Freescale Semiconductor, Inc. Document Number: CW_ARMv7_Tracing_User_Guide
Reference Manual 10.0.8, 01/2016

CodeWarrior for ARMv7 Tracing and Analysis
User Guide

h
P

Contents

Contents

(@2 7= 07 (=1 ol BT 1 7o T W o2 1 o o S 5
R O YT TSR 5

1.2 Accompanying doCUMENTATION.........coii it e e e e 6
(O3 F=T o) (=1 g2 I = Tox | T RSP P PR 7
2.1 Configuring @and COIECHING TrACE.ueiii et e e st e e e ae e e e e nnreeee s 7

2.1.1 Creating @ NEW PrOJECE.....ci ittt e e e e st e e e e sent e e e e s atteeeeeeantaeeaaeans 7

D I 0T 1o U 4T a T IR 1 =TSSR 8

2.1.3 Collecting trace dat@..........cceoicuiiiii i e 13

2.1.4 Collecting trace data using an Attach configuration..............ccccccieiiiiiii i 14

2.2 Viewing trace data using Analysis ReSUIS VIEW..........cuuuiiiiiiiiiii e 16

D B I = o Yo Y PRSP 19

2.2.2 TIMEIINE VIBWET ...ttt e e e e e e et e et e e e e e e e e e e s nbabeeeeeeeaaaaeens 20

2.2.2.1 SElECHON MOUE.....cci ittt e e e e et e e e e snree e e e enees 21

2.2.2.2 Z0OOM MOGE.......ooiiiiiieeiiee ettt ettt e e e e e e e e e e e 21

2.2 2.3 FUIN VIBW... ittt ettt et ettt et e et e e sbe e e sbe e e e nnneeaa 21

2.2.2.4 Edit GrOUPS.uuutiiiiiiieie ettt e e e ettt e e e e e e e e e e e e e eaaa b e e e e eeaaaeaeeaeaannanes 21

2.2.3 COAE COVEIAQE VIEWETeiiieiiiieieeeeetteeeeeeetieteaesstteeaeesantaeeeessstaeeaesansteeeeeaansaeeaesanseneaeaans 22

2.2.3.1 SUMMANY £8DIE.....eeeiiiiiiie et e e et e e e e araaea e e e 23

2.2.3.2 Details table......ccooie e 25

2.2.4 PEIfOMMENCE VIBWET.......ciiiiiiiiie e et ettt ee et e e ettt e e st e e e e st e e e s anssaeeeeansseeeesannnseeens 27

2.2.5 Call TIBE VIBWETceeieeeiiee e ettt e ettt e e ettt e e e ettt e e e s ettt e e e ssteeeeeeanssaeeeeaansseeeesansseeeesannnseeens 29

Chapter 3 Collecting and Viewing Linux Trace..........cccccccvviveeiiciineneeeenneneenns 31
3.1 Collecting Linux trace using CoAeWAITION.............uuiiiiiiieeee i e e e e e e e e e 31

3.2 Viewing Linux trace collected without using CodeWarrior..............cccueviiiiieee e 42
Chapter 4 Linux Kernel Debug Print TOOL............eueeiiiii e 45
4.1 Filtering debug Print MESSAGES.ueii ittt e e e e bt e e e e e nbee e e e e enneee 51

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 3

Contents

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
4 Freescale Semiconductor, Inc.

h o
g |

Introduction

Overview

Chapter 1
Introduction

The CodeWarrior for ARMv7® V10.x Tracing and Performance Analysis tool allows you to analyze and collect
data of an application.

You can use this collected data to identify the bottlenecks, such as slow execution of routines or heavily-used
routines within the application. This visibility can help you understand how your application runs, as well as
identify operational problems.

The Ul Platform Configurator tool reads the user settings from the input XML file and transforms them into target
access memory writes to the configuration registers.

The figure below shows the core trace path for LS1021A within the ARMv7 architecture.
Figure 1: Core trace path for LS1021A

Cortex A7 CPU

A7 cores ETE

- DDR

X2

trace bufTer

The Ul Platform Configurator configures the ARMv7 cores Embedded Trace Macrocell (ETM), Funnel,
Embedded Trace FIFO (ETF), and Embedded Trace Router (ETR) modules. The ETF stores and forwards trace
data using a dedicated RAM buffer. This reduces trace loss by absorbing spikes in trace data. The ETR redirects
trace to the system bus for collection from alternative channels. For ARMv7, it is DDR memory.

The destination of the raw trace is either the internal trace buffer of the ETF module or a user defined buffer in
DDR.

This manual describes how the CodeWarrior for ARMv7 V10.x Tracing and Performance Analysis tool can be
used for the LS1020A, LS1021A, LS1022A, and LS1024A devices. This chapter presents an overview of this
manual and introduces you to the Tracing and Performance Analysis tools.

This chapter contains the following sections:
» Overview on page 5

» Accompanying documentation on page 6

1.1 Overview

Each chapter of this manual describes a different area of Tracing and Performance Analysis tools.

The table below describes each chapter in the manual.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 5

Introduction
Accompanying documentation

Table 1: Manual Contents

Chapter

Description

Introduction

Tracing on page 7

Collecting and Viewing Linux Trace on page 31

Linux Kernel Debug Print Tool on page 45

Introduces Tracing and Performance Analysis tool
(this chapter)

Describes the trace collection process and how to use
the trace data for identifying the bottlenecks

Describes how you to collect and view satrace with and
without using CodeWarrior

Describes how Debug Print Tool works. The tool is
independent of CodeWarrior and does not require a
debug session

1.2 Accompanying documentation

The Documentation page describes the documentation included in this version of CodeWarrior Development

Studio for QorlQ LS series - ARM V7 ISA.

You can access the Documentation page by:

* Opening START HERE.html from the <CWInstallDir>\CW_ARMv7\ARMv7\Help folder

» Choosing Help > Documentation from the CodeWarrior IDE menu bar

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

Tracing
Configuring and collecting trace

Chapter 2
Tracing

Tracing is a technique that obtains diagnostic and performance information about a program's execution.

This information is typically used for debugging purposes, and additionally, depending on the type and detail
information contained in a trace log, to diagnose common problems with the software. The trace log includes
information about the trace source, type of event, description of the event and time stamp value.

This chapter contains the following sections:
» Configuring and collecting trace on page 7

* Viewing trace data using Analysis Results view on page 16

2.1 Configuring and collecting trace

To collect trace, you need a project to define your application, a launch configuration to set up a debug
connection to the target, and a trace configuration to define the type of trace data you would like to collect.

This section contains the following subsections:
» Creating a new project on page 7

» Configuring trace on page 8

+ Collecting trace data on page 13

» Collecting trace data using an Attach configuration on page 14

2.1.1 Creating a new project

You need to create a new CodeWarrior bareboard project or open an existing project before you start
collecting the trace data.

To create a new bareboard project:

1. Start the CodeWarrior IDE.

2. From the IDE menu bar, choose File > New > CodeWarrior Bareboard Project Wizard.
The Create a CodeWarrior Bareboard Project page appears.

3. Enter a name for the new project in the Project Name text box.

4. The Location text box shows the default workspace location. To change this location, clear the Use default
location checkbox and click Browse to choose a new location.

5. Use the subsequent dialog to specify a new location. Click OK.

The dialog returns you to the Create a CodeWarrior Bareboard Project page, which now shows the new
location.

6. Click Next.

The Processor page appears.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 7

A 4
4\

Iracing
Configuring and collecting trace

Figure 2: Processor page

I "

¥ CodeWarrior Bareboard Project Wizard = @

Processor

Choose the processor for this project

Processor
type filter text
Layerscape Family
Qorld_L51

L5102M4A
L510204
L510214
L510224
L510244

Project Qutput
@ Application
Static Library

lf?:] < Back H Mext =] | Finish | | Cancel

7. Select the required processor and click Next.

8. The Debug Target Settings page appears. Choose a board from the Board menu and click Next.
9. Do no change the default settings of the rest of the pages and click Next and Finish.

10.From the IDE menu bar, choose Project > Build Project.

The Build Project dialog appears; the build tools generate an executable program.

NOTE
For more information on creating a CodeWarrior project, see CodeWarrior for ARMv7
Targeting Manual (CW_ARMv7_Targeting_Manual.pdf) in the <CWInstallDir>
\CW_ARMv7\ARMv7\Help\PDF folder, where <CWinstallDir>is the installation
directory for the CW4NET installer.

2.1.2 Configuring trace

You need to define the trace configuration before debugging the application for trace collection.
To define a trace configuration:

1. Choose Run > Debug Configurations from the CodeWarrior IDE menu bar.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
8 Freescale Semiconductor, Inc.

Tracing

Configuring and collecting trace

The Debug Configurations dialog appears.

2. In the left pane of this dialog, expand the CodeWarrior tree control.

3. Select the launch configuration corresponding to your project. For example, Project1-
core0_RAM_LS1021AQDS_Download.

A set of tabbed configuration panels appears in the right pane of the dialog.

Figure 3: Debug Configurations dialog

¥ Debug Configurations

Create, manage, and run configurations

Debug or run an application to a target.

iBX|B -
type filter text

a [T] CodeWarrior

E Projectl-core0_RAM_L51021AQDS Download
= Launch Group
[Target Communication Framework

Filter matched 5 of 5 items

Filter by Project:

E ARMVT_Test-corel_RAM_LS1021 ATWR_Download

= ARMWT _Test-cored

= CodeWarrior_Build_Teol_Project-core00
= Projectl -corel

= Test

1= Testl-core00

Mame: Projectl-corel_RAM_L51021AQDS_Download

=] Main

Debug session type

Choose a predefined debug session type or custom type for maximum flexibility

@ Download
Attach

Cennect

Custom

~ C/C++ application

)= Arguments | % Debugger| = Trace and Profile E Source| B§ Environment | = Commen

Project: Projectl-cored Browse...
Application: ${BuildLocation}/Projectl-cored.elf Search Prnje(t...| ‘ Browse... | ‘ Variables... |
» Build (if required) before launching
~ Target settings
Connection: 4 Projectl-corel RAM_L51021AQDS Download - et [mNew. |
Execute reset sequence
Execute initialization scriptis)
The connection is for a multicore target. Please select a core, or multiple cores in the case of SMP:
Target
V| L51021A
V| Cortex-A7-0
Cortex-A7-1
Debug] | Close

4. Click the Trace and Profile tab.

The page appears with two tabs:

» The Overview tab displays the information about the ARMv7 architecture.

» The Basic tab displays the predefined settings. For Platform Configuration Settings, you can apply different
values based on what you want to achieve. The values are called profiles, and the framework allows creation
of different profiles for a configuration block. The profiles dialog is used to create new, rename, delete, or
edit the settings of a profile for a configuration provider.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

V¥ ¢
i

Iracing
Configuring and collecting trace

Figure 4: Trace and Profile tab

33 Debug Configurations

Create, manage, and run configurations

Debug or run an application to a target.

& = 3
= x' = 5= Mame: Projectl-corel_RAM_LS1021AQD5_Download
type filter text =] Main | (9= Arguments 3&& Debugger | = Trace and Profile E:? Source !'_5 Environment | = Common
[£] CodeWarrior Overview | Basic =

E ARMVT _Test-coreld_RAM_LS1021ATWR_Download

E Projectl-cored_RAM_L51021AQDS Download
= Launch Group Platform Configuration Settings

/| Trace and Profile

FE Target Communication Framewaork User Code

m

/| Upload trace on terminate or disconnect

[Projectl -cored RAM_L51021AQDS_Downloadami ~ |

| MNew | | Rename | | Edit |

Filter matched 5 of 5 items Delete Export

Filter by Project:

= ARMWT Test-corel

= CodeWarrior_Build_Tool_Project-cored0
= Projectl-corel

= Test

= Testl-corel0

| Apply | ‘ Revert |

|@:| [Debug l | Close |

5. The Trace and Profile checkbox is selected for the trace session to start immediately on debug launch. If
User Code checkbox is selected, it lets you upload trace into CodeWarrior when trace session is started
from user code or tools other than CodeWarrior. That is, the application where you make your own
configuration of trace registers in the trace hardware explicitly and CodeWarrior is not involved. If Upload
trace on terminate or disconnect checkbox is selected, the trace data is automatically collected when
debug session is terminated. In the combo box, you can see a default platform configuration file having
same name as you have for launch configuration.

