/class/gpio/... (sysfs interface)

Define the pad on iomux-mx50.h file as follows:

#define MX50_PAD_ECSPI2_SS0__GPIO_4_19IOMUX_PAD(0x38C, 0xE0, 1, 0x0, 0, MX50_SD_PAD_CTRL)
Parameters:

• 0x614—PAD Control Offset

• 0x294—MUX Control Offset

• 1—MUX Mode

• 0x000—Select Input Offset

• 0—Select Input

• NO_PAD_CTRL—Pad Control

Configuring the IOMUX Controller (IOMUXC)

i.MX50 System Development Guide, Rev. 0

12-6 Freescale Semiconductor

To register the pad, add the previously defined pin to the pad description structure in the mx50_<reference
board name>.c file, as shown in the following code.

static struct pad_desc mx50_rdp[] = {
…
…
…
MX50_PAD_ECSPI2_SS0__GPIO_4_19,
…
…
…
};

To use the pad as GPIO, go to the i.MX50 Linux command line. On this line, it is possible to test the GPIO
exporting its number on /sys/class/gpio/export.

This number is formed by <GPIO Instance – 1> × 32 + <GPIO Port number>. In this example GPIO4_19
is being used, so its number is (4 – 1) × 32 + 19= 115.

Export the GPIO4_19:

echo 115 > /sys/class/gpio/export

Set GPIO115 as output:

echo out > /sys/class/gpio/gpio115/direction

Set output as 1 or 0:

echo 1 > /sys/class/gpio/gpio115/value
echo 0 > /sys/class/gpio/gpio115/value

If the steps above were performed correctly, the ECSPI2_SS0 toggles.

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 13-1

Chapter 13
Registering a New UART Driver
Because Linux already has a UART driver for the i.MX50, configure the UART pads on the IOMUX
registers. This chapter explains how to configure the UART pads, enable the UART driver, and test that
the UART was set up correctly.

13.1 Configuring UART pads on IOMUX
The IOMUX register must be set up correctly before the UART function can be used. This section provides
example code to show how to do this.

Pads are configured using the file linux/arch/arm/mach-mx5/<platform>.c, with <platform> replaced by
the appropriate platform file name (see Section 13.4, “File names and locations,” for the platform file
names). For example, the machine layer file used on the i.MX50 reference boards are
linux/arch/arm/mach-mx5/mx50_<reference board name>.c.

The iomux-mx50.h file contains the definitions for all i.MX50 pads. Configure the UART pads as follows:
#define MX50_PAD_UART1_TXD__GPIO_6_6IOMUX_PAD(0x330, 0x84, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_UART1_RXD__GPIO_6_7IOMUX_PAD(0x334, 0x88, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_UART1_CTS__GPIO_6_8IOMUX_PAD(0x338, 0x8C, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_UART1_RTS__GPIO_6_9IOMUX_PAD(0x33C, 0x90, 1, 0x0, 0, NO_PAD_CTRL)

The structures for configuring the pads are contained in the mx50_<reference board name>.c file. Update
them so that they match the configured pads’ definition as shown above. The code below shows the
non-updated structures:
static struct pad_desc mx50_rdp[] = {
…
…
…

/* UART pad setting */
MX50_PAD_UART1_RXD__UART1_RXD,
MX50_PAD_UART1_RTS__UART1_RTS,

…
…
…
};

Use the following function to set up the pads on the init function mx50_rdp_io_init (found in the
mx50_<reference board name>.c file).

mxc_iomux_v3_setup_multiple_pads(mx50_rdp, ARRAY_SIZE(mx50_rdp));

The UART driver is now implemented and needs to be enabled.

Registering a New UART Driver

i.MX50 System Development Guide, Rev. 0

13-2 Freescale Semiconductor

13.2 Enabling UART on kernel menuconfig
Enable the UART driver on Linux menuconfig. This option is located at:

-> Device Drivers
 -> Character devices
 -> Serial drivers
 <*> MXC Internal serial port support

 [*] Support for console on a MXC/MX27/MX21 Internal serial port

After enabling the UART driver, build the Linux kernel and boot the board.

13.3 Testing the UART
By default, the UART is configured as follows:

• Baud Rate: 115,200

• Data bits: 8

• Parity: None

• Stop bits: 1

• Flow Control: None

If the user used a different UART configuration for a device that needs to connect to the i.MX50 processor,
connection and communication will fail. There is a simple way to test whether the UART is properly
configured and enabled.

On the i.MX50 Linux command line, type the following:

echo “test” > /dev/ttymxc2

13.4 File names and locations
There are three Linux source code directories that contain relevant UART files.

Table 13-1 lists the UART files that are available on the directory <linux source code
directory>/drivers/serial/

Table 13-1. Available files—first set

File Description

mxc_uart.c Low level driver

serial_core.c Core driver that is included as part of standard Linux

mxc_uart_reg.h Register values

mxc_uart_early.c Source file to support early serial console for UART

Registering a New UART Driver

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 13-3

Table 13-2 lists the UART files that are available on the directory <linux source code
directory>/arch/arm/plat-mxc/include/mach/

Table 13-3 lists the UART files that are available on the directory <linux source code
directory>/arch/arm/mach-mx5/

Table 13-2. Available files—second set

File Description

mxc_uart.h UART header containing UART configuration and data structures

iomux-<platform>.h IOMUX pads definitions

Table 13-3. Available files—third set

File Description

serial.c UART configuration data and calls

serial.h Serial header file

<platform>.c Machine layer file

Registering a New UART Driver

i.MX50 System Development Guide, Rev. 0

13-4 Freescale Semiconductor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 14-1

Chapter 14
Adding Support for the i.MX50 ESDHC
This chapter explains how to add support for the i.MX50 ESDHCV2-1/2/4 and ESDHCV3-3 controllers.

The multimedia card (MMC)/secure digital (SD)/secure digital input output (SDIO) host driver
implements a standard Linux driver interface for the enhanced MMC/SD host controller (ESDHC). The
host driver is part of the Linux kernel MMC framework.

The MMC driver has the following features:

• 1-bit or 4-bit operation for SD and SDIO cards

• Supports card insertion and removal detections

• Supports the standard MMC commands

• PIO and DMA data transfers

• Power management

• Supports 1/4/8-bit operations for MMC cards

• Support eMMC4.4 SDR and DDR mode

14.1 Including support for SD1/SD2/SD3/SD4
The i.MX50 BSP includes reference code for SD1, SD2, and SD3. Hardware that includes connectivity to
any SD interface may require making changes to include this SD support. Make the required changes in
the mach-mx5 folder at <ltib>/linux/arch/arm/mach-mx5 by following the steps below.

1. Create the platform_device struct for the SD interfaces.

2. Configure the SD interface pins.

3. Create struct mxc_mmc_platform_data.

4. Set up card detection.

These steps are discussed in detail in the following subsections.

14.1.1 Creating platform device structures for the SD interfaces

To create the required platform device structures, open <ltib>/linux/arch/arm/mach-mx5/devices.c. Use
the following code to ensure that your BSP includes all required platform device structures needed by the
SD driver.
static struct resource mxcsdhcXX_resources[] = {
 {
 .start = MMC_SDHCXX_BASE_ADDR,
 .end = MMC_SDHCXX_BASE_ADDR + SZ_4K - 1,
 .flags = IORESOURCE_MEM,
 },

Adding Support for the i.MX50 ESDHC

i.MX50 System Development Guide, Rev. 0

14-2 Freescale Semiconductor

 {
 .start = MXC_INT_MMC_SDHCXX,
 .end = MXC_INT_MMC_SDHCXX,
 .flags = IORESOURCE_IRQ,
 },
 {
 .flags = IORESOURCE_IRQ,
 },
};

struct platform_device mxcsdhcXX_device = {
 .name = "mxsdhci",
 .id = YY,
 .num_resources = ARRAY_SIZE(mxcsdhcXX_resources),
 .resource = mxcsdhcXX_resources,
};

Variables have values as follows:

• XX can be 1, 2, 3, or 4 depending on the SD interface.

• YY can have a value between 0 and 3. SD1’s ID is 0; SD2's ID is 1; SD3's ID is 2; and SD4's ID is 3.

Declare the structures as externs in <ltib>/linux/arch/arm/mach-mx5/devices.h with the following code.
extern struct platform_device mxcsdhc1_device;
extern struct platform_device mxcsdhc2_device;
extern struct platform_device mxcsdhc3_device;
extern struct platform_device mxcsdhc4_device;

14.1.2 Configuring pins for SD function
IOMUX allows several configurations, each with slight variances in the pins. The iomux-mx50.h file
contains the definitions for all i.MX50 pads. Add entries in this file to define the configuration for the SD
function. See Chapter 12, “Configuring the IOMUX Controller (IOMUXC),” for a description of how to
set up the IOMUX and pads for routing signals as desired.

