

Symphony Studio Eclipse
for Symphony DSPs

User's Guide

Document Number: DSPSTUDIOUG
Rev. 1.1
07/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
Microsoft and Windows are registered trademarks of Microsoft Corporation.

© Freescale Semiconductor, Inc. 2008. All rights reserved.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

1-1

About This Book.. 1-3

Audience ..1-3

Organization...1-3

Chapter 1 Installation ... 1-4

1.1 Java Runtime Environment..1-4

1.2 Eclipse for Symphony DSPs..1-4

1.3 Open On-Chip Debugger ..1-5

1.3.1 Install FTDI D2XX Drivers ..1-5

1.3.2 Install Parallel port Drivers..1-5

Chapter 2 Tutorials... 2-1

2.1 C Tutorial...2-1

2.1.1 Creating a New Project ...2-1

2.1.2 Adding Source Files..2-4

2.1.3 Creating a Debug Configuration..2-7

2.1.4 Debugging your Application ...2-9

2.2 ASM Tutorial ...2-17

2.2.1 Creating a New Project ...2-17

2.2.2 Adding Source Files..2-20

2.2.3 Creating a Debug Configuration..2-23

2.2.4 Debugging your Application ...2-25

Chapter 3 Advanced Topics.. 3-1

3.1 Breakpoints ..3-1

3.1.1 Hardware Breakpoints ..3-2

3.1.2 Hardware Watchpoints ...3-2

3.1.3 Multi-Core Breakpoints ..3-3

3.2 Memory..3-4

3.2.1 Memory Render Format..3-6

3.2.2 Modifying Memory...3-6

3.3 Registers...3-8

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 1-2

3.4 Variables...3-8

3.5 Disassembly View...3-9

3.6 Synchronize Control of DSP56720 Cores ...3-10

3.7 Creating a Standard Make Project...3-11

3.8 Managed Make Options..3-14

3.8.1 Build Configurations...3-14

3.8.2 Build Options..3-15

3.9 Freescale 56xx Debug Target Options...3-19

3.9.1 Setting an Application to Debug ...3-20

3.9.2 Setting Debug Settings..3-21

3.9.3 Setting GDB Commands...3-23

3.9.4 Specifying the Location of Source Files...3-25

3.9.5 Specifying the Location of the Debug Configuration ...3-26

3.10 Device Configuration File ...3-27

3.10.1 Register Groups..3-27

3.10.2 Memory Map..3-28

3.10.3 Example Configuration File...3-29

3.11 Tasking Projects ...3-30

3.11.1 Creating a Tasking Project ..3-30

3.11.2 Tasking Setup...3-31

3.11.3 Adding Tasking Libraries ..3-33

3.12 Third Party Tools..3-35

3.12.1 EmuServer..3-37

3.12.2 OCDRemote...3-38

Chapter 4 Troubleshooting ... 4-1

4.1 Troubleshooting Eclipse..4-1

Appendix A GDB SIMAPI Server.. A

Appendix B Simulator Command Files ...B

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

1-3

About This Book

Use this guide to get started with cross development for the Freescale Symphony DSP Platform.

NOTE

This guide assumes development on the Windows host operating
system unless otherwise stated.

Audience

This document is intended for software, hardware, and system engineers who are planning to use the
product and for anyone who wants to understand more about the product.

Organization

This document contains the following chapters.

Chapter 1 “Chapter 1, “Installation,” provides instructions for the initial installation and setup of the
Symphony DSP Platform Tools.

Chapter 2 “Chapter 2, “Tutorials,” includes tutorials to allow you to create a simple Symphony
Studio C project, shows you how to build it using the development tools, and how to
debug the dual-core application through Eclipse, and also allow you to create a simple
Symphony Studio Assembly project, shows you how to build it using the development
tools, and how to debug the dual-core application through Eclipse.

Chapter 3 “Chapter 3, “Advanced Topics,” goes into further details about debugging tasks, such as
reading and writing to/from registers and memory. If you are a returning user wanting
only to brush-up on the debugging procedure, this section is most relevant.

Chapter 4 “Chapter 4, “Troubleshooting,” goes into further details about debugging tasks, such as
reading and writing to/from registers and memory. If you are a returning user wanting
only to brush-up on the debugging procedure, this section is most relevant.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 1-4

Chapter 1
Installation

1.1 Java Runtime Environment

The Java Runtime Environment (JRE) provides the libraries, the Java Virtual Machine (JVM), and other
components to run applets and applications written in the Java programming language. Since Eclipse is
written in Java, a compatible JRE must first be installed before Eclipse can be used.

There are many commercial vendors that supply JREs. A list of supported JREs is usually available from
the Eclipse download page at http://www.eclipse.org/downloads/. Follow the product installation
instructions and complete the installation.

NOTE

 The recommended release for DSP56720 development is JRE 1.5.x

NOTE

It is possible to have more than one JRE installed on your machine.
To see if you have JRE installed on your system check your installed
programs (For Windows this is under Start -> Settings -> Control
Panel and then Add or remove Programs). As a general safeguard, it
is recommended to always explicitly specify the JVM to be used for
launching Eclipse. For more information on how to specify a
particular JVM, see the following:

 http://wiki.eclipse.org/index.php/FAQ_How_do_I_run_Eclipse%3F

1.2 Eclipse for Symphony DSPs

Eclipse is an open source community whose projects are focused on providing a vendor-neutral open
development platform and application frameworks for building software, and is the chosen platform for
Symphony DSP development. Symphony Studio is made up of two main components, the Eclipse
platform SDK 3.2.2 and the Eclipse C/C++ Development Toolkit 3.1.1. Together these provide an
industrial strength C/C++ IDE. For more information on Eclipse see http://www.eclipse.org.

Both Eclipse 3.2.2 and the Eclipse C/C++ Development Toolkit 3.1.1 are Eclipse projects but have been
patched specifically for the Symphony DSPs. Therefore you are unable to download the components

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

1-5

from the Eclipse website. To install Symphony Studio simply execute the setup file Symphony-Studio-
1.1.0-Windows-Setup.exe and follow the on-screen instructions to choose an installation path.

NOTE

A directory with spaces in the absolute path (such as My Documents
or Program Files) is not the recommended install location for Eclipse
due to potential problems with directory/file names with spaces. The
recommended place to install Eclipse is in C:\Symphony-Studio.

1.3 Open On-Chip Debugger

Open On-Chip Debugger (openOCD) is a GDB-JTAG server, which allows the host computer to
communicate with the DSP EVB. The openOCD binary comes packaged with your Symphony Studio
release. We will refer to Symphony Studio installation directory as TOOLSDIR.

