NXP Semiconductors Document identifier: CM33FAMCLIBUG
Rev. 5, 01 November 2021

User Guide

AMCLIB User's Guide

ARM® Cortex® M33F

NXP Semiconductors

Contents
Chapter 1 LIDrary.......cccoo s s e e e annn e e e e e e e 4
I 1 (o Yo T 1 o T 4
I O 17T V=2 4
(R B B - £ I 1Y L= TP PRRPTTPRPT 4
(IR I S o o= 0114 o T 4
(I ST W o] o o]y (=To leTo] 0] 11 =T = T PRSP 5
1.1.5 Library CONfIQUIAtION..........ueiiiii ettt e et e e e e e s enneeeee s 5
1.1.6 SPECIAI ISSUES.eeiiiiieiiie ettt e et e e e e bt e e e e et e e e e e b b e e e e e e nbreeeeeannreas 5
1.2 Library integration into project (MCUXPresso IDE)cccoiiiiiiiiiiiiiee e 6
1.3 Library integration into project (Keil HVISION)oooiiiiiiiiiiie e 9
1.4 Library integration into project (IAR Embedded Workbench)cccccceiiiiiiiiiiiie 17
Chapter 2 Algorithms in detalil...........cooooriimeir e e 24
2.1 AMCLIB _ACIMOCIIMTPA . ..ot e e e e e e e e e e e e e e ereeenaaeaes 24
D B B AN VZ= 11 = o L IRV Z=T 51 o] o 25
2.1.2 AMCLIB_ACIM_CTRL_MTPA_T_FLT type description...........ccccuveieiiiiiiiie e 25
D IR T B 1= F= T = (o] 1N 25
b I 3 LU T T o TV T < 26
2.2 AMCLIB_ACIMROFIUXODSIV. ...t e et e e r e e e e aaes 26
i W AN VZ= 1 F= o (IR Z=T 1 o] o 28
2.2.2 AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT type description............ccccceeeeeiiiiieeeeciiee e, 29
R B B <o F= T = (o] o 1N 30
A LU o [ox ([0 o TV T < 31
2.3 AMCLIB_ACIMSPEEdMRAS..... ..o, 31
P B B AN VZ= 11 = o (IR Z=T 1 o] o 32
2.3.2 AMCLIB_ACIMSpeedMRAS_T_FLT type descCription..........cccoeiiiiiiie i 33
R IR T B 1= Tor F= = (o] 1N 34
R I 3 LU o Tox ([0 o TV T < 34
2.4 AMCLIB_ANGIETraCkODSIV.. ..o, 35
oy B NV Z= 11 F= o (IR Z=T 1 o] o T 37
2.4.2 AMCLIB_ANGLE_TRACK_OBSRY _T_F32....oteeee e 38
2.4.3 AMCLIB_ANGLE_TRACK _OBSRYV _T _FLT ..ottt e e e e e e e e e eeeeeaanes 39
N B L= F= T = (o] 1N 40
o LU [ox 1[0 o TV T < 40
2.5 AMCLIB _CHIIFTUXVVKNG. ...t tttttvrvtietiiteseetseesesesessssssssesssssssssssssssssssssssessssesessseesssesseseseeeeeesenesenesenes 41
P T B AN VZ= 1= o (IR Z=T 1 o] o 43
2.5.2 AMCLIB_CTRL_FLUX _WKNG _T _A32....ooiiieeeeeeeeeeeee ettt ettt 44
2.5.3 AMCLIB_CTRL_FLUX _WKNG _T_FLT ..ottt ettt 45
B =T F= = (o] 1N 45
I LU o 1] o TV T < 46
2.6 AMCLIB_PMSMBEMFODSIVAB oot e e e e e e e e e e e naeaes 47
P T B AN VZ= 1= o (IR Z=T 51 o] o T 50
2.6.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description............ccccuviiieiiiieie e 51
2.6.3 AMCLIB_BEMF_OBSRV_AB_T_FLT type description............cccccuviiiiiiiiiiie e 52
B = Tor F= T = (o 1N 54
B R LU o 1T o TV T 54
2.7 AMCLIB_PMSMBEMFODBSIVDQL..... .ot 55
B A W AN VZ= 1= o (IR Z=T 1 o] o 58
2.7.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type desCription..........ccceeeeiiiiiciiiiiiiieeeie e 59
2.7.3 AMCLIB_BEMF_OBSRV_DQ_T_FLT type descCription............cccceeeieiiiieeiiiiiieee e 61

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 2/85

NXP Semiconductors

Contents
A B = Tor F= T = (o] 1N 62
A oLV [ox 1T o TV T 62
2.8 ANMCLIB _TraCKODSIV. ... ceeeeeeee e e e et eeeaeaes 63
P < B B AN VZ= 1 F= o (IR Z=T 1 o] o 64
2.8.2 AMCLIB_TRACK _OBSRY _T _F32.. ..ottt ettt a e 65
2.8.3 AMCLIB_TRACK _OBSRY T _FLT e e e e e e e e e e e e e e reaeaanes 66
B I B <o F= = (o] 1N 66
P S B LU (o 1[0 o TV T 66
Appendlx A LIbrary types.... ..ot e e 68
Y I o Yo Yo I PR 68
F N U1 € T T 68
F N U0 o T 69
YN R U1 o 52 ST 70
YT 101 < TR ST 70
F ST 1L T T 71
F A 101 72 T 71
YN I i = (o T T 72
YN I i = (o T P 73
Y (O = To2S 2 ST 73
Y I = Voo 1 T T 74
Y 2= ToToXC 1 ST 75
F N S (o Y= 1 A ST 75
A. 14 GIMCLIB_3COOR T _F B ettt et et e e e e e e e e e st e e s s e et s eraneaeens 78
A.15 GIMCLIB_BCOOR T LT ettt e e e et e e et e e et e e e e e s e at e e et e aeanaas 78
A.16 GMCLIB_2CO0OR _ALBE T _F B ettt et e e e e e e e e e e e e raaeeeas 79
A.17 GMCLIB_2CO0OR _ALBE T F LT e et e e e e e e e n e e ra e e anaaas 79
A.18 GMCLIB_2CO0OR _ D QT _F B ittt e et e et e e e e e e e e e e st e e eaeeenaaas 80
A.19 GMCLIB_2CO0R D T F B et e e e e e e e s e e et e e anaes 80
A.20 GMCLIB_2CO0OR _ D QT F LT ettt et e e e e e e e e et e e raa s e e e erans 80
A.21 GMCLIB_2COOR_SINCOS T FAB.. ettt e e e e e et eer e e raaaaes 81
A.22 GMCLIB_2CO0OR_SINCOS T FLT .ttt e e e e e e e e e e e e 81
Y B o Y IR Y T 82
YN I o 1 T 82
YN o YN O S TP 82
YN T Y AN Ot 1 T T 83
YN A o Y N O T 83
F N 3N O Ot 1 T 83
YN I N O O T 84
AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 3/85

NXP Semiconductors

Chapter 1
Library

1.1 Introduction

1.1.1 Overview

This user's guide describes the Advanced Motor Control Library (AMCLIB) for the family of ARM Cortex M33F core-based
microcontrollers. This library contains optimized functions.

1.1.2 Data types

AMCLIB supports several data types: (un)signed integer, fractional , and accumulator, and floating point. The integer data types
are useful for general-purpose computation; they are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The accumulator data type is a combination of
both; that means it has the integer and fractional portions. The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The exponent allows scaling the numbers from
extremely small to extremely big numbers. Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

» Unsigned 16-bit integer—<0 ; 65535> with the minimum resolution of 1

» Signed 16-bit integer—<-32768 ; 32767> with the minimum resolution of 1

* Unsigned 32-bit integer—<0 ; 4294967295> with the minimum resolution of 1

» Signed 32-bit integer—<-2147483648 ; 2147483647> with the minimum resolution of 1
The following list shows the fractional types defined in the libraries:

+ Fixed-point 16-bit fractional—<-1 ; 1 - 2-15> with the minimum resolution of 2-15

+ Fixed-point 32-bit fractional—<-1 : 1 - 231> with the minimum resolution of 2-31
The following list shows the accumulator types defined in the libraries:

+ Fixed-point 16-bit accumulator—<-256.0 ; 256.0 - 277> with the minimum resolution of 27

« Fixed-point 32-bit accumulator—<-65536.0 ; 65536.0 - 2-15> with the minimum resolution of 2-15
The following list shows the floating-point types defined in the libraries:

+ Floating point 32-bit single precision—<-3.40282 - 1038 ; 3.40282 - 103> with the minimum resolution of 2-23

1.1.3 API definition

AMCLIB uses the types mentioned in the previous section. To enable simple usage of the algorithms, their names use set prefixes
and postfixes to distinguish the functions' versions. See the following example:

f32Result = MLIB Mac F321ss(f32Accum, flé6Multl, fle6Mult2);

where the function is compiled from four parts:
* MLIB—this is the library prefix

* Mac—the function name—Multiply-Accumulate

* F32—the function output type

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 4/85

NXP Semiconductors

Library

» Iss—the types of the function inputs; if all the inputs have the same type as the output, the inputs are
not marked

The input and output types are described in the following table:

Table 1. Input/output types

Type Output Input
frac16_t F16 s
frac32_t F32 |
acc32_t A32 a

float_t FLT f

1.1.4 Supported compilers

AMCLIB for the ARM Cortex M33F core is written in C language or assembly language with C-callable interface depending on the
specific function. The library is built and tested using the following compilers:

* MCUXpresso IDE
* IAR Embedded Workbench
» Keil yVision
For the MCUXpresso IDE, the library is delivered in the amclib.afile.
For the Kinetis Design Studio, the library is delivered in the amclib.a file.
For the IAR Embedded Workbench, the library is delivered in the amclib.afile.
For the Keil pVision, the library is delivered in the amclib./ib file.

