
CodeWarrior for ARMv7 Tracing and Analysis
User Guide

Freescale Semiconductor, Inc. Document Number: CW_ARMv7_Tracing_User_Guide
Reference Manual 10.0.8, 01/2016

Contents

Chapter 1 Introduction...5
1.1 Overview...5
1.2 Accompanying documentation... 6

Chapter 2 Tracing..7
2.1 Configuring and collecting trace... 7

2.1.1 Creating a new project..7
2.1.2 Configuring trace.. 8
2.1.3 Collecting trace data...13
2.1.4 Collecting trace data using an Attach configuration..14

2.2 Viewing trace data using Analysis Results view...16
2.2.1 Trace viewer... 19
2.2.2 Timeline viewer...20

2.2.2.1 Selection Mode... 21
2.2.2.2 Zoom Mode...21
2.2.2.3 Full View... 21
2.2.2.4 Edit Groups... 21

2.2.3 Code Coverage viewer... 22
2.2.3.1 Summary table..23
2.2.3.2 Details table.. 25

2.2.4 Performance viewer..27
2.2.5 Call Tree viewer..29

Chapter 3 Collecting and Viewing Linux Trace... 31
3.1 Collecting Linux trace using CodeWarrior.. 31
3.2 Viewing Linux trace collected without using CodeWarrior..42

Chapter 4 Linux Kernel Debug Print Tool..45
4.1 Filtering debug print messages.. 51

Contents

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 3

Contents

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
4 Freescale Semiconductor, Inc.

Chapter 1
Introduction
The CodeWarrior for ARMv7® V10.x Tracing and Performance Analysis tool allows you to analyze and collect
data of an application.

You can use this collected data to identify the bottlenecks, such as slow execution of routines or heavily-used
routines within the application. This visibility can help you understand how your application runs, as well as
identify operational problems.

The UI Platform Configurator tool reads the user settings from the input XML file and transforms them into target
access memory writes to the configuration registers.

The figure below shows the core trace path for LS1021A within the ARMv7 architecture.

Figure 1: Core trace path for LS1021A

The UI Platform Configurator configures the ARMv7 cores Embedded Trace Macrocell (ETM), Funnel,
Embedded Trace FIFO (ETF), and Embedded Trace Router (ETR) modules. The ETF stores and forwards trace
data using a dedicated RAM buffer. This reduces trace loss by absorbing spikes in trace data. The ETR redirects
trace to the system bus for collection from alternative channels. For ARMv7, it is DDR memory.

The destination of the raw trace is either the internal trace buffer of the ETF module or a user defined buffer in
DDR.

This manual describes how the CodeWarrior for ARMv7 V10.x Tracing and Performance Analysis tool can be
used for the LS1020A, LS1021A, LS1022A, and LS1024A devices. This chapter presents an overview of this
manual and introduces you to the Tracing and Performance Analysis tools.

This chapter contains the following sections:

• Overview on page 5

• Accompanying documentation on page 6

1.1 Overview
Each chapter of this manual describes a different area of Tracing and Performance Analysis tools.

The table below describes each chapter in the manual.

Introduction
Overview

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 5

Table 1: Manual Contents

Chapter Description

Introduction Introduces Tracing and Performance Analysis tool
(this chapter)

Tracing on page 7 Describes the trace collection process and how to use
the trace data for identifying the bottlenecks

Collecting and Viewing Linux Trace on page 31 Describes how you to collect and view satrace with and
without using CodeWarrior

Linux Kernel Debug Print Tool on page 45 Describes how Debug Print Tool works. The tool is
independent of CodeWarrior and does not require a
debug session

1.2 Accompanying documentation
The Documentation page describes the documentation included in this version of CodeWarrior Development
Studio for QorIQ LS series - ARM V7 ISA.

You can access the Documentation page by:

• Opening START_HERE.html from the <CWInstallDir>\CW_ARMv7\ARMv7\Help folder

• Choosing Help > Documentation from the CodeWarrior IDE menu bar

Introduction
Accompanying documentation

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
6 Freescale Semiconductor, Inc.

Chapter 2
Tracing
Tracing is a technique that obtains diagnostic and performance information about a program's execution.

This information is typically used for debugging purposes, and additionally, depending on the type and detail
information contained in a trace log, to diagnose common problems with the software. The trace log includes
information about the trace source, type of event, description of the event and time stamp value.

This chapter contains the following sections:

• Configuring and collecting trace on page 7

• Viewing trace data using Analysis Results view on page 16

2.1 Configuring and collecting trace
To collect trace, you need a project to define your application, a launch configuration to set up a debug
connection to the target, and a trace configuration to define the type of trace data you would like to collect.

This section contains the following subsections:

• Creating a new project on page 7

• Configuring trace on page 8

• Collecting trace data on page 13

• Collecting trace data using an Attach configuration on page 14

2.1.1 Creating a new project
You need to create a new CodeWarrior bareboard project or open an existing project before you start
collecting the trace data.

To create a new bareboard project:

1. Start the CodeWarrior IDE.

2. From the IDE menu bar, choose File > New > CodeWarrior Bareboard Project Wizard.

The Create a CodeWarrior Bareboard Project page appears.

3. Enter a name for the new project in the Project Name text box.

4. The Location text box shows the default workspace location. To change this location, clear the Use default
location checkbox and click Browse to choose a new location.

5. Use the subsequent dialog to specify a new location. Click OK.

The dialog returns you to the Create a CodeWarrior Bareboard Project page, which now shows the new
location.

6. Click Next.

The Processor page appears.

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 7

Figure 2: Processor page

7. Select the required processor and click Next.

8. The Debug Target Settings page appears. Choose a board from the Board menu and click Next.

9. Do no change the default settings of the rest of the pages and click Next and Finish.

10.From the IDE menu bar, choose Project > Build Project.