14.1.3 Creating the platform data structure

After pin out configuration, SD card characteristics need to be described in an mxc_mmc_platform_data
structure. Create one structure per SD in the system: mmc1_data, mmc2_data, mmc3_data, and/or
mmc4_data. These structures must be placed in <ltib>/linux/arch/arm/mach-mx5/mx50_<board name>.c.
static struct mxc_mmc_platform_data mmc4_data = {

.ocr_mask = MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30
| MMC_VDD_31_32,

.caps = MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA,

.min_clk = 400000,

.max_clk = 50000000,

.card_inserted_state = 0,

.status = sdhc_get_card_det_status,

.wp_status = sdhc_write_protect,

.clock_mmc = "esdhc_clk",
};

Adding Support for the i.MX50 ESDHC

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 14-3

The preceding example shows the an example of an SD4 structure for a custom board. The SD4 interface
supports either 4 bit or 8 bit data transfers (SD4_DAT[7:0]). Clock frequency can be set to a value between
400 KHz and 50 MHz. sdhc_get_card_det_status() and sdhc_write_protect() functions are used for
card detection and write protection.

The mxc_mmc_platform_data structure is defined at
/<ltib>/rpm/BUILD/linux/arch/arm/plat-mxc/include/mach/mmc.h and is shown below
struct mxc_mmc_platform_data {
 unsigned int ocr_mask; /* available voltages */
 unsigned int vendor_ver;
 unsigned int caps;
 unsigned int min_clk;
 unsigned int max_clk;
 unsigned int clk_flg; /* 1 clock enable, 0 not */
 unsigned int clk_always_on; /* Needed by SDIO cards and etc */
 unsigned int dll_override_en; /* Enable dll override delay line */
 unsigned int dll_delay_cells; /* The number of delay cells (0-0x3f) */
 unsigned int reserved:16;
 unsigned int card_fixed:1;
 unsigned int card_inserted_state:1;
/* u32 (*translate_vdd)(struct device *, unsigned int);*/
 unsigned int (*status) (struct device *);
 int (*wp_status) (struct device *);
 char *power_mmc;
 char *clock_mmc;
};

Table 14-1. Structure descriptions

Struct member Description

ocr_mask Control the voltage on SD pads to be high voltage (around 3.0 V) or low voltage (around
1.8 V). ‘0’ stands for low voltage range Optional output

vendor_ver Vendor version

caps Modes of operation - data transfer modes

min_clk Minimum SD operating frequency in Hz.

max_clk Maximum SD operating frequency in Hz.

clk_flg 0 clock disabled, 1 Clock enabled.

clk_always_on Ensures the ESDHC modules clock is always enabled

dll_override_en 1 enables manual override for slave delay chain; uses value specified in dll_delay_cells field

dll_delay_cells Value for the fixed delay used in the override mode

reserved reserved (unused)

card_fixed 0 Read Only Memory (ROM) cards, 1 Read/Write (RW) cards.

card_inserted_state 1 SD card inserted in the slot, 0 there is no SD card attached to the socket.

status Function pointer to the card detection status routine.

wp_status Function pointer to the card write protection routine.

Adding Support for the i.MX50 ESDHC

i.MX50 System Development Guide, Rev. 0

14-4 Freescale Semiconductor

14.1.4 Setting up card detection

The SD connector includes an output pin (CD) that changes its state according to the card insertion status.
In some cases, CD is not connected to the processor. In those cases, the function should return true to signal
that the card is always connected. When CD is connected, the SD card connector triggers the load of the
SD into the available devices. After insertion, the system detects the SD and loads the MMC device under
/dev folder (/dev/mmcblk*).

To set up card detection, first modify sdhc_get_card_det_status() function by adding an entry for your SD
device for detecting when the SD card has been inserted in the slot. This function is located under your
platform at <ltib>/linux/arch/arm/mach-mx5/mx50_<board name>.c
static unsigned int sdhc_get_card_det_status(struct device *dev)
{

int ret = 0;
if (to_platform_device(dev)->id == 0)

ret = gpio_get_value(SD1_CD);
else if (to_platform_device(dev)->id == 1)

ret = gpio_get_value(SD2_CD);
else if (to_platform_device(dev)->id == 2)

ret = 1;

return ret;
}

Next, configure the card detect pin as a general purpose input in the file located at
<ltib>/linux/arch/arm/mach-mx5/mx50_<board name>.c. Below is an example that shows the SD2 card
detect pin configuration on the i.MX50 reference board.

#define SD2_CD(4*32 + 17) /*GPIO_5_17 */

static struct pad_desc mx50_rdp[] = {
...

/* SD2 */
MX50_PAD_SD2_CD__GPIO_5_17,

...
};

static void __init mx50_rdp_io_init(void)
{
...

gpio_request(SD2_CD, "sdhc2-cd");
gpio_direction_input(SD2_CD);

...
}

power_mmc power supply for ESDHC

clock_mmc Current MMC clock

Table 14-1. Structure descriptions (continued)

Struct member Description

Adding Support for the i.MX50 ESDHC

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 14-5

Then link GPIO interrupts with start and end functions in the resource structure of the SD interface in the
mx50_<board name>.c file located at <ltib>/linux/arch/arm/mach-mx5/mx50_<board name>.c
static void __init mxc_board_init(void)
{

/* SD card detect irqs */
mxcsdhc1_device.resource[2].start = IOMUX_TO_IRQ_V3(SD1_CD);
mxcsdhc1_device.resource[2].end = IOMUX_TO_IRQ_V3(SD1_CD);
mxcsdhc2_device.resource[2].start = IOMUX_TO_IRQ_V3(SD2_CD);
mxcsdhc2_device.resource[2].end = IOMUX_TO_IRQ_V3(SD2_CD);

 ...
 }
...
}

Interfaces without card detection pins do not require any GPIO configuration. However, they need card
detection forced to the kernel by setting the card_inserted_state field. An example is shown below:
static void __init mxc_board_init(void)
{
...
 /* SD card detect irqs */

 // SDHC4 Card support for i.MX50 custom board
 mmc4_data.card_inserted_state = 1;
 mmc4_data.status = NULL;
 mmc4_data.wp_status = NULL;
 ...
 }
...
}

NOTE
SD interfaces without card detection are intended to be used as a soldered
device, such as the MovieNAND. For this reason, SD without card_detect
is only loaded during driver load (boot up time) if they are present. Be sure
that you have inserted the card prior to the ESDHC driver initialization.

14.2 Additional reference information
This section describes the ESDHC interface features, explains the i.MX50 support for ESDHC, and shows
the interface layouts.

14.2.1 ESDHC interface features

The ESDHC has 15 associate I/O signals with the following functions.

• The SD_CLK is an internally generated clock used to drive the MMC, SD, SDIO cards.

• The CMD I/O is used to send commands and receive responses to/from the card. Eight data lines
(DAT7–DAT0) are used to perform data transfers between the ESDHC and the card.

Adding Support for the i.MX50 ESDHC

i.MX50 System Development Guide, Rev. 0

14-6 Freescale Semiconductor

• The SD_CD# and SD_WP are card detection and write protection signals directly routed from the
socket. A low on SD_CD# means that a card is inserted and a high on SD_WP means that the write
protect switch is active.

• SD_OD is an output signal generated in SoC level outside ESDHC and is used to select the external
open drain resistor.

• SD_LCTL is an output signal used to drive an external LED to indicate that the SD interface is
busy.

SD_CD#, SD_WP, SD_OD, SD_LCTL are all optional for system implementation. If the ESDHC is
configured to support a 4-bit data transfer, DAT7–DAT4 can also be optional and tied to high.

14.2.2 ESDHC operation modes supported by the i.MX50

The ESDHC acts as a bridge, passing host bus transactions to the SD/SDIO/MMC cards by sending
commands and performing data accesses to and from the cards. It handles the SD/SDIO/MMC protocols
at the transmission level. The i.MX50 ESDHC includes three instances of the Enhanced Secured Digital
Host Controller Version 2 (ESDHCv2) within the ports 1, 2 and 4. ESDHC port 3 on the i.MX50 can be
configured to work either as ESDHCv3 or ESDHCv2.

Table 14-2. ESDHC pins

Pin Function

SD_CLK Clock for MMC/SD/SDIO card

SD_CMD CMD line connect to card

SD_DAT7 DAT7 line in 8-bit mode—not used in other modes

SD_DAT6 DAT6 line in 8-bit mode—not used in other modes

SD_DAT5 DAT5 line in 8-bit mode—not used in other modes

SD_DAT4 DAT4 line in 8-bit mode—not used in other modes

SD_DAT3 DAT3 line in 4/8-bit mode or configured as card detection pin. May be configured as card detection pin
in 1-bit mode.

SD_DAT2 DAT2 line or Read Wait in 4-bit mode. Read Wait in 1-bit mode.