This section details how to install OpenOCD with a parallel port driver, or with the D2XX USB driver
from Future Technology Devices International Ltd. “

See http://www.ftdichip.com/

1.3.1 Install FTDI D2XX Drivers

If you are using the SoundBite board the FTDI D2XX drivers need to be installed on your system. By
default, these drivers are automatically installed with the installation of Symphony Studio. If for some
reason the drivers need to be reinstalled, execute the following:

TOOLSDIR\dsp56720-devtools\dist\openocd\driver\CDM\CDM 2.02.04.exe

1.3.2 Install Parallel port Drivers

For the parallel port driver open a command prompt then:

1. Change directory to TOOLSDIR\dsp56720-devtools\dist\openocd\driver\parport

2. Run “install_giveio.bat”

The output should look like:

Copying the driver to the windows directory

target file: C:\WINDOWS\giveio.sys

 1 file(s) copied.

Remove a running service if needed...

Installing Windows NT/2k/XP driver: giveio

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 1-6

installing giveio from C:\WINDOWS\giveio.sys... ok.

starting giveio... ok.

set start type of giveio to auto... ok.

Success

NOTE

The driver can be unloaded by running remove_giveio.bat in the same directory.

To verify the installation run “status_giveio.bat”

You should see the following output:

status of giveio:

Type: [0x01] Kernel driver.

Start Type: [0x02] Automatic

Error Control: [0x01] NORMAL: Display a message box.

Binary path: \??\C:\WINDOWS\giveio.sys

Load order grp:

Dependencies:

Start Name:

ok.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-1

Chapter 2
Tutorials

You are now ready to start developing with Symphony Studio. This chapter shows a C and assembly
application compiled using the Symphony Studio Development Tools and then debugged on the
DSP56720 simulator.

2.1 C Tutorial

This section describes the specific steps of the C tutorial.

2.1.1 Creating a New Project

1. Select File -> New -> Project.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-2

TIP

In the C/C++ Perspective you can quickly open a new Managed
Make C Project by right click in the C/C++ Projects View and
selecting New->Managed Make C Project.

2. Expand the C folder and select the Managed Make C Project option. Click Next.

3. Select a suitable workspace directory if prompted (this is used to store all your projects)

4. Set the Project name to C-Tutorial

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-3

5. Click the Next button and the Project Type should be automatically set to 56K GCC COFF

6. Click the Finish button.

7. Click Yes if you are offered the option to open the C/C++ perspective now. The C-Tutorial
project appears in the C/C++ Projects tab.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-4

2.1.2 Adding Source Files

1. Right-click on the C-Tutorial project in the C/C++ Projects tab and select New -> Source
File.

2. Use the following settings:
• Source Folder: C-Tutorial (default)

• Source File: tutorial.c

3. The empty tutorial.c file appears under the C-Tutorial project and is automatically opened by
Symphony Studio for editing. Note that an error is reported initially as it tries to compile the
empty file into a CLD file.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-5

4. Add the following C source lines to the tutorial.c file:
/* Data Types */

typedef struct customtype
{

 int val1;
 long int val2;
 long int val3;
} ctype;

/* Function Prototypes */

int func1(int arg1, int arg2);
long int func2(int arg1, int arg2);
void func3(ctype *arg1);

/* Function Definitions */

int main(void)
{

 int a = func1(7, 3);
 long int b = func2(a, 19);
 long int c = a * b;
 ctype d;

 d.val1 = a;

 d.val2 = c;

 d.val3 = 0;

 func3(&d);

 if(d.val3 == b)
 return 1;

 return 0;
}

int func1(int arg1, int arg2)
{

 int rv = func2(arg1, arg2);
 rv += arg1;

 return rv;
}

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-6

long int func2(int arg1, int arg2)
{

 return arg1 - arg2;
}

void func3(ctype *arg1)
{

 arg1->val3 = arg1->val2 / arg1->val1;

}

5. Save your work by clicking the Save button. Symphony Studio automatically compiles the
project when you do this and the earlier reported error should not be present anymore.

NOTE

If you want to disable automatic building, uncheck Project -> Build
Automatically. To clean your project, select Project -> Clean,
select the projects you want to clean and hit the OK button.

TIP

Symphony Studio includes a Freescale DSP COFF Binary parser and
identifies all valid COFF files in a Binaries tree element in the project
folder. You can expand the COFF file to see which source files it
references.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-7

2.1.3 Creating a Debug Configuration

You will now create two debug configurations (one for each DSP56720 core).

1. Switch to the Debug perspective by selecting Window -> Open Perspective -> Other and
choosing the Debug option.

2. Select Run->Debug. Alternately you can use the debug pull down menu in the tool bar.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-8

3. Right click on the Freescale 567xx target and select New.

4. In the Name field change the text so it reads: C-Tutorial (Core0)

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-9

5. The Project field should currently be pointing to C-Tutorial. Click the Search project button
on the C/C++ Application field and select the C-Tutorial.cld file that should be listed there. Set
the Core Index to 0 if it isn't already.

NOTE

If you want to debug a CLD file that is not part of the current
project you can use the Browse button, which lets you select any
CLD file available on your computer.

Repeat steps 1-5 to create a debug target for Core1 (changing the name and Core Index appropriately).

More details on the other options available for the Freescale 56xxx debugger target are documented in
Section 3.9, “Freescale 56xx Debug Target Options.”

2.1.4 Debugging your Application

You are now ready to debug your application running on the DSP56720 simulator. Following is a
summary of what we have achieved thus far:

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-10

• Written an application for the DSP56720 and built it using the integrated DSP compiler and
tools

• Created two debug configurations (one for each core inside the DSP56720 device) to debug
the application code running on inside each core

To debug, follow these steps:

1. Select Window -> Open Perspective -> Debug to select the debug perspective. Resize your
panes as appropriate. You will want a reasonable sized main window for debugging the source
code.

