NXP Semiconductors Document Number: CWARMvV8TAUG
Reference Manual Rev. 11.3.0, 12/2017

CodeWarrior Development Studio for
QorlQ LS series - ARM V8 ISA, Tracing
and Analysis User Guide

h
P

Contents

Contents
Chapter 1 IntroducCtion.......cueeeeeeeiiiiiiiiiirrrrrrs e 3
1.1 ADOUL this MaNUALL........cooi e 3
1.2 Accompanying dOCUMENTATION.oiiiuiiiiiii e e e e e e ee s 3
Chapter 2 Collect Trace Data.........ccccevvrmmmmmmmmmmmmmmmmmmsmmsssssssssssssssssssssssssssssssssas 4
2.1 Process for COIECHNG Aata..........ooeiiiiiiiiiiiee e s 4
2.2 Creatling @ NEW PIOJECT.uuiiiiiii e eeeiie ettt e e e e e e s e e e e e s e s et e e e e e e e e e e e s nnnsaeeeeeeeens 4
2.3 ConfIQUIING taIGeT........eeeeei e 6
2.4 Configuring Debug LAUNCRET...........oiiiiiiiee e 8
2.4.1 Configuring platform configuration file............oooiiii i 11
2.4.2 Display target @CCESSES. .. .uuiiii ittt e e nreeeeeeaae 14
Chapter 3 Trace Commander View............cccccrmrmmmmmmmmmmmmssssssnsennnssssssssssssses 16
B0 T 17T V= 16
3.2 Configuring and collecting trace using Trace Commander VIEW............ccvvvvvveeeeeeiieereeenennn. 17
Chapter 4 View Trace Data.......cccccccccviiiiiinmmmimmmmmsssssssssnnnssssssssssssssssssnns 21
4.1 ANAlYSIS RESUIS VIBW.....ceiiiiiiiiiii ettt e e e e e e e e e e e e e 21
4.1.1 VIeWing TracCe dat@.........cooiiiiiiiiieiieiiee et e s e e e 25
4.1.2 Viewing Performance data...........oocuuieiiiiiiiieeiee e 26
4.1.3 Viewing TIMeliNe data.........coooiiiiiiii e 29
4.1.3.1 Add OF reMOVE FUNCHON.eiiiiiieeee et e e e e e enee e e s e e sneeeeas 31
4.1.3.2 Edit address range Of FUNCHON...........ooiiiiiiiiie e 31
4.1.3.3 CRANGE COION ...ttt ettt ettt se ettt e eae e b e et e e b e e e b e e n e e sabeenaeenanis 31
4.1.3.4 AQd OF FEMOVE GIOUP...ceeiureeiauretermeeeessreeeareeesanneeesmneesaasetesanreeesneeesasreesareeesaneeeessreeeenneesannees 32
4.1.3.5 Merge groups OF FUNCHONS.ccueiiiiiiie ittt 33
4.1.4 Viewing Call TreE data.......cuuieiieiieiiie ettt ettt s b et e e an e s bee e e enree s 33
4.1.5 Viewing Code CoVerage data..........cuurueiiiieiiiiiieiiee et et ee ettt ae e sbe e e s nnnee s 35
4.1.5.1 EXport Code CoVErage data.........cecuieriieriiiitieeieeiie sttt sne e r e sne e 37
4.2 IMPOrt trace data........cooeiiie e 39
Chapter 5 Collect and View Linux satrace Dataccccccccciiiimrcceniininneeens 45
5.1 Collecting Linux trace from CodeWarrior using satrace...........ccoccueeeeiiieeieiiiineee e 45
5.2 Importing and decoding trace collected using satrace............cccccoviiiiiriieiee e 54
Chapter 6 Linux Kernel and User Applications Debug Print Tool............ 56
LG I 11 (=T o PP PP 61
g o (= 68

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
2 NXP Semiconductors

Introduction
About this manual

Chapter 1
Introduction

This manual explains how to use the CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA product.
This chapter presents an overview of the manual. The topics in this chapter are:

¢ About this Manual - Describes the contents of this manual

* Accompanying Documentation - Describes supplementary CodeWarrior documentation, third-party documentation, and
references.

1.1 About this manual

Each chapter of this manual describes a different area of software development.

The following table lists the contents of this manual.

Table 1. Manual contents

Chapter Description

Introduction This chapter.

Collect Trace Data on page | Explains how to use the CodeWarrior for ARMv8 to collect trace data.
4

Trace Commander View on | Explains how to manage and view the trace data.
page 16
View Trace Data on page | Explains how to view various types of data trace collected on an application.

21

Collect and View Linux Explains how to collect and view satrace with and without using CodeWarrior.
satrace Data on page 45

Linux Kernel and User Explains how Debug Print Tool works. The tool is independent of CodeWarrior and does not
Applications Debug Print require a debug session.
Tool on page 56

1.2 Accompanying documentation

The Documentation page describes the documentation included in this version of CodeWarrior Development Studio for
QorlQ LS series - ARM V8 ISA.
You can access the Documentation page by:

* Opening START_HERE.html from <CWinstallDir>\CW_ARMv8\ARMVv8\Help folder or select Help > Documentation from
the IDE's menu bar.

* To view the online help for the CodeWarrior tools, select Help > Help Contents from the IDE's menu bar.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors

3

Collect Trace Data
Process for collecting data

Chapter 2
Collect Trace Data

This chapter guides you on how to use the CodeWarrior for ARMv8 to collect trace.

It also explains the steps to configure, collect, store, and visualize trace from a target. This chapter includes the following
sections:

* Process for collecting data on page 4

* Creating a new project on page 4

» Configuring target on page 6

» Configuring Debug Launcher on page 8

2.1 Process for collecting data

This section describes the process for setting up the tools required for data collection.

To collect trace data, perform the following steps in sequence:

1. Create and configure a project

2. Set up the debugger Target Connection Configuration (TCC) to collect the analysis data from the hardware

3. Run the application on the target to collect trace data

2.2 Creating a new project

This section explains the process to create new projects for both emulator and hardware profiling.

You can use the CodeWarrior Bareboard Project Wizard to create new projects for tracing. The CodeWarrior IDE is a project-
oriented interface. You must create a new project or open an existing project before using the Analysis tools. To create a new
project, perform the following steps:

1. Select File > New > ARMv8 Stationery.
The ARMv8 Project page appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
4 NXP Semiconductors

Collect Trace Data

Creating a new project

s

¥ ARMVE Project

ARMvSE Project
Create an ARMNE project

Project name:

Use default location
C:/Users/b34930/workspace/ARMvE_SA

Auvailable stationeries:

type filter text

a4 (= ARM\E
4 [Bare board
@ Hello World Assembly Project
@ Hello World C Project
& Hello World C Static Library Project
@ Hello World C++ Project
@& Hello World C++ Static Library Project
4 [Linux Application Debug
4 (= Abrchbd
@ Hello World C Project
@ Hello World C Static Library Project
@ Hello World C Shared Library Project
@ Hello World C++ Project
@ Hello World C++ Static Library Project
4 = Abrch32
@ Hello World C Project
@ Hello World C++ Project

=[O =]

Browse...

Description:

Creates a Hello World project in C language for linux
application debug.

Finish Cancel

Figure 1. Create an ARMv8 Project page

2. On the ARMv8 Project page, enter the name of your project and also specify the location of the project.

3. Choose the ARMv8 project type. Select Hello World C Project.

4. Click Finish.

In CodeWarrior IDE, the project is created in the Project Explorer view.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

5

Collect Trace Data
Configuring target

L5 Project Explorer &3 == = = 0
4 |l test

- [Includes

- 2 sre

» = lib

. = Linker_Files
| test.launch

—_

Figure 2. Project Explorer view

2.3 Configuring target

Target Connection Configuration (TCC) feature allows you to configure the probe and the target hardware.

Before debugging your application, you need to configure the Target Connection Configuration (TCC). You can view all
existing configurations, manage, and set the active configuration using the Target Connection manager. To access the
Target Connection manager, select Window > Preferences > Target Connection Configuration. You will be able to see
the Target Connection manager in the right panel of the Preferences window. Besides the possibility to configure the target
connection through the preferences, you can access the same capabilities available in the Target Connection view. To access
the Target Connections view, select Window > Show View > Other > Debug >Target Connections.

The Target Connections view lists the available target configurations.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
6 NXP Semiconductors

¥ preferences

——)

Collect Trace Data
Configuring target

type filter text

» General

C/C++

Changelog

Help

Install/Update
Library Hover

Mylyn

NXP Licenses

Oomph

Processor Expert
Remote Developmen
Remote Systems

» RPM

Run/Debug

Software Analysis

»| Target Connection Cc
» Team

» Terminal
» Tracing

Validation
> XML

< | [l b

Target Connection Configuration

List of available target configurations, only one can be active at a certain moment

T

Board

%y L52088A RDB (1)
Bz LA1575_RDB
EZLS1012A_FRDM
E2LS1012A_QDS
2 LS1012A_RDB
2 LS1023A_QDS
E41S1023A_RDB
B4 LS1026A_QDS
E21LS1026A_RDB
E1S1043A_QDS
[E21LS1043A_RDB
2LS1044A_QDS
4 LS1044A RDB
2 LS1046A_QDS
4 151046A_RDB
[21LS1048A_QDS
EZLS1048A_RDB
[E21LS1084A_QDS
E2LS1084A_RDB
{LS1088A_QDS
4 LS1088A_RDB
4 LS2044A_QDS
[E21LS2044A_RDB
[E1S2048A_QDS
[21LS2048A_RDB
2 LS2084A_QDS
= LS2084A_RDB
4 LS2088A_QDS
4 1LS2088A_RDB

Device
LS2088A
LA1575
LS1012A
LS1012A
LS1012A
LS1023A
LS1023A
LS1026A
LS1026A
LS1043A
LS1043A
LS1044A
LS1044A
LS1046A
LS1046A
LS1048A
LS1048A
LS1084A
LS1084A
LS1088A
LS1088A
LS2044A
LS2044A
LS2048A
LS2048A
LS2084A
LS2084A
LS2088A
LS2088A

Connection Details
10.171.77.91

Probe
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP
CodeWarrior TAP

Path

Activate
Add
Edit
Duplicate
Remaove

Export

m

Apply and Closel I Cancel

Figure 3. Target Connections view

To configure the target configuration in Target Connection Configurator, you need to select the debugged processor and the

probe:

1. Choose the Target Connection based on the debugged core from the launch configuration file. Select any target from the
Target Configurations list.

2. Click Duplicate to duplicate the predefined configuration. You can edit the duplicated configuration.

The Target Connection Configurator window appears.

3. Select a connection type such as CodeWarrior TAP to connect to the target.

4. Specify the probe configuration details by selecting the Connection type, Hostname/IP, and Serial number for USB
connection. Select the Preserve Probe Configuration option to hide all the CWTAP configurations. In this case, specify
only the CCS server to access the CWTAP

NOTE

The probes are available depending on the selected processor.

Each target connection configuration allows the user to select the type of connection to use with GTA: a local server or a

remote connection to an already set up GTA server.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

7

Collect Trace Data

Configuring Debug Launcher

Start local server: In order to use a local GTA instance, the user must correctly specify the path to the GTA executable. TCC
lets you start and stop an instance of the local GTA from the Target Connections Configurator dialog using the Start/Stop
buttons in the Start local server area. In the case a GTA instance is already opened, TCC does not open a new instance but
reuses the existing GTA. A scan is performed to determine if a GTA process is already running locally, which is transparent
to the user and can be stopped on demand. TCC can start and stop an instance of the local GTA on user demand.

Connect to debug server: User can specify the server address and IP of an already running debug server. This is used for
debugging and configuring the target. The GTA server can be configured from Window > Preferences > Target Connection
Configuration > Debug Server Connection. You will be able to see the Debug Server Connection in the right panel of the
Preferences window.

e

¥ Preferences

type filter text

. General

o CAC++
Changeleog
Createrepo
Freescale Licenses

- Help

. Install/Update

- Library Hover

. Mylyn

. Remote Development

. Remote Systemns

. Run/Debug

. Software Analysis

. Specfile Editor

4 Target Connection Configy

Debug Server Connecti
Legging Configuration
. Team
Terminal
. Tracing

1 I

=[5 =]
Debug Server Connection = S
= Debug Connection Server
Specify the Debug Connection Server parameters
@) Start Local Server
Connect to FSLO36ERD 45000
= CodeWarrior Connection Server
Specify the CodeWarrior Connection Server parameters
Start Local Server
@ Connectto IP: FSLO36EFD Port: 41475
‘ Restore Qefaults| | Apply |
[0K] ‘ Cancel |

Figure 4. Debug Server Connection

2.4 Configuring Debug Launcher

You need to define the trace configuration before debugging the application for trace collection.

To define a trace configuration:
1.
2.

The Debug Configurations dialog appears.

Right-click the selected project in the Project Explorer view and select Build Project from the context menu.

In the Project Explorer view, right-click on the project and select Debug as > Debug Configurations from the context
menu.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

Collect Trace Data
Configuring Debug Launcher

¥ Debug Configurations

Create, manage, and run configurations

2 X| B3
type filter text
[E] C/C++ Application
[T] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger
[E] C/C++ Remote Application
a [t GDB Hardware Debugging
] Test
= Launch Group

Filter matched 7 of 7 items

@

MName: Test

= Main ﬁDehugger = Startup E? Source | 05 Awareness | Other Symbals [Common | £ Trace and Profile

Project:

Test Browse...

C/C++ Application:

Debug\Test.elf
Variables... | | Search Project... ‘ ‘ Browse... |
Build (if required) befere launching
Build configuration: | Use Active v|
@) Enable auto build Disable auto build
Use workspace settings Configure Workspace Settings...

Using CodeWarrior Hardware Debugging Launcher - Select other... Apply evel

[Debug] | Close

Figure 5. Debug Configurations Dialog Box - Main Page

Expand the GDB Hardware Debugging group in the tree structure on the left, and select the launch configuration

corresponding to the project you are using for example, Test.

Select Test in the Project field available in the Main tab of the Debug Configurations dialog box.

Click the Trace and Profile tab. This tab has the Overview and Basic page.

The Overview page displays the flow diagram for collecting trace.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

9

Collect Trace Data

Configuring Debug Launcher

Main ﬁ? Debugger (B Startup r‘%/ Source (OS Awareness (?;‘:» Other Symbols ﬂfl Common (?: Trace and Profile
Overview Basiﬂ

TracelP for LS20282A.

