NXP Semiconductors Document identifier: CM7FGDFLIBUG
User Guide Rev. 5, 01 November 2021

GDFLIB User's Guide

ARM® Cortex® M7F

NXP Semiconductors

Contents
Chapter 1 LIDrary.......cccoo s s e e e annn e e e e e e e 4
I 1 (o Yo T 1 o T 4
I O 17T V=2 4
(R B B - £ I 1Y L= TP PRRPTTPRPT 4
(IR I S o o= 0114 o T 4
(I ST W o] o o]y (=To leTo] 0] 11 =T = T PRSP 5
1.1.5 Library CONfIQUIAtION..........ueiiiii ettt e et e e e e e s enneeeee s 5
1.1.6 SPECIAI ISSUES.eeiiiiieiiie ettt e et e e e e bt e e e e et e e e e e b b e e e e e e nbreeeeeannreas 5
1.2 Library integration into project (MCUXPresso IDE)cccoiiiiiiiiiiiiiee e 6
1.3 Library integration into project (Keil HVISION)oooiiiiiiiiiiie e 9
1.4 Library integration into project (IAR Embedded Workbench)cccccceiiiiiiiiiiiie 17
Chapter 2 Algorithms in detail...........cccoooiiiiiiiiric 23
2.1 GDFLIB_FIErEXP..ccii i, 23
D B B AN VZ= 11 = o L IRV Z=T 51 o] o 23
2.1.2 GDFLIB_FILTER _EXP T _F 3. ittt ettt ettt e e e e e e e as 24
2.1.83 GDFLIB_FILTER EXP T F LT e it enaans 24
D S =T F= T = (o 1N 24
b I LU [o T o TV T < 25
2.2 GDFLIB _FIEITIR ..o et e et e e e et e e e e e e e e e e eaas 26
R W AN VZ= 1 F= o LIV Z=T 1 o] o 27
2.2.2 GDFLIB_FILTER IR T _F B2, .ttt ettt e e e e e e e e e e e e e e e e eneeereeeeeaanes 28
2.2.3 GDFLIB_FILTER_HRA _COEFF _T_F32.... oot e e e e e eeeenaaaes 28
2.2.4 GDFLIB_FILTER IR T LT ittt e e e e e e e e et e e e e e eeeeas 28
2.2.5 GDFLIB_FILTER_IRT _COEFF _T _FLT ..ottt 28
T B = Tor F= T = (o] o 1N 29
2.2.7 Calculation of filter COBfICIENTS.......cooeieere e e 29
R < 3 LU (o ([0 o TV T < 30
2.3 GDFLIB_FIEITIRZ. ... e e ettt e et e e e e e e e e e e e aas 31
P B B AN VZ= 1= o (IR Z=T 51 o] o 32
2.3.2 GDFLIB_FILTER _IHRZ T _FB2. ..ottt e e e e e e e e e e e e e e eaeneeereeeeeaanes 33
2.3.3 GDFLIB_FILTER _IIRZ2 _COEFF _T _F32. . e 33
2.3.4 GDFLIB_FILTER IR Z T LT ..ottt et e e e e et e et e e e e eeeeas 33
2.3.5 GDFLIB_FILTER _IRZ _COEFF _T _FLT ..ottt ettt 34
B N T B =T o F= = (o] 1N 34
2.3.7 Calculation of filter COBfICIENTS......ccoieieeee e 34
PR < 3 LU o [ox 1[0 o TV T < 35
2.4 GDFLIB _FIEIMA . .. oottt e e e et e e e e e e e e e e e e e e e e e eaaeaeen 36
oy W NV Z= 11 F= o LIV Z=T 1 o] o 37
2.4.2 GDFLIB_FILTER _MA T A3 ..ottt ettt ettt e e e e e e e e e e e e e aaaeeaereeereeeeeaenes 38
2.4.3 GDFLIB_FILTER _MA T _F LT ..ottt e e e e e e e e e e e e e e e aaeaenereeeeeaenes 38
N B =T F= T = (o] 1N 38
o LU o [ox 1[0 o TV T < 38
2.5 GDFLIB_FIEITIRAot e et e e e e e e e e e e eans 40
P T B AN VZ= 1= o (IR Z=T 1 o] o 41
2.5.2 GDFLIB_FILTER _IRA T _FB2. ...ttt ettt e e e e e e e e e e e e e e eaeneeereeeeeaenes 41
2.5.3 GDFLIB_FILTER_HRA _COEFF _T_F32... .ottt e e e e e e en e eeeaaaes 42
2.5.4 GDFLIB_FILTER IR T _F LT ..ottt e e e e e e e e bbb e e e e eeeeas 42
2.5.5 GDFLIB_FILTER_IRA _COEFF _T _FLT ..o ittt 42
I I B =T o F= = (o] 1N 43

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 2/61

NXP Semiconductors

Contents
2.5.7 Calculation of filter COBfICIENTS.......ccooiieeeee e 43
S < 3 LU (o 1[0 o TV T 44
2.6 GDFLIB _FIEEIMA . .. oottt e et e et e e e e e e e e e e e e e e e e e e e aean 45
P B B AN VZ= 1= o (IR Z=T 1 o] o 46
2.6.2 GDFLIB_FILTER _MA T A3 ..ottt ettt ettt e e e e e e e e e e e e e aaaeeaereeereeeeerenes 47
2.6.3 GDFLIB_FILTER _MA T _F LT ..ottt s e e e e e e e e e e e e e e e e s enereeeeeaenes 47
B oo F= T = (o] 1N 47
B R LU o 1T o TV T 48
Appendlx A LIbrary types.... ..ot e e 50
N I o Yo Yo I PR T 50
F N U1 € T T 50
F N U0 o T 51
YN R U1 o 52 ST 52
F NI 101 < TN ST 52
F ST 11 T T 53
F A 101 7 T 53
YN I i = (o< T T 54
YN I i = (o T T 55
YN (O = To2S 2 T 55
Y I = Voo 1 T 56
Y A= Vol o 1 ST 57
Y BT N IS Y T 57
N S I o 1 T 58
Y O R YN O S TP 58
F N L Y AN Ot 1 T T 58
Y A Y N O T 59
F N <X O Ot 1 TR 59
F N X O O3 T 59
GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 3/61

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the General Digital Filters Library (GDFLIB) for the family of ARM Cortex M7F core-based
microcontrollers. This library contains optimized functions.

1.1.2 Data types

GDFLIB supports several data types: (un)signed integer, fractional , and accumulator, and floating point. The integer data types
are useful for general-purpose computation; they are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The accumulator data type is a combination of
both; that means it has the integer and fractional portions. The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The exponent allows scaling the numbers from
extremely small to extremely big numbers. Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

* Unsigned 16-bit integer—<0 ; 65535> with the minimum resolution of 1

» Signed 16-bit integer—<-32768 ; 32767> with the minimum resolution of 1

* Unsigned 32-bit integer—<0 ; 4294967295> with the minimum resolution of 1

» Signed 32-bit integer—<-2147483648 ; 2147483647> with the minimum resolution of 1
The following list shows the fractional types defined in the libraries:

+ Fixed-point 16-bit fractional—<-1 ; 1 - 2-15> with the minimum resolution of 2-15

+ Fixed-point 32-bit fractional—<-1 : 1 - 231> with the minimum resolution of 2-31
The following list shows the accumulator types defined in the libraries:

+ Fixed-point 16-bit accumulator—<-256.0 ; 256.0 - 27> with the minimum resolution of 2-7

« Fixed-point 32-bit accumulator—<-65536.0 ; 65536.0 - 2-15> with the minimum resolution of 2-15
The following list shows the floating-point types defined in the libraries:

+ Floating point 32-bit single precision—<-3.40282 - 1038 ; 3.40282 - 103> with the minimum resolution of 2-23

1.1.3 API definition

GDFLIB uses the types mentioned in the previous section. To enable simple usage of the algorithms, their names use set prefixes
and postfixes to distinguish the functions' versions. See the following example:

f32Result = MLIB Mac F321ss(f32Accum, flé6Multl, fl6Mult2);

where the function is compiled from four parts:
* MLIB—this is the library prefix

* Mac—the function name—Multiply-Accumulate

* F32—the function output type

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 4/61

NXP Semiconductors

Library

» Iss—the types of the function inputs; if all the inputs have the same type as the output, the inputs are
not marked

The input and output types are described in the following table:

Table 1. Input/output types

Type Output Input
frac16_t F16 s
frac32_t F32 |
acc32_t A32 a

float_t FLT f

1.1.4 Supported compilers

GDFLIB for the ARM Cortex M7F core is written in C language or assembly language with C-callable interface depending on the
specific function. The library is built and tested using the following compilers:

* MCUXpresso IDE
* IAR Embedded Workbench
» Keil yVision
For the MCUXpresso IDE, the library is delivered in the gdfiib.afile.
For the Kinetis Design Studio, the library is delivered in the gdfiib.a file.
For the IAR Embedded Workbench, the library is delivered in the gdfiib.afile.
For the Keil pVision, the library is delivered in the gdfiib./ib file.

The interfaces to the algorithms included in this library are combined into a single public interface include file, gdffib.A. This is done
to lower the number of files required to be included in your application.

1.1.5 Library configuration

GDFLIB for the ARM Cortex M7F core is written in C language or assembly language with C-callable interface depending on the
specific function. Some functions from this library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It can cause an issue especially when high
optimization level is set. Therefore the optimization level for all inline assembly written functions is defined by compiler pragmas
using macros. The configuration header file RTCESL_cfg.his located in: specific library folderlMLIBlInclude. The optimization
level can be changed by modifying the macro value for specific compiler. In case of any change the library functionality is

not guaranteed.

Similarly as optimization level the High-speed functions execution suppport can be enable by defined symbol
RAM_RELOCATION in project setting described in the High-speed functions execution suppport cheaper for specific compiler.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the number is the closest number to 1 that
the resolution of the used fractional type allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest (half up).

3. This RTCESL requires the DSP extension for some saturation functions. If the core does not support the DSP extension
feature the assembler code of the RTCESL will not be buildable. For example the core1 of the LPC55s69 has no DSP
extension.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 5/61

NXP Semiconductors

Library
1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB into any MCUXpresso SDK example or
new SDK project using MCUXpresso IDE. The SDK based project uses RTCESL from SDK package.

High-speed functions execution suppport

Some RT (or other) platforms contain high-speed functions execution support by relocating all functions from the default Flash
memory location to the RAM location for much faster code access. The feature is important especially for devices with a slow Flash
interface. This section shows how to turn the RAM optimization feature support on and off.

1. In the MCUXpresso SDK project name node or on the left-hand side, click Properties or select Project > Properties from
the menu. A project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See Figure 1.
3. On the right-hand side, under the MCU C Compiler node, click the Preprocessor node. See Figure 1 .

e N
[Properties far twrkv31£120m demo _apps_hello world [
type filter text Settings Lv v
. Resource
Builders -
4 C/Ce+ Build Configuration: Debug [Active] - | [Manage configurations...
Build Variables
Environment
Logging 1 Tool Settings | # Build steps | " Build Atifact | (5 Binary Parsers | @ Error Parsers|
MCU settings
Settings 4 % MCU C Compiler []Do not search system directories (-nostdinc)
Tool Chsin Editor (2 Dialect [Preprocess only (-E)
+ C/Ce+ General % Preprocessor .
Defined symbols (-D) a8 8 & e
Project References (& Includes ¥ B8 8 al ks
Run/Debug Settings % Optimization CR_INTEGER_PRINTE
(& Debugging DEBUG
D) Wamings PRINTF_FLOAT_ENABLE=0 |
4 9 SCANF FLOAT ENABLE=0
(& Miscellaneous PRINTF_ADVANCED_ENABLE=0
{5 Architecture SCANF ADVANCED ENABLE=0
4 1 MCU Assembler TWR_KV31FL20M
B Genersl S5k BEBUGCONSGLE=D
- 3 2
(2 Architecture & Headers | > pdec i
4 B MCU Linker TUSE CMSIS
U General CPU_MKV3LFSL2VLL12
I B Libraries CPU_MKVBTFS12V1 112 cmd
| (8 Miscellaneous —REDLIB_
| (5 Shared Library Settings
l B Architecture Undefined symbols (-U) a2
I {8 Managed Linker Script |
I (2 Multicore
! i
|] i r
i
Figure 1. Defined symbols

4. On the right-hand side of the dialog, click the Add... icon located next to the Defined symbols (-D) title.
5. In the dialog that appears (see Figure 2), type the following:
* RAM_RELOCATION — to turn the RAM optimization feature support on
If the define is defined, all RTCEL functions are put to the RAM.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 6/61

NXP Semiconductors

Library

Defined symbols (-D)

RAM_RELOCATION I

[ok][Cconcel]

Figure 2. Symbol definition

6. Click OK in the dialog.
7. Click OK in the main dialog.

The RAM_RELOCATION macro places the ramMrunc (RaM) atribute in front of each function declaration.

