g |

GMCLIB User's Guide

DSP56800E

Document Number: DSP56800EGMCLIBUG
Rev. 2, 10/2015

<&,

Z“ freescale

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc.

h o
g |

L __4

Contents
Section number Title Page

Chapter 1

Library

L 51 13 (e Ta L Uo7 5 o | OO OO TP 5
1.2 Library integration into project (CodeWarrior™ Development StUdio)ccccevuereeriirieninienenienenienieerenieereeeeeene 7

Chapter 2

Algorithms in detail

2.1 GMCLIB_CIATK ...ttt ettt ettt bbbt b et b et b et be e b e ae e 17
2.2 GMCLIB_CIATKINV....ouiiiiiiiiiiiicesee ettt st s ee 18
2.3 GMCLIB_PAIK ...ttt ettt sttt h ettt b et bbbt st h et b e a sttt b ettt b et b et be e b 20
24 GMOCLIB _PATKINV. ..ottt ettt e ettt et e eeeeeeeeeeeesse s s s e aasasaaasasasateeeeeeaeseesesesesssssssssnnssssssssaees 21
2.5 GMCLIB_DeCOUPINZEPIMSM......ciiiiiiiiiiiiiiieiiteeit ettt sttt st ettt e b e et e bt e s ab e e bt esate e bt e eabeeabeesabesabeesabeenseens 23
2.6 GMCLIB_EIMDCBUSRIPFOCc.coiiiiiiiiiiiiiietstetete ettt sttt sttt 27
2.7 GMCLIB_EHMDCBUSRIP.coutitiittiititieteetente ettt ettt ettt et sttt s b ettt et e bt e sbeeatesaeeneesbeenaesbeen 31
2.8 GMOCLIB_SVINSA. ...ttt sttt st sttt b et bbbt 36
2.9 GMCLIB_SVIMICL ...ttt ettt ettt bbbt b et b et b et b bbbt bbb st b et b et e b e e bt ene 51
2,10 GMCLIB_SVIMUODN. ...ttt sttt ettt ettt ettt ettt sttt a et bbbt be e be e b e bt et sae e snenene 55
2,11 GMCLIB_SVIMUTN ..ttt sttt sttt s ee 59

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 3

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc.

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Motor Control Library (GMCLIB) for the family
of DSP56800E core-based digital signal controllers. This library contains optimized
functions.

1.1.2 Data types

GMCLIB supports several data types: (un)signed integer, fractional, and accumulator.
The integer data types are useful for general-purpose computation; they are familiar to
the MPU and MCU programmers. The fractional data types enable powerful numeric and
digital-signal-processing algorithms to be implemented. The accumulator data type is a
combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1

 Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1

e Unsigned 32-bit integer —<O0 ; 4294967295> with the minimum resolution of 1

 Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution
of 1

The following list shows the fractional types defined in the libraries:

* Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 213
» Fixed-point 32-bit fractional —<-1; 1 - 2-315 with the minimum resolution of 2-3!

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 5

mwroduction

The following list shows the accumulator types defined in the libraries:

* Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 27> with the minimum

resolution of 277
» Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2°15> with the minimum

resolution of 2°13

1.1.3 API definition

GMCLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB Mac_F32lss(f32Accum, flé6Multl, fleMult2);
where the function is compiled from four parts:

e MLIB—this is the library prefix
* Mac—the function name—Multiply-Accumulate

» F32—the function output type
* Iss—the types of the function inputs; if all the inputs have the same type as the

output, the inputs are not marked

The input and output types are described in the following table:
Table 1-1. Input/output types

Type Output Input
frac16_t F16 s
frac32_t F32 |
acc32_t A32 a

1.1.4 Supported compilers

GMCLIB for the DSP56800E core is written in assembly language with C-callable
interface. The library is built and tested using the following compilers:
* CodeWarrior™ Development Studio

For the CodeWarrior™ Development Studio, the library is delivered in the gmclib.lib
file.

GMCLIB User's Guide, Rev. 2, 10/2015
6 Freescale Semiconductor, Inc.

Chapter 1 Library

The interfaces to the algorithms included in this library are combined into a single public
interface include file, gmclib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the
number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions require the core saturation mode to be turned off, otherwise the
results can be incorrect. Several specific library functions are immune to the setting
of the saturation mode.

3. The library functions round the result (the API contains Rnd) to the nearest (two's
complement rounding) or to the nearest even number (convergent round). The mode
used depends on the core option mode register (OMR) setting. See the core manual
for details.

4. All non-inline functions are implemented without storing any of the volatile registers
(refer to the compiler manual) used by the respective routine. Only the non-volatile
registers (C10, D10, RS) are saved by pushing the registers on the stack. Therefore, if
the particular registers initialized before the library function call are to be used after
the function call, it is necessary to save them manually.

1.2 Library integration into project (CodeWarrior™
Development Studio)

This section provides a step-by-step guide to quickly and easily integrate the GMCLIB
into an empty project using CodeWarrior™ Development Studio. This example uses the
MC56F8257 part, and the default installation path (C:\Freescale\FSLESL
\DSP56800E_FSLESL_4.2) is supposed. If you have a different installation path, you
must use that path instead.

1.2.1 New project

To start working on an application, create a new project. If the project already exists and
1s open, skip to the next section. Follow the steps given below to create a new project.
1. Launch CodeWarrior™ Development Studio.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 7

g |

|
Lioradry integration into project (CodeWarrior™ Development Studio)
2. Choose File > New > Bareboard Project, so that the "New Bareboard Project" dialog
appears.
Type a name of the project, for example, MyProjectO1.
4. If you don't use the default location, untick the “Use default location” checkbox, and

type the path where you want to create the project folder; for example, C:
\CWProjects\MyProject01, and click Next. See Figure 1-1.

(O8]

Create an MCU bareboard Project

Cheose the location for the new project

Project name: MyProject(1]

[7] Use default location

Location: c\CWProjects\MyProject(l

Figure 1-1. Project name and location
5. Expand the tree by clicking the 56800/E (DSC) and MCS56F8257. Select the
Application option and click Next. See Figure 1-2.

Device or board to be used:

type filter text

»

4 56800/E (D5C)
> MUCS6F8 1L
MCS6FE 3
MC56FE00x
MC56FE01x
MC5EFE02x
MC56FE03x
MCSEFE2 30
MC5EF824%
MC56F825x
MCSEF8255
MCS6F8256
MCS6F8257
MCSEFE2 T
MCSEFE 40
MCSEFE4 S
MCSEFE4 T
» ColdFire V1

—

m

A T ¥ 9T %Y YT T T

A

=

Project Type / Output:
@ Application

() Library

Figure 1-2. Processor selection
6. Now select the connection that will be used to download and debug the application.
In this case, select the option P&E USB MultiLink Universal[FX] / USB MultiLink
and Freescale USB TAP, and click Next. See Figure 1-3.

GMCLIB User's Guide, Rev. 2, 10/2015

8 Freescale Semiconductor, Inc.

g |

4
Chapter 1 Library

Connection to be used:
[C] DSC Full Chip Simulator
P&E USB MultiLink Universal [FX] / USB MultiLink
[C] P&E Cable DSC (Windows XP 32 bit Parallel Port only)
[T P&E Cyclone MAX
[C] Open Source JTAG
Freescale USB TAP

Figure 1-3. Connection selection
7. From the options given, select the Simple Mixed Assembly and C language, and
click Finish. See Figure 1-4.

Language:
®C
O Cet
@ Mixed C and ASM
) ASM

Figure 1-4. Language choice

The new project is now visible in the left-hand part of CodeWarrior™ Development
Studio. See Figure 1-5.

@ CodeWarrior Projects 32 = 8

laz| B & £ | File Name =

File Name : Build
a4 2% MyProject0l : FLASH_SDM

> #ff Binaries

(= FLASH_LDM

> [= FLASH_SDM

> [= Project_Headers

> [= Project_Settings

4 [Sources
. |8 main.c v
. 8] MyAsm.asm v
> (= Utility

Figure 1-5. Project folder

1.2.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProjectO1 node in the left-hand part and click Properties, or select
Project > Properties from the menu. The project properties dialog appears.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 9

PR 4

Lioradry integration into project (CodeWarrior™ Development Studio)

2. Expand the Resource node and click Linked Resources. See Figure 1-6.

i B
T =
type filter text Linked Resources AT T w

4 Resource -
Linked Resources Path Variables | Linked Resources
Resource Filters Path variables specify locations in the file systern, including other path variables with the syntax "S{VAR}".
Builders The locations of linked rescurces may be specified relative to these path variables.
t» CfC++ Build Defined path variables for resource 'MyProject01":
[C,.FC-++ General Marme Value i New... I
Project References
Run/Debug Settings [=-ECLIPSE_HOME C\Freescaleh CW MCU w106\ eclipsel, Edit
= ENV
[=PARENT _LOC CACWProjects\workspace Remove
(= PROJECT_LOC CACWProjects\MyProject(l
[=-WORKSPACE_LOC CACWProjects\workspace

Figure 1-6. Project properties

3. Click the 'New..." button on the right-hand side.

4. In the dialog that appears (see Figure 1-7), type this variable name into the Name
box: FSLESL_LOC

5. Select the library parent folder by clicking 'Folder..." or just typing the following
path into the Location box: C:\Freescale\FSLESLADSP56800E_FSLESL_4.2_CW
and click OK.

6. Click OK in the previous dialog.

GMCLIB User's Guide, Rev. 2, 10/2015
10 Freescale Semiconductor, Inc.

h o
g |

Chapter 1 Library

Define a New Path Variable

Enter a new variable name and its associated location.

|| Name: FSLESL_LOC

Location: t:\Freescale\FSLE! File... l ’ Folder...] [Variable...
Resolved Location: C:\Freescale\FSLESL\DSP56800E_FSLESL 4.2

e ——

@ | ok || Cancel

| — E—]

Figure 1-7. New variable

1.2.3 Library folder addition

To use the library, add it into the CodeWarrior Project tree dialog.

1. Right-click the MyProjectO1 node in the left-hand part and click New > Folder, or
select File > New > Folder from the menu. A dialog appears.

2. Click Advanced to show the advanced options.

3. To link the library source, select the third option—Link to alternate location (Linked
Folder).

4. Click Variables..., and select the FSLESL_L.OC variable in the dialog that appears,
click OK, and/or type the variable name into the box. See Figure 1-8.

5. Click Finish, and you will see the library folder linked in the project. See Figure 1-9

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 11

h

Lioradry integration into project (CodeWarrior™ Development Studio)

,

Folder —

Create a new folder resource. E?

Enter or select the parent folder

MyProjectll

fir & =@

s =% MyProject01

Folder name: FSLESL_LOC

) = Use default location
() [y, Folder is not located in the file system (Virtual Folder)
@ [Link te alternate lecation (Linked Folder)

FSLESL_LOC]| Browse.. || Variables...
Resolved location: file:/C:/Freescale/FSLESL/DSP5GE00E_FSLESL 4.2

Resource Filters...