Figure 6.

Trace and Profile tab - Overview page
6.

In the Basic page, select Test.xml file from Platform Configuration Settings.

Main ﬁi‘F Debugger (b Startup ﬁ%/ Source (OS Awareness f%‘fr Other Symbaols ﬂfl Common (f—: Trace and Profile

Overview m

Platform Configuration Settings

lTest)(mI -]

Target OS

Linux

Target agent
(@) None
IP Address
127.001
Port
45000

Trace module configured by

() User Code
(@ CodeWarrior

Figure 7. Trace and Profile tab - Basic page

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
10

NXP Semiconductors

Collect Trace Data
Configuring Debug Launcher

7. Specify the IP address and Port value to match the GTA Port value from Debug Server Connection. For more details,
see Configuring target on page 6.

8. Select CodeWarrior option from the Trace module configured by list.

9. Click Apply to save the configuration.
To start the trace collection, in the Debug window, click Debug to launch the project Test.

This section includes the following topics:

» Configuring platform configuration file on page 11

» Display target accesses on page 14

2.4.1 Configuring platform configuration file

This section explains the steps to configure the platform configuration file.
Perform the following steps to configure the platform configuration file to collect trace data:

1. In the Project Explorer view, right-click the project and select Debug as > Debug Configurations from the context
menu.

The Debug Configuration dialog appears.
2. Click the Trace and Profile tab.
3. In the Basic page, select a platform configuration file.

The buttons in the Platform Configuration settings are:

Table 2. Platform Configuration settings buttons

Button Description

New Create a new configuration file. Select the processor as
LS2088A or LS2048 in the New Platform Configuration
dialog box.

Rename Rename the selected configuration file.

Delete Delete the selected configuration file.

Edit Edit the configuration from the selected file.

Export Export the selected configuration file.

4. Click Edit to configure an existing platform configuration file.

The Trace Configurations dialog appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 1

Collect Trace Data
Configuring Debug Launcher

Software Analysis Configuration

Configure trace IP

4 New_configurationxml - Core 0
4 Trace Generators

4 CORE (Embedded Trace |
|C0re 0| Trace

Enable Trace

Care 1 Trace scenarios
Core 2

Core 3 () U-Boot Trace

Core 4 ' —
[Core 5
Core 6 Medium - High
Core 7

4 DDDI (DDR Debug Trace, || ©eneral Settings
DDDI 1 [] Timestamp

(@ Program Trace Bandwidth

| DDDI2 Application Information
DDDI3

4 PXDI (Pex Debug Trace Ir
PXDIO
PXDI1
PXDI 2
PXDI3
4 NOC (Metwork on Chip)
(a MAIN (Main)
acl

LoadAddress New File Add

Remove

11

fdma
aiop_other
tlu
caaml
caam2
wriopl
wriop2
wriop3

4 HSIO (High-Speed [/C—
thus
thub

[thu7? -~

< I} | 3

| @ oK || cancel

Figure 8. Trace Configurations window

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
12 NXP Semiconductors

Collect Trace Data
Configuring Debug Launcher

. Select a trace generator type group from the Trace Generators available in the left panel, for example select Core 0.

The respective settings for Core 0 trace generator will appear.

. Select the desired trace scenario from the Trace Scenarios group. You can select any of the below listed scenerio:

¢ Program Trace - Inspects the program execution flow.

* U-Boot Trace - Monitors the primary boot loader used to package the instructions to boot the device's operating system

kernel.

Select Timestamp checkbox in the General Settings panel to enable timestamp. Timestamping is useful for correlating
multiple trace sources. Timestamping is performed by the insertion of timestamp packets into the trace streams. It displays
the value of platform global timestamp generator (64-bit wide).

. Click Add to include the executable ELF file from the associated project. This ELF file will be used to interpret the collected
trace data and provide the symbolic-debug information.

A row gets added in the Application Information area.

. Click the Ellipsis button.

The browse for executable file dialog box appears.

The executable file is added.

11. Click OK.

configuration file to xml.

F‘ Open &J
@ Ovl « Primary (C) » Freescale » CWANET v2017.12 » CW_ARMvE » v | 4l Search cw ARMvE)
Organize ~ New folder = - 1 @

-~
MName Date modified Type Size
.| Libraries
ARMvE /672017 4:03 PM File folder
. Documents
N B Config /62017 4:03 PM File folder
& Music
B Cross_Tools 12/6/2017 4:03 PM File folder
= Pictures T TRt -
eclipse f6/2017 617 PM File folder
x, Videos . '
gnu '6/2017 4:03 PM File folder
META-INF File folder
& Computer .
— -.| fsl_eclipse.bat 11/28/2017 419 PM Windows Batch File 1
=¥ Primary (C) = : _ _)
i i B install.log /6/2017 403 PM ext Document 2,739
% zind5fil01) (W) - . L L
i E“p uninst.exe 12/6/2017 4:03 PM Application 71
% 10.2 0\ Zro04file01\ent
% QorlQ (\Tx32file100v\
& Network - il b
File name: - lx * vl
l Open l l Cancel l
Figure 9. Select the executable file window
10.Click Open.

The Export platform Configuration to xml dialog appears.

12.Click Export button in the Basic page > Platform Configuration Settings area if you want to export your platform

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

13

Collect Trace Data

Configuring Debug Launcher

ﬁ' Export

Export to

Export platform Configuration to xml

@ Export selected platform configuration to xml file, on local or remote filesystem.

Remote System

13.Browse to the location where you want to save the exported file and click Export.

2.4.2 Display target accesses

The Target Agent (TA) from Basic tab, specifies the way in which the tool connects to the target.

Destination File Name : Testxml

Local folder to export: Browse...

(?) Expo Cancel
Figure 10. Export platform Configuration to xml

Currently, there is the GTA protocol available in CodeWarrior and LTA Logger which is a server application available in
<CWinstallDir>/ARMv8/sa_Is/bin/ls2.lta.log.server(.exe). This can be executed from a console and it displays the target
accesses made by the configurator, at stdout. This is an off-line tool that displays which settings are made, which registers
are written while configuring trace.

From the Basic tab, the IP Address represents the address of the machine where the server is running and the port used to
communicate between the server and the configurator.

If a communication protocol is available (the /s2./ta.log.server is running), the TC2 Configurator accesses the target and
performs the writes to the configuration registers.

Example of stdout for TC2 Configurator:

write mem
write mem
write mem
write mem
write mem
read mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem

0x700084£fb0
0x700084£fb0
0x700004000
0x700004£fb0
0x700004000
0x700004020
0x700004020
0x70000403c
0x7000040ac
0x7000040b0
0x7000040b8
0x7000040b4
0x700048£fb0
0x700048000

data=0xc5acce55
data=0xc5acce55
data=0x00000001
data=0xc5acce55
data=0x80000060
data=0x80000060
data=0x00000000
data=0x70000000
data=0x90000000
data=0x00000000
data=0x00000040
data=0x93000000
data=0xc5acce55
data=0x00000403

length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

14

NXP Semiconductors

write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
write mem
read mem

0x700048004
0x701040£fbo0
0x701040300
0x701040004
0x701040010
0x701040020
0x701040024
0x701040040
0x701040034
0x701040030
0x701040080
0x701040084
0x701040088
0x701040004
0x70000cfb0
0x70000c000
0x70000c004
0x70000d£fbo0
0x70000d000
0x70000d004
0x700024£fb0
0x700024004
0x700024004
0x700028000
0x700024000

data=0x00000008
data=0xcbacce55
data=0x00000000
data=0x00000000
data=0x00000040
data=0x00000000
data=0x00000000
data=0x00000001
data=0x0000000a
data=0x00000000
data=0x00000201
data=0x00000000
data=0x00000000
data=0x00000001
data=0xc5acce55
data=0x00000407
data=0x00000088
data=0xc5acce55
data=0x00000403
data=0x00000008
data=0xc5acce55
data=0x00000200
data=0x00000000
data=0x00000000
data=0x00000000

length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4
length=0x4

Collect Trace Data

Configuring Debug Launcher

Each line describes a target access that the TC2 Configurator is performing including the Physical Address, the register size

(length) and the actual data is written as an unsigned integer value (data).

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

15

Trace Commander View
Overview

Chapter 3
Trace Commander View

This section explains how to use the Trace Commander feature of CodeWarrior for ARMv8.
This section has following topics:
* Overview on page 16

» Configuring and collecting trace using Trace Commander view on page 17

3.1 Overview

Trace Commander feature uploads the trace and configures the modules included in the target architecture.

For example, for ARMv8 LS2088A, the modules are ETM4.0 cores (ETM - Embedded Trace Macrocell 4.0), Big Funnel (that
makes the link between the active trace generator (active core) and the central DTC module), PXDIn (n from 0 to 3) modules,
PXDI Funnel and SoC Funnel (makes the link to central DTC module), DDDIn (n form 1 to 3) modules, NXC, HSIO Funnel,
Main NoC and HSIO NoC observers (each of these two observers has a number of trace generators probe) and STM. It also
configures the C-DTC collector.

QorlQ LS2088A TracelP Block Diagram

2 XA72 cores 2 XA72 cores 2 XA72 cores 2 XA72 cores

GPP Big GPP Big GPP Big
cluster 1 cluster 2 cluster 3

GPP Big
cluster O

Vet
NENEES

DP-TRC
64KB buffer

1

from LDPAA

Systemﬁ'_r HSIO Q (_m
events ____J Funnel o %
'\ n
c
s [
HSIO
= |2 =m

Figure 11. Core Trace path

The C-DTC stores and forwards trace data using a dedicated RAM buffer. This reduces trace loss by absorbing spikes in
trace data. The destination of the raw trace is either the internal trace buffer of the C-DTC module or a user defined buffer in
DDR. Trace Commander is deployed as an Eclipse Editor view.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
16 NXP Semiconductors

Trace Commander View
Configuring and collecting trace using Trace Commander view

3.2 Configuring and collecting trace using Trace
Commander view

Trace Commander view is used to manage the trace collection data. The view is used to perform actions such as, start,
stop trace on different trace generators, manual upload or trace configuration for data trace collection.

Trace Commander is based on an xml platform configuration file, which is responsible with configuring all the modules
included in the target architecture. Hence, the Trace Commander tool is used to ease the task of configuring and uploading
trace.

Trace Commander displays all modules from a platform configuration file. Perform the following steps in order to collect multi
core trace data using Trace Commander:

1. Select Window > Show View > Other > Software Analysis > Trace Commander.
The Trace Commanderview is displayed.
2. Choose the platform configuration file, for example select test.xml.

The Trace Commander view displays all trace generators and trace buffers available in the selected platform file. The
colors suggest their state, available or not for collecting trace: green if the trace generator is enabled and grey if trace
generator is disabled. For trace buffers, the green color determines the trace collector.

& v

Double click on one of the trace generators or trace buffers to configure it. You can also use Config button.

The Trace Configuration window is displayed.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 17

Trace Commander View
Configuring and collecting trace using Trace Commander view

ﬁ* Configure Trace @

Software Analysis Configuration

Configure platform file Test_Projxml

Configure Trace IP

Advanced Trace Generators configuration

Target 05

Linux

Target agent

@ MNone

IP Address
10.171.77.208
Port
45000

Trace meodule configured by

User Code

@ CodeWarrior

':f?j' O,] | Cancel

Figure 12. Trace Configuration window

4. Click one of the trace buffer to collect trace, for example select DTC. They are exclusive; you can collect trace in one
buffer per running.

5. Click Connect button.

While starting the session @ , the target is configured using the selected platform file. This will be attached to
the active debug session, GTA (see Configuring Debug Launcher on page 8). The configuration is applied on the whole
platform. Now the trace buffer selection and configuration becomes unavailable, also the trace generators configuration.

On stop session , the trace stream is interrupted and the file gets inactive. Hence, the trace buffer selection
and configuration and trace generators configuration becomes available.

6. Click the trace generator or a trace generators group to start or stop trace collection on the selected module. For
example, click PXDI group to stop all PXDI trace collection and click on STM trace to enable it. The Trace Commander
view will update each trace generator state.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
18 NXP Semiconductors

Testxml

[Problems & Tasks B Console [Properties %" Trace Commander 2

Q(r)()

Trace Commander View
$Fd= o

Configuring and collecting trace using Trace Commander view

Figure 13.

Je——

NOTE

Trace Commander view - Start/Stop trace generators
7. Click upload, available on the trace buffer, to save the data trace collected. For example, on DTC, click upload button.
Data trace can be saved only on connection with the active debug session, GTA or LTA.

It is recommended to suspend the generator core or the target while collecting core trace.

Figure 14. Selected trace buffer and upload button
4
Refresh '+

Trace data is saved in .AnalysisData folder from the application’s workspace.
The toolbar options from the Trace Commander view allows you to perform:

: refreshes the view .

platform configuration file.

Settings 'ﬁ : opens the Platform Configuration Settings window. This lists all available platform configuration files from

<workspace dirs>/.metadata/.plugins/com.freescale.sa/platformConfig. You can add, remove, or duplicate a

NXP Semiconductors

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

19

Trace Commander View
Configuring and collecting trace using Trace Commander view

ﬁ" Platform Configuration Settings @

Set Platform Configuration

List of available Platform Configurations

Platform Configurations Add
Test_Projxml Duplicate
Remove
oK l [Cancel

Figure 15. Platform Configuration window

X - quration fi
Export : exports the current displayed configuration file.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
20 NXP Semiconductors

View Trace Data
Analysis Results view

Chapter 4
View Trace Data

This chapter describes how to display the collected trace data and how to view the decoded trace data.
This chapter includes:
* Analysis Results view on page 21

* Import trace data on page 39

4.1 Analysis Results view

The Analysis Results view shows and manages collected traces.

The main features of the Analysis Results view are: organizing logic of trace and profiling results, enable/disable links towards
profiling viewers, save/rename/delete results, expand all/collapse all results, and refreshing the view.

From the menu bar, select Window > Show View > Other > Software Analysis > Analysis Results to view Analysis Results
view.

NOTE
You can also press Alt+Shift+Q, Q to open the Other Views dialog box and select Software
Analysis --> Analysis Results view.

i "

¥ Show View = (=[]

type filter text

CvVs -
Debug

Git

Help

LTTng

Make

Mylyn

it

Profiling

m

Remote Systems
Software Analysis
ﬁ' Analysis Results
3% Debug Print

5" Trace Commander

ATV VO VT VU Y

. = Team
. = Timeline -

] Cancel

Figure 16. Show View dialog box

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 21

View Trace Data
Analysis Results view

The Analysis Results view pops up and gets focus after successfully collecting a trace. It does not refresh automatically. Click
the Refresh button in the Analysis Results view to update the links to view the profiling trace data. The following figure shows
the Analysis Results view.