SD_DAT1 DAT1 line in 4/8-bit mode. Also used to detect interrupt in 1/4-bit mode.

SD_DAT0 DAT0 line in all modes. Also used to detect busy state.

SD_CD# Card detection pin. If not used, tie high.

SD_WP Card write protect detect. If not used, tie low.

SD_OD Open drain select (not generated within the ESDHC). Optional output

SD_LCTL LED control used to drive an external LED. Active high. Fully controlled by the driver. Optional output

SD_VS Control the voltage on SD pads to be high voltage (around 3.0 V) or low voltage (around 1.8 V). 0
stands for low voltage range optional output.

http://wiki.freescale.net/download/attachments/30967044/mx53_evk_gpio.c?version=1&modificationDate=1288912519000

Adding Support for the i.MX50 ESDHC

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 14-7

Table 14-3 shows the supported operation modes.

SD Memory Cards support at least the two bus modes 1-bit or 4-bit width. The SD host sends a command
to the SD card to request a bus width change.

14.2.3 Interface layouts

Figure 14-1 shows an example of an i.MX50 SD interface layout.

Figure 14-1. Example i.MX50 board SD interface layout

Table 14-3. ESDHC operation modes

Modes of Operation Data Transfer Modes Frequency

MMC 1-bit, 4-bits or 8-bits full-speed (up to 20 MHz) high-speed (up to 52 MHz)

SD/SDIO 1-bit or 4-bit full-speed (up to 25 MHz) high-speed (up to 50 MHz)

CE-ATA 1-bit, 4-bit, or 8-bit —

Identification Mode — up to 400 kHz

On Top

SD
Slot 1

i.MX50

4.0
GB
SD

SD1
SD1_DAT[3:0]

SD1_CLK

SD1_CMD

DISP_D12

DAT[3:0] (4-bit default)

CLK

CMD

DISP_D14

CD

WP

SD
Slot 24.0

GB
SD

DAT[7:0] (8-bit default)

CLK

CMD

CD

WP

On Bottom

eSDHCSD3
SD3_DAT[0:7]

SD3_CLK

SD3_CMD
DISP_D13

SD3_WP

Adding Support for the i.MX50 ESDHC

i.MX50 System Development Guide, Rev. 0

14-8 Freescale Semiconductor

Figure 14-2 shows another example i.MX50 SD interface layout.

Figure 14-2. Second example i.MX50 SD interface layout

Note that some SD interface card detection and write protection pins are not propagated from the SD card
to the i.MX50 in all hardware implementations. Also note that SD4 is shared with PATA pins. The second
example board provides the connection to the four SD interfaces provided by the ESDHC in the i.MX50.

On Top

SD
Slot 1

i.MX50

4.0
GB
SD

SD3
SD3_CMD

SD3_CLK

SD3_DAT[0:7]

DAT[7:0] (8-bit default)

CLK

CMD

CD

WP

SD
Slot 24.0

GB
SD

DAT[3:0] (4-bit default)

CLK

CMD

CD

WP

On Bottom

eSDHCSD1
SD1_DAT[3:0]

SD1_CLK

SD1_CMD
EIM_CRE

ECSPI2_SS0

i.MX50 CPU Board

On Top

SD
Slot 1

4.0
GB
SD

On Bottom

i.MX50 CPU Board

SD
Slot 2

4.0
GB
SD

SD4

SD2

CD

WP
DAT[3:0]

(4-bit default)
CLK

CMD

DISP_D8

DISP_D9

DISP_D[10:13]

DAT[3:0]

CD

WP

CMD

CLK
(4-bit default)

SD2_DAT[3:0]

SD2_CLK

SD2_CMD
SD2_CD

SD2_WP

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 15-1

Chapter 15
Configuring the SPI NOR Flash Memory Technology Device
(MTD) Driver
This chapter explains how to set up the SPI NOR Flash memory technology device (MTD) driver. This
driver uses the SPI interface to support Atmel data Flash. By default, the SPI NOR Flash MTD driver
creates static MTD partitions to support Atmel data Flash.

The NOR MTD implementation provides necessary information for the upper layer MTD driver.

15.1 Source code structure
The SPI NOR MTD driver is implemented in the following directory:
<ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/mxc_dataflash.c

15.2 Configuration options
BSP freescale supports the following ATMEL SPI NOR Flash models:

• "AT45DB011B" "at45db011d"

• "AT45DB021B" "at45db021d"

• "AT45DB041x" "at45db041d"

• "AT45DB081B" "at45db081d"

• "AT45DB161x" "at45db161d"

• "AT45DB321x" "at45db321d"

• "AT45DB642x" "at45db642d"

Those models are defined in the structure static struct flash_info __devinitdata dataflash_data[],
located at <ltib_dir>/rpm/BUILD/linux/drivers/mtd/devices/mxc_dataflash.c.

The parameters are as follows:
"at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS

Table 15-1 defines the variables.

Table 15-1. Parameter variables

Variable Definition

"at45db011d" Flash Name model

 0x1F_2200 [5:4]Manufacter ID, [3:2]Device ID

 512 Number of pages

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX50 System Development Guide, Rev. 0

15-2 Freescale Semiconductor

NOTE
If you want to use another data flash model, add it on the last structure. Be
sure the flash models are compatible with the Atmel data flashes.

15.3 Selecting SPI NOR on the Linux image
Table 15-2 provides information for each supported device.

Follow these steps to select the desired data flash from Table 15-2.

1. Open the mx50_<board name>.c file (located at arch/arm/mach-mx5/mx50_<board name>.c) and
modify the structure called static struct flash_platform_data mxc_spi_flash_data[]

2. Write the name of the data flash desired on the .type variable of this structure. This name must be
exactly the same as it appears on the dataflash_data[]_ structure.

3. Set the number of partitions you want to use on the SPI NOR Flash. On the mx50_<board name>.c
file, go to the structure called static struct mtd_partition mxc_dataflash_partitions[]

Each partition has three elements: the name of the partition, the offset, and the size. By default,
these elements are partitioned into a bootloader section and a kernel section, and defined as:

 .name = "bootloader",
 .offset = 0,
 .size = 0x000100000,

 .name = "kernel",
 .offset = MTDPART_OFS_APPEND,
 .size = MTDPART_SIZ_FULL,

 256 Number of bytes per page

 8 Offset

Table 15-2. Device information

Device Density ID Code #Pages PageSize Offset

AT45DB011B 1 Mbit (128K) xx0011xx (0x0C) 512 264 9

AT45DB021B 2 Mbit (256K) xx0101xx (0x14) 1024 264 9

AT45DB041B 4 Mbit (512K) xx0111xx (0x1C) 2048 264 9

AT45DB081B 8 Mbit (1M) xx1001xx (0x24) 4096 264 9

AT45DB0161B 16 Mbit (2M) xx1011xx (0x2C) 4096 528 10

AT45DB0321B 32 Mbit (4M) xx1101xx (0x34) 8192 528 10

AT45DB0642 64 Mbit (8M) xx111xxx (0x3C) 8192 1056 11

AT45DB1282 128 Mbit (16M) xx0100xx (0x10) 16384 1056 11

Table 15-1. Parameter variables (continued)

Variable Definition

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 15-3

Bootloader starts from address 0 and has a size of 1 Mbyte. Kernel starts from address 1 Mbyte and
has a size of 3 Mbytes.

NOTE
You may create more partitions or modify the size and names of these ones.
To add more partitions, define another structure on the
mxc_dataflash_partitions variable.

4. To get to the SPI NOR MTD driver, use the command ./ltib -c when located in the <ltib dir>.

5. On the screen displayed, select Configure the kernel and exit.

6. When the next screen appears, select the following option to enable the SPI NOR MTD driver:

CONFIG_MTD_MXC_DATAFLASH

This config enables access to the Atmel DataFlash chips, using FSL SPI. In menuconfig, this
option is available under Device Drivers > Memory Technology Device (MTD) support >
Self-contained MTD device drivers > Support for AT DataFlash via FSL SPI interface

15.4 Changing the SPI interface configuration
The i.MX50 chip has three CSPI interfaces: one CSPI and two ECSPI. By default, the i.MX50 BSP
configures ECSPI-1 interface in the master mode to connect to the SPI NOR Flash. It also uses
chip select 1 from this ECSPI interface (SS1).

The main difference between CSPI and ECSPI is the supported baud rate. CSPI supports up to 16 Mbps
in master mode and ECSPI supports up to 66 Mbps.

15.4.1 Connecting SPI NOR Flash to another CSPI interface

Before connecting SPI NOR Flash to another CSPI, define the three things listed below:

• CSPI interface (between CSPI, ECSPI-1 or ECSPI-2).

• Chip select (between SS[3:0]).