The interfaces to the algorithms included in this library are combined into a single public interface include file, amclib.h. This is
done to lower the number of files required to be included in your application.

1.1.5 Library configuration

AMCLIB for the ARM Cortex M33F core is written in C language or assembly language with C-callable interface depending on the
specific function. Some functions from this library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It can cause an issue especially when high
optimization level is set. Therefore the optimization level for all inline assembly written functions is defined by compiler pragmas
using macros. The configuration header file RTCESL_cfg.his located in: specific library folderlMLIBlInclude. The optimization
level can be changed by modifying the macro value for specific compiler. In case of any change the library functionality is

not guaranteed.

Similarly as optimization level the PowerQuad DSP Coprocessor and Accelerator support can be disable or enable if it has
not been done by defined symbol RTCESL_PQ_ON or RTCESL_PQ_OFF in project setting described in the PowerQuad DSP
Coprocessor and Accelerator support cheaper for specific compiler.

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the number is the closest number to 1 that
the resolution of the used fractional type allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest (half up).

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 5/85

NXP Semiconductors

Library

3. This RTCESL requires the DSP extension for some saturation functions. If the core does not support the DSP extension
feature the assembler code of the RTCESL will not be buildable. For example the core1 of the LPC55s69 has no DSP

extension.

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB into any MCUXpresso SDK example or
new SDK project using MCUXpresso IDE. The SDK based project uses RTCESL from SDK package.

PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common calculations in DSP applications. This
section shows how to turn the PowerQuad (PQ) support for a function on and off.

1.

4.
5.

In the MCUXpresso SDK project name node or in the left-hand part, click Properties or select Project > Properties from the

menu. A project propert

ies dialog appears.

Expand the C/C++ Build node and select Settings. See Figure 1.

On the right-hand side, under the MCU C Compiler node, click the Preprocessor node. See Figure 1.

Run/Debug Settings (& Optimization
(% Debugging
(2 Wamings
(5 Miscellaneous
(2 Architecture
4 I MCU Assembler
(& General
(5 Architecture & Headers
4 B MCU Linker
(& General
(& Libraries
(Miscellaneous
(% Shared Library Settings
(2 Architecture
(2 Managed Linker Script
(& Multicore

- N
[Properties for twrkv31f120m_demo_apps_hello_world (o o]
type filter text Settings = - -

, Resource
Builders o
4 C/Cos Build Configuration: Debug [Active] ~| [Manage Configurations..
Build Variables
Environment
Logging & Tool Settings | & Build steps | " Build Artifact | [Binary Parsers [@ Error Parsers|
MCU settings
Settings 4 T MCU C Compiler [] Do not search system directories (-nostdine)
Toal Chain Editor (3 Dialect [T Preprocess only (-E}
» C/C++ General (B Preprocessor _
Defined symbols (-0} & a8 & E
Praject References 5 Includes ' 24888 H) |-

DEBUG
PRINTF_FLOAT_ENABLE=0
SCANF_FLOAT_ENABLE=0
PRINTF_ADVANCED_ENABLE=0
SCANF_ADVANCED_ENABLE=0
TWR_KV31F120M

TOWER
SDK_DEBUGCONSOLE=0

_ MCUXPRESSO

__USE_CMSIS
CPU_MKV3IFS12VLL12
CPU_MKV31FSL2VLL12_emd
REDLIB

Undefined symbals (-U) &

——

. b

Figure 1. Defined symbols

In the dialog that appears (see Figure 2), type the following:

* RTCESL_PQ_ON—to turn the PowerQuad support on

* RTCESL_PQ_OFF—to turn the PowerQuad support off

AMCLIB User's Guide, Rev. 5, 01 November 2021

In the right-hand part of the dialog, click the Add... icon located next to the Defined symbols (-D) title.

If neither of these two defines is defined, the hardware division and square root support is turned off by default.

User Guide

6/85

NXP Semiconductors

Library

Defined symbols (-D)

RTCESL PQ_ON

[ok][Cconcel]

Figure 2. Symbol definition

6. Click OK in the dialog.
7. Click OK in the main dialog.

Ensure the PowerQuad moduel to be clocked by calling function RTCESL_PQ_Init(); prior to the first function using PQ
module calling.

See the device reference manual to verify whether the device contains the PowerQuad DSP Coprocessor and
Accelerator support.

Adding RTCESL component to project

The MCUXpresso SDK package is necessary to add any example or new project and RTCESL component. In case the

package has not been downloaded go to mcuxpresso.nxp.com, build the final MCUXpresso SDK package for required board and
download it.

After package is dowloaded, open the MCUXpresso IDE and drag&drop the SDK package in zip format to the Installed SDK

window of the MCUXpresso IDE. After SDK package is dropped the mesage accepting window appears as can be show in
following figure.

B MCUX workspace - MCUXpresso IDE - o x
File Edit MNavigate Search Project Configlools Run RIOS Analysis Window Help
i 2 | &~ &~ L2 TR R R AT RS = N T O I Y
U NP A FRURE R AT REERORAN . | Q im|lK
[Project Ex... 51 4 Registers %% Fauls &, Periphera.. = O =g

BlEvY 8% B3

There are no projects in your warkspace.

To add a project:

B8 Creote o new MCUXpresso IDE C/C++ project.

B8 Import examples from SDK. X MCUXpresso IDE SDK import u} X

% Create 3 project...

i Import projects.. Py

@) Areyou sureyou want to import the following SDK in the
&Y' commen ‘meuxpresso’ folder?

D:ASDK_2_10_0_HVP-KV31F120Mzzip
@ inst.. 2 [Prop.. [2 Py]
(=]
@ Installed SDKs
() Quickstart Panel 52 (x)=Variables ®g Breakpoints = O Teinstallan SDK, simply drag and lpres:
X A [Installed SDKs . Availeble Board
MCUXpresso IDE - Quickstart Panel N
1] No project selected ame
~ Create or import a project
J— B New project...
B import SDK excemelets).. []Do not sk for confirmation on SDK Drag and Drop install
® Import project(s) from file system...
B’
v LR 4 >
o {) MCUX workspace L

Figure 3. MCUXpresso IDE - imporing the SDK package to MCUXpresso IDE

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide

7/85

NXP Semiconductors

Click OK to confirm the SDK package import. Find the Quickstart panel in left bottom part of the MCUXpresso IDE and click New
project... item or Import SDK example(s)... to add rtcesl component to the project.

Library

8 MCUX workspace - MCU¥presso IDE

File Edit Mavigate

H[mif &2

Search Project Configlools Run RTOS Analysis Window Help

l®-&-i¢vie -4 -0 -Q-i® /- EE1iDiu|o
Si@e i Ni-F-ow a0
[¥5 Project Ex... 2 !} Registers % Faults [, Periphera.. = O

SRR R
There are no projects in your workspace.
To add a project:

B8 Create a new MCUXpresso IDE C/C++ project.

B Import examples from SDK.

9 Create a project..

i Import projects...

@ inst. 52 [OProp.. [2 Probl.. B Cons.. @

() Installed SDKs
(1) Quickstart Panel 57 (%)= Variables ©g Breakpoints = To install an SDK, simply drag and drop an SOK (zip file/fo

- a x
B n SR k0 ED R
Q K

= 8

Term... [gj Ima.. G}Debu. 2 Offfin. = B
®o D

Ider) into the ‘Installed SDKs' view. [Common 'mcuxpres

~
MCUXpresso IDE - Quickstart Panel
No project selected

\DE

Installed SDKs “. Available Boards| Available Devices |
Name

SDK Versien

HHHSDK 2. HVP-KV31F120M 2100
~ Create or import a project

Manifest Version Location

380 &

Invoke the new SDK project wizard

~ Build your project

@

\SDK_2_10_0_HVP-KY

() MCUX workspace

Figure 4. MCUXpresso IDE - create new project or Import SDK example(s)

Then select your board, and clik Next button.

3 50K Wizard

(@) Creating project for device: MKV31F512ccx 12 using board: HVP-KV31F120M

. Board and/or Device selection page

~ SDK MCUs . Available boards

MCUs from installed SDKs. Please click

above or visit mcuxpresso.mxp.com to

Please select an available board for your project.
obtain additional SDKs.

