
AMCLIB User's Guide
DSP56800E

Document Number: DSP56800EAMCLIBUG
Rev. 2, 10/2015

AMCLIB User's Guide, Rev. 2, 10/2015

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Library

1.1 Introduction.. 5

1.2 Library integration into project (CodeWarrior™ Development Studio) ...7

Chapter 2
Algorithms in detail

2.1 AMCLIB_TrackObsrv... 17

2.2 AMCLIB_AngleTrackObsrv..21

2.3 AMCLIB_PMSMBemfObsrvDQ...27

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 3

AMCLIB User's Guide, Rev. 2, 10/2015

4 Freescale Semiconductor, Inc.

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the Advanced Motor Control Library (AMCLIB) for the
family of DSP56800E core-based digital signal controllers. This library contains
optimized functions.

1.1.2 Data types

AMCLIB supports several data types: (un)signed integer, fractional, and accumulator.
The integer data types are useful for general-purpose computation; they are familiar to
the MPU and MCU programmers. The fractional data types enable powerful numeric and
digital-signal-processing algorithms to be implemented. The accumulator data type is a
combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

• Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1
• Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1
• Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1
• Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution

of 1

The following list shows the fractional types defined in the libraries:

• Fixed-point 16-bit fractional —<-1 ; 1 - 2-15> with the minimum resolution of 2-15

• Fixed-point 32-bit fractional —<-1 ; 1 - 2-31> with the minimum resolution of 2-31

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 5

The following list shows the accumulator types defined in the libraries:

• Fixed-point 16-bit accumulator —<-256.0 ; 256.0 - 2-7> with the minimum
resolution of 2-7

• Fixed-point 32-bit accumulator —<-65536.0 ; 65536.0 - 2-15> with the minimum
resolution of 2-15

1.1.3 API definition

AMCLIB uses the types mentioned in the previous section. To enable simple usage of the
algorithms, their names use set prefixes and postfixes to distinguish the functions'
versions. See the following example:

f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);

where the function is compiled from four parts:

• MLIB—this is the library prefix
• Mac—the function name—Multiply-Accumulate
• F32—the function output type
• lss—the types of the function inputs; if all the inputs have the same type as the

output, the inputs are not marked

The input and output types are described in the following table:

Table 1-1. Input/output types

Type Output Input

frac16_t F16 s

frac32_t F32 l

acc32_t A32 a

1.1.4 Supported compilers
AMCLIB for the DSP56800E core is written in assembly language with C-callable
interface. The library is built and tested using the following compilers:

• CodeWarrior™ Development Studio

For the CodeWarrior™ Development Studio, the library is delivered in the amclib.lib
file.

Introduction

AMCLIB User's Guide, Rev. 2, 10/2015

6 Freescale Semiconductor, Inc.

The interfaces to the algorithms included in this library are combined into a single public
interface include file, amclib.h. This is done to lower the number of files required to be
included in your application.

1.1.5 Special issues
1. The equations describing the algorithms are symbolic. If there is positive 1, the

number is the closest number to 1 that the resolution of the used fractional type
allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions require the core saturation mode to be turned off, otherwise the
results can be incorrect. Several specific library functions are immune to the setting
of the saturation mode.

3. The library functions round the result (the API contains Rnd) to the nearest (two's
complement rounding) or to the nearest even number (convergent round). The mode
used depends on the core option mode register (OMR) setting. See the core manual
for details.

4. All non-inline functions are implemented without storing any of the volatile registers
(refer to the compiler manual) used by the respective routine. Only the non-volatile
registers (C10, D10, R5) are saved by pushing the registers on the stack. Therefore, if
the particular registers initialized before the library function call are to be used after
the function call, it is necessary to save them manually.

1.2 Library integration into project (CodeWarrior™
Development Studio)

This section provides a step-by-step guide to quickly and easily integrate the AMCLIB
into an empty project using CodeWarrior™ Development Studio. This example uses the
MC56F8257 part, and the default installation path (C:\Freescale\FSLESL
\DSP56800E_FSLESL_4.2) is supposed. If you have a different installation path, you
must use that path instead.

1.2.1 New project
To start working on an application, create a new project. If the project already exists and
is open, skip to the next section. Follow the steps given below to create a new project.

1. Launch CodeWarrior™ Development Studio.

Chapter 1 Library

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 7

2. Choose File > New > Bareboard Project, so that the "New Bareboard Project" dialog
appears.

3. Type a name of the project, for example, MyProject01.
4. If you don't use the default location, untick the “Use default location” checkbox, and

type the path where you want to create the project folder; for example, C:
\CWProjects\MyProject01, and click Next. See Figure 1-1.

Figure 1-1. Project name and location
5. Expand the tree by clicking the 56800/E (DSC) and MC56F8257. Select the

Application option and click Next. See Figure 1-2.

Figure 1-2. Processor selection
6. Now select the connection that will be used to download and debug the application.

In this case, select the option P&E USB MultiLink Universal[FX] / USB MultiLink
and Freescale USB TAP, and click Next. See Figure 1-3.

Library integration into project (CodeWarrior™ Development Studio)

AMCLIB User's Guide, Rev. 2, 10/2015

8 Freescale Semiconductor, Inc.

Figure 1-3. Connection selection
7. From the options given, select the Simple Mixed Assembly and C language, and

click Finish. See Figure 1-4.

Figure 1-4. Language choice

The new project is now visible in the left-hand part of CodeWarrior™ Development
Studio. See Figure 1-5.

Figure 1-5. Project folder

1.2.2 Library path variable

To make the library integration easier, create a variable that will hold the information
about the library path.