6. You can create, rename, edit, delete, or export the platform configuration file. The Export button allows you
to export the platform configuration file to other platform for later use.

NOTE
You can create your own configuration file by using a template placed at:
<CWInstallDir>\CW_ARMv7\ARMv7\sa_ls\data
\fsl.configs.sa.ls.configurators/

7. If you want to create or manage new profiles, you can invoke the Trace Configurations dialog by clicking
on the Edit button. You can see a tree viewer on the left side that lists all the profiles. The content in right
pane is driven by the selection in the left pane.

« If you select the required core under the Trace Generators on the left pane, the entries corresponding to
that configuration are displayed on the right pane.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
10 Freescale Semiconductor, Inc.

Tracing

Configuring and collecting trace

Trace Configurations

e

¥ Trace Configurations

Configure trace IP

Software Analysis Configuration

Trace Generators
Corel
Corel
Data Streams
Results Folder

Projectl -corel_RAM_LS1021AQD5_Download xml

by

Enable Trace
| Enable Trace

Trace scenarios

Data Trace Bandwidth
@ Program Trace

Custom |:|
Settings Low

General Settings

Enable timestamp

=[O /s

0K

] | Cancel

The following settings can be configured for each core or trace generator:

» Trace Scenarios: Choose a trace scenario type from the Trace Scenarios panel.

» General Settings: Select Timestamp checkbox in the General Settings panel to enable timestamp.
Timestamping is useful for correlating multiple trace sources. Timestamping is performed by the
insertion of timestamp packets into the trace streams. It displays the value of platform global timestamp

generator (64-bit wide).

+ If you select Data Streams to collect trace data, the entries corresponding to the selected buffer are

displayed on the right pane.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

11

A 4
4\

Iracing
Configuring and collecting trace

Figure 6: Data Streams

I =

¥ Trace Configurations (=] @

Software Analysis Configuration

Configure trace [P

4 Projectl-corel_RAM_L51021AQDS Download.xml
4 Trace Generators

Corel ETF

Corel @ DDR

Data Strearns

Results Folder

Trace collection location

Trace collection mode

@ One buffer

Chverwrite

DDR Address Range
Start address

0xE1000000
Size (bytes)
(4000

f;?:l 0K l | Cancel

The following settings can be configured for each data stream:
* Trace collection location: Choose ETF or DDR as the trace collection location.

* Trace collection mode: Choose One buffer or Overwrite as the trace collection mode. If the One buffer
option is choosen, then trace can only be collected until the buffer is filled. In this case, only the first
buffer size part of the trace is kept. If the Overwrite option is choosen and the buffer is filled, then the
pointer returns to the beginning of the buffer and overwrites the older trace. In this case, only the last
buffer size part of the trace is kept.

In case the trace is collected in the DDR buffer, then you also need to specify the following options to set
the address range for the DDR trace buffer:

« Start address: Indicates the start address of the trace buffer in the DDR memory.

+ Size: Indicates the size of the DDR trace buffer in bytes.

NOTE
Each time you collect new trace data for a project, the existing trace data will be
overwritten.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

12 Freescale Semiconductor, Inc.

2.1.3 Collecting trace data

Tracing
Configuring and collecting trace

After creating a project and defining launch configuration and trace configuration, you can start a debug

session and start collecting trace data.

You can perform trace collection tasks using the buttons available in the Debug view.

To collect trace data:

1. In the Debug Configurations dialog, click Debug.

The IDE switches to the Debug perspective; the debugger downloads your program to the target development
board and halts execution at the first statement of main ().

In the editor view (center-left of perspective), the program counter icon on the marker bar points to the next

statement to be executed.

Figure 7: Debug perspective
¥3 Debug - Project?- cored/Sources/main.c - CodeWarrior Development Studio =N NoR =
File Edit Source Refactor Mavigate Search Project Run ProcessorExpert Window Help
M-S S SR $ 0 -G Hl-flee e £ (5 Debug | s /-
% Debug 32 = B |[¢9= variables 2 . ©g Breakpoints| [Cache| !} Registers | =\ Modules =0
P [O] (Q:p| P | i F|F M m v| Ty Upload Trace | = % ‘ &= " 5 | il
[£] Project-cored_RAM_LSL02LATWR_Download [CodeWarrior] Name Value
& ARMWT, Project2-corel.elf, core 0 (Supervisor mode/Secure) (Suspended) (9= iteration 3
Thread [ID: 0:0] (Suspended: Signal 'Halt' received. Description: User halted thread.)
= 2 main(} main.c:35 0:x8000010c 4 [3
= 1 (AsmSection)() crt0.5:416 0:x80000260 -
p C\Users\b34823\workspacel 2'\Project2-corel\RAM\Project2-cored. elf (8/21/15 2:13 PM) - -
|| main.c &2 = E5 Disassembly I3 EE Outline =8
if (iteration & 1) - Enter location here - \ 2 5 \ (il =
1. 35 { L
ret = 1 » seeee1ec: stmfd spl,{ri1,1r}
}1 50000110: add rilil,sp,#8x4
z =€ 50000114: sub sp,sp,Hexs
L . 36 int iteration = @; =
ret = Recursive(iteration % 28); e mov r3,#0x@
turn ret: s@@@@llc: str r3,[rll,#-8]
return ret; 48 Performanceblork (iteration);
H 20000120: ldr re,[rll,#-3]
. . . Bee88124: bl PerformanceWork (@x3000008c); ©x3000803c
int main(void) : ‘
41 iteration++;
L int it i sy 50080128 : ldr r3,[r11,#-8]
int iteration = @5 2600812c: add r3,r3,#8x1
2epeal3n: str r3,[rll,#-3
for(i5) 52 p et !
Performanceriork (iteration); Beeeelid; b mall’H_-BXl4 (ex3epeelze) ; @xseesslle
iterati . (AsmSection):
iteration+; 52 bl _rdimon_hw_init_hook
¥ 80080133 bl _rdimon_hw_init_hock (@x300002c8); 8x300002:0
eturn B 107 movs r@, #AngelSWI_Reason_HeapInfo
return 83 8000013c: movs r@,#exle
} = || 1es adr r1, .Lco point at ptr to 4 words to receive T
< [« I »
&4 Commander &3 2~ T 0|[B Conso 2 &) Tasks| @ Memor| 48 Remot| {8 Target | (£ Proble | 3 Execut =0
. . ; . . ARMVT, Project2-corel.elf, core 0 (Supervisor mode/Secure)
~ Project Creation ~ Build/Debug ~ Settings ~ Miscellaneous = _
N) o) P = | &aEEE 225
49 Import project & Build (Al) G Projectsettings () Welcome screen -
[Import example project # Clean (Al %5 Build settings &= Quick access
¥ CodeWarrior Bareboard Project %% Debug % Debug settings # Flash programmer =
[
0* Writable Smart Insert 35:1

2. In the Debug view, click Resume ¥ |

The data collection starts and the Resume button gets disabled. The debugger executes all statements, the
program writes the strings in the Console view and then enters an infinite loop.

" Let the application execute for several seconds and click Suspend' ", if you want to stop the collection
temporarily. Again, click Resume to start the trace collection and when it finishes, click Terminate.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

13

I racing

Configuring and collecting trace

2.1.4 Collecting trace data using an Attach configuration

This section explains how to collect trace using an Attach launch configuration.

The Attach launch configuration is useful when you want to connect to a running target without resetting the
target or downloading a different application on it. For more information on Attach launch configuration, see
CodeWarrior for ARMv7 Targeting Manual (CW_ARMv7_Targeting_Manual.pdf) in the <cwrnstallpirs>
\CW_ARMv7\ARMv7\Help\PDF folder.

To configure your application for trace collection using the Attach launch configuration:

1. Create a project with the Attach launch configuration using the CodeWarrior Bareboard Project Wizard.

o

a. From the IDE menu bar, choose File > New > CodeWarrior Bareboard Project Wizard.
b.

Enter a name for the new project in the Project Name text box.
Click Next and select the required processor in the Processors page.

Click Next and select the Attach checkbox in the Debug Target Settings page. Choose the Default
option to create an Attach configuration based on default parameters.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

14

Freescale Semiconductor, Inc.

Tracing
Configuring and collecting trace

Figure 8: Creating Attach launch configuration in Debug Target Settings page
¥ CodeWarrior Bareboard Project Wizard = @
Debug Target Settings
Target Settings
Debugger Connection Types
@ Hardware
Emulator
Board L51021AQ05 -
Launch Connection
Download i b
| Attach -4 Default i
Attach ROM i -
Connect - -
Download OCRAM | 7 -
Connect OCRAM il -
Connection Type CodeWarrior TAP (over Ether «
TAP address 10.171.77.245 il
3
©) <Back || Net> || Finsh || Cancel

e. Select the required Connection Type and click Next.
f. Follow the remaining steps of the wizard and click Finish.
2. Build the project.
3. Choose Run > Debug Configurations to open the Debug Configurations dialog.

4. Expand CodeWarrior in the left pane of the dialog and select the Attach launch configuration
corresponding to your project.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 15

Iracing
Viewing trace data using Analysis Results view

Figure 9: Selecting Attach launch configuration

¥ Debug Configurations @
Create, manage, and run configurations P Ty
Debug or run an application to a target. J
= Y
MR | = v T Name: ProjectZ-core0 RAM_LS1021AQDS Attach
type filter text [£] Main . #9- Arguments| %% Debugger| = Trace and Profile 2 Source | B Environment| = Commen
a4 [T] CodeWarrior Debug session type
[E] ARMWT_Test-corel_RAM_L51021 ATWR_Download Choose a predefined debug session type or custom type for maximum flexibility
[] Projectl-cored_RAM_LS1021AQDS_Download Download Connect
[c | Project2-core0_RAM LS1021AQDS_Attach @ Attach Custom
= Launch Group
& Target Communication Framework AR e s
Project: Project2-corel Browse...
Application: ${BuildLocation}/Project2-corell.elf Search ija{t..“ | Browse... | | Variables... |

} Build (if required) before launching

= Target settings

Connection: -4 Project2-core_RAM _L51021AQDS_Attach - Edite [New.. |

Execute reset sequence
Filter matched & of 6 items o .
Execute initialization script(s)

Filter by Project: The connection is for a multicore target. Please select a core, or multiple cores in the case of SMP:
1= ARMVT _Test-cored Target

=+ CodeWarrior_Build_Toel_Project-cored0 7] L510214

=" Project]-corel V| Cortex-A7-0

1= Project2-cored Cortex-AT-1

= Test

1= Testl-cored0

\E Debug Close

NOTE
The Attach configuration assumes that code is already running on the board and
therefore does not run a target initialization file. Therefore, when attach launch
configurations are used, ensure that the target is already running.
5. In the Main tab of the dialog, make sure that Attach is selected in the Debug Session Type group.

6. Open the Trace and Profile tab.

7. Select the Trace and Profile checkbox on the Basic tab to enable trace and profile options. The Upload
trace on terminate or disconnect checkbox is selected, by default.

8. Click Debug.

9. Click Resume to start collecting the trace data.

10.Click Suspend after some time to stop trace collection.
11.Click the Upload Trace button to get the collected trace.

12.0pen the Trace viewer to view the collected data.

2.2 Viewing trace data using Analysis Results view

The Analysis Results view provides access to various trace data results collected on an application.