@ [Finish] ’ Cancel

Figure 1-8. Folder link

4 == MyProject01 : FLASH_SDM
= FLASH_SDM
[> [z FSLESL_LOC
> [= Project_ Headers
[> [= Project_Settings
I+ [Sources
[= Utility

Figure 1-9. Projects libraries paths

1.2.4 Library path setup

GMCLIB requires MLIB and GFLIB to be included too. Therefore, the following steps
show the inclusion of all dependent modules.

1. Right-click the MyProjectO1 node in the left-hand part and click Properties, or select
Project > Properties from the menu. A dialog with the project properties appears.

GMCLIB User's Guide, Rev. 2, 10/2015

12 Freescale Semiconductor, Inc.

Sk

10.
11.

12.
13.

Chapter 1 Library

Expand the C/C++ Build node, and click Settings.
In the right-hand tree, expand the DSC Linker node, and click Input. See Figure 1-11.
In the third dialog Additional Libraries, click the 'Add..." icon, and a dialog appears.
Look for the FSLESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding one of the following:

o ${FSLESL_LOC }\MLIB\mlib_SDM.lib—for small data model projects

» ${FSLESL_LOC}\MLIB\mlib_LDM.lib—for large data model projects
Tick the box Relative To, and select FSLESL_LOC next to the box. See Figure 1-9.
Click OK.
Click the 'Add..." icon in the third dialog Additional Libraries.
Look for the FSLESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding one of the following:

« ${FSLESL_LOC}\GFLIB\gflib_SDM.lib—for small data model projects

» ${FSLESL_LOC }\GFLIB\gflib_LDM.lib—for large data model projects
Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
Click the 'Add..." icon in the Additional Libraries dialog.
Look for the FSLESL_LOC variable by clicking Variables..., and then finish the
path in the box by adding one of the following:

» ${FSLESL_LOC}\GMCLIB\gmclib_SDM.lib—for small data model projects

* ${FSLESL_LOC }\GMCLIB\gmclib_LDM.lib—for large data model projects
Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
Now, you will see the libraries added in the box. See Figure 1-11.

5 Add file path el P2
File:
S{FSLESL_LOCHMLIB\mlib_SDM.lib
[V] Relative To: |m
[oK] | Cancel l

Figure 1-10. Library file inclusion

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 13

\
4

(

Lioradry integration into project (CodeWarrior™ Development Studio)

& Tool Settings | 4 Build Steps | Build Artifact | Binary Parsers | 3 Error Parsers | Build Tool ‘u"ersions|

14.
15.

16.

17.

18.
19.

20.
21.
22.

23.
24.

@ Global Settings Mo Standard Library

4 B33 DSC Linker
(2 Input
(% Link Order Entry Point Finit_MC56F824x_5x ISR_HW_RESET
General
2 Output

4) DSC Compiler "$IMCUToolsBaseDir}/MS6800E Support/msl/MSL_C/DSP_56800E/lib"
@ Input
@ Access Paths
@ Warnings
@ Optimization
@ Processor
(B Language Library Recursive Search Paths (-Ir) L ER AR RAR

a4 B3 DSC Aszembler
2 Input
General
2 Output

4 3 DSC Preprocessor
(# Settings

4 % DSC Disassembler Additional Libraries £ 8 8 5
2 Settings

Linker Cemmand File ${ProjDirPath}/Project_Settings/Linker_Files/MC56F8257 _Internal_PFlash_SDM.c

Library Search Paths (-L) £ w & F 2

"HMCUToolsBaseDir}/M56E00E Support/runtime_S6800E/lib/runtime 56800E smm.lib"
"SMCUToolsBaseDir)/MSEE00E Support/msl/M5L_C/D5P_56800E/1ib,/MSL C 56800E smm.lib"
"S{FSLESL_LOCHMLUIB\MLIB_SDM.lib"

"SIFSLESL_LOCHMLUIBAGFLIB_SDM.lib"

"$IFSLESL_LOCHMLIB\GMCLIE SDM.lib"

Figure 1-11. Linker setting
In the tree under the DSC Compiler node, click Access Paths.
In the Search User Paths dialog (#include “...”), click the 'Add..." icon, and a dialog
will appear.
Look for the FSLESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${FSLESL_LOC }\MLIB\include.
Tick the box Relative To, and select FSLESL_LOC next to the box. See Figure 1-12.
Click OK.
Click the 'Add..." icon in the Search User Paths dialog (#include “...”).
Look for the FSLESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${FSLESL_LOC }\GFLIB\include.
Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
Click the 'Add..." icon in the Search User Paths dialog (#include “...”).
Look for the FSLESL_LOC variable by clicking Variables..., and then finish the
path in the box to be: ${FSLESL_LOC }\GMCLIB\include.
Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
Now you will see the paths added in the box. See Figure 1-13. Click OK.

GMCLIB User's Guide, Rev. 2, 10/2015

14

Freescale Semiconductor, Inc.

x—

Chapter 1 Library

Directary:

S{FSLESL_LOCHM I_IB\incIudEI

|| [7]Relative To: [FstesLLoc =
File system...
[ok || concel |

Figure 1-12. Library include path addition

B Tool Settings | A Build Steps | Build Artifact | Binary Parsers I & Error Parsers I Build Tool 1u"varsiru-l:'l.s|

(# Global Settings Search User Paths (ZFinclude "...") £ & 8 &
4 % DSCLinker "§{ProjDirPath}/Project_Headers"
@Input 5{ProjDirPath}/Project_Headers

e "S{MCUToolsBaseDir}/M56E00E Support/runtime_56800E/include”
(% Link Order "${FSLESL_LOCH\MLIB\include”

@ General "S{FSLESL_LOCHGFLIBYinclude"
(2 Output "HFSLESL LOCHGMCUBAInclude"
a B3 DSC Compiler
@ Input
(22 Access Paths
@ Warnings Search User Paths Recursively L EE AR %_}| ,Q|
(% Optimization
(22 Processor
(2 Language
4 B3 DSC Assembler

Figure 1-13. Compiler setting

The final step is typing the #include syntax into the code. Include the library into the
main.c file. In the left-hand dialog, open the Sources folder of the project, and double-

click the main.c file. After the main.c file opens up, include the following lines into the
#include section:

#include "mlib.h"
#include "gflib.h"
#include "gmclib.h"

When you click the Build icon (hammer), the project will be compiled without errors.

GMCLIB User's Guide, Rev. 2, 10/2015
Freescale Semiconductor, Inc. 15

PR 4

Lioradry integration into project (CodeWarrior™ Development Studio)

GMCLIB User's Guide, Rev. 2, 10/2015

16 Freescale Semiconductor, Inc.

Chapter 2
Algorithms in detail

2.1 GMCLIB_Clark

The GMCLIB_Clark function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the three-phase coordinate system to the
two-phase (a-3) orthogonal coordinate system, according to the following equations:

a=a

Equation 1

_ 1, 1
NN

Equation 2

2.1.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_Clark function are shown in the following table:

Table 2-1. Function versions

Function name Input type Output type Result type
GMCLIB_Clark_F16 GMCLIB_3COOR_T_F16 * GMCLIB_2COOR_ALBE_T_F16 * void

Clarke transformation of a 16-bit fractional three-phase system input to a 16-bit fractional two-
phase system. The input and output are within the fractional range <-1; 1).

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 17

A
4

4
A

]
uwivLIB_Clarkinv

2.1.2 Declaration
The available GMCLIB_Clark functions have the following declarations:

void GMCLIB_Clark F16 (const GMCLIB_3COOR T F16 *psIn, GMCLIB 2COOR ALBE T F16 *psOut)

2.1.3 Function use
The use of the GMCLIB_Clark function is shown in the following example:

#include "gmclib.h"

static GMCLTIB_2COOR_ALBE_ T _F16 sAlphaBeta;
static GMCLIB 3COOR_T F16 sAbc;

void Isr (void) ;
void main (void)

{

/* ABC structure initialization */

sAbc.f16A = FRAC16(0.0) ;
sAbc.f16B = FRAC16(0.0) ;
sAbc.f16C = FRAC16(0.0) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Clarke Transformation calculation */
GMCLIB Clark F16 (&sAbc, &sAlphaBeta) ;

}

2.2 GMCLIB_Clarkinv

The GMCLIB_ClarkInv function calculates the Clarke transformation, which is used to
transform values (flux, voltage, current) from the two-phase (Q-f3) orthogonal coordinate
system to the three-phase coordinate system, according to the following equations:

Equation 3

LB

3

b= —§a+Tﬁ

Equation 4
c=—(a+b)

Equation 5

GMCLIB User's Guide, Rev. 2, 10/2015

18 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Algorithms in detail

2.2.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ClarkInv function are shown in the following
table:

Table 2-2. Function versions

Function name Input type Output type Result type
GMCLIB_Clarklnv_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * void

Inverse Clarke transformation with a 16-bit fractional two-phase system input and a 16-bit
fractional three-phase output. The input and output are within the fractional range <-1; 1).

2.2.2 Declaration
The available GMCLIB_ClarkInv functions have the following declarations:

void GMCLIB_ ClarkInv_F16 (const GMCLIB_2COOR ALBE T F16 *psIn, GMCLIB_3COOR_T F16 *psOut)

2.2.3 Function use
The use of the GMCLIB_ClarkInv function is shown in the following example:

#include "gmclib.h"

static GMCLIB_2COOR_ALBE_ T F16 sAlphaBeta;
static GMCLIB 3COOR_T F16 sAbc;

void Isr (void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl16Alpha = FRAC16(0.0) ;
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */
void Isr(void)

{

/* Inverse Clarke Transformation calculation */
GMCLIB ClarkInv F16 (&sAlphaBeta, &sAbc);

}

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 19

umiuLIB_Park

2.3 GMCLIB_Park

The GMCLIB_Park function calculates the Park transformation, which transforms values
(flux, voltage, current) from the stationary two-phase (0-f3) orthogonal coordinate system
to the rotating two-phase (d-q) orthogonal coordinate system, according to the following

equations:
d = a-cos(0)+ f-sin(0)
Equation 6
q= B-cos(6) +a-sin(6)
Equation 7
where:

* O is the position (angle)

2.3.1 Available versions

This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_Park function are shown in the following table:

Table 2-3. Function versions

Function name Input type

Output type

Result type

GMCLIB_Park_F16 GMCLIB_2COOR_ALBE_T_F16 *

GMCLIB_2COOR_SINCOS_T_F16 *

GMCLIB_2COOR_DQ_T_F16 *

void

The Park transformation of a 16-bit fractional two-phase stationary system input to a 16-bit
fractional two-phase rotating system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