1. Right-click the MyProject01 node in the left-hand part and click Properties, or select
Project > Properties from the menu. The project properties dialog appears.

Chapter 1 Library

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 9

2. Expand the Resource node and click Linked Resources. See Figure 1-6.

Figure 1-6. Project properties
3. Click the 'New…' button on the right-hand side.
4. In the dialog that appears (see Figure 1-7), type this variable name into the Name

box: FSLESL_LOC
5. Select the library parent folder by clicking 'Folder…' or just typing the following

path into the Location box: C:\Freescale\FSLESL\DSP56800E_FSLESL_4.2_CW
and click OK.

6. Click OK in the previous dialog.

Library integration into project (CodeWarrior™ Development Studio)

AMCLIB User's Guide, Rev. 2, 10/2015

10 Freescale Semiconductor, Inc.

Figure 1-7. New variable

1.2.3 Library folder addition

To use the library, add it into the CodeWarrior Project tree dialog.

1. Right-click the MyProject01 node in the left-hand part and click New > Folder, or
select File > New > Folder from the menu. A dialog appears.

2. Click Advanced to show the advanced options.
3. To link the library source, select the third option—Link to alternate location (Linked

Folder).
4. Click Variables…, and select the FSLESL_LOC variable in the dialog that appears,

click OK, and/or type the variable name into the box. See Figure 1-8.
5. Click Finish, and you will see the library folder linked in the project. See Figure 1-9

Chapter 1 Library

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 11

Figure 1-8. Folder link

Figure 1-9. Projects libraries paths

1.2.4 Library path setup

AMCLIB requires MLIB and GFLIB and GMCLIB to be included too. Therefore, the
following steps show the inclusion of all dependent modules.

1. Right-click the MyProject01 node in the left-hand part and click Properties, or select
Project > Properties from the menu. A dialog with the project properties appears.

Library integration into project (CodeWarrior™ Development Studio)

AMCLIB User's Guide, Rev. 2, 10/2015

12 Freescale Semiconductor, Inc.

2. Expand the C/C++ Build node, and click Settings.
3. In the right-hand tree, expand the DSC Linker node, and click Input. See Figure 1-11.
4. In the third dialog Additional Libraries, click the 'Add…' icon, and a dialog appears.
5. Look for the FSLESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding one of the following:
• ${FSLESL_LOC}\MLIB\mlib_SDM.lib—for small data model projects
• ${FSLESL_LOC}\MLIB\mlib_LDM.lib—for large data model projects

6. Tick the box Relative To, and select FSLESL_LOC next to the box. See Figure 1-9.
Click OK.

7. Click the 'Add…' icon in the third dialog Additional Libraries.
8. Look for the FSLESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding one of the following:
• ${FSLESL_LOC}\GFLIB\gflib_SDM.lib—for small data model projects
• ${FSLESL_LOC}\GFLIB\gflib_LDM.lib—for large data model projects

9. Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
10. Click the 'Add…' icon in the Additional Libraries dialog.
11. Look for the FSLESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding one of the following:
• ${FSLESL_LOC}\GMCLIB\gmclib_SDM.lib—for small data model projects
• ${FSLESL_LOC}\GMCLIB\gmclib_LDM.lib—for large data model projects

12. Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
13. Click the 'Add…' icon in the Additional Libraries dialog.
14. Look for the FSLESL_LOC variable by clicking Variables…, and then finish the

path in the box by adding one of the following:
• ${FSLESL_LOC}\AMCLIB\amclib_SDM.lib—for small data model projects
• ${FSLESL_LOC}\AMCLIB\amclib_LDM.lib—for large data model projects

15. Now, you will see the libraries added in the box. See Figure 1-11.

Figure 1-10. Library file inclusion

Chapter 1 Library

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 13

Figure 1-11. Linker setting
16. In the tree under the DSC Compiler node, click Access Paths.
17. In the Search User Paths dialog (#include “…”), click the 'Add…' icon, and a dialog

will appear.
18. Look for the FSLESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${FSLESL_LOC}\MLIB\include.
19. Tick the box Relative To, and select FSLESL_LOC next to the box. See Figure 1-12.

Click OK.
20. Click the 'Add…' icon in the Search User Paths dialog (#include “…”).
21. Look for the FSLESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${FSLESL_LOC}\GFLIB\include.
22. Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
23. Click the 'Add…' icon in the Search User Paths dialog (#include “…”).
24. Look for the FSLESL_LOC variable by clicking Variables…, and then finish the

path in the box to be: ${FSLESL_LOC}\GMCLIB\include.
25. Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
26. Click the 'Add…' icon in the Search User Paths dialog (#include “…”).

Library integration into project (CodeWarrior™ Development Studio)

AMCLIB User's Guide, Rev. 2, 10/2015

14 Freescale Semiconductor, Inc.

27. Look for the FSLESL_LOC variable by clicking Variables…, and then finish the
path in the box to be: ${FSLESL_LOC}\AMCLIB\include.

28. Tick the box Relative To, and select FSLESL_LOC next to the box. Click OK.
29. Now you will see the paths added in the box. See Figure 1-13. Click OK.

Figure 1-12. Library include path addition

Figure 1-13. Compiler setting

The final step is typing the #include syntax into the code. Include the library into the
main.c file. In the left-hand dialog, open the Sources folder of the project, and double-
click the main.c file. After the main.c file opens up, include the following lines into the
#include section:

#include "mlib.h"
#include "gflib.h"
#include "gmclib.h"
#include "amclib.h"

When you click the Build icon (hammer), the project will be compiled without errors.