• External signals

15.4.2 Changing the CSPI interface

To change the CSPI interface used, use the following procedure:

1. Locate the file at arch/arm/mach-mx5/mx50_<board name>.c

2. Look for the line mxc_register_device(&mxcspi1_device, &mxcspi1_data);

3. Use the function static void __init mxc_board_init(void) to register the CSPI-1 interface. To
enable the other CSPI interface, replace the first parameter as shown in Table 15-3:

Table 15-3. CSPI parameters

CSPI Parameter name

ECSPI-1 &mxcspi1_device

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX50 System Development Guide, Rev. 0

15-4 Freescale Semiconductor

15.4.3 Changing the chip select

To change the chip select used, locate the file at arch/arm/mach-mx5/mx50_<board name>.c and use the
static struct spi_board_info mxc_dataflash_device[] __initdata structure.

Replace the value of ".chip_select" variable with the desired chip select value. For example,
.chip_select = 3 sets the chip select to number 3 on the CSPI interface.

15.4.4 Changing the external signals

The iomux-mx50.h file contains the definitions for all i.MX50 pads. Add entries in this file to define the
configuration for the CSPI function. See Chapter 13, “Configuring the IOMUX Controller (IOMUXC),”
for a description of how to set up the IOMUX and pads for routing signals as desired.

NOTE
Check the mxc_iomux_pins structure to ensure that the chosen signal
chosen is not used by another interface before configuration.

15.5 Hardware operation
SPI NOR Flash is SPI compatible with frequencies up to 66 MHz. The memory is organized in pages of
512 bytes or 528 bytes. SPI NOR Flash also contains two SRAM buffers of 512/528 bytes each, which
allows data reception while a page in the main memory is being reprogrammed as well as the writing of a
continuous data stream.

Unlike conventional Flash memories that are accessed randomly, the SPI NOR Flash accesses data
sequentially. It operates from a single 2.7–3.6 V power supply for program and read operations.

SPI NOR Flashes are enabled through a chip select pin and accessed through a three-wire interface: serial
input, serial output, and serial clock.

ECSPI-2 &mxcspi2_device

CSPI &mxcspi3_device

Table 15-3. CSPI parameters (continued)

CSPI Parameter name

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 15-5

15.6 Software operation
In a Flash-based embedded Linux system, a number of Linux technologies work together to implement a
file system. Figure 15-1 illustrates the relationships between standard components.

Figure 15-1. Components of a Flash-based file system

The MTD subsystem for Linux is a generic interface to memory devices, such as Flash and RAM, which
provides simple read, write, and erase access to physical memory devices. Devices called mtdblock
devices can be mounted by JFFS, JFFS2, and CRAMFS file systems. The SPI NOR MTD driver is based
on the MTD data Flash driver in the kernel by adding SPI accesses.

In the initialization phase, the SPI NOR MTD driver detects a data Flash by reading the JEDEC ID. The
driver then adds the MTD device. The SPI NOR MTD driver also provides the interfaces to read, write,
erase NOR Flash.

Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver

i.MX50 System Development Guide, Rev. 0

15-6 Freescale Semiconductor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 16-1

Chapter 16
Supporting the i.MX50 Reference Board LCD
This chapter explains how to support a new LCD on an i.MX50-based board. There are two options for
adding support for a new LCD panel without modifying the BSP: letting the BSP calculate the timings
using VESA defaults or reducing the blanking time. VESA and reduced blanking work for many LCDs
but fail for some devices because of timing configuration constraints. For those devices, we need to modify
the BSP and set the proper timing values. Modifying the boot arguments also allows us to include support
for the new driver and load the driver by using the boot arguments.

This chapter focuses on the ELCDIF display interface. Common display cards can be attached to this
interface. It provides connectivity for the Seiko 43WVF1G-0 WVGA LCD panel and the Chunghwa
CLAA070VC01 WVGA LCD panel.

NOTE
FSL i.MX50 reference design boards use some ELCDIF related pins for
Ethernet pins, so if you would like to enable an LCD panel on these
platforms, you need to disable Ethernet support in kernel menuconfig.

16.1 Supported display interfaces
The i.MX50 processor supports the E-INK display interfaces shown in Table 16-1.

16.2 Adding support for an LCD panel
To provide an example of how to add support for an LCD panel, this section shows the code and commands
used for adding support for the CLAA070VC01 WVGA LCD panel. CLAA070VC01 is a 7" color
TFT-LCD (thin film transistor liquid crystal display) module. It is composed of an LCD panel, driver ICs,
control circuit, touch screen, and LED backlight. The 7" screen produces a high resolution image that is

Table 16-1. Available Interfaces

Feature ELCDIF (in i.MX50)

Number of ports Single display port

Legacy I/F • Parallel and serial
 • Synchronous (for display refresh) and asynchronous (to memory)
Note: Serial display is not supported in the BSP because there is no available smart LCD

panel to be connected.

ITU-R BT.656 mode • Called digital video interface or DVI mode
 • includes progressive-to-interlace feature and RGB to YCbCr 4:2:2 color space

conversion to support 525/60
Note: This mode is not supported in the BSP because the reference design boards do

not support the interface.

Supporting the i.MX50 Reference Board LCD

i.MX50 System Development Guide, Rev. 0

16-2 Freescale Semiconductor

composed of 800 × 480 pixel elements in a stripe arrangement. It uses a 16 bit RGB signal input to display
262144 colors.

Figure 16-1 shows the interface between an i.MX50-based board and Chunghwa CLAA070VC01 7”
WVGA LCD.

Figure 16-1. Interface

The LCD panel requires HSYNC, VSYNC, DE, PIXCLK, and part of the RGB data interface
(DISPB_DATA[15:0]). No additional signals, such as a reset signal or serial interface initialization routine
commands (SPI or I2C), are required. The backlight unit is controlled by a PWM signal generated by the
i.MX50 (PWM module), and the PMIC controls the touch panel interface. The display card includes a
connection for this panel.

Table 16-2 shows the timing parameters.

Table 16-2. Timing parameters

Parameter Symbol Min Typ Max Unit

Vertical period VP 490 500 520 Line

Vertical valid VV — 480 — Line

MC34708

Supporting the i.MX50 Reference Board LCD

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 16-3

16.3 Modifying boot kernel parameters to support a new LCD
Users can use the video mode parameter to change all timing and interface aspect ratios without writing a
single line of code by changing the settings through the default driver.

16.3.1 Setting the video kernel parameter

The video kernel parameter is a multipurpose parameter used to configure display features. It controls the
following features:

• Display resolution

• Pixel color depth

• Refresh rate

• ELCDIF output interface format

See the modedb.txt file located at Documentation/fb/modedb.txt for specific parameter information.

To set the parameter information for the video argument, use the following format. Variables between
square brackets are optional.
video=mxc_elcdif_fb:<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m]<name>[-<bpp>][@<refresh>]

Table 16-3 defines the variables.

Vertical blank VBK 10 20 40 Line

Vertical front porch VFP 1 11 46 Line

Vertical refresh rate FV 55 60 65 Hz

Horizontal period HP 850 900 950 PIXCLK

Horizontal valid HV — — — PIXCLK

Horizontal blank HBK 50 100 150 PIXCLK

Horizontal front porch HFP 64 114 214 PIXCLK

Dot clock FCLK 25 27 32.11 MHz

Table 16-3. Parameter information

Argument name Definition Units Values

name Video mode name NA String name

xres Horizontal resolution Pixels Decimal value

yres Vertical resolution Lines Decimal value

M Timing calculated using VESA(TM) NA M

R Timing using reduced blanking NA R

Table 16-2. Timing parameters (continued)

Parameter Symbol Min Typ Max Unit

Supporting the i.MX50 Reference Board LCD

i.MX50 System Development Guide, Rev. 0

16-4 Freescale Semiconductor

When <name> is included in the mode_option argument parameters, the timing is not calculated. Instead,
it is extracted from BSP code. Valid default modes can be found at linux/drivers/video/modedb.c and in
files placed at linux/drivers/video/mxc folder.

Example 16-1. CLAA070VC01 WVGA LCD

For a CLAA070VC01 WVGA LCD connected to ELCDIF display port, the kernel command is
video=mxc_elcdif_fb:CLAA-WVGA (recommended)

video=mxc_elcdif_fb:800x480M@55,bpp=32

Table 16-4 shows how the values in this example correspond to the argument names defined in Table 16-3.

16.3.2 Modifying the bits per pixel setting

The default bits per pixel setting is 16 bits. To change the default value to another depth, modify the bpp
parameter in video mode, for example bpp = 32. Please refer to Table 16-5.