Adding RTCESL component to project

The MCUXpresso SDK package is necessary to add any example or new project and RTCESL component. In case the

package has not been downloaded go to mcuxpresso.nxp.com, build the final MCUXpresso SDK package for required board and
download it.

After package is dowloaded, open the MCUXpresso IDE and drag&drop the SDK package in zip format to the Installed SDK

window of the MCUXpresso IDE. After SDK package is dropped the mesage accepting window appears as can be show in
following figure.

- o x
File Edit Navigate Search Project Configlools Run RIOS Analysis Window Help
N | & - & - e - Q- Q-i® P iRE TiBie|n IS BRI - i Yl e M
U NP A FRURE R AT REERORAN . | Q im|lK
[Project Ex... 51 4 Registers %% Fauls &, Periphera.. = O =g
BlElv &% B3

There sre no projects in your workspace.

To add s project:

B8 Creote o new MCUXpresso IDE C/C++ project.

B8 import exomples from SDK.) MCUpresso IDE SDK import - O X

% Create 3 project...
B Import projects... @) #reyousure you went to import the following SDK in the
&Y common ‘meuxpresso’ folder?

D:ASDK_2_10_0_HVP-KV31F120M.zip

@ inst.. 2 [Prop.. [2 Pn 8

@ Installed SDKs

() Quickstart Panel 53 (x)=Variables ®g Breakpoints = O Teinstallan SDK, simply drag and lpres:

|Installed SDKs ™. Available Board

MCUXpresso IDE - Quickstart Panel
e | No project selected

~ Create or import a project

oy B New project...
Bl @ import SDK ecample(s)...
® Import project(s) from file system...

[]Do not ask for confirmation on SDK Drag and Drop install

~ Build your project
A’
s

] {1 MCUX workspace

Figure 3. MCUXpresso IDE - imporing the SDK package to MCUXpresso IDE

Click OK to confirm the SDK package import. Find the Quickstart panel in left bottom part of the MCUXpresso IDE and click New
project... item or Import SDK example(s)... to add rtcesl component to the project.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 7/61

NXP Semiconductors

Library

8 MCUX workspace - MCU¥presso IDE

File Edit Mavigate Search Project ConfigTools Run

RTOS Analysis Window Help
|®- %~

H[mif &2 - TEE - RISl s
@il Ril-Fl-o e
[Project Ex.. 5 4! Registers 45 Faults &, Periphera.. = O

28lv|i#% B8

There are no projects in your workspace,
To add a project:

B8 Create a new MCUXpresso IDE C/C++ project.
B Import examples from SDK.
9 Create a project..

i Import projects...

() Installed SDKs
() Quickstart Panel 53 ()= Variables @g Breakpoints =

Installed SDKs

@ inst. 52 [OProp.. (2 Probl.. B Cons.. @Term.. [z Ima..

To install an SDK, simply drag and drop an SOK (zip file/folder] into the Installed SDKs' view. [Common 'mcuxpres

- a x
[N e S hE R
Q K

= 8

G Debu.. L Offfin.. = B
®o D

~
MCUXpresso IDE - Quickstart Panel
No project selected

\DE

Available Boards| Available Devices |

Name

~ Create or import a project

SDK Versien

Manifest Version Location

HHISDK_2.x_HVP-KV31F120M 2100

380 &

Invoke the new SDK project wizard

~ Build your project

@

\SDK_2_10_0_HVP-KY

~ SDK MCUs . Available boards

MCUs from installed SDKs. Please click

above or visit mcuxpresso.mxp.com to
obtain additional SDKs.

Please select an available board for your project.

[Supported boards for device: MKV3TFS120012

vllx — >
Figure 4. MCUXpresso IDE - create new project or Import SDK example(s)
Then select your board, and clik Next button.
) 50K Wizard o x
(D) Cresting project for device: MKV31F5120012 using board: HVP-KV31F120M x @
. Board and/or Device selection page .

NP MKV3TF512300x12

v KV3x
MKV3TF512xxx12

hvpkv31£120m

~ Preinstalled MCUs
MCUs from preinstalled LPC and
generic Cortex-M part support
NXP PN7462AU-C3-00 "
PN7462AU-C2-00
PN7462AU-C3-00
Generic-MD
Generic-Moplus
Generic-M23
Generic-M3
Generic-M33
Generic-M4
Generie-M7

v

Selected Device: MKV31F512300¢12 using board: HVP-KV31F120M
Target Core: emd
Description:

SDKs for selected MCU
Name

Kinetis KV3x-100-120 MHz, Advanced 3ph FOC / Sensorless Motor Control MCUs

based on ARM Cortex-M4 2 SDK_2x_HVP-KVITF120M 2,100

@

SDK Version

Manifest Ve... Location

(49420; 380 JE <Common>\SDK_2_10_0_HVP-KV:

< Back Finish Cancel

Figure 5. MCUXpresso IDE - selecting the board

Find the Middleware tab in the Components part of the window and click on the checkbox to be the rtcesl component ticked. Last

step is to click the Finish button and wait for project creating with all RTCESL libraries and include paths.

User Guide

GDFLIB User's Guide, Rev. 5, 01 November 2021

8/61

NXP Semiconductors

Library
3 soK Wizard u] X
i, The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2x_HVP-KV31F120M' SDK. VA &
. Configure the project
Project neme: | MKV31F31212_FirstProject] * | Project name suffix:

Use default location

C:\MCUX_workspace\MKV31F51212_FirstProject Browse..
Device Packages Board Project Type Project Options
® MKV3IFS12VLLIZ ® Defaut board files @CProject (O Cr+ Project SDK Debug Console (3 Semihost @) UART
O MKV31F312VLH12 O Empty board files [CMSIS-Core

(O C Static Library () C++ Static Library Copy sources

[Import other files

Components [F] Components selection summary B
Add or remove SDK software companents [ipesotiter |
Operating Systems [Drivers [CMSIS Drivers [Utilities [Widdieware™ Board Components| Abstraction Layer| Software C =
Name Description Ve Info
Middleware B %l ®E £ Drivers
[opesotiter | £ Middlenere
£ Operating Systems
Name Description Version Info = Software Component
[£ FresMASTER £ Utilties
[£ Memories.
[1 = Motor Cantrol
T rice! Real Time Control Embedded Software Library for CM... 110 | Real Time Gontrol Embedded Software Library far CNUF core
@ <Back Next> T

Figure 6. MCUXpresso IDE - selecting rtcesl component

Type the #include syntax into the code where you want to call the library functions. In the left-hand dialog, open the required .c
file. After the file opens, include the following lines into the #include section:

#include "mlib FP.h"
#include "gdflib FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include GDFLIB into an empty project or any
MCUXpresso SDK example or demo application projects using Keil pVision. This example uses the default installation path
(C:ANXP\RTCESL\CM7F_RTCESL_4.7_KEIL). If you have a different installation path, use that path instead. If any MCUXpresso

SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter otherwise read
next chapter.

NXP pack installation for new project (without MCUXpresso SDK)

This example uses the NXP MKV58F1M0xxx22 part, and the default installation path
(C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL) is supposed. If the compiler has never been used to create any NXP MCU-based
projects before, check whether the NXP MCU pack for the particular device is installed. Follow these steps:

1. Launch Keil yVision.

2. In the main menu, go to Project > Manage > Pack Installer....

3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale (NXP) node.
4. Look for a line called "KVxx Series" and click it.
5

. In the right-hand dialog (under the Packs tab), expand the Device Specific node.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 9/61

NXP Semiconductors

Library

6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update options, click the button to install/
update the package. See Figure 7.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

18 Pack Installer - CKeil vS\VARMIPACK — - B =El =]
File Packs Window Help
[+l ‘ Device: Freescale - KVaox Series
4 Devices | Boards | T Packs | Examples | i
‘ Search: - X Pack Action Description
Device A =1~ Device Specific 1 Pack
I @ Atmel 257 Devices ||| | KeiKinetis Ko DFP | Tnstoll Freescale Kinetis Kixx Series Device Support
@ Fresscale 234 Devices El-Generic 10 Packs
%2 K Series 1 Device RM:CMSIS & Up io daic | CMSIS (Cortex Microcontroller Software Interface Standard)
42 K00 Series 2 Devices eilzARM_Compiler | & _Up to date | Keil ARM Compiler extensions
42 K10 Series 23 Devices eil:Jansson & Install___| Jansson is a C library for encoding, decoding and manipula
42 K20 Series 41 Devices eil:MDK-Middleware | & Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
42 K0 Series & Devices - Keil:MDK-Network DS | & Install Keil MDK-ARM Professional Middleware Dual-Stack IPud,/IP
42 k40 Series & Devices B-hwiPz P & Install IwIP is 2 light-weight implementation of the TCR/IP protoc
42 K50 Series 11 Devices - Micrium:RTOS & Install Micrium software components
42 K60 Series 18 Devices -Ory Package (CycloneTCP, CycloneSSL and Cyclon
42 K70 Series 4 Devices - wolfSSL::CyaSSL Light weight SSL/TLS and Crypt Library for Embedded Syste
42 K30 Series 2 Devices 1 - YOGITECH:ARSTL_AR. YOGITECH fRSTL Functional Safety EVAL Software Pack for
% KEdoo Series 6 Devices
4 Kb Series 11 Devices
4 Ko Series 54 Devices
% KMo Series 14 Devices
4 Ko Series 26 Devices
% Ko Series 8 Devices
% WPRISI6 Series |1 Device
P e ha | K |

Output 3 x

Refresh Pack descriptions

Update available for Keil:MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta}

Ready [[onme

New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and is opened, skip to the next section. Follow

these steps to create a new project:

1. Launch Keil pVision.

2. In the main menu, select Project > New pVision Project..., and the Create New Project dialog appears.

3. Navigate to the folder where you want to create the project, for example C:\KeilProjects\MyProject01. Type the name of the

project, for example MyProject01. Click Save. See Figure 8.

Create New Project

» Computer » System (C:) » KeilProjects » MyProject0l

File name: MyProject0l

Save as type: IPro}act Files (*.uvproj; *.uvprojx)

~ Browse Folders Save

Figure 8. Create New Project dialog

In the next dialog, select the Software Packs in the very first box.

Type " into the Search box, so that the device list is reduced to the devices.
Expand the node.

Click the MKV58F1M0xxx22 node, and then click OK. See Figure 9.

N o o &

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

10/61

NXP Semiconductors

8.

Library

- =
Select Device for Target 'Target 1"

cPU |

ISoﬂware Packs

Vendor: Freescale
Device: MKVS8F1MDooc22
Toolset: ~ ARM

Search I

Description:

=@ Freescale
5% Ko Series
K
A K3
K
% K

B MKVSBF51 20022

B MKVSBFLMOco2 —

The Kinetis K\V5x family of MCL is a high-performance solution offering
exceptional precision, sensing and control targeting Industrial Maotor
Control, Industrial Drives and Automation and Power Conversion
applications

Built upen the ARM Cortex-M7 core running at 240 MHz with single
precision floating point unit.

It features high resolution pulse-width modulation (PVWM) with 312
picosecond resolution, 4x 12bit analogto-digital converters (ADCs)
sampling at 5 mega samples per second (M5/s), 3 AexCAN modules,
optional Ethemet Communications and comprehensive enablement
suite from Freescale and third-party resources including reference
designs, software libraries and motor configuration tools.

-

Figure 9. Select Device dialog

9. Expand the CMSIS node, and tick the box next to the CORE node.

In the next dialog, expand the Device node, and tick the box next to the Startup node. See Figure 10.