@& Analysis Results 52 = 0
Analysis Results ===
MName Trace Timeline Code Coverage Performance Call Tree Last Modified Notes
4 = Test
a & DTC
B Test A Trace [u Timeline Code Coverage @ Performance E Call Tree 2015.04.21 02:31:...

Figure 17. Analysis Results view

The data in results table is organized (from top to bottom) in the following manner:

* Platform Configuration: Name of the platform configuration file used to collect the trace result.

» Data streams: The data source from where the trace was collected. For example, it can be DDR or DTC.
* Result sets: Lists the collected trace data.

The Analysis Results view allows to perform the following actions:

Table 3. Analysis Results Toolbar

Button Description

Refresh Refreshes the view and rescans all output folders for trace
and analysis results

Expand all Expands all nodes in the tree
Collapse all Collapses all nodes in the tree
Select custom results folder Allows to select a custom folder to scan for trace results

Apart from the above described toolbar actions, the context menu also allows to perform the following actions for a selected
trace result:

* Rename: To rename the selected trace result

* Save: To save the selected trace result. The save function creates a copy of the selected trace results with an index
appended to the name. By default when a new trace is collected it receives the name of the project from where it was
collected. If there is already a trace with that name, it is overwritten.

¢ Delete: To delete the selected trace result.

The Analysis Results view can also show the results from more folders. Each platform configuration available

in .metadata/.plugins/com.freescale.sa/platformConfig/ folder is checked for the path specified towards the set of
results. All sets of trace and profiling results found in those paths will appear in the Analysis Results view. All the trace results
available in workspace/.RAnalysisData are displayed in Analysis Results view.

To configure the view to display trace data of another custom results folder that does not belong to any platform configuration
inside the workspace:

1. Click Select custom results folder option available on the Analysis Results view toolbar.
The Custom results folder dialog gets displayed.
2. Click Add.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
22 NXP Semiconductors

View Trace Data
Analysis Results view

The SA Results Folder Selection dialog opens.
3. Browse the location of the required custom folder.
4. Click Ok.
The path to the custom folder for which the trace needs to be collected gets added under the Path field.

To configure the results folder for a platform configuration, specify the Results folder location available in the Trace
Configurations dialog box as shown in the below figure. The collected trace using the Platform configuration will be saved
in the specified folder.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 23

View Trace Data
Analysis Results view

ﬁ' Trace Configurations - | ——

| Software Analysis Configuration

Configure trace IP

Core 0 -
Core 1 Results folder:

Core 2
Core 3 —
Core 4
Core 5
Core &
Core 7
a DDDI (DDR Debug Trace Interfac
poDI1
poDI2
DDDI 3
a PXDI (Pex Debug Trace Interface]
PXDIO
PXDI1
PXDI 2
PXDI 3
a NOC (Metwaork on Chip)
4 MAIN (Main)
acl

11

fdma
aiop_other
tlu
caaml
caam2
wriopl
wriop2
wriop3
4 HSIO (High-Speed I/O)
tbus
tbué
tbu7
STM (System Trace Macrocell)
Data Streams

1]

Results Folder
4 | 1 »

| ® OK] l Cancel]

Figure 18. Trace configuration dialog box

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
24 NXP Semiconductors

View Trace Data

Analysis Results view

To view the collected trace data, click on the links of profiling results from the Analysis Results View:

* Viewing Trace data on page 25

* Viewing Performance data on page 26

* Viewing Timeline data on page 29

* Viewing Call Tree data on page 33

* Viewing Code Coverage data on page 35

4.1.1 Viewing Trace data

Click the Trace link from the Analysis Results view to display the trace data in the Trace viewer.

The following figure shows the fully decoded trace data.

A linumccsy 52
Index Source Type | Description | Address | Destination Timestamp
ContextID: 1935
21 Core(Software Context software context id = 1935 0
22 Core(Linear Function <no debug info> 0400430 0
03400430 mowvz x29, 0
23 Core(Linear Function <no debug info> (0:4003d0 0
0:4003d0 stp x16, 230, [sp, #-16]!
24 Core(Info Trace On packet - ETM -> start tracing after a (possible) trace gap 0
25 Core(Info Context packet - ETM 0
exception level: 0
state: 64-bit
security state: non-secure
WVMID: 0
ContextID: 1935
26 Core(Software Context software context id = 1935 0
27 Core(Linear Function _libc_csu_init 03400920 1]
0400320 stp %29, %30, [sp, #-64]!
0:400924 mov x29, sp
0400928 stp 19, %20, [sp, #16]
0:40092¢ stp x21, x22, [sp, #32]
0400330 adrp x20, #65536
0:400934 adrp x21, #65536
0400938 add x21, x21, #2512
040093 ¢ add x20, x20, #2520
02400340 sub x20, 20, x21
0400944 mov x22, x2
0400348 asrx20, x20, #3
040094 ¢ movz 19, #0
0400350 stp %23, x24, [sp, #48]
0400954 mowv w2d, wi
03400958 mow x23, x1
28 Corel Branch Branch from __libc_csu_init to <no debug info> 024 0095¢ 04003 b0 1]
0x40095¢ bl #-1452 --> 0:4003b0
29 Corel Linear Function <no debug info> 0400360 0
0:4003b0 stp x29, x30, [sp, #-16]!
30 Corel Linear Function <ne debug info> (400304 0
0:4003b4 mov x29, sp
El Corel Linear Function <ne debug info> 0:4003bc 0

Figure 19. Trace Viewer

The below table explains various fields of the trace data:

Table 4. Trace data fields description

Field

Description

Index

Displays the order number of the instructions.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

25

View Trace Data
Analysis Results view

Table 4. Trace data fields description (continued)

Field Description

Source Displays source of trace event.

Type Displays type of trace event.

Description Displays description of trace event.

Address Displays the starting address of the target function.

Destination Displays the end address of the target function.

Timestamp Displays the value of platform global timestamp generator (64-bit wide). Time stamping is
useful for correlating multiple trace sources.

The following table lists the Trace viewer events and their description:

Table 5. Trace viewer events description

Trace events

Description

Branch
Linear
Interrupt
Return
Data

Info

Error

Custom

It reports a branch instruction from a source function to a destination function.

It reports a linear instruction.

It is used for interrupt contexts. It can be useful while constructing an accurate call stack.
It reports a return instruction from a source to a destination function.

It reports data address, data value, data size information or read/write transaction type.

It reports the Trace Source’s run status. The semantic of the information code is specific to the Trace
Source, so it can only be interpreted by a specialized trace consumer.

It reports an error instruction.

It provides the following information:
e Label - A data label that indicates the “channel” with which the data value is associated.

¢ Data - The custom data value.

4.1.2 Viewing Performance data

Click on the Performance link available in Analysis Results View to display performance data.

The Performance viewer appears as shown below.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

26

NXP Semiconductors

View Trace Data
Analysis Results view

|5 PlatformConfig.aml EE} test.perf &2 = O

33 Performance - test

Core0
Summary Table A G
Function Name Mum Calls Inclusive Minln.. MaxIncl.. AwvglIncl.. Percen.. Exclusive MinEx. MaxExcl.. AvgExcl.. Percen..
4 Context 1354
main 1 17 17 17 17 1360 8 8 8 8 13.05
_libe_csu_init 1 60 60 60 60 4800 30 30 30 30 7143
call_weak_fn 1 4 4 4 4 3.20 4 4 4 4 9.52
4 I 3
Details Table Search: 2
Caller Caller Callee Num Calls... Inclusi.. Minln.. MaxIncl.. Awvglncl.. Percen.. Perce
<no debug info> main 1 17 17 17 17 100,00 3.73
J main «<no debug info> 1 9 9 9 9 7.20 100.0¢
Callee
‘) 4 T 3

Figure 20. Performance Viewer

The Performance viewer is divided into two views:

* The top view presents function performance data in the Summary table. It displays the count and invocation information
for each function that executes during the measurement, enabling you to compare the relative data for various portions
of your target program. The information in the Summary table can be sorted by column in ascending or descending
order. Click the column header to sort the corresponding data.

The following table explains the fields of the Summary table.

Table 6. Field description of Summary table

Field Description

Function Name Name of the function that has executed.

Num Calls Number of times the function has executed.

Inclusive Cumulative metric count during execution time spent from

function entry to exit.

Min Inclusive Minimum metric count during execution time spent from
function entry to exit.

Max Inclusive Maximum metric count during execution time spent from
function entry to exit.

Avg Inclusive Average metric count during execution time spent from
function entry to exit.

Percent Inclusive Percentage of total metric count spent from function entry to
exit.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 27

View Trace Data
Analysis Results view

Table 6. Field description of Summary table (continued)

Field

Description

Exclusive

Min Exclusive

Max Exclusive

Avg Exclusive

Percent Exclusive

Percent Total Calls

Code Size

Cumulative metric count during execution time spent within
function.

Minimum metric count during execution time spent within
function.

Maximum metric count during execution time spent within
function.

Average metric count during execution time spent within
function.

Percentage of total metric count spent within function.

Percentage of the calls to the function compared to the total
calls.

Number of bytes required by each function.

* The bottom view or the Details table presents call pair data for the function selected in the Summary table. It displays
call pair relationships for the selected function that shows which function called the another function. Each function pair
consists of a caller and a callee. The percent caller and percent callee data is also displayed graphically. The functions
are represented in different colors in the pie chart, you can move the mouse cursor over the color to see the

corresponding function.

When you double-click in Details pane on a call site, it opens (if available) the source file and highlights the call-site line.

If the source is not available, you can Locate the file.

The below table describes the fields of the Details table. You cannot sort the columns of this table.

Table 7. Field description of Details table

Max Inclusive

Avg Inclusive

Percent Callee

Field Description

Caller Name of the calling function.

Callee Name of the function that is called by the calling function.

Num Calls Number of times the caller called the callee.

Inclusive Cumulative metric count during execution time spent from
function entry to exit.

Min Inclusive Minimum metric count during execution time spent from

Table continues on the next page...

function entry to exit.

Maximum metric count during execution time spent from
function entry to exit.

Average metric count during execution time spent from
function entry to exit.

Percent of total metric count during the time the selected
function is the caller of a specific callee. The data is also
shown in the Caller pie chart.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

28

NXP Semiconductors

View Trace Data
Analysis Results view

Table 7. Field description of Details table (continued)

Field

Description

Percent Caller

Call Site

Percent of total metric count during the time the selected
function is the callee of a specific caller. The data is also
shown in the Callee pie chart.

Address from where the function was called.

The table below lists the buttons available in the Summary table of the Performance viewer.

Table 8. Buttons Available in Summary Table of Performance Viewer

Name Button

Description

Previous Function

Next Function

Export

L.

Configure Table

L

Allows you to view the details of the previous function that was selected
in the bottom view before the currently selected function. Click it to view
the details of the previous function.

Allows you to view the details of the next function that was selected in
the bottom view. NOTE: The Previous and Next buttons are contextual
and go to previous/next function according to the history of selections.
So if you select a single line in the view, these buttons will be disabled
because there is no history.

Allows you to export the performance data of both top and bottom views
in a CSV file. Click the button and select the Export the statistics
above option to export the details of the top view or the Export the
statistics below option to export the details of the bottom view
respectively.

Allows you to show and hide column(s) of the performance data. Click
the button and select the Configure Columns for Summary Table
option to show/hide columns of the top view or the Configure Columns
for Details Table option to show/hide columns of the bottom view. The
Drag and drop to order columns dialog box appears in which you can
check/clear the checkboxes corresponding to the available columns to
show/hide them in the Performance viewer.

4.1.3 Viewing Timeline data

Click on the Timeline link from Analysis Results view to view timeline data.

The following figure shows the trace data displayed in Timeline viewer.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

29

View Trace Data
Analysis Results view

[linuxtimeline &2 = B8

[= Linux User Space Timeline - linux.timeline - linux

Corel &2

Selection Mode | Zoom Mode Full View Edit Groups

Figure 21. Timeline Viewer

Timeline viewer has a tabbed interface. A tab for each source (usually a core) is created automatically. Each tab has its
independent timeline plot with its own setup of groups and time unit. The timeline viewer can be controlled using the toolbar.
The timeline data displays the functions that are executed in the application and the number of cycles each function takes
when the application is run. The Timeline viewer shows a timeline graph in which the functions appear on y-axis and the
number of cycles appear on x-axis. The green-colored bars show the time and cycles taken by the function.

The Timeline viewer has the following buttons:

* Selection Mode: Allows you to mark points in the function bars to measure the difference of cycles between those
points. To mark a point in the bar:

1. Click Selection Mode.
Click on the bar where you want to mark the point.
A yellow vertical line appears displaying the number of cycles at that point.

Right-click on another point in the bar.

o &~ w Db

A red vertical line appears displaying the number of cycles at that point along with the difference of cycles between
two marked points.

e Zoom Mode: Allows you to zoom-in and zoom-out in the timeline graph. Zooming can be performed using the mouse
wheel (even if this mode is not selected).

* Full View: Resets to the default zoom that allows seeing the full timeline

 Edit Groups: Allows you to customize the timeline according to the requirements. You can change the default color of the
line bars representing the functions to differentiate. You can add/remove a function to/from the timeline. To perform these
functions, select Edit Groups. The Edit Groups dialog box appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
30 NXP Semiconductors

View Trace Data
Analysis Results view

P "

¥ Edit Groups @

Mame Addresses Color

¥| <no debug info= 0D - 0

7] "_libc_csu_init" 0400570 - 040057]
7| "call_weak_fn" 03400438 - 0:40044b)
7] "main" 0400550 - 0x40056F]

0] 4] | Cancel |

Figure 22. Edit Groups dialog box
You can perform the following operations in the Edit Groups dialog box:
* Add or remove function on page 31
» Edit address range of function on page 31
* Change color on page 31
¢ Add or remove group on page 32
* Merge groups or functions on page 33
4.1.3.1 Add or remove function
This section explains how to add or remove a function from the Edit Groups dialog box.

