
Freescale Semiconductor
eTPU Assembly Converter

© Freescale Semiconductor, Inc., 2010. All rights reserved.

Overview
The eTPU Assembly Converter is a tool that converts Byte
Craft eTPU assembly language code to Freescale eTPU
assembly language code. The tool can be used either to
convert instructions that are input manually or to convert
entire .asm files, .c files, or directories of these files.

The tool converts only assembly language instructions
(either in .asm files or in inline assembly sections of .c files).

With this tool, it is easy to convert files previously compiled
using the Byte Craft compiler to the new, Freescale
C compiler for the eTPU.

1 Command-Line Options
The following usage appears when running the converter
with the -h switch. A detailed explanation appears in the sub
sections below.

etpu_asm_converter [-options] (-c <file> | -a
<file> | -m | -mc)

Document ID: ETPUASMCVTR
Rev. 0.1, 08/2010

Contents
1. Command-Line Options . 1
2. Convert Mode . 2
3. Converter options . 4
4. Converter Operation . 5
5. Limitations . 6

eTPU Assembly Converter

eTPU Assembly Converter, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

2

Convert Mode

Convert Modes — exactly one of these flags must appear:

• -m: manual mode, converts assembly language instructions from stdin.

• -mc: manual mode, converts C language text from stdin.

• -c <c_file> [out_file]: converts all assembly language code in <c_file>.

• -a <asm_file> [out_file]: converts the assembly language file <asm_file>.

Options — if used, these flags must appear before the convert mode flag:

• -nowarn: suppress warnings

• -h: display usage message

• -pp: preprocess. Replaces macros in assembly language sections before performing conversion.

-debugE: debug errors. When this option is used, more information is printed if errors occur. Please note
this option was created for development purposes — the information refers to lex token names and is not
always helpful.

2 Convert Mode
The converter can run either in manual mode (-m, -mc) or in directory/file mode (-c, -a). In both modes,
the converter can run in assembly mode (-a, -m) or c mode (-c, -mc).

2.1 Convert Mode — Language

2.1.1 Assembly Mode

In assembly mode (-a, -m), the entire file (or manually inserted input) will be treated as Byte Craft
assembly language and converted immediately.

2.1.2 C Mode
In c mode (-c, -mc), the entire file (or manually inserted input) will be treated as a C language file. The
file is copied line-by-line and only the inline assembly language instructions are converted. Inline
assembly language instructions in Byte Craft begin with the #asm directive and end with #endasm
directive. One line inline assembly instructions in Byte Craft can also begin with the #asm directive and
an open parenthesis and end with a closing parenthesis.

2.2 Convert Mode — Input Type

2.2.1 Manual Mode
In manual mode (-m, -mc), the user inserts text manually to the standard input and the converter prints
the converted text to the standard output. This mode is useful for checking specific instructions. Notice
that the output is usually printed only after a full instruction has been analyzed (including the ending '.'
character, which is essential in Byte Craft).

eTPU Assembly Converter, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

3

Convert Mode

2.2.2 Directory/File Mode
When the converter runs in directory/file mode (-a, -c), a specific file or directory must be specified
immediately after the -c or -a mode switch.

If the argument after the mode switch is a directory, the converter converts all the files in the specified
directory that end with the .c extension (for mode switch -c) or the .asm extension (for mode switch
-a). Each generated file will be named <file_name>.converted.c or
<file_name>.converted.asm (depending on the current language mode).

If the argument after the mode switch is a file name (as opposed to a directory name), the specified file is
converted. In this case, another argument may appear immediately after the file name that specifies the
name to assign to the converted file. If this argument does not appear, the converted file is named
<file_name>.converted.c or <file_name>.converted.asm, depending on the working language
mode.

2.3 Examples

2.3.1 Manual Assembly Mode
etpu_asm_converter.exe -m

->alu c=b+a.

add c,b,a

->ram p = by_diob.

ld p,*diob

2.3.2 Manual C Mode
etpu_asm_converter.exe -mc

->/* All c information is copied line-by-line */

/* All c information is copied line-by-line */

->#asm (alu c=c+1.)

asm{ addi c,c,1 }

->callExampleCFunc();

callExampleCFunc();

->#asm

asm{

->ram p = (diob++).

ld p,*diob++

->alu c=b.

move c,b

eTPU Assembly Converter, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

4

Converter options

->#endasm

}

->callExampleCFunc();

callExampleCFunc();

2.3.3 File Assembly Mode
etpu_asm_converter.exe -a asm_input.txt

2.3.4 File C Mode
etpu_asm_converter.exe -c c_input.c out.txt

3 Converter options

3.1 2.2.1 No Warnings
When the -noWarn option is used, warnings are not reported. This option is useful when converting many
files and only the conversion errors are important. For more about warnings, see the Limitations section.