Check the frame buffer bpp and other settings in the /sys/class folder. The output should look like the
following:
root@freescale ~$ cd /sys/class/graphics/fb0/
root@freescale /sys/devices/platform/mxc_elcdif_fb/graphics/fb0$ cat bits_per_pixel
32

Note that the final line shows the bits per pixel to be 32, reflecting our change from the default of 16 bpp.

bpp Bits per pixel on frame buffer Bits Decimal value (16 or 24)

refresh LCD refresh rate Hz Decimal value

Table 16-4. VGA LCD example variables

Argument Name Value Definition

name CLAA-WVGA Reflects the video mode defined in frame buffer platform data

xres 800 800 pixels (horizontal)

yres 480 480 lines (vertical)

M M Timing calculated using VESA (TM)

R Not used in this command —

bpp 32 Frame buffer is 32 bits per pixel

refresh 55 55 Hz

Table 16-3. Parameter information (continued)

Argument name Definition Units Values

Supporting the i.MX50 Reference Board LCD

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 16-5

16.4 Adding support for a new LCD
Add the support for the new LCD in the BSP if neither VESA nor reducing the blanking calculation works
for your LCD, or if you need a special function.

Perform the following steps to modify the i.MX50 BSP to add support for synchronous panels:

1. Add a display entry in the ltib catalog.

2. Create the madglobal LCD panel file.

3. Add compilation flag for the new display.

4. Configure LCD timings and display interface.

5. Use boot command to select the new LCD.

The following subsections describe these steps in detail.

16.4.1 Adding a display entry in the ltib catalog

To add an entry for a new LCD, perform the following steps:

1. Enter the i.MX50 display specific folder as follows.
$ cd <ltib dir>/rpm/BUILD/linux/drivers/video/mxc

2. Open the Kconfig file with the command gedit Kconfig &

3. Use the following code to add the entry where you want it to appear.
 config FB_MXC_CLAA_SYNC_PANEL
 depends on FB_MXC_SYNC_PANEL
 tristate "CLAA WVGA Panel"

16.4.2 Creating the LCD panel file (initialization, reset, power settings,
backlight)

Because power settings are handled by the ATLAS APL PMIC and other voltage regulators, the display
driver must configure the APL PMIC during initialization to set up the power voltage configuration if this
has not already been done. Also, the reset waveform and initialization routine must be included. To do
these tasks, create an LCD file with panel-specific functions at the following location:
<ltib dir>/rpm/BUILD/linux/drivers/video/mxc/mxcfb_CLAA_wvga.c

WARNING
Before connecting an LCD panel to the i.MX50 board, check whether the
LCD is powered with the proper supply voltages and whether the display
data interface has the correct VIO value. Incorrect voltages and values may
harm the device.

Supporting the i.MX50 Reference Board LCD

i.MX50 System Development Guide, Rev. 0

16-6 Freescale Semiconductor

The LCD file must include the definition of four basic functions described in Table 16-5 and can include
other functions and macros as needed.

Next, create a platform device that can be loaded and unloaded. This example declares the new platform
device using the devices.h and devices.c files located at:
<ltib dir>//rpm/BUILD/linux/arch/arm/mach-mx5/

1. Add a new entry on madglobal:devices.c using the following:
struct platform_device lcd_wvga_device = {
 {
 .name = "lcd_claa",
 .id = 0,
 },
};

Be careful to use the same name for the new platform device entry as the name included in
madglobal:mxcfb_claa_wvga.c for the driver.
static struct platform_driver lcd_driver = {
 .driver = {
 .name = "lcd_claa"},
 .probe = lcd_probe,
 .remove = __devexit_p(lcd_remove),
 .suspend = lcd_suspend,
 .resume = lcd_resume,
};

2. Register the device at <ltib
dir>//rpm/BUILD/linux/arch/arm/mach-mx5/madglobal:mx50_<reference board name>.c by using
the following code:
static int __init mxc_init_fb(void)
{

 mxc_register_device(&lcd_wvga_device, NULL);

 return 0;
}

Table 16-5. Required functions

Function name Function declaration Description

lcd_probe static int __devinit lcd_probe(struct
platform_device *pdev)

Called when the LCD module is loaded. It should contain, pmic
configuration, reset, power on sequence and the initialization
routine.

lcd_remove static int __devexit lcd_remove(struct
platform_device *pdev)

Called when the LCD module is removed. It should contain the
power off PMIC configuration, the power off sequence, and the
de-initialization routine.

lcd_suspend static int lcd_suspend(struct
platform_device *pdev, pm_message_t
state)

Not always implemented, but used to enhance low power modes
on the device. Usually called when the system enters suspend
mode.

lcd_resume static int lcd_resume(struct
platform_device *pdev)

Not always implemented, but used to enhance low power modes
on the device. Usually called when the system returns from
suspend mode.

Supporting the i.MX50 Reference Board LCD

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 16-7

16.4.3 Adding the compilation flag for the new display

After the LCD file has been created and the entry has been added to the Kconfig file, modify the makefile
to include the LCD file in the compilation by using the code shown below. The makefile is in the same
folder as the new LCD file: <ltib dir>/rpm/BUILD/linux/drivers/video/mxc/makefile
ifeq ($(CONFIG_ARCH_MX21)$(CONFIG_ARCH_MX27)$(CONFIG_ARCH_MX25),y)

obj-$(CONFIG_FB_MXC_TVOUT) += fs453.o
obj-$(CONFIG_FB_MXC_SYNC_PANEL) += mx2fb.o mxcfb_modedb.o
obj-$(CONFIG_FB_MXC_EPSON_PANEL) += mx2fb_epson.o

else
ifeq ($(CONFIG_MXC_IPU_V1),y)
 obj-$(CONFIG_FB_MXC_SYNC_PANEL) += mxcfb.o mxcfb_modedb.o
else
 obj-$(CONFIG_FB_MXC_SYNC_PANEL) += mxc_ipuv3_fb.o
endif

obj-$(CONFIG_FB_MXC_EPSON_PANEL) += mxcfb_epson.o
obj-$(CONFIG_FB_MXC_EPSON_QVGA_PANEL) += mxcfb_epson_qvga.o
obj-$(CONFIG_FB_MXC_TOSHIBA_QVGA_PANEL) += mxcfb_toshiba_qvga.o
obj-$(CONFIG_FB_MXC_SHARP_128_PANEL) += mxcfb_sharp_128x128.o

endif
obj-$(CONFIG_FB_MXC_EPSON_VGA_SYNC_PANEL) += mxcfb_epson_vga.o
obj-$(CONFIG_FB_MXC_CLAA_WVGA_SYNC_PANEL) += mxcfb_claa_wvga.o
obj-$(CONFIG_FB_MXC_TVOUT_CH7024) += ch7024.o
obj-$(CONFIG_FB_MXC_TVOUT_TVE) += tve.o
obj-$(CONFIG_FB_MXC_LDB) += ldb.o
obj-$(CONFIG_FB_MXC_CH7026) += mxcfb_ch7026.o
#obj-$(CONFIG_FB_MODE_HELPERS) += mxc_edid.o

Note that a new object, mxcfb_claa_wvga.o, is created when the
CONFIG_FB_MXC_CLAA_WVGA_SYNC_PANEL flag is set. The LCD module with the initialization
and de-initialization routines is only available to the kernel after this object has been created. If the LCD
does not need a particular configuration, you may omit the usage of the LCD file and discard any changes
on Kconfig and Makefile.

16.4.4 Configuring LCD timings and the display interface

To support the new LCD, include the specification for the following LCD characteristics in the
madglobal:mx50_<reference board name>.c file (located at
<ltib dir>//rpm/BUILD/linux/arch/arm/mach-mx5/madglobal:mx50_<board name>.c):

• Display resolution

• Pixel color depth

• Refresh rate

• RGB display waveform description.

• ELCDIF display output interface format

Supporting the i.MX50 Reference Board LCD

i.MX50 System Development Guide, Rev. 0

16-8 Freescale Semiconductor

For the display, resolution, refresh rate, and RGB display waveform descriptions, add a new fb_videomode
struct into the video_modes[] array based on the LCD timing and waveforms. See the CLAA-WVGA
entry on the following example code.
static struct fb_videomode video_modes[] = {
 {
 /* NTSC TV output */
 "TV-NTSC", 60, 720, 480, 74074,
 122, 15,
 18, 26,
 1, 1,
 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT | FB_SYNC_EXT,
 FB_VMODE_INTERLACED,
 0,},

 {
 /* 800x480 @ 57 Hz */
 "CLAA-WVGA", 57, 800, 480, 37037, 40, 60, 10, 10, 20, 10,
 FB_SYNC_CLK_LAT_FALL,
 FB_VMODE_NONINTERLACED,
 0,},
};

The driver and platform data link can be done by using an mxc_fb_platform_data struct when the frame
buffer device is registered, as follows.
static struct mxc_fb_platform_data CLAA057VA01CT_fb_data =
{
 .interface_pix_fmt = V4L2_PIX_FMT_RGB565,
 .mode_str = "CLAA-WVGA",
 .mode = video_modes,
 .num_modes = ARRAY_SIZE(video_modes),
};

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 17-1

Chapter 17
Setting Up the Keypad Port (KPP)
The KPP is designed to interface with the keypad matrix with 2-point contact or 3-point contact keys. The
KPP is designed to simplify the software task of scanning a keypad matrix. With appropriate software
support, the KPP is capable of detecting, debouncing, and decoding one or multiple keys pressed
simultaneously on the keypad.