The Build Project dialog appears; the build tools generate an executable program.

For more information on creating a CodeWarrior project, see CodeWarrior for ARMv7
Targeting Manual (CW_ARMv7_Targeting_Manual.pdf) in the <CWInstallDir>
\CW_ARMv7\ARMv7\Help\PDF folder, where <CWInstallDir> is the installation
directory for the CW4NET installer.

 NOTE

2.1.2 Configuring trace
You need to define the trace configuration before debugging the application for trace collection.

To define a trace configuration:

1. Choose Run > Debug Configurations from the CodeWarrior IDE menu bar.

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
8 Freescale Semiconductor, Inc.

The Debug Configurations dialog appears.

2. In the left pane of this dialog, expand the CodeWarrior tree control.

3. Select the launch configuration corresponding to your project. For example, Project1-
core0_RAM_LS1021AQDS_Download.

A set of tabbed configuration panels appears in the right pane of the dialog.

Figure 3: Debug Configurations dialog

4. Click the Trace and Profile tab.

The page appears with two tabs:

• The Overview tab displays the information about the ARMv7 architecture.

• The Basic tab displays the predefined settings. For Platform Configuration Settings, you can apply different
values based on what you want to achieve. The values are called profiles, and the framework allows creation
of different profiles for a configuration block. The profiles dialog is used to create new, rename, delete, or
edit the settings of a profile for a configuration provider.

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 9

Figure 4: Trace and Profile tab

5. The Trace and Profile checkbox is selected for the trace session to start immediately on debug launch. If
User Code checkbox is selected, it lets you upload trace into CodeWarrior when trace session is started
from user code or tools other than CodeWarrior. That is, the application where you make your own
configuration of trace registers in the trace hardware explicitly and CodeWarrior is not involved. If Upload
trace on terminate or disconnect checkbox is selected, the trace data is automatically collected when
debug session is terminated. In the combo box, you can see a default platform configuration file having
same name as you have for launch configuration.

6. You can create, rename, edit, delete, or export the platform configuration file. The Export button allows you
to export the platform configuration file to other platform for later use.

You can create your own configuration file by using a template placed at:
<CWInstallDir>\CW_ARMv7\ARMv7\sa_ls\data
\fsl.configs.sa.ls.configurators/

 NOTE

7. If you want to create or manage new profiles, you can invoke the Trace Configurations dialog by clicking
on the Edit button. You can see a tree viewer on the left side that lists all the profiles. The content in right
pane is driven by the selection in the left pane.

• If you select the required core under the Trace Generators on the left pane, the entries corresponding to
that configuration are displayed on the right pane.

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
10 Freescale Semiconductor, Inc.

Figure 5: Trace Configurations

The following settings can be configured for each core or trace generator:

• Trace Scenarios: Choose a trace scenario type from the Trace Scenarios panel.

• General Settings: Select Timestamp checkbox in the General Settings panel to enable timestamp.
Timestamping is useful for correlating multiple trace sources. Timestamping is performed by the
insertion of timestamp packets into the trace streams. It displays the value of platform global timestamp
generator (64-bit wide).

• If you select Data Streams to collect trace data, the entries corresponding to the selected buffer are
displayed on the right pane.

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 11

Figure 6: Data Streams

The following settings can be configured for each data stream:

• Trace collection location: Choose ETF or DDR as the trace collection location.

• Trace collection mode: Choose One buffer or Overwrite as the trace collection mode. If the One buffer
option is choosen, then trace can only be collected until the buffer is filled. In this case, only the first
buffer size part of the trace is kept. If the Overwrite option is choosen and the buffer is filled, then the
pointer returns to the beginning of the buffer and overwrites the older trace. In this case, only the last
buffer size part of the trace is kept.

In case the trace is collected in the DDR buffer, then you also need to specify the following options to set
the address range for the DDR trace buffer:

• Start address: Indicates the start address of the trace buffer in the DDR memory.

• Size: Indicates the size of the DDR trace buffer in bytes.

Each time you collect new trace data for a project, the existing trace data will be
overwritten.

 NOTE

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
12 Freescale Semiconductor, Inc.

2.1.3 Collecting trace data
After creating a project and defining launch configuration and trace configuration, you can start a debug
session and start collecting trace data.

You can perform trace collection tasks using the buttons available in the Debug view.

To collect trace data:

1. In the Debug Configurations dialog, click Debug.

The IDE switches to the Debug perspective; the debugger downloads your program to the target development
board and halts execution at the first statement of main().

In the editor view (center-left of perspective), the program counter icon on the marker bar points to the next
statement to be executed.

Figure 7: Debug perspective

2. In the Debug view, click Resume .

The data collection starts and the Resume button gets disabled. The debugger executes all statements, the
program writes the strings in the Console view and then enters an infinite loop.

3.
Let the application execute for several seconds and click Suspend if you want to stop the collection
temporarily. Again, click Resume to start the trace collection and when it finishes, click Terminate.

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 13

2.1.4 Collecting trace data using an Attach configuration
This section explains how to collect trace using an Attach launch configuration.

The Attach launch configuration is useful when you want to connect to a running target without resetting the
target or downloading a different application on it. For more information on Attach launch configuration, see
CodeWarrior for ARMv7 Targeting Manual (CW_ARMv7_Targeting_Manual.pdf) in the <CWInstallDir>
\CW_ARMv7\ARMv7\Help\PDF folder.

To configure your application for trace collection using the Attach launch configuration:

1. Create a project with the Attach launch configuration using the CodeWarrior Bareboard Project Wizard.

a. From the IDE menu bar, choose File > New > CodeWarrior Bareboard Project Wizard.

b. Enter a name for the new project in the Project Name text box.

c. Click Next and select the required processor in the Processors page.

d. Click Next and select the Attach checkbox in the Debug Target Settings page. Choose the Default
option to create an Attach configuration based on default parameters.