[Supported boards for device: MKV3TFS120012

NP MKV3TF512300x12

v KV3x
MKV3TF512xxx12

hvpkv31£120m

~ Preinstalled MCUs
MCUs from preinstalled LPC and
generic Cortex-M part support
NXP PN7462AU-C3-00 "
PN7462AU-C2-00
PN7462AU-C3-00
Generic-MD
Generic-Moplus
Generic-M23
Generic-M3
Generic-M33
Generic-M4
Generie-M7

v

Selected Device: MKV31F512300¢12 using board: HVP-KV31F120M
Target Core: emd
Description:

SDKs for selected MCU

Name
Kinetis KV3x-100-120 MHz, Advanced 3ph FOC / Sensorless Motor Control MCUs

SDK Version Mani
based on ARM Cortex-M4

5 SDK_2x_HVP-KV3TF120M 2,100 (494 20 3.8.0

@

ifest Ve... Location

JE <Common>\SDK_2_10_0_HVP-KV:

<Back

Finish Cancel

Figure 5. MCUXpresso IDE - selecting the board

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide

8/85

NXP Semiconductors

Library

Find the Middleware tab in the Components part of the window and click on the checkbox to be the rtcesl component ticked. Last
step is to click the Finish button and wait for project creating with all RTCESL libraries and include paths.

3 soK Wizard u] X
i, The source from the SDK will be copied into the workspace. If you want to use linked files, please unzip the 'SDK_2x_HVP-KV31F120M' SDK. VA &
. Configure the project
Project neme: | MKV31F31212_FirstProject] | Project name suffix:
Use default location
C:\MCUX_workspace\MKV31F51212_FirstProject Browse.

Device Packages Board Project Type Project Options

® MKV3IFS12VLLIZ ® Defaut board files @CProject (O Cr+ Project SDK Debug Console (3 Semihost @) UART

O MKVIFS12VLHIZ O Empty board files [CMSIS-Core

(O C Static Library () C++ Static Library Copy sources

[Import other files

Components [F] Components selection summary B
Add or remove SDK software companents [ipesotiter |
Operating Systems [Drivers [CMSIS Drivers [Utilities [Widdieware™ Board Components| Abstraction Layer| Software C =
Name Description Ve Info
Middleware B %l ®E £ Drivers
[opesotiter | £ Middlenere
£ Operating Systems
Name Description Version Info = Software Component
[£ FresMASTER £ Utilties
[£ Memories.
[1 = Motor Cantrol
T rice! Real Time Control Embedded Software Library for CM... 110 | Real Time Gontrol Embedded Software Library far CNUF core
@ <Back Next> T

Figure 6. MCUXpresso IDE - selecting rtcesl component

Type the #include syntax into the code where you want to call the library functions. In the left-hand dialog, open the required .c
file. After the file opens, include the following lines into the #include section:

#include "mlib FP.h"

#include "gflib FP.h"
#include "gdflib FP.h"
#include "gmclib FP.h"
#include "amclib FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Keil pVision)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB into an empty project or any
MCUXpresso SDK example or demo application projects using Keil pVision. This example uses the default installation path
(C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL). If you have a different installation path, use that path instead. If any MCUXpresso
SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter otherwise read
next chapter.

NXP pack installation for new project (without MCUXpresso SDK)

This example uses the NXP LPC55s69 part, and the default installation path (C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL) is
supposed. If the compiler has never been used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil yVision.

2. In the main menu, go to Project > Manage > Pack Installer....

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 9/85

NXP Semiconductors

o o~ W

Library

In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale (NXP) node.
Look for a line called "KVxx Series" and click it.
In the right-hand dialog (under the Packs tab), expand the Device Specific node.

Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update options, click the button to install/
update the package. See Figure 7.

When installed, the button has the "Up to date" title. Now close the Pack Installer.

188 Pack Installer - C:\Keil vSYARM\PACK - . - - =[e] =]
File Packs Window Help
2 | Device: Freescale - Kioc Series
4 Devices | Boards | o] |[4] Facks | Examples | b
‘ Search: - X Pack Action Description
== AlEmmy - Device Specific 1 Pack
@ Atmel 257 Devices 5| Keil:Kinetis_K\bo, DFP |5 Install | Freescale Kinetis Kibor Series Device Support
- Freescale 234 Devices E-Generic 10 Packs
v ARMECMSIS @ Up to dstc | CMSIS (Cortex Microcontroller Software Interface Standard)
4 K Series 1 Device
r Keil:ARM_Compiler | € Up to date | Keil ARM Compiler extensions
KOO Series 2 Devices P P
r Keil:tensson Install___| Jansson s a C library for encoding, decoding and manipula
K10 Series 23 Devices & Install | y g g p
r Keil:MDK-Middleware Update | Keil MDK-ARM Professional Middleware for ARM Cortex-M
K20 Series: 41 Devices & Update |
r Keil:MDK-Network DS | Install __| Keil MDK-ARM Professional Middieware Dual-Stack IPvé/IP
K30 Series 6 Devices 5
A KAD Series 6 Devices IwiP=hwlP < Install__| IwlP is a light-weight implementation of the TCP/IP protoci
r Micrium:RTOS. Install___| Micrium software components
H K50 Series. 11 Devices | p
A K60 Series 18 Devices Oy | Instal Package (CycloneTCP, CycloneSSL and Cyclon
r wolfSSL::CyassL Install___| Light weight SSL/TLS and Crypt Library for Embedded Syste
K70 Series: 4 Devices ye < ght weig rypt Library y:
r YOGITECH:fRSTL_AR. Install___| YOGITECH fRSTL Functional Safety EVAL Software Packfor
K80 Series 2 Devices L 4
A KEAw Series 6 Devices
A2 Kb Series 11 Devices
AL Kb Series 54 Devices
AL KMboc Series 14 Devices
AL Kiioc Series 26 Devices
AL Ko Series 8 Devices
A WPRI516 Series |1 Device Ll Sl
G U ERIN g . d L
Output nx
Refresh Pack descriptions
Update available for Keil:MDK-Middleware (installed: 6.4.0, available: 7.0.0-beta)
Ready [[onune

Figure 7. Pack Installer

New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and is opened, skip to the next section. Follow
these steps to create a new project:

1.
2.
3.

4.
5.
6.
7.

Launch Keil pVision.
In the main menu, select Project > New pVision Project..., and the Create New Project dialog appears.

Navigate to the folder where you want to create the project, for example C:\KeilProjects\MyProject01. Type the name of the
project, for example MyProject01. Click Save. See Figure 8.

Create New Project

%'ﬂ T e E D e =

File name: MyProjectdl

Save as type: |Project Files (“uvproj: ".uvprojs)

* Browse Folders

Figure 8. Create New Project dialog

In the next dialog, select the Software Packs in the very first box.

Type " into the Search box, so that the device list is reduced to the devices.
Expand the node.

Click the LPC55s69 node, and then click OK. See Figure 9.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide 10/85

NXP Semiconductors

Library

-
Device |Targe¢| Ol.rlputl Listing I User | C/CH-I Asm I Linkerl Debug I Uhl'rtiesl I
ISoﬂware Packs ;I
Vendor: NXP Software Pack
Device: LPC55563JBD100:cm33 cored Pack: [NXP.LPC35569_DFP.12.11
Toolset: ARM URL: http://mcuxpresso nxp com/cmsis_pack/frepe
Search:
¥ ARM 4 || |The LPCESx/LPC555xx is an ARM Cortex M33 based micro-
@ NP controller for embedded applications. These devices include up to
El 320 KB of on-chip SRAM, up to 640 KB on-chip flash, high-speed
2 K32L2A41A and full-speed USB host and device interface with crystaldess
\)[g . operation for full-speed, five general-purpose timers, one
KExx Series SCTimer/PWM, one RTC/alam timer, one 24-bit Mutti-Rate Timer
2% LPC55560 (MRT), a Windowed Watchdog Timer (WWDT), eight flexible senal
communication peripherals {each of which can be a USART, SPI,
=] ‘%3 LPC55569 12C. or 125 interface), one 16-bit 1.0 Msamples/eec ADC, temperature
B4 LPC555691BD100 sensor.
&3 LPC55569/BD100
€3 LPC53569/BD100
4 I b I r T
QK I Cancel Help
Figure 9. Select Device dialog

8. In the next dialog, expand the Device node, and tick the box next to the Startup node. See Figure 10.

9. Expand the CMSIS node, and tick the box next to the CORE node.

Figure 10. Manage Run-Time Environment dialog

10. Click OK, and a new project is created. The new project is now visible in the left-hand part of Keil yVision. See Figure 11.

ChKeilProj %) __'_El:l:ﬂl My Projectl. Jx - ‘lul"_'
E! \KeilProjects\MyProj MWy Praoj uvprojx - pVisicn I

File Edit WView Project Flash Debug Peripherals Tool

NE @ & i | Bal:
LR B o2 L ££|Target1 Eﬁ&|

Project n 3
=55 device j
| L] fsl_device_registers.h

L] LPC55569_cm33_corel.h

L] LPC55569_cm33_corel_features.h

L] system_LPC55569_cm33_corel.c

L] system_LPC55568_cm33_corellh
=L startup

] startup_LPC55569_cm33_corel.S

Figure 11. Project

11. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.
12. Select the Target tab.

13. Select Use Single Precision in the Floating Point Hardware option. See Figure 11.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

11/85

NXP Semiconductors

Library

—Code Generation

[~ Use Cross-Module Optimization

ARM Compiler: ILlse default compiler version

[Use MicroLIB [T BigEndian

Floating Point Hardware: Usze Single Precision [

=

Figure 12. FPU

PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common calculations in DSP applications. This

section shows how to turn the PowerQuad (PQ) support for a function on and off.

1. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.

2. Select the C/C++ tab. See Figure 13.

3. In the Include Preprocessor Symbols text box, type the following:

+ RTCESL_PQ_ON—to turn the hardware division and square root support on.

* RTCESL_PQ_OFF—to turn the hardware division and square root support off.

If neither of these two defines is defined, the hardware division and square root support is turned off by default.

B

|

De\ricel Tanget | Outputl Listingl User C/Cs++ |km I Linkerl Debug | Lkilties |

— Prep Symbaols

Define: IF{TCESL_F'Q_ON

Undefine: I

 Language / Code Generation

™ Execute-only Code [~ Strict ANSIC

Optimization: lm I Enum Container always int

I~ Optimize for Time [~ Plain Charis Signed

I~ Split Load and Store Muliple ™ Read-Only Position Independent
I~ One ELF Section per Function [~ Bead-Write Postion Independert

Wamings

All Wamings -
T Thumb Mode

™ No Auto Includes
[~ C99 Mode

Include I
Paths

Misc I
Cortrols

Compiler |- —cpu Cortex-M4fp -D__EVAL -g 00 —apcs=interwork
control |- C:\KeilProjects \MyProject01W\RTE
string

Defaults

Figure 13. Preprocessor symbols

4. Click OK in the main dialog.

5. Ensure the PowerQuad moduel to be clocked by calling function RTCESL_PQ_Init(); prior to the first function using PQ

module calling.

See the device reference manual to verify whether the device contains the PowerQuad DSP Coprocessor and

Accelerator support.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

12/85

NXP Semiconductors

Linking the files into the project

Library

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The following steps show how to include all

dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add Group... from the menu. A new group

with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'... from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\MLIB\Include, and select the

miib_FP.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add. See Figure 14.

Look in: | | Include

Mame

[MLIB_Div1Q_F32

[mlib_FP

[MLIB_Log2_U16

[2f MLIB_Mac_A32

[MLIB_Mac_F16_Asmi
[MLIB_Mac_F32

[&f MLIB_Mac_F32_Asmi
[MLIB_Mac_FLT

[2f MLIB_Mac4_F32

[MLIB_Macd_F32_Asmi

[am1o Rt T T

i | mn

~| & & cf B

Date modified i

6,/20/2016 9:49 AM
7/22/20161:15 PM

6,/20/2016 9:49 AM K

6/20/2016 9:49 AM
7/25/2016 8:27 AM
6,/20/2016 9:49 AM
7/25/2016 8:27 AM
6,/20/2016 9:49 AM
6/20/2016 9:49 AM
7/25/2016 8:27 AM

AN E OLAn ARA
k

File name: |n1|ib_FF‘

Files of type: |Taxt file (“td:; *h; “inc)

Figure 14. Adding .h files dialog

j Close

5. Navigate to the parent folder CANXP\RTCESL\CM33F_RTCESL_4.7_KEIL\MLIB, and select the mlib./ibfile. If the file does
not appear, set the Files of type filter to Library file. Click Add. See Figure 15.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

13/85

NXP Semiconductors

10.

11.

12.

13.

14.

Library

Look in: |}, MLIB ~| & & et E-

MName . Date modified Ty
! Include 2010.2014 15:37 Fi

|| MLIB.lib 16.10.2014 9:19 L

4 L

F
File name: |I".-'ILIB.Iib
Files of type: | Library file (" i) =l Close

Figure 15. Adding .lib files dialog

Navigate into the library installation folder CA\ANXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GFLIB\Include, and select the
gflib_FP.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add.

Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GFLIB, and select the gfiib./ib file. If the file
does not appear, set the Files of type filter to Library file. Click Add.

Navigate into the library installation folder C\ANXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GDFLIB\Include, and select the
gdflib_FP.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add.

Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GDFLIB, and select the gdfiib.libfile. If the file
does not appear, set the Files of type filter to Library file. Click Add.

Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GMCLIB\Include, and select the
gmclib_FP.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add.

Navigate to the parent folder C:ANXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GMCLIB, and select the gmclib./ibfile. If the
file does not appear, set the Files of type filter to Library file. Click Add.

Navigate into the library installation folder C:\ANXP\RTCESL\CM33F_RTCESL_4.7_KEIL\AMCLIB\Include, and select the
amclib_FP.hfile. If the file does not appear, set the Files of type filter to Text file. Click Add.

Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\AMCLIB, and select the amclib.libfile. If the
file does not appear, set the Files of type filter to Library file. Click Add.

Now, all necessary files are in the project tree; see Figure 16. Click Close.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide 14/85

NXP Semiconductors

Library

| Project 1 &
=& Project: MyProjectll
gz Targetl

L Seource Group 1
=45 RTCESL
mlib_FP.h
MLIE.lib
gflib_FP.h
GFLIB.lib
gmclib_FP.h
GMCLIB.lib
gdflib_FP.h
GDFLIE.lib
amclib_FP.h
AMCLIB.lib

& cmsis
=4 Device

B LB LB L B L BV L

Figure 16. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules.
1. In the main menu, go to Project > Options for Target 'Target1'..., and a dialog appears.
2. Select the C/C++ tab. See Figure 17.

3. In the Include Paths text box, type the following paths (if there are more paths, they must be separated by ';') or add them
by clicking the ... button next to the text box:

+ "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\MLIB\Include"
+ "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GFLIB\Include"
+ "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GDFLIB\Include"
+ "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GMCLIB\Include"
+ "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\AMCLIB\Include"
4. Click OK.
5. Click OK in the main dialog.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 15/85

NXP Semiconductors

Library

k] Options for Target ‘Target 1

Devicel Target | Oulpull Listingl User C/Ce+ |.&'sm I Linkerl Debug | Ltilities |

Symbals

Define: I
Undefine: I

— Language / Code Generation

I~ Stict ANSIC e
Optimization: lm I™ Enum Container abways int All'Wamings j'
I Optimize for Time ™ Plain Char is Signed = Thurmb Mode
I~ Split Load and Store Muttiple [~ Read-Cnly Position Independent [~ No Auto Includes
[~ One ELF Section per Function [~ Read-Write Postion Independert [~ C39 Mode

Include ||
Paths

Misc I
Controls

Compiler |-¢ —cpu Cortex-M0+ -D__EVAL -g -00 —apcs=interwork
control [C:\KeilProjects \MyProject01\RTE
string

Figure 17. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new project, it is necessary to create a
source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group 1'... from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for example 'main.c. See Figure 18.

: e e o o ompe
v o s or T

Create a new C source file and add it to the projec
C | CFile{c)

@ C++ File {.cpp)
\ﬂ Asm File ()

@ Header File (h)
é Text File (bd)
Qg\ Image File (%
1@ User Code Template

Type: I

Mame: I main.

Location: I C:\KeilProjects\MyProjectd1

Figure 18. Adding new source file dialog

3. Click Add, and a new source file is created and opened up.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 16/85

NXP Semiconductors

Library

4. In the opened source file, include the following lines into the #include section, and create a main function:

#include "mlib FP.h"
#include "gflib FP.h"
#include "gdflib FP.h"
#include "gmclib FP.h"
#include "amclib FP.h"

int main (void)
{

while (1) ;
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded Workbench)

This section provides a step-by-step guide on how to quickly and easily include the AMCLIB into an empty project or any
MCUXpresso SDK example or demo application projects using IAR Embedded Workbench. This example uses the default
installation path (C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR). If you have a different installation path, use that path instead. If
any MCUXpresso SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter
otherwise read next chapter.

New project (without MCUXpresso SDK)

This example uses the NXP LPC55S69 part, and the default installation path (C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR) is
supposed. To start working on an application, create a new project. If the project already exists and is opened, skip to the next
section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project... so that the "Create New Project" dialog appears. See Figure 19.

:

Tool chain: | ARM -

Project templates:

[+ asm o~
[C++ |
| |75 ‘: ‘
=
- DLIB [, C++ with exceptions and RTTI] | &
- DLIB [C, Extended Embedded C++)

| Y | Ny W TSP By [

Description:

 project using default tool zettings including an empty main. file,

Figure 19. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 17 /85

NXP Semiconductors

Library

4. Navigate to the folder where you want to create the project, for example, C:\IARProjects\MyProject01. Type the name of the
project, for example, MyProject01. Click Save, and a new project is created. The new project is now visible in the left-hand
part of IAR Embedded Workbench. See Figure 20.