The Analysis Results view shows and manages collected trace and profiling data. It provides link to open any
supported viewer: Trace, Timeline, Code Coverage, Performance, and Call Tree. This view provides functions
like save results, rename, and delete to help you to organize collected results.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
16 Freescale Semiconductor, Inc.

Tracing
Viewing trace data using Analysis Results view
To open the Analysis Results view:

1. Choose Window > Show View > Other from the CodeWarrior IDE menu bar. The Show View dialog
appears.

2. Select Software Analysis > Analysis Results and click OK. The Analysis Results view appears.

NOTE
The Analysis Results view pops up and gets focus after successful trace collection. It
does not refresh automatically.

Figure 10: Analysis Results view

&' Analysis Results 72 =g
Analysis Results =R =RE]
Mame Trace Timeline Code Coverage Perfermance Call Tree Last Modified Motes
1= Project2-core)_RAM_LS1021ATWR_Download
= ETF
= Project2-corel ,j Trace r'." Timeline Code Coverage @ Perfermance E Call Tree 2015.08.21 02:31:34 PM

The Analysis Results view toolbar provides the following options:

Table 2: Analysis Results view - toolbar options

Option Description
o Refreshes the displayed data.
- Expands all the nodes.

Collapses all the nodes.

- Select custom results folder.
=

The Analysis Results view shortcut menu, which appears on right-click, provides the following options.

Table 3: Analysis Results view - shortcut menu commands

Option Description
Refresh Refreshes the displayed data.
Expand All Expands all the nodes.
Collapse All Collapses all the nodes.
Results Lets you select a custom trace results folder.
Copy Cell Copies the currently selected cell. The name of the
data source is copied to the clipboard.
Table continues on the next page...

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 17

I racing

Viewing trace data using Analysis Results view

Table 3: Analysis Results view - shortcut menu commands (continued)

Option

Description

Copy Line
Save Results

Delete Results

Copies the complete line of the data source.
Saves the trace results.

Deletes all the saved results.

The trace file can automatically be saved after trace collection completes or is stopped. To enable automatic

saving of trace file, follow these steps:

1. Choose Window > Preferences. The Preferences dialog appears.

2. Click Software Analysis in the left pane of the Preferences dialog, and select the Automatically save trace
results checkbox in the right pane, as shown in the figure below.

Figure 11: Preferences dialog

.

ﬁ' Preferences
type filter et

General

CfC++

Coloring Editor
Freescale Licenses
Help
Install/Update
Processor Expert
Remote Launch
Rermote Systems
Run/Debug
Software Analysis
Team

Terrninal

Software Analysis - v v

Software Analysis Preferences
| Do not locate file for path mapping
| Automatically save trace results

Optimize profilers for large executable files

| Restore Defaults| | Apply |

[Ok] | Cancel |

3. Click OK to apply the setting and close the Preferences dialog.

Now, when you will collect trace, the trace file will be saved in the .AnalysisData folder of the current workspace.

The Analysis Results view provides hyperlinks to open:

» Trace viewer on page 19

+ Timeline viewer on page 20

» Code Coverage viewer on page 22

» Performance viewer on page 27

+ Call Tree viewer on page 29

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

18

Freescale Semiconductor, Inc.

Tracing

Viewing trace data using Analysis Results view

2.2.1 Trace viewer

The Trace viewer displays the decoded trace event data generated during the data collection phase.

To view trace data:

1. In the Analysis Results view, expand the project name.

All trace collections performed for the project are displayed.

2. Click the Trace hyperlink, and view the trace data in the Trace viewer.

A Project?-corel.csv 52

Figure 12: Trace viewer

=0

Timestamp | -

Index | Source Type Description | Address | Destination

1 Corel Info SYMNC packet - ETM 0
+2 Corel Custom ISYMNC PACKET - ETM - exit from debug state 0

3 Corel Software Context software context id = 0 0
+4 Corel Linear Function initialise_monitor_handles 0x800004 &4 0

5 Corel Info Drop packet due to missing SYNC before it - ETM - val=0x0 0
+6 Corel Linear Function initialise_monitor_handles 0xE300004 &8 0
+7 Corel Info Exception packet - ETM - ARM mode 0
+E Corel Branch Branch from initialise_monitor_handles to <no debug info> 0xE0000518 0B 0
+9 Corel Linear Function <no debug info> 0x8 221
+10 Corel Info Exception packet - ETM - last instruction traced was canceled 221
+11 Corel Custom ISYMNC PACKET - ETM - exit from debug state 221

12 Corel Software Context software contextid = 0 221
13 Corel Linear Function initialise_monitor_handles 0xB000051 ¢ 3469057334
+14 Corel Linear Function initialise_monitor_handles 0xE0000520 3469057994
+15 Corel Linear Function initialise_monitor_handles 0xE000053¢ 3469057994
+16 Corel Linear Function initialise_monitor_handles 0x280000548 3469057994
+17 Corel Branch Branch from initialise_monitor_handles to initialise_monitor_handles 0xB8000055¢ 080000548 3469057994
+18 Corel Linear Function initialise_monitor_handles 0xB0000548 3469057994
149 Corel Branch Branch from initialize_monitor_handles to initialise_monitor_handles 0xB000055¢ 0xB0000548 3469057334
+20 Corel Linear Function initialise_monitor_handles 0xE0000548 3469057994
+21 Corel Branch Branch from initialize_monitor_handles to initialise_monitor_handles 0xE000055¢ (080000548 3469057994
+22 Corel Linear Function initialise_monitor_handles 0x280000548 3469057994
+23 Corel Branch Branch from initialise_monitor_handles to initialise_monitor_handles 0xB8000055¢ 080000548 3469057994
+ 24 Corel Linear Function initialise_monitor_handles 0xB0000548 3469057994
25 Corel Branch Branch from initialize_monitor_handles to initialise_monitor_handles 0xB000055¢ 0xB0000548 3469057334

The data in Trace viewer is organized in a way to ease the evaluation of tracing information and navigation

through the events in the sequence they were logged. This data can be very complex, and the size of the decoded
data can be very large, up to approximately 40 GB. The Trace viewer is constrained by the size of the decoded
data. Currently, the SAE can iterate over a maximum of 2232 items of raw Nexus trace. Each item of undecoded
trace can be associated with zero, one, or multiple decoded trace events.

The Trace viewer displays the collected trace data in a tabular form. You can move the columns to the left or
right of another column by dragging and dropping.

The following table describes the Trace viewer fields.

Table 4: Trace viewer fields

Table continues on the next page...

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Field Description
Index Each decoded event has a unique number starting with 1.
Source Displays the source function of the trace line if it is a call or a branch.

Freescale Semiconductor, Inc.

19

V¥ ¢
i

Iracing
Viewing trace data using Analysis Results view

Table 4: Trace viewer fields (continued)

Field Description

Type Specifies the type of event that has occurred, such as Info, Branch, Error,
Function Return and Function Call.

Description Displays detailed information about the trace line.

Address Displays the starting address of the target function.

Destination Displays the end address of the target function.

Timestamp Specifies the timestamp value that is expressed as clock ticks. Depending

on the configuration of the trace source, this can be relative to the event's
trace source or relative to all events logged from all sources.

2.2.2 Timeline viewer

The timeline data displays the functions that are executed in the application and the number of cycles each
function takes when the application is run.

To view timeline data:

1. In the Analysis Results view, expand the project name.
The data source is listed under the project name.

2. Click the Timeline hyperlink.
The Timeline viewer appears.

Figure 13: Timeline viewer

[* Project2-corel.timeline &3 =5

[« Timeline - Project2-core0.timeline - .AnalysisData

CoreQ &

Selection Mode | Zoom Mode Full View Edit Groups

The Timeline viewer shows a timeline graph in which the functions appear on y-axis and the number of cycles
appear on x-axis. The green-colored bars show the time and cycles that the function takes.

The Timeline viewer also displays the following buttons:
» Selection Mode on page 21

* Zoom Mode on page 21

* Full View on page 21

+ Edit Groups on page 21

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
20 Freescale Semiconductor, Inc.

Tracing
Viewing trace data using Analysis Results view

2.2.2.1 Selection Mode

The Selection Mode allows you to mark points in the function bars in the timeline graph to measure the
difference of cycles between those points.

To mark a point in the bar:
1. Click Selection Mode.
2. Click on the bar where you want to mark the point.
A yellow vertical line appears displaying the number of cycles at that point.
3. Right-click another point in the bar.

A red vertical line appears displaying the number of cycles at that point along with the difference of cycles
between two marked points.

Figure 14: Selection mode to measure difference of cycles between functions

[* Project2-cored.timeline 53 =

f Timeline - Project2-core0.timeline - .AnalysisData
Core0

Selection Mode | Zoom Mode Full View Edit Groups

50,000,000,000 100,000,000,000]

00}
- 000
- 000
e
I
s

You might view a difference in the time cycles displayed in the Timeline viewer and the Code Coverage viewer.
The difference is caused by the events in the functions (in your source code) that have no new timestamp. For
timeline, any instruction that has no timestamp information is considered to take one CPU cycle.

2.2.2.2 Zoom Mode

The Zoom Mode allows you to zoom-in and zoom-out in the timeline graph.

Click Zoom Mode and then click the timeline graph to zoom-in. To zoom-out, right-click in the timeline graph.
You can also move the mouse wheel up and down to zoom-in and zoom-out.

2.2.2.3 Full View

The Full View allows you to get back to the original view if you selected the Zoom mode.

NOTE
The Selection Mode is the default mode of the timeline view.

2.2.2.4 Edit Groups

The Edit Groups lets you customize the timeline according to your requirements.

For example, you can change the default color of the line bars representing the functions to differentiate between
them. You can add/remove a function to/from the timeline. To perform these functions, click Edit Groups. The
Edit Groups dialog appears.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 21

Iracing
Viewing trace data using Analysis Results view

Figure 15: Edit Groups dialog

¥ Edit Groups

Mame
"initialise_monitor_handles"
=no debug infox
"(AsmSection)_0x80000138"
"main”

"Recursive"

"PerformanceWork”

EEEEE

Addresses

(xB0000474 - 0xB0000583
(D - 0aD

(xB0000138 - 0xB0000283
(B000010¢ - 0x80000137
(20000040 - 08000008 kb
hB000008 ¢ - 08000010k

Color

i

OK

Cancel

2.2.3 Code Coverage viewer

The Code Coverage viewer allows you to analyze the flat profile of your application either at a functional level

or at a file level.

To view code coverage data:

1. In the Analysis Results view, expand the project name.

All trace collections performed for the project appear.

2. Click the Code Coverage hyperlink.

The Code Coverage viewer appears.

Figure 16:

Code Coverage viewer

Project2-corel flatprofiler i =08
Code Coverage - Project2-core0
Core0 X
Summary Table ey T B : o
File/Function Address Covered ASM % Not Covered ASM % Total ASM instructions Total number of source lines ASM Decision Coverage % Time Size n
4 Context 0 E
a oS N/A 5181 % 4818 % a3 75 2222% 3,404,061 488 332
(AsmSection)_0x80000138 0x80000138 5181 % 4819 % a3 75 22.22% 3,404,061 488 332
4 main.c N/A 100.00 % 0.00 % 62 17 50.00 % 190,455,075,661 248
PerformanceWork (0xB000008¢ 100.00 % 0.00 % 32 7 50.00 % 50,405,509 128
Recursive 0xB0000040 100.00 % 0.00 % 19 5 50,00 % 1,426,102,288 76
main 0xB000010¢ 100.00 % 0.00 % u 5 0.00 % 6,840 44
4 _No source info N/A 177 % 98.23 % 2,096 0 026 % 3469,057,994 8356
_erme 0xB0000ed ¢ 0.00 % 100.00 % 4 0 0.00 % 0 16
_fp_lock 0xB0000e5¢ 0.00 % 100.00 % 2 0 0.00 % 0 g
_fp_lock_all 0xB000113¢ 0.00 % 100.00 % G 0 0.00 % 0 24 -
Details Table Search: 2 ‘ U - ‘EJ -
Line / Address Instruction Coverage ASM Decision Coverage ASM Count Time n
20 { Y] covered 360 34,472
0xE000008c stmfd sp!, [rll,1lr} ¥ covered a0 34,472
0x80000030 add rll,ap, #0x4 ¥l covered a0 a
0xE0000094 sub sp, sp, #0x10 ¥l covered 90 0
0xE0000098 str r0, [rll, #-16]] covered a0 a
21 int ret = 0: 7] covered 181 0
0x800000%c mov r3, #0x0 ¥l covered 90 a
0xB00000a0 str r3, [rll, §-8] ¥l covered a1 [1] -

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

22

Freescale Semiconductor, Inc.