Chapter 1 Library

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 15

Library integration into project (CodeWarrior™ Development Studio)

AMCLIB User's Guide, Rev. 2, 10/2015

16 Freescale Semiconductor, Inc.

Chapter 2
Algorithms in detail

2.1 AMCLIB_TrackObsrv

The AMCLIB_TrackObsrv function calculates a tracking observer for the determination
of angular speed and position of the input error functional signal. The tracking-observer
algorithm uses the phase-locked-loop mechanism. It is recommended to call this function
at every sampling period. It requires a single input argument as a phase error. A phase-
tracking observer with a standard PI controller used as the loop compensator is shown in
Figure 2-1.

Figure 2-1. Block diagram of proposed PLL scheme for position estimation

The depicted tracking observer structure has the following transfer function:

Equation 1

The controller gains Kp and Ki are calculated by comparing the characteristic polynomial
of the resulting transfer function to a standard second-order system polynomial.

The essential equations for implementation of the tracking observer according to the
block scheme in Figure 2-1 are as follows:

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 17

Equation 2

Equation 3

where:

• KP is the proportional gain
• KI is the integral gain
• Ts is the sampling period [s]
• e(k) is the position error in step k
• ω(k) is the rotor speed [rad / s] in step k
• ω(k - 1) is the rotor speed [rad / s] in step k - 1
• θ(k) is the rotor angle [rad] in step k
• θ(k - 1) is the rotor angle [rad] in step k - 1

In the fractional arithmetic, Equation 1 on page 17 and Equation 2 on page 18 are as
follows:

Equation 4

Equation 5

where:

• esc(k) is the scaled position error in step k
• ωsc(k) is the scaled rotor speed [rad / s] in step k
• ωsc(k - 1) is the scaled rotor speed [rad / s] in step k - 1
• θsc(k) is the scaled rotor angle [rad] in step k
• θsc(k - 1) is the scaled rotor angle [rad] in step k - 1
• ωmax is the maximum speed
• θmax is the maximum rotor angle (typically)

2.1.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

AMCLIB_TrackObsrv

AMCLIB User's Guide, Rev. 2, 10/2015

18 Freescale Semiconductor, Inc.

The available versions of the AMCLIB_TrackObsrv function are shown in the following
table:

Table 2-1. Init versions

Function name Init angle Parameters Result type

AMCLIB_TrackObsrvInit_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1 ; 1) that
represents an angle (in radians) within the range <-π ; π).

Table 2-2. Function versions

Function name Input type Parameters Result type

AMCLIB_TrackObsrv_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * frac16_t

Tracking observer with a 16-bit fractional position error input divided by π. The output
from the obsever is a 16-bit fractional position normalized to the range <-1 ; 1) that
represents an angle (in radians) within the range <-π ; π).

2.1.2 AMCLIB_TRACK_OBSRV_T_F32

Variable name Input
type

Description

f32Theta frac32_t Estimated position as the output of the second numerical integrator. The parameter is
within the range <-1 ; 1). Controlled by the algorithm.

f32Speed frac32_t Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1 ; 1). Controlled by the algorithm.

f32I_1 frac32_t State variable in the controller part of the observer; integral part at step k - 1. The
parameter is within the range <-1 ; 1). Controlled by the algorithm.

f16IGain frac16_t The observer integral gain is set up according to Equation 4 on page 18 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16IGainSh int16_t The observer integral gain shift takes care of keeping the f16IGain variable within the
fractional range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16PGain frac16_t The observer proportional gain is set up according to Equation 4 on page 18 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16PGainSh int16_t The observer proportional gain shift takes care of keeping the f16PGain variable within the
fractional range <-1 ; 1). The shift is determined as:

Table continues on the next page...

Chapter 2 Algorithms in detail

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 19

Variable name Input
type

Description

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16ThGain frac16_t The observer gain for the output position integrator is set up according to Equation 5 on
page 18 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16ThGainSh int16_t The observer gain shift for the position integrator takes care of keeping the f16ThGain
variable within the fractional range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

2.1.3 Declaration

The available AMCLIB_TrackObsrvInit functions have the following declarations:

void AMCLIB_TrackObsrvInit_F16(frac16_t f16ThetaInit, AMCLIB_TRACK_OBSRV_T_F32 *psCtrl)

The available AMCLIB_TrackObsrv functions have the following declarations:

frac16_t AMCLIB_TrackObsrv_F16(frac16_t f16Error, AMCLIB_TRACK_OBSRV_T_F32 *psCtrl)

2.1.4 Function use

The use of the AMCLIB_TrackObsrv function is shown in the following example:

#include "amclib.h"

static AMCLIB_TRACK_OBSRV_T_F32 sTo;
static frac16_t f16ThetaError;
static frac16_t f16PositionEstim;

void Isr(void);

void main(void)
{
 sTo.f16IGain = FRAC16(0.6434);
 sTo.i16IGainSh = -9;
 sTo.f16PGain = FRAC16(0.6801);
 sTo.i16PGainSh = -2;
 sTo.f16ThGain = FRAC16(0.6400);
 sTo.i16ThGainSh = -4;

 AMCLIB_TrackObsrvInit_F16(FRAC16(0.0), &sTo);

 f16ThetaError = FRAC16(0.5);

AMCLIB_TrackObsrv

AMCLIB User's Guide, Rev. 2, 10/2015

20 Freescale Semiconductor, Inc.

}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Tracking observer calculation */
 f16PositionEstim = AMCLIB_TrackObsrv_F16(f16ThetaError, &sTo);
}

2.2 AMCLIB_AngleTrackObsrv

The AMCLIB_TrackObsrv function calculates an angle-tracking observer for
determination of angular speed and position of the input signal. It requires two input
arguments as sine and cosine samples. The practical implementation of the angle-tracking
observer algorithm is described below.