2.3.2 Declaration

The available GMCLIB_Park functions have the following declarations:

void GMCLIB_Park F16 (const GMCLIB_2COOR_ALBE_T_F16 *psIn,

*psAnglePos, GMCLIB 2COOR DQ T F16 *psout)

GMCLIB User's Guide, Rev. 2, 10/2015

const GMCLIB_2COOR_SINCOS T F16

20

Freescale Semiconductor, Inc.

g |

4
Chapter 2 Algorithms in detail

2.3.3 Function use
The use of the GMCLIB_Park function is shown in the following example:

#include "gmclib.h"

static GMCLIB 2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 2COOR_DQ T F16 sDQ;

static GMCLIB 2COOR_SINCOS T F16 sAngle;
void Isr(void) ;

void main (void)

{

/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Angle structure initialization */

sAngle.f16Sin = FRAC16(0.0) ;
sAngle.fl16Cos = FRAC16(1.0) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Park Transformation calculation */
GMCLIB Park F16 (&sAlphaBeta, &sAngle, &sDQ) ;

}

2.4 GMCLIB Parkinv

The GMCLIB_ParkInv function calculates the Park transformation, which transforms
values (flux, voltage, current) from the rotating two-phase (d-q) orthogonal coordinate
system to the stationary two-phase (a-f8) coordinate system, according to the following
equations:

a=d-cos(#) — g-sin(0)
Equation 8
S =d-sin(6)+ g-cos(6)
Equation 9
where:

* O is the position (angle)

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 21

A\ 4

4\ |
umiuLIB_Parkinv
2.4.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ParkInv function are shown in the following

table:
Table 2-4. Function versions
Function name Input type Output type Result type
GMCLIB_Parkinv_F16 GMCLIB_2COOR_DQ_T_F16* GMCLIB_2COOR_ALBE_T_F16 * |void

GMCLIB_2COOR_SINCOS_T_F16 *

Inverse Park transformation of a 16-bit fractional two-phase rotating system input to a 16-bit
fractional two-phase stationary system, using a 16-bit fractional angle two-component (sin / cos)
position information. The inputs and the output are within the fractional range <-1 ; 1).

2.4.2 Declaration

The available GMCLIB_ParkInv functions have the following declarations:

void GMCLIB_ ParkInv F16 (const GMCLIB 2COOR DQ T F16 *psIn, const GMCLIB 2COOR_SINCOS T F16
*psAnglePos, GMCLIB 2COOR ALBE T F16 *psOut)

2.4.3 Function use

The use of the GMCLIB_ParkInv function is shown in the following example:

#include "gmclib.h"

static GMCLIB 2COOR _ALBE T F16 sAlphaBeta;
static GMCLIB 2COOR DQ T F16 sDQ;
static GMCLIB 2COOR_SINCOS T F16 sAngle;

void Isr (void) ;

void main (void)

{
/* D, Q structure initialization */
sDQ.f16D = FRAC16(0.0) ;
sDQ.f16Q = FRAC16(0.0) ;

/* Angle structure initialization */
sAngle.f16Sin = FRAC16(0.0) ;
sAngle.f16Cos = FRAC16(1.0);

}

/* Periodical function or interrupt */

GMCLIB User's Guide, Rev. 2, 10/2015

22 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Algorithms in detail

void Isr (void)

/* Inverse Park Transformation calculation */
GMCLIB ParkInv_F16 (&sDQ, &sAngle, &sAlphaBeta);

}

2.5 GMCLIB_DecouplingPMSM

The GMCLIB_DecouplingPMSM function calculates the cross-coupling voltages to
eliminate the d-q axis coupling that causes nonlinearity of the control.

The d-q model of the motor contains cross-coupling voltage that causes nonlinearity of
the control. Figure 2-1 represents the d-q model of the motor that can be described using
the following equations, where the underlined portion is the cross-coupling voltage:

. d . .
Ug=Rs iyt Lygrigt Lo 0l
. d. .
ug=Rsig+ Logriqg— Ly 0y iyt gy,
Equation 10

where:

* ug, ug are the d and q voltages

* g, iq are the d and q currents

* R, is the stator winding resistance

* Ly, L are the stator winding d and q inductances
* W, 1s the electrical angular speed

* Y, is the rotor flux constant

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 23

uwivLIB_DecouplingPMSM

la + Pl Uq

| g
?_ controller

P

controller

Figure 2-1. The d-q PMSM model

To eliminate the nonlinearity, the cross-coupling voltage is calculated using the
GMCLIB_DecouplingPMSM algorithm, and feedforwarded to the d and q voltages. The
decoupling algorithm is calculated using the following equations:

Ugdee = Ugq — Lq~ @y~ iq
Ugdec = Ug+ Ld F Wy id

Equation 11
where:

* ug, ug are the d and q voltages; inputs to the algorithm
® Ugdecs Ugdec are the d and q decoupled voltages; outputs from the algorithm

The fractional representation of the d-component equation is as follows:

= — .7 q(L,- . imax)
Uddec = Ug — Wy 1 q Coelimux Umax

_ imax
kq - Lq * Wel max " gy

Uggee = Ug — W iq" kg

Equation 12

The fractional representation of the g-component equation is as follows:

GMCLIB User's Guide, Rev. 2, 10/2015

24 Freescale Semiconductor, Inc.

Chapter 2 Algorithms in detail

Imax

Ugdec = Ug twye id(Ld * Wel max uma)c)

- Imax
kd - Ld * Wel max " Umax
Ugdec = Ug+ Wy ig: kd

Equation 13

where:

* kg, kg are the scaling coefficients

* inax 1S the maximum current

* Upax 1S the maximum voltage

* We] max 18 the maximum electrical speed

The k4 and k parameters must be set up properly.

The principle of the algorithm is depicted in Figure 2-2 :

Decoupling PMSM
. . : | Lo
la + Pl Ug ' + ‘Uddec | + 1 la
%_ controller W Rs+ Lgs g i
| 1 : :
b |
| Wetlqlal WelLq |
T >< i
| WerLala: : Weilq E
T :
" : o oo
{ - ! ' . 1 '
qa + Pl | : ! 1 a
controller : ! : Rs + Lgs |
1 1 1 |
| | i i

Figure 2-2. Algorithm diagram

2.5.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The parameters use the
accumulator types.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 25

A\ 4

A
uwivLIB_DecouplingPMSM
The available versions of the GMCLIB_DecouplingPMSM function are shown in the
following table:

Table 2-5. Function versions

Function name Input/output type Result type
GMCLIB_DecouplingPMSM_F16 Input GMCLIB_2COOR_DQ_T_F16 * void
GMCLIB_2COOR_DQ_T_F16 *
frac16_t
Parameters GMCLIB_DECOUPLINGPMSM_T_A32 *
Output GMCLIB_2COOR_DQ_T_F16 *
The PMSM decoupling with a 16-bit fractional d-q voltage, current inputs, and a 16-
bit fractional electrical speed input. The parameters are 32-bit accumulator types.
The output is a 16-bit fractional decoupled d-q voltage. The inputs and the output are
within the range <-1; 1).

2.5.2 GMCLIB_DECOUPLINGPMSM_T_A32 type description

Variable name Input type Description
a32KdGain acc32_t Direct axis decoupling parameter. The parameter is within the range <0 ; 65536.0)
a32KgGain acc32_t Quadrature axis decoupling parameter. The parameter is within the range <0 ;
65536.0)

2.5.3 Declaration
The available GMCLIB_DecouplingPMSM functions have the following declarations:

void GMCLIB DecouplingPMSM F16 (const GMCLIB 2COOR DQ T F16 *psUDQ, const
GMCLIB 2COOR _DQ T F1l6 *psIDQ, fraclé t fléeéSpeedEl, const GMCLIB DECOUPLINGPMSM T A32
*psParam, GMCLIB 2COOR DQ T F16 *psUDQDec)

2.5.4 Function use
The use of the GMCLIB_DecouplingPMSM function is shown in the following example:

#include "gmclib.h"

static GMCLIB_2COOR _DQ T F16 sVoltageDQ;

static GMCLIB 2COOR DQ T F16 sCurrentDQ;

static fraclé_t fl6AngularSpeed;

static GMCLIB_ DECOUPLINGPMSM T A32 sDecouplingParam;
static GMCLIB 2COOR DQ T F16 sVoltageDQDecoupled;

GMCLIB User's Guide, Rev. 2, 10/2015

26 Freescale Semiconductor, Inc.

Chapter 2 Algorithms in detail

void Isr (void) ;

void main (void)

{
/* Voltage D, Q structure initialization */
sVoltageDQ.£f16D FRAC16(0.0) ;
sVoltageDQ.£16Q FRAC16(0.0) ;

/* Current D, Q structure initialization */
sCurrentDQ.f16D = FRAC16(0.0) ;
sCurrentDQ.f16Q = FRAC16(0.0) ;

/* Speed initialization */
fl6AngularSpeed = FRAC16(0.0) ;

/* Motor parameters for decoupling Kd = 40, Kg = 20 */
sDecouplingParam.a32KdGain = ACC32(40.0) ;
sDecouplingParam.a32KgGain = ACC32(20.0) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* Decoupling calculation */
GMCLIB DecouplingPMSM F16 (&sVoltageDQ, &sCurrentDQ, fl6AngularSpeed, &sDecouplingParam,
&sVoltageDQDecoupled) ;

}

2.6 GMCLIB_ElimDcBusRipFOC

The GMCLIB_ElIimDcBusRipFOC function is used for the correct PWM duty cycle
output calculation, based on the measured DC-bus voltage. The side effect is the
elimination of the the DC-bus voltage ripple in the output PWM duty cycle. This function
1s meant to be used with a space vector modulation, whose modulation index (with
respect to the DC-bus voltage) is an inverse square root of 3.