ﬂ n_ageR

Software Component Sel. Variant
=€ CMmsIS
CORE |
@ DsP r
) & RTOS (APT)

& CMSIS Driver
4 Compiler

o 4 Device

@ Startup icd
4 File System MDK-Pre
4 Graphics MDK-Pro
€ Network MDK-Pro
& use MDK-Pro

Version Description

Cortex Microcontroller Software Interface Components

41.0 CMSIS-CORE for Cortex-M, 50000, and 5C300
145 CMSIS-DSP Library for Cortex-M, 50000, and SC300
10 CMSIS-RTOS API for Cortex-M, 50000, and 5C300

Unified Device Drivers compliant to CMSIS-Driver Specifications
ARM Compiler Software Extensions
Startup, System Setup
100 System Startup for Kinetis KV58 220MHz devices devices devices
64.0 File Access on various storage devices
5261 User Interface on graphical LCD displays
64.0 1P Metworking using Ethernet or Serial protocols

6.4.0 USB Communication with various device classes

Software Compenent Sel. Variant
4 Board Support
=€ CMmsis
@ CORE
| @ Dsp
NNLib
4 RTOS (APD)
4 RTOS2 (API)

L CMSIS Driver

Source

=

®

= 4 Device

4 SDK Drivers

4 SDK Project Template

& SDK Utilities
4 File System MDK-Plus
4 Graphics MDK-Plus
& Network MDK-Plus

Figure 10. Manage Run-Time Environment dialog

4 Compiler ARM Compiler

Version Description
Generic Interfaces for Evaluation and Development Boards

Cortex Microcontroller Software Interface Compaonents
CMSIS-CORE for Cortex-M, SC000, 5C300, ARMWE-M, ARMVE.1-M
CMS5IS-DSP Library for Cortex-M, SC00D, and SC300

CMSIS-NM Meural Network Library

CMSIS-RTOS AP| for Cortex-M, SCO00. and SC200
CMSIS-RTOS AP| for Cortex-M, SCO00. and SC200

NXP MCUXpresso SDK Peripheral CMSIS Drivers

160 Cempiler Extensions for ARM Compiler 5 and ARM Compiler &
Startup, System Setup

NXP MCUXpresso SDK Peripheral Drivers

NXP MCUXpresso SDK RTE Device Project Template

NXP MCUXpresso SDK Utilities

File Access on various storage devices

User Interface on graphical LCD displays

|Pv4 Networking using Ethernet or Serial protocols

10. Click OK, and a new project is created. The new project is now visible in the left-hand part of Keil yVision. See Figure 11.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

11/61

NXP Semiconductors

Library

EE ChKailProjects\MyProject01\MyProjectdl.uvprojx - pVisicn

File Edit Wiew Project Flash Debug Peripherals Tool

=25 N - Ny | |
L [&2 f?| Target 1 Eﬁﬂ.|
Project 7 (&
=4 Project: MyProjectl
S-i Targetl
{J Scurce Group 1
& cmsis
EI’ Device
] startup_MKVS8F22.s (Startup)
] system_MEKVS8F22.c (Startup)
1 system_MEVS8F22.h (Startup)

Figure 11. Project

11. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.

12. Select the Target tab.

13. Select Use Single Precision in the Floating Point Hardware option. See Figure 11.

Code Generation
ARM Compiler: |Llse default compiler version j

| Use Cross-Module Optimization
| Use MicroLIB |
Floating Point Hardware: Use Single Precision [

Figure 12. FPU

High-speed functions execution support

Some RT (or other) platforms contain high-speed functions execution support by relocating all functions from the default Flash
memory location to the RAM location for much faster code access. The feature is important especially for devices with a slow Flash

interface. This section shows how to turn the RAM optimization feature support on and off.
1. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.
2. Select the C/C++ tab. See #unique_19.
3. In the Include Preprocessor Symbols text box, type the following:
* RAM_RELOCATION — to turn the RAM optimization feature support on
If the define is defined, all RTCEL functions are put to the RAM.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

12/61

NXP Semiconductors

Library
De\ricel Target | Outputl Listingl User C/Cer Iﬂsm | Linkerl Debug | Uilities |
— Prep Symbals
Define: [RAM_RELOCATION
Undefine: I
— Language / Code Generation
I™ Bxecute-ony Code I Sirict ANSIC i
Optimization: |Level 0(00) ™ Enum Container ahways int All Wamings <
I~ Optimize for Time I Plain Charis Signed [T Thumb Mode
I~ Spli Load and Store Multiple [~ Read-Only Position Independent [~ No Auto Includes
[™ One ELF Section per Function I~ Read-Wiite Position Independent [~ €33 Mode
Include I
Paths
Misc I
Controls
Compiler |- —cpu Cortex-M4fp -D__EVAL -g 00 -apcs=interwork
contral || C:\KeilProjects \MyProject01\RTE
string
Defaults
Figure 13. Preprocessor symbols
4. Click OK in the main dialog.
The RAM_RELOCATION macro places the attribute ((section ("ram"))) atribute in front of each function declaration.

Linking the files into the project
GDFLIB requires MLIB to be included too. The following steps show how to include all dependent modules.
To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add Group... from the menu. A new group
with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.
3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'... from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\MLIB\Include, and select the
miib_FP.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add. See Figure 14.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 13/61

NXP Semiconductors

Library

Look i_r1:| | Include

Mame

[MLIB_Div1Q_F32

[mlib_FP

[MLIB_Log2_U16

[2f MLIB_Mac_A32

[MLIB_Mac_F16_Asmi
[MLIB_Mac_F32

[&f MLIB_Mac_F32_Asmi
[MLIB_Mac_FLT

[2f MLIB_Mac4_F32

[MLIB_Macd_F32_Asmi

[am1o Rt T T

i | mn

~| & & cf B

Date modified

6,/20/2016 9:49 AM
7/22/20161:15 PM
6,/20/2016 9:49 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM
6,/20/2016 9:49 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM

AN E OLAn ARA

~

File name: Imlib_FF‘

Files of type: IText file (“td:; *h; “inc)

Figure 14. Adding .h files dialog

5. Navigate to the parent folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\MLIB, and select the m/ib./ibfile. If the file does
not appear, set the Files of type filter to Library file. Click Add. See Figure 15.

Look in: | ', MLIB

Mame

Include
|| MLIB.lib

~| & B e B

Date modified

20102014 15:37
16.10.2014 9:19

4| n

File name: II"."ILIB.Iib

Files of type: | Library file (" ib)

Figure 15. Adding .lib files dialog

Add I
LI Close |

6. Navigate into the library installation folder C:ANXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GDFLIB\Include, and select the

gdflib_FP.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:ANXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GDFLIB, and select the gdfiib./ib file. If the file

does not appear, set the Files of type filter to Library file. Click Add.

8. Now, all necessary files are in the project tree; see Figure 16. Click Close.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

14 /61

NXP Semiconductors

Library

| Project 1 &
=% Project: MyProjectll
gz Targetl
L Seource Group 1
=5 RTCESL
1 mlib_FP.h
] MLIB.lib
1 gdflib_FP.h
] GDFLIB.lib
& cmsis
EI‘.’ Device

Figure 16. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules.
1. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.
2. Select the C/C++ tab. See Figure 17.

3. Inthe Include Paths text box, type the following paths (if there are more paths, they must be separated by ';') or add them
by clicking the ... button next to the text box:

+ "C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\MLIB\Include"

* "C:\NXP\RTCESL\CM7F_RTCESL_4.7_KEIL\GDFLIB\Include"
4. Click OK.
5. Click OK in the main dialog.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 15/61

NXP Semiconductors

Library

k] Options for Target ‘Target 1

Devicel Target | Oulpull Listingl User C/Ce+ |.&'sm I Linkerl Debug | Ltilities |

Symbals

Define: I
Undefine: I

— Language / Code Generation

I~ Stict ANSIC e
Optimization: lm I™ Enum Container abways int All'Wamings j'
I Optimize for Time ™ Plain Char is Signed = Thurmb Mode
I~ Split Load and Store Muttiple [~ Read-Cnly Position Independent [~ No Auto Includes
[~ One ELF Section per Function [~ Read-Write Postion Independert [~ C39 Mode

Include ||
Paths

Misc I
Controls

Compiler |-¢ —cpu Cortex-M0+ -D__EVAL -g -00 —apcs=interwork
control [C:\KeilProjects \MyProject01\RTE
string

Figure 17. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new project, it is necessary to create a
source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group 1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for example 'main.c. See Figure 18.

: e e o o ompe
v o s or T

Create a new C source file and add it to the projec
C | CFile{c)

@ C++ File {.cpp)
\ﬂ Asm File ()

@ Header File (h)
é Text File (bd)
Qg\ Image File (%
1@ User Code Template

Type: I

Mame: I main.

Location: I C:\KeilProjects\MyProjectd1

Figure 18. Adding new source file dialog

3. Click Add, and a new source file is created and opened up.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 16/61

NXP Semiconductors

Library
4. In the opened source file, include the following lines into the #include section, and create a main function:

#include "mlib FP.h"
#include "gdflib FP.h"

int main (void)
{

while (1) ;
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded Workbench)

This section provides a step-by-step guide on how to quickly and easily include the GDFLIB into an empty project or any
MCUXpresso SDK example or demo application projects using IAR Embedded Workbench. This example uses the default
installation path (C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR). If you have a different installation path, use that path instead. If
any MCUXpresso SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter
otherwise read next chapter.

New project (without MCUXpresso SDK)

This example uses the NXP MKV58F1M0xxx22 part, and the default installation path
(C:ANXP\RTCESL\CM7F_RTCESL_4.7_IAR) is supposed. To start working on an application, create a new project. If the
project already exists and is opened, skip to the next section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project... so that the "Create New Project" dialog appears. See Figure 19.

-~ =

Tool chain: | AFiM -

Froject templates:

[asm -
[C++

-+ DLIB [T, Co+ with exceptions and ATTI)
DLIB [C, Extended Embedded C++)

N el WOy R S RpppRpRp ey Y P

m m
00

Description:

C project uzing default tool settings inchuding an emply main.c file.

Figure 19. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

4. Navigate to the folder where you want to create the project, for example, C:\IARProjects\MyProject01. Type the name of the
project, for example, MyProject01. Click Save, and a new project is created. The new project is now visible in the left-hand
part of IAR Embedded Workbench. See Figure 20.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 17 /61

NXP Semiconductors

5.
6.

Library

& IAR Embedded Workbench ID

File

Edit View Project Sirmulator

Tools Window Help

Nedd@ &SR o o

=,

Workspace

x

[Debug

-

Files

Figure 20. New project

En O

=lalMyProjectdl -Deb... |« | |
rmain.c
L@ 3 Output

x

main.c |

int mainf()
{
return 0;

}

In the main menu, go to Project > Options..., and a dialog appears.

In the Target tab, select the Device option, and click the button next to the dialog to select the MCU. In this example, select
NXP > KV5x > NXP MKV58F 1MO0Oxxx22. Select VFPv5 single precision in the FPU option. Click OK. See Figure 21.

Cateqary:

Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
QOutput Converter
Custom Build
Build Actions
Linker
Debuager
Simulator
Angel
CMSIS DAP
GDE Server
TAR. ROM-monitor
T4et/TTAG]et
J-Link/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMK
Third-Party Driver
TI XDS

,

=)

Target | Qutput | Library Configuration | Library Options | MISRAC:200/ « | »

Processor varant

() Care

@ Device

Endian mode
@ Little
Big
BE32
@ BEB

Cortex-M7

MXP MKVEEF1MDbooc22

Floating point settings
EPU

[registers 16

Adwvanced SIMD (NEON)

Figure 21. Options dialog

[oK] [Cancel

High-speed functions execution suppport

Some RT (or other) platforms contain high-speed functions execution support by relocating all functions from the default Flash
memory location to the RAM location for much faster code access. The feature is important especially for devices with a slow Flash
interface. This section shows how to turn the RAM optimization feature support on and off.

1.

In the main menu, go to Project > Options..., and a dialog appears.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

18/61

NXP Semiconductors

Library

2. In the left-hand side column, select C/C++ Compiler.

3. In the right-hand side of the dialog, click the Preprocessor tab (it can be hidden on the right; use the arrow icons
for navigation).

4. In the text box (in Defined symbols: (one per line)), type the following (See Figure 22):
* RAM_RELOCATION — to turn the RAM optimization feature support on
If the define is defined, all RTCEL functions are put to the RAM.

Options for node "MyProject01” | 2 |

Category: Factary Settings

General Options [T Multifile: Compilation

Static Analysis Dizeard Unused Publics
Runtime Checking

| Language 2 I Code I Optimizations I Output I List | Preprocessor L

Assembler
Output Converter [lgnore standard include directories

CUT;Dm Build Additional include directories: (one per line)

Build Actions A

Linker E]

Debugger
Simulator
Angel
CMSIS DAP Preinclude file:

GDE Server E]
IAR. ROM-monitor
et/ TTAGIEt Defined symbols: {one per line)

Iink/3-Trace RAM_RELOCATION . [C]Preprocessor output to file
11 Stellaris Preserve comments

Macraigor il Generate Hine directives

PE micro

RDI

STALINK
Third-Party Driver
TIXDS

ok] [Cancel

L - |

Figure 22. Defined symbols

5. Click OK in the main dialog.

The RAM_RELOCATION macro places the ramfunc atribute in front of each function declaration.