& 1AR Embedded Workbench IDE

File Edit View Project Simulator Tools Window Help

- IEIEEY R -4
Workspace * | main.c |

[Debug v]
|| Files 2 O e

=f&]MyProjectdl -Deb... [« | | return 0

main.c o |

L@ 3 Output

Figure 20. New project

5. In the main menu, go to Project > Options..., and a dialog appears.

6. Inthe Target tab, select the Device option, and click the button next to the dialog to select the MCU. In this example, select
NXP > LPC55S69 > NXP LPC55S69_core0. Select VFPV5 single precision in the FPU option.The DSP instructions group
is required please check the DSP Extensions checkbox if not checked. Click OK. See Figure 21.

r B
Category:
Static Analysis Library Options 2 MISRA-C:2004 MISRA-C:1398
Rg;;zi EZ;?IZ? Target Output Library Configuration Library Options 1
Assembler Processor variant
Qutput Converter O Core Cortex-M33
Custom Build
Build Actions (® Device NXP LPC55569_coreD B
Linker
Debugger () CM515-Pack None
Simulator
Angel Endian mode Floating point settings
CMSIS DAP P
DB Server ';i“'e FRU VFPv5 single precision v
1AR ROM-monitor - Dregiters BB
et/ TTAGIEt E32
Jink/1-Trace BE2
I She!laris TrustZone
Macraigor DSP Extension
) Mod ~
PE micro Advanced SIMD (NEON) ode [Non-secure
RDI
STALINK
Third-Party Driver
TLXDS [(0] 3 J [Cancel
Figure 21. Options dialog

PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common calculations in DSP applications. Only
functions runing faster through the PowerQuad module than the core itself are supported and targeted to be calculated by the
PowerQuad module. This section shows how to turn the PowerQuad (PQ) support for a function on and off.

1. In the main menu, go to Project > Options..., and a dialog appears.

2. In the left-hand column, select C/C++ Compiler.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 18/85

NXP Semiconductors

Library
3. Inthe right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the right-hand side; use the arrow icons
for navigation).
4. In the text box (at the Defined symbols: (one per line)), type the following (See Figure 22):
* RTCESL_PQ_ON—to turn the PowerQuad support on.
+ RTCESL_PQ_OFF—to turn the PowerQuad support off.

If neither of these two defines is defined, the hardware division and square root support is turned off by default.

Options for node "MyProject01” | Bl

Categony: Factary Settings

General Options [Multi-file Compilatior
Static Analysis Discard Unused Publics
Runtime Checking

| Language 2 I Code I Optimizations I Output I List | Preprocessor u

Assembler
Output Converter [Ignore standard include directories

Custom Build Additional include directories: (one per ling)

Build Actions i

Linker E]

Debugger
Simulator
Angel
CMSIS DAP Preinclude file:
GDE Server E]
IAR ROM-monitor
I§et/ITAGet Defined symbaols: (one per ling)
J-ink/1-Trace RTCESL_PQ_ON - = Eregrocessor Dutput:to file
TI Stellaris reserve E_EDITIITIEI £
Macraigor il Generate Hine directives

PE micro

RDI

ST-LIMK
Third-Party Driver
TI XDS

ak.] [Cahicel

L 4

Figure 22. Defined symbols

5. Click OK in the main dialog.

6. Ensure the PowerQuad moduel to be clocked by calling function RTCESL_PQ_Init(); prior to the first function using PQ
module calling.

See the device reference manual to verify whether the device contains the PowerQuad DSP Coprocessor and
Accelerator support.

Library path variable
To make the library integration easier, create a variable that will hold the information about the library path.
1. In the main menu, go to Tools > Configure Custom Argument Variables..., and a dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the name of the group PATH, and click OK.
See Figure 23.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 19/85

NXP Semiconductors

Library

.
i ' Configure Custom Argument Variables |i|
Workspace | Global
Enable Group
Troup...
MNew Group |i| E_ 2
Fiable...
M : E
ame PATH Ebie....
lete
oK l [Cancel -
prt...
Expand/Collapse All
[Hide disabled groups
oK l l Cancel
- e - ’.

Figure 23. New Group

Click on the newly created group, and click the Add Variable button. A dialog appears.
Type this name: RTCESL_LOC

To set up the value, look for the library by clicking the '..." button, or just type the installation path into the box:
C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR. Click OK.

In the main dialog, click OK. See Figure 24.

' Configure Custom Argument Variables | = |
Workspace | Global
[pATH Disable Group
— ™y
Add Variable ==
Name: |RTCESL_LOC |
Value: |C:\NXP\,RTCESL_CM33F_RTCESL_X.X_IAR | 0O |[B
[OK. J[Cancel]

Figure 24. New variable

Linking the files into the project

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1.

Go to the main menu Project > Add Group...

2. Type RTCESL, and click OK.
3.
4

Click on the newly created node RTCESL, go to Project > Add Group..., and create a MLIB subgroup.

. Click on the newly created node MLIB, and go to the main menu Project > Add Files... See Figure 26.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide 20/85

NXP Semiconductors

10.

11.
12.
13.

14.

15.
16.
17.

18.

19.
20.
21.

22.

23.

Library

Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\MLIB\Include, and select the m/ib.h
file. (If the file does not appear, set the file-type filter to Source Files.) Click Open. See Figure 25.

Navigate into the library installation folder C:ANXP\RTCESL\CM33F_RTCESL_4.7_IAR\MLIB, and select the m/ib.afile. If
the file does not appear, set the file-type filter to Library / Object files. Click Open.

» System (C:) » NXP » RTCESL » CM33RTCESLXXIAR » MLUE » Include

i MName Date modified Type

| mlib.h 16.10.2015 9:38 H File
|| MLB_Abs_F16.h 16.10.2015 9:38 H File

Figure 25. Add Files dialog

Click on the RTCESL node, go to Project > Add Group..., and create a GFLIB subgroup.
Click on the newly created node GFLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:\ANXP\ARTCESL\CM33F_RTCESL_4.7_IAR\GFLIB\Include, and select the
gflib.hfile. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder CANXP\RTCESL\CM33F_RTCESL_4.7_IAR\GFLIB, and select the gfiib.afile.
If the file does not appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GDFLIB subgroup.
Click on the newly created node GDFLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GDFLIB\Include, and select the
gdflib.hfile. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

Navigate into the library installation folder C:ANXP\RTCESL\CM33F_RTCESL_4.7_IAR\GDFLIB, and select the gdfiib.a
file. If the file does not appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create a GMCLIB subgroup.
Click on the newly created node GMCLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GMCLIB\Include, and select the
gmclib.hfile. If the file does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GMCLIB, and select the gmclib.a
file. If the file does not appear, set the file-type filter to Library / Object files. Click Open.

Click on the RTCESL node, go to Project > Add Group..., and create an AMCLIB subgroup.
Click on the newly created node AMCLIB, and go to the main menu Project > Add Files....

Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\AMCLIB\Include, and select the
amclib.hfile. If the file does not appear, set the file-type filter to Source Files. Click Open.

Navigate into the library installation folder C:\ANXP\RTCESL\CM33F_RTCESL_4.7_IAR\AMCLIB, and select the amclib.a
file. If the file does not appear, set the file-type filter to Library / Object files. Click Open.

Now you will see the files added in the workspace. See Figure 26.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide 21/85

NXP Semiconductors

Library

Workspace
[Debug
Files &
& (MyProjectd1 - Debug * v
HE (ORTCESL
— [AMCLIB.a
L—) amclib_FFP.h
= (1 GDFLIB
— [GDFLIB &
— |n] gdflib_FF.h
I LI GFLE
— [GFLIB &
— |n] oflib_FF.h
—E L1 GHCLIB
— [GMCLIB &
L— k] gmclib_FP.h
=[O MLE
— [MLE.a
— [] mlib_FP.h

Figure 26. Project workspace

FrIEin.c
& [Cutput

Library path setup

The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options..., and a dialog appears.

2. In the left-hand column, select C/C++ Compiler.

3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in the right; use the arrow icons

for navigation).

4. In the text box (at the Additional include directories title), type the following folder (using the created variable):

5. Click OK in the main dialog. See Figure 27.

$RTCESL_LOCS$\MLIB\Include
$RTCESL_LOCS$\GFLIB\Include
$RTCESL_LOCS$\GDFLIB\Include
$RTCESL_LOCS$\GMCLIB\Include
$RTCESL_LOCS$\AMCLIB\Include

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

22/85

NXP Semiconductors

Library

Categony:

,
orvrs e e

==

General Options
Static Analysis
Runtime Checking

CfC++ Compiler

Assembler
Qutput Conwverter
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel
CMSIS DAP
GDE Server
IAR. ROM-monitor
I§et/ITAGjet
Jink/1-Trace
TI Stellaris
Macraigor
PE micro
RDI
ST-LINK
Third-Party Driver
TLXDS

[] Multi-file: Compilation

Dizcard Unuzed Publics

Factary Settings

| Language 1 I Language 2 I Code I Ciptimizations I Cutput I List | Flita |t

[7] Ignore standard include directories

Additional include directories: (one per ling)

SRTCESL_LOCS\MLIBYinclude
SRTCESL_LOCS\GFLIBtinclude
SRTCESL LOCSWGMCLIBNnclude
SRTCESL_LOCSWGDFLIBinclude
SRTCESL_LOCS'AMCLIBYinclude

Preinclude file:

Defined symbols: {one per ling)

[Preprocessor output to file
Preserve comments
Generate Hine directives

Figure 27. Library path adition

[ok

] [Cancel

Type the #include syntax into the code. Include the library included into the main.cfile. In the workspace tree, double-click the
main.cfile. After the main.cfile opens up, include the following lines into the #include section:

#include
#include
#include
#include
#include

When you click the Make icon, the project will be compiled without errors.