Because Linux already contains a driver for the i.MX50 keypad, all users must do to add and configure a
new custom keypad is to configure the keypad pins on the IOMUX registers and register the driver in the
platform file located at linux/arch/arm/mach-mx5/<your_platform>.c

Table 17-1 lists the files used in the setup process:

17.1 Configuring keypad pins on IOMUX
To use the keypad function, users must first set up the keypad pins on the IOMUX registers. The pad pins
can be configured on file linux/arch/arm/mach-mx5/<platform>.c, where <platform> is replaced by the
appropriate platform file name. For example, the machine layer file used on the i.MX50 reference boards
is linux/arch/arm/mach-mx5/mx50_<reference board name>.c. This platform is used in the example
procedure in this section.

The iomux-mx50.h file contains definitions for all i.MX50 pins. Configure the keypad pins as follows:

#define MX50_PAD_KEY_COL0__GPIO_4_0IOMUX_PAD(0x2CC, 0x20, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_KEY_ROW0__GPIO_4_1IOMUX_PAD(0x2D0, 0x24, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_KEY_COL1__GPIO_4_2IOMUX_PAD(0x2D4, 0x28, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_KEY_ROW1__GPIO_4_3IOMUX_PAD(0x2D8, 0x2C, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_KEY_COL2__GPIO_4_4IOMUX_PAD(0x2DC, 0x30, 1, 0x0, 0, MX50_SD_PAD_CTRL)
#define MX50_PAD_KEY_ROW2__GPIO_4_5IOMUX_PAD(0x2E0, 0x34, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_KEY_COL3__GPIO_4_6IOMUX_PAD(0x2E4, 0x38, 1, 0x0, 0, NO_PAD_CTRL)
#define MX50_PAD_KEY_ROW3__GPIO_4_7IOMUX_PAD(0x2E8, 0x3C, 1, 0x0, 0, NO_PAD_CTRL)

Table 17-1. Files for adding/configuring a new keypad

File Location Description

linux/drivers/input/keyboard/mxc_keyb.c Device driver file

linux/arch/arm/mach-mx5/devices.c Implements the driver registries

linux/arch/arm/mach-mx5/<platform>.c Machine Layer file

linux/include/usr/include/linux/input.h Input key codes include file

linux/arch/arm/plat-mxc/include/mach/iomux-<platform>.h IOMUX pads definitions

Setting Up the Keypad Port (KPP)

i.MX50 System Development Guide, Rev. 0

17-2 Freescale Semiconductor

17.2 Creating a custom keymap
The input.h file defines codes for general keyboards, as follows.
...
#define KEY_HOME 102
#define KEY_UP 103
#define KEY_PAGEUP 104
#define KEY_LEFT 105
#define KEY_RIGHT 106
#define KEY_END 107
#define KEY_DOWN 108
#define KEY_PAGEDOWN 109
#define KEY_INSERT 110
#define KEY_DELETE 111
...

Use these labels or add new ones to create your custom keymap.

17.3 Configuring the pads with the machine layer file
The mx50_<board name>.c file contains the structures to configure the pads. They are as follows:
static struct pad_desc mx50_rdp[] = {
…
…
…
/* Keypad */

MX50_PAD_KEY_COL0__KEY_COL0,
MX50_PAD_KEY_COL0__KEY_COL0,
MX50_PAD_KEY_ROW0__KEY_ROW0,
MX50_PAD_KEY_COL1__KEY_COL1,
MX50_PAD_KEY_ROW1__KEY_ROW1,
MX50_PAD_KEY_COL2__KEY_COL2,
MX50_PAD_KEY_ROW2__KEY_ROW2,
MX50_PAD_KEY_COL3__KEY_COL3,
MX50_PAD_KEY_ROW3__KEY_ROW3,

…
…
…
};

Use the following procedure to configure the pads:

1. Add the configured pin's definitions from the iomux-mx50.h files to the structures in the
mx50_<board name>.c file.

NOTE
Remove any entry that can cause pin conflict. i.e.
MX50_PAD_KEY_COL2_KEY_COL2 conflicts with
MX50_PAD_KEY_COL2_TXCAN1.

2. On init function, set up the pads using the function below:
mxc_iomux_v3_setup_multiple_pads(mx50_rdp, ARRAY_SIZE(mx50_rdp));

Setting Up the Keypad Port (KPP)

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 17-3

3. Add the keymapping matrix as follows:
static u16 keymapping[16] = {

KEY_UP, KEY_DOWN, KEY_MENU, KEY_BACK,
KEY_RIGHT, KEY_LEFT, KEY_SELECT, KEY_ENTER,
KEY_F1, KEY_F3, KEY_1, KEY_3,
KEY_F2, KEY_F4, KEY_2, KEY_4,

};

4. Change the KEYS according to input.h labels and your keypad layout.

5. Add the following structure to configure the keypad:
static struct keypad_data keypad_plat_data = {

.rowmax = 4,

.colmax = 4,

.learning = 0,

.delay = 2,

.matrix = keymapping,
};

6. Register the keypad device. On the same machine layer file, add the following line on function
mxc_board_init:

mxc_register_device(&mxc_keypad_device, &keypad_plat_data);

The new keypad is now implemented.

17.4 Enabling the keypad
Select the keypad on Linux menuconfig. This option is located at:

---> Device Drivers
 ---> Input device support
 ---> Keyboards
 ---> MXC Keypad Driver

Build the Linux kernel and boot the board.

17.5 Testing the keypad
There are two simple ways to test the keypad: using cat and using Evtest.

17.5.1 Using cat to test the keypad

On the i.MX50 Linux command line, type the following:
cat /dev/input/keyboard0

ASCII characters are displayed when keys are pressed.

17.5.2 Using Evtest to test the keypad

Evtest is a simple software to test inputs. Build it by selecting the respective package on the ltib package
list.

On the i.MX50 Linux command line, type the following:
evtest /dev/input/keyboard0

Setting Up the Keypad Port (KPP)

i.MX50 System Development Guide, Rev. 0

17-4 Freescale Semiconductor

Evtest displays the information of every key event.

Event: time 862.980003, type 1 (Key), code 106 (Right), value 1
Event: time 863.110002, type 1 (Key), code 106 (Right), value 0
Event: time 863.620003, type 1 (Key), code 158 (Back), value 1
Event: time 863.750002, type 1 (Key), code 158 (Back), value 0
Event: time 865.560003, type 1 (Key), code 139 (Menu), value 1
Event: time 865.730002, type 1 (Key), code 139 (Menu), value 0
Event: time 866.150003, type 1 (Key), code 28 (Enter), value 1
Event: time 866.350002, type 1 (Key), code 28 (Enter), value 0

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 18-1

Chapter 18
Porting Audio Drivers to a Custom Board
This chapter explains how to port audio drivers from the Freescale reference BSP to a custom board. This
procedure varies depending on whether the audio codec on the custom board is the same as or different
than the audio codec on the Freescale reference design. This chapter first explains the common porting
task and then the different porting tasks.

18.1 Common porting task
The mxc_audio_platform_data structure must be defined and filled appropriately for the custom board
before doing any other porting tasks. An example of a filled structure can be found in the file located at
linux/arch/arm/mach-mx5/mx50_<board name>.c

static struct mxc_audio_platform_data sgtl5000_data = {
.ssi_num = 1,
.src_port = 2,
.ext_port = 3,
.hp_irq = IOMUX_TO_IRQ_V3(HP_DETECT),
.hp_status = headphone_det_status,
.amp_enable = mxc_sgtl5000_amp_enable,
.clock_enable = mxc_sgtl5000_clock_enable,
.sysclk = 12288000,

};

Customize the structure according to the following definitions:

ssi_num The ssi used for this codec

src_port The digital audio mux (DAM) port used for the internal SSI interface
(for details about the internal functionality of the DAM please refer to the
AUDMUX chapter of the i.MX50 Applications Processor Reference Manual)

ext_port The digital audio mux (DAM) port used for the external device audio interface
(for details about the internal functionality of the DAM please refer to the
AUDMUX chapter of the i.MX50 Applications Processor Reference Manual)

hp_irq The IRQ line used for headphone detection

hp_status A pointer to a function that returns the current headphone detect status. If a
different mechanism or GPIO is used for headphone detect in the custom board,
this function must be modified to accurately reflect the headphone presence.

amp_enable A pointer to a function that enables/disables the audio codec. For example, this
function can be used to turn on or turn off the regulator supplying the audio codec.

init The initialization routine for the audio codec. Any setup necessary for the audio
codec should be implemented in this function.