Library path variable
To make the library integration easier, create a variable that will hold the information about the library path.
1. In the main menu, go to Tools > Configure Custom Argument Variables..., and a dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the name of the group PATH, and click OK.
See Figure 23.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 19/61

NXP Semiconductors

Library
1 ' Configure Custom Argument Variables L= |
Workspace | Global
Enable Group
Mew Group = E_OUD”'
Fiable...
MName: PATH _iable. .
_ete
oK l [Cancel IF
prt...
Expand/Collapse All
[Hide disabled groups
oK l l Cancel
Figure 23. New Group

3. Click on the newly created group, and click the Add Variable button. A dialog appears.
4. Type this name: RTCESL_LOC

5. To set up the value, look for the library by clicking the "..." button, or just type the installation path into the box:
C:ANXP\RTCESL\CM7F_RTCESL_4.7_IAR. Click OK.

6. In the main dialog, click OK. See Figure 24.

' Configure Custom Argument Variables [= |
Workspace | Global
[pATH Disable Group
n
Add Variable ==
Name: |RTCE5L_LOC |
Value: |C:WXP\,RTCESL_CM?F_RTCESL_X.X_IAR| | =PRIEw
[OK. J[Cancel]
=

Figure 24. New variable

Linking the files into the project
GDFLIB requires MLIB to be included too. The following steps show the inclusion of all dependent modules.
To include the library files into the project, create groups and add them.

1. Go to the main menu Project > Add Group...

2. Type RTCESL, and click OK.

3. Click on the newly created node RTCESL, go to Project > Add Group..., and create a MLIB subgroup.
4. Click on the newly created node MLIB, and go to the main menu Project > Add Files... See Figure 26.
5

. Navigate into the library installation folder C:\ANXP\RTCESL\CM7F_RTCESL_4.7_IAR\MLIB\Include, and select the
miib_FP.hfile. (If the file does not appear, set the file-type filter to Source Files.) Click Open. See Figure 25.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 20/ 61

NXP Semiconductors

Library

6. Navigate into the library installation folder CANXP\RTCESL\CM7F_RTCESL_4.7_IAR\MLIB, and select the mi/ib.afile. If the

file does not appear, set the file-type filter to Library / Object files. Click Open.

rstem (C:) » NKP » RTCESL » CM7F_RTCESL 43 IAR » MLIE » Include

T e essss— Ce—

it Marne : Date modified Type
| . mlib_FP.h 16.6.201513:17 H File

| MUEB_Log2_U16.h 16.6.201513:17 H File

Figure 25. Add Files dialog

7. Click on the RTCESL node, go to Project > Add Group..., and create a GDFLIB subgroup.
8. Click on the newly created node GDFLIB, and go to the main menu Project > Add Files....

9. Navigate into the library installation folder C:\NXP\RTCESL\CM7F_RTCESL_4.7_IAR\GDFLIB\Include, and select
gdflib_FP.hfile. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

the

10. Navigate into the library installation folder C:ANXP\RTCESL\CM7F_RTCESL_4.7_IAR\GDFLIB, and select the gdfiib.afile.

If the file does not appear, set the file-type filter to Library / Object files. Click Open.

11. Now you will see the files added in the workspace. See Figure 26.

‘Workspace x
lDebug -
Files i By
= (J MyProjectd! - Debug * v
FHE CIRTCESL
Fa CIMUE
| —DOwLBa
| LY— & mlib_FPh
gelmlGoFLE | [
— [GDFLEB.A
L— [gelflib_FP.h
main.c x
= [Cutput
Figure 26. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules:
1. In the main menu, go to Project > Options..., and a dialog appears.
2. In the left-hand column, select C/C++ Compiler.

3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in the right; use the arrow icons
for navigation).

4. In the text box (at the Additional include directories title), type the following folder (using the created variable):
+ $RTCESL_LOCS$\MLIB\Include
+ $RTCESL_LOC$\GDFLIB\Include

5. Click OK in the main dialog. See Figure 27.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

21/61

NXP Semiconductors

Library

Categony:

,

===

General Options
Static Analysis
Runtime Checking

C/C++ Compiler

Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMS3IS DAP
GDE Server
IAR ROM-monitor
I4et/ITAGjet
J-Link/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LIMK
Third-Party Driver
TI XDS

[] Multi-file Campilation

Dizcard Unuzed Publice

Factary Settings

| Language 1 I Language 2 I Code I Cptimizations I Output I List

|F< b

[Ignore standard include directories

Additional include directories: (one per ling)

SRTCESL_LOCS\MLIBinclude

SRTCESL_LOCS\GDFLIBNincluds|

Preinclude file:

Defined symbaols: (one per ling)

.

[Preprocessor output to file

Preserve comments

Generate Hine directives

]

Figure 27. Library path adition

ak.] [Cahicel

Type the #include syntax into the code. Include the library included into the main.cfile. In the workspace tree, double-click the
main.cfile. After the main.c file opens up, include the following lines into the #include section:

#include "mlib FP.h"
#include "gdflib FP.h"

When you click the Make icon, the project will be compiled without errors.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

22/61

NXP Semiconductors

Chapter 2
Algorithms in detall

2.1 GDFLIB_FilterExp

The GDFLIB_FilterExp function calculates the exponential smoothing. The exponential filter is the simplest filter with only one
tuning parameter, requiring to store only one variable - the filter output (it is used in the next step). For a proper use, it is
recommended that the algorithm is initialized by the GDFLIB_FilterExplnit function, before using the GDFLIB_FilterExp function.

The filter calculation consists of the following equation:

y(k)=y(k-1)+A4- (x(k)-(k-1))
Figure 28.

where:
» x(k) is the actual value of the input signal
* y(k) is the actual filter output
« Ais the filter constant (0 ; 1) (it defines the smoothness of the exponential filter)

The exponential filter tuning is based on these rules: for a small value of the filter constant there is a strong filtering effect (if A= 0
then the output equals the new input). For a high value of the filtering constant, there is a weak filtering effect (if A = 1 then the new
inputis ignored). The filter constant defines the ratio between the filter inputs and the last step output, used for the next calculation.

2.1.1 Available versions
This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The parameter uses
the fraction type.

 Floating-point output - the output is the floating-point result within the type's full range. The parameter is of a floating-point
range as well.

The available versions of the GDFLIB_FilterExplnit function are shown in the following table:

Table 2. Init function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterExplnit_F1 |frac16_t | GDFLIB_FILTER_EXP_T_F32* |void The input argument is a 16-bit fractional
6 value that represents the initial value of

the filter at the current step. The input is
within the range <-1 ; 1). The parameters'
structure is pointed to by a pointer.

GDFLIB_FilterExplnit_FL |float_t GDFLIB_FILTER_EXP_T_FLT* | void The input argument is a 32-bit

T single precision floating-point value that
represents the initial value of the filter at
the current step. The input is within the full
range. The parameters' structure is pointed
to by a pointer.

The available versions of the GDFLIB_FilterExp function are shown in the following table:

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 23 /61

NXP Semiconductors

Algorithms in detail

Table 3. Function versions

Function name

Input Parameters Result Description
type type

6

GDFLIB_FilterExp_F1

frac16_t | GDFLIB_FILTER_EXP_T_F32 | frac16_t | The input argument is a 16-bit fractional value of

* the input signal to be filtered within the range <-1 ;
1). The parameters' structure is pointed to by a
pointer. The function returns a 16-bit fractional
value within the range <-1; 1).

T

GDFLIB_FilterExp_FL

float_t |GDFLIB_FILTER_EXP_T_FL |float_.t |The inputargumentis a 32-bit single precision
T floating-point value of the input signal to be filtered
within the full range. The parameters' structure
is pointed to by a pointer. The function returns a
32-bit single precision floating-point value within

the full range.

2.1.2 GDFLIB_FILTER_EXP_T_F32

Variable Input Description
name type
f32A frac32_t | Filter constant value (filter parameter). It defines the smoothness of the exponential filter (high value
= small filtering effect, low value = strong filtering effect). It is usually defined as:
A=1- exp—%
Where T is the sample time and 1 is the filter time constant. The parameter is a 32-bit fractional
value within the range <-0 ; 1). Set by the user.
f32AccK_1 | frac32_t | Filter accumulator (last step output) value. The parameter is a 32-bit accumulator type within the

range <-1.0 ; 1.0). Controlled by the algorithm.

2.1.3 GDFLIB_FILTER_EXP_T_FLT

Variable Input Description
name type
fItA float_t Filter constant value (filter parameter). It defines the smoothness of the exponential filter (high value
= small filtering effect, low value = strong filtering effect). It is ussually defined as:
A=1- exp%
Where Ty is the sample time and 7 is the filter time constant. The parameter is a 32-bit single
precision floating-point type within the range (0 ; 1.0>. Set by the user.
fltAccK_1 | float_t Filter accumulator (last step output) value. The parameter is a 32-bit accumulator type within the

32-bit single precision floating-point range. Controlled by the algorithm.

2.1.4 Declaration

The available GDFLIB_FilterExplInit functions have the following declarations:

void GDFLIB FilterExpInit F16(fracl6é t fl6InitVal, GDFLIB FILTER EXP T F32 *psParam)

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

24 /61

NXP Semiconductors

Algorithms in detail

void GDFLIB FilterExpInit FLT (float t fltInitVal, GDFLIB FILTER EXP T FLT *psParam)

The available GDFLIB_FilterExp functions have the following declarations:

fracl6_t GDFLIB_FilterExp F16(fracl6_t f16InX, GDFLIB_FILTER EXP T F32 *psParam)

float t GDFLIB FilterExp FLT (float t fltInX, GDFLIB FILTER EXP T FLT *psParam)

2.1.5 Function use
The use of the GDFLIB_FilterExplnit and GDFLIB_FilterExp functions is shown in the following examples:

Fixed-point version:
#include "gdflib.h"
static fracl6é t fl6Result;
static fraclé t fl16Initval, f16InX;
static GDFLIB FILTER EXP T F32 sFilterParam;
void Isr (void);
void main (void)
{

f16InitVal = FRAC16(0.0); /* fl6Initval = 0.0 */

/* Filter constant = 0.05 */
sFilterParam.f32A = FRAC32(0.05);

GDFLIB FilterExpInit F16(f16InitVal, &sFilterParam);
f16InX = FRAC16(0.5);
/* periodically called function */

void Isr (void)

{
fl6Result = GDFLIB FilterExp F16(£f16InX, &sFilterParam);

Floating-point version:
#include "gdflib.h"
static float t fltResult;
static float_t fltInitval, fltInX;
static GDFLIB FILTER EXP T FLT sFilterParam;
void Isr (void) ;
void main (void)

{
fltInitval = 0.0F; /* fltInitVal = 0.0 */

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 25/ 61

NXP Semiconductors

Algorithms in detail

/* Filter constant = 0.05 */
sFilterParam.fltA = 0.05F;

GDFLIB FilterExpInit FLT (fltInitVal, &sFilterParam);

f1tInX = 0.5F;
}

/* periodically called function */
void Isr (void)
{
fltResult = GDFLIB FilterExp FLT(fl1tInX, &sFilterParam);

2.2 GDFLIB_FilterlIR1

This function calculates the first-order direct form 1 IR filter.

For a proper use, it is recommended that the algorithm is initialized by the GDFLIB_FilterlIR1Init function, before using the
GDFLIB_FilterlIR1 function. The GDFLIB_FilterlIR1Init function initializes the buffer and coefficients of the first-order IIR filter.

The GDFLIB_FilterlIR1 function calculates the first-order infinite impulse response (lIR) filter. The IIR filters are also called
recursive filters, because both the input and the previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely long impulse response (lIR). A general form
of the IIR filter, expressed as a transfer function in the Z-domain, is described as follows:

H(z) = B@ _ botbiz byz 2+ . +byz N
=1 Va7 ayz 2+ rayz N

Figure 29.

where N denotes the filter order. The first-order IIR filter in the Z-domain is expressed as follows:

Bz) bytbiz!

HE=%G) = TFaeg T

Figure 30.

which is transformed into a time-domain difference equation as follows:

k)= byx(k)+ bk — D)-apk — 1)
Figure 31.

The filter difference equation is implemented in the digital signal controller directly, as given in Equation 3; this equation represents
a direct-form 1 first-order IIR filter, as shown in Figure 32.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 26 /61

NXP Semiconductors

Algorithms in detail

x(k) y(k)
>

Figure 32. Direct form 1 first-order IIR filter

The coefficients of the filter shown in Figure 3-1 can be designed to meet the requirements for the first-order low-pass filter (LPF)
or high-pass filter (HPF). The coefficient quantization error is not important in the case of a first-order filter due to a finite precision
arithmetic. A higher-order LPF or HPF can be obtained by connecting a number of first-order filters in series. The number of
connections gives the order of the resulting filter.

The filter coefficients must be defined before calling this function. As some coefficients can be greater than 1 (and lesser than 2),
the coefficients are scaled down (divided) by 2.0 for the fractional version of the algorithm. For faster calculation, the A coefficient
is sign-inverted. The function returns the filtered value of the input in the step k, and stores the input and the output values in the
step k into the filter buffer.
2.2.1 Available versions
This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).