The general equation to calculate the duty cycle for the above-mentioned space vector
modulation 1s as follows:

_ Yroc
UP WM ™ Udchus

Equation 14

where:

* Upwwm 1s the duty cycle output
* ugoc is the real FOC voltage
* Ugchys 18 the real measured DC-bus voltage

Using the previous equations, the GMCLIB_ElimDcBusRipFOC function compensates
an amplitude of the direct-a and the quadrature-f3 component of the stator-reference
voltage vector, using the formula shown in the following equations:

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 27

g |

|
uwiuLIB_ElimDcBusRipFOC

0, Ua=0 A Udcbus=0
L UaEO A ‘Ua|2Udcbus
g
Ug* = U,
‘ -1, U0 A |Ug 2=
Uq
Udcbus) \/57 else
Equation 15
0, Uﬁ:() N Udcbus:()
L Up>0 A |Up|> b
B p g
Uﬂ*z Udcbm‘
-1, Up<0 A |Ug|= g
Yp
Udcbus.\/g’ else
Equation 16

where:

* Ug* is the direct-a duty cycle ratio
* Ug* is the direct-B duty cycle ratio
* Ug is the direct-a voltage

* Ug is the quadrature-f3 voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 14 on page 27; the equation 1s as follows:

U _ UrocUFroc max \/—
PWM Ud‘-bus'Udcbus_max

Equation 17

where:

* Ugoc 1s the scaled FOC voltage

* Ugcbus 18 the scaled measured DC-bus voltage
* Uroc_max 18 the FOC voltage scale

* Ugcbus_max 18 the DC-bus voltage scale

If this algorithm is used with the space vector modulation with the ratio of square root
equal to 3, then the FOC voltage scale is expressed as follows :

_ Udcbusimax
UF OC_max — \I}

Equation 18

The equation can be simplified as follows:

GMCLIB User's Guide, Rev. 2, 10/2015

28 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Algorithms in detail

U Udcbus max
FoC
U _ A [z = Yroc
PWM U dcbus'Udcbusimax Udcbus
Equation 19

The GMCLIB_ElimDcBusRipFOC function compensates an amplitude of the direct-a
and the quadrature-3 component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

0, Ua=0 N Ugeps=0
L U,>0 A |Ua|2Udcbus
Uds*=1{ -1 Ua<O0 A Ul Z U jepys
Ugy 1
Udcbus’ ene
Equation 20
0, Up=0 A Ugepus=0
1, Up>0 A Ul Z U yepys
Uﬂ*: '17 Uﬁ<0 AN |Uﬂ|2UdcbuS
Ys
Udcbus’ clse
Equation 21

where:

» Ug™ 1s the direct-a duty cycle ratio
* Ug* is the direct-B duty cycle ratio
* Ug is the direct-a voltage

* Ug is the quadrature-f3 voltage

The GMCLIB_ElimDcBusRipFOC function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-3 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage using a three-phase uncontrolled rectifier.

GMCLIB User's Guide, Rev. 2, 10/2015
Freescale Semiconductor, Inc. 29

uwiuLIB_ElimDcBusRipFOC

Measured Voltage on the DC-Bus

o 15
[®)]
8 N
© 10
>
5 u
uDcBus
\ \
0
0 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 009 01
time
Standard Space Vector Modulation with Elimination of the DC-Bus Ripple
1
(]
% /“." "\‘I‘ ,"f \‘. ;“_4’ ‘\\ ff \ J / \ / "\.‘ /.“ \ f‘f \\ ’,/ ‘I“\\I / \\ /,"‘ "\\ ;/ \"‘.‘ j‘/ \ f‘:‘ '\\I i
= 05 ""ua ,rf \'\ / \\\ oy \ N - /WA) / \ / F— Phase A
\/ ‘/J \/ \ “If I“.‘/‘ \ ,.‘“ I\". / \ ;ﬁ \ \"‘.‘ / \‘. :"‘I — /
/\J\,J -/‘\J\VA—/_/L‘] :L,/\)\/\j\/ —)\M NI G E’Ezzz 2
\ \
0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time
Angular Velocity of the PMSM with/without Elimination of the DC-Bus Ripple
> 200
S N
?>> 100 « X
0 Angular Velocity of the PMSM with Eliminating of the DC_BUS Ripple —
100 \/ Angular Velocity of the PMSM without Eliminating of the DC_BUS Ripple
} | | | | | | \ \

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 2-3. Results of the DC-bus voltage ripple elimination

2.6.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate.

The available versions of the GMCLIB_ElimDcBusRipFOC function are shown in the
following table:

Table 2-6. Function versions

Function name Input type Output type Result
type
GMCLIB_EIimDcBusRipFOC_F16 frac16_t GMCLIB_2COOR_ALBE_T_F16 * |void
GMCLIB_2COOR_ALBE_T_F16 *

Table continues on the next page...

GMCLIB User's Guide, Rev. 2, 10/2015

30 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Algorithms in detail

Table 2-6. Function versions (continued)

Function name Input type Output type Result
type
Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system, using a 16-bit fractional DC-bus voltage information. The DC-
bus voltage input is within the fractional range <0 ; 1); the stationary (a-B) voltage
input and the output are within the fractional range <-1 ; 1).

2.6.2 Declaration
The available GMCLIB_ElimDcBusRipFOC functions have the following declarations:

void GMCLIB_ElimDcBusRipFOC_F16 (fraclé_t f16UDCBus, const GMCLIB 2COOR ALBE T F16 *psUAlBe,
GMCLIB 2COOR_ALBE T F16 *psUAlBeComp)

2.6.3 Function use

The use of the GMCLIB_ElimDcBusRipFOC function is shown in the following
example:

#include "gmclib.h"
static fraclé_t f16UDcBus;

static GMCLIB 2COOR ALBE T F16 sUAlBe;
static GMCLIB_2COOR_ALBE_T F16 sUAlBeComp;

void Isr(void) ;

void main (void)
/* Voltage Alpha, Beta structure initialization */
sUAl1Be.f16Alpha = FRAC16(0.0);
sUAlBe.fl6Beta = FRAC16(0.0) ;

/* DC bus voltage initialization */
f16DcBus = FRAC16(0.8) ;

}

/* Periodical function or interrupt */
void Isr (void)

/* FOC Ripple elimination calculation */
GMCLIB ElimDcBusRipFOC F16 (£16UDcBus, &sUAlBe, &sUAlBeComp) ;

}

2.7 GMCLIB_ElimDcBusRip

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 31

uwuLIB_ElimDcBusRip

The GMCLIB_ElimDcBusRip function is used for a correct PWM duty cycle output
calculation, based on the measured DC-bus voltage. The side effect is the elimination of
the the DC-bus voltage ripple in the output PWM duty cycle. This function can be used
with any kind of space vector modulation; it has an additional input - the modulation
index (with respect to the DC-bus voltage).

The general equation to calculate the duty cycle is as follows:

U _Yroc .
PWM = gctus ~'mod

Equation 22

where:

e Upwwm 1s the duty cycle output

* ugoc 1s the real FOC voltage

* Ugchys 18 the real measured DC-bus voltage
* 104 1S the space vector modulation index

Using the previous equations, the GMCLIB_ElimDcBusRip function compensates an
amplitude of the direct-a and the quadrature-f3 component of the stator-reference voltage
vector, using the formula shown in the following equations:

0, Ua = 0 AN Udcbus = O \ lmod = 0
Udcbus .
], Ug>0 A |Ua|zm A poa> 0
U(l* = Udcbus .
-1, Us<0 A |Ua|2m N lyog>0
U, . .
Ugcbus Lmod Imod > 0
Equation 23
0, Uﬁ =0 A Udcbus =0 Vv imod =0
Udcbus .
L Up>0 A |Up| 275 "= A g >0
Uﬁ* = Udcbus .
-L Uﬁ<0 A |Uﬂ| z Lod A lmod>0
Us . .
U gebus “Unodo Lmod >0
Equation 24

where:

* Ug* is the direct-a duty cycle ratio
* Ug* is the direct-B duty cycle ratio
* Ug is the direct-a voltage

* Ug is the quadrature-f3 voltage

If the fractional arithmetic is used, the FOC and DC-bus voltages have their scales, which
take place in Equation 22 on page 32; the equation is as follows:

GMCLIB User's Guide, Rev. 2, 10/2015

32 Freescale Semiconductor, Inc.

g |

Chapter 2 Algorithms in detail

U _UrocUroc max . Upoc UFOC max
PWM U yepyusUdcbus_max bmod Udcbus Udcbus max bmod

Equation 25

where:

Ugoc is the scaled FOC voltage

* Ugcbus 18 the scaled measured DC-bus voltage
* Uroc max 18 the FOC voltage scale

* Ugcbus_max 1S the DC-bus voltage scale

Thus, the modulation index in the fractional representation is expressed as follows :

. _ UFroc_max
bmod fr = Udcbus max Lmod

Equation 26
where:

* in0dfr 1 the space vector modulation index in the fractional arithmetic

The GMCLIB_ElimDcBusRip function compensates an amplitude of the direct-a and the
quadrature-3 component of the stator-reference voltage vector in the fractional
arithmetic, using the formula shown in the following equations:

0, Us=0 A Ugyps=0 V' ipoatfr=0
U gebu)
1, U,>0 A |Ua|2#f1b]lpj A lmodfr>0
Ua*: Udcbus .
-1, Ua<0 A |Ual 2705 A imodsr>0
Ug . .
m “Umod frs Imod fr >0
Equation 27
0, Uﬂ:() A Udcbus:O v imodfr:O
U debus .
1 Up>0 A |Up| =705 A dmodsr>0
Uﬂ*: Ydcbus .
-1 Uﬂ<0 A |U/;’|EW A lmadfr>0
Us . .
m *mod frs tmod fr >0
Equation 28

where:

Ug™ 1s the direct-a duty cycle ratio
Ug* is the direct-f duty cycle ratio
Uy is the direct-a voltage

Ug is the quadrature- voltage

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 33

uwuLIB_ElimDcBusRip

The GMCLIB_ElimDcBusRip function can be used in general motor-control
applications, and it provides elimination of the voltage ripple on the DC-bus of the power
stage. Figure 2-4 shows the results of the DC-bus ripple elimination, while compensating
the ripples of the rectified voltage, using a three-phase uncontrolled rectifier.

Measured Voltage on the DC-Bus

15
™~

10

voltage

uDcBus

0 001 002 003 004 005 006 007 008 009 J[_0.1
Ime

Standard Space Vector Modulation with Elimination of the DC-Bus Ripple

AN ~, A ~ —~] A TN e
i\ I / [\ i\ A [\ /A / /A /) A {1 /1 [\
A A AN AN A A AN A AN AN A A AT [\

0.5 \ \\ / \\\ /] \ ‘-‘\ r 7.\] \ .-‘:“ \] \ /' [Phase A
\f \/ \/ \/ \/ \/ \/ \/ \ \ \/ /
PRSP E SN NP SN B NS | P G S GNP N D SN N === Phase B

0 001 002 003 004 005 006 007 008 009 01
time
Angular Velocity of the PMSM with/without Elimination of the DC-Bus Ripple

voltage

> 200
‘© 4 \
] -
E} 100 / ‘\7
0 Angular Velocity of the PMSM with Eliminating of the DC_BUS Ripple —
100 \J Angular Velocity of the PMSM without Eliminating of the DC BUS Ripple
} \ \ | \ | | \ \

0 001 002 003 004 005 006 007 008 009 01
time

Figure 2-4. Results of the DC-bus voltage ripple elimination

2.7.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The result may saturate. The modulation index is a non-
negative accumulator type value.