The angle-tracking observer compares values of the input signals - sin(θ), cos(θ) with
their corresponding estimations. As in any common closed-loop systems, the intent is to
minimize the observer error towards zero value. The observer error is given here by
subtracting the estimated resolver rotor angle from the actual rotor angle.

The tracking-observer algorithm uses the phase-locked loop mechanism. It is
recommended to call this function at every sampling period. It requires a single input
argument as phase error. A phase-tracking observer with standard PI controller used as
the loop compensator is shown in Figure 2-2.

Figure 2-2. Block diagram of proposed PLL scheme for position estimation

Note that the mathematical expression of the observer error is known as the formula of
the difference between two angles:

Chapter 2 Algorithms in detail

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 21

Equation 6

If the deviation between the estimated and the actual angle is very small, then the
observer error may be expressed using the following equation:

Equation 7

The primary benefit of the angle-tracking observer utilization, in comparison with the
trigonometric method, is its smoothing capability. This filtering is achieved by the
integrator and the proportional and integral controllers, which are connected in series and
closed by a unit feedback loop. This block diagram tracks the actual rotor angle and
speed, and continuously updates their estimations. The angle-tracking observer transfer
function is expressed as follows:

Equation 8

The characteristic polynomial of the angle-tracking observer corresponds to the
denominator of the following transfer function:

Appropriate dynamic behavior of the angle-tracking observer is achieved by the
placement of the poles of characteristic polynomial. This general method is based on
matching the coefficients of characteristic polynomial with the coefficients of a general
second-order system.

The analog integrators in the previous figure (marked as 1 / s) are replaced by an
equivalent of the discrete-time integrator using the backward Euler integration method.
The discrete-time block diagram of the angle-tracking observer is shown in the following
figure:

AMCLIB_AngleTrackObsrv

AMCLIB User's Guide, Rev. 2, 10/2015

22 Freescale Semiconductor, Inc.

Figure 2-3. Block scheme of discrete-time tracking observer

The essential equations for implementating the angle-tracking observer (according to this
block scheme) are as follows:

Equation 9

Equation 10

Equation 11

Equation 12

where:

• K1 is the integral gain of the I controller
• K2 is the proportional gain of the PI controller
• Ts is the sampling period [s]
• e(k) is the position error in step k
• ω(k) is the rotor speed [rad / s] in step k
• ω(k - 1) is the rotor speed [rad / s] in step k - 1
• a(k) is the integral output of the PI controler [rad / s] in step k
• a(k - 1) is the integral output of the PI controler [rad / s] in step k - 1
• θ(k) is the rotor angle [rad] in step k
• θ(k - 1) is the rotor angle [rad] in step k - 1

Chapter 2 Algorithms in detail

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 23

• θ̂(k) is the estimated rotor angle [rad] in step k
• θ̂(k - 1) is the estimated rotor angle [rad] in step k - 1

In the fractional arithmetic, Equation 9 on page 23 to Equation 12 on page 23 are as
follows:

Equation 13

Equation 14

Equation 15

where:

• esc(k) is the scaled position error in step k
• ωsc(k) is the scaled rotor speed [rad / s] in step k
• ωsc(k - 1) is the scaled rotor speed [rad / s] in step k - 1
• asc(k) is the integral output of the PI controler [rad / s] in step k
• asc(k - 1) is the integral output of the PI controler [rad / s] in step k - 1
• θsc(k) is the scaled rotor angle [rad] in step k
• θsc(k - 1) is the scaled rotor angle [rad] in step k - 1
• θ̂sc(k) is the scaled rotor angle [rad] in step k
• θ̂sc(k - 1) is the scaled rotor angle [rad] in step k - 1
• ωmax is the maximum speed
• θmax is the maximum rotor angle (typicaly π)

2.2.1 Available versions

The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1).

AMCLIB_AngleTrackObsrv

AMCLIB User's Guide, Rev. 2, 10/2015

24 Freescale Semiconductor, Inc.

The available versions of the AMCLIB_AngleTrackObsrv function are shown in the
following table:

Table 2-3. Init versions

Function name Init angle Parameters Result
type

AMCLIB_AngleTrackObsrvInit_F16 frac16_t AMCLIB_ANGLE_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1 ; 1)
that represents an angle in (radians) within the range <-π ; π).

Table 2-4. Function versions

Function name Input type Parameters Result
type

AMCLIB_AngleTrackObsrv_F16 GMCLIB_2COOR_SINCOS_T_F16 * AMCLIB_ANGLE_TRACK_OB
SRV_T_F32 *

frac16_t

Angle-tracking observer with a two-componenent (sin/cos) 16-bit fractional position
input within the range <-1 ; 1). The output from the obsever is a 16-bit fractional
position normalized to the range <-1 ; 1) that represents an angle (in radians) within
the range <-π ; π).

2.2.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32

Variable name Input
type

Description

f32Speed frac32_t Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1 ; 1). Controlled by the AMCLIB_AngleTrackObsrv_F16 algorithm; cleared by the
AMCLIB_AngleTrackObsrvInit_F16 function.

f32A2 frac32_t Output of the second numerical integrator. The parameter is within the range <-1 ; 1).
Controlled by the AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16
algorithms.

f16Theta frac16_t Estimated position as the output of the observer. The parameter is normalized to the range
<-1 ; 1) that represents an angle (in radians) within the range <-π ; π). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16SinEstim frac16_t Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1 ; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16CosEstim frac16_t Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1 ; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16K1Gain frac16_t Observer K1 gain is set up according to Equation 13 on page 24 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

Table continues on the next page...