 Floating-point output - the output is a floating-point result within the type's full range.

The available versions of the GDFLIB_FilterlIR1Init function are shown in the following table:

Table 4. Init function versions

Function name Parameters Result Description
type

GDFLIB_FilterlIR1Init_F16 | GDFLIB_FILTER_IIR1_T_F32* |void Filter initialization (reset) function. The parameters'
structure is pointed to by a pointer.

GDFLIB_FilterlIR1Init_FLT | GDFLIB_FILTER_IIR1_T_FLT* |void Filter initialization (reset) function. The parameters'
structure is pointed to by a pointer.

The available versions of the GDFLIB_FilterlIR1 function are shown in the following table:

Table 5. Function versions

Function name Input Parameters Result Description
type type

GDFLIB_FilterllR1_F16 |frac16_t | GDFLIB_FILTER_IIR1_T_F32* |frac16_t |The input argument is a 16-bit fractional
value of the input signal to be filtered
within the range <-1 ; 1). The parameters'
structure is pointed to by a pointer. The
function returns a 16-bit fractional value
within the range <-1; 1).

GDFLIB_FilterlIR1_FLT |float_t GDFLIB_FILTER_IIR1_T_FLT* |float_t The input argument is a 32-bit single
precision floating-point value of the

Table continues on the next page...

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 27 /61

NXP Semiconductors

Table 5. Function versions (continued)

Algorithms in detail

Function name Input Parameters Result Description
type type
input signal within the full range. The
parameters' structure is pointed to by a
pointer. The function returns a 32-bit single
precision floating-point value within the
full range.
2.2.2 GDFLIB_FILTER_IIR1_T_F32
Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR1_COEFF_T_F32* Substructure containing filter coefficients.
f32FItBfrY[1] frac32_t Internal buffer of y-history. Controlled by the algorithm.
f16FItBfrX[1] frac16_t Internal buffer of x-history. Controlled by the algorithm.

2.2.3 GDFLIB_FILTER_IIR1_COEFF_T_F32

(negative two).

Variable name Type Description
f32B0 frac32_t | BO coefficient of the IIR1 filter. Set by the user, and must be divided by 2.
f32B1 frac32_t | B1 coefficient of the IIR1 filter. Set by the user, and must be divided by 2.
f32A1 frac32_t | A1 (sign-inverted) coefficient of the IIR1 filter. Set by the user, and must be divided by -2

2.24 GDFLIB_FILTER_IIR1_T_FLT

Variable name

Input type

Description

sFltCoeff GDFLIB_FILTER_IIR1_COEFF_T_FLT* Substructure containing filter coefficients.
fItFItBfrY[1] float_t Internal buffer of y-history. Controlled by the algorithm.
fItFItBfrX[1] float_t Internal buffer of x-history. Controlled by the algorithm.

2.2.5 GDFLIB_FILTER_IIR1_COEFF_T_FLT

Variable name Type Description
fltBO float_t BO coefficient of the IIR1 filter. Set by the user.
fltB1 float_t B1 coefficient of the IIR1 filter. Set by the user.
fltA1 float_t A1 (sign-inverted) coefficient of the [IR1 filter. Set by the user.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

28 /61

NXP Semiconductors

Algorithms in detail

2.2.6 Declaration

The available GDFLIB_FilterlIR1Init functions have the following declarations:

void GDFLIB FilterIIR1Init F16(GDFLIB FILTER IIR1 T F32 *psParam)
void GDFLIB FilterIIR1Init FLT (GDFLIB FILTER IIR1 T FLT *psParam)

The available GDFLIB_FilterlIR1 functions have the following declarations:

fraclé_t GDFLIB FilterIIR1 Fl6(fraclé t f16InX, GDFLIB FILTER IIR1 T F32 *psParam)
float t GDFLIB FilterIIR1l FLT (float t fltInX, GDFLIB FILTER IIR1 T FLT *psParam)

2.2.7 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example shows the use of Matlab to set up a low-pass
filter with the 500 Hz sampling frequency, and 240 Hz stopped frequency with a 20 dB attenutation. Maximum passband ripple is
3 dB at the cut-off frequency of 50 Hz.

% sampling frequency 500 Hz, low pass
Ts = 1 / 500

% cut-off frequency 50 Hz
Fc = 50

% max. passband ripple 3 dB

% stopped frequency 240Hz

Fs = 240

% attenuation 20 dB
Rs = 20

oe

checking order of the filter
= buttord(2 * Ts * Fc, 2 * Ts * Fs, Rp, Rs)
n =1, i.e. the filter is achievable with the 1st order

=)

o

% getting the filter coefficients
[b, al] = butter(n, 2 * Ts * Fc, 'low');

the coefs are:
b0 = 0.245237275252786, bl = 0.245237275252786
a0 = 1.0000, al = -0.509525449494429

o° oo oo

0
0

The filter response is shown in Figure 33.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 29 /61

NXP Semiconductors

Algorithms in detail

Magnitude (dB) and Phaze Responses
T I T T
o : -2.3052
-5 -15.7897
-10 -292742
o W
g &
&z -5 42 T7EET B
2 =
=
cC Ll
o L5
z E
2 56,2432 B
-25 -69.72TT
=30 BRI
0 a0 100 150 200
Freguency (Hz)
Figure 32. Filter response

2.2.8 Function use

The use of the GDFLIB_FilterlIR1Init and GDFLIB_FilterlIR1 functions is shown in the following examples. The filter uses the
above-calculated coefficients:

Fixed-point version:
#include "gdflib.h"

static fracl6é t fl6Result;
static fraclé6 t f16InX;
static GDFLIB FILTER IIR1 T F32 sFilterParam;

void Isr (void) ;

void main (void)

{
sFilterParam.sFltCoeff.f32B0 FRAC32(0.245237275252786 / 2.0) ;
sFilterParam.sFltCoeff.f32B1 FRAC32(0.245237275252786 / 2.0);
sFilterParam.sFltCoeff.f32A1 = FRAC32(-0.509525449494429 / -2.0);

GDFLIB FilterIIR1Init F16 (&sFilterParam);
f16InX = FRAC16(0.1);
/* periodically called function */

void Isr (void)

{

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 30/61

NXP Semiconductors

Algorithms in detail

fl6Result = GDFLIB FilterIIRl F16(f16InX, &sFilterParam);

Floating-point version:
#include "gdflib.h"

static float t fltResult;
static float t fltInX;
static GDFLIB_FILTER IIR1 T FLT sFilterParam;

void Isr (void) ;

void main (void)

{
sFilterParam.sFltCoeff.f1tBO 0.245237275252786f;
sFilterParam.sFltCoeff.f1ltBl 0.245237275252786f;
sFilterParam.sFltCoeff.f1tAl = -0.509525449494429¢f;

GDFLIB FilterIIR1Init FLT (&sFilterParam);

fltInX = 0.1F;

/* periodically called function */
void Isr (void)
{
fltResult = GDFLIB FilterIIR1l FLT (f1tInX, &sFilterParam);

2.3 GDFLIB_FilterlIR2

This function calculates the second-order direct-form 1 IIR filter.

For a proper use, it is recommended that the algorithm is initialized by the GDFLIB_FilterlIR2Init function, before using the
GDFLIB_FilterlIR2 function. The GDFLIB_FilterlIR2Init function initializes the buffer and coefficients of the second-order IIR filter.

The GDFLIB_FilterlIR2 function calculates the second-order infinite impulse response (lIR) filter. The IIR filters are also called
recursive filters, because both the input and the previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely long impulse response (IIR). A general form
of the IIR filter, expressed as a transfer function in the Z-domain, is described as follows:

_ Bl _ botbiz Whyz 2. 4byz N
H(z)= Alz) — MazMayz 2. ayz N

Figure 33.

where N denotes the filter order. The second-order IIR filter in the Z-domain is expressed as follows:

B(z) by+biz1+bz2

MO~ a0 T TrazT

Figure 34.

which is transformed into a time-domain difference equation as follows:

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 31/61

NXP Semiconductors

Algorithms in detail

(k)= bx(k) + bk — 1)+ box(k — 2)-aptk —)-ayy(k — 2)

Figure 35.

The filter difference equation is implemented in the digital signal controller directly, as given in Equation 3; this equation represents
a direct-form 1 second-order IIR filter, as depicted in Figure 36.

bO

x(k) R y(k) .
v v
Z1 Z1
—’ ‘—
h 4 h 4
7-1 7-1

Figure 36. Direct-form 1 second-order IIR filter

The coefficients of the filter depicted in Figure 3-1 can be designed to meet the requirements for the second-order low-pass filter
(LPF), high-pass filter (HPF), band-pass filter (BPF) or band-stop filter (BSF). The coefficient quantization error can be neglected
in the case of a second-order filter due to a finite precision arithmetic. A higher-order LPF or HPF can be obtained by connecting
a number of second-order filters in series. The number of connections gives the order of the resulting filter.

The filter coefficients must be defined before calling this function. As some coefficients can be greater than 1 (and lesser than 2),
the coefficients are scaled down (divided) by 2.0 for the fractional version of the algorithm. For faster calculation, the A coefficients
are sign-inverted. The function returns the filtered value of the input in the step k, and stores the input and output values in the
step k into the filter buffer.
2.3.1 Available versions
This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).

* Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GDFLIB_FilterlIR2Init function are shown in the following table:

Table 6. Init function versions

Function name Parameters Result Description
type
GDFLIB_FilterlIR2Init_F16 GDFLIB_FILTER_IIR2_T_F32* | void Filter initialization (reset) function. The parameters'

structure is pointed to by a pointer.

GDFLIB_FilterlIR2Init_FLT | GDFLIB_FILTER_IIR2_T_FLT* |void Filter initialization (reset) function. The parameters'
structure is pointed to by a pointer.

The available versions of the GDFLIB_FilterlIR2 function are shown in the following table:

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 32/61

NXP Semiconductors

Table 7. Function versions

Algorithms in detail

Function name Input Parameters Result Description
type type
GDFLIB_FilterllR2_F16 |frac16_t | GDFLIB_FILTER_IIR2_T_F32* |frac16_t |Input argumentis a 16-bit fractional value

of the input signal to be filtered within the
range <-1; 1). The parameters' structure
is pointed to by a pointer. The function
returns a 16-bit fractional value within the
range <-1; 1).

GDFLIB_FilterllIR2_FLT |float_t GDFLIB_FILTER_IIR2_T_FLT*

float_t

Input argument is a 32-bit single precision
floating-point value of the input signal
within the full range. The parameters'
structure is pointed to by a pointer. The
function returns a 32-bit single precision
floating-point value within the full range.

2.3.2 GDFLIB_FILTER_IIR2_T_F32

Variable name Input type Description
sFltCoeff GDFLIB_FILTER_IIR2_COEFF_T_F32* Substructure containing filter coefficients.
f32FItBfrY[2] frac32_t Internal buffer of y-history. Controlled by the algorithm.
f16FItBfrX[2] frac16_t Internal buffer of x-history. Controlled by the algorithm.

2.3.3 GDFLIB_FILTER_IIR2_COEFF_T_F32

Variable name Type Description

f32B0 frac32_t | BO coefficient of the IIR2 filter. Set by the user, and must be divided by 2.

f32B1 frac32_t | B1 coefficient of the IIR2 filter. Set by the user, and must be divided by 2.

f32B2 frac32_t | B2 coefficient of the IIR2 filter. Set by the user, and must be divided by 2.

f32A1 frac32_t | A1 (sign-inverted) coefficient of the IIR2 filter. Set by the user, and must be divided by -2
(negative two).

f32A2 frac32_t | A2 (sign-inverted) coefficient of the IIR2 filter. Set by the user, and must be divided by -2
(negative two).

2.3.4 GDFLIB_FILTER_IIR2_T_FLT

Variable name

Input type

Description

sFltCoeff GDFLIB_FILTER_IIR2_COEFF_T_FLT* Substructure containing filter coefficients.
fIitFItBfrY[2] float_t Internal buffer of y-history. Controlled by the algorithm.
fIitFItBfrX[2] float_t Internal buffer of x-history. Controlled by the algorithm.

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

33/61

NXP Semiconductors

2.3.5 GDFLIB_FILTER_IIR2_COEFF_T_FLT

Algorithms in detail

Variable name Type Description
fltBO float_t BO coefficient of the 1IR2 filter. Set by the user.
fltB1 float_t B1 coefficient of the 1IR2 filter. Set by the user.
fliB2 float_t B2 coefficient of the IIR2 filter. Set by the user.
fltA1 float_t A1 (sign-inverted) coefficient of the IIR2 filter. Set by the user.
fltA2 float_t A2 (sign-inverted) coefficient of the IIR2 filter. Set by the user.