"mlib FP.h"
"gflib FP.h"
"gdflib FP.h"
"gmclib FP.h"
"amclib FP.h"

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

23/85

NXP Semiconductors

Chapter 2
Algorithms in detall

2.1 AMCLIB_ACIMCtrIMTPA

The AMCLIB_ACIMCtrIMTPA function enables to minimize the ACIM losses by applying the Max Toque per Ampere (MTPA)
strategy. The principle is derived from the ACIM torque equation:

3 L . . 3 L . .
T(0;) =% Pp T i(0O)) isq(Or) =7 Pp T " |isag| -5in(2- ;)

where:
* isq is the D component of the stator current vector
* isq is the Q component of the stator current vector
* lisqq is the stator current vector
+ 9, is the angle of stator the current vector
* L, is the rotor equivalent inductance
* L., is the mutual equivalent inductance
* Pp is the motor pole pair number constant
* T is the motor mechanic torque

Motor torque depends on the angle of the stator current vector. Maximum eficency (minimum stator joule losses) can be calculated
when motor torque differential is equal zero:

ar(e) _3 , Ly ..
de, =Z-PP'L_7'|1qu|'cos(2-@1)=0:@1=%

Itis clear that the stator current components must be the same values to achieve the6, = /4 angle. The MTPA stator current vector
trajectory in consideration of the igq4 limits given by the minimal field excitation and current limitations is shown in Figure 1).

isq
| Isdq |

612%

| ; - isd
Lsd min Lsd max

Figure 28. Minimal losses stator current vector trajectory with limits

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 24 /85

NXP Semiconductors

2.1.1 Available versions

The available versions of the AMCLIB_ACIMCtrIMTPA function are shown in the following table:

Table 2. Init function versions

Algorithms in detail

LT

Function name Input type Parameters Result
t
IdMin | IdMax e
AMCLIB_ACIMCtrIMTPAInit_F | float_t float_t AMCLIB_ACIM_CTRL_MTPA_T_FLT* void

The input arguments are the 32-bit single precision floating-point values that contain
the limits for igq. They both are positive values (the minimum must be lower than

the maximum) and the pointers to a structure that contains the parameters defined in
AMCLIB_ACIM_CTRL_MTPA_T_FLT type description.

Table 3. Function version

Function name Input Parameters Result
type type
AMCLIB_ACIMCtrIMTPA_F |float .t |AMCLIB_ACIM_CTRL_MTPA_T_FLT* float_t

LT

The input arguments are the 32-bit single precision floating-point values that contain
the limits for is4. They both are positive values (the minimum must be lower than

the maximum) and the pointers to a structure that contains the parameters defined in
AMCLIB_ACIM_CTRL_MTPA_T_FLT type description.

2.1.2 AMCLIB_ACIM_CTRL_MTPA_T_FLT type description

name

Variable Data type

Description

m T

fltidExpPara | GDFLIB_FILTER_EXP_T_FL

The exponential filter structure for the igy current filtration. Set by the user.

fltLowerLim float_t

The minimal output limit of ig4. Usually determined from the minimum ACIM
rotor flux excitation, as shown in Figure 1. Set by the user, must be a positive

value lower than the upper limit.

fltUpperLim | float_t

The maximal output limit of isy. Usually determined from the maximum
(typically nominal) ACIM current, as shown in Figure 1. Set by the user, must

be a positive value higher than the lower limit.

2.1.3 Declaration

The available AMCLIB_ACIMCtrIMTPAInit functions have the following declarations:

void AMCLIB ACIMCtrlMTPAInit FLT (float tfltMin,float tfltMax,AMCLIB ACIM CTRL MTPA T FLT *psCtrl)

The available AMCLIB_ACIMCtrIMTPA functions have the following declarations:

float t AMCLIB ACIMCtrlMTPA FLT (float tfltIq,AMCLIB ACIM CTRL MTPA T FLT *psCtrl)

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

25/85

NXP Semiconductors

2.1.4 Function use

The use of the AMCLIB_ACIMCtrIMTPA function is shown in the following examples:

Algorithms in detail

{

Floating-point version:
#include "amclib.h"
static AMCLIB ACIM CTRL MTPA T FLT sMTPAParam;
static float t fltIsd;
static float t fltIsg;
static float_t f1tIDMin;
static float t fltIDMax;

void Isr(void) ;

void main (void)

/* Structure parameter setting */
sMTPAParam.sCtrl.fltIdExpParam.fltA = 0.05F;
f1tIDMin = 0.1F;

fltIDMax = 2.2F;

/* Initialization of the ACIMCtrlMTPA's structure */

AMCLIB_ACIMCtrlIMTPAInit FLT (f1tIDMin, fltIDMax, &sMTPAParam);

/* Assign Isqg value */
fltIsg = -0.6F;

/* Periodical function or interrupt */
void Isr (void)

{

/* Calculating required Isd by MTPA algorithm */
fltIsd = AMCLIB ACIMCtrIMTPA FLT (fltIsq, &sMTPAParam);

2.2 AMCLIB_ACIMRotFluxObsrv

The AMCLIB_ACIMROotFluxObsrv function calculates the ACIM flux estimate and its position (angle) from the available
measured signals (currents and voltages). In the case of ACIM FOC, the rotor flux position (angle) is needed to perform
the Park transformation.

The closed-loop flux observer is formed from the two most desirable open-loop estimators, which are referred to as the voltage
model and the current model (as shown in Figure 1). The current model is used for low-speed operation and the voltage model
is used for high-speed operation. A smooth transition between these two models is ensured by the PI controller.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

26 /85

NXP Semiconductors

Algorithms in detail

Voltage model

Current model fs

"

A
12
=
o
<

<l

Pl

— L — ;
: 1+s.1, e Controller

|

3

atan ¥ —
Pra
-

Figure 29. ACIM rotor flux observer block diagram

The voltage model (stator model) is used to estimate the stator flux-linkage vector or the rotor flux-linkage vector without a speed
signal. The voltage model is derived by integrating the stator voltage equation in the stator stationary coordinates as:

- 4

Z:Rs' lerT
W;=j(ﬂ;—Rs-iS)dt

v Lo @)

Expressed in discrete form as:

v)= il o (sal) = Ry 5K
v 0= T[=) T (k) — Ry i)
v, (k) ==y (Ls-o-isa(k))
v, 0= 2={y)~ Lo i)

where:
* Uy is the stator voltage vector
* ig is the stator current vector
» Yq is the stator flux-linkage vector
* Y, is the rotor flux-linkage vector
* wy is the rotor electrical angular speed
* Wwyg is the electrical angular slip speed
* Rs is the stator resistance
* R, is the rotor equivalent resistance
» L is the stator equivalent inductance
* L, is the rotor equivalent inductance
* L., is the mutual equivalent inductance
* T, is the motor electrical time constant
* Tsis the sample time
» g is the motor leakage coefficient

These equations show that the rotor flux linkage is basically the difference between the stator flux-linkage and the leakage flux.
The rotor flux equation is used to estimate the respective flux-linkage vector, corresponding angle. The argument W, of the rotor
flux-linkage vector is the rotor field angle By, calculated as:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 27/85

NXP Semiconductors

Algorithms in detail

Vg
Oy = atan(.,)

The voltage model (stator model) is sufficiently robust and accurate at higher stator frequencies. Two basic deficiencies can
degrade this model as the speed reduces: the integration problem, and model’s sensitivity to stator resistance mismatch.

The current model (rotor model) is derived from the differential equation of the rotor winding. The stator coordinate
implementation is:

3

Ly 1, . —
dr o T TV, T JWslipt VY,

When applying field-oriented control assumptions (such as ¥, = 0), then the rotor flux estimated by the current model in the
synchronous rotating frame is:

l'[/raf_ 1> Lm—’

- TVt L

In discrete form:

7, Ly .
v, 0= v (k= D)+ T2)]

The accuracy of the rotor model depends on correct model parameters. It is the rotor time constant in particular that determines
the accuracy of the estimated field angle (the most critical variable in a vector-controlled drive).

2.2.1 Available versions

The available versions of the AMCLIB_ACIMRotFluxObsrv function are shown in the following table:

Table 4. Init version

Function name Parameters Result type

AMCLIB_ACIMROotFluxObsrvinit_FLT AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT * void

The initialization does not have any input.