2. Select Window -> Show View -> Registers to open the registers window.

3. Right-click in the column to the left of the source lines in the source window and select Show
Line Numbers.

4. Launch the GDB SIMAPI Server to debug via the simulator or the GDB OpenOCD Server to
debug via the EVB.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-11

a) To launch the SIMAPI GDB Server select Run -> External Tools -> External Tools.
Right-click SIMAPI GDB Server in the side pane to create a new configuration. Use the
default values and Run

b) To launch the OpenOCD Server select Run -> External Tools -> External Tools. Right-
click on OpenOCD GDB Server in the side pane to create a new configuration. In the
“OpenOCD Configuration File” group select the appropriate debug dongle and DSP.
Otherwise the user can specify the exact location of the OpenOCD Configuration file by
selecting other. They can browse the current workspace. Browse the file system if the file is
outside of the workspace, or use one of the in build Eclipse variables.Use the default values
for the remaining fields and Run.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-12

TIP

Once an External tool is created and launched you can quickly
relaunch it by selecting it in the External Tools pull down menu in
the tool bar.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-13

 You should now have something that looks like the window below:

5. Launch GDB by selecting Run -> Debug, then selecting C-Tutorial (Core0) in the side pane
and hitting Debug. Behind the scenes, GDB makes a TCP connection to the port on which the

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-14

GDB SIMAPI Server is listening. It then instructs the server to load the application binary C-
Tutorial.cld into the connected DSP56720 device (Core0).

6. The simulator runs till it hits the start of main() then stops (If you get a debug window with a
message like source code not found, please see Chapter 4, “Troubleshooting,” for details on
how to fix it). You can now open the disassembly window by Selecting Window -> Show
View -> Disassembly. Use the Step Into icon to step through the code.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-15

At this point you are debugging the code running in the private memory of Core0. Let's now also load
the program to the private memory of Core1 and debug both sessions simultaneously.

1. Launch the second GDB session by selecting Run -> Debug, then selecting C-Tutorial (Core1)
in the side pane and hitting Debug. The debug session starts and the C-
Tutorial.cld file gets loaded into the connected DSP56720 device (Core1).

2. Notice carefully the information in the Debug tab. Here you can see the information on the two
sessions running (such as C-Tutorial (Core0) and C-Tutorial (Core1)). You can now switch
context between the two cores. Select the Thread under C-Tutorial (Core1). All subsequent
commands will now be performed on Core1.

3. Press Step Over a few times, you should now be presented with a window looking something
like the following:

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-16

4. Switch threads again and make sure you know how to control each core.

5. Each debug session can be killed by hitting the Terminate buttons in the respective threads.

NOTE

You can also right-click on a session in the Debug window and
select Terminate All and then again with Remove All Terminated.

That's it. Play around to become familiar with the Eclipse development and debugging environment.
Make changes to the source code or write your own application, recompile and debug again. Check out
the Disassembly window, the Breakpoints window, the Variables window the Registers and Memory
windows. Add and remove breakpoints, kill then restart the debug session.

More details on specific items discussed in this tutorial can be found in Chapter 4, “Advanced Topics.”
Also to gain a further understanding on how Eclipse works in regards to your workbench, views and

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-17

perspectives you can view the on line help system, Help->Help Contents and select Workbench User
Guide.

For a copy of this tutorial, see /sample-projects/ Symphony Studio Installation/ *.*.

2.2 ASM Tutorial

This section describes the specific steps for the ASM tutorial.

2.2.1 Creating a New Project

1. Select File -> New -> Project.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-18

TIP

In the C/C++ Perspective you can quickly open a new Managed
Make ASM Project by right click in the C/C++ Projects View and
selecting New->Managed Make ASM Project.

2. Expand the ASM folder and select the Managed Make ASM Project option. Click Next.

3. Select a suitable workspace directory if prompted (this is used to store all your projects)

4. Set the Project name to ASM-Tutorial

5. Click the Next button and the Project Type should be automatically set to 56K ASM COFF

6. Click the Finish button.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-19

7. Click Yes if you are offered the option to open the C/C++ perspective now. The ASM-Tutorial
project appears in the C/C++ Projects tab

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-20

2.2.2 Adding Source Files

1. Right-click on the ASM-Tutorial project in the C/C++ Projects tab and select New -> File.

2. Use the following settings:
• Source Folder: ASM-Tutorial (default)

• Source File: tutorial.asm

3. The empty tutorial.asm file appears under the ASM-Tutorial project and is automatically
opened by Symphony Studio for editing. Note that an error is reported initially as it tries to
compile the empty file into a CLD file.

4. Add the following source lines to the tutorial.asm file:

M_ID EQU $FFFFF5 ; X space:ID Register

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-21

;**

; Init data storage

;**

 org x:$00
TEST_BASE equ *
Test_offset_1 ds 1
Test_offset_2 ds 1

;**

; Init interrupt vectors

;**

 org p:$00
 jmp START

;***

; Start

;***

 org p:$100
START
 ori #$03,mr ; mask interrupts

 move #0,omr

 movec #0,sp ; reset hardware stack pointer

 ;move ID register to x:$10

 move #$10,r0

 move x:M_ID,x0

 move x0,x:(r0)+

 ;Initialize data storage

 move #$0,r0

 move r0,x:TEST_BASE
 move r0,x:TEST_BASE+1
LOOP
 move x:TEST_BASE,a
 move x:TEST_BASE+1,b

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-22

 jsr ADD

 move a,x:TEST_BASE
 move b,x:TEST_BASE+1
 jmp LOOP

ADD
 add a,b ;a = a + b

 add #$1,a ;a++

 rts

5. Save your work by clicking the Save button. Eclipse automatically compiles the project when
you do this and the earlier reported error should no be preset anymore.

NOTE

If you want to disable automatic building, uncheck Project -> Build
Automatically. To clean your project, select Project -> Clean,
select the projects you want to clean and hit the OK button.

TIP

Symphony Studio includes a Freescale DSP COFF Binary parser and
identifies all valid COFF files in a Binaries tree element in the project
folder. You can expand the COFF file to see which source files it
references.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-23

2.2.3 Creating a Debug Configuration

You will now create two debug configurations (one for each DSP56720 core).

1. Switch to the Debug perspective by selecting Window -> Open Perspective -> Other and
choosing the Debug option.

2. Select Run -> Debug. Alternately you can use the debug pull down menu in the tool bar.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-24

1. Right click on the Freescale 567xx target and select New.

2. In the Name field change the text so it reads ASM-Tutorial (Core0)

3. The project field should currently be pointing to ASM-Tutorial. Click the Search project button
on the C/C++ Application field and select the ASM-Tutorial.cld file that should be listed there.
Set the Core Index to 0 if it isn't already.

NOTE

If you want to debug a CLD file that is not part of the current
project you can use the Browse button, which lets you select any
CLD file available on your computer.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

2-25

3. Repeat steps 1-5 to create a debug target for Core1 (changing the name and Core Index
appropriately).

NOTE

Symphony Studio recognizes that it is an ASM project and
automatically de-selects “Run at Startup” and “Stop on Startup”. As
a result when you launch your application, the PC points to the entry
point of the cld file, usually 0.