2.3.6 Declaration

The available GDFLIB_FilterlIR2Init functions have the following declarations:

void GDFLIB FilterIIR2Init F16(GDFLIB FILTER IIR2 T F32 *psParam)
void GDFLIB FilterIIR2Init FLT(GDFLIB FILTER IIR2 T FLT *psParam)

The available GDFLIB_FilterlIR2 functions have the following declarations:

fracl6_t GDFLIB_FilterIIR2 Fl6(fracl6_t fl16InX, GDFLIB_FILTER IIR2 T F32 *psParam)
float t GDFLIB FilterIIR2 FLT (float t fltInX, GDFLIB FILTER IIR2 T FLT *psParam)

2.3.7 Calculation of filter coefficients

There are plenty of methods for calculating the coefficients. The following example shows the use of Matlab to set up a stopband
filter with the 1000 Hz sampling frequency, 100 Hz stop frequency with 10 dB attenuation, and 30 Hz bandwidth. Maximum

passband ripple is 3 dB.

% sampling frequency 1000 Hz, stop band
Ts = 1 / 1000

% center stop frequency 100 Hz
Fc 50

% attenuation 10 dB
10

Rs

% bandwidth 30 Hz
Fbw 30

passband ripple 3 dB

checking order of the filter
buttord(2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2], 2 * Ts *
the filter is achievable with the 2nd order

[Fc - Fbw Fc + Fbw], Rp,

n=2, i.e.

getting the filter coefficients
b, al butter(n / 2, 2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2],

'stop')

% the coefs are:

GDFLIB User's Guide, Rev. 5, 01 November 2021

Rs)

User Guide

34 /61

NXP Semiconductors

Algorithms in detail

= 0.913635972986238, bl = -1.745585863109291, b2 = 0.913635972986238
1.0000, al = -1.745585863109291, a2 = 0.827271945972476

o0 o°
0 O
o o

The filter response is shown in Figure 37.

Magnitude (dB) and Phass Responses
T

1.6333

1.1012

05692

0.0371

Magnitude (¢B8)
FPhase (radians)

R PPN 0495

-1 0271

N 4 5507
| i i i | | I i i
ad 0 100 150 200 250 300 350 400 450
Freguency (Hz)

Figure 36. Filter response

2.3.8 Function use

The use of the GDFLIB_FilterlIR2Init and GDFLIB_FilterlIR2 functions is shown in the following examples. The filter uses the
above-calculated coefficients:

Fixed-point version:
#include "gdflib.h"

static fracl6 t fl6Result;
static fracl6 t f16InX;
static GDFLIB FILTER IIR2 T F32 sFilterParam;

void Isr (void);

void main (void)

{
sFilterParam.sFltCoeff.f32B0 = FRAC32(0.913635972986238 / 2.0);
sFilterParam.sFltCoeff.f32B1 = FRAC32(-1.745585863109291 / 2.0);
sFilterParam.sFltCoeff.f32B2 = FRAC32(0.913635972986238 / 2.0);
sFilterParam.sFltCoeff.f32A1 = FRAC32(-1.745585863109291 / -2.0);
sFilterParam.sFltCoeff.f32A2 = FRAC32(0.827271945972476 / -2.0);

GDFLIB FilterIIR2Init F16 (&sFilterParam);

£f16InX = FRAC16(0.1);

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 35/61

NXP Semiconductors

Algorithms in detail

/* periodically called function */
void Isr(void)
{
fl6Result = GDFLIB FilterIIR2 F16(f16InX, &sFilterParam);

Floating-point version:
#include "gdflib.h"
static float t fltResult;
static float t fltInX;
static GDFLIB FILTER IIR2 T FLT sFilterParam;
void Isr(void);
void main (void)

{
sFilterParam.sFltCoeff.f1tB0O = 0.913635972986238f;

sFilterParam.sFltCoeff.f1tBl = -1.745585863109291f;
sFilterParam.sFltCoeff.f1tB2 = 0.913635972986238f;
sFilterParam.sFltCoeff.f1tAl = -1.745585863109291¢f;

sFilterParam.sFltCoeff.f1tA2 = 0.827271945972476f;
GDFLIB FilterIIR2Init FLT (&sFilterParam);
fltInX = 0.1F;

/* periodically called function */

void Isr (void)

{
fltResult = GDFLIB FilterIIR2 FLT(fltInX, &sFilterParam);

2.4 GDFLIB_FilterMA

The GDFLIB_FilterMA function calculates a recursive form of a moving average filter. For a proper use, it is recommended that
the algorithm is initialized by the GDFLIB_FilterMAInit function, before using the GDFLIB_FilterMA function.

The filter calculation consists of the following equations:

acc(k) = acc(k — 1)+ x(k)
Figure 37.
W)= aclflgk)
Figure 38.
acd(k) < acc(k) — (k)
Figure 39.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 36 /61

NXP Semiconductors

Algorithms in detail

where:
» x(k) is the actual value of the input signal
» acc(k) is the internal filter accumulator
* y(k) is the actual filter output
* Ny is the number of points in the filter window

The size of the filter window (number of filtered points) must be defined before calling this function, and must be equal to or greater
than 1.

The function returns the filtered value of the input at step k, and stores the difference between the filter accumulator and the output
at step k into the filter accumulator.

2.4.1 Available versions
This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The parameters use
the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GDFLIB_FilterMAInit function are shown in the following table:

Table 8. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterMAInit_F1 |frac16_t | GDFLIB_FILTER_MA_T_A32* |void Input argument is a 16-bit fractional value
6 that represents the initial value of the filter

at the current step. The input is within the
range <-1; 1). The parameters' structure is
pointed to by a pointer.

GDFLIB_FilterMAInit_FL |float_t GDFLIB_FILTER_MA_T_FLT* | void Input argument is a 32-bit single precision
T floating-point value that represents the
initial value of the filter at the current
step. The input is within the full range.
The parameters' structure is pointed to by
a pointer.

The available versions of the GDFLIB_FilterMA function are shown in the following table:

Table 9. Function versions

Function name Input type Result type Description

Value Parameter

GDFLIB_FilterMA_F1 |frac16_t | GDFLIB_FILTER_MA_T_A32 |frac16_t Input argument is a 16-bit fractional value of the
6 * input signal to be filtered within the range <-1;
1). The parameters' structure is pointed to by a
pointer. The function returns a 16-bit fractional
value within the range <-1; 1).

GDFLIB_FilterMA_FL | float_t GDFLIB_FILTER_MA_T_FLT | float_t Input argument is a 32-bit single precision
T * floating-point value of the input signal to be
filtered within the full range. The parameters'

Table continues on the next page...

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 37 /61

NXP Semiconductors

Algorithms in detail

Table 9. Function versions (continued)

Function name Input type Result type Description

Value Parameter

structure is pointed to by a pointer. The function
returns a 32-bit single precision floating-point
value within the full range.

2.4.2 GDFLIB_FILTER_MA_T_A32

Variable name Input Description
type
a32Acc acc32_t | Filter accumulator. The parameter is a 32-bit accumulator type within the range <-65536.0 ;
65536.0). Controlled by the algorithm.
u16Sh uint16_t | Number of samples for averaging filtered points (size of the window) defined as a number of
shifts:
np=24165h

ul6Sh=log,np

The parameter is a 16-bit unsigned integer type within the range <0 ; 15>. Set by the user.

2.4.3 GDFLIB_FILTER_MA_T_FLT

Variable name Input Description
type
fltAcc float_t Filter accumulator. Controlled by the algorithm.
fltLambda float_t Number of samples for averaging filtered points (size of the window) defined as an inverted
value:

fltLambda = %

The parameter is a 32-bit single precision floating-point type within the range (0 ; 1.0>. Set
by the user.

2.4.4 Declaration

The available GDFLIB_FilterMAInit functions have the following declarations:

void GDFLIB FilterMAInit F16(fracl6 t f16InitVal, GDFLIB FILTER MA T A32 *psParam)
void GDFLIBiFilterMAInitiFLT(floatit fltInitval, GDFLIB FILTER MA T FLT *psParam)

The available GDFLIB_FilterMA functions have the following declarations:
fracl6_t GDFLIB FilterMA F16(fracl6_t f16InX, GDFLIB FILTER MA T A32 *psParam)

float t GDFLIB FilterMA FLT(float t fltInX, GDFLIB FILTER MA T FLT *psParam)

2.4.5 Function use
The use of GDFLIB_FilterMAInit and GDFLIB_FilterMA functions is shown in the following examples:

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 38 /61

NXP Semiconductors

Algorithms in detail

Fixed-point version:
#include "gdflib.h"
static fracl6 t fl6Result;
static fracl6_t fl6Initval, fl6InX;
static GDFLIB_FILTER MA T A32 sFilterParam;
void Isr (void) ;
void main (void)
{

fl6Initval = FRAC16(0.0); /* fl6Initval = 0.0 */

/* Filter window = 2 ~ 2 = 4 points */
sFilterParam.ul6Sh = 2;

GDFLIB FilterMAInit F16 (fl6InitVal, &sFilterParam);
fl16InX = FRAC16(0.8);
/* periodically called function */

void Isr (void)

{
fl6Result = GDFLIB FilterMA F16(f16InX, &sFilterParam);

Floating-point version:
#include "gdflib.h"
static float t fltResult;
static float t fltInitVal, fltInX;
static GDFLIB FILTER MA T FLT sFilterParam;
void Isr(void) ;
void main (void)
{

fltInitval = 0.0F; /* f16InitVal = 0.0 */

/* Filter window = 4 points-> fltLambda = 1/4 */
sFilterParam.fltLambda = 0.25F;

GDFLIB FilterMAInit FLT (fl1tInitVal, &sFilterParam);
fltInX = 0.8F;
/* periodically called function */

void Isr(void)

{
fltResult = GDFLIB FilterMA FLT (f1tInX, &sFilterParam);

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

39/61

NXP Semiconductors

Algorithms in detail

2.5 GDFLIB_FilterlIR4

This function calculates the fourth-order direct-form 1 IIR filter.

For a proper use, it is recommended to initialize the algorithm by the GDFLIB_FilterlIR4Init function, before using the
GDFLIB_FilterlIR4 function. The GDFLIB_FilterlIR4Init function initializes the buffer and coefficients of the fourth-order IIR filter.

The GDFLIB_FilterlIR4 function calculates the fourth-order infinite impulse response (lIR) filter. The IIR filters are also called
recursive filters, because both the input and the previously calculated output values are used for calculation. This form of feedback
enables the transfer of energy from the output to the input, which leads to an infinitely long impulse response (IIR). A general form
of the IR filter (expressed as a transfer function in the Z-domain) is described as follows:

_ Bz) _ bytbiz Wby 2. Abyz N
H(z)= Az ~ rayzWayz=2+. +ayz—N

Figure 40.

where N denotes the filter order. The fourth-order IIR filter in the Z-domain is expressed as follows:

B(z) bytbizl+byz2+byz3+byz4
Aiz) — ltaz l+ayz2+ayzz3+az4

H)=

Figure 41.

which is transformed into a time-domain difference equation as follows:

(k) = by(k) + bk — 1)+ byx(k — 2)+ byx(k — 3)+ bk — 4)- ap(k — 1)- ayy(k — 2)- ap(k — 3)- agy(k — 4)

Figure 42.

The filter difference equation is implemented directly in the digital signal controller, as given in Equation 3; this equation represents
a direct-form 1 fourth-order IIR filter, as shown in Figure 43.

x(K) : ™~ : v
7-1 71
— .
. s
— .
.)
— .
” ”
— .

Figure 43. Direct-form 1 fourth-order IR filter

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 40/61

NXP Semiconductors

Algorithms in detail

The coefficients of the filter shown in Figure 3-1 can be designed to meet the requirements for the fourth-order low-pass filter (LPF),
high-pass filter (HPF), band-pass filter (BPF), or band-stop filter (BSF). The coefficient quantization error can be ignored in the

case of a fourth-order filter due to a finite precision arithmetic. A higher-order LPF or HPF can be obtained by connecting a number
of fourth-order filters in series. The number of connections gives the order of the resulting filter.

Define the filter coefficients before calling this function. As some coefficients can be greater than 1 (and lesser than 8), the
coefficients are scaled down (divided) by 8.0 for the fractional version of the algorithm. For a faster calculation, the A coefficients
are sign-inverted. The function returns the filtered value of the input in step k, and stores the input and output values in the step
k into the filter buffer.

2.5.1 Available versions
This function is available in the following versions:
* Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).

 Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GDFLIB_FilterlIR4Init function are shown in the following table:

Table 10. Init function versions

Function name Parameters Result Description
type

GDFLIB_FilterlIR4Init_F16 | GDFLIB_FILTER_IIR4_T_F32* |void Filter initialization (reset) function. The parameters'
structure is pointed to by a pointer.