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
14 Freescale Semiconductor, Inc.

Figure 8: Creating Attach launch configuration in Debug Target Settings page

e. Select the required Connection Type and click Next.

f. Follow the remaining steps of the wizard and click Finish.

2. Build the project.

3. Choose Run > Debug Configurations to open the Debug Configurations dialog.

4. Expand CodeWarrior in the left pane of the dialog and select the Attach launch configuration
corresponding to your project.

Tracing
Configuring and collecting trace

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 15

Figure 9: Selecting Attach launch configuration

The Attach configuration assumes that code is already running on the board and
therefore does not run a target initialization file. Therefore, when attach launch
configurations are used, ensure that the target is already running.

 NOTE

5. In the Main tab of the dialog, make sure that Attach is selected in the Debug Session Type group.

6. Open the Trace and Profile tab.

7. Select the Trace and Profile checkbox on the Basic tab to enable trace and profile options. The Upload
trace on terminate or disconnect checkbox is selected, by default.

8. Click Debug.

9. Click Resume to start collecting the trace data.

10.Click Suspend after some time to stop trace collection.

11.Click the Upload Trace button to get the collected trace.

12.Open the Trace viewer to view the collected data.

2.2 Viewing trace data using Analysis Results view
The Analysis Results view provides access to various trace data results collected on an application.

The Analysis Results view shows and manages collected trace and profiling data. It provides link to open any
supported viewer: Trace, Timeline, Code Coverage, Performance, and Call Tree. This view provides functions
like save results, rename, and delete to help you to organize collected results.

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
16 Freescale Semiconductor, Inc.

To open the Analysis Results view:

1. Choose Window > Show View > Other from the CodeWarrior IDE menu bar. The Show View dialog
appears.

2. Select Software Analysis > Analysis Results and click OK. The Analysis Results view appears.

The Analysis Results view pops up and gets focus after successful trace collection. It
does not refresh automatically.

 NOTE

Figure 10: Analysis Results view

The Analysis Results view toolbar provides the following options:

Table 2: Analysis Results view - toolbar options

Option Description

Refreshes the displayed data.

Expands all the nodes.

Collapses all the nodes.

Select custom results folder.

The Analysis Results view shortcut menu, which appears on right-click, provides the following options.

Table 3: Analysis Results view - shortcut menu commands

Option Description

Refresh Refreshes the displayed data.

Expand All Expands all the nodes.

Collapse All Collapses all the nodes.

Results Lets you select a custom trace results folder.

Copy Cell Copies the currently selected cell. The name of the
data source is copied to the clipboard.

Table continues on the next page...

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 17

Table 3: Analysis Results view - shortcut menu commands (continued)

Option Description

Copy Line Copies the complete line of the data source.

Save Results Saves the trace results.

Delete Results Deletes all the saved results.

The trace file can automatically be saved after trace collection completes or is stopped. To enable automatic
saving of trace file, follow these steps:

1. Choose Window > Preferences. The Preferences dialog appears.

2. Click Software Analysis in the left pane of the Preferences dialog, and select the Automatically save trace
results checkbox in the right pane, as shown in the figure below.

Figure 11: Preferences dialog

3. Click OK to apply the setting and close the Preferences dialog.

Now, when you will collect trace, the trace file will be saved in the .AnalysisData folder of the current workspace.

The Analysis Results view provides hyperlinks to open:

• Trace viewer on page 19

• Timeline viewer on page 20

• Code Coverage viewer on page 22

• Performance viewer on page 27

• Call Tree viewer on page 29

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
18 Freescale Semiconductor, Inc.

2.2.1 Trace viewer
The Trace viewer displays the decoded trace event data generated during the data collection phase.

To view trace data:

1. In the Analysis Results view, expand the project name.

All trace collections performed for the project are displayed.

2. Click the Trace hyperlink, and view the trace data in the Trace viewer.
Figure 12: Trace viewer

The data in Trace viewer is organized in a way to ease the evaluation of tracing information and navigation
through the events in the sequence they were logged. This data can be very complex, and the size of the decoded
data can be very large, up to approximately 40 GB. The Trace viewer is constrained by the size of the decoded
data. Currently, the SAE can iterate over a maximum of 2^32 items of raw Nexus trace. Each item of undecoded
trace can be associated with zero, one, or multiple decoded trace events.

The Trace viewer displays the collected trace data in a tabular form. You can move the columns to the left or
right of another column by dragging and dropping.

The following table describes the Trace viewer fields.

Table 4: Trace viewer fields

Field Description

Index Each decoded event has a unique number starting with 1.

Source Displays the source function of the trace line if it is a call or a branch.

Table continues on the next page...

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 19

Table 4: Trace viewer fields (continued)

Field Description

Type Specifies the type of event that has occurred, such as Info, Branch, Error,
Function Return and Function Call.

Description Displays detailed information about the trace line.

Address Displays the starting address of the target function.

Destination Displays the end address of the target function.

Timestamp Specifies the timestamp value that is expressed as clock ticks. Depending
on the configuration of the trace source, this can be relative to the event's
trace source or relative to all events logged from all sources.

2.2.2 Timeline viewer
The timeline data displays the functions that are executed in the application and the number of cycles each
function takes when the application is run.

To view timeline data:

1. In the Analysis Results view, expand the project name.

The data source is listed under the project name.

2. Click the Timeline hyperlink.

The Timeline viewer appears.

Figure 13: Timeline viewer

The Timeline viewer shows a timeline graph in which the functions appear on y-axis and the number of cycles
appear on x-axis. The green-colored bars show the time and cycles that the function takes.

The Timeline viewer also displays the following buttons:

• Selection Mode on page 21

• Zoom Mode on page 21

• Full View on page 21

• Edit Groups on page 21

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
20 Freescale Semiconductor, Inc.