More details on the other options available for the Freescale 56xxx debugger target are documented in
Section 3.9, “Freescale 56xx Debug Target Options.”

2.2.4 Debugging your Application

You are now ready to debug your application running on the DSP56720 simulator. Follow Section
2.1.4, “Debugging your Application,” from the previous tutorial, which outlines the procedure when
debugging an application created from a C file. The steps are identical when the application is created

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs 2-26

from an ASM file except for steps 5 and 7 select the debug connections you created in Section 2.2.3,
“Creating a Debug Configuration.”

A copy of this tutorial project can be found in the Symphony Studio Installation directory under the
sample-projects directory.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-1

Chapter 3
Advanced Topics

This chapter provides advanced topics.

3.1 Breakpoints

You can apply breakpoints in either the Source Code window or in the Disassembly window.
You do this by Double Clicking on the left hand border. A Blue Circle is displayed where the
breakpoint occurs. Breakpoints are also listed in the Breakpoint view. They can be disabled or
removed using the breakpoint view or by double clicking on the blue circles.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-2

3.1.1 Hardware Breakpoints

By default when a breakpoint is inserted a software breakpoint is chosen. If a hardware
breakpoint is desired, instead of Double Clicking on the left hand border of either the Source
Code window or in the Disassembly window, right click and select Toggle Hardware Breakpoint.
A different icon is displayed to indicate a hardware breakpoint is chosen. Hardware breakpoints
are disabled and removed in the same manner as software breakpoints.

3.1.2 Hardware Watchpoints

You can apply a hardware watchpoint which spans over an address range. These watchpoints
break the execution of the core when read, write, execute or either read or write accesses to a
specified memory region occur. To create simply Right-Click in the breakpoint view and select
Add Watchpoint Range. A Add Watchpoint dialog appears where you select the memory space
(P,X or Y), starting address, length and access for the watchpoint.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-3

3.1.3 Multi-Core Breakpoints

For a multi-core simulation an enhanced breakpoint implementation is desirable which allows:

1. Apply a breakpoint to all cores such that either core stops if it reaches the breakpoints

2. Apply a breakpoint to a specific core such that only the specified core stops if it reaches
the breakpoint.

3. Apply a breakpoint to a specific core such that both cores stops if the specified core
reaches the breakpoint.

By default all breakpoints are triggered as per the first option, however it is possible to specify
breakpoints as per the second option from the Eclipse interface. To do this:

1. Right-Click on a previously set breakpoint and select Breakpoint Properties.... The
Properties for C/C++ breakpoint window appears.

2. Click on Filtering in the left navigation pane to bring the Filtering tab to the foreground.

3. De-select the gdb Debugger (ie Core) that you do not wish to apply the breakpoint to.
The following figure illustrates the setup.

4. Click OK.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-4

3.2 Memory

It is possible to view memory sections from the four memory regions P,X , Y and L. In Symphony
Studio the view which shows a section of memory is called a memory render. To open a memory
render do this:

1. In the Debug view, select a debug session. Selecting a thread or stack frame
automatically selects the associated session.

2. Open the memory view by selecting Window->Show View->Memory as shown below

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-5

3. Click on the green plus sign in the Memory Monitor pane, which brings up a Monitor
Memory pop up and select the starting address and which memory region you wish to
view

TIP

You can also right click in the Memory Monitor pane to add
and delete renders.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-6

You now have completed the setup, and while you debug your code, any changes in memory are
highlighted in red. It is also possible to have several memory renders open simultaneously from
different or the same memory region (P, X, Y and L). To do this click on the New Memory View
Button in the Memory view tool bar (this is the first button). Another Memory View is created,
which lists all current memory renders. Follow the steps above to create a new memory render.

3.2.1 Memory Render Format

To view memory in a different format:

1. Select “Add Rendering” in the context menu of the Memory Renderings pane. The
“Add Memory Rendering” dialog appears. Alternately you can use the green plus sign
in the Memory Renderings Pane.

2. Select the formats from the list and press “OK”. It is possible to have multiple formats
open of the same memory render.

3. You can delete a render format by selecting “Remove Rendering” in the context menu
of the Memory Renderings pane. Alternately you can use the grey x sign in the Memory
Renderings Pane.

3.2.2 Modifying Memory

To change the contents of memory simply click the word of memory you wish to change and
enter in the value in hex (without the “0x” prefix). If you have chosen the fractional format you
enter in fractional values. To get the cursor to appear in the cell double click the cell instead of a
single click. To cancel your change before you have finished entering in the value press the escape
key. Once you have finished entering in the value press the enter key and wait for the memory
view to update to reflect your change.

You may also do a bulk memory modify which modifies multiple words in memory with the same
data word. To do this:

1. In the Debug view, select a debug session. Selecting a thread or stack frame
automatically selects the associated session. Right click and select Bulk Memory Modify

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-7

2. A Modify Memory dialog appears and selects the memory region (P,X,Y and L), start
address, optional end address and the data word.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-8

3.3 Registers

The register view is automatically opened for the debug perspective. If the registers view has been
closed to re-open it select Window->Show View->Registers. Registers are displayed by default
in Hex format. To change the format select either one or multiple registers and right click, select
Format and choose the desired format.

To change a register click the Value cell for the register you wish to change and enter in the
value. By default the value is decimal and to enter the value in hex use the “0x” prefix. To enter
the value in fractional format, suffix the value with fr, i.e -0.5fr or 1fr. To cancel your change
before you have finished entering in the value press the escape key. Once you have finished
entering in the value press the enter key and wait for the register view to update to reflect your
change.

3.4 Variables

The variable view is automatically opened for the debug perspective. If the variable view has been
closed to re-open it select Window->Show View->Variables. Variables are displayed by default
in the natural format. To change the format select either one or multiple variables and right click,
select Format and choose the desired format.

Similar to modifying registers to change a value click the Value cell for the variable you wish to
change and enter in the value. By default the value is decimal and to enter the value in hex use the
“0x” prefix. To enter the value in fractional format, suffix the value with fr, i.e -0.5fr or 1fr. For
long values, to enter in a long fractional value, suffix the value with lfr, i.e -0.5lfr or 1lfr. To
cancel your change before you have finished entering in the value press the escape key. Once you

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-9

have finished entering in the value press the enter key and wait for the register view to update to
reflect your change.