Porting Audio Drivers to a Custom Board

i.MX50 System Development Guide, Rev. 0

18-2 Freescale Semiconductor

18.2 Porting the reference BSP to a custom board (audio codec is the
same as in the reference design)

When the audio codec is the same in the reference design and the custom board, users must ensure that the
I/O signals and the power supplies to the codec are properly initialized in order to port the reference BSP
to the custom board.

The iomux-mx50.h file contains the definitions for all pads. Add entries in this file to define the
configuration for the audio codec signals. See Chapter 13, “Configuring the IOMUX Controller
(IOMUXC),” for a description of how to set up the IOMUX and pads for routing signals as desired.

The necessary signals for the sgtl5000 codec, which is used on the reference board, are as follows:

• I2C interface signals

• I2S interface signals

• SSI external clock input to i.MX50

Table 18-1 shows the required power supplies for the sgtl5000 codec.

18.3 Porting the reference BSP to a custom board (audio codec is
different than the reference design)

When adding support for an audio codec that is different than the one on the Freescale reference design,
users must create new ALSA drivers in order to port the reference BSP to a custom board. The ALSA
drivers plug into the ALSA sound framework, which allows the standard ALSA interface to be used to
control the codec. Details about the ALSA infrastructure and developing ALSA drivers can be found at
http://www.alsa-project.org/main/index.php/ASoC.

The source code for the ALSA driver is located in the Linux kernel source tree at linux/sound/soc.
Table 18-2 shows the files used for the sgtl codec support:

Table 18-1. Required power supplies

Power Supply Name Definition Value

VDDD Digital voltage 1.98 V

VDDIO Digital IO voltage 3.6 V

VDDA Analog voltage 3.6 V

Table 18-2. Files for sgtl codec support

File Name Definition

imx-pcm.c • Shared by the stereo ALSA SoC driver, the 5.1 ALSA SoC driver, and the Bluetooth codec driver.
 • Responsible for preallocating DMA buffers and managing DMA channels.

imx-ssi.c • Registers the CPU DAI driver for the stereo ALSA SoC
 • Configures the on-chip SSI interfaces

http://www.alsa-project.org/main/index.php/ASoC

Porting Audio Drivers to a Custom Board

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 18-3

NOTE
If using a different codec, adapt the driver architecture shown in Table 18-2
accordingly. The exact adaptation will depend on the codec chosen. Obtain
the codec-specific software from the codec vendor.

sgtl5000.c • Registers the stereo codec and Hi-Fi DAI drivers.
 • Responsible for all direct hardware operations on the stereo codec.

imx-3stack-sgtl5000.c • Machine layer code
 • Creates the driver device
 • Registers the stereo sound card.

Table 18-2. Files for sgtl codec support

File Name Definition

Porting Audio Drivers to a Custom Board

i.MX50 System Development Guide, Rev. 0

18-4 Freescale Semiconductor

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 19-1

Chapter 19
Porting the Fast Ethernet Controller Driver
This chapter explains how to port the fast Ethernet controller (FEC) driver to the i.MX50 processor. Using
Freescale’s standard (FEC) driver makes porting to the i.MX50 simple. Porting needs to address the
following three areas:

• Pin configuration

• Source code

• Ethernet connection configuration

19.1 Pin configuration
The FEC supports three different standard physical media interfaces: a reduced media independent
interface (RMII), a media independent interface (MII), and a 7-wire serial interface.

The Freescale hardware reference platform directly supports RMII, which has a reduced pin-count
compared to MII. Therefore, RMII is the recommended interface.

Table 19-1 shows the signals used by the RMII interface.

Because the i.MX50 has more functionality than it has physical I/O pins, it uses I/O pin multiplexing. The
general-purpose I/O pins (gpio1 GPIO[22–31]) default to ALT1.

The FEC_PHY_RESET_B signal comes up by default as gpio2 (pin #0), which is ALT function 1. This
particular signal/pin is used as a simple GPIO to reset the FEC PHY. To use the pins as FEC signals
mentioned above, configure them as the ALT0 function in the I/O multiplexer, except for
FEC_PHY_RESET_B.

Table 19-1. RMII signals

Signal name Definition

 FEC_TX_CLK (In, Synchronous clock reference)

 FEC_TX_EN (Out, Transmit Enable)

 FEC_TXD[0:1] (Out, Transmit Data)

 FEC_RX_DV (In, Carrier Sense/Receive Data Valid)

 FEC_RXD[0:1] (In, Receive Data)

 FEC_RX_ER (In, Receive Error)

 FEC_MDC (Out, Management Data Clock)

 FEC_MDIO (In/Out, Management Data Input/Output)

 FEC_PHY_RESET_B (In, PHY reset)

Porting the Fast Ethernet Controller Driver

i.MX50 System Development Guide, Rev. 0

19-2 Freescale Semiconductor

19.2 Source code
The source code for the Freescale FEC Linux environment is located under the
../ltib/rpm/BUILD/linux/drivers/net directory. It contains the following files:

Of those files, only the FEC low-level Ethernet driver code (fec.[ch]) constitutes the Linux i.MX50 FEC
driver.

The driver uses the following compile definitions:

CONFIG_FEC_1588 Set for IEEE 1588 network time synchronization.

CONFIG_M5272 PowerPC information. Can be safely ignored and should not be set.

CONFIG_MXC IMXxx parts. Should be defined.

CONFIG_MXS Legacy MXS part. Should generally not be defined.

19.3 Ethernet configuration
This section covers aspects such as duplex and speed configurations.

The two most common issues are as follows:

• MAC address is missing or invalid

• Ethernet connection (duplex, speed)

By default, the Ethernet driver reads the burned-in MAC address, which is found in code from the fec.c
file located in the function fec_get_mac(). If no MAC address exists in the hardware, the MAC is read as
all zeros, which creates problems. If this occurs, modify the code to read the MAC address from Flash or
elsewhere.

The FEC driver and hardware are designed to comply to the IEEE standards for Ethernet auto-negotiation.
See the FEC chapter in the i.MX50 Applications Processor Reference Manual for a description of using
flow control in full duplex and more.

Table 19-2. Source code files

File Names

FEC low-level Ethernet driver: • fec.h
 • fec.c

MAC Switch software • fec_switch.h
 • fec_switch.c

IEEE 1588 PTP (network time sync) • fec_1588.h
 • fec_1588.c

MPC52xx PowerPC Ethernet Driver • fec_mpc52xx.h
 • fec_mpc52xx.c
 • fec_mpc52xx_phy.c

i.MX50 System Development Guide, Rev. 0

Freescale Semiconductor 20-1

Chapter 20
Porting USB Host1 and USB OTG
The USB Host1 and the USB OTG signals do not multiplex with other pins on the processor. Therefore,
it is not necessary to port IOMUX settings for these interfaces when moving to a new platform.

The only required setup is as follows:

• For the USB Host1 PHY

— Supply USB_H1_VDDA33 with 3.3 V

— Supply USB_H1_VDDA25 with 2.5 V

• For the USB OTG PHY

— Supply USB_OTG_VDDA33 with 3.3 V

— Supply USB_OTG_VDDA25 with 2.5 V

The USB Host1 PHY uses the following signals:

• USB_H1_GPANAIO

• USB_H1_RREFEXT

• USB_H1_DP

• USB_H1_VDDA33

• USB_H1_DN

• USB_H1_VDDA25

• USB_H1_VBUS

The USB OTG PHY uses the following signals:

• USB_OTG_VBUS

• USB_OTG_ID

• USB_OTG_VDDA25

• USB_OTG_DN

• USB_OTG_VDDA33

• USB_OTG_DP

• USB_OTG_RREFEXT

• USB_OTG_GPANAIO

	i.MX50 System Development Guide
	Contents
	Figures
	Tables
	About This Guide
	Audience
	Organization
	Essential reference
	Suggested reading
	General information
	Related documentation

	Conventions
	Signal conventions
	Acronyms and abbreviations

	Part I Hardware Design and Bring-up
	Chapter 1 Design Checklist
	1.1 Design checklist
	Table 1-1. Design checklist

	1.2 Supplemental tables and figures
	Table 1-2. DDR Vref resistor sizing guideline
	Table 1-3. JTAG interface summary
	Figure 1-1. Boot configuration bus isolation
	Figure 1-2. Boot configuration bus isolation

	Chapter 2 Configuring JTAG Tools for Debugging
	2.1 Accessing debug with a JTAG scan chain (ARM tools)
	Figure 2-1. Example of adding a device
	Figure 2-2. Updating the CoreSight base address
	Figure 2-3. i.MX/Cortex-A8 RVDS JTAG scan chain

	2.2 Accessing debug with a JTAG scan chain (other JTAG tools)

	Chapter 3 Avoiding Board Bring-Up Problems
	3.1 Using a voltage report to avoid power pitfalls
	Table 3-1. Sample voltage report table