2.2.2.1 Selection Mode
The Selection Mode allows you to mark points in the function bars in the timeline graph to measure the
difference of cycles between those points.

To mark a point in the bar:

1. Click Selection Mode.

2. Click on the bar where you want to mark the point.

A yellow vertical line appears displaying the number of cycles at that point.

3. Right-click another point in the bar.

A red vertical line appears displaying the number of cycles at that point along with the difference of cycles
between two marked points.

Figure 14: Selection mode to measure difference of cycles between functions

You might view a difference in the time cycles displayed in the Timeline viewer and the Code Coverage viewer.
The difference is caused by the events in the functions (in your source code) that have no new timestamp. For
timeline, any instruction that has no timestamp information is considered to take one CPU cycle.

2.2.2.2 Zoom Mode
The Zoom Mode allows you to zoom-in and zoom-out in the timeline graph.

Click Zoom Mode and then click the timeline graph to zoom-in. To zoom-out, right-click in the timeline graph.
You can also move the mouse wheel up and down to zoom-in and zoom-out.

2.2.2.3 Full View
The Full View allows you to get back to the original view if you selected the Zoom mode.

The Selection Mode is the default mode of the timeline view.

 NOTE

2.2.2.4 Edit Groups
The Edit Groups lets you customize the timeline according to your requirements.

For example, you can change the default color of the line bars representing the functions to differentiate between
them. You can add/remove a function to/from the timeline. To perform these functions, click Edit Groups. The
Edit Groups dialog appears.

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 21

Figure 15: Edit Groups dialog

2.2.3 Code Coverage viewer
The Code Coverage viewer allows you to analyze the flat profile of your application either at a functional level
or at a file level.

To view code coverage data:

1. In the Analysis Results view, expand the project name.

All trace collections performed for the project appear.

2. Click the Code Coverage hyperlink.

The Code Coverage viewer appears.

Figure 16: Code Coverage viewer

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
22 Freescale Semiconductor, Inc.

The Code Coverage viewer divides the critical code data into two tabular views: Summary Table and Details
Table.

This section contains the following subsections:

• Summary table on page 23

• Details table on page 25

2.2.3.1 Summary table
The Summary table of the Code Coverage viewer displays the summary of the functions executed in the
application.

The Summary table provides tree and flat view structures to display code coverage data. The tree view is the
default structure in which the functions are grouped by source file. You can expand or collapse in the column to
view the functions contained in the corresponding source file. In a flat view structure, all functions are displayed
individually. You can switch between tree view or flat view by right-clicking on a column name of the Summary
table and selecting the Switch to tree/flat view option.

The Summary table contains the fields as described in the table below. You can switch to ASM instructions

statistics or source lines statistics alternatively using the button available on the toolbar on the right side of
the Summary table. The columns are movable; you can drag and drop the columns to move them according to
your requirements. The table below shows the metrics for ASM level coverage with assembly instructions

coverage percentage and total number of assembly instructions per function/module. Clicking the button
to switch to source lines statistics shows metrics for source line coverage with number of source lines covered,
not covered, partially covered, and total number of source lines per function/module.

Table 5: Summary table - Description of ASM instructions statistics

Name Description

File/Function Displays the name of the function that has executed.

Address Displays the start address of the function.

Covered ASM % Displays the percentage of number of assembly instructions
executed from the total number of assembly instructions per function
or per source file.

Not Covered ASM % Displays the percentage of number of assembly instructions not
executed from the total number of assembly instructions per function
or per source file.

Total ASM instructions Displays the total number of assembly instructions per function and
per source file.

ASM Decision Coverage % Displays the decision coverage computed for direct and indirect
conditional branches. It is the mean value of the individual decision
coverages. Therefore, if a function has two conditional instructions,
one with 100% and another with 50% decision coverage, the decision
coverage would be (100 + 50) / 2 = 75% . It is calculated only for
assembly instructions and not for C source code.

Time Displays the total number of clock cycles that the function takes.

Size Displays the number of bytes required by each function.

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 23

In the Code Coverage viewer, all functions in all files associated with the project are
displayed irrespective of coverage percentage. However, the 0% coverage functions do
not appear in the Performance and Call Tree viewers because these functions are not
considered to be computed and are not a part of caller-called pair.

 NOTE

Figure 17: Summary table of Code Coverage viewer

Click the column header to sort the Code Coverage data by that column. However, you can sort the Code
Coverage data only in the flat view structure. The table below lists the buttons available in the statistics view of
the Code Coverage tab.

Table 6: Buttons available in Summary table of Code Coverage viewer

Name Button Description

Previous function Lets you view the details of the previous function that was
selected in the Summary table before the currently selected
function. Click it to view the details of the previous function.

Next function Lets you view the details of the next function that was
selected in the Summary table.

NOTE: The Previous and Next buttons are contextual and
go to previous/next function according to the history of
selections. So if you select a single line in the view, these
buttons will be disabled because there is no history.

Export Lets you export the Code Coverage data in a CSV or html
format. Click the button to choose between Export to CSV or
Export to HTML options. The Export to CSV option lets you
export data of both Summary and Details tables. The
exported html file contains the statistics for all the source
files/functions from the Summary table along with the
statistics of source, assembly or mixed instructions.

Table continues on the next page...

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
24 Freescale Semiconductor, Inc.

Table 6: Buttons available in Summary table of Code Coverage viewer (continued)

Name Button Description

Configure table Lets you show and hide column(s) of the Code Coverage
data. Click the button and select the appropriate option to
show/hide columns of the Summary/Details table. The Drag
and drop to order columns dialog appears in which you can
select/deselect the checkboxes corresponding to the
available columns to show/hide them in the Code Coverage
viewer. The option also allows you to set CPU frequency and
set time in cycles, milliseconds, microseconds, and
nanoseconds.