Right-click on the function name in the Name column, and select Insert Function or press Ctrl+F to add a function. Select
Delete Selected from the context menu to delete the function from the graph. You can disable a function from the graph by
clearing the corresponding checkbox in the Name column. Check it again to include it in the graph.

4.1.3.2 Edit address range of function

This section explains how to edit the address range of a function from the Edit Groups dialog box.
Perform the following steps:
1. Select the function of which you want to change the address range.
2. Double-click on the cell of the Addresses column of the selected function.
The cell becomes editable.
3. Type an address range for the group or function in the cell.
NOTE

You can specify multiple address ranges to a function. The multiple address ranges are separated
by a comma.

4.1.3.3 Change color

This section explains how to change the color of a function in the timeline graph.

The color appears as a horizontal bar in the graph. Click on the Color column of the corresponding function, and select the
color of your choice from the Color window that appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 31

View Trace Data
Analysis Results view

4.1.3.4 Add or remove group

This section explains how to add or remove a group from Edit Groups dialog box.

A group is a range of addresses. In case, you want to view trace of a part of a function only, for example, for loop, you can
find the addresses of the loop and create a group for those addresses. Perform the following steps to add a group:

1. Right-click on the row, in the Edit Groups dialog box, where you want to insert a group, and select Insert Group from
the context menu. Alternatively, press the Ctrl+G key.

A row is added to the table with new as function name.

-

.

¥ Edit Groups @

Mame Addresses Colar

¥ <no debug info> 0l - 00

7] "_libc_csu_init" (400570 - 0x4005€7]
7] "call_weak_fn" 0400438 - 040044 b I
7] "main" 0400550 - 0340056f]

0] 4] | Cancel |

Figure 23. Adding Group Dialog Box
2. Double-click on the new group cell.
The cell becomes editable.

3. Type a name for the group, for example, MyGroup.

4. Double-click on the cell of the corresponding Addresses column, and edit the address range according to
requirements, for example, 0x1£££0330 - 0x1fff035¢f.

5. Change the color of the group.

ﬁ' Edit Groups @

Mame Addresses Color

7| <no debug info> 0 - 020

7] "_libc_csu_init" 0400570 - 0400567]
7] "call_weak_fn" (hc400438 - 040044k I
7] "main" 0400550 - 0xd0056F]
7] MyGroup 0s - OxFFFFFFFF

Ok | | Cancel

Figure 24. After Editing Address Range and Color of Group Screen

To delete a group, select it, right-click on the Edit Groups dialog box, and select the Delete Selected option from the
context menu. You can also remove a group from the graph by clearing the corresponding checkbox in the Name column.
Check it again to include it in the graph.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
32 NXP Semiconductors

View Trace Data
Analysis Results view

4.1.3.5 Merge groups or functions

This section explains how to merge the groups or functions available.

Merging is useful in case there are many functions and you do not want to view the trace of each and every function. You
cannot undo this operation, that is you cannot separate the merged functions or groups. To view the original trace data,
reopen the Trace Data viewer. Perform the following steps to merge the group or function:

1. In the Edit Groups dialog box, select the function or group to be merged.
2. Drag and drop it in the function or group with which you want it to get merged with.

3. Both the functions or groups merge into a single function or group that covers both address ranges, where the function,
main is merged with the group, MyGroup.

P "

33' Edit Groups @

Mame Addresses Color

J| <no debug info> 0 - 020

7] "_libc_csu_init" 0400570 - 0x4005€7 I
7] "call_weak_fn" (hed00438 - 040044]
7| "main” (b4 00550 - 0xd0056F, 0x0 - 0xFFFFFFFF | |

0] 4] | Cancel |

Figure 25. Merging Functions or Groups Screen

4. Click OK.

4.1.4 Viewing Call Tree data

Click the Call Tree link to view the call tree data.

The following image shows an example of the Call Tree data.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 33

View Trace Data
Analysis Results view

o= linuecalltree 7

#= Linux User Space Call Tree - linux

Core0 &3

per

Function Name MNum Calls % Total calls of parent % Total times it was called Inclusive Time (Cycles)

4 Context 1935

1 50.00 100.00 842,527
[PointerTest 1 0.47 100,00 3

| contolStucwe | 1 0.47 0.47 841,027
[BreakTest 1 14.29 0.47 17,040

| switdhTest 00000000 | 1 14.29 0.47 15,336
f ShowZeroTest 1 50,00 0,23 852

f CydeTest 1 14.29 0.47 312,684

[GotoTest 1 14.29 0.47 25,773

[MacraTest 1 14.29 0.47 130,775

4 f TernaryTest 1 14.29 0.47 5,936

fu 1 50,00 0.47 424

fu 1 50.00 0.47 424

f ContinueTest 1 14.29 0.47 331,144

4 f controlStructure 212 299,07 99,53 841,027

f BreakTest 212 14.30 99.53 17,040

a [SwitchTest 212 14.30 99.53 15,336

f ShowZeroTest 212 50.00 49.77 352

f ShowZeroTest 212 50.00 49,77 852

[CycleTest 212 14.30 99.53 312,684

f GotoTest 212 14.30 99.53 25,773

[macroTest 212 14.30 99.53 130,775

a [TermaryTest 211 14.24 99,53 5,935

fu 211 50.00 99,53 424

fr 211 50.00 99.53 424

[ContinueTest 211 14.24 99.53 331,144

4 f _libc_csu_init 1 50.00 100.00 34

[<no debug info» 1 50,00 50,00 842,551

f <no debug info= 1 50,00 50,00 842,561

Figure 26. Call Tree Viewer

In the Call Tree viewer, START is the root of the tree. You can click on “+” to expand the tree and “-” to collapse the tree. It
shows the biggest depth for stack utilization in Call Tree and the functions on this call path are displayed in green color. The
Call Tree nodes are synchronized with the source code. You can double-click on the node to view the source code. The
columns can be resized by moving the columns to the left or right of another column depending on your requirements by
dragging and dropping.

The following table describe the fields of Call Tree data.

Table 9. Call Tree fields description table

Field Description

Function Name Name of function that has executed.

Num Calls Number of times function has executed.

% Total calls of Parent Percent of number of function calls from total number of

calls in the application.

% Total times it was called Percent of number of times a function was called.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
34 NXP Semiconductors

Table 9. Call Tree fields description table (continued)

View Trace Data
Analysis Results view

Field

Description

Inclusive Time

Cumulative count during execution time spent from function

entry to exit.

4.1.5 Viewing Code Coverage data

Click the Code Coverage link to view to view the code coverage data.

The following diagram shows an example of the Code Coverage data.

Code Coverage - trace

Figure 27. Code Coverage viewer

| Coreo |
Summary Table v G 2 ey
File/Function Address Cowvered ASM % Mot Covered A... Total ASM ... ASM Decisi... Time Size i
4 Context 0 5
4 exception.5 NfA 0.00 % 100.00 % 1,561 0.00 % i 1,924
(AsmSection)_0x80000100 0xB0000100 0.00 % 100,00 % 1,561 0.00 % 0 1,924
4 main.c MN/A 6143 % 38,57 % 70 0.00 % 81 280
fa 0xB0000930 100,00 % 0.00 % 17 0.00 % 29 68
b (0xB000093 ¢ 100.00 % 0.00 % 21 0.00 % 42 84
main 0:800009d4 2041 % 70.59 % 17 0.00 % 10 68
rec (080000900 0.00 % 100,00 % 15 0.00 % 0 60
4 start.5 MN/A 0.00 % 100,00 % 331 0.00 % 0 768
(AsmSection)_0xB0000b00 0xB0000bL00 0.00 % 100,00 % 331 0.00 % 0 768
4 _No source info NYA 0.00 % 100.00 % 4 582 0.00 % 0 18,136 il
Details Table Search: 2 | i~ <€~
Line / Addr... Instruction Coverage ASM Decision ... ASM Count Time g
31 main.c ¥=| covered g 8
0xE0000 atp ®29, %30, [3p, #-48]! ¥=| covered 2 2 =
0x80000 mov K29, ap ¥= covered 2 2
0xE0000 stp %19, %20, [3p, #l&] ¥= covered 2 2
0x80000 str w0, [®x29, #44] ¥=| covered 2 2
32 main.c = covered 4 4
0xE0000 movz w20, #0 ¥=| covered 2 2
0x80000 move Wwls, #1 ¥= covered 2 2
33 main.c 0
34 main.c ¥=| covered 4 4
0x280000 ldr w0, [x2%, #44] ¥=| covered 2 2 i

The Code Coverage data displays the summarized data of a function in a tabular form. The columns are movable; you can
drag and drop the columns to move them according to your requirements. It displays data into two views; the top view displays
the summary of the functions, and the bottom view displays the statistics for all the instructions executed in a particular
function. Click on a hyperlinked function in the top view of the Code Coverage viewer to view the corresponding statistics for
the instructions executed in that function.

The below table explains the various fields of the Summary table.

Table 10. Code Coverage Summary Table fields description table

Field Description

File/Function Displays the name of the function that has executed.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors

35

View Trace Data
Analysis Results view

Table 10. Code Coverage Summary Table fields description table (continued)

Field

Description

Address
Covered ASM %

Not Covered ASM %

Total ASM instructions

ASM Decision Coverage %

Time (Microsecond)

Size

Displays the start address of the function.

Displays the percentage of number of assembly
instructions executed from the total number of assembly
instructions per function or per source file

Displays the percentage of number of assembly
instructions not executed from the total number of
assembly instructions per function or per source file.

Displays the total number of assembly instructions per
function and per source file.

Displays the decision coverage computed for direct and
indirect conditional branches. It is the mean value of the
individual decision coverages. So if a function has two
conditional instructions, one with 100% and another with
50% decision coverage, the decision coverage would be
(100 + 50) / 2 = 75%. It is calculated only for assembly
instructions and not for C source code.

Displays the total number of clock cycles that the function
takes

Displays the number of bytes required by each function.

The below table describes the fields of the statistics of the code coverage data.

Table 11. Code Coverage Details Table fields description table

Coverage %

ASM Decision Coverage

ASM Count
Time (CPU Cycles)

Field Description

Line/Address Displays either the line number for each instruction in the
source code or the address for the assembly code.

Instruction Displays all the instructions executed in the selected

function.

For C source lines, displays the percentage of number of
assembly instructions executed from the total number of
assembly instructions corresponding to the source line. For
assembly source lines, it shows if the instructions were
executed or not.

Displays the decision coverage computed for direct and
indirect conditional branches. It is the mean value of the
individual decision coverages. So if a function has two
conditional instructions, one with 100% and another with
50% decision coverage, the decision coverage would be (100
+50) /2 =75%. Itis calculated only for assembly instructions
and not for C source code.

Displays the number of times each instruction is executed.

Displays the total time taken by each instruction in the
function.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

36

NXP Semiconductors

View Trace Data
Analysis Results view

NOTE
In the Code Coverage viewer, all functions in all files associated with the project are displayed
irrespective of coverage percentage. However, the 0% coverage functions do not appear in the
Performance and Call Tree viewers because these functions are not considered to be computed
and are not a part of caller-called pair.

When you double-click in Details table on an instruction, it opens (if available) the source file and highlights the instruction
line. If the source is not available, you can Locate the file.

Click on the column header to sort the code coverage data by that column. However, you can only sort the code coverage
data available on the top view. The icons available in the summary view of the Code Coverage tab allow you to perform the
following actions:

Previous function- Lets you view the details of the previous function that was selected in the Summary table before the
currently selected function. Click it to view the details of the previous function.

Next function- Lets you view the details of the next function that was selected in the Summary table.

NOTE
The Previous and Next buttons are contextual and go to previous/next function according to the
history of selections. So if you select a single line in the view, these buttons will be disabled because
there is no history.

Export - Lets you export the code coverage data in a CSV or html format. Click the button to choose between Export to
CSV or Export to HTML options. The Export to CSV option lets you export data of both Summary and Details tables.
The exported html file contains the statistics for all the source files/functions from the Summary table along with the
statistics of source, assembly or mixed instructions.

Configure Table - Lets you show and hide column(s) of the code coverage data. Click and select the Configure
Columns for Summary Table option to show/hide columns in the Summary table (top view) or the Configure
Columns for Details table option to show/hide columns of the Details table (bottom view). The Drag and drop to
order columns dialog appears in which you can check/uncheck the checkboxes corresponding to the available columns
to show/hide them in the Code Coverage viewer. The option also allows you to set CPU frequency and set time in
cycles, milliseconds, microseconds, and nanoseconds.

Collapse/Expand all files - Lets you expand or collapse all files in the Summary table.
Filter Files - Allows you to choose the list of files to be displayed in the Summary table.

Switch to executable source lines statistics/Switch to ASM instructions statistics - Lets you switch between
source lines or ASM instructions to be displayed in the Summary table.

You can perform the following actions on the Details table:

Search - Lets you search for a particular text in the Details table. In the Search text box, type the data that you want to
search and click the Search button.

Graphics - Lets you display the histograms in two colors for the ASM Count and Time columns in the bottom view of the
code coverage data. Click the button and select the Assembly/Source > ASM Count or Assembly/Source > Time option
to display histograms in the ASM Count or Time column. The colors in these columns differentiate source code with the
assembly code.

Show code - Lets you display the assembly, source or mixed code in the statistics of the Code Coverage data.

4.1.5.1 Export Code Coverage data

You can export code coverage statistical data into CSV or HTML file format.

To export the data, follow the given procedure:

1.

P
Click the export E=11 T button available on the Code Coverage view.

The drop-down menu shows Export to CSV or Export to HTML option.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors 37

View Trace Data
Analysis Results view

2. Select any one of the following option to export the statistical data in the respective format:

e Export to CSV: Select the Export summary table statistics option to export the details of the top view or the
Export Details table statistics option to export the details of the bottom view respectively.

» Export to HTML: Select Export as source option to export the data in function details table that contains source
code lines, Export as asm option to export the data in function details table that contains address and assembly code
of the function, and Export as mixed option to export the data in function details table that contains both addresses
and line numbers of the instructions with their corresponding source and assembly code.

The Export to dialog box appears.
3. Specify the File name and browse the location where you want to save the data.
4. Click Save.
The exported data will be saved in the respective format (.csv or .html).
The data exported on the html page is structured in the given format:
* Files: Lists all the analyzed files

* File Analysis Content: Provides details on Function Coverage table, Each function detail (including Details table,
Code coverage metrics table, and ASM decision metrics table), Summary table, and ASM decision coverage table of
the selected file.