Chapter 2 Algorithms in detail

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 25

Variable name Input
type

Description

i16K1GainSh int16_t Observer K2 gain shift takes care of keeping the f16K1Gain variable within the fractional
range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16K2Gain frac16_t Observer K2 gain is set up according to Equation 15 on page 24 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K2GainSh int16_t Observer K2 gain shift takes care of keeping the f16K2Gain variable within the fractional
range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16A2Gain frac16_t Observer A2 gain for the output position is set up according to Equation 14 on page 24 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16A2GainSh int16_t Observer A2 gain shift for the position integrator takes care of keeping the f16A2Gain
variable within the fractional range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

2.2.3 Declaration

The available AMCLIB_AngleTrackObsrvInit functions have the following declarations:

void AMCLIB_AngleTrackObsrvInit_F16(frac16_t f16ThetaInit, AMCLIB_ANGLE_TRACK_OBSRV_T_F32
*psCtrl)

The available AMCLIB_AngleTrackObsrv functions have the following declarations:

frac16_t AMCLIB_AngleTrackObsrv_F16(const GMCLIB_2COOR_SINCOS_T_F16 *psAnglePos,
AMCLIB_ANGLE_TRACK_OBSRV_T_F32 *psCtrl)

2.2.4 Function use

The use of the AMCLIB_AngleTrackObsrvInit and AMCLIB_AngleTrackObsrv
functions is shown in the following example:

AMCLIB_AngleTrackObsrv

AMCLIB User's Guide, Rev. 2, 10/2015

26 Freescale Semiconductor, Inc.

#include "amclib.h"

static AMCLIB_ANGLE_TRACK_OBSRV_T_F32 sAto;
static GMCLIB_2COOR_SINCOS_T_F16 sAnglePos;
static frac16_t f16PositionEstim, f16PositionInit;

void Isr(void);

void main(void)
{
 sAto.f16K1Gain = FRAC16(0.6434);
 sAto.i16K1GainSh = -9;
 sAto.f16K2Gain = FRAC16(0.6801);
 sAto.i16K2GainSh = -2;
 sAto.f16A2Gain = FRAC16(0.6400);
 sAto.i16A2GainSh = -4;

 f16PositionInit = FRAC16(0.0);

 AMCLIB_AngleTrackObsrvInit_F16(f16PositionInit, &sAto);

 sAnglePos.f16Sin = FRAC16(0.0);
 sAnglePos.f16Cos = FRAC16(1.0);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* Angle tracking observer calculation */
 f16PositionEstim = AMCLIB_AngleTrackObsrv_F16(&sAnglePos, &sAto);
}

2.3 AMCLIB_PMSMBemfObsrvDQ

The AMCLIB_PMSMBemfObsrvDQ function calculates the algorithm of back-electro-
motive force observer in a rotating reference frame. The method for estimating the rotor
position and angular speed is based on the mathematical model of an interior PMSM
motor with an extended electro-motive force function, which is realized in an estimated
quasi-synchronous reference frame γ-δ as shown in Figure 2-4.

Chapter 2 Algorithms in detail

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 27

Figure 2-4. The estimated and real rotor dq synchronous reference frames

The back-EMF observer detects the generated motor voltages induced by the permanent
magnets. A tracking observer uses the back-EMF signals to calculate the position and
speed of the rotor. The transformed model is then derived as follows:

Equation 16

where:

• RS is the stator resistance
• LD and LQ are the D-axis and Q-axis inductances
• Ψm is the back-EMF constant
• ωr is the angular electrical rotor speed
• uγ and uδ are the estimated stator voltages
• iγ and iδ are the estimated stator currents
• θerror is the error between the actual D-Q frame and the estimated frame position
• s is the operator of the derivative

The block diagram of the observer in the estimated reference frame is shown in Figure
2-5. The observer compensator is substituted by a standard PI controller. As shown in
Figure 2-5, the observer model and hence also the PI controller gains in both axes are
identical to each other.

AMCLIB_PMSMBemfObsrvDQ

AMCLIB User's Guide, Rev. 2, 10/2015

28 Freescale Semiconductor, Inc.

Figure 2-5. Block diagram of proposed Luenberger-type stator current observer acting
as state filter for back-EMF

The position estimation can now be performed by extracting the θerror term from the
model, and adjusting the position of the estimated reference frame to achieve θerror = 0.
Because the θerror term is only included in the saliency-based EMF component of both uγ
and uδ axis voltage equations, the Luenberger-based disturbance observer is designed to
observe the uγ and uδ voltage components. The position displacement information θerror
is then obtained from the estimated back-EMFs as follows:

Equation 17

The estimated position can be obtained by driving the position of the estimated
reference frame to achieve zero displacement θerror = 0. The phase-locked-loop
mechanism can be adopted, where the loop compensator ensures correct tracking of the
actual rotor flux position by keeping the error signal θerror zeroed, θerror = 0.

A perfect match between the actual and estimated motor model parameters is assumed,
and then the back-EMF transfer function can be simplified as follows:

Chapter 2 Algorithms in detail

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 29

Equation 18

The appropriate dynamic behavior of the back-EMF observer is achieved by the
placement of the poles of the stator current observer characteristic polynomial. This
general method is based on matching the coefficients of the characteristic polynomial
with the coefficients of the general second-order system.