3.2 Preprocessing
When the -pp option is used, the file is preprocessed before being converted. The preprocessing is
executed using the ccetpu compiler. In the preprocessing stage, all the macros are analyzed and replaced
with their values. Only after preprocessing the file completes does conversion start. This option is useful

Table 1. File Assemble Mode

asm_input.txt: asm_input.txt.converted.asm:

chan write_mera; ram p -> (diob).

alu a = a - p.
alu p =<< mach + 0x0.

erw1 ; st p,*diob
sub a,a,p
addi.shl p,mach,0x0

Table 2. File C Mode

c_input.c out.txt

Main() {
#asm

alu c = diob << 2.
alu c=17.
/* this is a note*/

#endasm
callFunc()
#asm (alu c = b + a.);

}

main() {
asm{

shli c,diob,2
movei c,0x11
// this is a note

}
callFunc()
asm{ add c,b,a };

}

eTPU Assembly Converter, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

5

Converter Operation

with C language files that use macros in their inline assembly language sections. The converter does not
recognize these macros without preprocessing the file first; therefore the option is necessary in such cases.

NOTE

Using the -pp option causes white space and new line modifications in the
file. Spaces and new lines may be added or removed during the
preprocessing stage, and macros are replaced with their values; however,
the actual content of the file is not modified.
When using this option, the input file is passed through the ccetpu C
compiler. Therefore, this file must follow eTPU C language rules. For
example, the file must end with the ".c" extension.

Example of the -pp option:

etpu_asm_converter.exe -pp -c c_input.c out.txt

3.3 Debug Information
When the -debugE option is used, debug information is printed in the case of errors. This information
may be useful in finding Byte Craft syntax errors. Note that this option was created for development
purposes; therefore, in many cases, the provided information may not be clear or helpful.

This option is mostly useful for the chan instruction. For example:

etpu_asm_converter.exe -m -debugE

chan set flag2.

error in line 3: syntax error, unexpected FREE_TEXT, expecting FLAG0 or FLAG1.

4 Converter Operation
The eTPU assembly converter is given a file (or manually input data) as input and generates a new file,
with all assembly language instructions converted from Byte Craft to Freescale assembly language. If the
original file compiled correctly according to the standard Byte Craft assembly language architecture, the
asm converter should convert the file without error and produce a new, Freescale compile-ready file.

Table 3. Preprocessing Options

c_input.c def.h out.txt

#include "def.h"

#asm
MY_ALU c = REG_B+
VALUE.
MY_CHAN pdcm=
sm_dt.
#endasm

#define MY_ALU
alu
#define REG_B b

#define VALUE 3
#define MY_CHAN
chan

#include "def.h"

asm{

addi c,b,3
chmode.sm_dt

}

eTPU Assembly Converter, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

6

Limitations

4.1 Context
The converter is a context-independent tool. It analyzes each assembly language instruction separately and
converts it without reference to any other instructions. The only exception to this rule involves macros.
The converter has the ability to preprocess C language files before converting them and therefore can
recognize macros in instructions even if the macros were defined elsewhere in the file (or outside the file).
More information about this option in available in the command-line section.

4.2 Error Handling
When the converter encounters an unrecognized instruction, it reports an error along with the line number
of the problematic instruction. Since the converter is context independent, it can continue converting
instructions immediately after the error. Therefore, when the converter finishes, it is only necessary to
manually fix the reported error; there is no need to convert the whole file again.

In addition, during conversion, the converter may report warnings. In these cases, the converter is able to
convert the specified instruction, but there a chance that the conversion was not perfect. See the
Limitations section for more information.

4.3 Variables
In C language files, variables may appear in inline assembly language instructions. The converter does not
recognize these variables (since it is context independent). In order to handle variables in inline assembly
language, the converter copies any text that appears in assembly language operands where variables are an
option. It is the user’s responsibility to verify that this text refers to a real variable. If no such variable
exists, the compiler reports an error when it compiles the converted file.

4.4 Parallel Instructions
The eTPU assembly converter supports parallel instructions. The sub-instructions in parallel instructions
are separated by semicolons in Byte Craft assembly language.