GMCLIB User's Guide, Rev. 2, 10/2015

34 Freescale Semiconductor, Inc.

A
4

4
A

4
Chapter 2 Algorithms in detail

The available versions of the GMCLIB_ElimDcBusRip function are shown in the
following table:

Table 2-7. Function versions

Function name Input type Output type Result
type
GMCLIB_ElimDcBusRip_F16sas frac16_t GMCLIB_2COOR_ALBE_T_F16 * |void
acc32_t
GMCLIB_2COOR_ALBE_T_F16 *

Compensation of a 16-bit fractional two-phase system input to a 16-bit fractional
two-phase system using a 16-bit fractional DC-bus voltage information and a 32-bit
accumulator modulation index. The DC-bus voltage input is within the fractional
range <0 ; 1); the modulation index is a non-negative value; the stationary (a-B)

voltage input and output are within the fractional range <-1; 1).

2.7.2 Declaration
The available GMCLIB_ElimDcBusRip functions have the following declarations:

void GMCLIB ElimDcBusRip Flésas(fraclé t f£16UDCBus, acc32 t a32IdxMod, const
GMCLIB 2COOR_ALBE T F16 *psUAlBeComp, GMCLIB 2COOR _ALBE T F16 *psUAlBe)

2.7.3 Function use
The use of the GMCLIB_ElimDcBusRip function is shown in the following example:

#include "gmclib.h"

static fraclé_t £16UDcBus;

static acc32 t a32IdxMod;

static GMCLIB_2COOR ALBE T F16 sUAlBe;
static GMCLIB_2COOR_ALBE_T F16 sUAlBeComp;

void Isr (void) ;

void main (void)
/* Voltage Alpha, Beta structure initialization */
sUAlBe.f16Alpha = FRAC16(0.0) ;
sUAlBe.fl6Beta = FRAC16(0.0) ;

/* SVM modulation index */
a32IdxMod = ACC32(1.3);

/* DC bus voltage initialization */
f16UDcBus = FRAC16(0.8) ;

}

/* Periodical function or interrupt */
void Isr (void)

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 35

g |

]
uwvivLIB_SvmStd

/* Ripple elimination calculation */
GMCLIB ElimDcBusRip Flé6sas (£16UDcBus, a32IdxMod, &sUAlBe, &sUAlBeComp) ;

}

2.8 GMCLIB_SvmStd

The GMCLIB_SvmStd function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using a special
standard space vector modulation technique.

The GMCLIB_SvmStd function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector, using a special space
vector modulation technique, called standard space vector modulation.

The basic principle of the standard space vector modulation technique can be explained
using the power stage diagram shown in Figure 2-5.

Skt

O/—u
N
A1
w
Q
N
1

Uya

Figure 2-5. Power stage schematic diagram

GMCLIB User's Guide, Rev. 2, 10/2015

36 Freescale Semiconductor, Inc.

g |

Chapter 2 Algorithms in detail

The top and bottom switches are working in a complementary mode; for example, if the
top switch S, is on, then the corresponding bottom switch S,y 1s off, and vice versa.
Considering that the value 1 is assigned to the ON state of the top switch, and value 0 is
assigned to the ON state of the bottom switch, the switching vector [a, b, c]T can be
defined. Creating of such vector allows for numerical definition of all possible switching
states. Phase-to-phase voltages can then be expressed in terms of the following states:

e 1 -1 0
Ugc =UDCBux4 o 1 - HZ]
Ue, -1 0 1]l

Equation 29

where Upcpys 18 the instantaneous voltage measured on the DC-bus.

Assuming that the motor is completely symmetrical, it is possible to write a matrix
equation, which expresses the motor phase voltages shown in Equation 29 on page 37.

2 -1 -1
-1 2 —1-[2]
-1 -1 21t

Equation 30

Ud
Ub
Ue

_ 2 DCBus

In a three-phase power stage configuration (as shown in Figure 2-5), eight possible
switching states (shown in Figure 2-6) are feasible. These states, together with the
resulting instantaneous output line-to-line and phase voltages, are listed in Table 2-8.

Table 2-8. Switching patterns

AlB|C U, Uy, Ue Uas Ugc Uca Vector
0({0|O0 0 0 0 0 0 0 Ooo0
1100 2Upceus/3 -Upcaus/3 -Upcaus/3 UpcBus 0 -Upceus Up
11110 Ubceus/3 Ubcaus/3 -2Upcpus/3 0 Ubcsus -Ubcaus Ueo
0(1]0 -Upceus/3 2Upceus/3 -Upceus/3 -Upceus Ubcaus 0 Uiz2o
of(1]1 -2Upcaus/3 Ubcaus/3 Ubcaus/3 -Ubcsus 0 Ubcsus Uz40
0|01 -Upceus/3 -Upceus/3 2Upceus/3 0 -Ubceus Ubceus Uso0
1101 Ubcaus/3 -2UpcBus/3 Ubcaus/3 Ubceus -Ubcaus 0 Useo
1011 0 0 0 0 0 0 O111

The quantities of the direct-a and the quadrature-8 components of the two-phase
orthogonal coordinate system, describing the three-phase stator voltages, are expressed
using the Clark transformation, arranged in a matrix form:

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc.

g |

uwvivLIB_SvmStd

Equation 31

a

C

The three-phase stator voltages - U,, Uy, and U,, are transformed using the Clark
transformation into the direct-a and the quadrature-3 components of the two-phase
orthogonal coordinate system. The transformation results are listed in Table 2-9.

Table 2-9. Switching patterns and space vectors

A B (o3 Uq Ug Vector
0 0 0 0 0 Oo0o
1 0 0 2Upcpus/3 0 Up

1 1 0 UDCBus/3 UDCBus/\I3 UGO
0 1 0 -Upceus/3 Ubcaus/v3 U120
0 1 1 -2UpcBus/3 0 Uo40
0 0 1 -Upcaus/3 -Upcaus/v3 Usoo

1 0 1 Ubceus/3 -Upcaus/v3 Usso
1 1 1 0 0 O111

Figure 2-6 depicts the basic feasible switching states (vectors). There are six nonzero

vectors - Ug, Ug,Uj20, Uigo, Unag, and Uszgg, and two zero vectors -

0111 and 0000, usable

for switching. Therefore, the principle of the standard space vector modulation lies in
applying the appropriate switching states for a certain time, and thus generating a voltage

vector identical to the reference one.

GMCLIB User's Guide, Rev. 2, 10/2015

38

Freescale Semiconductor, Inc.

h o
g |

4
Chapter 2 Algorithms in detail
U120 Uao
(010) (110)
[1/N3,-1] [1/73,1]

U, Il. I U,
(011) Oy, (100)
(000)
[-2/73,0] < P [2/+/3,0]
IV. VI.

U240 U300

(001) (101)

[-1/V3,-1] [-1/3,1]

Figure 2-6. Basic space vectors

Referring to this principle, the objective of the standard space vector modulation is an
approximation of the reference stator voltage vector Ug, with an appropriate combination

of the switching patterns, composed of basic space vectors. The graphical explanation of
this objective is shown in Figure 2-7 and Figure 2-8.

GMCLIB User's Guide, Rev. 2, 10/2015
Freescale Semiconductor, Inc. 39

h o
g |

uwvivLIB_SvmStd
Uiz] Ugo
(010) f-axis (110)
[1N3,-1] [1A3,1]
I Sector Number
To/T*Uq, Maximal phase
. N A~ | voltage magnitude = 1
' A 4 i
b o U S \
Usgo UE) / i U0
(011) WARY (100) a-axis
[-2/3,0] [243,0]
u
T/T"U, :
IV. 30 degrees V.
V.
[AN3-1] [1A3,1]
U240 300
(001) (101)

Figure 2-7. Projection of reference voltage vector in the respective sector

The stator reference voltage vector Ug is phase-advanced by 30° from the direct-a, and
thus can be generated with an appropriate combination of the adjacent basic switching
states U and Ug. These figures also indicate the resultant direct-a and quadrature-3

components for space vectors Uy and Ugy.

GMCLIB User's Guide, Rev. 2, 10/2015

40

Freescale Semiconductor, Inc.

g |

Chapter 2 Algorithms in detail

USO
(110)
[1/V3,1]
Il. Sector Number
Teo/ T"Ueo 60 degrees /

2W3*U,

U,
(100) g-axis

/B 7~ [2/7/3,0]

TJ/T*U, 1N3*u,

30 degrees | VI.

Figure 2-8. Detail of the voltage vector projection in the respective sector

In this case, the reference stator voltage vector Ug is located in sector I, and can be
generated using the appropriate duty-cycle ratios of the basic switching states Uy and
Ugo- The principal equations concerning this vector location are as follows:

T=Te+ T+ T

null

_ T Ty
Us=7 Ugot7 - Up

Equation 32

where Tg(and Ty are the respective duty-cycle ratios, for which the basic space vectors
Teo and T should be applied within the time period T. T is the time, for which the null
vectors Ogyp and Oq; are applied. Those duty-cycle ratios can be calculated using the
following equations:

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 41

uwvivLIB_SvmStd

=2 |U - sin60°
Uﬂ

T
=T [Ud+ e

Equation 33

Considering that normalized magnitudes of basic space vectors are [Uggl = [Ugl = 2/ 3,
and by the substitution of the trigonometric expressions sin 60° and tan 60° by their
quantities 2 / y/3, and V3, respectively, the Equation 33 on page 42 can be rearranged for
the unknown duty-cycle ratios Tgy / T and Ty / T as follows:

T60

T =ug
T130 To
Us=—7 "Upot7 "Uso

Equation 34

Sector II is depicted in Figure 2-9. In this particular case, the reference stator voltage
vector Ug is generated using the appropriate duty-cycle ratios of the basic switching
states Ty and Ty,. The basic equations describing this sector are as follows:

T=Tiy0t Tt T

T120 Te0
Us=—7 Uit 7 "Uso

null

Equation 35

where Ty, and Ty are the respective duty-cycle ratios, for which the basic space vectors
Uj,0 and Ug(should be applied within the time period T. T, is the time, for which the
null vectors Oy and Oy are applied. These resultant duty-cycle ratios are formed from
the auxiliary components, termed A and B. The graphical representation of the auxiliary
components is shown in Figure 2-10.

GMCLIB User's Guide, Rev. 2, 10/2015

42 Freescale Semiconductor, Inc.

h

Chapter 2 Algorithms in detail

U1ZU U60
(010) B-axis (110)
[1A3,-1] (H3.1]
ug __"; s Sector Number

. /

74 degrees \

Maximal phase
| voltage magnitude = 1

o X/ N\
[-23,0] TTU, [2/7/3,0]
uLI
V. VL.
V.
[-1A3,-1] [-13,1]
U240 USOU
(001) (101)

Figure 2-9. Projection of the reference voltage vector in the respective sector

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc.

43

h -

y
A

uwvivLIB_SvmStd
60 degrees
U2 -axis Ueo
(010) b-axi (110)
(13, -1] 1. [1A31]
u,

30 degrees
Teo/ T*Ugg

Sector Number
B=u,

A=1N3*u, o-axis

Figure 2-10. Detail of the voltage vector projection in the respective sector

The equations describing those auxiliary time-duration components are as follows:

sin30° _ 4

sin120° ~ Y8
sin60° _ B

sin6(° a
Equation 36
Equations in Equation 36 on page 44 have been created using the sine rule.