The back-EMF observer is a Luenberger-type observer with a motor model, which is
implemented using the backward Euler transformation as follows:

Equation 19

where:

• i(k) = [iγ, iδ] is the stator current vector in the actual step
• i(k - 1) = [iγ, iδ] is the stator current vector in the previous step
• u(k) = [uγ, uδ] is the stator voltage vector in the actual step
• e(k) = [eγ, eδ] is the stator back-EMF voltage vector in the actual step
• i'(k) = [iγ, -iδ] is the complementary stator current vector in the actual step
• ωe(k) is the electrical angular speed in the actual step
• TS is the sampling time [s]

This equation is transformed into the fractional arithmetic as follows:

Equation 20

where:

• isc(k) = [iγ, iδ] is the scaled stator current vector in the actual step
• isc(k - 1) = [iγ, iδ] is the scaled stator current vector in the previous step
• usc(k) = [uγ, uδ] is the scaled stator voltage vector in the actual step
• esc(k) = [eγ, eδ] is the scaled stator back-EMF voltage vector in the actual step
• i'sc(k) = [iγ, -iδ] is the scaled complementary stator current vector in the actual step
• ωesc(k) is the scaled electrical angular speed in the actual step
• imax is the maximum current [A]
• emax is the maximum back-EMF voltage [V]
• umax is the maximum stator voltage [V]
• ωmax is the maximum electrical angular speed in [rad / s]

AMCLIB_PMSMBemfObsrvDQ

AMCLIB User's Guide, Rev. 2, 10/2015

30 Freescale Semiconductor, Inc.

If the Luenberger-type stator current observer is properly designed in the stationary
reference frame, the back-EMF can be estimated as a disturbance produced by the
observer controller. However, this is only valid when the back-EMF term is not included
in the observer model. The observer is a closed-loop current observer, therefore it acts as
a state filter for the back-EMF term.

The estimate of the extended EMF term can be derived from Equation 18 on page 30 as
follows:

Equation 21

The observer controller can be designed by comparing the closed-loop characteristic
polynomial with that of a standard second-order system as follows:

Equation 22

where:

• ω0 is the natural frequency of the closed-loop system (loop bandwith)
• ξ is the loop attenuation
• KP is the proporional gain
• kI is the integral gain

2.3.1 Available versions

This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is
within the range <-1 ; 1). The parameters use the accumulator types.

• Accumulator output with floating-point inputs - the output is the accumulator result;
the result is within the range <-1 ; 1). The inputs are 32-bit single precision floating-
point values.

The available versions of the AMCLIB_PMSMBemfObsrvDQ function are shown in the
following table:

Table 2-5. Init versions

Function name Parameters Result type

AMCLIB_PMSMBemfObsrvDQInit_F16 AMCLIB_BEMF_OBSRV_DQ_T_A32 * void

Initialization does not have any input.

Chapter 2 Algorithms in detail

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 31

Table 2-6. Function versions

Function name Input/output type Result type

AMCLIB_PMSMBemfObsrvDQ_F16 Input GMCLIB_2COOR_DQ_T_F16 * frac16_t

GMCLIB_2COOR_DQ_T_F16 *

frac16_t

Parameters AMCLIB_BEMF_OBSRV_DQ_T_A32 *

Back-EMF observer with a 16-bit fractional input D-Q current and voltage, and
a 16-bit electrical speed. All are within the range <-1 ; 1).

2.3.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description

Variable name Data type Description

sEObsrv GMCLIB_2COOR_DQ_T_
F32

Estimated back-EMF voltage structure.

sIObsrv GMCLIB_2COOR_DQ_T_
F32

Estimated current structure.

sCtrl f32ID_1 frac32_t State variable in the alpha part of the observer, integral part
at step k - 1. The variable is within the range <-1 ; 1).

f32IQ_1 frac32_t State variable in the beta part of the observer, integral part
at step k - 1. The variable is within the range <-1 ; 1).

a32PGain acc32_t The observer proportional gain is set up according to
Equation 22 on page 31 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32IGain acc32_t The observer integral gain is set up according to Equation
22 on page 31 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32IGain acc32_t The current coefficient gain is set up according to Equation
20 on page 30 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32UGain acc32_t The voltage coefficient gain is set up according to Equation
20 on page 30 as:

Table continues on the next page...

AMCLIB_PMSMBemfObsrvDQ

AMCLIB User's Guide, Rev. 2, 10/2015

32 Freescale Semiconductor, Inc.

Variable name Data type Description

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain acc32_t The angular speed coefficient gain is set up according to
Equation 20 on page 30 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to
Equation 20 on page 30 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

f16Error frac16_t Output - estimated phase error between a real D / Q frame
system and an estimated D / Q reference system. The error
is within the range <-1 ; 1).

2.3.3 Declaration

The available AMCLIB_PMSMBemfObsrvDQInit functions have the following
declarations:

void AMCLIB_PMSMBemfObsrvDQInit_F16(AMCLIB_BEMF_OBSRV_DQ_T_A32 *psCtrl)

The available AMCLIB_PMSMBemfObsrvDQ functions have the following
declarations:

frac16_t AMCLIB_PMSMBemfObsrvDQ_F16(const GMCLIB_2COOR_DQ_T_F16 *psIDQ, const
GMCLIB_2COOR_DQ_T_F16 *psUDQ, frac16_t f16Speed, AMCLIB_BEMF_OBSRV_DQ_T_A32 *psCtrl)

2.3.4 Function use

The use of the AMCLIB_PMSMBemfObsrvDQ function is shown in the following
example:

#include "amclib.h"

static GMCLIB_2COOR_DQ_T_F16 sIdq, sUdq;
static AMCLIB_BEMF_OBSRV_DQ_T_A32 sBemfObsrv;
static frac16_t f16Speed, f16Error;

void Isr(void);

void main (void)