GDFLIB_FilterlIR4Init_FLT | GDFLIB_FILTER_IIR4_T_FLT* |void Filter initialization (reset) function. The parameters'
structure is pointed to by a pointer.

The available versions of the GDFLIB_FilterlIR4 function are shown in the following table:

Table 11. Function versions

Function name Input Parameters Result Description
type type

GDFLIB_FilterlIR4_F16 |frac16_t | GDFLIB_FILTER _IIR4_T_F32* |frac16_t |Inputargumentis a 16-bit fractional value
of the input signal to be filtered within the
range <-1; 1). The parameters' structure
is pointed to by a pointer. The function
returns a 16-bit fractional value within the
range <-1; 1).

GDFLIB_FilterlIR4_FLT |float_t GDFLIB_FILTER_IIR4_T_FLT* |float_t Input argument is a 32-bit single precision
floating-point value of the input signal
within the full range. The parameters'
structure is pointed to by a pointer. The
function returns a 32-bit single precision
floating-point value within the full range.

2.5.2 GDFLIB_FILTER_IIR4_T_F32

Variable name Input type Description

sFltCoeff GDFLIB_FILTER_IIR4_COEFF_T_F32* Substructure containing filter coefficients.

Table continues on the next page...

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 41/61

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name

Input type Description

f32FItBfrY[4]

frac32_t

Internal buffer of y-history. Controlled by the algorithm.

f16FItBIrX[4]

frac16_t

Internal buffer of x-history. Controlled by the algorithm.

2.5.3 GDFLIB_FILTER_IIR4_COEFF_T_F32

Variable name Type Description

f32B0 frac32_t | BO coefficient of the 1IR4 filter. Set by the user, and must be divided by 8.

f32B1 frac32_t | B1 coefficient of the 1IR4 filter. Set by the user, and must be divided by 8.

f32B2 frac32_t | B2 coefficient of the 1IR4 filter. Set by the user, and must be divided by 8.

f32B3 frac32_t | B3 coefficient of the 1IR4 filter. Set by the user, and must be divided by 8.

f32B4 frac32_t | B4 coefficient of the IIR4 filter. Set by the user, and must be divided by 8.

f32A1 frac32_t | A1 (sign-inverted) coefficient of the 1IR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A2 frac32_t | A2 (sign-inverted) coefficient of the 1IR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A3 frac32_t | A3 (sign-inverted) coefficient of the IIR4 filter. Set by the user, and must be divided by -8
(negative eight).

f32A4 frac32_t | A4 (sign-inverted) coefficient of the IIR4 filter. Set by the user, and must be divided by -8

(negative eight).

2.5.4 GDFLIB_FILTER_IIR4_T_FLT

Variable name

Input type Description

sFltCoeff GDFLIB_FILTER_IIR4_COEFF_T_FLT* Substructure containing filter coefficients.
fIitFItBfrY[4] float_t Internal buffer of y-history. Controlled by the algorithm.
fItFItBfrX[4] float_t Internal buffer of x-history. Controlled by the algorithm.

255 GDFLIB_FILTER_IIR4_COEFF_T_FLT

Variable name Type Description
fltBO float_t BO coefficient of the 1IR4 filter. Set by the user.
fltB1 float_t B1 coefficient of the 1IR4 filter. Set by the user.
fltB2 float_t B2 coefficient of the IIR4 filter. Set by the user.
fltB3 float_t B3 coefficient of the IIR4 filter. Set by the user.
fltB4 float_t B4 coefficient of the IIR4 filter. Set by the user.

Table continues on the next page...

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

42 /61

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Type Description
fltA1 float_t A1 (sign-inverted) coefficient of the I[IR4 filter. Set by the user.
fltA2 float_t A2 (sign-inverted) coefficient of the I[IR4 filter. Set by the user.
fIltA3 float_t A3 (sign-inverted) coefficient of the IIR4 filter. Set by the user.
fltA4 float_t A4 (sign-inverted) coefficient of the IIR4 filter. Set by the user.

2.5.6 Declaration

The available GDFLIB_FilterlIR4Init functions have the following declarations:

void GDFLIB FilterIIR4Init F16 (GDFLIB FILTER IIR4 T F32 *psParam)
void GDFLIB FilterIIR4Init FLT(GDFLIB FILTER IIR4 T FLT *psParam)

The available GDFLIB_FilterlIR4 functions have the following declarations:

fracl6é t GDFLIB FilterIIR4 Fl6(fraclé t f16InX, GDFLIB FILTER IIR4 T F32 *psParam)
float t GDFLIB FilterIIR4 FLT (float t fltInX, GDFLIB FILTER IIR4 T FLT *psParam)

2.5.7 Calculation of filter coefficients

There are plenty of methods for the coefficients calculation. The following example shows the use of Matlab to set up a band-pass
filter with the 10000 Hz sampling frequency, 1000 Hz pass frequency, and 250 Hz bandwidth. The maximum passband ripple is
3 dB, and the attenuation is 20 dB.

% sampling frequency 10000 Hz, band pass
Ts = 1 / 10000

% center pass frequency 2000 Hz
Fc = 2000

% attenuation 20 dB
Rs = 20

% bandwidth 250 Hz
Fbw = 250

% max. passband ripple 3 dB

% checking order of the filter
n = buttord(2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2], 2 * Ts * [Fc - Fbw Fc + Fbw], Rp, Rs)
$ n =4, i.e. the filter is achievable with the 4th order

% getting the filter coefficients
[b, a] = butter(n / 2, 2 * Ts * [Fc - Fbw /2 Fc + Fbw / 2])

the coefs are:

b0 = 0.005542717210281, bl = 0, b2 = -0.011085434420561, b3 = 0, b4 =
.005542717210281

a0 = 1.0000, al = -1.171272075750262, a2 = 2.122554479822350, a3 =

o0 o

o

o°

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 43 /61

NXP Semiconductors

Algorithms in detail

-1.047780658093187,
% a4 = 0.800802646665706

The filter response is shown in Figure 44.

Magnitude (dB) and Phass Responses
T T T T T

28718

2.2329

1.594

0.955

03161

Magnitude (¢B8)
FPhase (radians)

03225

-0.9617

-1 G006

-22395

-2 8785

0 05 1 15 2 25 3 35 4 45
Frequency (kHz)

Figure 43. Filter response

2.5.8 Function use

The use of the GDFLIB_FilterlIR4Init and GDFLIB_FilterlIR4 functions is shown in the following examples. The filter uses the
above-calculated coefficients:

Fixed-point version:
#include "gdflib.h"

static fracl6 t fl6Result;
static fracl6 t f16InX;
static GDFLIB FILTER IIR4 T F32 sFilterParam;

void Isr (void);

void main (void)

{
sFilterParam.sFltCoeff.f32B0 = FRAC32(0.005542717210281 / 8.0);
sFilterParam.sFltCoeff.f32B1 = FRAC32(0.0 / 8.0);
sFilterParam.sFltCoeff.f32B2 = FRAC32(-0.011085434420561 / 8.0);
sFilterParam.sFltCoeff.f32B3 = FRAC32(0.0 / 8.0);
sFilterParam.sFltCoeff.f32B4 = FRAC32(0.005542717210281 / 8.0);
sFilterParam.sFltCoeff.f32A1 = FRAC32(-1.171272075750262 / -8.0);
sFilterParam.sFltCoeff.f32A2 = FRAC32(2.122554479822350 / -8.0);
sFilterParam.sFltCoeff.f32A3 = FRAC32(-1.047780658093187 / -8.0);
sFilterParam.sFltCoeff.f32A4 = FRAC32(0.800802646665706 / -8.0);

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 44 /61

NXP Semiconductors

GDFLIB FilterI

f16InX = FRACL

/* periodically c
void Isr (void)
{

fl6Result =

IR4Init Fl6(&sFilterParam);

6(0.1);

alled function */

GDFLIB FilterIIR4 F16(f16InX, &sFilterParam);

Algorithms in detail

Floating-point version:

static float_t fl
static float_t fl
static GDFLIB FIL

void Isr(void) ;

void main (void)

{
sFilterParam.s
sFilterParam.s
sFilterParam.s
sFilterParam.s
sFilterParam.s
sFilterParam.s
sFilterParam.s
sFilterParam.s
sFilterParam.s

GDFLIBiFilterI
fltInX = 0.1F;
/* periodically c

void Isr (void)

{
fltResult =

#include "gdflib.h"

tResult;
tInX;
TER IIR4 T FLT sFilterParam;

FltCoeff.f1tB0O = 0.005542717210281F;
FltCoeff.f1tBl = 0.0F;

FltCoeff.f1tB2 = -0.011085434420561F;
FltCoeff.f1tB3 = 0.0F;

FltCoeff.f1tB4 = 0.005542717210281F;
FltCoeff.fltAl = -1.171272075750262F;
FltCoeff.fltA2 = 2.122554479822350F;
FltCoeff.f1tA3 = -1.047780658093187F;
FltCoeff.fltA4 = 0.800802646665706F;

IR4Init FLT (&sFilterParam);

alled function */

GDFLIB FilterIIR4 FLT(f1tInX, &sFilterParam);

2.6 GDFLIB_FilterMA

The GDFLIB_FilterMA function calculates a recursive form of a moving average filter. For a proper use, it is recommended that

the algorithm is initialized by the GDFLIB_FilterMAInit function, before using the GDFLIB_FilterMA function.

The filter calculation consists of the following equations:

Figure 44.

acc(k) = acc(k — 1)+ x(k)

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

45/61

NXP Semiconductors

Algorithms in detail

k
=250
Figure 45.
acc(k) «— acc(k) — (k)
Figure 46.
where:

» x(k) is the actual value of the input signal

» acc(k) is the internal filter accumulator

* y(k) is the actual filter output

* N, is the number of points in the filter window

The size of the filter window (number of filtered points) must be defined before calling this function, and must be equal to or greater
than 1.

The function returns the filtered value of the input at step k, and stores the difference between the filter accumulator and the output
at step k into the filter accumulator.

2.6.1 Available versions
This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The parameters use
the accumulator types.

* Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the GDFLIB_FilterMAInit function are shown in the following table:

Table 12. Function versions

Function name Input Parameters Result Description
type type
GDFLIB_FilterMAInit_F1 |frac16_t | GDFLIB_FILTER_MA_T_A32* |void Input argument is a 16-bit fractional value
6 that represents the initial value of the filter

at the current step. The input is within the
range <-1; 1). The parameters' structure is
pointed to by a pointer.

GDFLIB_FilterMAInit_FL |float_t GDFLIB_FILTER_MA_T_FLT* | void Input argument is a 32-bit single precision
T floating-point value that represents the
initial value of the filter at the current
step. The input is within the full range.
The parameters' structure is pointed to by
a pointer.

The available versions of the GDFLIB_FilterMA function are shown in the following table:

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 46/ 61

NXP Semiconductors

Table 13. Function versions

Algorithms in detail

Function name

Input type Result type Description

Value

Parameter

GDFLIB_FilterMA_F1 | frac16_t
6

GDFLIB_FILTER_MA_T_A32 | frac16_t Input argument is a 16-bit fractional value of the
* input signal to be filtered within the range <-1 ;
1). The parameters' structure is pointed to by a
pointer. The function returns a 16-bit fractional
value within the range <-1; 1).

GDFLIB_FilterMA_FL | float_t
T

GDFLIB_FILTER_MA_T_FLT | float_t Input argument is a 32-bit single precision

* floating-point value of the input signal to be
filtered within the full range. The parameters'
structure is pointed to by a pointer. The function
returns a 32-bit single precision floating-point
value within the full range.

2.6.2 GDFLIB_FILTER_MA_T_A32

Variable name Input Description
type
a32Acc acc32_t | Filter accumulator. The parameter is a 32-bit accumulator type within the range <-65536.0 ;
65536.0). Controlled by the algorithm.
u16Sh uint16_t | Number of samples for averaging filtered points (size of the window) defined as a number of

shifts:
np — 2u165h
ul6Sh=log,np

The parameter is a 16-bit unsigned integer type within the range <0 ; 15>. Set by the user.

2.6.3 GDFLIB_FILTER_MA_T_FLT

Variable name Input Description
type
fltAcc float_t Filter accumulator. Controlled by the algorithm.
fltLambda float_t Number of samples for averaging filtered points (size of the window) defined as an inverted

value:

fltLambda = 75

The parameter is a 32-bit single precision floating-point type within the range (0 ; 1.0>. Set
by the user.