Table 5. Function version

Function name Input/output type Result type
AMCLIB_ACIMRotFluxObsrv_FLT | Input GMCLIB_2COOR_ALBE_T_FLT * void
GMCLIB_2COOR_ALBE_T_FLT *

Parameters | AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT *

Rotor flux observer with a 32-bit single precision floating-point inputs: stator
current and voltage in alpha-beta coordinates. All are within the full range. The
function does not return anything. All calculated variables are stored in the
AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT structure.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 28/85

NXP Semiconductors

Algorithms in detail

2.2.2 AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT type description

Variable name

Data type

Description

sPsiRotRDQ GMCLIB_2COOR_DQ_T_ | The output rotor flux estimated structure calculated from the current
FLT model. The structure consists of the D and Q rotor flux components
stored for the next steps. The quadrature component is forced to
zero value - required by FOC.
sPsiRotSAIBe GMCLIB_2COOR_ALBE_ | The output rotor flux estimated structure calculated from the voltage
T_FLT model. The structure consists of the alpha and beta rotor flux
components stored for the next steps.
sPsiStatSAIBe GMCLIB_2COOR_ALBE_ | The output stator flux estimated structure calculated from the
T_FLT voltage model. The structure consists of the alpha and beta stator
flux components stored for the next steps.
fliTorque float_t The output estimated motor torque calculated as:
3'PP'Lm' (Wra'IsB_\VrB'Isa)
T=
2- Imax
The variable is a 32-bit single precision floating-point type value.
a32RotFluxPos acc32_t The output rotor flux estimated electric position (angle) - a 32-bit
accumulator is normalized to the range <-1 ; 1) that represents an
angle (in radians) within the range <-11;).
sCtrl fliCompAlphalnt | float_t The state variable in the alpha part of the controller; integral part at
eg_1 step k-1.
flitCompBetalnte |float_t The state variable in the beta part of the controller; integral part at
g_1 step k-1.
ftCompAlphaErr | float_t The state variable in the alpha part of the controller; error part at
1 step k-1.
fliCompBetaErr_ | float_t The state variable in the beta part of the controller; error part at step
1 k-1.
fltiPGain float_t The proportional gain Kp for the stator model Pl correction. Set by
the user.
fltIGain float_t The integration gain Ki for the stator model Pl correction. Set by the
user.
fliPsiRA1Gain float_t The gain is defined as:
- ‘TFFTS where: 7, = }LT’,
The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.
fltPsiRB1Gain float_t The coefficient gain is defined as:
LTy A ﬁ
T, where: 7, = R,
The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.
Table continues on the next page...
AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 29/85

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name

Data type

Description

fltPsiSA1Gain

float_t

The gain is defined as:

1
7527 o
The finteg is @ cut-off frequency of a low-pass filter approximation of
a pure integrator. The parameter is a 32-bit single precision floating-
point type non-negative value. Set by the user.

fltPsiSA2Gain

float_t

The coefficient gain is defined as:

s

1+ T,-271T- finteg
The finteg is a cut-off frequency of a low-pass filter approximation of
a pure integrator. The parameter is a 32-bit single precision floating-
point type non-negative value. Set by the user.

fltKrinvGain

float_t

The gain is defined as:

L

~

m

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltKrLsTotLeakGain

float_t

The coefficient gain is defined as:

Ly L.- L%
Ly,

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltRsEst

float_t

The stator resistance parameter is a 32-bit single precision floating-
point type non-negative value. Set by the user.

fliTorqueGain

float_t

The torque constant coefficient gain is defined as:

3-Pp-Ly,
21,

The Pp is a number of motor pole-pairs. The parameter is a 32-bit
single precision floating-point type non-negative value. Set by the
user.

2.2.3 Declaration

The available AMCLIB_ACIMROotFluxObsrvinit function has the following declarations:

void AMCLIB ACIMRotFluxObsrvInit FLT (AMCLIB ACIM ROT FLUX OBSRV T FLT *psCtrl)

The available AMCLIB_ACIMRotFluxObsrv function has the following declarations:

void AMCLIB ACIMRotFluxObsrv_ FLT (const GMCLIB 2COOR ALBE T FLT *psISAlBe, const
GMCLIB 2COOR ALBE T FLT *psUSAlBe, AMCLIB ACIM ROT FLUX OBSRV T FLT *psCtrl)

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

30/85

NXP Semiconductors

2.2.4 Function use

The use of the AMCLIB_ACIMRotFluxObsrv function is shown in the following examples:

Algorithms in detail

{

sRfoParam

/* Periodical

{

sRfoParam.
sRfoParam.
sRfoParam.
sRfoParam.
sRfoParam.
sRfoParam.
sRfoParam.
sRfoParam.

Floating-point version:

#include "amclib.h"

void Isr (void);

void main (void)

.sCtrl.fltPGain
sCtrl.fltIGain
fltKrInvGain
fltKrLsTotLeakGain
fl1tPsiRAlGain
f1tPsiRB1Gain
fltPsiSAlGain
fltPsiSA2Gain
fltRsEst

sIsAlBe.fltAlpha = 0.05F;
sIsAlBe.fltBeta
sUsAlBe.fltAlpha
sUsAlBe.fltBeta

0.1F;
0.2F;
-0.1F;

static GMCLIB_2COOR_ALBE_T_FLT sIsAlBe, sUsAlBe;
static AMCLIB ACIM ROT FLUX OBSRV_T FLT sRfoParam;

32750.0F;
12500.0F;

1,

0851063829787235F;

0.08340425531914897F;
0.995151077592515F;
0.002278993531517996F;
0.
0
2

9981185907806752F;

.00009981185907806752F;
6.06F;

/* Initialization of the RFO's structure */

AMCLIB ACIMRotFluxObsrvInit FLT (&sRfoParam);

function or interrupt */

void Isr (void)

/* Rotor flux observer calculation */
AMCLIB ACIMRotFluxObsrv FLT (&sIsAlBe, &sUsAlBe, &sRfoParam);

2.3 AMCLIB_ACIMSpeedMRAS

The AMCLIB_ACIMSpeedMRAS function is based on the model reference approach (MRAS), and it uses the redundancy of two
machine models of different structures that estimate the same state variable based on different sets of input variables. It means
that the rotor speed can obtained using an estimator with MRAS principle, in which the error vector is formed from the outputs of
two models (both dependent on different motor parameters) - as shown in Figure 1.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

31/85

NXP Semiconductors

Algorithms in detail

Us — Reference Model

Rotor .,
i Flux WR
S y Observer

Adaptive
[, MRAS VR
Model

[1
Or s

Figure 30. The estimated and real rotor dg synchronous reference frames

The closed-loop flux observer provides a stationary-axis-based rotor flux Wr from RFO as a reference for the MRAS model,
whereas the adaptive model of MRAS is the current-mode flux observer, which provides adjustable stationary-axis-based
rotor flux:

where:
* ig is the stator current vector
* Y, is the rotor flux-linkage vector
* wy is the rotor electrical angular speed
« T, is the rotor electrical time constant
* L., is the mutual equivalent inductance

The phase angle between the two estimated rotor flux vectors is used to correct the adaptive model, according to:

= wRFO . yMRAS — yRFO . ,yMRAS
€MRAS ™ Vig l//,ﬂ l//rﬂ [z

The estimated speed wg is adjusted by a Pl regulator.

2.3.1 Available versions
The available versions of the AMCLIB_ACIMSpeedMRAS function are shown in the following table:

Table 6. Init version

Function name Parameters Result type

AMCLIB_ACIMSpeedMRASInit_FLT AMCLIB_ACIMSpeedMRAS_T_FLT * void

The initialization does not have an input.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 32/85

NXP Semiconductors

Algorithms in detail

Table 7. Function version

Function name Input/output type Result type

AMCLIB_ACIMSpeedMRAS_FLT Input GMCLIB_2COOR_ALBE_T_FLT * void
GMCLIB_2COOR_ALBE_T_FLT *

acc32_t

Parameters AMCLIB_ACIMSpeedMRAS_T_FLT *

The AMCLIB_ACIMSpeedMRAS_FLT function with a 32-bit single precision
floating-point inputs: stator current and voltage in alpha-beta coordinates.

2.3.2 AMCLIB_ACIMSpeedMRAS_T_FLT type description

Variable name Data type Description
sSpeedlIR1Param GDFLIB_FILTER_IIR1_T_ | The IIR1 filter structure for estimated speed filtration. Set by the
FLT user.
sPsiRotRDQ GMCLIB_2COOR_DQ_T_ | The output rotor flux estimated structure from the current model.
FLT The structure consists of the D and Q rotor flux components stored

for the next step.

fliSpeed float_t The output rotor estimated electrical speed.

fliSpeedEIlIR1 float_t The output rotor estimated electrical speed filtered.
fliSpeedMellR1 float_t The output rotor estimated mechanical speed filtered.
a32RotPos acc32_t The output rotor estimated electric position (angle) - a 32-bit

accumulator is normalized to the range <-1 ; 1) that represents an
angle (in radians) within the range <-1r ;).

sCirl fltSpeedinteg_1 | float_t The speed integral part - state variable at step k-1 of the electrical
speed controller.
fliSpeedErr_1 float_t The speed error - state variable at step k-1 of the electrical speed
controller.
fltPGain float_t The MRAS proportional gain coefficient. Set by the user.
fltIGain float_t The MRAS integral gain coefficient. Set by the user.
fltPsiRA1Gain float_t The coefficient gain is defined as:

o h . = ﬁ
o+ T, where: 7, = R,

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltiPsiRB1Gain float_t The coefficient gain is defined as:

Lim-Ts r
T, Where: 7, = R,

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 33/85

NXP Semiconductors

Table continued from the previous page...

Algorithms in detail

Variable name Data type Description
fitTs float_t The sample time constant - the time between the steps. Set by the
user.
fliSpeedMeGain float_t The speed gain coefficient, defined as:
60
2r-Pp

the user.