NOTE
While reading the data from the html page, the content of Function Details table suggests what
option was selected from Export to HTML menu (Export as source, asm or mixed). For example, if
the first column name of the Function Details table is Line, the option selected is Export as source.
Similarly, if the first column name is Address, then the option selected is Export as asm, and if the
first column name is Line/Address then the option selected is Export as mixed.

The screens given below shows the data structured in different tables:

Function coverage for main.c

| Function || Covered Source % |
| main [100 % |

Figure 28. Function Coverage Table

Source table for main

Line Instruction Coverage ASM Decision Coverage
28 H covered
29 printf(""Hello ARM World!" "\n""); covered
30 return 0; covered
31 H covered

Code coverage metrics for main

ASM decision metrics table for main

[Total ASM decisions | Taken ASM decisions | Not taken ASM decisions||Both taken ASM decisions | Not Covered ASM decisions |
| 0 | 0 | 0 | 0 | 0 |

Figure 29. Function Details Table

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
38 NXP Semiconductors

View Trace Data
Import trace data

Summary table for main.c

Function Total ASM instructions Covered ASM instructions Coverage %
main 8 8 100 %
‘Whole File 8 8 100 %

Figure 30. Summary Table

ASM decision coverage table for main.c

Figure 31. ASM Decision Coverage Table

4.2 Import trace data

This feature allows you to import a trace data file.

To import the trace data, perform the following steps:

1. Select File > Import to open the Import wizard.

2. Expand the Software Analysis node and select Trace option.

3. Click Next to display the Import Trace page of the Import wizard.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

39

View Trace Data
Import trace data

¥ Import = @

Import Trace

Mo trace data file selected.

Import From

Trace data file: Browse... |

Yiew Trace
| View the trace data on finish

05 Support

'?3' = Back lext > Finish Cancel

Figure 32. Import wizard

4. Click Browse to locate the trace data file of the project that you want to import. The files supported are raw trace files
(.dat) or raw trace archive files (.cwzsa, .kcwzsa, .scwzsa).

5. Check View the trace data on finish checkbox to view the trace data in Analysis Results view.
6. Select OS Support option to import a trace file collected from a Linux trace configuration.
7. Click Next.

The Import Trace Configuration page appears.

8. Configure the trace settings on the Intermediate tab, depending upon the trace file/trace archive file selected in the
Trace data file field:

* Raw trace file (.dat): Allows you to specify the system and application information for which the trace data is
imported. Follow the steps to import the trace data of a raw trace file:

a. Choose an option from the System list. This enables the list of executables for each core of the system that the
trace was collected.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
40 NXP Semiconductors

View Trace Data
Import trace data

rﬁ'lmpoﬂ { ‘El Li&_y

Import Trace Configuration

Specify system and application information for the trace.

Intermediate - Advanced
System:

LS2088A hd

System Executables

@' < Back Mext = Finish] l Cancel

Figure 33. Import Trace Configuration - Intermediate tab
b. Click a cell in the Executables column to browse the application file for the respective core.

The Trace Settings dialog appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 4

View Trace Data
Import trace data

P "

¥ Trace Settings = @

Application Information

Application:

[7} oK l | Cancel

Figure 34. Trace Settings dialog
c. Browse for the location of the application file and click OK.
The location of the application file will appear in the Executables column of the table.

 Trace archive files (.cwzsa, .kcwzsa, .scwzsa): Allows you to configure the PID, Context ID, Load Address, and the
location of the executable file. You can also add or remove the executables from the list. You can modify the
information in all columns except the File column, also you can add or remove executables. The relocation file
contains information about an executable, which is missing from the trace archive. In this case, the wizard displays a
red exclamation mark near the file location. Click in the New File column to import the missing executable file from
the file system. You can also import from the file system to overwrite the file in the trace archive files. The below
figure shows the Application Information available for trace archive files.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
42 NXP Semiconductors

View Trace Data
Import trace data

¥ Import = @

Import Trace Configuration

Specify system and application information fer the trace.,

Intermediate ~._Advanced

Application Information

PID ContedtID LoadAddress File Mew File i Add
13.. 135 Autodetected heme/root/T..

13... 135 O AE382000 lib/libm-2.19-...
13... 1354 O AE420000 lib/libm-2.19-... L

13.. 135 OxAE421000 lib/libm-2.19-... 1

13... 1354 O AES56000 lib/libdl-2.19-...

13... 1354 O AESETO00 lib/libdl-2.19-...

13... 1354 O AESGE000 lib/libdl-2.19-...

13... 1354 O AESES000 lib/libpthread...

13... 1354 O AESSEDDD lib/libpthread...

13... 1354 O AESEFO00 lib/libpthread...

13... 1354 O AESS4000 lib/librt-2.19-...

13.. 135 OxAESAS000 lib/librt-2.19-.., &

1] m r

':?;' Mext = Finish] ’ Cancel

Figure 35. Import Trace Configuration - Intermediate tab

NOTE
If an executable has the Autodetected value for Load Address, it means that the file is not built with
position independent code. Hence, the file is loaded at the absolute address. The load address will
be read from the file.

9. Click the Advanced tab to specify the path of the platform configuration xml file used for collecting trace.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 43

View Trace Data
Import trace data

¥ Import = @

Import Trace Configuration

Specify system and application information for the trace.,

Intermediate | Advanced

Enter path for platform configuration file or use browse options:

T Users\ b04601NDesktophsegfaultthomerootilinux. Is1,satracelbinsegfault.oml

|§Wnrkspar_e...§| | File System...

'/?3' = Back Mext = Einish | | Cancel

Figure 36. Import Trace Configuration - Advanced tab

10. Click Finish.

The data gets displayed in the Analysis Results view. The following figure shows the trace data imported in the Analysis
Results view.

) Console = Tasks |/ Problems (3 Executables ﬁAnalysisResults 2 3" Trace Commander = 0
Analysis Results & BB E
Mame Trace Timeline Code Coverage Performance Call Tree Last Maodified Motes
4 [test.dat
a = Imported
B test A Trace [« Timeline Code Coverage @ Performance #-= Call Tree 2015.04.23 03:16:...

Figure 37. Analysis Results view

Click on the links available in the Analysis Results view to display the imported trace data in the respective viewers.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
44 NXP Semiconductors

Collect and View Linux satrace Data
Collecting Linux trace from CodeWarrior using satrace

Chapter 5
Collect and View Linux satrace Data

This chapter explains the steps required to collect and view the Linux trace data using satrace utility.

The Linux trace mechanism is independent of CodeWarrior. The satrace is a user space application with hardware trace
capabilities with no code instrumentation. It is delivered as a stand-alone component based on an executable and couple of
shared libraries. The tool encapsulates the trace configurator and probe. Its main use is to collect the trace of a program
without using any type of hardware probe. The satrace mechanism does not provide GUI. This document proposes an
integration solution for this command line utility into CodeWarrior and also how to collect trace without using CodeWarrior.

This chapter describes:
* Collecting Linux trace from CodeWarrior using satrace on page 45

* Importing and decoding trace collected using satrace on page 54

5.1 Collecting Linux trace from CodeWarrior using satrace

This section explains how you can collect satrace by establishing RSE connection with the board.
To collect trace using satrace:

1. Start CodeWarrior for ARMv8 and create a CodeWarrior Linux Project.

2. Write the application using the Editor.

3. Build the project to generate an elf file.

[y Project Explorer 532 = B
==
4 =5 test-linux
a #}p Binaries
. ﬁ test-linux.elf - [none/le]
o [t Includes
. B src
- = Debug
B9 test-linuxlaunch

Figure 38. Project Explorer view
4. Create a Linux connection using Remote System Explorer (RSE).
a. To open a Remote System Explorer view, click Window > Open Perspective > Other > Remote System Explorer.
The Remote Systems view appears.
b. Click New connection available in the Remote Systems view toolbar.
The New Connection wizard appears.

c. Expand General and select Linux option from the list.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 45

Collect and View Linux satrace Data
Collecting Linux trace from CodeWarrior using satrace

i "

¥4 New Connection | = @
Select Remote System Type
Any distribution of Linux :y:
Systermn type:
type filter text

4 = General
Ty FTP Only

A Linux

E Local

Mng LT Tng (w2.0]

% SSH Only

== 55H with SCP

% Telnet Only (Experimental)
Unix Unix

™ Windows

@ < Back Next > Finish

Figure 39. New Connection wizard
d. Click Next.

The Remote Linux System Connection page appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
46 NXP Semiconductors

Collect and View Linux satrace Data
Collecting Linux trace from CodeWarrior using satrace

P "

¥4 New Connection = @

Remote Linux System Connection

Define connection information

Parent profile: E34930-02 -
Host name: 192168.0.2 -
Connection name; linux-connection

Description:

[¥] Verify host name

Configure proxy settings

@ <Back | Net¢> |[Enish || Cancel

Figure 40. Remote Linux System Connection page
e. Specify the Host name and the Connection name and click Next.

The Files page appear.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 47

Collect and View Linux satrace Data

Collecting Linux trace from CodeWarrior using satrace

f.

o

¥4 MNew Connection
Files

Define subsystem information

Configuration Properties

] d Property Value
[] ftp.files

ssh files

[] scpfiles

Available Services

&2 5sh / Sftp File Service
4 ﬁe,l 55H Connector Service
] S5H Settings

Description

Work with files on remote systems using the Secure Shell (ssh) protocol.

e

@ <Back || Nea> || Ensh ||

Cancel

Figure 41. Files page

Select the ssh.files checkbox and click Next.

The Processes page appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

48

NXP Semiconductors

Collect and View Linux satrace Data

Collecting Linux trace from CodeWarrior using satrace

ﬁ' Mew Connection '?'@

Processes

Define subsystem information

Configuration Properties

D dstnre.prncesses Prgpert}r Value
processes.shell.linux

Available Services

2 Shell Process Service

Description

This configuration allows you to work with processes on remote linux systems using any
contributed Shell subsystem.

@ <Back || Net> |[Finish || Cancal

Figure 42. Processes page
g. Select the processes.shell.linux checkbox and click Next.

The Shells page appears.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

49

Collect and View Linux satrace Data
Collecting Linux trace from CodeWarrior using satrace

ﬁ Mew Connection

Shells

Define subsystern informaticon

Configuration Properties

[dstore.shells
ssh.shells

Available Services

A4 Genenc shell service
%4 S5H Connector Service
1 55H Settings

Description

Work with shells and commands on remote systemns using the Secure Shell (ssh) protocol.

Property

o [)

Value

>
'-.EJ < Back

Finish] [Cancel

Figure 43.

h. Select the ssh.shells checkbox and click Finish.

Shells page

i. Inthe Remote System view, you can see that the connection with the board has been established. The connection
name is linux-connection. Now, you can paste the .elf file as shown below.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

50

NXP Semiconductors

Collect and View Linux satrace Data

Collecting Linux trace from CodeWarrior using satrace

48 Remote Systems 52 | %= Team = B

£ & Blg -

F] _Cf linux-connection -
4 *’E"D Scp Files

4 =5 My Home
- [debug_print_derno

; rui

. za_ls

catrace_demo
temp

POODDEC

w Test_Linux_Demo

[} test-linux.elf
waorkarounded_satrace

dumry_v8

hello.kao

lala

log

log_sleep
L52RDBE-2-kermitlog-WY0cPY
L52RDE-2-kermitrc-C3mrEz
|=| PlatformConfig.xml
segfault_vd

segfault_vE.rlog

Y 1T R G
m

sgt.ko

startDebugPrintServer.sh
startUserspacefpp.sh
=| t.sh
= test
=| test3GT.sh
» :{—-:D Root
> Shell Processes
% Ssh Shells
?EEJ Ssh Terminals

Figure 44. ELF file in RSE view

5. Right-click on the parent folder where you have pasted the elf file, select Add Trace Support from the context menu to

copy the satrace into a directory.

NOTE
Use the apropriate satrace agent from {CW_INSTALL_ DIR}\CW_ARMv8\ARMv8\sa_ls\:

* linux.armv8-sdkl.8-ear6.satrace for linux image with little endian, on all targets,
starting with ARMv8 SDK ear6

e linux.armv8.satrace for linux image with little endian, on all targets, before ARMv8 SDK
ear6

* linux.armv8-1s1043-be.satrace for linux image with big endian, on LS1043

6. Right-click on the parent folder to select Launch Shell from the context menu.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

51

Collect and View Linux satrace Data
Collecting Linux trace from CodeWarrior using satrace

HED| I &) donan EEEE
+* Applications ¥ Places ¥ Bpse-workspacell— i 11 171123035544/f.... ¥ Thu07:03 #) (|
ip 11— ip 11 lysisData/f/20171123035544/f.csv - CodeWarrior Development Studio for QorlQ LS series = ARM V8 ISA I
File Edit Navigate Search Project Run ProcessorExpert Window Help
I D-B8 B - B paENree BR ORI D Y HrEH B D Quick Access |1 w2 | B
i Remote Systems 22 “ﬁTeam = 8 | SfevR £= Outline 52 L A
£ 8 e D R B & - Index l Source I Type] ! Address I Destination] Timestamp An outline is not available.
=12 Core 4 Linear Function __libc_csu_init 0x400590 0
» © boot =13 Core 4 Branch'|Branch from __libc_csu_init to <no d.. 0x4005cc | 0x4003b0 0
P @14 Cored Linear Function <no debug info> 0x4003b0 0
y & 15 Core 4 Linear 0x4003b4 0
hecte Core 4 Linear Function <no debug info> 0x4003bc 0
~ & home Core 4 Linear Function __libe_csu_init 0x4005d0 0
I _ Core 4 Branch " Branch from __libc_csu_initto <no d... 0x4005e8 0x400538 0
o New » | =10 Core 4 Linear Function <no debug info> 0x400538 0
GoTo » ®20 Core 4 Linear Function __libc_csu_init 0x4005ec 0
S 21 Core 4 Linear Function __libc_csu_init 0x4005f0 0
Show in Table 22 Core 4 Branch Branch from __libc_csu_init to __libc.. 0x400604. 0x4005d0 0
Monitor 23 Core 4 ~ Trace On packet - ETM -> start tracin... 0
©24 Core 4 Context packet - ETM 0
Reftgeh &8 2 Core4 Software Co. software contextid = 3040 0
Rename. F2 = = =
4 Remote System Details &) Tasks = Progress [Remote Shell 52 & Terminal 1 @' Analysis Results 4 £ BB v =
% Delete Delete | — 3
m¥ 192.168.103.171 % |
Copy. ‘
N oo
Paste foelf linux.armvg-sdkl.s-ears.satrace
i raot@localhost: /home/user#
» Sl /home /user>
vl AEApOrEEromBigact root@localhost : /hone/use r#
) G \mportToProject rootelocalhost: /home/user#
localhost: /home#
s Create Remate Project footg]
b Cer /hone>
» ©pr Synchronize Cache root@localhost: /home#
» Gro Launch Shell rootalocalhost: /home#
S R ——— N oot@localhost: /home/user#
hoe/user>
[Properties 53 &, | Add trace support 4 root@localhost: /home/user#
Properties Alt+Enter root@localhost : /hone/use r#
foelf linux.armig-sdkl.8-ear6.satrace
Property | Value root@localhost : /hone/use r#
Classificat{ directory I fhanejusens
P root@localhost: /home/use r#
Extansiol & root@localhost: /home/user#
Filter string /home/*
Group | 1000 CERTIEL =
Open Properties Dialog I
@ Transcend Gateway - Mosila Fir... | I -c07364-201:7.. |[I cctinse 1~ frome/tes.. [B 7364-201 | [ARMvE1 i~
W<l i v
7. In the Terminal window, run the satrace using the following command:
./linux.armv8.satrace/bin/ls.linux.satrace -v ./test-linux.elf
- o -
8 Remote System Details = Tasks /™ Terminals 27 | @' Analysis Results = B

48 thuathl 22

root@ls2es5aqds :~/Test_Linux_Demo# ./linux.armvB.satrace/bin/ls.linux.satrace

v ./test-linux.elf

User space trace

Application "L /test-linux.elf”
Arguments :

Starting °./test-linux.elf’

Hello ARM World!