Tracing
Viewing trace data using Analysis Results view

The Code Coverage viewer divides the critical code data into two tabular views: Summary Table and Details
Table.

This section contains the following subsections:
+ Summary table on page 23

+ Details table on page 25

2.2.3.1 Summary table
The Summary table of the Code Coverage viewer displays the summary of the functions executed in the
application.

The Summary table provides tree and flat view structures to display code coverage data. The tree view is the
default structure in which the functions are grouped by source file. You can expand or collapse in the column to
view the functions contained in the corresponding source file. In a flat view structure, all functions are displayed
individually. You can switch between tree view or flat view by right-clicking on a column name of the Summary
table and selecting the Switch to tree/flat view option.

The Summary table contains the fields as described in the table below. You can switch to ASM instructions

statistics or source lines statistics alternatively using the button =" | available on the toolbar on the right side of
the Summary table. The columns are movable; you can drag and drop the columns to move them according to
your requirements. The table below shows the metrics for ASM level coverage with assembly instructions

"

coverage percentage and total number of assembly instructions per function/module. Clicking the button
to switch to source lines statistics shows metrics for source line coverage with number of source lines covered,
not covered, partially covered, and total number of source lines per function/module.

Table 5: Summary table - Description of ASM instructions statistics

Name Description

File/Function Displays the name of the function that has executed.
Address Displays the start address of the function.

Covered ASM % Displays the percentage of number of assembly instructions

executed from the total number of assembly instructions per function
or per source file.

Not Covered ASM % Displays the percentage of number of assembly instructions not
executed from the total number of assembly instructions per function
or per source file.

Total ASM instructions Displays the total number of assembly instructions per function and
per source file.

ASM Decision Coverage % Displays the decision coverage computed for direct and indirect
conditional branches. It is the mean value of the individual decision
coverages. Therefore, if a function has two conditional instructions,
one with 100% and another with 50% decision coverage, the decision
coverage would be (100 + 50) / 2 = 75% . It is calculated only for
assembly instructions and not for C source code.

Time Displays the total number of clock cycles that the function takes.

Size Displays the number of bytes required by each function.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 23

Iracing
Viewing trace data using Analysis Results view

NOTE
In the Code Coverage viewer, all functions in all files associated with the project are
displayed irrespective of coverage percentage. However, the 0% coverage functions do
not appear in the Performance and Call Tree viewers because these functions are not
considered to be computed and are not a part of caller-called pair.

Figure 17: Summary table of Code Coverage viewer

Project2-corel flatprofiler &3

Code Coverage - Project2-core0

Cored I%
Summary Table TR g+ I = i

File/Function Address Covered ASM % Mot Covered ASM % Total ASM instructions Total number of source lines ASM Decision Coverage % Time Size i
4 Context 0 £

4 crids N/A 51.81 % 4319 % a3 75 2222% 3,404,061 488 332

(AsmSection)_0:x30000138 0x80000138 5181 % 4319 % a3 75 2222 % 3,404,061 488 332

4 main.c N/A 100.00 % 0.00 % 62 17 50.00 % 190,455,075,661 248

PerformanceWork 0xB000008¢ 10000 % 0.00 % 32 7 50,00 % 50,405,509 128

Recursive 030000040 100.00 % 0.00 % 19 5 50,00 % 1,426,102,288 76

main 0x8000010¢ 100,00 % 0.00 % 11 5 0.00 % 6,840 44

4 _No source info N/A 177 % 98.23 % 2,096 1] 0.26 % 3,469,057 994 8,356

_enno 0x80000edc 0.00 % 100,00 % 4 0 0.00 % 0 16

_fp_lock 0xB0000e5¢ 0.00 % 100.00 % 2 1] 0.00 % 1] 8
_fp_lock_all 0xB000113¢ 0.00 % 100.00 % 6 0 0.00 % 0 L

Click the column header to sort the Code Coverage data by that column. However, you can sort the Code
Coverage data only in the flat view structure. The table below lists the buttons available in the statistics view of
the Code Coverage tab.

Table 6: Buttons available in Summary table of Code Coverage viewer

Name Button Description

Previous function Lets you view the details of the previous function that was
selected in the Summary table before the currently selected
function. Click it to view the details of the previous function.

Next function Lets you view the details of the next function that was
= selected in the Summary table.

NOTE: The Previous and Next buttons are contextual and
go to previous/next function according to the history of
selections. So if you select a single line in the view, these
buttons will be disabled because there is no history.

Lets you export the Code Coverage data in a CSV or html
format. Click the button to choose between Export to CSV or
Export to HTML options. The Export to CSV option lets you
export data of both Summary and Details tables. The
exported html file contains the statistics for all the source
files/functions from the Summary table along with the
statistics of source, assembly or mixed instructions.

Export

Table continues on the next page...

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
24 Freescale Semiconductor, Inc.

Tracing
Viewing trace data using Analysis Results view

Table 6: Buttons available in Summary table of Code Coverage viewer (continued)

Name

Button

Description

Configure table

Filter files

Collapse/Expand all files

Switch to executable source lines
statistics/Switch to ASM
instructions statistics

Lets you show and hide column(s) of the Code Coverage
data. Click the button and select the appropriate option to
show/hide columns of the Summary/Details table. The Drag
and drop to order columns dialog appears in which you can
select/deselect the checkboxes corresponding to the
available columns to show/hide them in the Code Coverage
viewer. The option also allows you to set CPU frequency and
set time in cycles, milliseconds, microseconds, and
nanoseconds.

Lets you expand or collapse all files in the Summary table.

Allows you to choose the list of files to be displayed in the
Summary table.

Lets you switch between source lines or ASM instructions to
be displayed in the Summary table.

2.2.3.2 Details table

The Details table of the Code Coverage viewer displays the statistics for all the instructions (source and
disassembly) executed in a particular source file.

Click a hyperlinked file/function in the Summary table of the Code Coverage viewer to view the corresponding
statistics for the instructions executed in that file/function. For example, the statistics of the strien () function
are shown in the figure below.

Figure 18: Details table

Project2-cored flatprofiler [=0
Code Coverage - Project2-core0
Corel I3
Summary Table FERE R = o
File/Function Address Covered ASM % Mot Covered ASM % Total ASM instructions Total number of source lines ASM Decision Coverage % Time Size -
4 Context 0 E
4 crils N/A 5181 % 4319 % 83 75 222% 3,404,061,488 332
(AsmSection)_D:x30000138 0x80000138 5181 % 4819 % 83 75 2222% 3,404,061,488 332
4 main.c N/A 100.00 %5 0.00 % 62 17 50.00 % 190,455,075,661 248
PerformanceWork 0x8000008¢ 100,00 % 0.00 % 32 7 50,00 % 50,405,508 128
Recursive 0x80000040 100.00 %5 0.00 % 19 5 50.00 % 1,426,102,288 6
main 0xB000010c 100.00 % 0.00 % 11 5 0.00 % 6,840 44
4 _Nosourceinfo N/A 177 % 98.23 % 2,096 0 0.26 % 3,469,057,994 8356
_enmno 0xB0000edc 0.00 % 100.00 % 4 0 0.00 % 0 16
_fp_lock 0x80000e5¢ 0.00 % 100,00 % 2 0 0.00 % 0 g
_fp_lock_all 0xB000113¢ 0.00 % 100.00 % 6 0 0.00 % 0 LI
Details Table Search: 2 JJ ~Cl-
Line / Address Instruction Coverage ASM Decision Coverage ASM Count Time -
20 i] covered 360 34,472
0x8000008c stmfd sp!, {rll,1lr} ¥l covered 90 34,472
0x80000090 add rll,sp,#0x4 ¥ covered a0 a
0x80000094 sub ap,sp, #0x10] covered 90 a
0x80000098 str r0, [rll,#-16] ¥l covered a0 a
21 int ret = 0; ¥ covered 181 0
0x8000009¢c mov r3, §0x0 ¥l covered a0 a
0x800000a0 str r3,[rll,#-€] ¥ covered a1 1] -
The table below describes the fields of the Details table.
CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 25

I racing

Viewing trace data using Analysis Results view

Table 7: Details table - description of fields

ASM Count

Name Description

Line/Address Displays either the line number for each instruction in the source code or the
address for the assembly code.

Instruction Displays all the instructions executed in the selected function.

Coverage For source files, displays if the instructions were covered, not covered, or partially

ASM Decision Coverage

covered.

Displays the decision coverage computed for direct and indirect conditional
branches. Itis the mean value of the individual decision coverages. So if a function
has two conditional instructions, one with 100% and another with 50% decision
coverage, the decision coverage would be (100 + 50) / 2 = 75% . It is calculated

Time (CPU Cycles)

only for assembly instructions and not for C source code.
Displays the number of times each instruction is executed.

Displays the total number of clock cycles that each instruction in the function takes.

When you double-click the instruction in the Details Table, the corresponding source file is opened. To disable
the path mapping option when you double-click the instruction, follow these steps:

1. Choose Window > Preferences. The Preferences dialog appears.

2. Click Software Analysis in the left pane of the Preferences dialog, and select the Do not locate file for path
mapping checkbox in the right pane, as shown in the figure below.

-

Coloring Editor
Freescale Licenses
Help
Install/Update
Processor Expert
Rermote Launch
Remote Systems
Run/Debug
Software Analysis
Team

Terminal

Figure 19: Preferences dialog
¥ preferences = @
type filter text Software Analysis v T
General)
C/Cos Software Analysis Preferences

| Do not locate file for path mapping

o | Automatically save trace results

Optimize profilers for large executable files

| Restore Defaults| |

Apply |

[OK] | Cancel |

3. Click OK to apply the setting and close the Preferences dialog.

You can perform the following actions on the Details table.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

26

Freescale Semiconductor, Inc.

Tracing
Viewing trace data using Analysis Results view

o]
Search - Lets you search for a particular text in the Details table. In the Search text box, type the data
that you want to search and click the Search button. The first instance of the data is selected in the statistics
view. Click the button again or press the Enferkey to view the next instances of the data.

Graphics ll - Lets you display the histograms in two colors for the ASM Count and Time columns in the
bottom view of the Code Coverage data. Click the button and select the Assembly/Source > ASM Count or

Assembly/Source > Time option to display histograms in the ASM Count or Time column. The colors in these
columns differentiate source code with the assembly code.

al,
Show code 5 - Lets you display the assembly, source or mixed code in the statistics of the Code Coverage
data.

2.2.4 Performance viewer

The Performance viewer displays the metric and invocation information for each function that executes in the

application.

To view performance data:

1. In the Analysis Results view, expand the project name.

All trace collections performed for the project are displayed.

2. Click the Performance hyperlink.

The Performance viewer appears.