Collapse/Expand all files Lets you expand or collapse all files in the Summary table.

Filter files Allows you to choose the list of files to be displayed in the
Summary table.

Switch to executable source lines
statistics/Switch to ASM
instructions statistics

Lets you switch between source lines or ASM instructions to
be displayed in the Summary table.

2.2.3.2 Details table
The Details table of the Code Coverage viewer displays the statistics for all the instructions (source and
disassembly) executed in a particular source file.

Click a hyperlinked file/function in the Summary table of the Code Coverage viewer to view the corresponding
statistics for the instructions executed in that file/function. For example, the statistics of the strlen() function
are shown in the figure below.

Figure 18: Details table

The table below describes the fields of the Details table.

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 25

Table 7: Details table - description of fields

Name Description

Line/Address Displays either the line number for each instruction in the source code or the
address for the assembly code.

Instruction Displays all the instructions executed in the selected function.

Coverage For source files, displays if the instructions were covered, not covered, or partially
covered.

ASM Decision Coverage Displays the decision coverage computed for direct and indirect conditional
branches. It is the mean value of the individual decision coverages. So if a function
has two conditional instructions, one with 100% and another with 50% decision
coverage, the decision coverage would be (100 + 50) / 2 = 75% . It is calculated
only for assembly instructions and not for C source code.

ASM Count Displays the number of times each instruction is executed.

Time (CPU Cycles) Displays the total number of clock cycles that each instruction in the function takes.

When you double-click the instruction in the Details Table, the corresponding source file is opened. To disable
the path mapping option when you double-click the instruction, follow these steps:

1. Choose Window > Preferences. The Preferences dialog appears.

2. Click Software Analysis in the left pane of the Preferences dialog, and select the Do not locate file for path
mapping checkbox in the right pane, as shown in the figure below.

Figure 19: Preferences dialog

3. Click OK to apply the setting and close the Preferences dialog.

You can perform the following actions on the Details table.

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
26 Freescale Semiconductor, Inc.

•
Search - Lets you search for a particular text in the Details table. In the Search text box, type the data
that you want to search and click the Search button. The first instance of the data is selected in the statistics
view. Click the button again or press the Enter key to view the next instances of the data.

•
Graphics - Lets you display the histograms in two colors for the ASM Count and Time columns in the
bottom view of the Code Coverage data. Click the button and select the Assembly/Source > ASM Count or
Assembly/Source > Time option to display histograms in the ASM Count or Time column. The colors in these
columns differentiate source code with the assembly code.

•
Show code - Lets you display the assembly, source or mixed code in the statistics of the Code Coverage
data.

2.2.4 Performance viewer
The Performance viewer displays the metric and invocation information for each function that executes in the
application.

To view performance data:

1. In the Analysis Results view, expand the project name.

All trace collections performed for the project are displayed.

2. Click the Performance hyperlink.

The Performance viewer appears.

Figure 20: Performance viewer

The Performance viewer is divided into two views:

• The top view presents function performance data in the Summary table. It displays the count and invocation
information for each function that executes during the measurement, enabling you to compare the relative
data for various portions of your target program. The information in the Summary table can be sorted by
column in ascending or descending order. Click the column header to sort the corresponding data. The
table below describes the fields of the Summary table.

• The bottom view or the Details table presents call pair data for the function selected in the Summary table.
The Details table displays call pair relationships for the selected function, that is which function called which
function. Each function pair consists of a caller and a callee. The percent caller and percent callee data is
also displayed graphically. The functions are represented in different colors in the pie chart, you can move
the mouse cursor over the color to see the corresponding function. The next table below describes the fields
of the Details table. You cannot sort the columns of this table.

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 27

Table 8: Field description of Summary table

Name Description

Function Name Name of the function that has executed.

Num Calls Number of times the function has executed.

Inclusive Cumulative metric count during execution time spent from function entry to exit.

Min Inclusive Minimum metric count during execution time spent from function entry to exit.

Max Inclusive Maximum metric count during execution time spent from function entry to exit.

Avg Inclusive Average metric count during execution time spent from function entry to exit.

Percent Inclusive Percentage of total metric count spent from function entry to exit.

Exclusive Cumulative metric count during execution time spent within function.

Min Exclusive Minimum metric count during execution time spent within function.

Max Exclusive Maximum metric count during execution time spent within function.

Avg Exclusive Average metric count during execution time spent within function.

Percent Exclusive Percentage of total metric count spent within function.

Percent Total Calls Percentage of the calls to the function compared to the total calls.

Code Size Number of bytes required by each function.

Table 9: Field description of Details table

Name Description

Caller Name of the calling function.

Callee Name of the function that is called by the calling function.

Num Calls Callee Number of times the caller called the callee.

Inclusive Callee Cumulative metric count during execution time spent from function entry to exit.

Min Inclusive Callee Minimum metric count during execution time spent from function entry to exit.

Max Inclusive Callee Maximum metric count during execution time spent from function entry to exit.

Avg Inclusive Callee Average metric count during execution time spent from function entry to exit.

Percent Callee Percent of total metric count during the time the selected function is the caller of a
specific callee. The data is also shown in the Caller pie chart.

Percent Caller Percent of total metric count during the time the selected function is the callee of a
specific caller. The data is also shown in the Callee pie chart.

Call Site Address from where the function was called.

You can move the columns to the left or right of another column by dragging and dropping. You can perform the
Export and Configure table actions on the performance data similar to critical code data. You can also view the
previous and next functions of the performance data using the icons available in the lower section of the
Performance viewer. For details on these icons, see Table 6. Buttons available in Summary table of Code
Coverage viewer on page 24.

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
28 Freescale Semiconductor, Inc.

2.2.5 Call Tree viewer
The Call Tree viewer shows the general application flow in a hierarchical tree structure in which statistics are
displayed for each function.