User application exit status : @
Master process
Relocation file
Trace file
Collecting trace
Archive file
Creating archive

" /home/root/Test_Linux_Demo/test-linux.rlog’
" /home/root/Test_Linux_Demo/test-linux.dat’

* fhome/root/Test_Linux_Demo/test-linux.cwzsa’

Archiving /home/root/Test_Linux_Demo/linux.armv8.satrace/config/PlatformConfig.xml
Archiving /home/root/Test_Linux_Demo/linux.armv8.satrace/bin/test-linux.resultsConfig
Archiving /home/root/Test_Linux_Demo/test-linux.dat

Archiving /home/root/Test_Linux_Demo/test-linux.elf

Archiving /home/root/Test_Linux_Demo/test-linux.rlog

Archiving /lib/1d-2.19-2014.84.s0

Archiving /lib/1libc-2.19-20814.84.s0
Archiving /lib/libdl-2.19-2814.84.s0
Archiving /1ib/1libm-2.19-2014.84.s0

Archiving /lib/libpthread-2.19-2814.84.50

Archiving /lib/librt-2.19-2814.84.s0
root@ls2885aqds :~/Test_Linux_Demo#

Figure 46. Terminals Window

8. The tracing starts and collects the data in *.cwzsa file as shown below.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

52

NXP Semiconductors

Collect and View Linux satrace Data
Collecting Linux trace from CodeWarrior using satrace

48 Remote Systems 52 | %= Team = O

£ & Bl& ~

a [N rhuathl -
P *‘E"D Scp Files

4 5 My Home
1 debug_print_dermno

=

rui

=

za_ls

o

catrace_demao

5

m

OooOC

temp
a (= Test_Linux_Demo

» [0 linwcarmvE, satrace
= test-linux.cwzsa

test-linux.elf

{11} {11 {11}
=T =
[=] [=1)

v o
o
=
]

log_sleep
L52RDEB-2-kermitlog-WY0oPY
=| L52RDB-2-kermitrc-C3mrEz

£ PlatformConfiaxml
4 1 b

Figure 47. Trace data file

9. Double-click the *.cwzsa file to trigger an import action. To decode the trace data, open the Analysis Results view and
click on Trace link.

This will decode the trace data and opens the Trace viewer.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 53

Collect and View Linux satrace Data

Importing and decoding trace collected using satrace

,j test-linux.csv B3

Index Source Type Description Address Destination Timestamp -
1 Corel Info SYNC packet - ETM 0
2 Core0 Info Trace On packet - ETM -»> start tracing after a... 0
+3 Corel Info Context packet - ETM 0
4 Core0 Software Context software context id = 1354 0
+5 Corel Linear Function <no debug info> 0400310 0 L
+6 Core0 Branch Branch from <no debug info> to <no debug ... 0x400418 0400360 0 r
+7 Core0 Linear Function <no debug info> 0x4003b0 0
+8 Core0 Linear Function <no debug info> 0x4003be 0
+9 Core0 Linear Function <no debug info> 0x400390 0
+10 Core0 Linear Function <no debug info> 0x4003a0 0
11 Corel Info Trace On packet - ETM -» start tracing after a... 0
+12 Core0 Info Context packet - ETM 0
13 Core(Software Context software context id = 1354 0
+14 Core0 Linear Function __libc_csu_init 0400570 0
+15 Core0 Branch Branch from _libc_csu_init te <no debug inf.. 0:4005ac 0:400378 0
+16 Core0 Linear Function <no debug infe> 0400378 0
+17 Corel Branch Branch from <no debug info> to call_weak_fn 0400380 0400438 0
+18 Corel Linear Function call_weak_fn 0400438 0
+19 Corel Branch Branch from call_weak_fn to call_weak_fn 0400440 0400448 0
+20 Corel Branch Branch from call_weak_fn to <no debug info> 0400448 0400384 0
+21 Corel Linear Function <no debug info> 0x400384 0
+22 Corel Branch Branch frem <neo debug info> te _libc_csu_i... 0400388 04 005b0 0
+23 Corel Linear Function __libc_csu_init 0:4005b0 0
+24 Corel Branch Branch from _libc_csu_init to <no debug inf.. 04 005c8 0400518 0
+25 Corel Linear Function <no debug info> 0x400518 0
+ 26 Core Branch Branch from <no debug info> to <ne debug ... 0:40052¢ 040053 ¢ 0 A

Figure 48. Trace data file

5.2 Importing and decoding trace collected using satrace

This section explains the steps required to import and decode the trace data using satrace utility.

NOTE

Use the apropriate satrace agent from CW_INSTALL_DIR}\CW_ARMv8\ARMv8\sa_ls\:

linux.armv8-sdkl.8-ear6.satrace for linux image with little endian, on all targets,
starting with ARMv8 SDK ear6

linux.armv8.satrace for linux image with little endian, on all targets, before ARMv8 SDK

earé

linux.armv8-1s1043-be.satrace for linux image with big endian, on LS1043

The Linux trace mechanism is independent of CodeWarrior. Trace data can be collected from LS2088A QDS board without
using CodeWarrior. For more details, see an Application Note AN5729: Linux hardware trace for ARMv8 user space and

kernel space applications.

The standalone tracing tool generates *.cwzsa file, an archive type that can be imported and fully decoded using ARMv8
decoder or ARMv8 CodeWarrior. The generated archive can be imported and fully decoded in CW ARMv8 after a drag-and-

drop action. As a result, the trace viewer is displayed with the decoded trace.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

54

NXP Semiconductors

Collect and View Linux satrace Data
Importing and decoding trace collected using satrace

= PlatfermConfig.cml A test-linucesy 52 = 0
Index Source | Type Description Address Destination Timestamp o
1 Core Info SYNC packet - ETM 0
2 Corel Info Trace On packet - ETM -> start tracing after a... 0
+3 Core Info Context packet - ETM 0
4 Corel Software Context software context id = 1354 0
+5 Corel Linear Function <no debug infox 0400310 0 E
+6 Core0 Branch Branch from <no debug info> to <no debug ... 0400418 0x400360 0
+7 Corel Linear Function <no debug infe= 0x4003B0 0
+8 Core0 Linear Function <no debug info> 0x4003bc 0
+9 Corel Linear Function <no debug infe> 0400390 0
+10 Core Linear Function <no debug infox 0400330 0
11 Core0 Info Trace On packet - ETM -> start tracing after a... 0
+12 Corel Info Context packet - ETM 0
13 Core Software Context software context id = 1354 0
+14 Core(Linear Function __libc_csu_init 0400570 0
+15 Corel Branch Branch from _libc_csu_init te <no debug inf... e 005ac 0cdD03TE 0
+16 Core0 Linear Function <no debug info> 0400378 0
+17 Corel Branch Branch from <no debug info= to call_weak_fn 0400380 (hcd 00438 0
+18 Corel Linear Function call_weak_fn 0400438 0
+19 Corel Branch Branch from call_weak_fn to call_weak_fn 0400440 0400448 0
+20 Core(Eranch Branch from call_weak_fn to <no debug info> (oed 00448 0400384 0
+21 Core0 Linear Function <no debug infox 0400384 0
+22 Corel Branch Branch from <ne debug info> to _libc_csu_i... 0400388 000560 0
+23 Corel Linear Function __libc_csu_init 0400560 0
+24 Corel Branch Branch from __libc_csu_init to <no debug inf.. 0:c4005c8 (400518 0
+25 Core Linear Function <no debug infox 0400518 0 -

Figure 49. Trace data

The trace data is displayed in Trace viewer. You will find the profiling data files in the same folder where segfault.cwzsa file
is present. The profiling data is accessible after decoding through Analysis Results view.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 55

Linux Kernel and User Applications Debug Print Tool

Chapter 6
Linux Kernel and User Applications Debug Print
Tool

This chapter explains in detail about the Linux Kernel Debug Print tool.

The Linux Kernel Debug Print tool encapsulates a target server responsible for collecting Kernel Ring Buffer log user space
applications messages in the unformatted way and a host which requests periodically the kernel log data from the server
and displays it in a view.

This tool's main objective is to provide a user-friendly way of monitoring kernel activity in a CodeWarrior console. It is
composed of several modules:

* Target side:

Debug Print server — reads on demand the Kernel Ring Buffer log. It optionally clears the log and sends it to the clients
using TCP/IP connection. It collects the redirected standard output from the user space applications.

Debug Print dynamic library - is responsible for redirection of the user space application's standard output messages to
the target server.

¢ Host side:

Debug Print probe — is the actual client of the Debug Print server; it can be started from the Debug Print view. When
started, it reads periodically the kernel log data from the server and sends it to the Debug Print view to display the kernel
log data and other communication messages.

Debug Print view — displays the log data and other communication messages in a user-friendly manner, also allows you
to filter the displayed data on the basis of timestamp, module name/application path and pid, or a custom string contained
in each log message.

NOTE
The Arm binaries have been compiled with tool chain gcc-linaro-aarch64-linux-gnu-4.8.3 and LS2
SDK.

Before working on the Debug Print tool, check that TCP/IP communication is established between the host and the target.
Below are the steps that are performed in order to see the functionality of the Debug Print tool.

1. Deploy the Software Analysis target binaries on the target using Remote System Explorers view, or an SCP connection,
or if you have the target root file system on NFS, you can copy /s.target.server and libls.linux.debugprint.lib.so* to the
host location [NFS_PATH]/home/root).

2. The debug print target server cross-compiled for Arm is located in CodeWarrior in directory: <CWinstallDir>/ARMv8/sa_lIs/
linux.armv8.debugprint/bin, which needs to be copied on the target (for example, to the home directory), using command
ls.target.server [PORT] [-k] and requires a single argument; the port number on which clients will listen. If not
specified, it will start on the default port 5000. Specify -k to keep the kernel buffer unaltered (same as dmesg), with a
server processing overhead.

Start a ssh console on the target and then start the server:
ssh rootetarget ip address
./ls.target.server

3. The dynamic library cross-compiled for Arm is located in CodeWarrior directory at: <CWinstallDir>/ARMv8/sa_Is/
linux.armv8.debugprint/lib, which needs to be copied on the target using the Remote Systems Explorer (RSE) view . This
library must be loaded by the shell before the C runtime when you are running the user space applications which need
to be monitored by setting the environment variable LD_PRELOAD.

Preload the debug print library and run the test application:

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
56 NXP Semiconductors

Linux Kernel and User Applications Debug Print Tool

export LD PRELOAD=~/libls.linux.debugprint.lib.so
./test-arm

You will notice next time that the test application will not display any of its standard output messages to the console, but
only its standard error messages. The standard output is sent to the target server.

4. On the host machine, open the Debug Print view. The Debug Print Probe can be started from the Debug Print view and
it communicates using TCP/IP connection with the server. When started, it reads periodically the kernel log data from the
server and sends it to the Debug Print view to display. To start the Debug Print view, select Window > Show View >
Other > Software Analysis > Debug Print. The Debug Print view appears.

) Console 4 Remote Systems & Terminals | %5 Debug Print 52 w| s T &
154. <INF> 1.970786 (kernel): usb-storage 2-17:1.07: USB Mass Storage device der.r;cted =
155. <INF> 1.975729 (kernel): scsi2 : usb-storage 2-1:1.0
156. <INF> 2.254058 (kEernel): usb 3-1: new high-speed USE device nurber 2 using xhci-hecd
157. <INF> 2.400518 (kernel): usb-storage 3-1:1.0: USB Mass Storage device detected
158, <INF> 2.405450 (kernel): scsil : usb-storage 3-1:1.0
159. <NOT> 3.254942 (kernel): scsi 2:0:0:0: Direct-Access ADATA USB Flash Drive 1100 BQ: 0 ANSI: &
160. <NOT> 3.262825 (kernel): =d 2:0:0:0: [sda] 30310400 512-byte logical blecks: (15.5 GB/1l4.4 GiB)
16l. <NMOT> 3.269847 (kernel): a3d 2:0:0:0: [=3da] Write Protect is off
162, <DBG> 3.273333 (kernel): sd 2:0:0:0: [sda] Mode Sense: 43 00 00 00
163. <NOT> 3.274075 (kernel): ad 2:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUR
164. <INF> 3.286864 (kernel): sda: sdal
165. <NMOT> 3.290733 (kernel): =d 2:0:0:0: [sda] Arttached S5CSI removable disk
166. <NOT> 3.703226 (kernel): scsi 3:0:0:0: Direct-Access ADATA USB Flash Drive 1100 PQ: 0 ANSI: 6
167. <MOT> 3.711157 (kernel): sd 3:0: : [sdb] 30310400 512-byte logical blocks: (15.5 GB/l4.4 GiB)
168. <NOT> 3.718240 (kernel): 3d 3:0:0:0: [sdb] Write Protect is off
Figure 50. Debug Print view
The table below describes the icons displayed on the Debug Print viewer.
Table 12. Debug Print viewer icons
Icons Description
Removes all text from the view.
Clear All
= Two-state button used for starting and stopping the Debug Print probe.