3.5 Disassembly View

The disassembly view is automatically opened for the debug perspective when instruction stepping
is enabled. To open the view, manually select Window->Show View->Disassembly. The
disassembly view shows a mixture of source code and the corresponding disassembled
instructions. The disassembly view's range for instructions disassembled is the start and end
address for the function for the current program counter. Symphony Studio has extended the
disassembly view to allow the user to watch an arbitrary function, not only the current function.
To watch an arbitrary function either right-click inside the disassembly view or alternately you can
use the buttons on the disassembly view's tool bar.

• Show Address

This opens a dialog for the user to enter in an address (prefix with 0x for hex values). The view
then disassembles the function for which this address lies in.

TIP

Show Address is also in any source code window's context
menu. When selected, it disassembles the function for the
selected line of code, assuming the target is running.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-10

• Show Current Function

This disassembles the function for the current program counter.

• Show Next Function

This disassembles the function that starts directly after the currently shown function.

• Show Prev Function

This disassembles the function that ends directly before the currently shown function.

• Show Address Range

This opens a dialog for the user to enter in the start and end address (prefix with 0x for hex
values) to be disassembled.

NOTE

The user must be careful with this option as it does not have
any protection if a start address is chosen in the middle of a
double word instruction.

The Modify Instruction option allows the user to do in line assembling. When selected, a dialog
appears containing the currently selected instruction. The user can then modify it or enter in any
mnemonic which is assembled.

3.6 Synchronize Control of DSP56720 Cores

If you are debugging two applications simultaneously on the dsp56720 you can use synchronize
control to send commands to both cores with the one set of commands. Once both applications
have been launched, in the Debug view, select a debug session. Selecting a thread or stack frame

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-11

automatically selects the associated session. Then select the Synchronize Cores Mode button.

The cores are now synchronized and each step, run and suspend are sent to both cores. Once one
core stops execution the other is stopped as well.

3.7 Creating a Standard Make Project

If you want to import an existing project into Symphony Studio, or if you have a complex build
process which requires more features than Managed Make can provide, then you may need to
create a Standard Make Project.

To create a Standard Make Project select File -> New -> Project, expand the C Folder, select
Standard Make C Project and click Next. Or if you are creating a Tasking C project select File ->
New -> Project, expand the Tasking Folder, select Standard Make Tasking Project and click
Next. Or if you are creating an ASM project select File -> New -> Project, expand the ASM
Folder, select Standard Make ASM Project and click Next.

TIP

In the C/C++ Perspective you can quickly open a new
Standard Make C, Tasking or ASM Project by right click in
the C/C++ Projects View and selecting New->Standard Make
C Project or New->Standard Make Tasking Project or New-
>Standard Make ASM Project.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-12

Provide whatever name you want for the project and click Next again. On this dialog you need to
select the Binary Parser tab and make sure that the Freescale COFF Parser box is checked.

In the Discovery Tab select g563c for the compiler invocation command by using the browse
button.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-13

You can now add whatever files you want to the project. At the moment the command that is run
to build the project is make. You can change this by selecting Project -> Properties and
selecting the C/C++ Make Project option in the left panel. On this page you can change the build
command to use a different makefile, or select different targets for Build and Clean.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-14

3.8 Managed Make Options

3.8.1 Build Configurations

When creating either the “56K GCC COFF” or “56K ASM COFF” managed make projects two
build configurations are defined, Debug and Release. These configurations allow the user to
specify different command line options for the build tools.

By Default the debug configuration enables the required flags to produce COFF debugging
information while the release configuration has no flags set.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-15

A build or clean is only performed on the active configuration. To change the active
configuration, go to Project -> Active Build Configuration.

3.8.2 Build Options

To change any of the GCC Compiler, 56300 Assembler or Linker options do the following:

1. Highlight the project you wish to change. This may be a “56K GCC COFF” or “56K
ASM COFF” managed make project.

2. Select Project -> Properties.

3. In the left pane select C/C++ Build.

4. Select the configuration to edit, or create a new configuration by selecting Manage...

5. In the Tool Settings tab there is a hierarchal display for each tool. The options are
grouped into categories. When changing all desired options, a handy tip is to select the
tool and look at the All options box. For more information on each option please refer to
DSP563CCC Manual, DSP563ASM Manual or DSP563LNK Manual.

6. Select Apply and OK.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-16

You can change the final generated coff filename in the Build Settings tab next to the Tool
Settings tab. Below shows you the tools and their category's for “56K GCC COFF”, “56K ASM
COFF” and “56K TASKING COFF” managed make projects.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-17

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-18

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-19

3.9 Freescale 56xx Debug Target Options

This section explains how to create a Freescale 56xxx Target debug connection. To create a
debug connection, do the following:

1. In the C/C++ Projects view, select a project.

2. Click Run->Debug.

3. In the Configurations box, either select Freescale 56371, Freescale 563xx or Freescale
567xx, right click and select new. The difference between the two configurations is what
registers are displayed. Freescale 567xx displays all of the 56720 peripheral registers
while Freescale 563xx only shows the core registers.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-20

The debug dialog box contains the following tabs:

• Main

• Debugger

• Commands

• Source

• Common

3.9.1 Setting an Application to Debug

To set an application to debug, use these steps:

1. Select the Main tab.

2. Do the following:
⎯ In the Name box, type a descriptive name for this launch configuration.

⎯ In the Project box, type the name of the project containing the application that you
want to debug. Alternately you can use the Browse button.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-21

⎯ In the C/C++ Application box, type the name of the CLD file that you want to debug.
Alternately you can use the Search Project button to search within the project entered
above. If the CLD file is not within the selected project use the Browse button to
search for any CLD file available on your computer.

⎯ In the Core Index box, select which core to debug the application on. If you have a
chain of devices it is here where you specify which index of the chain to debug the
application on.

3. The Download onto target check box instructs GDB whether to load the selected CLD
file onto the target i.e. the EVB. By default it is enabled and may be deselected, for
example, if your application is already loaded in FLASH.

4. The Run at Startup check box, if enabled, performs a resume at startup to run the target
to the first breakpoint. When deselected the target's PC should equal the reset vector
after launch or the entry point of the cld file.

5. To let your program run until you interrupt it manually, or until it hits a user breakpoint,
clear the Stop at startup check box. However if selected you can change the symbol
which to stop at on startup, by default this is Fmain.

NOTE

Symphony Studio recognizes that it is an ASM project and
automatically de-selects “Run at Startup” and “Stop on
Startup”. As a result, when you launch your application the
PC points to the entry point of the cld file, usually 0.

6. The Tasking Compiled checkbox should be selected for C projects which have been
compiled with the Tasking Compiler.

NOTE

Symphony Studio automatically selects the Tasking checkbox
if the project was created as a new “Managed Make Tasking
project” or “Standard Make Tasking Project”.