To view call tree data:

1. In the Analysis Results view, expand the project name.

All trace collections performed for the project are displayed.

2. Click the Call Tree hyperlink.

The Call Tree viewer appears.

Figure 21: Call Tree viewer

In the Call Tree viewer, START is the root of the tree. You can click "+" to expand the tree and "-" to collapse
the tree. It shows the biggest depth for stack utilization in Call Tree and the functions on this call path are
displayed in green color.

The Call Tree nodes are synchronized with the source code. You can double-click the node to view the source
code.

The table below describe the fields of Call Tree data. The columns are movable; you can move the columns to
the left or right of another column by dragging and dropping.

Table 10: Call Tree viewer fields

Name Description

Function Name Name of function that has executed.

Num Calls Number of times function has executed.

% Total calls of parent Percent of number of function calls from total number of calls in the
application.

% Total times it was called Percent of number of times a function was called.

Inclusive Time (Microseconds; 50.0
MHz)

Cumulative count during execution time spent from function entry to
exit.

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 29

You can perform the following actions using the buttons available on the toolbar of the Call Tree viewer:

•
Export to dot - Exports call tree data in the .dot format using the button .

Tracing
Viewing trace data using Analysis Results view

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
30 Freescale Semiconductor, Inc.

Chapter 3
Collecting and Viewing Linux Trace
The Linux satrace tool allows you to collect the trace of a program without using any hardware probe.

The tool encapsulates the trace configurator and probe. It is delivered as a standalone component containing
an executable and some shared libraries. The Linux satrace tool is independent of CodeWarrior; it does not
provide any GUI. This document proposes an integration solution for this command-line utility into CodeWarrior
and also how to collect trace without using CodeWarrior.

This chapter contains the following sections:

• Collecting Linux trace using CodeWarrior on page 31

• Viewing Linux trace collected without using CodeWarrior on page 42

3.1 Collecting Linux trace using CodeWarrior
This section explains how to collect Linux trace by establishing a Remote System Explorer (RSE) connection
with the board.

To collect trace using the Linux satrace tool, perform these steps:

1. Start CW for ARMv7 and create a CodeWarrior Linux Project.

2. Write the application using the Editor.

3. Build the project to generate an ELF file, as shown in the figure below.

Figure 22: ELF file

4. Create a Linux connection using RSE:

a. To open RSE, click Window > Open Perspective > Other > Remote System Explorer.

b. On the toolbar of the Remote Systems view, click Define a connection to remote system. The RSE
wizard starts.

c. Expand General and select Linux option from the list.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 31

d. Click Next.

Figure 23: RSE wizard

e. The Remote Linux System Connection page appears. Specify the host name and connection name and
click Next.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
32 Freescale Semiconductor, Inc.

Figure 24: Remote Linux System Connection page

f. The Files page appears. Select the ssh.files checkbox and click Next.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 33

Figure 25: Files page

g. The Processes page appears. Select the processes.shell.linux checkbox and click Next.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
34 Freescale Semiconductor, Inc.

Figure 26: Processes page

h. The Shells page appears. Select the ssh.shells checkbox and click Finish.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 35

Figure 27: Shells page

In the Remote Systems view, you can see that the connection with the board has been established. The
connection name is linux-connection.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
36 Freescale Semiconductor, Inc.

Figure 28: Remote Systems view

i. Select Sftp Files in the Remote Systems view and specify the port number in the Properties window, as
shown in the figure below.

Figure 29: Setting port number

j. Connect to the Linux system by right-clicking Sftp Files and choosing Connect.

k. Create a folder under Sftp Files > My Home where you can store the files related to your current project.

l. Now, copy your ELF file from the CodeWarrior Projects view and paste it into the folder you just
created, as shown in the figure below.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 37

Figure 30: ELF file in RSE view

5. Right-click the parent folder where you have pasted the ELF file, choose Add Trace Support from the
context menu to copy the satrace into a directory.

6. Right-click the parent folder and choose Launch Terminal from the context menu.

7. In the Terminals view, run the satrace using the following command:

./linux.armv7.satrace/bin/ls.linux.satrace -v ./Test_Linux.elf

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
38 Freescale Semiconductor, Inc.

Figure 31: Terminals view

The tracing starts and collects the data in the *.cwzsa file under the parent folder.

8. Right-click the parent folder and choose Refresh. You can see the *.cwzsa file under the parent folder, as
shown below.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 39

Figure 32: Trace data file

9. Double-click the *.cwzsa file. The Import wizard starts, as shown in the figure below.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
40 Freescale Semiconductor, Inc.

Figure 33: Import wizard

10.Click Finish to end the Import wizard. The file is imported and it is displayed in the Analysis Results view.

11.Click the Trace link under the Trace column in the Analysis Results view to view the trace data, as shown
in the figure below.

Figure 34: Analysis Results view

The trace data file opens in the Trace viewer showing the trace results, as shown in the figure below.

Collecting and Viewing Linux Trace
Collecting Linux trace using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 41

Figure 35: Trace data file

3.2 Viewing Linux trace collected without using CodeWarrior
This section explains how to view Linux trace data collected from a board without using CodeWarrior.

To explain how to view Linux trace, this section uses trace data collected from the LS102xA TWR board without
using CodeWarrior. See AN5001 for instructions on how to collect Linux trace without using CodeWarrior.

The standalone tracing tool generates a *.cwzsa file, an archive type that can be imported and fully decoded
using ARMv7 decoder or ARMv7 CodeWarrior. To view the generated segfault.cwzsa file in CodeWarrior for
ARMv7, perform these steps:

1. Drag the segfault.cwzsa file into the CodeWarrior IDE. The Import wizard starts.

2. Click Finish to end the Import wizard. The file is imported and it is displayed in the Analysis Results view.

3. Click the Trace link under the Trace column in the Analysis Results view to view the trace data. The
decoding of trace and profiling data starts. The decoded trace data is displayed in Trace viewer, as shown
in the figure below.