The resultant duty-cycle ratios T,y / T and Ty / T are then expressed in terms of the
auxiliary time-duration components, defined by Equation 37 on page 44 as follows:

I
A—Jg uﬂ
B=u,

Equation 37

GMCLIB User's Guide, Rev. 2, 10/2015

44 Freescale Semiconductor, Inc.

Chapter 2 Algorithms in detail

Using these equations, and also considering that the normalized magnitudes of the basic
space vectors are [U gl = [Ugl = 2 / V3 , the equations expressed for the unknown duty-
cycle ratios of basic space vectors Tj5o/ T and Tg / T can be expressed as follows:

TR U g =4~ B)
FUed=4+5)
Equation 38

The duty-cycle ratios in the remaining sectors can be derived using the same approach.
The resulting equations will be similar to those derived for sector I and sector II.

T
=3)
T,
T =303)

Equation 39

To depict the duty-cycle ratios of the basic space vectors for all sectors, we define:
* Three auxiliary variables:
X= uﬁ
Y =43 - ug)
Z=3us—\3)
Equation 40
* Two expressions - t_1 and t_2, which generally represent the duty-cycle ratios of the
basic space vectors in the respective sector (for example, for the first sector, t_1 and
t_2), represent duty-cycle ratios of the basic space vectors Ugy and U; for the second

sector, t_1 and t_2 represent duty-cycle ratios of the basic space vectors Uj,q and
Ugp, and so on.

The expressions t_1 and t_2, in terms of auxiliary variables X, Y, and Z for each sector,
are listed in Table 2-10.

Table 2-10. Determination of t_1 and t_2 expressions

Sectors Uo, Ugo Ugo, U120 U120, U1go U4g0, U240 U240, Usgo Uszg0, U
t 1 X Z -X Z -Z Y
t 2 -Z Y Z -X -Y -X

For the determination of auxiliary variables X, Y, and Z, the sector number is required.
This information can be obtained using several approaches. The approach discussed here
requires the use of modified Inverse Clark transformation to transform the direct-a and
quadrature-3 components into balanced three-phase quantities Uy, Urerr, and Uz, used
for straightforward calculation of the sector number, to be shown later.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 45

y
A |
uwvivLIB_SvmStd
Uref1 = Up

—ugt \I”T'“a
2

Upef2=

_ g \Ig'”a
Uref3= 2

Equation 41

The modified Inverse Clark transformation projects the quadrature-ug component into
U1, @S shown in Figure 2-11 and Figure 2-12, whereas voltages generated by the
conventional Inverse Clark transformation project the direct-ug component into Ueg;.

Components of the Stator Reference Voltage Vector

o 1| >~
S 08 ¢ < —
= 0.6 / N //
204N N 7
: N\ N /
02 A\ /
04 N\ N\ / /
. N \ //
4 A==
-1 / = | ela
0 60 120 180 240 300 360

angle

Figure 2-11. Direct-u, and quadrature-u, components of the stator reference voltage

Figure 2-11 depicts the direct-ug and quadrature-ug components of the stator reference

voltage vector Ug, which were calculated using equations ug = cos & and ug = sin 9,
respectively.

GMCLIB User's Guide, Rev. 2, 10/2015

46

Freescale Semiconductor, Inc.

g |

4
Chapter 2 Algorithms in detail

Sinusoidal Three-Phase Reference Voltage
L N L

1
08 [~ ~_ NI
0.6 >< >< ><
04 77 7N 7N
.0 \
0.2

amplitude

- NIV NS B—
-04 >< >< m—uref1 |
-0.6 m—uref2]
i AN AN — |
0.8 . uref3
-1 |
0 60 120 180 240 300 360

D10 1B D DR

Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6
angle

Figure 2-12. Reference voltages U ef1, Urefo, and U esz

The sector identification tree shown in Figure 2-13 can be a numerical solution of the
approach shown in GMCLIB_SvmStd_Img8.

Sector Identification Tree

/\

Uref3 <0 Upefz3 > 0
Uref2 > 0 U2 <0 Uref2 > 0 Uref2 £ 0
Ureft <0 Ureft > 0 Uref1 20 Uref1 > 0
Sector = VI Sector =1 Sector =11 Sector =V Sector =1V Sector = |l

Figure 2-13. Identification of the sector number

In the worst case, at least three simple comparisons are required to precisely identify the
sector of the stator reference voltage vector. For example, if the stator reference voltage
vector is located as shown in Figure 2-7, the stator-reference voltage vector is phase-
advanced by 30° from the direct a-axis, which results in the positive quantities of uf
and u,.p, and the negative quantity of u,¢3; see Figure 2-12. If these quantities are used
as the inputs for the sector identification tree, the product of those comparisons will be
sector I. The same approach identifies sector II, if the stator-reference voltage vector is

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 47

uwvivLIB_SvmStd

located as shown in Figure 2-9. The variables t;, t,, and t3, which represent the switching
duty-cycle ratios of the respective three-phase system, are calculated according to the
following equations:
T—t 1-t 2
h=—">
tz = tl + t_ 1
ty=t,+t 2

Equation 42

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors given for the respective sector; Table 2-10, Equation 31 on page 38, and
Equation 42 on page 48 are specific solely to the standard space vector modulation
technique; other space vector modulation techniques discussed later will require deriving
different equations.

The next step is to assign the correct duty-cycle ratios - t;, t,, and t3, to the respective
motor phases. This is a simple task, accomplished in a view of the position of the stator
reference voltage vector; see Table 4.

Table 2-11. Assignment of the duty-cycle ratios to motor phases

Sectors Ug, Ugo

Uso, U120

U120, U1go

U1g0, U240

U240, Usgo

Uszg0, U

pwm_a

t3

ty

to

pwm_b

to

to

t

pwm_c

t4

t3

t3

The principle of the space vector modulation technique consists of applying the basic
voltage vectors Uxxx and Oxxx for certain time, in such a way that the main vector
generated by the pulse width modulation approach for the period T is equal to the original
stator reference voltage vector Ug. This provides a great variability of arrangement of the
basic vectors during the PWM period T. These vectors might be arranged either to lower
the switching losses, or to achieve diverse results, such as center-aligned PWM, edge-
aligned PWM, or a minimal number of switching states. A brief discussion of the widely
used center-aligned PWM follows.

Generating the center-aligned PWM pattern is accomplished by comparing the threshold
levels pwm_a, pwm_b, and pwm_c with a free-running up-down counter. The timer
counts to one, and then down to zero. It is supposed that when a threshold level is larger
than the timer value, the respective PWM output is active. Otherwise, it is inactive; see
Figure 2-14.

GMCLIB User's Guide, Rev. 2, 10/2015

48 Freescale Semiconductor, Inc.

h o
g |

4
Chapter 2 Algorithms in detail

Center-Aligned PWM

pwm_a . :

pwm_cC _}

: T :

[
ol
<

-"-

PHASE_A iJrwg) Tej2 | To2

PHASE_B | v T §

el
b 3

PHASE_C i Jr/a

; 0111 UBO UG ODUD OGUO UCI UBO 0111 E
£ (111) | (110)| (100): (000) (000) (100); (110) (111)

Sector I.
Figure 2-14. Standard space vector modulation technique — center-aligned PWM

Figure 2-15 shows the waveforms of the duty-cycle ratios, calculated using standard
space vector modulation.

For the accurate calculation of the duty-cycle ratios, direct-a, and quadrature-[3
components of the stator reference voltage vector, it must be considered that the duty

cycle cannot be higher than one (100 %); in other words, the assumption V2+4° <1 must be
met.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 49

g |

uwvivLIB_SvmStd

Components of the Stator Reference Voltage Vector

1 H -
[0)] Ny :
R A N /
rot 0.5 /r‘ \\. \ /
%)/'/ 1\\ \‘_\ /
0 \'\._\ \\-..\ / / ’
/
-0.5 N N == alpha
_ N w— hotg
_1 - -]
0 60 120 180 240 300 360
angle
Standard Space Vector Modulation Technique
(73] 1 | ""“‘af_./"" T~ I P I x ™~
© 0.9 / /
-§ 0.8 \ / / \
o 0.7 / \ \ /
% 0.6 / \\ f, I"_‘ ,f \ .,
2 82 a 3 £ \"\ 4
3 0.3 x‘f \ / a\ Phase A [
0'2 va 1 === Phase B |1
090 60 120 180 240 300 360
angle

Figure 2-15. Standard space vector modulation technique

2.8.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 2, 10/2015

50

Freescale Semiconductor, Inc.

A\ 4
A
Chapter 2 Algorithms in detail

The available versions of the GMCLIB_SvmStd function are shown in the following

table.
Table 2-12. Function versions
Function name Input type Output type Result type
GMCLIB_SvmStd_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

Standard space vector modulation with a 16-bit fractional stationary (a-B) input and a 16-bit
fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates the
actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the range
<0 ; 1). The output sector is an integer value within the range <0 ; 7>.

2.8.2 Declaration
The available GMCLIB_SvmStd functions have the following declarations:

uintlé t GMCLIB_SvmStd F16 (const GMCLIB 2COOR_ALBE T F16 *psIn, GMCLIB 3COOR T F16 *psOut)

2.8.3 Function use
The use of the GMCLIB_SvmStd function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl16Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */
void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmStd F16 (&sAlphaBeta, &sAbc);

}

2.9 GMCLIB_Svmict

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 51

uwvivLIB_Svmlict

The GMCLIB_Svmlct function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_Svmlct function calculates the appropriate duty-cycle ratios, needed for
generation of the given stator reference voltage vector using the conventional Inverse
Clark transformation. Finding the sector in which the reference stator voltage vector Ug
resides is similar to GMCLIB_SvmStd. This is achieved by first converting the direct-a
and the quadrature-3 components of the reference stator voltage vector Ug into the
balanced three-phase quantities U.f;, Ugefr, and u.r3 using the modified Inverse Clark
transformation:

urefl = uﬂ

agBe
Upref2 = 2

_TupT \I?:'”a
Upef3= 2

Equation 43

The calculation of the sector number is based on comparing the three-phase reference
voltages Uref;, Uger, and u.p3 with zero. This computation is described by the following
set of rules:

L Uref] >0
a {0, else
. {2, Upef2> 0
0, else
4, Uref3 >0
€ {0, else
Equation 44

After passing these rules, the modified sector numbers are then derived using the
following formula:

sector*=a+b+c

Equation 45

The sector numbers determined by this formula must be further transformed to
correspond to those determined by the sector identification tree. The transformation
which meets this requirement is shown in the following table:

Table 2-13. Transformation of the sectors

Sector* 1 2 3 4

Sector 2 6 1 4

GMCLIB User's Guide, Rev. 2, 10/2015

52 Freescale Semiconductor, Inc.

g |

L __4
Chapter 2 Algorithms in detail
Use the Inverse Clark transformation for transforming values such as flux, voltage, and
current from an orthogonal rotating coordination system (ug, ug) to a three-phase rotating
coordination system (u,, u,, and u.). The original equations of the Inverse Clark
transformation are scaled here to provide the duty-cycle ratios in the range <0 ; 1). These

scaled duty cycle ratios pwm_a, pwm_b, and pwm_c can be used directly by the registers
of the PWM block.