- Start/Stop

= Two-state button used for locking and unlocking the scrollbar. If the scrollbar is
“5 scroll Lock/Unlock unlocked, it would always auto-scroll to the latest Debug Print message.

&3 Opens a dialog for entering the server address and port.

Configure
Opens a dialog for configuring what information is to be displayed in the Debug
Print view (specific to timestamps, module name/application path and pid,
other string patterns).

Create Debug Print Filters

5. Click the Configure icon, enter the server address and port (for example, address 192.168.0.2, port 5000 — must be the
same as for the server at which the server will listen to client, and the target description).

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 57

Linux Kernel and User Applications Debug Print Tool

-

Configure Debug Print
g g

Server Address: 127.0.01
Server Port: 5000

Target Description: localhost

QK l | Cancel

Figure 51. Configure Debug Print dialog

There is also a Preference page associated to this view, which can be accessed by clicking Window > Preferences,
expand Software Analysis node and then select Debug Print.

53' Preferences (=] @

type filter text Debug Print PrTy T

. General
c L T+
- Coloring Editor

Debug Print Preference Page
Maximum line count 5000

Freescale Licenses Log Debug Print contents to external file
Help

' Fil ~Browse. |
- Install/Update Ile name FOWSE

- Install/Update

- Processor Expert
Remote Launch

- Remote Systemns

- Run/Debug
a4 Software Analysis
Debug Print
. Team
Terminal
| Restore Defaults| | Apply |
oy
Ih?.-’l [oK] | Cancel |
Figure 52. Preferences dialog
The following Debug Print settings are available in the Preference dialog:
Table 13. Debug Print settings
Options Description
Maximum line count Limits the number of lines the Debug Print view should display. If this limit is

exceeded, the old messages are deleted.

Log Debug Print contents to external file | If selected, the messages will be appended to an external file besides
displaying them into the Debug Print view.

Table continues on the next page...

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
58 NXP Semiconductors

Linux Kernel and User Applications Debug Print Tool

Table 13. Debug Print settings (continued)

Options Description

File name Path for the external log file

6. Click the Start icon; you will see the kernel log messages are being populated in the view’s text area.

¥ C/C++ - test-arm/src/main.c - CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA
File Edit Source Refactor MNavigate Search Project Run Processor Expert Window Help

) Console 4 Remote Systems A8 Terminals %% Debug Print 52

L_G 154. <INF> 1.970786 (kernel): usb-storage 2-1:1.0: USE Mass Storage device detected

155. <INF> 1.975729 (kernel): scsi2 : usb-storage 2-1:1.0
.254058 (kernel): usb 3-1: new high-speed USB device number 2 using xhci-hcd
.400518 (kernel): usb-storage 3-1:1.0: USB Mass Storage device detected
.405450 (kernel): =csi3 : usb-storage 3-1:1.0

156. <INF>
157. <INF>
158, <INF>

183. <NWOT>

ayed.

Figure 53. Debug Print view - messages from server

- R SRR SR AAEACE A CASE R AP RA! S AT SRS N=Rr S ER DI o

(= o]

e

Quick Access |- m’|
e@7 wlat= o |

1
2
2
2
159. <NOT> 3.254942 (kernel): scsi 2:0:0:0: Direct-Access ADATA USB Flash Drive 1100 PQ: 0 ANSI: 6
160. <NOT> 3.262825 (kernel): sd 2:0:0:0: [sda] 30310400 512-byte logical blocks: (15.5 GB/14.4 GiB)
161. <NOT> 3.269847 (kernel): sd 2:0:0: [sda] Write Protect is off
162. <DBG> 3.273333 (kernel): ad 2: [sda] Mode Sense: 43 00 00 00
163. <NOT> 3.274075 (kernel): sd 2: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUAR
164. <INF> 3.286864 (kernel): sada:
165. <NOT> 3.290733 (kernel): sd 2:0:0:0: [3da] Actached SCSI removable disk
166. <NOT> 3.703226 (kernel): scsi 3:0:0:0: Direct-Access ADRTA USB Flash Drive 1100 PQ: 0 RNSI: é
167. <NOT> 3.711157 (kernel): 0:0:0: [3db] 30310400 512-byte logical blecks: (15.5 GB/l4.4 GiB)
168. <NOT> 3.718240 (kernel): 0:0:0: [sdb] Write Protect is off
169. <DBG> 3.721725 (kernel): : [sdb] Mode Sense: 43 00 00 00
170. <NOT> 3.722542 (kernel): sd 3:0:0:0: [sdb] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
171. <INF> 3.735727 (kernel): adb: sdbl
172. <NOT> 3.739717 (kernel): sd 3:0:0:0: [sdb] Attached SCSI removable disk
173. <INF> 4.335037 el000e: ethl NIC Link is Up 1000 Mbps Full Duplex, Flow Control: Rx/Tx
174. <INEF> 4.364161 IP-Config: Complete:
175. <INF> 4.366083 (kernel): device=eth0, hwaddr=68:05:ca:2b:%e:d3, ipaddr=192.168.1.2, mask=255.255.254.0,
gw=255.255.255.255
17&6. <INF> 4.375154 (kernel): host=192.168.1.2, domain=, nis-domain=(ncne)
177. <INF> 4.379594 (kernel): boctserver=192.168.1.1, rootserver=192.168.1.1, rcotpath=
178. <INF> 5.388707 VFS: Mounted rocot (nfs filesystem) on device 0:14.
179. <INF> 5.393509 devtmpfs: mounted
1280. <INF> 5,.3395332 (kernel): Freeing unused kernel memory: 484K (ff£fffc0008b3000 - fE£££fc00092c000)
181. <DBG> 6.375195 udevd[764]: starting version 182
182. <NOT> €.659027 random: dd urandom read with €7 bits of entropy available
T7.405706 random: nonblocking pool is initialized

-

&

-

=

i

7. Open another console on the target in the same directory, preload the debug print library and run the test application:

export LD PRELOAD=~/libls.linux.debugprint.lib.so
./test-arm

8. You will see the application messages getting appended in the Debug Print view:

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

59

Linux Kernel and User Applications Debug Print Tool

176. <INF>
177. <INF>
178. <INF>
179. <INF>
180. <INF>
181. <DBG>
182. <NOT>
183. <OT>
info: Coll
185. <WRN>
186. <DBG>
187. <DBG>
188. <DBG>
189. <DBG>
190. <DBG>
191. <DBG>
192. <DBG>
193. <DBG>
1%94. <DBG>
195. <DBG>
196. <DBG>
197. <DBG>
198. <DBG>
199. <DBG>
200. <DBG>
201. <DBG>
202. <DBG>
203. <DBG>
204. <DBG>
205. <DBG>
206. <DBG>
207. <DBG>

info: Coll

.375154 (kernel):
.379594 (kernel):
.388707 VFS: Mounted root (nfa filesystem) on device 0:14.

.395332 (kernel):

Freeing unused kernel memory:

host=192.168.1.2, domain=, ni=s-domain=(none
bootserver=192.168.1.1, rootserver=192.168.1.1, roctpath=

.375195 udevd[764]: starting version 182

4
4
5
5.393509 devtmpfs: mounted
S
1]
6

.659027 random: dd urandom read with &7 bits of entropy available

7.40570€6 random: nonblocking pool is initialized

ection delayed.

2831.182667
2858.116395
2858.116403
2858.116407
2858.116409
2858.116410
2858.116412
2858.116414
2858.116415
2858.116416
2858.116417
2B858.116418
2858.116419
2858.116420
2858.116421
2858.116423
2858.116423
2858.116424
2858.116426
2858.116427
2858.116428
2858.116428
2858.116430

(user) : Hello World
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224) :
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224):
test-arm.elf (1224) :

ection delayed.

Start of test

New iteration

Test message 0
Test message

1st half; 2nd half
New iteration

Test message 1
Test message

1st half; 2nd half
NWew iteration

Test message 2
Test message

lst half: 2nd half
New iteration

Test message 3
Test message

1st half; 2nd half
New iteraticn

Test message 4
Test message

lst half: 2nd half
End of test

484K (LLffIfc0008b3000 - LL£Iffc00092c000

m

Figure 54.

Debug Print view - application messages

9. To see the real time functionality of the Debug Print view, add some more messages to the view, both from kernel and

10. See the new messages displayed in the Debug Print text area as you enter them in the target shell:

the test application from the same console where the test application was running on the target:

echo Hello World > /dev/kmsg

./test-arm

echo Helloooooo > /dev/kmsg

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

60

NXP Semiconductors

Linux Kernel and User Applications Debug Print Tool

Filtering
ﬁ‘ C/C++ - test-arm/src/main.c - CodeWarrior Development Studio for QorlQ) LS series - ARM VB ISA EI-
File Edit Source Refactor Mavigate Search Project Run Processor Expert Window Help
e SR R SRR SERECASE S AR IR RN T=Rr g i e
Quick Access 1| B |__@ C/C++
E £ Console gﬁRemote Systems & Terminals ﬁDebug Print &3 & ||| mh = & E
[F) 178. <INF> 5.388707 VFS: Mounted root (nfs filesystem) on dewice 0:14. - 0
179. <INF> 5.393509 devtmpfs: mounted
180. <INF> 5.395332 (kernel): Freeing unused kernel memory: 484K (I
181. <DBG> §.375195 udevd[764]: starting wersion 182
82. <NOT> §.659027 random: dd urandom read with &7 bits of entropy available
183. <NOT> 7.405708 random: nonblocking pool is initialized
info: Collection delayed.
185. <WBN> 2831.182667 (user): Hellc World
186. <DBG> 2858.116395 test-arm.elf(1224): Start of test
187. <DBG> 2858.116403 test-arm.elf(1224): New iteraticn
188. <DBG> 2Z858.116407 test-arm.elf(1224): Test message 0
189. <DBG> 2858.116409 test-arm.elf(1224): Test message
130. <DBG> 2858.116410 test-arm.elf(1224): 1st half; 2Znd half 0
191. <DBG> 2858.116412 test-arm.elf(1224): New iteration
192. <DBG> 2858.1146414 test-arm.elf(1224): Test message 1
193. <DBG= 2858.116415 test-arm.elf(1224): Test message
134. <DBG> 2858.116416 test-arm.elf(1224): 1st half; 2Znd half 1
195. <DBG> 2858.116417 test-arm.elf(1224): New iteration
196. <DBG> 2858.116418 test-arm.elf(1224): Test message 2
197. <DBG> 2858.116419 test-arm.elf{1224): Test message
198. <DBG> 2858.116420 test-arm.elf(1224): 1st half:; 2nd half 2
199. <DBG> 2858.116421 test-arm.elf(1224): New iteration
200. <DBG> 2858.116423 test-arm.elf({1224): Test message 3
201. <DBG> 2858.116423 test-arm.elf({1224): Test message
202. <DBG> 2858.116424 test-arm.elf(1224): 1st half; 2nd half 3
203. <DBG> 2858.116426 test-arm.elf(1224): New iteration
204. <DBG> 2858.116427 test-arm.elf({1224): Test message 4
205. <DBG> 2858.116428 test-arm.elf({1224): Test message
206. <DBG> 2858.116428 test-arm.elf(1224): 1st half; 2nd half 4
207. <DBG> 2858.116430 test-arm.elf(1224): End of test
info: n delayed.
209. <WBN> 2935.141166 (user): Hellococooo
info: Collectian delayed.
211. <DBG> 2938.316071 test-arm.elf(1225): Start of test
212. <DBG> 2938.316079 test-arm.elf(1225): New iteraticn
213. <DBG> 2938.316083 test-arm.elf(1225): Test message 0
214. <DBG> 2938.316085 test-arm.elf(1225): Test message
215. <DBG> 2938.316086 test-arm.elf(1223): 1st half; 2nd half 0
216. <DBG> 2938.316088 test-arm.elf(1225): New iteraticn
217. <DBG> 2938.316090 test-arm.elf(1223): Test message 1
218. <DBG> 2938.316091 test-arm.elf(1225): Test message
219. <DBG> 2938.316092 test-arm.elf(1225): 1lst half; 2nd half 1
220. <DBG> 2938.316093 test-arm.elf(1225): New iteration
221. <DBG> 2938.3146094 test-arm.elf(1225): Test message 2
222. <DBG> 2938.316095 test-arm.elf(1225): Test message
223. <DBG> 2938.316096 test-arm.elf(1225): 1lst half; 2nd half 2
224. <DBG> 2938.316097 test-arm.elf(1225): New iteration
225. <DBG> 2938.316098 test-arm.elf(1225): Test message 3
226. <DBG> 2938.316099 test-arm.elf({1225): Test message
227. <DBG> 2938.316100 test-arm.elf(1225): lst half; 2nd half 3 £
228. <DBG> 2932.316101 test-arm.elf(1225): New iteration
229. <DBG> 2938.316102 test-arm.elf({1225): Test message 4
230. <DBG> 2938.316103 test-arm.elf({1225): Test message
231. <DBG> 2938.316104 test-arm.elf(1223): 1st half; 2nd half 4
232. <DBG> 2938.316105 test-arm.elf(1225): End of test
info: Collection delayed. | &

Figure 55. Debug Print view - messages from server

6.1 Filtering

This tool has a powerful filtering engine that allows you to see the information that you need. It also allows displaying data
filtered by timestamp, module name/application path and PID, or a custom string contained by each log message.

The Create Debug Print Filters configuration dialog allows creation of multiple filters, each of them able to match the module
name, application path or PID of the messages displayed by the Debug Print view. These filters are OR-ed, which means
that the view will display all messages which match at least one of the filters.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 61

Linux Kernel and User Applications Debug Print Tool
Filtering

Create Debug Print Filters

Create filters for the Debug Print messages

(i) You can select timestamp ranges, module names or paths, PIDs, or other
string patterns to create complex filters.

Madule ~_Timestamp | Other Current Filters

Module Name / Path] PID time: (any] module: test-arm.elf

Existing
pps_core -
random
test-arm.elf
tun
udevd[764]
ushcore -

Customn

Add Filter Qualify Clear Filters

'r:?;' ’ 0K] ’ Cancel

Figure 56. Create Debug Print Filters dialog

This dialog has three tabs:

* Module tab: allows creation of new filters, by selecting from the Existing list a module name/application path, PID, or both
(if available). Click Add Filter to add the filter in the Current Filters list. These filters can be qualified with a timestamp
range or a string pattern.