7. The Remote Target group allows you override the default and specify the host name (or
IP address) and port number for the GDB remote server (such as, openocd, remoteocd or
emuserver). To do this, select Overide Default, which enables the host name and port
number text boxes.

3.9.2 Setting Debug Settings

To select a debugger to use when debugging an application, select the Debugger tab.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-22

1. In the GDB debugger box, type the GDB to use to debug the application. By default the
GDB debugger that is choosen is the gdb56300 that is part of the Symphony Studio
release. You may use the Browse button to change this.

2. The GDB command set box should be left as Standard.

3. The Protocol box should be left as mi.

4. If Verbose console mode is selected, Symphony Studio lists all mi commands send to
GDB and their replies.

5. The Use Default checkbox for “Device Config File” should be unselected if the user
wants to specify the location of the configuration file. They can browse the current
workspace. Browse the file system if the file is outside of the workspace, or use one of
the in build Eclipse variables. For more information on Device Configuration files, see
Section 3.10, “Device Configuration File.”

6. You can turn off the tracking of registers and variables by selecting the Advanced button,
which brings up a dialog box. By turning off these options you minimise the amount of
data that is read from the target. This may be useful if your C project contains some large
arrays or data structures.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-23

3.9.3 Setting GDB Commands

To add additional GDB commands to be executed at initialization or at run time select the
Commands tab.

1. All “Initialize” commands are executed after connecting to the target but before
downloading the cld onto it.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-24

2. The “run” commands are executed directly after downloading the cld file. However they
are executed before the target has hit the first breakpoint. So if you want to add to the
Run commands you need to ensure the “Run at startup” in the main tab is de-selected.
You can insert a cont as the last run command to do the same behavior.

A useful gdb command that has been created specifically for Symphony DSPs is a modify memory
command M:

M <memspace>:<start_addr>[..<end_addr>] <data>

<memspace>: p | x | y | l
<start_addr>: start address, can be in hex by prefixing with 0x
<end_addr>: optionally end address to do a bulk memory modify of the same data word
<data>: The data word to write to memory, can be in hex by prefixing with 0x

For both “Initialize” and “Run” command boxes you can have 1 or more files that contain the gdb
commands (or even a combination of files and commands). Use the “Add gdb source command
file” buttons to source gdb command files. Use the “Browse Workspace...” button to select a file
within your workspace. If the file is outside of the workspace use the “Browse File System..”
button or the user can use the “Variables..” button to use one of the in build Eclipse variables.

3. The simulator profiler group allows the user to enable the profiler and specify the output
file name. The profiler can only be used when running the simulator, SIMAPI GDB
Server External tool, not when running on real hardware. The output file is stored in the
project folder. When using the profiler the user must terminate the debug connection first
before terminating the simulator so that the results can be flushed to the file.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-25

3.9.4 Specifying the Location of Source Files

You can specify the locations of source files used when debugging a C application. By default,
this information is taken from your project. To specify the locations of source file select the
Source tab.

1. To add a source container to the source locations list:
• Click Add to open the Add Source dialog box.

• Select a container type.

• Select a container from the list of available containers of the selected type.

2. You can remove or modify a source container by selecting a container and clicking the
Remove or Edit button.

3. You can change the order of source containers by selecting a container and clicking the
Up and Down buttons.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-26

4. To search for duplications in your source locations select the Search for duplicate
source files on path check box.

3.9.5 Specifying the Location of the Debug Configuration

When you create a debug configuration, it is saved with the extension .launch in
org.eclipse.debug.core. You can specify an alternate location in which to store your
debug configuration. To specify the location of the debug configuration select the Command tab.

1. To save .launch to a project in your workspace, and to be able to commit it to CVS,
click Shared file.

2. Click Browse and in the Folder Selection window, select a project, and click OK.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-27

3.10 Device Configuration File

A Device configuration file is used by GDB to know the device's peripheral registers and the
device's memory map. The configuration file is a XML document.

3.10.1 Register Groups

Peripheral register groups are defined as follows:

<reggroups>

groups...

</reggroups>

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-28

There can be multiple groups and each group is defined as

<reggroup name=”name” base=”address” memspace=”P|X|Y” size=”size”>

 regs...

</reggroup>

There can be multiple regs and each reg is defined as

<reg name=”name” offset=”offset” />

The device's peripheral registers are displayed in the Register View.

3.10.2 Memory Map

The memory map is defined as follows:

<memory-map>

region...

</memory-map>

There can be multiple regions and each region can be either:

A region of RAM starting at addr and extending for length bytes from there:

<memory type="ram" start="addr" length="length"/>

A region of read-only memory:

<memory type="rom" start="addr" length="length"/>

A region of flash memory, with erasure blocks blocksize bytes in length:

<memory type="flash" start="addr" length="length">

<property name="blocksize">blocksize</property>

</memory>

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-29

The memory map is used so that any breakpoints in read only memory are implemented as
hardware breakpoints. If this feature is not desired it can be overridden by using the following gdb
command in the “initialize” commands in the command tab in the debug connection:

set breakpoint auto-hw 0

3.10.3 Example Configuration File

<reggroups>

 <reggroup name="cim" base="0xfffff0" memspace="X" size="0x10" >

 <reg name="ogdb" offset="0x0c" />

 <reg name="dmas" offset="0x08" />

 <reg name="coidr" offset="0x06" />

 <reg name="chidr" offset="0x05" />

 </reggroup>

 <reggroup name="cgm" base="0xffff7c" memspace="X" size="0x4" >

 <reg name="ascdr" offset="0x02" />

 <reg name="pctl" offset="0x01" />

 <reg name="spena" offset="0x00" />

 </reggroup>

</reggroups>

<memory-map>

 <memory start="0x0" length="0x2000" memspace="P" type="ram" />

 <memory start="0x40000" length="0x1000" memspace="P" type="flash" >

 <property name="blocksize">0x100</property>

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-30

 </memory>

 <memory start="0xfce000" length="0x32000" memspace="P" type="rom"/>

</memory-map>

3.11 Tasking Projects

This section describes the specific steps for tasking projects.

3.11.1 Creating a Tasking Project

To create a Tasking C project, instead of selecting a Managed Make C Project under the C Folder
select Managed Make Tasking Project under the Tasking folder.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-31

TIP

In the C/C++ Perspective you can quickly open a new
Managed Make Tasking Project by right click in the C/C++
Projects View and selecting New->Managed Make Tasking
Project.