5 Limitations
This section lists possible limitations to the eTPU assembly converter.

5.1 Complex expressions
The converter does not analyze complex expressions (for example, alu c=3+6-1+2); instead, the
converter copies them as is. (In the example above, the converted text is: movei c,3+6-1+2). This
approach should deal correctly with most expressions, but some complex expressions may cause issues
when converted.

eTPU Assembly Converter, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

7

Limitations

5.2 Negative Numbers
The Byte Craft approach to negative numbers is not consistent: They are treated as 8-bit variables in some
cases, as 24-bit variables in some cases, ignored in some cases, and not allowed in other cases. Therefore,
the conversion of these numbers is also not completely consistent.

5.3 Macros
Macros in inline assembly language are supported, but the -pp switch must be used for them to be
converted correctly. See the command-line section for more information.

5.4 Byte Craft Errors
In certain cases, the Byte Craft compiler does not create code in consistent fashion and according to its
own documentation. In these cases, the eTPU assembly converter “fixes” Byte Craft's errors. This solution
ensures that the converted Freescale assembly language instruction matches Byte Craft's original
instruction; however, in contrast to most cases, the generated binary code of the original instruction and
the converted instruction are different (because Byte Craft's instruction does not generate the expected
code).

For example:

The instruction "alu c =>> b+a+1." generates the binary code 0x3D330F95 when assembled by the
Byte Craft compiler, even though the meaning of this code is to shift b+a+1 left instead of right. (This
seems like a Byte Craft error.) The eTPU assembly converter converts this instruction to "add.shr.one
c,b,a". As a result, the Freescale and Byte Crafts instructions match — their syntax has the same
meaning — but the code each instruction generates is different, since the converted instruction shifts
b+a+1 right, while Byte Craft's original instruction shifts them left.

5.5 Unsupported features
All Byte Craft directives besides %hex are not supported. Local Byte Craft labels are not supported either.

5.6 Parallel Instructions
The converter supports parallel instructions. However, there are certain rare parallel instructions that are
supported in Byte Craft but not by the Freescale assembler. The Byte Craft compiler supports jmp and
end sub-instructions as part of the same parallel instruction, but the Freescale compiler does not support
such a combination since both jmp and end change the program flow. If the original code contains such
a parallel instruction, it will be converted without error, but the assembler will report an error when the
converted instruction is assembled.

eTPU Assembly Converter, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

8

Limitations

5.7 Warnings

5.7.1 ld/ldm

When loading variables that are allocated on the channel, the ldm operator should be used, and when
loading global variables, the ld operator should be used. The converter does not distinguish between these
variables and therefore always uses the ldm operator when converting instructions that load C variables.
In such cases, this warning is printed: "Instruction has been converted by default to
ldm but might be ld depending on the label's value".

5.7.2 Hex Directives
The converter supports hex directives that begin with %hex in Byte Craft assembly language; they are
converted to .word directives in Freescale assembly language. However, a warning is still printed when
these directives appear because the converter does not analyze their meaning. Since there is usually a
reason that the original instructions appears in hex instead of in Byte Craft assembly language, it is
recommended to review the converted directive and possibly rewrite the instruction in Freescale assembly
language.

eTPU Assembly Converter, Release 3.0, Rev. 0.1

© Freescale Semiconductor, Inc., 2010. All rights reserved.

9

Limitations

ETPUASMCVTR
Rev. 0.1
08/2010

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2010.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
(800) 521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 2666 8080
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
(800) 441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

	eTPU Assembly Converter
	1 Command-Line Options
	2 Convert Mode
	2.1 Convert Mode - Language
	2.1.1 Assembly Mode
	2.1.2 C Mode

	2.2 Convert Mode - Input Type
	2.2.1 Manual Mode
	2.2.2 Directory/File Mode

	2.3 Examples
	2.3.1 Manual Assembly Mode
	2.3.2 Manual C Mode
	2.3.3 File Assembly Mode
	Table 1. File Assemble Mode

	2.3.4 File C Mode
	Table 2. File C Mode

	3 Converter options
	3.1 2.2.1 No Warnings
	3.2 Preprocessing
	Table 3. Preprocessing Options

	3.3 Debug Information

	4 Converter Operation
	4.1 Context
	4.2 Error Handling
	4.3 Variables
	4.4 Parallel Instructions

	5 Limitations
	5.1 Complex expressions
	5.2 Negative Numbers
	5.3 Macros
	5.4 Byte Craft Errors
	5.5 Unsupported features
	5.6 Parallel Instructions
	5.7 Warnings
	5.7.1 ld/ldm
	5.7.2 Hex Directives