{83 Project2-cored. perf i2 =g
{9 Performance - Project2-core0
Core i2
Summary Table [Z R
Function Name Num Calls Inclusive MinInclusive MaxInclusive AvgInclusive Percent Inclusive Exclusive Min Bxclusive Max Exclusive Avg Exclusive Percent Exclusive Percent Total Calls Code Si..
4 Context 0
Recursive 428 138,865055,760 138,865,055,760 138,865,055,760 138,865,055,760 70.37 138,865,055,760 138,865,055,760 138,865,055,760 138,865,055,760 7037 8199 76
PerformanceWork 91 190,455,068,821 34,072 138865055760 2,092,912,844 96.52 51,500,013,061 30472 51,580843.273 566,923,220 2614 1743 128
main 1 190,455,075,661 190,455075,661 190455075661 190455075661 96.52 6,840 6,840 6,340 6,840 000 019 44
(AsmSection)_0x80000138 1 197,328,195143 197,328,195143 197,328,195143 197,328,195,143 10000 3404061488 3404061488 3404061488 3404061488 173 019 332
initialise_monitor_handles 1 3469057994 3,469,057,994 3469,057994 3,469,057,994 176 369,057,994 3469,057994 3469,057994 3,469,057,994 176 019 2
Details Table Search: 2
Caller Caller Callee Num Calls Callee Inclusive Callee Min Inclusive Callee Max Inclusive Callee Avg Inclusive Callee Percent Callee Percent Caller ~ Call Site
Recursive Recursive 382 138,865,055,760 1 65,055,760 1 65,055,760 1 65,055,760 100.00 100.00 0xB0000070
) PerformanceWark Recursive 46 138,865,055760 138,865,055,760 138,865,055,760 138,865,055,760 100.00 100.00 030000074
Callee

The Performance viewer is divided into two views:

» The top view presents function performance data in the Summary table. It displays the count and invocation
information for each function that executes during the measurement, enabling you to compare the relative
data for various portions of your target program. The information in the Summary table can be sorted by
column in ascending or descending order. Click the column header to sort the corresponding data. The
table below describes the fields of the Summary table.

» The bottom view or the Details table presents call pair data for the function selected in the Summary table.
The Details table displays call pair relationships for the selected function, that is which function called which
function. Each function pair consists of a caller and a callee. The percent caller and percent callee data is
also displayed graphically. The functions are represented in different colors in the pie chart, you can move
the mouse cursor over the color to see the corresponding function. The next table below describes the fields
of the Details table. You cannot sort the columns of this table.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

27

Iracing
Viewing trace data using Analysis Results view

Table 8: Field description of Summary table

Name Description

Function Name Name of the function that has executed.

Num Calls Number of times the function has executed.

Inclusive Cumulative metric count during execution time spent from function entry to exit.
Min Inclusive Minimum metric count during execution time spent from function entry to exit.
Max Inclusive Maximum metric count during execution time spent from function entry to exit.
Avg Inclusive Average metric count during execution time spent from function entry to exit.
Percent Inclusive Percentage of total metric count spent from function entry to exit.

Exclusive Cumulative metric count during execution time spent within function.

Min Exclusive Minimum metric count during execution time spent within function.

Max Exclusive Maximum metric count during execution time spent within function.

Avg Exclusive Average metric count during execution time spent within function.

Percent Exclusive Percentage of total metric count spent within function.

Percent Total Calls | Percentage of the calls to the function compared to the total calls.

Code Size Number of bytes required by each function.

Table 9: Field description of Details table

Name Description

Caller Name of the calling function.

Callee Name of the function that is called by the calling function.

Num Calls Callee Number of times the caller called the callee.

Inclusive Callee Cumulative metric count during execution time spent from function entry to exit.

Min Inclusive Callee | Minimum metric count during execution time spent from function entry to exit.
Max Inclusive Callee | Maximum metric count during execution time spent from function entry to exit.
Avg Inclusive Callee | Average metric count during execution time spent from function entry to exit.

Percent Callee Percent of total metric count during the time the selected function is the caller of a
specific callee. The data is also shown in the Caller pie chart.

Percent Caller Percent of total metric count during the time the selected function is the callee of a
specific caller. The data is also shown in the Callee pie chart.

Call Site Address from where the function was called.

You can move the columns to the left or right of another column by dragging and dropping. You can perform the
Export and Configure table actions on the performance data similar to critical code data. You can also view the
previous and next functions of the performance data using the icons available in the lower section of the
Performance viewer. For details on these icons, see Table 6. Buttons available in Summary table of Code
Coverage viewer on page 24.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
28 Freescale Semiconductor, Inc.

h

Tracing
Viewing trace data using Analysis Results view

2.2.5 Call Tree viewer

The Call Tree viewer shows the general application flow in a hierarchical tree structure in which statistics are
displayed for each function.

To view call tree data:
1. In the Analysis Results view, expand the project name.

All trace collections performed for the project are displayed.
2. Click the Call Tree hyperlink.

The Call Tree viewer appears.

Figure 21: Call Tree viewer

%= Project2-corel.calltree 52 =0

#= Call Tree - Project2-core0

Core0 I
oo
Function Mame Num Calls % Total calls of parent % Total times it was called Inclusive Time (Cycles)
Context 0
| s> |
[(smSecton) Oxaooo0izs | 1 100.00 100.00 197,328, 195,143
f <na debug info> 1 33.33 50,00 0
f initialise_monitor_handles 1 33.33 100.00 3,469,057,994
L oman] 1 33.33 100,00 190,455,075,661
f PerformanceWork 1 1.10 110 190,455,008,821
[Reamwe 100.00 535 138865055760
| 0000000 Reasve | 35 100.00 818 138865055760
[000000 Rearsive | 35 100.00 818 138865055760
. Reursive | 30 100.00 7.01 138,865,055,760

In the Call Tree viewer, START is the root of the tree. You can click "+" to expand the tree and "-" to collapse
the tree. It shows the biggest depth for stack utilization in Call Tree and the functions on this call path are
displayed in green color.

The Call Tree nodes are synchronized with the source code. You can double-click the node to view the source
code.

The table below describe the fields of Call Tree data. The columns are movable; you can move the columns to
the left or right of another column by dragging and dropping.

Table 10: Call Tree viewer fields

Name Description

Function Name Name of function that has executed.

Num Calls Number of times function has executed.

% Total calls of parent Percent of number of function calls from total number of calls in the
application.

% Total times it was called Percent of number of times a function was called.

Inclusive Time (Microseconds; 50.0 | Cumulative count during execution time spent from function entry to

MHz) exit.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc. 29

Iracing
Viewing trace data using Analysis Results view

You can perform the following actions using the buttons available on the toolbar of the Call Tree viewer:

Export to dot - Exports call tree data in the .dotformat using the button

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc.

30

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

Chapter 3
Collecting and Viewing Linux Trace

The Linux satrace tool allows you to collect the trace of a program without using any hardware probe.

The tool encapsulates the trace configurator and probe. It is delivered as a standalone component containing
an executable and some shared libraries. The Linux satrace tool is independent of CodeWarrior; it does not
provide any GUI. This document proposes an integration solution for this command-line utility into CodeWarrior
and also how to collect trace without using CodeWarrior.

This chapter contains the following sections:
 Collecting Linux trace using CodeWarrior on page 31

 Viewing Linux trace collected without using CodeWarrior on page 42

3.1 Collecting Linux trace using CodeWarrior

This section explains how to collect Linux trace by establishing a Remote System Explorer (RSE) connection
with the board.

To collect trace using the Linux satrace tool, perform these steps:

1. Start CW for ARMv7 and create a CodeWarrior Linux Project.

2. Write the application using the Editor.

3. Build the project to generate an ELF file, as shown in the figure below.
Figure 22: ELF file

Elc| CodeWarrior Projects £ = O

lﬂzl = %"’__j File Mame -

File Mame Size Type Build
4 [== Test_Linux : Linu_Application
4 #;3? Binaries
: ﬁTest_Linux.elf 15 KB Executable File
. [= Linux_application
4 [Sources
Lt main.c 1 KB C Source File v

4. Create a Linux connection using RSE:
a. To open RSE, click Window > Open Perspective > Other > Remote System Explorer.

b. On the toolbar of the Remote Systems view, click Define a connection to remote system. The RSE
wizard starts.

c. Expand General and select Linux option from the list.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 31

wr
4\

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

d. Click Next.

Figure 23: RSE wizard

o

¥4 New Connection

Select Remote System Type
Any distribution of Linux

Systern type:
type filter et
» = CodeWarrior Application Debugging
> [= CodeWarrior Bareboard Debugging
4 [~ General
Ty FTP Only
A Linux
El Local
5% S5H Only
g TCF
& Telnet Only (Experimental)
unix Wnix
¥ Windows

Fimish

Cancel

e. The Remote Linux System Connection page appears. Specify the host name and connection name and

click Next.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

32

Freescale Semiconductor, Inc.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

Figure 24: Remote Linux System Connection page

-

¥4 New Connection = @

Remote Linux System Connection

Define connection information

Parent profile: B34823-02 *

Host name: 10171.73.105 -

Connection name: | linux-connection

Description:
[] Verify host name
I:?:I < Back ” Mext =] [Finish l ’ Cancel

f. The Files page appears. Select the ssh.files checkbox and click Next.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 33

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

Figure 25: Files page

- =

¥4 New Connection Lo [3] [-EE]

Files

Define subsysterm information

Configuration Properties

[] dstorefiles Property Walue
[] ftp.files
ssh.files

Available Services

29 5sh/ Sftp File Service
ﬁdl 55H Connector Service
] S5H Settings

Description

Work with files on remote systems using the Secure Shell (ssh) protocol.

@ [<Back || MNet> |[Finsh || Cancel

g. The Processes page appears. Select the processes.shell.linux checkbox and click Next.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
34 Freescale Semiconductor, Inc.

g |

Collecting and Viewing Linux Trace

Collecting Linux trace using CodeWarrior

Figure 26: Processes page

i

¥ New Connection o [[E] -]

Processes

Define subsystermn information

Configuration Properties

I:l dStDrE.FIFDCESSES F'rgpert}r Value
processes.shell linux

Available Services

A Shell Process Service

Descripticn

This configuration allows you to work with processes on remocte linux systems using any
contributed Shell subsystermn.

@ <Back || Nea> || Finish || Cancel

-

h. The Shells page appears. Select the ssh.shells checkbox and click Finish.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

35

A 4
4\

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

o

zsh.shells

Available Services

A Generic shell service
%4 55H Connector Service
| 55H Settings

Description

Figure 27: Shells page
¥4 New Connection (=] @
Shells
Define subsystem information
Configuration Properties
[[] dstoreshells Property Value

Work with shells and commands on remote systems using the Secure Shell (ssh) protocol.

a3
'-.3,' < Back

“ Mext =

| Finish

Cancel

In the Remote Systems view, you can see that the connection with the board has been established. The

connection name is linux-connection.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

36

Freescale Semiconductor, Inc.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

Figure 28: Remote Systems view
1H Remote Systems £ = O
£ & Bl ~
- Ef Local

4= Test_Linux_Linue_Application_Download
=t Test_Linux_Linux_Application_Attach
Fi _& linux-connection
4 Ty Sftp Files
. & My Home
: :~=:D Root
, &g Shell Processes
& 5sh Shells
8 Ssh Terminals

i. Select Sftp Files in the Remote Systems view and specify the port number in the Properties window, as
shown in the figure below.

Figure 29: Setting port number

E Properties &2 p Y = O
Property Value

Connected Yes

Marne Sftp Files

Mumber of children 2

Port 9900

Type Subsystem

User ID root (Inherited)

Version

j- Connect to the Linux system by right-clicking Sftp Files and choosing Connect.
k. Create a folder under Sftp Files > My Home where you can store the files related to your current project.