U,
pwm_a=0.5+=

—ugty3up

pwm_b=05+—7
“Ug\3upg

pwm_c=05+—F—

Equation 46

The following figure shows the waveforms of the duty-cycle ratios calculated using the
Inverse Clark transformation.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 53

uwvivLIB_Svmlict

Components of the Stator Reference Voltage Vector

11— :
@ .) L | L
ERN P AN ya
2 VAR \ /
© / \\ AN //
0
N\, AN / e
\\\ \\ // //
-0.5 - § m—— alpha [
\\\ >< — hetg
_1 ™ ~ - - |
0 60 120 180 240 300 360
angle
Inverse Clark Transform Modulation Technique
8 1 x&“\\\\ ////f x\\\‘\\\ /-’/ - ‘.\H.‘.\“x\ /"//f
= 08— ,/ |
. N\ / \\
S 06— ZEN AN
O / \ \ / AN
> 04 T
-] / N\ / e Phase A
o] rs ’ L
0.2 Fam s = Phase B |/
NG / \\\ pd — }Phase C
0 60 120 180 240 300 360
angle

Figure 2-16. Inverse Clark transform modulation technique

For an accurate calculation of the duty-cycle ratios and the direct-a and quadrature-3
components of the stator reference voltage vector, the duty cycle cannot be higher than

one (100 %); in other words, the assumption Va2+ £ <1 must be met.

2.9.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 2, 10/2015

54 Freescale Semiconductor, Inc.

A\ 4
A
Chapter 2 Algorithms in detail

The available versions of the GMCLIB_Svmlct function are shown in the following

table:
Table 2-14. Function versions
Function name Input type Output type Result type
GMCLIB_Svmict_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <0 ; 7>.

2.9.2 Declaration
The available GMCLIB_Svmlct functions have the following declarations:

uintlé t GMCLIB_SvmIct F16 (const GMCLIB 2COOR_ALBE T F16 *psIn, GMCLIB 3COOR T F16 *psOut)

2.9.3 Function use

The use of the GMCLIB_Svmlct function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */
void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmIct F16 (&sAlphaBeta, &sAbc);

}

2.10 GMCLIB_SvmUOn

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 55

uwvivLIB_SvmUOn

The GMCLIB_SvmUOn function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector using the general
sinusoidal modulation technique.

The GMCLIB_SvmUOn function for calculating of duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with Og, nulls, where only
one type of null vector Oy is used (all bottom switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with Oy nulls is in
many aspects identical to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of the variables t;, t,, and t3 that represent
switching duty-cycle ratios of the respective phases:

t]:0
L=t +t_2

Equation 47

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors that are defined for the respective sector in Table 2-10.

The generally used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished practically by comparing the
threshold levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The
timer counts up to 1 (Ox7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise it is inactive (see Figure 2-17).

GMCLIB User's Guide, Rev. 2, 10/2015

56 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Algorithms in detail

Centre-Aligned PWM

pwm_a

pwm_b _

pwm_c,

k4

PHASE_A § =23 o2 |

PHASE_B i =12,

PHASE C

UGU UD ODUU ODDD OUOU ODOD U[] UBU
(110)1 (100} (000)| (000)i (000) | (000) } (100){ (110)

Sector |.

Figure 2-17. Space vector modulation technique with Ogygo nulls — center-aligned PWM

Figure Figure 2-17 shows calculated waveforms of the duty cycle ratios using space
vector modulation with O nulls.

For an accurate calculation of the duty-cycle ratios, direct-a, and quadrature-f3
components of the stator reference voltage vector, consider that the duty cycle cannot be

higher than one (100 %); in other words, the assumption V*+4° <1 must be met.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 57

g |

uwvivLIB_SvmUOn

Components of the Stator Reference Voltage Vector

amplitude

N 2 . - S— — —— - /

_05 e sessnssnsnsvensess , : alpha u
5 — beta
1 i i i] —1
0 60 120 180 240 300 360
angle

Space Vector Modulation Technique with Oy, Nulls

1

3

'E 0.8f

S 0.6f

%)

> 04r :

S : : : : Phase A

© V] R s Phase B H

| : | } /| me— Phase C |

0 0 60 120 180 240 300 360

angle

Figure 2-18. Space vector modulation technique with Ogygo nulls

2.10.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 2, 10/2015
58 Freescale Semiconductor, Inc.

A\ 4
A
Chapter 2 Algorithms in detail

The available versions of the GMCLIB_SvmUOn function are shown in the following

table:
Table 2-15. Function versions
Function name Input type Output type Result type
GMCLIB_SvmUOn_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input, and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <0 ; 7>.

2.10.2 Declaration
The available GMCLIB_SvmUOn functions have the following declarations:

uintlé_t GMCLIB_SvmUOn_F16 (const GMCLIB 2COOR ALBE T F16 *psIn, GMCLIB 3COOR_T F16 *psOut)

2.10.3 Function use
The use of the GMCLIB_SvmUOn function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */
void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmUOn F16 (&sAlphaBeta, &sAbc);

}

2.11 GMCLIB_SvmU7n

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 59

uwvivLIB_SvmU7n

The GMCLIB_SvmU7n function calculates the appropriate duty-cycle ratios, which are
needed for generation of the given stator-reference voltage vector, using the general
sinusoidal modulation technique.

The GMCLIB_SvmU7n function for calculating the duty-cycle ratios is widely used in
modern electric drives. This function calculates the appropriate duty-cycle ratios, which
are needed for generating the given stator reference voltage vector using a special space
vector modulation technique called space vector modulation with Oy nulls, where only
one type of null vector Oy is used (all top switches are turned on in the invertor).

The derivation approach of the space vector modulation technique with O;; nulls is
identical (in many aspects) to the approach presented in GMCLIB_SvmStd. However, a
distinct difference lies in the definition of variables t;, t,, and t3 that represent switching
duty-cycle ratios of the respective phases:

ti=T-t_1-t_2
L=t+t_1
L=t,+t_ 2

Equation 48

where T is the switching period, and t_1 and t_2 are the duty-cycle ratios of the basic
space vectors defined for the respective sector in Table 2-10.

The generally-used center-aligned PWM is discussed briefly in the following sections.
Generating the center-aligned PWM pattern is accomplished by comparing threshold
levels pwm_a, pwm_b, and pwm_c with the free-running up/down counter. The timer
counts up to 1 (Ox7FFF) and then down to 0 (0x0000). It is supposed that when a
threshold level is larger than the timer value, the respective PWM output is active.
Otherwise, it is inactive (see Figure 2-19).

GMCLIB User's Guide, Rev. 2, 10/2015

60 Freescale Semiconductor, Inc.

g |

4
Chapter 2 Algorithms in detail

Centre-Aligned PWM

1
pwm_a
pwm_b
pwm_c
0

£ T _f

PHASE_A |

PHASE_B | wwa | Tewa | T

PHASE_C EJNU"LM: INULLM: i

e NN VRS RN VAR BN VAN MUME N M o

F(11) L (111)[(110)] (100)} (100) | (110)} (111) L (111)

’ Sector I. '

Figure 2-19. Space vector modulation technique with O411 nulls — center-aligned PWM

Figure Figure 2-19 shows calculated waveforms of the duty-cycle ratios using Space
Vector Modulation with O nulls.

For an accurate calculation of the duty-cycle ratios, direct-a, and quadrature-[3
components of the stator reference voltage vector, it must be considered that the duty

cycle cannot be higher than one (100 %); in other words, the assumption V> +4° <1 must be
met.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 61

g |

uwvivLIB_SvmU7n
Components of the Stator Reference Voltage Vector

1

amplitude
o
(&)

_ alpha

= hetg
1

5 i i
0 60 120 180 240 300 360
angle

Space Vector Modulation Technique with O, Nulls

1
%)
Q
_.é 0.8 ... -
)
(—5)‘ 0.6 ... —
) : :
>‘ .. E. ? s
5 04 : : : i | m— Phase A
' :] = Ph C
0 \ /\ : ,/\ i = | \3864/
120 180 240 300 360
angle

Figure 2-20. Space vector modulation technique with O411 nulls

2.11.1 Available versions
This function is available in the following versions:

* Fractional output - the output is the fractional portion of the result; the result is
within the range <0 ; 1). The result may saturate.

GMCLIB User's Guide, Rev. 2, 10/2015

62 Freescale Semiconductor, Inc.

A\ 4
A
Chapter 2 Algorithms in detail

The available versions of the GMCLIB_SvmU7n function are shown in the following

table:
Table 2-16. Function versions
Function name Input type Output type Result type
GMCLIB_SvmU7n_F16 GMCLIB_2COOR_ALBE_T_F16 * GMCLIB_3COOR_T_F16 * uint16_t

General sinusoidal space vector modulation with a 16-bit fractional stationary (a-B) input and a
16-bit fractional three-phase output. The result type is a 16-bit unsigned integer, which indicates
the actual SVM sector. The input is within the range <-1 ; 1); the output duty cycle is within the
range <0 ; 1). The output sector is an integer value within the range <0 ; 7>.