Chapter 2 Algorithms in detail

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 33

{
 sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
 sBemfObsrv.sCtrl.a32IGain= ACC32(0.134);
 sBemfObsrv.a32IGain = ACC32(0.986);
 sBemfObsrv.a32UGain = ACC32(0.170);
 sBemfObsrv.a32WIGain= ACC32(0.110);
 sBemfObsrv.a32EGain = ACC32(0.116);

 /* Initialization of the observer's structure */
 AMCLIB_PMSMBemfObsrvDQInit_F16(&sBemfObsrv);

 sIdq.f16D = FRAC16(0.05);
 sIdq.f16Q = FRAC16(0.1);
 sUdq.f16D = FRAC16(0.2);
 sUdq.f16Q = FRAC16(-0.1);
}

/* Periodical function or interrupt */
void Isr(void)
{
 /* BEMF Observer calculation */
 f16Error = AMCLIB_PMSMBemfObsrvDQ_F16(&sIdq, &sUdq, f16Speed, &sBemfObsrv);
}

AMCLIB_PMSMBemfObsrvDQ

AMCLIB User's Guide, Rev. 2, 10/2015

34 Freescale Semiconductor, Inc.

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two
states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

Table A-1. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused
Logi
cal

TRUE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1

FALSE
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within
the range <0 ; 255>. Its definition is as follows:

typedef unsigned char int8_t;

The following figure shows the way in which the data is stored by this type:

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 35

Table A-2. Data storage

7 6 5 4 3 2 1 0

Value Integer

255
1 1 1 1 1 1 1 1

F F

11
0 0 0 0 1 0 1 1

0 B

124
0 1 1 1 1 1 0 0

7 C

159
1 0 0 1 1 1 1 1

9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables
within the range <0 ; 65535>. Its definition is as follows:

typedef unsigned short uint16_t;

The following figure shows the way in which the data is stored by this type:

Table A-3. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer

65535
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F F F F

5
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 5

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

40768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.4 uint32_t

uint16_t

AMCLIB User's Guide, Rev. 2, 10/2015

36 Freescale Semiconductor, Inc.

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables
within the range <0 ; 4294967295>. Its definition is as follows:

typedef unsigned long uint32_t;

The following figure shows the way in which the data is stored by this type:

Table A-4. Data storage

31 24 23 16 15 8 7 0

Value Integer

4294967295 F F F F F F F F

2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

3451051828 C D B 2 D F 3 4

A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the
range <-128 ; 127>. Its definition is as follows:

typedef char int8_t;

The following figure shows the way in which the data is stored by this type:

Table A-5. Data storage

7 6 5 4 3 2 1 0

Value Sign Integer

127
0 1 1 1 1 1 1 1

7 F

-128
1 0 0 0 0 0 0 0

8 0

60
0 0 1 1 1 1 0 0

3 C

-97
1 0 0 1 1 1 1 1

9 F

Appendix A Library types

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 37

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the
range <-32768 ; 32767>. Its definition is as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table A-6. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer

32767
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-32768
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

15518
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-24768
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the
range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table A-7. Data storage

31 24 23 16 15 8 7 0

Value S Integer

2147483647 7 F F F F F F F

-2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

-843915468 C D B 2 D F 3 4

int16_t

AMCLIB User's Guide, Rev. 2, 10/2015

38 Freescale Semiconductor, Inc.

A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table A-8. Data storage

7 6 5 4 3 2 1 0

Value Sign Fractional

0.99219
0 1 1 1 1 1 1 1

7 F

-1.0
1 0 0 0 0 0 0 0

8 0

0.46875
0 0 1 1 1 1 0 0

3 C

-0.75781
1 0 0 1 1 1 1 1

9 F

To store a real number as frac8_t, use the FRAC8 macro.

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef short frac16_t;

The following figure shows the way in which the data is stored by this type:

Table A-9. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional

0.99997
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table continues on the next page...

Appendix A Library types

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 39

Table A-9. Data storage (continued)

8 0 0 0

0.47357
0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-0.75586
1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within
the range <-1 ; 1). Its definition is as follows:

typedef long frac32_t;

The following figure shows the way in which the data is stored by this type:

Table A-10. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995 7 F F F F F F F

-1.0 8 0 0 0 0 0 0 0

0.02606645970 0 3 5 6 2 5 5 0

-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within
the range <-256 ; 256). Its definition is as follows:

typedef short acc16_t;

The following figure shows the way in which the data is stored by this type:

frac32_t

AMCLIB User's Guide, Rev. 2, 10/2015

40 Freescale Semiconductor, Inc.

Table A-11. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

1.0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 8 0

-1.0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

F F 8 0

13.7890625
0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

0 6 E 5

-89.71875
1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0

D 3 2 4

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables
within the range <-65536 ; 65536). Its definition is as follows:

typedef long acc32_t;

The following figure shows the way in which the data is stored by this type:

Table A-12. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional

65535.999969 7 F F F F F F F

-65536.0 8 0 0 0 0 0 0 0

1.0 0 0 0 0 8 0 0 0

-1.0 F F F F 8 0 0 0

23.789734 0 0 0 B E 5 1 6

-1171.306793 F D B 6 5 8 B C

To store a real number as acc32_t, use the ACC32 macro.