I. Now, copy your ELF file from the CodeWarrior Projects view and paste it into the folder you just
created, as shown in the figure below.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 37

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

Figure 30: ELF file in RSE view
15 Remote Systems £ - O
£ 3| |Bl% ¥

. E¥ Local *
#= Test_Linux_Linux_Application_Download
#= Test_Linux_Linux_Application_Attach

4 Cf linux-connection
4 ¥y Sftp Files
4 2 My Home

[alDemo

m

4 [= Demo-Linux

.'.?.ﬂ' Test_Linux.elf
EMGR

ftfdemo
Iulia_validation
linux.armvi satrace
z02

temp

validation

VEPOREED

baszh.cwzsa
file
infinite

Iyl %7

infinite.cwzsa
&= inline

[} isofs.ko -

5. Right-click the parent folder where you have pasted the ELF file, choose Add Trace Support from the
context menu to copy the satrace into a directory.
6. Right-click the parent folder and choose Launch Terminal from the context menu.

7. In the Terminals view, run the satrace using the following command:

./linux.armv7.satrace/bin/ls.linux.satrace -v ./Test Linux.elf

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
38 Freescale Semiconductor, Inc.

g |

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

Figure 31: Terminals view

A8 Terminals &3 =0
'&'J linux-connection &3
root@lsl@2lagds:~# cd "/home/root/Demo-Linux™ -

root@ls182lagds :~/Demo-Linux# . /linux.armv?.satrace/bin/ls.linux.satrace -v ./Test_Linux.elf
User space trace

Application : *./Test_Linux.elf’

Arguments

starting ~./Test_Linux.elf”

User application exit status : @

Master process

Relocation file : ~/home/root/Demo-Linux/Test_Linux.rlog®

Trace file : " /home/root/Demo-Linux/Test_Linux.dat”

Collecting trace ...

Archive file : ~/home/root/Demo-Linux/Test_Linux.cwzsa’

Creating archive

Archiving /home/root/Demo-Linux/Test_Linux.dat

Archiving /home/root/Demo-Linux/Test_Linux.elf

Archiving /home/root/Demo-Linux/Test_Linux.rlog

Archiving fhome/root/Demo-Linux/linux.armv?.satrace/config/PlatformConfig.xml
Archiving /home/root/Demo-Linux/linux.armv?.satrace/bin/Test_Linux.resultsConfig
Archiving /1ib/1d-2.15-2813.1@.s0

Archiving /lib/libc-2.18-2813.18.50

Archiving /1ib/libdl-2.18-2813.18.s0

Archiving /lib/libm-2.18-2813.1@.s0

Archiving /1lib/libpthread-2.18-2813.18.s0

Archiving /lib/librt-2.18-2813.18.s0

root@ls1821aqds : ~/Demo- Linusd#

The tracing starts and collects the data in the *.cwzsa file under the parent folder.

8. Right-click the parent folder and choose Refresh. You can see the *cwzsa file under the parent folder, as
shown below.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 39

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

Figure 32: Trace data file

15 Remote Systems ©7 - O
&£ & |B|g ¥
- E¥ Local *>
== Test_Linux_Linwx_Application_Download
== Test_Linux_Linux_Application_Attach
4 &’ linux-connection
4 ¥y Sftp Files
4 2 MyHome
» [aDemo
4 [~ Demo-Linux
» [linwcarmvy . satrace

m

= Test Linux.cwzsa

I@ Test_Linux.elf

Iulia_validation
linux.armv7 satrace
502

temp

walidation

el salululels

bash.cwzsa
file
infinite

e

infinite.cwzsa -

9. Double-click the *.cwzsa file. The Import wizard starts, as shown in the figure below.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
40 Freescale Semiconductor, Inc.

Collecting and Viewing Linux Trace

Collecting Linux trace using CodeWarrior

Figure 33: Import wizard

¥ Import = -5 /w5]
Import Trace

Import a trace data file.

Import From

Trace data file:

C\Users\b34823\workspacel\RemoteSystemsTernpFiles\10.171.73.105\home\root\Demo-Linwd, Test_Linux.cwzsa Browse...
View Trace
| View the trace data on finish

| 0S Support

el

g

m
u

Net> || Finish || Concel |

10.Click Finish to end the Import wizard. The file is imported and it is displayed in the Analysis Results view.

11.Click the Trace link under the Trace column in the Analysis Results view to view the trace data, as shown
in the figure below.

Figure 34: Analysis Results view
ﬁ?Analysis Results &% =0
Analysis Results

Name Trace Timeline Code Coverage Performance Call Tree
1= Linux Test_Linux

B ETF
| Test_Linux) Trace

Last Madified Motes

== Timeline Code Coverage @ Performance #=Call Tree 2015.06.1012:35:12 PM

-«

1

The trace data file opens in the Trace viewer showing the trace results, as shown in the figure below.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc.

41

V¥ ¢
i

Collecting and Viewing Linux Trace
Viewing Linux trace collected without using CodeWarrior

Figure 35: Trace data file

P Test Linwocsy ©2

Index Source Type | Description | Address Destination -
1 Corel Info SYNC packet - ETM 0

+2 Core0 Custom ISYNC PACKET - ETM - tracing enabled 0 =
3 Corel Software Context software context id = 159744 name = PID 624 0
+4 Core(Linear Function <no debug info> B2 0
+5 Core(Branch Branch from <no debug info» to <no debug ... OxB2dc 0x829¢ 0
+6 Cored Linear Function <no debug info> 0xB829c 0
+7 Corel Branch Branch from <no debug info= to <no debug ... OxB2ad 0xB288 0
+8 Corel Linear Function <no debug info> (0xB8288 0
+9 Corel Branch Branch from <ne debug info> te <no debug ... 0xB8294 0x76bBB5TE 0
+10 Corel Custem ISYNC PACKET - ETM - tracing enabled 0
11 Core(Software Context software context id = 159744 name = PID 624 0
+12 Corel Linear Function __libc_csu_init 08460 0
+13 Corel Branch Branch from _libc_csu_init to <ne debug inf... 0x:84c0 0827 ¢ 0
+14 Core0 Linear Function <no debug info> 0827 ¢ 0
+15 Corel Branch Branch from <no debug info> to <no debug ... 0xB280 0xB 260 0
+16 Core0 Linear Function <no debug info> 0xE2f0 0
+17 Corel Branch Branch from <no debug info> to <no debug ... 08304 OnB284 0
18 Corel Branch Branch from <no debug info> to _libc_csu_i... OxB284 OB cd 0
19 Corel Linear Function _libc_csu_init OxBdcd 0
+20 Corel Branch Branch from _libc_csu_init to __libc_csu_init OxBdca OxBde2 0
21 Corel Branch Branch from _libc_csu_init to <ne debug inf... OBde2 (8396 0
+22 Corel Linear Function <no debug info> 0xB396 0
+23 Corel Branch Branch from <no debug info= to <no debug ... 0x839a 0x8338 0
+ 24 Corel Linear Function <no debug info> (08338 0
+25 Corel Branch Branch from <ne debug info> te <no debug ... 0xB352 (08356 0
+ 26 Core Linear Function <no debug info> (08356 0
+27 Corel Linear Function <no debug info> 0x835a 0
+ 28 Core0 Branch Branch from <no debug info> to <no debug ... 0xB35e 0x76alb24c 0
+29 Corel Custom ISYNC PACKET - ETM - tracing enabled 0
30 Core0 Software Context software context id = 159744 name = PID 624 0
+31 Corel Linear Function main (0xB468 0
+32 Core0 Branch Branch frem main to main 0xB47 ¢ (08494 0

+33 Corel Linear Function main (08494 0 -

3.2 Viewing Linux trace collected without using CodeWarrior

This section explains how to view Linux trace data collected from a board without using CodeWarrior.

To explain how to view Linux trace, this section uses trace data collected from the LS102xA TWR board without
using CodeWarrior. See AN5001 for instructions on how to collect Linux trace without using CodeWarrior.

The standalone tracing tool generates a * . cwzsa file, an archive type that can be imported and fully decoded
using ARMv7 decoder or ARMv7 CodeWarrior. To view the generated segfault.cwzsa file in CodeWarrior for
ARMvV7, perform these steps:

1. Drag the segfault.cwzsa file into the CodeWarrior IDE. The Import wizard starts.
2. Click Finish to end the Import wizard. The file is imported and it is displayed in the Analysis Results view.

3. Click the Trace link under the Trace column in the Analysis Results view to view the trace data. The
decoding of trace and profiling data starts. The decoded trace data is displayed in Trace viewer, as shown
in the figure below.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
42 Freescale Semiconductor, Inc.

http://www.nxp.com/files/soft_dev_tools/doc/app_note/AN5001.pdf

P

Collecting and Viewing Linux Trace

Viewing Linux trace collected without using CodeWarrior

Figure 36: Trace data

A segfault.csv 52 =0
Index Source Type Address Destination Timestamp -
1 Core(Info 0
+2 Core(Custom ISYMNC PACKET - ETM - tracing restarted after overflow 0
3 Core(Software Context software context id = 164864 name = PID 644 0
+4 Core(Linear Function <no debug info= OxB5cc 0 s
+5 Core(Branch Branch from <no debug info> to <no debug info> (xB5e8 08560 0
+6 Core(Linear Function <no debug info= (0x8560 0
+7 Core(Branch Branch from <no debug info> to <no debug info> (0xB568 08540 0
+8 Core(Linear Function <no debug info= 0x8540 0
+9 Core(Branch Branch from <no debug info> to <no debug info> (xB54c 0x76b30578 0
+10 Core(Custom ISYNC PACKET - ETM - tracing enabled 0
11 Core(Software Context software context id = 164864 name = PID 644 0
+112 Core(Linear Function __libc_csu_init 0BT 0
+13 Core(Branch Branch from _libc_csu_init to <no debug info= 08800 (0x8534 0
+14 Core(Linear Function <no debug info= (0x8534 0
+15 Core(Branch Branch from <no debug info> to <no debug info> (0x8538 0x85fc 0
+16 Core(Linear Function <no debug info= 0x5fc 0
+17 Core(Branch Branch from <no debug info> to <no debug info> 0x8610 0xB53c 0
+18 Core(Branch Branch from <ne debug info> to _libc_csu_init 0:853c (0xB8804 0
+119 Core(Linear Function __libc_csu_init 08804 1]
+20 Core(Branch Branch from _libc_csu_init to __libc_csu_init 0xB80a (8822 0
+21 Core(Branch Branch from _libc_csu_init to <no debug info= 08822 (x86a2 0
+ 22 Core(Linear Function <no debug info= (xB6a2 0
+23 Core(Branch Branch from <no debug info> to <no debug info> (xB6a6 0xB644 0
+ 24 Core(Linear Function <no debug info= (OxB644 0
+25 Core(Branch Branch from <no debug info> to <no debug info> (xB65e 08662 0
+ 26 Core(Linear Function <no debug info= (0x8662 0
+27 Core(Branch Branch from <ne debug infox to _libc_csu_init 0xB6ba (0x8810 0
+128 Core(Linear Function __libc_csu_init (8810 0 =

You can also find the profiling data files in the same folder where segfault.cwzsa file is present. You can drag-
and-drop the profiling data files in CodeWarrior to view the profiling data in the Timeline, Code Coverage,
Performance, and Call Tree viewers. The Timeline, Code Coverage, Performance, and Call Tree viewers are

explained in Viewing trace data using Analysis Results view on page 16.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

43

V¥ ¢
i

Collecting and Viewing Linux Trace
Viewing Linux trace collected without using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
44 Freescale Semiconductor, Inc.

Linux Kernel Debug Print Tool

Chapter 4
Linux Kernel Debug Print Tool

This chapter describes how to work with the Linux Kernel Debug Print tool.

The Linux Kernel Debug Print tool consists of the following two components that work together to perform the
debug print operation:

» Target server, which is responsible for collecting Kernel Ring Buffer log in unformatted way
» Host, which periodically requests kernel log data from the server and displays it in a view

This tool's main objective is to provide a user-friendly way of monitoring kernel activity in a CodeWarrior console.
It is composed of several modules:

» Target side:

Debug Print server — Reads on demand the Kernel Ring Buffer log. It also clears the log and sends it to the
clients using TCP/IP connection. It collects the redirected printf output from the user space applications.