	3.2 Using a current monitor to avoid power pitfalls
	3.3 Checking for clock pitfalls
	3.4 Avoiding reset pitfalls
	3.5 Sample board bring-up checklist
	Table 3-2. Board bring-up checklist

	Chapter 4 Using the Clock Connectivity Table
	4.1 External clock sources
	4.2 Internal clock sources

	Chapter 5 About the IOMUX Tool
	5.1 IOMUX: What is it?
	5.2 How the IOMUX tool helps application design
	5.2.1 Assigning signals and resolving conflicts
	5.2.2 Documentation features
	5.2.3 Additional features

	5.3 Obtaining the IOMUX tool

	Chapter 6 Setting up Power Management
	6.1 i.MX50 power requirement
	6.1.1 Voltage rail and current requirement for i.MX50
	Table 6-1. Voltage rail and current requirements

	6.1.2 Power-up sequence requirement for i.MX50
	Figure 6-1. i.MX50 power-up sequence

	6.2 MC34708 output capabilities
	6.2.1 Voltage rail and current capabilities
	Table 6-2. Voltage rail and current capabilities

	6.2.2 Default power-up sequence of MC34708 customized for i.MX50
	Table 6-3. MC34708 power-up sequence

	6.2.3 Power-up voltage rail
	Figure 6-4. Power-up mode

	6.3 i.MX50 interfaces to MC34708
	6.3.1 SPI interface between i.MX50 and MC34708
	Figure 6-5. SPI interface

	6.3.2 Power rail interface between i.MX50 and MC34708
	Figure 6-6. Power rail interface

	6.3.3 Extra 3.15 V DCDC power supply

	6.4 RT8011/A features
	6.5 Additional device information
	Figure 6-7. MC34708 block diagram

	Chapter 7 Interfacing DDR Memories with the i.MX50 Processor
	7.1 Overview
	7.2 Connection between i.MX50 and DDR memories
	Figure 7-1. Interfacing between i.MX50 and LPDDR2
	Figure 7-2. Interfacing between i.MX50 and DDR2
	Figure 7-3. Interfacing between i.MX50 and mDDR
	Figure 7-4. Example LPDDR2 connection

	7.3 Configuring the DDR JTAG script
	7.3.1 Script file for LPDDR2 (266M)
	7.3.2 Script file for DDR2 (266M)

	Chapter 8 Layout Recommendation
	8.1 Basic design recommendations
	Figure 8-1. i.MX50 top side view (400 MAPBGA 17 ° 17 mm view)
	Figure 8-2. i.MX50 bottom side view
	Figure 8-3. i.MX50 side view
	Figure 8-4. Stack-up example
	Table 8-1. Impedance control
	Figure 8-5. Stack-up setting
	Figure 8-6. Top side fanout
	Figure 8-7. Bottom side fanout

	8.2 DDR2 routing rules
	Table 8-2. DDR2 routing by the same length
	Table 8-3. DDR2 routing by byte group

	8.3 ESD and radiated emissions recommendations

	Part II Software Development
	Chapter 9 Porting U-Boot from an i.MX50 Reference Board to an i.MX50 Custom Board
	9.1 Obtaining the source code for the U-Boot
	9.2 Preparing the code
	9.3 Customizing the i.MX50 custom board code
	9.3.1 Changing DRAM values for i.MX50 with LP-DDR2 initialization
	9.3.2 Booting with the modified U-Boot
	9.3.3 Further customization at system boot
	9.3.4 Customizing the printed board name

	Chapter 10 Porting the Android Kernel
	10.1 Patching the Android kernel
	10.2 Configuring Android release for customized platforms
	10.2.1 Enabling and disabling default resources
	Figure 10-1. Linux kernel configuration menu

	10.2.2 Changing the configuration file
	10.2.3 Android's memory map
	Figure 10-2. Android memory map (512 Mbyte system)

	10.3 Initializing Android
	10.4 Modifying the init.rc partition locations
	10.5 Android enhancements to the Linux kernel
	Figure 10-3. Linux kernel
	Table 10-1. Android enhancements
	Figure 10-4. Hardware abstraction layer

	Chapter 11 Porting the On-Board-Diagnostic-Suite (OBDS) to a Custom Board
	11.1 Supported components
	11.2 Customizing OBDS for specific hardware
	11.2.1 UART (serial port) test
	11.2.2 DDR test
	11.2.3 Audio test
	11.2.4 LCD display test
	11.2.5 E-INK display test
	11.2.6 I2C test
	11.2.7 SD/MMC test
	11.2.8 SRTC test
	11.2.9 Ethernet (FEC) loopback test
	11.2.10 SPI-NOR test
	11.2.11 NAND Flash device ID test

	Chapter 12 Configuring the IOMUX Controller (IOMUXC)
	12.1 Information for setting IOMUX controller registers
	12.2 Setting up the IOMUXC in U-Boot
	Table 12-1. Configuration files
	12.2.1 Defining the pads
	12.2.2 Configuring IOMUX pins for initialization function
	12.2.3 Example-setting a GPIO

	12.3 Setting up the IOMUXC in Linux
	Table 12-2. IOMUX configuration files
	12.3.1 IOMUX configuration definition
	12.3.2 Machine layer file
	12.3.3 Example -setting a GPIO

	Chapter 13 Registering a New UART Driver
	13.1 Configuring UART pads on IOMUX
	13.2 Enabling UART on kernel menuconfig
	13.3 Testing the UART
	13.4 File names and locations
	Table 13-1. Available files-first set
	Table 13-2. Available files-second set
	Table 13-3. Available files-third set

	Chapter 14 Adding Support for the i.MX50 ESDHC
	14.1 Including support for SD1/SD2/SD3/SD4
	14.1.1 Creating platform device structures for the SD interfaces
	14.1.2 Configuring pins for SD function
	14.1.3 Creating the platform data structure
	Table 14-1. Structure descriptions

	14.1.4 Setting up card detection

	14.2 Additional reference information
	14.2.1 ESDHC interface features
	Table 14-2. ESDHC pins

	14.2.2 ESDHC operation modes supported by the i.MX50
	Table 14-3. ESDHC operation modes

	14.2.3 Interface layouts
	Figure 14-1. Example i.MX50 board SD interface layout
	Figure 14-2. Second example i.MX50 SD interface layout

	Chapter 15 Configuring the SPI NOR Flash Memory Technology Device (MTD) Driver
	15.1 Source code structure
	15.2 Configuration options
	Table 15-1. Parameter variables

	15.3 Selecting SPI NOR on the Linux image
	Table 15-2. Device information

	15.4 Changing the SPI interface configuration
	15.4.1 Connecting SPI NOR Flash to another CSPI interface
	15.4.2 Changing the CSPI interface
	Table 15-3. CSPI parameters

	15.4.3 Changing the chip select
	15.4.4 Changing the external signals

	15.5 Hardware operation
	15.6 Software operation
	Figure 15-1. Components of a Flash-based file system

	Chapter 16 Supporting the i.MX50 Reference Board LCD
	16.1 Supported display interfaces
	Table 16-1. Available Interfaces

	16.2 Adding support for an LCD panel
	Figure 16-1. Interface
	Table 16-2. Timing parameters

	16.3 Modifying boot kernel parameters to support a new LCD
	16.3.1 Setting the video kernel parameter
	Table 16-3. Parameter information
	Table 16-4. VGA LCD example variables

	16.3.2 Modifying the bits per pixel setting

	16.4 Adding support for a new LCD
	16.4.1 Adding a display entry in the ltib catalog
	16.4.2 Creating the LCD panel file (initialization, reset, power settings, backlight)
	Table 16-5. Required functions

	16.4.3 Adding the compilation flag for the new display
	16.4.4 Configuring LCD timings and the display interface

	Chapter 17 Setting Up the Keypad Port (KPP)
	Table 17-1. Files for adding/configuring a new keypad
	17.1 Configuring keypad pins on IOMUX
	17.2 Creating a custom keymap
	17.3 Configuring the pads with the machine layer file
	17.4 Enabling the keypad
	17.5 Testing the keypad
	17.5.1 Using cat to test the keypad
	17.5.2 Using Evtest to test the keypad

	Chapter 18 Porting Audio Drivers to a Custom Board
	18.1 Common porting task
	18.2 Porting the reference BSP to a custom board (audio codec is the same as in the reference design)
	Table 18-1. Required power supplies

	18.3 Porting the reference BSP to a custom board (audio codec is different than the reference design)
	Table 18-2. Files for sgtl codec support

	Chapter 19 Porting the Fast Ethernet Controller Driver
	19.1 Pin configuration
	Table 19-1. RMII signals

	19.2 Source code
	Table 19-2. Source code files

	19.3 Ethernet configuration

	Chapter 20 Porting USB Host1 and USB OTG