The tool chain for managed Tasking projects uses the Tasking C compiler and Tasking ASM
optimizer to generate the assembler files and then to assemble and link the files using the gcc
tools:

Such as, Tasking C compiler -> Tasking ASM Optimizer -> GCC Assembler -> GCC linker

3.11.2 Tasking Setup

Symphony Studio assumes the Tasking tools are on your PATH environment variable. If this has
not happen when installing the Tasking tools you can use Symphony Studio to add it to your path.
To use Symphony Studio go to Window->Preferences

1. Expand C/C++ on the left pane

2. Select Managed Build under C/C++

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-32

3. In the Environment Tab in the right pane, select the “New” button on the right
This pops up “Define a new variable” window

4. Select the down arrow in the name text box and choose PATH in the pull down menu
The current contents of PATH should populate the Value text box

5. Enter ; in the Delimiter box

6. Select the down arrow in the operation text box and choose prepend
This adds a Prepended Value text field and grey out the Value text box above

7. Enter in the bin directory for the Tasking tools in the Prepended Value text field.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-33

8. Select OK and select OK again.

3.11.3 Adding Tasking Libraries

To add Tasking libraries, you first need to know the directory where Tasking has stored its
libraries. You then add this directory to the linker search directory and add the libraries you wish
to link with. You need to do this if you wish to compile the tutorial project to access Tasking’s
divide function.

1. Select the project, right click and go to properties.

2. Select “C/C++ Build” on the left pane and select the “Tools Settings” tab on the right
pane.

3. Under the “56K GCC Linker” tool select the “general” category and use the browse
button to add the library path to the -B option.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-34

4. Then under the “link phase” category, add rt24,c24 and fp24 to the libraries.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-35

For more information on Tasking tools please visit:
http://www.tasking.com/products/dsp/dsp56xxx/

3.12 Third Party Tools

Symphony Studio has support for several third party debuggers. Currently Macraigor's
OCDRemote and Domain Technologies EmuServer are supported. Both these tools act as remote
gdb servers so that Symphony Studio can talk to each company’s debug dongles. Templates are
provided for both tools so that they can be run as external tools within Symphony Studio. Before
these templates can be used they must be configured. To do this, go to Window->Preferences and

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-36

select Tools Config in the left pane. On the right pane, using the Browse button specify the
location for either OCDRemote or EmuServer. If OCDRemote is to be used the user must also
specify the cpu type, port number, device and speed. Default values are given for each which
should work for USB Macraigor dongles for a single core dsp. If using the 56720 dual core dsp
please change the cpu type to dsp563xx, dsp563xx

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-37

3.12.1 EmuServer

To run Domain Technologies EmuServer select Run -> External Tools -> External Tools.
Right-click EmuServer GDB Server in the side pane to create a new configuration. Use the
default values and Run

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-38

For more information on Domain Technologies, visit http://www.domaintec.com/

3.12.2 OCDRemote

To run Macraigor's OCDRemote select Run -> External Tools -> External Tools. Right-click
OCDRemote GDB Server in the side pane to create a new configuration. Extra parameters may
be needed depending on your hardware configuration. These can be added in the “Arguments:”
box and then select Run

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

3-39

For more information on OCDRemote, visit
http://www.macraigor.com/full_gnu.htm#OcdRemote

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

4-1

Chapter 4
Troubleshooting

This chapter covers the main issues you may experience using the Eclipse for DSP56720
Platform and how to fix them.

4.1 Troubleshooting Eclipse

1. While debugging with the EVB if strange behavior is observed such as the core(s)
stepping randomly or inconsistencies in the memory it is recommend to try and slow
down the JTAG clock. Examples of this would be if the disassembly window suggests the
next instruction is a non jump and the core executes a random jump or if the memory
render window highlights changing words which should not be. Usually inconsistencies in
the memory occur with words changing by a single bit and then changing back to their
original value. To decrease the JTAG clock you need to modify the OpenOCD
configuration file.

The OpenOCD configuration file is the file that you specify with the -f argument. In this file look
for

 jtag_speed <value>

For ftdxxx jtag devices 0 = 6 MHz,1 = 3 MHz, 2 = 1.5 MHz For parallel jtag devices the
JTAG clock is = (maximum speed)/(value +1) where the maximum speed is approx 1/6 x CPU-
Clock.

2. Use the -loud argument to the GDB SIMAPI Server (in the External Tools
configuration) to get verbose debugging output from the server. This is useful if you are
having trouble connecting to the simulator.

3. You may notice that some things do not quite work as you expect. Some of these are
known issues. For a complete list of known issues see the README file that comes with
your Symphony Studio package.

4. If you have problems launching your configured External Tool (GDB Server), then it is
possible that the ports you specified may already be in use by a different application. In
this case, please try different non-conflicting port numbers.

5. While Debugging, if a "Source not found" error appears try the following
• Click on the "Edit source lookup" button in the editor, or right click on the launch
node in Debug View and select "Edit source lookup"

• Click on the "Add..." button

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

4-2

• Select "Path Mapping" and click OK.

• Select the new "Path Mapping" source container and click the "Edit..." button.

⎯ Once again, click the "Add..." button to create a mapping.

• Enter the path to map from. Look at the stack frame label in Debug view, if the
 filename is something like "/cygdrive/c/workspace/hello/hello.c", enter the path to the
first real directory "/cygdrive/c/workspace".

• Enter the correct path to the directory entered above, in the file system. In example
above, it would be "C:\workspace".

• Click OK three times and you are back in the Debug view.

• If the source does not show up right away, try stepping once.

NOTE

Please note you can also set the path mapping in Window ->
Preferences -> C/C++ -> Debug -> Common Source
Lookup Path. If you do use the this method to set the path
mapping while a debug is in progress you need to re-start the
debug for it to take effect.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

A

Appendix A
GDB SIMAPI Server
The following command line options are available from the gdbsimapi server:
usage: gdbsimapi [option]
 -port <number> : Set the listening port (one for each core)
 -showpc : Display program counter during execution
 -showregs : Display registers during execution
 -fastmode : Enable the simulator the leagacy Suite56 fast mode
 -dll <filename> : Name of SIMAPI dynamic library to load
 : Default is 'libdsp56720simapi'
 -config <filename> : Config file to use for DSP56720 simulator
 : Default is 'default.cnfg'
 -cmdfile <filename> : Simulator command file input
 -loud : Show debugging output
 -h : Print this usage string and exit

The simulator command file format is described in Appendix B. A command file can easily be
added by using the Simulator command file group when creating the SIMAPI GDB Server
External tool. The user can browse the current workspace. Browse the file system if the file is
outside of the workspace, or use one of the in build Eclipse variables.