Collecting and Viewing Linux Trace
Viewing Linux trace collected without using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
42 Freescale Semiconductor, Inc.

http://www.nxp.com/files/soft_dev_tools/doc/app_note/AN5001.pdf

Figure 36: Trace data

You can also find the profiling data files in the same folder where segfault.cwzsa file is present. You can drag-
and-drop the profiling data files in CodeWarrior to view the profiling data in the Timeline, Code Coverage,
Performance, and Call Tree viewers. The Timeline, Code Coverage, Performance, and Call Tree viewers are
explained in Viewing trace data using Analysis Results view on page 16.

Collecting and Viewing Linux Trace
Viewing Linux trace collected without using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 43

Collecting and Viewing Linux Trace
Viewing Linux trace collected without using CodeWarrior

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
44 Freescale Semiconductor, Inc.

Chapter 4
Linux Kernel Debug Print Tool
This chapter describes how to work with the Linux Kernel Debug Print tool.

The Linux Kernel Debug Print tool consists of the following two components that work together to perform the
debug print operation:

• Target server, which is responsible for collecting Kernel Ring Buffer log in unformatted way

• Host, which periodically requests kernel log data from the server and displays it in a view

This tool's main objective is to provide a user-friendly way of monitoring kernel activity in a CodeWarrior console.
It is composed of several modules:

• Target side:

Debug Print server – Reads on demand the Kernel Ring Buffer log. It also clears the log and sends it to the
clients using TCP/IP connection. It collects the redirected printf output from the user space applications.

Debug Print dynamic library - Is responsible for redirection of the application's prinf messages to the target
server.

• Host side:

Debug Print probe – Is the actual client of the Debug Print server; it can be started from the Debug Print view.
When started, it reads periodically the kernel log data from the server and sends it to the Debug Print view to
display the kernel log data and other communication messages.

Debug Print view – Displays the log data and other communication messages in a user-friendly manner, also
allows you to filter the displayed data on the basis of timestamp, module name/application path and pid, or a
custom string contained in each log message.

The tool is independent of CodeWarrior and does not require a debug session.

 NOTE

The ARM binaries have been compiled with tool chain gcc-linaro-arm-linux-gnuelfeabihf-4.8-2013.12_linux and
LS1 SDK version 1.1.

Before working on the Debug Print tool, check that TCP/IP communication is established between the host and
the target. Below are the steps that are performed in order to see the functionality of the Debug Print tool.

1. Deploy the Software Analysis target binaries on the target. For example, if you have the target root filesystem
on NFS, you can copy ls.target.server and libls.linux.debugprint.lib.so* to the host location [NFS_PATH]/
home/root).

2. The debug print target server cross-compiled for ARM is located in CodeWarrior in directory:
[CWInstallDir]/CW_ARMv7/ARMv7/sa_ls/linux.armv7.debugprint/bin, which needs to be copied on
the target (for example, to the home directory). The server requires sudo access (default user on target is
root) and requires a single argument; the port number on which clients will listen. If not specified, it will start
on the default port 5000.

Start a ssh console on the target and then start the server:

ssh root@target_ip_address

./ls.target.server

Linux Kernel Debug Print Tool

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 45

Figure 37: Configure Debug Print dialog

3. The dynamic library cross-compiled for ARM is located in CodeWarrior directory at: [CWInstallDir]/
CW_ARMv7/ARMv7/sa_ls/linux.armv7.debugprint/lib, which needs to be copied on the target. This
library must be loaded by the Linux loader before the C runtime, when you are running the user space
applications that need to be monitored by setting the environment variable, LD_PRELOAD.

Start a new ssh console on the target and run a test application (in this case, test.arm) to see its original
output:

ssh root@target_ip_address
./test.arm

Then preload the debug print library and run the test application again:

export LD_PRELOAD=~/libls.linux.debugprint.lib.so
./test.arm

You will notice next time that the test application will not output anything on the console. The output is sent
to the target server.

Linux Kernel Debug Print Tool

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
46 Freescale Semiconductor, Inc.

4. On the host machine, open the Debug Print view. The Debug Print Probe can be started from the Debug Print
view and it communicates using TCP/IP connection with the server. When started, it reads periodically the
kernel log data from the server and sends it to the Debug Print view to display. To start the Debug Print view,
select Window > Show View > Other > Software Analysis > Debug Print.

The table below describes the icons displayed on the Debug Print viewer.

Table 11: Debug Print viewer icons

Icons Description

 Clear All
Removes all text from the view.

 Start/Stop

Two-state button used for starting and stopping the Debug Print
monitor task.

 Scroll Lock/Unlock
Two-state button used for locking and unlocking the scrollbar. If the
scrollbar is unlocked, it would always auto-scroll to the latest Debug
Print message.

 Configure
Opens a dialog for entering the server address and port.

 Create Debug Print Filters Opens a dialog for configuring what information is to be displayed in
the Debug Print view (specific to timestamps, module name/application
path and pid, other string patterns).

5. Click the Configure icon, enter the server address and port (for example, address 192.168.0.2, port 5000 –
must be the same as for the server).

To configure Debug Print server, click Configure icon on the toolbar. The Configure Debug Print dialog
appears. You can specify the server address, port number at which the server will listen to client, and the
target description.

Figure 38: Configure Debug Print dialog

There is also a Preference page associated to this view, which can be accessed by clicking Window >
Preferences, expand Software Analysis node and then select Debug Print.

Linux Kernel Debug Print Tool

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 47

Figure 39: Preferences dialog

The following Debug Print settings are available in the Preference dialog:

Table 12: Debug Print settings

Options Description

Maximum line count Limits the number of lines the Debug Print view should display. If this
limit is exceeded, the old messages are deleted.