Debug Print dynamic library - Is responsible for redirection of the application's prinf messages to the target
server.

» Host side:

Debug Print probe - Is the actual client of the Debug Print server; it can be started from the Debug Print view.
When started, it reads periodically the kernel log data from the server and sends it to the Debug Print view to
display the kernel log data and other communication messages.

Debug Print view — Displays the log data and other communication messages in a user-friendly manner, also
allows you to filter the displayed data on the basis of timestamp, module name/application path and pid, or a
custom string contained in each log message.

NOTE
The tool is independent of CodeWarrior and does not require a debug session.

The ARM binaries have been compiled with tool chain gcc-linaro-arm-linux-gnuelfeabihf-4.8-2013.12_linux and
LS1 SDK version 1.1.

Before working on the Debug Print tool, check that TCP/IP communication is established between the host and
the target. Below are the steps that are performed in order to see the functionality of the Debug Print tool.

1. Deploy the Software Analysis target binaries on the target. For example, if you have the target root filesystem
on NFS, you can copy /s.farget.server and /ibls.linux.debugprint./ib.so*to the host location /[NFS_PATH}/
home/roof).

2. The debug print target server cross-compiled for ARM is located in CodeWarrior in directory:
[CWInstallDir]/CW_ARMv7/ARMv7/sa_ls/linux.armv7.debugprint/bin, which needs to be copied on
the target (for example, to the home directory). The server requires sudo access (default user on target is
root) and requires a single argument; the port number on which clients will listen. If not specified, it will start
on the default port 5000.

Start a ssh console on the target and then start the server:
ssh rootetarget ip address

./ls.target.server

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 45

\
Y

y
A

Linux Kernel Debug Print Tool

3 €/Ce+ - CodeWarrior Development Studio

FEile Edit Source Refactor Mavigate Search Project

Figure 37:
Run Form Editors Window Help
- &g G
=l

=5 v D v & v £
& CodeWarrior Projects jE Remote Systems £ =
& 8| i B8l%
(= home
2 root
I test
4 [= test?

g libls.linuwe debugprint.ib.so
5 libls.linux.debugprint.lib.so.1.0
5 Istarget.erver
» (3 i
+ [0 media
3 mnt
» £ opt
» 0 proe
> [run
a i b

A8 Terminals &2
El'l sa-centos-deskiop 1 },{
-N,

. sa-centos-deskiop 2| et
do not create
the user
allow te creat
(non-unique) L

--NO-uSEr-group

-¢, --fon-unigque

-ps --password PASSKWORD encrypted pass
-r, --system create & syste
-5, ==shell SHELL login shell of
-u, --uid UID user ID of the
-U, --user-group create a group

root@lsle2lagqds:~# useradd test2
rootils182lagds :~# useradd -m testZ

useradd: user 'test2' already exists
root@ls1e2laqds :~# eche Hello > /dev/kmsg
rootfilsle2lagqds:~# echo Hello > /dev/kmsg
root@lsle2lagqds::~# eche Hello > /dev/kmsg
rootls1e2laqds:~# eche Hello > /dev/kmsg
rootfilsl@liagqds:~# echo Hello > /dew/kmsg
rootflsle2lagds:~# eche Hello > /dev/kmsg
roct@ls1021agds:~# eche Hello > /dev/kmsg
roct@lsle2laqds::~# eche Helle » /dev/kmsg
root@ls1821aqds:~# | |
| m r

Files fhomestest2/libls.linux.debugprint.lib.so.1.0

o

O~ Q-

Configure Debug Print dialog

=

3 I_:_, Problems |) Tasks & Console|) Properties ﬁ- Debug Print 51

-|| 1557 . 681827

1227.00L0UL /NOWME/TeST/ Lest-arm

1557
1557

1557

1557

1557

[system] : Collecticn delayed.

fhome/test/test-arm.
1557.6B81838 /home/test/test-arm.
1557.6B81846 Shome/test/test-arm.
.6B1851 shome/test/test-arm.
. 681857 /home/test/test-amm,
1557. 681862 /home/test/test-arm.
1557.681868 /home/test/test-arm.
1557.681873 shome/test/test-arm.
-681880 Shome/test/test-arm.
1557.661884 shome/test/test-arm.
1557.68185%1 /home/test/test-arm.
1557.6B818%5 /home/test/test-arm.
1557.661502 Shome/test/test-arm.
.681906 /home/test/test-am,
1557.6681%913 /home/test/test-arm.
1557.6681%17 /home/test/test=-arm.
1557.681924 shome/test/test-arm.
-6B1928 fhome/test/test-arm.
1557.661935 shome/test/test-amm.
1557.681%40 /home/test/test-arm.
1557.6B1%46 /home/test/test-arm.

CRTm NG
arm(§04) ;
arm{E04) :
arm{&04) :
arm{604):
arm{504) :
arm(604) :
arm(€04) :
arm{604) ¢
arm({604) :
arm(§04) ;
arm{E04) :
arm{&04) :
arm(&04) :
arm{504) :
arm(504) :
arm(604) :
arm{€04d) :
arm{s04) :
arm(§04) ;
arm(04) ;
arm{&04) :

2TALT OX

Test
Teat
Test
Test
Test
Test
Teat
Teat
Test
Test

Test
Teat
Test
Test
Test
Test
Teat
Test
Test
Test

message
meszage
mezgage
mEsaage
mEssage
message
mezzage
res3age
mBE33age
message
message
mezaage
resgage
mEszage
mESage
message
mezzage
mE33age
EEssage
message

End of teat

TEST

L
lat
1
ist
e
1at
3
ist
4
1st
5
lst
&
P14
1st
8
lst
b
1at

[E=8 NGB =
'

PR
ia]

=0|ZEowE ~ @Ma| =0

An outline is not available

=
@

ea _:|| '=-._

half; 2nd half 0

halfy 2nd hall 1

half; 2nd half 2

halfy 2nd half 3

half; half 4

half; 2nd half 5

halfy 2nd half §

half; 2nd half 7

half; 2nd half @

half; half 3

4 .

3. The dynamic library cross-compiled for ARM is located in CodeWarrior directory at: [cwInstallDir]/
CW_ARMv7/ARMv7/sa_ls/linux.armv7.debugprint/lib, which needs to be copied on the target. This
library must be loaded by the Linux loader before the C runtime, when you are running the user space
applications that need to be monitored by setting the environment variable, LD_PRELOAD.

Start a new ssh console on the target and run a test application (in this case, test.arm) to see its original

output:

ssh rootetarget ip address
./test.arm

Then preload the debug print library and run the test application again:

export LD PRELOAD=~/libls.linux.debugprint.lib.so

./test.arm

You will notice next time that the test application will not output anything on the console. The output is sent

to the target server.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

46

Freescale Semiconductor, Inc.

Linux Kernel Debug Print Tool

4. On the host machine, open the Debug Print view. The Debug Print Probe can be started from the Debug Print
view and it communicates using TCP/IP connection with the server. When started, it reads periodically the
kernel log data from the server and sends it to the Debug Print view to display. To start the Debug Print view,
select Window > Show View > Other > Software Analysis > Debug Print.

The table below describes the icons displayed on the Debug Print viewer.

Table 11: Debug Print viewer icons

Icons Description
Removes all text from the view.
#/ Clear All
B Two-state button used for starting and stopping the Debug Print

monitor task.
U Start/Stop !

H Two-state button used for locking and unlocking the scrollbar. If the
== Scroll Lock/Unlock scrollbar is unlocked, it would always auto-scroll to the latest Debug
Print message.

] Opens a dialog for entering the server address and port.

“* Configure

Opens a dialog for configuring what information is to be displayed in
the Debug Print view (specific to timestamps, module name/application
path and pid, other string patterns).

Create Debug Print Filters

5. Click the Configure icon, enter the server address and port (for example, address 192.168.0.2, port 5000 —
must be the same as for the server).

To configure Debug Print server, click Configure icon on the toolbar. The Configure Debug Print dialog
appears. You can specify the server address, port number at which the server will listen to client, and the
target description.

Figure 38: Configure Debug Print dialog

-

¥ Configure Debug Print @
Server Address: ilE? 001
Server Port: 5000

Target Description: localhost

QK l | Cancel

There is also a Preference page associated to this view, which can be accessed by clicking Window >
Preferences, expand Software Analysis node and then select Debug Print.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 47

Linux Kernel Debug Print Tool

Figure 39: Preferences dialog

-

¥ Preferences

type filter text

. General
- CICH++
- Colering Editor

Freescale Licenses

- Help

- Install/Update

- Install/Update

- Processor Expert

Remote Launch

- Remote Systemns
. Run/Debug

Software Analysis
Debug Print

. Teamn

Terminal

"

ey
e

Debug Print =1 v w

Debug Print Preference Page
Maximum line count 5000

Log Debug Print contents to external file

File name Browse.., |

| Restore Defaults| | Apply |

[QK l | Cancel |

The following Debug Print settings are available in the Preference dialog:

Table 12: Debug Print settings

Options

Description

file

Maximum line count

Log Debug Print contents to external

File name

Limits the number of lines the Debug Print view should display. If this
limit is exceeded, the old messages are deleted.

If selected, the messages will be appended to an external file besides
displaying them into the Debug Print view.

Path for the external log file

NOTE

The ARM binaries are compiled with tool chain gcc-linaro-arm-linux-
gnuelfeabihf-4.8-2013.12_linux and LS1 SDK version 1.1.

6. Click the Start icon; you will see the kernel log messages are being populated in the view’s text area.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

48

Freescale Semiconductor, Inc.

Linux Kernel Debug Print Tool

Figure 40: Debug Print view - messages from server

(2. Problems |+ Tasks | B Conscle [Properties | 8§ Remnote Systems | 3% Debug Print 52 5] F B | BE

IPvE over IPwd tunneling driver

Registered protocol family 17

Registered protocol family 15

controller area network core (rev 200120528 abl 9)
Registered protocol family 29

raw protocol (rev 20120528)

(kernel): <S>Key type dns_resolver registered

(kernel): <6=libphy: mdio_mux: probed

: mdio_mux: probed

(kernel): <G>libphy: mdio_mux: probed

(kernel): <G>libphy: mdio_mux: probed

(kernel): <3s=mdic_bus 8.60: cannot get PHY at address 28

(kernel): <6=libphy: mdio_mux: probed

(kernel): <3=mdio_bus @.88: camnot get PHY at address 29

(kernel): <6>mdic-mux-mmioreq 7rbO0054.mdio-mux-emil: Version 1.9
(kernel): <6>rtc-ds3232 1-0068: setting system clock to 2014-89-11 84:25:18 UTC (1418409518)
(kernel): <6>IPvG: ADDRCONF(NETDEV_UP): eth2: 1link is not ready

(kernel): sit:
(kernel): =<6sNET:
{kernel): <E6>MET:
(kernel): <G>can:
(kernel): <6>NET:
{kernel): <E>can:

{kernel): <6=libp

(kernel): <6=libphy

: 8.48:83 - Link is Up - 186/Full

(kernel): <6>IPvE: ADDRCONF(NETDEV _CHANGE): eth2: link becomes ready

(kernel): <6=IP-Config: Complete:

device=eth2, hwaddr=0€:84:9F:83:36:38, ipaddr=192.168.8.2, mask=255.255.255.8,
gw=255, 255,255, 255

{kernel): <6=

(kernel): <6>
(kernel): <&

host=192.168.8.2, domain=, nis-domain=(none)
bootserver=192.168.8.1, rootserver=182.168.8.1, rootpath=
(kernel): <B6>VFS: Mounted root (nfs filesystem) on device @:12.