NOTE

No spaces are allowed in the path to the command file. Also a
carriage return is needed at the end of the file.

The showpc argument also in addition to displaying the pc, displays the cycle count and number of
instructions executed.

The config argument is needed if a different on-chip memory configuration is used. All four
configurations as well as the defalut for the 56720 are supported. To change the on-chip memory
configuration do the following:

for MS 1, MSW1 0, MSW0 0 use -config dsp56720-MS1-00.cnfg

for MS 1, MSW1 0, MSW0 1 use -config dsp56720-MS1-01.cnfg

for MS 1, MSW1 1, MSW0 0 use -config dsp56720-MS1-10.cnfg

for MS 1, MSW1 1, MSW0 1 use -config dsp56720-MS1-11.cnfg

NOTE

In addition to the -config argument, you must also use the gdb
command “set $omr=data” in the “initialize” commands, in the
command tab in the debug connection, with the appropriate
memory configuration bits set.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

B

Appendix B

Simulator Command Files
A simulator command file is a text file with a list of commands to perform on the simulator during
startup. Each line of the command file must follow this format:
 <model name>.<model instance> <command to perform> <parameters>

The following models are available in the DSP56720 simulator:
 core.0 - SONYX core 0
 core.1 - SONYX core 1
 icc.0 - ICC module
 asrc.0 - ASRC module
 lbiu.0 - LBIU module
 spdif.0 - SPDIF module
 memgen.0 - Memory SRAM0

Currently only the core and spdif models have supported commands. These commands are listed
in the following subsections.

B.1 CORE Commands

INPUT: Assign Input File
{I}NPUT [#n] [{T}(timed)] addr/port/periph/pin[_group] file
 [{-RD}/{-RF}/{-RH}/{-RU}]
{I}NPUT [#n] pin [{DVn:}]pin
{I}NPUT [#n] addr [{DVn:}]addr

{input x:$0 xfile}
Get values for memory location x:0 from input file 'xfile.io'.

{input host hfile}
Get values for the Host peripheral from input file 'hfile.io'. Note
that on core peripherals the name of the peripheral is used, but for
shared peripherals (icc, asrc, lbiu, spdif) the keyword 'periph' is used
for this type of input.

{input reset rfile}
Input values for the RESET pin from input file 'rfile.io'.

{input t irqa tfile}
Input time&data pairs from input file 'tfile.tio' for the device IRQA
pin.

{input t x:$ffcf xfile -rd}
Input time and data pairs for memory location X:$FFCF from 'xfile.tio'.
The data portion of the time-data pair is read as a decimal integer.

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

C

OUTPUT: Assign Output File
{O}UTPUT [#n] [{T}] addr/port/pin[_group] file
 [{-RD}/{-RF}/{-RH}/{-RU}/{-RS}] [{-A}/{-O}/{-C}]

{output x:$0 xfile}
Store values written to memory location x:0 in output file 'xfile.io'.

{output host hfile -a}
Store values from the Host peripheral to output file 'hfile.io'.
Append to the file if it already exists.

{output pd0..pd7 adfile}
Store output values for pins PD0 through PD7 to output file 'adfile.io'.

{output rw rwfile -o}
Output values for the RW pin to file 'rwfile.io'.
Overwrite the file if it already exists.

{output t bg bgfile}
Output time and data pairs from the device BG pin to 'bgfile.tio'.

{output t dbus dfile -rf}
Output time and data pairs from Port A data bus to file 'adfile.tio'.
The data portion of the time-data pair is output in floating point.

{output t x:$ffcf xfile -rd}
Output time and data pairs for memory location X:$FFCF to 'xfile.tio'.
The data portion of the time-data pair is output in decimal form.

BREAK: Break Command
 {B}REAK [{#}bn] [expression] [break_action]
 [break_action] = [{H}(halt)/{In}(increment CNTn)]

 A breakpoint expression may be any logical expression that is valid for
the DSP Macro Assembler. The following is a list of operators that may
be used in the breakpoint expression:

 {<} less than {&&} logical 'and'
 {<=} less than or equal to {||} logical 'or'
 {==} equal to {! } logical 'negate'
 {>=} greater than or equal to {& } bitwise 'and'
 {> } greater than {| } bitwise 'or'
 {!=} not equal to {~ } bitwise one's complement
 {+ } addition {^ } bitwise 'exclusive or'
 {- } subtraction {<<} shift left
 {/ } division {>>} shift right

 {eof} Is TRUE if an end-of-file condition occurs in an input file
 assigned to a peripheral or memory location.

 {----------- Breakpoint Actions -----------}
 {H } Halt execution. This is the default.
 {In} Increment counter variable CNTn (n=1/2).

 {----------- Examples -----------}
 {break pc>=$500 }

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

D

 Halt DSP program simulation and display enabled registers and memory
 when the program counter register is greater than or equal to
 hexadecimal 500.

 {break (lc<10)&&(pc>100)}
 Halt if the loop counter is less than 10 and the program counter is
 greater than 100.

 {break eof}
 Halt if an end of file condition occurs in an assigned peripheral input
 file.

 {break r0==r1}
 Halt when the value of register r0 equals the value of register r1.

B.2 SPDIF Commands

Note that SPDIF currently has a limitation where only 1 input and output file (2 total) can be
open at a time.

CHANGE: Change Peripheral Attribute
change {tx_freq / devattr / int_addr / chan_ctrl / dma_trigg_mask /
 warnings_break_ctrl} value

{change tx_freq $2}
Change the tx_frequency attribute to HEX value 2

{change devattr $012345}
Change the devattr attribute to HEX value 012345

{change int_addr 0}
Change the int_addr attribute to DEC value 0

{change dma_trigg_mask 1}
Change the dma_trigg_mask attribute to DEC value 1

{change warnings_break_ctrl $0}
Change the warnings_break_ctrl attribute to HEX value 0

OUTPUT: Assign Output File
output [t] periph/pin pinname/reg regname/mem filename

{output t periph file.out}
Writes timed peripheral output to file.out

{output t pin apin pin.out}
Writes the values of apin (and times it changed) to pin.out

{output reg STL reg.out}
Writes the values of the STL register to the file reg.out

Freescale Semiconductor Symphony Studio Eclipse for Symphony DSPs

E

INPUT: Assign Input File
 input [t] periph/pin pinname/reg regname/mem filename

{input t periph file.in}
Reads timed peripheral input from file.in

{input t pin apin pin.in}
Reads timed input for the pin apin from pin.in

{input reg STL reg.in}

 Reads input for the register STL from reg.in