2.6.4 Declaration

The available GDFLIB_FilterMAInit functions have the following declarations:

void GDFLIB FilterMAInit F16(fracl6é t £16InitVal, GDFLIB FILTER MA T A32 *psParam)
void GDFLIB FilterMATnit FLT (float t fltInitVal, GDFLIB FILTER MA T FLT *psParam)

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

47 /61

NXP Semiconductors

The available GDFLIB_FilterMA functions have the following declarations:
fracl6_t GDFLIB_FilterMA F16(fracl6_t f16InX, GDFLIB FILTER MA T A32 *psParam)

float t GDFLIB FilterMA FLT(float t f1ltInX, GDFLIB FILTER MA T FLT *psParam)

2.6.5 Function use
The use of GDFLIB_FilterMAInit and GDFLIB_FilterMA functions is shown in the following examples:

Algorithms in detail

Fixed-point version:
#include "gdflib.h"
static fraclé t fl6Result;
static fracl6_t fl6Initval, fl6InX;
static GDFLIB FILTER MA T A32 sFilterParam;
void Isr(void) ;
void main (void)
{

fl16Initval = FRAC16(0.0); /* f1l6Initval = 0.0 */

/* Filter window = 2 ~ 2 = 4 points */
sFilterParam.ul6Sh = 2;

GDFLIB FilterMAInit F16(fl6InitVal, &sFilterParam);
f16InX = FRAC16(0.8);
/* periodically called function */

void Isr (void)

{
fl6Result = GDFLIB FilterMA F16(f16InX, &sFilterParam);

Floating-point version:
#include "gdflib.h"
static float t fltResult;
static float t fltInitVal, fltInX;
static GDFLIB_FILTER MA T FLT sFilterParam;
void Isr (void) ;
void main (void)
{

fltInitval = 0.0F; /* f16Initval = 0.0 */

/* Filter window = 4 points-> fltLambda = 1/4 */
sFilterParam.fltLambda = 0.25F;

GDFLIB FilterMAInit FLT(fltInitVal, &sFilterParam);

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

48 /61

NXP Semiconductors

Algorithms in detail

f1tInX = 0.8F;

/* periodically called function */
void Isr (void)
{
fltResult = GDFLIB FilterMA FLT(fltInX, &sFilterParam);

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 49/61

NXP Semiconductors

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two states: TRUE (1) or FALSE (0). Its definition

is as follows:
typedef unsigned short bool t;

The following figure shows the way in which the data is stored by this type:

Table 14. Data storage

15 14 13 12 11 10 9 8 7 6 5 0
Value Unused Logi
cal
TRUE O loflo|o|o|oOo|O|]O]O|O]|oO 1
0 0 0
FALSE 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within the range <0 ; 255>. Its definition is

as follows:
typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

Table 15. Data storage

Value Integer

255 1 1 1 1 1

Table continues on the next page...

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide

50/ 61

NXP Semiconductors

Library types
Table 15. Data storage (continued)
11 0 0 0 1 1
0
124 0 1 1 1 0
7
159 1 0 0 1 1
9
A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables within the range <0 ; 65535>. Its definition is

as follows:

typedef unsigned short uintlé6 t;

The following figure shows the way in which the data is stored by this type:

Table 16. Data storage

15 14 13 12 1" 10 7 0
Value Integer

65535 1 1 1 1 1 1 1 1
F

5 0 0 0 0 0 0 0 1
0

15518 0 0 1 1 1 1 1 0
3

40768 1 0 0 1 1 1 0 0
9

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 51/61

NXP Semiconductors

A4 uint32_t

Library types

The uint32_t type is an unsigned 32-bit integer type. Itis able to store the variables within the range <0 ; 4294967295>. Its definition

is as follows:

typedef unsigned long uint32 t;

The following figure shows the way in which the data is stored by this type:

Table 17. Data storage

31 24 23 16 15 7 0
Value Integer
4294967295 F F F F
2147483648 8 0 0 0
55977296 0 3 2 0
3451051828 C D D 4
A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;

The following figure shows the way in which the data is stored by this type:

Table 18. Data storage

Table continues on the next page...

GDFLIB User's Guide, Rev. 5, 01 November 2021

7 6 5 3 0
Value Sign Integer

127 0 1 1 1 1
7

-128 1 0 0 0 0
8

60 0 0 1 1 0
3

User Guide

52 /61

NXP Semiconductors

Library types

Table 18. Data storage (continued)

-97 1 0 0 1 1 1 1 1

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the range <-32768 ; 32767>. Its definition is
as follows:

typedef short intl6 t;

The following figure shows the way in which the data is stored by this type:

Table 19. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Integer
32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 F F F
-32768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0
15518 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
3 Cc 9 E
-24768 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
9 F 4 0
A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the range <-2147483648 ; 2147483647>. Its
definition is as follows:

typedef long int32 t;

The following figure shows the way in which the data is stored by this type:

Table 20. Data storage

Table continues on the next page...

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 53 /61

NXP Semiconductors

Library types
Table 20. Data storage (continued)
31 24 23 16 15 8 7 0
Value S Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4
A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is as follows:
typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:

Table 21. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0.99219 0 1 1 1 1 1 1 1
7 F
-1.0 1 0 0 0 0 0 0 0
8 0
0.46875 0 0 1 1 1 1 0 0
3 C
-0.75781 1 0 0 1 1 1 1 1
9 F

To store a real number as frac8_t, use the FRAC8 macro.

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 54 /61

NXP Semiconductors

Library types

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is
as follows:

typedef short fraclé6 t;

The following figure shows the way in which the data is stored by this type:

Table 22. Data storage

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Fractional
0.99997 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 F F F
-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0
0.47357 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
3 Cc 9 E
-0.75586 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within the range <-1; 1). Its definition is
as follows:

typedef long frac32 t;

The following figure shows the way in which the data is stored by this type:

Table 23. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995

~
M

F F F F F F

Table continues on the next page...

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 55/ 61

NXP Semiconductors

Library types
Table 23. Data storage (continued)
-1.0 8 0 0 0 0 0 0 0
0.02606645970 0 3 5 6 2 5 5 0
-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-256 ; 256). Its definition is
as follows:

typedef short accl6 t;

The following figure shows the way in which the data is stored by this type:

Table 24. Data storage

15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0

1.0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 8 0

-1.0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
F F 8 0

13.7890625 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

8971875 | 1 | 1 o |1 |0|0|1|1]o0]O0o|1|]O0o|]O0O|1]|0]0O

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 56 / 61

NXP Semiconductors

Library types

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables within the range <-65536 ; 65536). Its
definition is as follows:

typedef long acc32 t;

The following figure shows the way in which the data is stored by this type:

Table 25. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional
65535.999969 7 F F F F F F F
-65536.0 8 0 0 0 0 0 0 0
1.0 0 0 0 0 8 0 0 0
-1.0 F F F F 8 0 0 0
23.789734 0 0 0 B E 5 1 6
-1171.306793 F D B 6 5 8 B c

To store a real number as acc32_t, use the ACC32 macro.

A.13 FALSE
The FALSE macro serves to write a correct value standing for the logical FALSE value of the bool_t type. Its definition is as follows:

#define FALSE ((bool t)0)

#include "mlib.h"

static bool t bval;

void main (void)
{

bVal = FALSE; /* bVal = FALSE */
}

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 57 /61

NXP Semiconductors

Library types

A.14 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"
static bool t bval;
void main (void)

{
bval = TRUE; /* bval = TRUE */

A.15 FRACS8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as follows:

#define FRAC8 (x) ((frac8 t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : O0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>, which corresponds to <-1.0 ; 1.0-27>.

#include "mlib.h"
static frac8_t f8val;
void main (void)

{
f8val = FRAC8(0.187); /* f8Val = 0.187 */

A.16 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is as follows:
#define FRAC16 (x) ((fracl6 t) ((x) < 0.999969482421875 2 ((x) >= -1 2 (x)*0x8000 : 0x8000) : Ox7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ; 0x7FFF>, which corresponds to
<-1.0; 1.0-21%>,

#include "mlib.h"
static fracle6_t flé6vVal;
void main (void)

{
fl6val = FRAC16(0.736); /* fleval = 0.736 */

GDFLIB User's Guide, Rev. 5, 01 November 2021

User Guide 58 /61

NXP Semiconductors

Library types
A.17 FRAC32
The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is as follows:
#define FRAC32 (x) ((frac32 t) ((x) < 1 2 ((x) >= -1 ? (x)*0x80000000 : 0x80000000) : Ox7FFFFFEF))

The inputis multiplied by 2147483648 (=231). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds
to <-1.0; 1.0-2731>.

#include "mlib.h"
static frac32 t f32Val;
void main (void)

{
£32val = FRAC32(-0.1735667) ; /* £32val = -0.1735667 */

A.18 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as follows:
#define ACCL6(x) ((accl6_t) ((x) < 255.9921875 2 ((x) >= -256 2 (x)*0x80 : 0x8000) : Ox7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ; 0x7FFF> that corresponds to
<-256.0 ; 255.9921875>.

#include "mlib.h"
static accl6_t aléval;
void main (void)

{
aléval = ACC16(19.45627) ; /* alé6val = 19.45627 */

A.19 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as follows:

#define ACC32 (x) ((acc32 t) ((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 : 0x80000000)
0x7FFFFFFF))

The input is multiplied by 32768 (=219). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds to
<-65536.0 ; 65536.0-21%>,

#include "mlib.h"
static acc32_t a32val;

void main (void)

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 59 /61

NXP Semiconductors

Library types

a32Val = ACC32(-13.654437); /* a32val = -13.654437 */

GDFLIB User's Guide, Rev. 5, 01 November 2021
User Guide 60/ 61

© NXP B.V. 2021. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01 November 2021
Document identifier: CM7FGDFLIBUG

	Contents
	1 Library
	1.1 Introduction
	1.1.1 Overview
	1.1.2 Data types
	1.1.3 API definition
	1.1.4 Supported compilers
	1.1.5 Library configuration
	1.1.6 Special issues

	1.2 Library integration into project (MCUXpresso IDE)
	1.3 Library integration into project (Keil µVision)
	1.4 Library integration into project (IAR Embedded Workbench)

	2 Algorithms in detail
	2.1 GDFLIB_FilterExp
	2.1.1 Available versions
	2.1.2 GDFLIB_FILTER_EXP_T_F32
	2.1.3 GDFLIB_FILTER_EXP_T_FLT
	2.1.4 Declaration
	2.1.5 Function use

	2.2 GDFLIB_FilterIIR1
	2.2.1 Available versions
	2.2.2 GDFLIB_FILTER_IIR1_T_F32
	2.2.3 GDFLIB_FILTER_IIR1_COEFF_T_F32
	2.2.4 GDFLIB_FILTER_IIR1_T_FLT
	2.2.5 GDFLIB_FILTER_IIR1_COEFF_T_FLT
	2.2.6 Declaration
	2.2.7 Calculation of filter coefficients
	2.2.8 Function use

	2.3 GDFLIB_FilterIIR2
	2.3.1 Available versions
	2.3.2 GDFLIB_FILTER_IIR2_T_F32
	2.3.3 GDFLIB_FILTER_IIR2_COEFF_T_F32
	2.3.4 GDFLIB_FILTER_IIR2_T_FLT
	2.3.5 GDFLIB_FILTER_IIR2_COEFF_T_FLT
	2.3.6 Declaration
	2.3.7 Calculation of filter coefficients
	2.3.8 Function use

	2.4 GDFLIB_FilterMA
	2.4.1 Available versions
	2.4.2 GDFLIB_FILTER_MA_T_A32
	2.4.3 GDFLIB_FILTER_MA_T_FLT
	2.4.4 Declaration
	2.4.5 Function use

	2.5 GDFLIB_FilterIIR4
	2.5.1 Available versions
	2.5.2 GDFLIB_FILTER_IIR4_T_F32
	2.5.3 GDFLIB_FILTER_IIR4_COEFF_T_F32
	2.5.4 GDFLIB_FILTER_IIR4_T_FLT
	2.5.5 GDFLIB_FILTER_IIR4_COEFF_T_FLT
	2.5.6 Declaration
	2.5.7 Calculation of filter coefficients
	2.5.8 Function use

	2.6 GDFLIB_FilterMA
	2.6.1 Available versions
	2.6.2 GDFLIB_FILTER_MA_T_A32
	2.6.3 GDFLIB_FILTER_MA_T_FLT
	2.6.4 Declaration
	2.6.5 Function use

	A Library types
	A.1 bool_t
	A.2 uint8_t
	A.3 uint16_t
	A.4 uint32_t
	A.5 int8_t
	A.6 int16_t
	A.7 int32_t
	A.8 frac8_t
	A.9 frac16_t
	A.10 frac32_t
	A.11 acc16_t
	A.12 acc32_t
	A.13 FALSE
	A.14 TRUE
	A.15 FRAC8
	A.16 FRAC16
	A.17 FRAC32
	A.18 ACC16
	A.19 ACC32