2.11.2 Declaration
The available GMCLIB_SvmU7n functions have the following declarations:

uintlé_t GMCLIB_SvmU7n_F16 (const GMCLIB 2COOR ALBE T F16 *psIn, GMCLIB 3COOR_T F16 *psOut)

2.11.3 Function use
The use of the GMCLIB_SvmU7n function is shown in the following example:

#include "gmclib.h"

static uintlé_t uléSector;
static GMCLIB_2COOR_ALBE T F16 sAlphaBeta;
static GMCLIB 3COOR T F16 sAbc;

void Isr (void) ;
void main (void)

/* Alpha, Beta structure initialization */
sAlphaBeta.fl6Alpha = FRAC16(0.0);
sAlphaBeta.fl6Beta = FRAC16(0.0) ;

/* Periodical function or interrupt */
void Isr (void)

{

/* SVM calculation */
ul6Sector = GMCLIB SvmU7n_ F16 (&sAlphaBeta, &sAbc);

}

GMCLIB User's Guide, Rev. 2, 10/2015
Freescale Semiconductor, Inc. 63

PR 4

amvivLIB_SvmU7n

GMCLIB User's Guide, Rev. 2, 10/2015

64 Freescale Semiconductor, Inc.

g |

Appendix A
Library types

A.1 bool t

The bool_t type 1s a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool t;
The following figure shows the way in which the data is stored by this type:
Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused LC(;?i
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 1
TRUE
0 0 0 1
0 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | 0
FALSE
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char int8 t;

The following figure shows the way in which the data is stored by this type:

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 65

b -

g |

umui6_t
Table A-2. Data storage
7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1
255
F F
y 0 | 0 | 0 | 0 1 | 0 | 1 | 1
0 B
0 | 1 | 1 | 1 1 | 1 | 0 | 0
124
7 C
156 1 | o | o | A R
9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uintlé t;
The following figure shows the way in which the data is stored by this type:
Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Integer
1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
65535
F F F F
0 | 0 | 0 | oo | 0 | 0 | o] o | 0 | 0 | o] o | 1 | 0 | 1
5
0 0 0 5
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
40768
9 F 4 0

A.4 uint32_t

GMCLIB User's Guide, Rev. 2, 10/2015
66 Freescale Semiconductor, Inc.

h o
g |

Appendix A Library types

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32 t;

The following figure shows the way in which the data is stored by this type:

Table A-4. Data storage

31 24 23 16 15 87 0
Value Integer
4294967295 F F F F F F F F
2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
3451051828 C D B 2 D F 3 4
A5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;

The following figure shows the way in which the data is stored by this type:

Table A-5. Data storage

7 5 4 3 2 1 0
Value Sign Integer
0 | 1 | 1 1 | 1 | 1 | 1
127
7 F
1 | 0 | 0 0 | 0 | 0 | 0
-128
8 0
0 | 1 | 1 1 | 1 | 0 | 0
60
3 o}
o7 1 R 1 R R R
9 F

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc.

67

h o
g |

muo_t

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short intlé t;
The following figure shows the way in which the data is stored by this type:
Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer
0o | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1
32767
7 F F F
1 | 0 | 0 | o] o | 0 | 0 | o] o | 0 | 0 | oo | 0 | 0 | 0
-32768
8 0 0 0
0 | 0 | 1 | 1] 1 | 1 | 0 | o | 1 | 0 | 0 | 1] 1 | 1 | 1 | 0
15518
3 C 9 E
1 | 0 | 0 | 1] 1 | 1 | 1 | 1]o | 1 | 0 | o] o | 0 | 0 | 0
-24768
9 F 4 0

A.7 Int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32 t;
The following figure shows the way in which the data is stored by this type:
Table A-7. Data storage

31 24 23 16 15 87 0
Value S | Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4

GMCLIB User's Guide, Rev. 2, 10/2015

68 Freescale Semiconductor, Inc.

g |

Appendix A Library types

A.8 frac8 t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:
Table A-8. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0 1 | 1 | 1 1 | 1 | 1 | 1
0.99219
7 F
1 | 0 | 0 | 0 0 | 0 | 0
-1.0
8 0
0 | 0 | 1 | 1 1 | 1 | 0
0.46875
3 c
1 | 0 | 0 | 1 1 | 1 | 1
-0.75781
9 F

To store a real number as frac8_t, use the FRACS8 macro.

A.9 frac16 t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within

the range <-1 ; 1). Its definition is as follows:

typedef short fraclé t;

The following figure shows the way in which the data is stored by this type:
Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Value

0.99997

-1.0

Fractional

1|1|1|1

1|1|1|1

F

F

o|o|o|o o|o|o|o

Table continues on the next page...

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 69

raco2_t
Table A-9. Data storage (continued)
8 0 0 0
o|o|1|11|1|o|o1|o|o|11|1|1|o
0.47357
3 C 9 E
1|o|o|11|1|1|1o|1|o|o o|o|o|o
-0.75586
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_ t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32 t;
The following figure shows the way in which the data is stored by this type:
Table A-10. Data storage

31 24 23 16 15 87 0
Value S Fractional
0.9999999995 7 F F F F F F F
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acci16_t

The accl6_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acclé t;

The following figure shows the way in which the data is stored by this type:

GMCLIB User's Guide, Rev. 2, 10/2015

70 Freescale Semiconductor, Inc.

h o
g |

4
Appendix A Library types

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional
o1|1|11|1|1|111|1|11|1|1|1
255.9921875
7 F F F
1|o|o|o o|o|o|o o|o|o|o o|o|o|o
-256.0
8 0 0 0
o|o|o|o o|o|o|o1|o|o|o o|o|o|o
1.0
0 0 8 0
o t 1111|111]1]o]lofo]o]o]o]o
F F 8 0
o|o|o|o o|1|1|o1|1|1|o o|1|o|1
13.7890625
0 6 E 5
1|1|o|1o|o|1|1o|o|1|o o|1|o|o
-89.71875
D 3 2 4

To store a real number as accl16_t, use the ACC16 macro.

A.12 acc32_ t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;
The following figure shows the way in which the data is stored by this type:
Table A-12. Data storage

31 24 23 16 15 87 0
Value S Integer | Fractional
65535.999969
-65536.0
1.0
-1.0
23.789734
-1171.306793

Mm|o|m|lo|w| N
U|lo|mn|o|o|m
Wjo|m|lo|o|m
o|m|m|o|o|m
o|m|o|o|o|m
w|lo|lo|lo|o|m
W| —=|o|o|o|m
Olo|lo|o|o|m

To store a real number as acc32_t, use the ACC32 macro.

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 71

3
4

4
A

]
uvivLIB_3COOR_T_F16

A.13 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_FI16 structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the frac16_t
data type. The structure definition is as follows:

typedef struct
fracle t fl6A;
fracle_t f16B;

fracle t f16C;
} GMCLIB 3COOR_T F16;

The structure description is as follows:

Table A-13. GMCLIB_3COOR_T_F16 members description

Type Name Description
frac16_t f16A A component; 16-bit fractional type
frac16_t f16B B component; 16-bit fractional type
frac16_t f16C C component; 16-bit fractional type

A.14 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase
stationary coordinate system, based on the Alpha and Beta orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:
typedef struct

fracléeé t flé6Alpha;

fracle_t fléBeta;
} GMCLIB 2COOR ALBE T F16;

The structure description is as follows:

Table A-14. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description
frac16_t f16Apha a-component; 16-bit fractional type
frac16_t f16Beta B-component; 16-bit fractional type

GMCLIB User's Guide, Rev. 2, 10/2015

72

Freescale Semiconductor, Inc.

Appendix A Library types

A.15 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac16_t data type. The structure definition is as follows:

typedef struct
fracle t fl16D;

fracle_t fl6Q;
} GMCLIB 2COOR_DQ T F16;

The structure description is as follows:
Table A-15. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description
frac16_t f16D D-component; 16-bit fractional type
frac16_t f16Q Q-component; 16-bit fractional type

A.16 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac32_t data type. The structure definition is as follows:

typedef struct
frac32_t £32D;

frac32 t £32Q;
} GMCLIB 2COOR_DQ T F32;

The structure description is as follows:
Table A-16. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description
frac32_t f32D D-component; 32-bit fractional type
frac32_t f32Q Q-component; 32-bit fractional type

A.17 GMCLIB_2COOR_SINCOS_T_F16

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 73

A
4

4
A

racsE

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the frac16_t data type. The structure definition is as follows:
typedef struct

fracle t fle6Sin;

fracle _t fléCos;
} GMCLIB_2COOR_SINCOS T F16;

The structure description is as follows:

Table A-17. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description
frac16_t f16Sin Sin component; 16-bit fractional type
frac16_t f16Cos Cos component; 16-bit fractional type

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"
static bool_t bval;
void main (void)

{

bval = FALSE; /* bVal = FALSE */

}

A.19 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"

static bool t bval;

GMCLIB User's Guide, Rev. 2, 10/2015

74 Freescale Semiconductor, Inc.

g |

4
Appendix A Library types

void main (void)

bval = TRUE; /* bval = TRUE */

}

A.20 FRACS

The FRACS8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8 (x) ((frac8_t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; Ox7F>,
which corresponds to <-1.0 ; 1.0-277>.

#include "mlib.h"
static frac8 t f8val;
void main (void)

f8val = FRAC8(0.187); /* f8val = 0.187 */

A.21 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((fraclé t) ((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000)
0x7FFF))

The input is multiplied by 32768 (=213). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-215>,

#include "mlib.h"
static fraclé_t flé6Val;
void main (void)

fleval = FRAC16(0.736); /* £16Val = 0.736 */

}

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 75

g |

rnACc32

A.22 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32_t) ((x) < 1 ? ((x) »>= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=23!). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2731>,

#include "mlib.h"
static frac32_t f32val;
void main (void)

f32Val = FRAC32(-0.1735667) ; /* £32Val = -0.1735667 */

A.23 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACCl6 (x) ((acclé_t) ((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : OxX7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acclé_t aléVval;
void main(void)

aléVal = ACC16(19.45627); /* aleévVal = 19.45627 *x/

}

A.24 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

GMCLIB User's Guide, Rev. 2, 10/2015

76 Freescale Semiconductor, Inc.

b -

#define ACC32(x) ((ace32_t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : Ox7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range
<0x80000000 ; Ox7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2715>.

#include "mlib.h"
static acc32_t a32val;
void main (void)

a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */

GMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 77

GMCLIB User's Guide, Rev. 2, 10/2015

78

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.

© 2015 Freescale Semiconductor, Inc.

Document Number DSP56800EGMCLIBUG
Revision 2, 10/2015

2

Z“ freescale

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1​: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Special issues

	Library integration into project (CodeWarrior™ Development Studio)
	New project
	Library path variable
	Library folder addition
	Library path setup

	Chapter 2​: Algorithms in detail
	GMCLIB_Clark
	Available versions
	Declaration
	Function use

	GMCLIB_ClarkInv
	Available versions
	Declaration
	Function use

	GMCLIB_Park
	Available versions
	Declaration
	Function use

	GMCLIB_ParkInv
	Available versions
	Declaration
	Function use

	GMCLIB_DecouplingPMSM
	Available versions
	GMCLIB_DECOUPLINGPMSM_T_A32 type description
	Declaration
	Function use

	GMCLIB_ElimDcBusRipFOC
	Available versions
	Declaration
	Function use

	GMCLIB_ElimDcBusRip
	Available versions
	Declaration
	Function use

	GMCLIB_SvmStd
	Available versions
	Declaration
	Function use

	GMCLIB_SvmIct
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU0n
	Available versions
	Declaration
	Function use

	GMCLIB_SvmU7n
	Available versions
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	GMCLIB_3COOR_T_F16
	GMCLIB_2COOR_ALBE_T_F16
	GMCLIB_2COOR_DQ_T_F16
	GMCLIB_2COOR_DQ_T_F32
	GMCLIB_2COOR_SINCOS_T_F16
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