(kernel): <6>devimpfs: mounted

(kernel): <é>Freeing unused kernel memory: 284K (205ba088 - 205edBEd)
(kernel): <38=udevd[132]: starting version 182

(kernel): <3=net eth@: could not attach to PHY

7. Open another console on the target in the same directory, preload the debug print library and run the test

application:

export LD PRELOAD=~/libls.linux.debugprint.lib.so

./test.arm

8. You will see the application messages getting appended in the Debug Print view:

16.563847 [kernel):
16.570244 (kernel):
16563282 (kernel):
18584682 [kernel):
18.504315 (kernel):
18614767 (kernel):
18616053 [kernel):
18.622056 [kernel):
18825028 (kernel):
18631306 [kernel):
18636607 [kernel):
18.638088 (kernel):
19665827 (kernel):

<63
<
i
o
<
<
i
of>
<
i
T
<

Figure 41: Debug Print view - application messages

mdio-mux-mmioreg Tib6854.mdio-mux-emil: Version 1.8
rte-d53232 1-8068: setting system clock to 2014-16-23 AT7:37:29 UTC (1414840849)
IPvE: ADDRCONF(NETDEV_UP): eth2: Link is nof ready
libphy: 8.48:83 - Link is Up - 186/Full
IPwii: ADDRCONFE(NETDEV_CHANGE): ethZ: link becomes ready
IP-Config: Complete:
device=eth2, hwaddr=00:84:97:83:36:38, ilpaddr=192.1GE.8.2, mask=255.255.255.8, gw=255.255.255.255
host=192.168.8.2, domain=, nis-domain=({none)
bootserver=152,168.8.1, rootserver=152,168.8.1, rootpath=
VFS: Mounted root (nfs filesystem) on device 8:12.
devtmpfs: mounted
Freeing unused kernel memory: 204K (805babéd - B65ed868)

<3 udevd[132]: starting version 182

2110, 144384 home/root/test . arm{573): up time: 2116143657448

2116, 144718 /home/root/test.arm(573): boot time: 1414849851,543153360
2116.145558 /home/root/test. arm(573): Thu 2814-18-23 @7:37:31:543153368
2110.145631 /home/root/test.arm(573): current time: 1414851961.6868104
2116, 145737 /home/root/test . arm({573): Thu 2614-10-23 88:12:41:686610800

9. To see the real time functionality of the Debug Print view, add some more messages to the view, both from
kernel and the test application from the same console where the test application was running on the target:

./test.arm

echo Hello World > /dev/kmsg

./test.arm

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

49

N

Linux Kernel Debug Print Tool

echo Helloooooo > /dev/kmsg
echo Hello World 2 > /dev/kmsg

Figure 42: Target console - sending messages

. = sa@sa-centos-desktop:~
Eile Edit View Search Terminal Help

root@lsle2laqds:~# export LD _PRELOAD=-/1ibls.linux.debugprint.libd.so

root@lsle2laqds:~# ./test.arm

root@lslezlaqds:~# ./test.arm

root@ls1e2lagqds:~# echo Hello World = fdev/kmsg
root@lslezlaqds:~# ./ test.arm

root@ls1e2laqds:~# echo Helloooooo = /fdev/kmsg
root@ls1021laqds:~# echo Hello World 2 > JSdev/kmsg
root@ls1021aqds:~# []

10.See the new messages displayed in the Debug Print text area as you enter them in the target shell:

Figure 43: Debug Print view - messages from server

2 Cm'rsﬂlel i Debug Print &3

16.551273 (kernel). libphy: mdio sux; probed

16.553265 (kermel): <G> libphy: mdio_sux: probed

16555294 (kernel): <&= libphy: mdio_sux: probed

16.556830 (kermel): <3> mdio bus B.68: cannot get PHY at address 28

16550684 (kernel): <6> libphy: mdio mux: probed

16.561237 (kernel): <I> mdio_bus 8.B3: camnot get PHY at address 20

16563847 (kernel): <6> mdio-sux-mmioreq 7rbé@e54.mdio-sux-emil: Version 1.8
16.570244 (kernel): <6> ric-ds3232 1-8068: setting system clock to 2014-18-23 @7:37:29 UTC (1414849E49)
16.563282 (kernel): <&» IPwh: ADDRCONE({NETDEV_UP): eth2: link is not ready
18.584682 (kernel): <G> libphy: 8.48:83 - Link 15 Up - 188/Full

18.504315 (kernel): <6> IPvi: ADDRCONE([WETDEV CHAMGE): eth2: link becomes ready
18 614767 (kernel): <G> IP-Config: Cosplete:

18.633386 (kernel): <G> VES: Mounted root (nfs filesystem) on device B8:12.
18.636697 (kernel): <&> devimpfs: mounted

186280828 (kernel): Freeing unused kernel semory: 204K (BEGDABEE - 8050d008)
19.605827 (kernel): <30> udevd[132]: starting version 182

21725475 (kernel): <3= net ethB: could not attach to PHY

2110. 144384 Shomeroot/test.arm{573): up time: 2118.143657440

2118, 144718 Shome/root/test arm(573): boot time: 1414049851 543153360
2110.145558 Shome/root/test.arm{573): Thu 2814-18-23 @7:37:31:543153368
2118, 145631 Shome/root/test. arm(573): current time: 1414651961, GBE810800

5501, 807450 Shome/root/test.arm(575): up time: 5581.007127600
5581.6087773 ShomeSroot test.arm({575): boot Time: 1414848E51.543154888
5501, 608621 Shome/root/test.arm(575): Thu 2614-18-23 67:37:31:543154080
5501.608608 ShomeSrootstest.arm{575): current time: 1414855353.150281688
5501, 608803 Shome/root/test.arm(575): Thu 2614-18-23 09:69:13: 156281680
5573.199847 [kermel): <12> Hello World

5561. 096042 Shome/rootstest.arm(576): up time: 5561.905650728

5561 006364 ShomeSrootstest.arm({576): boOt Time: 1414840851.543153280
5561. 097101 shomeSroot/test.arm(576): Thu 2614-16-23 O7:37:31:543153260
5561 . 987265 ShomeSroot test.arm(576): curréent timé: 1414655413, 538844006
5561.00T370 Shome root/test.arm(576): Thu 2614-10-23 99:10:13: 538844000
5643.770412 [kernel): <12> Helloooood

5653.616246 (kermel): <12> Hello World 2 _‘)

ﬂ-ITT x| bE T

18.616053 (kernel): <&» devicesethZ, rwaddre@@:64:97:03:36:38, ipaddr=192.168.8.2, mask=255,255.255.8, gwe255.255.255.255
10 622056 (kernel): B> host=102 . 168.0.2, domain=, nis.domains|none)
18.625028 (kernel): <&> bootserver=192.168.8.1, rootserver=182,168.8.1, rootpath=

This chapter contains the following section:

« Filtering debug print messages on page 51

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

50 Freescale Semiconductor, Inc.

Linux Kernel Debug Print Tool
Filtering debug print messages

4.1 Filtering debug print messages

The Linux Kernel Debug Print tool has a powerful filtering engine that allows you to see the desired
information.

The filtering engine allows you to display data filtered by timestamp, module name/application path and PID, or
a custom string contained by each log message. The Create Debug Print Filters configuration dialog allows
creation of multiple filters, each of them able to match the module name, application path or PID of the messages
displayed by the Debug Print view. These filters are OR-ed, which means that the view will display all messages
which match at least one of the filters.

Figure 44: Create Debug Print Filters dialog

Create Debug Print Filters

Create filters for the Debug Print messages

(i) You can select timestamp ranges, module names or paths, PIDs, or other
string patterns to create complex filters.

Module “_Timestamp | Other Current Filters
[7]Module Name / Path [¥] PID
Existing

Custom

@ [0] l I Cancel

S

o
I".

This dialog has three tabs:

* Modulename/Path tab: Allows creation of new filters, by selecting from the Existing list a module name/
application path, PID, or both (if available). Click Add Filter tol add the filter in the Current Filters list. These
filters can be qualified with a timestamp range or a string pattern.

The Existing list contains all the module names/application paths/PIDs from the messages already displayed
in the Debug Print view. When you want to filter messages from a certain module or application that is not
started or did not print any messages yet, you can manually enter the module name/path or PID in the Custom
text box.

When no module filter is selected, and no global qualification is selected, (any) is displayed in the Current
Filters, which means that no filter is applied (all messages are displayed).

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 51

Linux Kernel Debug Print Tool
Filtering debug print messages

» Timestamp tab: Allows adding timestamp qualification to the existing filters, or a global qualification if no other
filter is created (that is a generic filter which applies to all messages, with all module names, paths and PIDs).

After the user choses the timestamp ranges in the Lower Limit/Upper Limit Spinners, you must click Qualify
in order to add the timestamp qualification to all existing filters. If no filter exists, a global qualification is

performed.

Figure 45;: Create Debug Print Filters dialog - Timestamp tab

Create Debug Print Filters

Create filters for the Debug Print messages

(i) You can select timestamp ranges, module names or paths, PIDs, or other
string patterns to create complex filters,

Module | Timestamp . Other Current Filters
Lower Limit
0.000] :
Upper Limit
0.000 =

Add Filter Clear Filters

|@:| [0]'4] ’ Cancel

+ Other tab: Allows adding other type of qualifications to existing filters, or a global qualification if no other filter
is created. Currently, the only qualification in this tab is a string pattern which is searched in all the messages
(except for timestamps and module names/paths/PIDS). After you input the string pattern, you must click
Qualify in order to add this qualification to all the existing filters. If no filter exists, a global qualification is

performed.

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

52 Freescale Semiconductor, Inc.

g |

Linux Kernel Debug Print Tool

Filtering debug print messages

Figure 46: Create Debug Print Filters dialog - Other tab

Create Debug Print Filters

Create filters for the Debug Print messages

(i) You can select timestamp ranges, module names or paths, PIDs, or other
string patterns to create complex filters,

Madule | Timestamp | Other Current Filters

Messages containing string

Add Filter Clear Filters

@:‘ [QK] ’ Cancel

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016

Freescale Semiconductor, Inc.

53

V¥ ¢
i

Linux Kernel Debug Print Tool
Filtering debug print messages

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
54 Freescale Semiconductor, Inc.

How To Reach Us
Home Page:
freescale.com
Web Support:

freescale.com/support

>
P
X
W POWERED

Information in this document is provided solely to enable system
and software implementers to use Freescale products. There are
no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information
in this document. Freescale reserves the right to make changes
without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose,
nor does Freescale assume any liability arising out of the
application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that
may be provided in Freescale data sheets and/or specifications can
and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical
experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the
following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorlQ are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.
Off. All other product or service names are the property of their
respective owners. ARM, Cortex, Cortex-A7, TrustZone are
trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

© 2016 Freescale Semiconductor, Inc.

CW_ARMv7_Tracing_User_Guide
Rev. 10.0.8

r
4\

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Overview
	1.2 Accompanying documentation

	2 Tracing
	2.1 Configuring and collecting trace
	2.1.1 Creating a new project
	2.1.2 Configuring trace
	2.1.3 Collecting trace data
	2.1.4 Collecting trace data using an Attach configuration

	2.2 Viewing trace data using Analysis Results view
	2.2.1 Trace viewer
	2.2.2 Timeline viewer
	2.2.2.1 Selection Mode
	2.2.2.2 Zoom Mode
	2.2.2.3 Full View
	2.2.2.4 Edit Groups

	2.2.3 Code Coverage viewer
	2.2.3.1 Summary table
	2.2.3.2 Details table

	2.2.4 Performance viewer
	2.2.5 Call Tree viewer

	3 Collecting and Viewing Linux Trace
	3.1 Collecting Linux trace using CodeWarrior
	3.2 Viewing Linux trace collected without using CodeWarrior

	4 Linux Kernel Debug Print Tool
	4.1 Filtering debug print messages