Log Debug Print contents to external
file

If selected, the messages will be appended to an external file besides
displaying them into the Debug Print view.

File name Path for the external log file

The ARM binaries are compiled with tool chain gcc-linaro-arm-linux-
gnuelfeabihf-4.8-2013.12_linux and LS1 SDK version 1.1.

 NOTE

6. Click the Start icon; you will see the kernel log messages are being populated in the view’s text area.

Linux Kernel Debug Print Tool

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
48 Freescale Semiconductor, Inc.

Figure 40: Debug Print view - messages from server

7. Open another console on the target in the same directory, preload the debug print library and run the test
application:

export LD_PRELOAD=~/libls.linux.debugprint.lib.so

./test.arm

8. You will see the application messages getting appended in the Debug Print view:
Figure 41: Debug Print view - application messages

9. To see the real time functionality of the Debug Print view, add some more messages to the view, both from
kernel and the test application from the same console where the test application was running on the target:

./test.arm

echo Hello World > /dev/kmsg

./test.arm

Linux Kernel Debug Print Tool

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 49

echo Helloooooo > /dev/kmsg

echo Hello World 2 > /dev/kmsg

Figure 42: Target console - sending messages

10.See the new messages displayed in the Debug Print text area as you enter them in the target shell:
Figure 43: Debug Print view - messages from server

This chapter contains the following section:

• Filtering debug print messages on page 51

Linux Kernel Debug Print Tool

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
50 Freescale Semiconductor, Inc.

4.1 Filtering debug print messages
The Linux Kernel Debug Print tool has a powerful filtering engine that allows you to see the desired
information.

The filtering engine allows you to display data filtered by timestamp, module name/application path and PID, or
a custom string contained by each log message. The Create Debug Print Filters configuration dialog allows
creation of multiple filters, each of them able to match the module name, application path or PID of the messages
displayed by the Debug Print view. These filters are OR-ed, which means that the view will display all messages
which match at least one of the filters.

Figure 44: Create Debug Print Filters dialog

This dialog has three tabs:

• Modulename/Path tab: Allows creation of new filters, by selecting from the Existing list a module name/
application path, PID, or both (if available). Click Add Filter tol add the filter in the Current Filters list. These
filters can be qualified with a timestamp range or a string pattern.

The Existing list contains all the module names/application paths/PIDs from the messages already displayed
in the Debug Print view. When you want to filter messages from a certain module or application that is not
started or did not print any messages yet, you can manually enter the module name/path or PID in the Custom
text box.

When no module filter is selected, and no global qualification is selected, (any) is displayed in the Current
Filters, which means that no filter is applied (all messages are displayed).

Linux Kernel Debug Print Tool
Filtering debug print messages

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 51

• Timestamp tab: Allows adding timestamp qualification to the existing filters, or a global qualification if no other
filter is created (that is a generic filter which applies to all messages, with all module names, paths and PIDs).

After the user choses the timestamp ranges in the Lower Limit/Upper Limit Spinners, you must click Qualify
in order to add the timestamp qualification to all existing filters. If no filter exists, a global qualification is
performed.

Figure 45: Create Debug Print Filters dialog - Timestamp tab

• Other tab: Allows adding other type of qualifications to existing filters, or a global qualification if no other filter
is created. Currently, the only qualification in this tab is a string pattern which is searched in all the messages
(except for timestamps and module names/paths/PIDS). After you input the string pattern, you must click
Qualify in order to add this qualification to all the existing filters. If no filter exists, a global qualification is
performed.

Linux Kernel Debug Print Tool
Filtering debug print messages

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
52 Freescale Semiconductor, Inc.

Figure 46: Create Debug Print Filters dialog - Other tab

Linux Kernel Debug Print Tool
Filtering debug print messages

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
Freescale Semiconductor, Inc. 53

Linux Kernel Debug Print Tool
Filtering debug print messages

CodeWarrior for ARMv7 Tracing and Analysis User Guide, Rev. 10.0.8, 01/2016
54 Freescale Semiconductor, Inc.

How To Reach Us
Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system
and software implementers to use Freescale products. There are
no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information
in this document. Freescale reserves the right to make changes
without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose,
nor does Freescale assume any liability arising out of the
application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that
may be provided in Freescale data sheets and/or specifications can
and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical
experts. Freescale does not convey any license under its patent
rights nor the rights of others. Freescale sells products pursuant to
standard terms and conditions of sale, which can be found at the
following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorIQ are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.
Off. All other product or service names are the property of their
respective owners. ARM, Cortex, Cortex-A7, TrustZone are
trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved.

Ⓒ 2016 Freescale Semiconductor, Inc.

CW_ARMv7_Tracing_User_Guide
Rev. 10.0.8

01/2016

http://www.freescale.com
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Overview
	1.2 Accompanying documentation

	2 Tracing
	2.1 Configuring and collecting trace
	2.1.1 Creating a new project
	2.1.2 Configuring trace
	2.1.3 Collecting trace data
	2.1.4 Collecting trace data using an Attach configuration

	2.2 Viewing trace data using Analysis Results view
	2.2.1 Trace viewer
	2.2.2 Timeline viewer
	2.2.2.1 Selection Mode
	2.2.2.2 Zoom Mode
	2.2.2.3 Full View
	2.2.2.4 Edit Groups

	2.2.3 Code Coverage viewer
	2.2.3.1 Summary table
	2.2.3.2 Details table

	2.2.4 Performance viewer
	2.2.5 Call Tree viewer

	3 Collecting and Viewing Linux Trace
	3.1 Collecting Linux trace using CodeWarrior
	3.2 Viewing Linux trace collected without using CodeWarrior

	4 Linux Kernel Debug Print Tool
	4.1 Filtering debug print messages