Appendix A Library types

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 41

A.13 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary
coordinate system, based on the A, B, and C components. Each member is of the frac16_t
data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16A;
 frac16_t f16B;
 frac16_t f16C;
} GMCLIB_3COOR_T_F16;

The structure description is as follows:

Table A-13. GMCLIB_3COOR_T_F16 members description

Type Name Description

frac16_t f16A A component; 16-bit fractional type

frac16_t f16B B component; 16-bit fractional type

frac16_t f16C C component; 16-bit fractional type

A.14 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase
stationary coordinate system, based on the Alpha and Beta orthogonal components. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16Alpha;
 frac16_t f16Beta;
} GMCLIB_2COOR_ALBE_T_F16;

The structure description is as follows:

Table A-14. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description

frac16_t f16Apha α-component; 16-bit fractional type

frac16_t f16Beta β-component; 16-bit fractional type

GMCLIB_3COOR_T_F16

AMCLIB User's Guide, Rev. 2, 10/2015

42 Freescale Semiconductor, Inc.

A.15 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16D;
 frac16_t f16Q;
} GMCLIB_2COOR_DQ_T_F16;

The structure description is as follows:

Table A-15. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description

frac16_t f16D D-component; 16-bit fractional type

frac16_t f16Q Q-component; 16-bit fractional type

A.16 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating
coordinate system, based on the D and Q orthogonal components. Each member is of the
frac32_t data type. The structure definition is as follows:

typedef struct
{
 frac32_t f32D;
 frac32_t f32Q;
} GMCLIB_2COOR_DQ_T_F32;

The structure description is as follows:

Table A-16. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description

frac32_t f32D D-component; 32-bit fractional type

frac32_t f32Q Q-component; 32-bit fractional type

A.17 GMCLIB_2COOR_SINCOS_T_F16

Appendix A Library types

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 43

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase
coordinate system, based on the Sin and Cos components of a certain angle. Each
member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
 frac16_t f16Sin;
 frac16_t f16Cos;
} GMCLIB_2COOR_SINCOS_T_F16;

The structure description is as follows:

Table A-17. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description

frac16_t f16Sin Sin component; 16-bit fractional type

frac16_t f16Cos Cos component; 16-bit fractional type

A.18 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value
of the bool_t type. Its definition is as follows:

#define FALSE ((bool_t)0)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
 bVal = FALSE; /* bVal = FALSE */
}

A.19 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of
the bool_t type. Its definition is as follows:

#define TRUE ((bool_t)1)

#include "mlib.h"

static bool_t bVal;

FALSE

AMCLIB User's Guide, Rev. 2, 10/2015

44 Freescale Semiconductor, Inc.

void main(void)
{
 bVal = TRUE; /* bVal = TRUE */
}

A.20 FRAC8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as
follows:

#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>,
which corresponds to <-1.0 ; 1.0-2-7>.

#include "mlib.h"

static frac8_t f8Val;

void main(void)
{
 f8Val = FRAC8(0.187); /* f8Val = 0.187 */
}

A.21 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is
as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) :
0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ;
0x7FFF>, which corresponds to <-1.0 ; 1.0-2-15>.

#include "mlib.h"

static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.736); /* f16Val = 0.736 */
}

Appendix A Library types

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 45

A.22 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is
as follows:

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) :
0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-1.0 ; 1.0-2-31>.

#include "mlib.h"

static frac32_t f32Val;

void main(void)
{
 f32Val = FRAC32(-0.1735667); /* f32Val = -0.1735667 */
}

A.23 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as
follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ;
0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"

static acc16_t a16Val;

void main(void)
{
 a16Val = ACC16(19.45627); /* a16Val = 19.45627 */
}

A.24 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as
follows:

FRAC32

AMCLIB User's Guide, Rev. 2, 10/2015

46 Freescale Semiconductor, Inc.

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 :
0x80000000) : 0x7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range
<0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2-15>.

#include "mlib.h"

static acc32_t a32Val;

void main(void)
{
 a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */
}

AMCLIB User's Guide, Rev. 2, 10/2015

Freescale Semiconductor, Inc. 47

AMCLIB User's Guide, Rev. 2, 10/2015

48 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: www.freescale.com/salestermsandconditions.

Freescale and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respective owners.

© 2015 Freescale Semiconductor, Inc.

Document Number DSP56800EAMCLIBUG
Revision 2, 10/2015

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/salestermsandconditions

	Chapter 1: Library
	Introduction
	Overview
	Data types
	API definition
	Supported compilers
	Special issues

	Library integration into project (CodeWarrior™ Development Studio)
	New project
	Library path variable
	Library folder addition
	Library path setup

	Chapter 2: Algorithms in detail
	AMCLIB_TrackObsrv
	Available versions
	AMCLIB_TRACK_OBSRV_T_F32
	Declaration
	Function use

	AMCLIB_AngleTrackObsrv
	Available versions
	AMCLIB_ANGLE_TRACK_OBSRV_T_F32
	Declaration
	Function use

	AMCLIB_PMSMBemfObsrvDQ
	Available versions
	AMCLIB_BEMF_OBSRV_DQ_T_A32 type description
	Declaration
	Function use

	Appendix A: Library types
	bool_t
	uint8_t
	uint16_t
	uint32_t
	int8_t
	int16_t
	int32_t
	frac8_t
	frac16_t
	frac32_t
	acc16_t
	acc32_t
	GMCLIB_3COOR_T_F16
	GMCLIB_2COOR_ALBE_T_F16
	GMCLIB_2COOR_DQ_T_F16
	GMCLIB_2COOR_DQ_T_F32
	GMCLIB_2COOR_SINCOS_T_F16
	FALSE
	TRUE
	FRAC8
	FRAC16
	FRAC32
	ACC16
	ACC32

	
	