The Existing list contains all the module names/application paths/PIDs from the messages already displayed in the Debug
Print view. When you want to filter messages from a certain module or application that is not started or did not print any
messages yet, you can manually enter the module name/path or PID in the Custom text box.

When no module filter is selected, and no global qualification is selected, (any) is displayed in the Current Filters, which
means that no filter is applied (all messages are displayed).

The following figure shows the messages displayed in the Debug Print view using test-arm.elf filter:

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
62 NXP Semiconductors

Linux Kernel and User Applications Debug Print Tool

Filtering
¥4 C/C++ - test-arm/src/main.c - CodeWarrior Development Studic for QorlQ LS series - ARM V8 ISA EI@
File Edit Source Refactor Mavigate Search Project Run Processor Expert Window Help
T | B~ Rr i @ [@F QO Ry @™ 13 > LSS -
Quick Access i B |__@ C/C++

51 [Console 1§ Remote Systems [Terminals | %% Debug Print 22 ||| @ = &
By 186. <DBG> 2858.116395 test-arm.elf(1224): Start of test - |

187. <DBG> 2858.116403 test-arm.elf(1224): New iteration

188. <DBG> 2858.116407 test-arm.elf(1224): Test message 0

189. <DBG> 2858.116409 test-arm.elf(1224): Test message

190. <DBG> 2858.116410 test-arm.elf(1224): 1st half; 2Znd half 0

131. <DBG> 2858.116412 test-arm.elf(1224): New iteraticn

132. <DBG> 2855.116414 test-arm.elf(1224): Test message 1

193. <DBG> 2858.116415 test-arm.elf(1224): Test message

194. <DBG> 2858.116416 test-arm.elf(1224): 1st half; 2Znd half 1

135. <DBG> 2858.116417 test-arm.elf(1224): New iteration

136. <DBG> 2858.116418 test-arm.elf (1224): Test message 2

187. <DBG> 2858.116419 test-arm.elf(1224): Test message

198. <DBG> 2858.116420 test-arm.elf(1224): 1st half; 2Znd half 2

139. <DBG> 2858.116421 test-arm.elf(1224): New iteration

200. <DBG> 2858.116423 test-arm.elf (1224): Test message 3

201. <DBG> 2858.116423 test-arm.elf(1224): Test message

202. <DBG> 2858.116424 test-arm.elf(1224): 1st half; 2Znd half 3

203. <DBG> 2858.116426 test-arm.elf(1224): New iteration

204. <DBG> 2858.116427 test-arm.elf (1224): Test message 4

205. <DBG> 2858.116428 test-arm.elf(1224): Test message

206. <DBG> 2858.116428 test-arm.elf(1224): 1st half; 2Znd half 4

207. <DBG> 2858.116430 test-arm.elf(1224): End of test

211. <DBG> 2938.316071 test-arm.elf(1225): Start of test

212. <DBG> 2938.316079 test-arm.elf(1225): New iteration

213. <DBG> 2938.316083 test-arm.elf(1225): Test message 0

214. <DBG> 2938.316085 test-arm.elf (1225): Test message

215. <DBG> 2938.316086 test-arm.elf(1225): 1st half; 2Znd half 0

216. <DBG> 2938.316088 test-arm.elf(1223): New iteration

217. <DBG> 2938.316090 test-arm.elf(1225): Test message 1

218. <DBG> 2938.316091 test-arm.elf (1225): Test message

219. <DBG> 2938.316092 test-arm.elf(1225): 1st half; 2Znd half 1

220. <DBG> 2935.316093 test-arm.elf(1225): New iteration

221. <DBG> 2938.316094 test-arm.elf(1225): Test message 2

222. <DBG> 2938.316095 test-arm.elf (1225): Test message

223. <DBG> 2938.316096 test-arm.elf(1225): 1st half; 2Znd half 2

224. <DBG> 2938.316097 test-arm.elf (1225): New iteration

225. <DBG> 2938.316098 test-arm.elf(1225): Test message 3

226. <DBG> 2938.316099 test-arm.elf (1225): Test message

227. <DBG> 2938.316100 test-arm.elf(1225): 1st half; 2Znd half 3

228. <DBG> 2938.316101 test-arm.elf(1225): New iteration

229. <DBG> 2938.316102 test-arm.elf(1225): Test message 4

230. <DBG> 2938.316103 test-arm.elf(1225): Test message

231. <DBG> 2938.316104 test-arm.elf(1225): 1st half; 2Znd half 4

232. <DBG> 2938.316105 test-arm.elf(1235): End of test

Figure 57 Debug Print view displays messages with Module filter

* Timestamp tab: allows adding timestamp qualification to the existing filters, or a global qualification if no other filter is
created (that is a generic filter which applies to all messages, with all module names, paths and PIDs).

After the user choses the timestamp ranges in the Lower Limit/Upper Limit Spinners, you must click Qualify in order to
add the timestamp qualification to all existing filters. If no filter exists, a global qualification is performed.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 63

Linux Kernel and User Applications Debug Print Tool
Filtering

Create Debug Print Filters

Create filters for the Debug Print messages

(i) You can select timestamp ranges, module names or paths, PIDs, or other
string patterns to create complex filters.

Module | Timestamp Other Current Filters

Lower Limit
1.000 =
Upper Limit
2,000 =

TR T T L T T |
e [1.000000, 2.000000] module: (any)

Add Filter Clear Filters

@ Lok |

Cancel

Figure 58. Create Debug Print Filters dialog - Timestamp tab

The following figure shows the messages displayed in the Debug Print view using timestamp filter:

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

64

NXP Semiconductors

Linux Kernel and User Applications Debug Print Tool

Filtering

Quick Access = |

¥4 C/C++ - test-arm/src/main.c - CodeWarrior Development Studic for QorlQ LS series - ARM V8 ISA
File Edit Source Refactor Mavigate Search Project Run Processor Expert Window Help
T | B~ Rr i @ [@F QO Ry @™ 13 - ¥ S
51 [Console 1§ Remote Systems [Terminals | %% Debug Print 22 ||| |
By 113. <WRN> 1.002035 (kernel): Loaded Fixed MDIQ module (DPRA2 hack)!
114. <INF> 1.005691 libphy: Fixed MDIO Bus (DFARAZ): probed
115. <INF> 1.009283 (kernel): MC object device driver dpaaZ ppx registered
116. <INF> 1.013292 el000e: Intel (R} FRO/1000 Network Driver - 2.3.2-k
117. <INF> 1.017864 el000e: Copyright({c) 1999 - 2014 Intel Corporation.
118. <INF> 1.022731 (kernel): =1000= 0000:01:00.0: Interrupt Throttling Rate (ints/sec) set to dynamic conservative mode
119. <INF> 1.150233 (kernel): £1000es 0000:01:00.0 eth0: registered PFHC clock
120. <INF> 1.154513 (kernel): el000e 0000:01:00.0 eth0: (PCI Express:2.5GT/s:Width x1) &8:05:ca:2b:%e:43
121. <INF> 1.161127 (kernel): =1000e 0000:01:00.0 eth0: Intel{R) FRO/1000 Network Connecticn
122. <INF> 1.166796 (kEernel): el000e 0000:01:00.0 eth0: MAC: 3, PHY: &, PBA No: E46981-008
123. <INF> 1.172431 (kernel): VFIO - User Level meta-driver wversion: 0.3
124. <INF> 1.176569 (kEernel): MC cbkject device driver viio-fzl-mc registered
125. <INF> 1.264056 atal: SATRA link down (55tatus 0 SControl 300)
126. <INF> 1.284051 ata2: SATA link down (55tatus 0 SControl 300)
127. <INF> 1.588570 (kernel): xhci-hcd xhci-hed.0.auto: xHCI Heost Controller
128. <INF> 1.592760 (kernel): xhci-hcd xhci-hed.0O.auto: new USE bus registered, assigned bus number 1
129. <INF> 1.599434 (kernel): xhci-hcd xhci-hed.O.auteo: irg 48, ic mem 0x03100000
130. <INF> 1.604435 (kEernel): hub 1-0:1.0: USB hub found
131. <INF> 1.606934 (kernel): hub 1-0:1.0: 1 port detected
132. <INF> 1.609692 (kernel): xhci-hcd xhci-hed.0.auto: xHCI Host Controller
133. <INF> 1.613876¢ (kernel): xhci-hcd xhci-hcd.0O.auto: new USE bus registered, assigned bus number 2
134. <INF> 1.620593 (kEernel): hub 2-0:1.0: USB hub found
135. <INF> 1.623090 (kernel): hub 2-0:1.0: 1 port detected
136. <INF> 1.625913 (kernel): xhci-hcd xhci-hcd.l.auto: xHCI Host Controller
137. <INF> 1.630098 (kernel): xhci-hcd xhci-hecd.l.auto: new USE bus registered, assigned bus number 3
138. <INF> 1.636628 (kernel): xhci-hcd xhci-hed.l.auteo: irg 49, ic mem 0x03110000
139. <INF> 1.641558 (kernel): hub 3-0:1.0: USB hub found
140. <INF> 1.644071 (kernel): hub 3-0:1.0: 1 port detected
141. <INF> 1.64682& (kernel): xhci-hcd xhci-hed.l.auto: xHCTI Host Controller
142. <INF> 1.651010 (kernel): xhci-hcd xhci-hed.l.auto: new USB bus registered, assigned bus number 4
143. <INF> 1.657723 (kEernel): hub 4-0:1.0: USB hub found
144. <INF> 1.660218 (kernel): hub 4-0:1.0: 1 port detected
145. <INF> 1.663220 usbcore: registered new interface driwver usk-storage
146. <INF> 1.668154 mousedev: F5/2 mouse device common for all mice
147. <INF> 1.673238 usbcore: registered new interface driwver uskhid
148. <INF> 1.677669 usbhid: USB HID core driver
149. <INF> 1.680295 TCP: cubic registered
150. <INF> 1.682332 NET: Registered protocel family 17
151. <NOT> 1.685784 (kernel): Key type dns_resolver registered
152. <INF> 1.689077 (kernel): registered taskstats version 1
153. <INF> 1.944340 (kEernel): usk 2-1: new SuperSpeed USE device nurker 2 using xheci-hed
154. <INF> 1.970786& (kernel): usb-storage 2-1:1.0: USB Mass Storage device detected
155. <INF> 1.975729 (kernel): scs3i? : usb-storage 2-1:1.0

-

= &

=

im]

Figure 59. Debug Print view displays messages with Timestamp filter

» Other tab: allows adding other type of qualifications to existing filters, or a global qualification if no other filter is created.
Currently, the only qualification in this tab is a string pattern which is searched in all the messages (except for timestamps
and module names/paths/PIDS). After you input the string pattern, you must click Qualify in order to add this qualification
to all the existing filters. If no filter exists, a global qualification is performed.

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

NXP Semiconductors

65

Linux Kernel and User Applications Debug Print Tool
Filtering

Create Debug Print Filters

Create filters for the Debug Print messages

(i) You can select timestamp ranges, module names or paths, PIDs, or other
string patterns to create complex filters.

Module | Timestamp | Other Current Filters

Messages containing string

Hello

= (any) module: (any) pattern: rrHuzllunrr

Add Filter Clear Filters

@ Lok |

Cancel

The following figure shows the messages displayed in the Debug Print view using message strings in the other filter:

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

66

NXP Semiconductors

Linux Kernel and User Applications Debug Print Tool

Filtering
¥ C/C++ - test-arm/src/main.c - CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA EI@
File Edit Source Refactor Mavigate Search Project Run Processor Expert Window Help
i BB R0 s " e e o
Quick Access i< | Hg C/C++
E) Console 2§ Remote Systerns (&) Terminals | % Debug Print 5% & '|| R = &
By tlSS‘ <WBN> 2831.182667 (user): Hello World - il

209. <WBN> 2935.141166 ({user): Hellocooo

Figure 61. Debug Print view displays messages with Other filter

Figure 60. Create Debug Print Filters dialog - Other tab

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017
NXP Semiconductors 67

Index

Index

A

Add or Remove Function 31
Add or Remove Group 32
Analysis Results view 21

Cc

Change Color 31

Collect trace data 4

Collecting Linux trace 45
Configuring Debug Launcher 8
Configuring target 6

Create new project 4

E

Edit Address Range of Function 31
Export Code Coverage Data 37

F
Filtering 61

Import Linux trace 54
Import trace data 39

L
Linux Kernel Debug Print 56

M

Merge Groups or Functions 33

T

Trace Commander View 16
Trace generators 17

\'

View trace data 21

CodeWarrior Development Studio for QorlQ LS series - ARM V8 ISA, Tracing and Analysis User Guide, Rev. 11.3.0, 12/2017

68

NXP Semiconductors

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in
NXP data sheets and/or specifications can and do vary in different applications, and actual
performance may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer's technical experts. NXP does not convey
any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

NXP, the NXP logo, Freescale, the Freescale logo, and QorlQ are trademarks of are
trademarks of NXP B.V. All other product or service names are the property of their respective
owners. Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the
US and/or elsewhere.

© 2017 NXP B.V.

CWARMVSTAUG
Rev. 11.3.0
12/2017

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 About this manual
	1.2 Accompanying documentation

	2 Collect Trace Data
	2.1 Process for collecting data
	2.2 Creating a new project
	2.3 Configuring target
	2.4 Configuring Debug Launcher
	2.4.1 Configuring platform configuration file
	2.4.2 Display target accesses

	3 Trace Commander View
	3.1 Overview
	3.2 Configuring and collecting trace using Trace Commander view

	4 View Trace Data
	4.1 Analysis Results view
	4.1.1 Viewing Trace data
	4.1.2 Viewing Performance data
	4.1.3 Viewing Timeline data
	4.1.3.1 Add or remove function
	4.1.3.2 Edit address range of function
	4.1.3.3 Change color
	4.1.3.4 Add or remove group
	4.1.3.5 Merge groups or functions

	4.1.4 Viewing Call Tree data
	4.1.5 Viewing Code Coverage data
	4.1.5.1 Export Code Coverage data

	4.2 Import trace data

	5 Collect and View Linux satrace Data
	5.1 Collecting Linux trace from CodeWarrior using satrace
	5.2 Importing and decoding trace collected using satrace

	6 Linux Kernel and User Applications Debug Print Tool
	6.1 Filtering

	Index