Where Pp is the number of motor pole-pairs. The parameter is a
32-bit single precision floating-point type non-negative value. Set by

2.3.3 Declaration

The available AMCLIB_ACIMSpeedMRASInit function have the following declarations:

void AMCLIB ACIMSpeedMRASInit FLT (AMCLIB ACIM SPEED MRAS T FLT *psCtrl)

The available AMCLIB_ACIMSpeedMRAS function have the following declarations:

void AMCLIB ACIMSpeedMRAS FLT (const GMCLIB 2COOR ALBE T FLT *psISAlBe, const GMCLIB 2COOR ALBE T FLT
*psPsiRAlBe, acc32 t a32RotPos, AMCLIB ACIM SPEED MRAS T FLT *psCtrl)

2.3.4 Function use

The use of the AMCLIB_ACIMSpeedMRAS function is shown in the following examples:

static acc32 t

{

sMrasParam

void Isr (void) ;

sMrasParam.
sMrasParam.
sMrasParam.

sMrasParam.

Floating-point version:
#include "amclib.h"

static GMCLIB_ 2COOR ALBE T FLT sIsAlBe, sPsiRAlBe;
static AMCLIB ACIM SPEED MRAS T sMrasParam;

void main (void)

a32RotPosIn;

sCtrl.fltIGain = 12500.0F;
sCtrl.f1ltPGain = 32750.0F;
fl1tPsiRAlGain = 0.995151077592515F;
.f1tPsiRB1lGain = 0.002278993531517996F;
fltTs = 0.0001F;

/* Initialization of the MRAS's structure */
AMCLIB_ACIMSpeedMRASInit FLT (&sMrasParam) ;

sIsAlBe.fltAlpha = 0.05F;
sIsAlBe.fltBeta = 0.1F;

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

34/85

NXP Semiconductors

Algorithms in detail

sPsiRAlBe.fltAlpha = 0.2F;
sPsiRAlBe.fltBeta -0.1F;

}

/* Periodical function or interrupt */
void Isr (void)
{
/* Speed estimation calculation based on MRAS */
AMCLIB ACIMSpeedMRAS FLT (&sIsAlBe, &sPsiRAlBe, a32RotPosIn, &sMrasParam);

2.4 AMCLIB_AngleTrackObsrv

The AMCLIB_TrackObsrv function calculates an angle-tracking observer for determination of angular speed and position of the
input signal. It requires two input arguments as sine and cosine samples. The practical implementation of the angle-tracking
observer algorithm is described below.

The angle-tracking observer compares values of the input signals - sin(8), cos(B) with their corresponding estimations. As in any
common closed-loop systems, the intent is to minimize the observer error towards zero value. The observer error is given here
by subtracting the estimated resolver rotor angle from the actual rotor angle.

The tracking-observer algorithm uses the phase-locked loop mechanism. It is recommended to call this function at every sampling
period. It requires a single input argument as phase error. A phase-tracking observer with standard PI controller used as the loop
compensator is shown in Figure 1.

K>
sin(9)
1 1 A
k(l — E; E; 6

cos(6)—

Y,
\/

Figure 31. Block diagram of proposed PLL scheme for position estimation

Note that the mathematical expression of the observer error is known as the formula of the difference between two angles:

sin(@ —) = sin(6) - cos(d) — cos(6) - sin(d)

If the deviation between the estimated and the actual angle is very small, then the observer error may be expressed using the
following equation:

sin@—0)=6—-0

The primary benefit of the angle-tracking observer utilization, in comparison with the trigonometric method, is its smoothing
capability. This filtering is achieved by the integrator and the proportional and integral controllers, which are connected in series
and closed by a unit feedback loop. This block diagram tracks the actual rotor angle and speed, and continuously updates their
estimations. The angle-tracking observer transfer function is expressed as follows:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 35/85

NXP Semiconductors

Algorithms in detail

Os) K(1+sK))
o(s) — s2+sK,K,+ K,

The characteristic polynomial of the angle-tracking observer corresponds to the denominator of the following transfer function:
2+ 5K ,K,+ K,

Appropriate dynamic behavior of the angle-tracking observer is achieved by the placement of the poles of characteristic
polynomial. This general method is based on matching the coefficients of characteristic polynomial with the coefficients of a
general second-order system.

The analog integrators in the previous figure (marked as 1/ s) are replaced by an equivalent of the discrete-time integrator
using the backward Euler integration method. The discrete-time block diagram of the angle-tracking observer is shown in the
following figure:

K>
sin(6(k))
Ki == 6(k)
cos(6(k))—
Y 1
w7 Z

Figure 32. Block scheme of discrete-time tracking observer

The essential equations for implementating the angle-tracking observer (according to this block scheme) are as follows:

e(k) = sin(0(k)) - cos(A(k — 1)) — cos(@(k)) - sin(@(k — 1))

o(k)=Ts* K;*elk)+ ok —1)

axk)= Ty (k) + afk — 1)

O(k) =K, (k) +ay(k)

where:
» Kj is the integral gain of the | controller
» K is the proportional gain of the PI controller
» T, is the sampling period [s]
» e(k) is the position error in step k
» w(k) is the rotor speed [rad / s] in step k
* w(k - 1) is the rotor speed [rad / s] in step k - 1
» a(k) is the integral output of the PI controler [rad / s] in step k
» a(k - 1) is the integral output of the PI controler [rad / s] in step k - 1

» O(k) is the rotor angle [rad] in step k

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 36/85

NXP Semiconductors

Algorithms in detail

* O(k - 1) is the rotor angle [rad] in step k - 1
» B(k) is the estimated rotor angle [rad] in step k
* O(k - 1) is the estimated rotor angle [rad] in step k - 1

In the fractional arithmetic, AMCLIB_AngleTrackObsrv_Eq5 to AMCLIB_AngleTrackObsrv_EQ8 are as follows:

05 k) ® Omax=Ts* K * e(k) + sk = 1) * Wpax

ach(k) * Oppax = T's * w5dk) * O+ az;c(k =1 Onax

ésc(k) 'gmaszZ'wsc(k) 'wmax+azsc(k) 'Hmax

where:
* egc(K) is the scaled position error in step k
* wgc(k) is the scaled rotor speed [rad / s] in step k
* wgc(k - 1) is the scaled rotor speed [rad / s] in step k - 1
* agc(k) is the integral output of the PI controler [rad / s] in step k
* ag(k - 1) is the integral output of the Pl controler [rad / s] in step k - 1
* Bsc(Kk) is the scaled rotor angle [rad] in step k
* Bgc(k - 1) is the scaled rotor angle [rad] in step k - 1
* B5c(Kk) is the scaled rotor angle [rad] in step k
* Bgc(k - 1) is the scaled rotor angle [rad] in step k - 1
* Wmax IS the maximum speed

* Bmax is the maximum rotor angle (typicaly)

2.4.1 Available versions
The function is available in the following versions:
» Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).

» Accumulator output with floating point inputs - the output is the accumulator type, where the inputs for the calculation are the
floating-point types within the range <-1.0 ; 1.0>.

The available versions of the AMCLIB_AngleTrackObsrv function are shown in the following table:

Table 8. Init versions

Function name Init angle Parameters Result
type
AMCLIB_AngleTrackObsrvinit_F16 frac16_t AMCLIB_ANGLE_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1 ; 1) that
represents an angle in (radians) within the range <-11;).

AMCLIB_AngleTrackObsrvinit_A32af acc32_t AMCLIB_ANGLE_TRACK_OBSRV_T_FLT * void

The input is a 32-bit accumulator value of the angle divided by 1.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 37/85

NXP Semiconductors

Table 9. Function versions

Algorithms in detail

Function name Input type Parameters Result
type
AMCLIB_AngleTrackObsrv_F16 GMCLIB_2COOR_SINCOS_T_F16 * | AMCLIB_ANGLE_TRACK_OBSRV_ | frac16_t
T_F32*

Angle-tracking observer with a two-componenent (sin/cos) 16-bit fractional position input
within the range <-1 ; 1). The output from the obsever is a 16-bit fractional position
normalized to the range <-1; 1) that represents an angle (in radians) within the range
<-1;).

AMCLIB_AngleTrackObsrv_A32ff GMCLIB_2COOR_SINCOS_T_FLT * | AMCLIB_ANGLE_TRACK_OBSRV_ | acc32_t

T_FLT*

Tracking observer with a a two-componenent (sin/cos) 32-bit accumulator position input
within the range <-1.0; 1.0>. The output from the obsever is a 32-bit accumulator position
normalized to the range <-1 ; 1) that represents an angle (in radians) within the range
<-1;).

2.4.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32

Variable name Input Description
type
f32Speed frac32_t | Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1; 1). Controlled by the AMCLIB_AngleTrackObsrv_F16 algorithm; cleared by the
AMCLIB_AngleTrackObsrvinit_F16 function.
f32A2 frac32_t | Output of the second numerical integrator. The parameter is within the range <-1 ; 1).
Controlled by the AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16
algorithms.
f16Theta frac16_t | Estimated position as the output of the observer. The parameter is normalized to the range
<-1; 1) that represents an angle (in radians) within the range <-1 ;). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.
f16SinEstim frac16_t | Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.
f16CosEstim frac16_t | Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvinit_F16 algorithms.
f16K1Gain frac16_t | Observer K1 gain is set up according to Equation 9 as:
T K w; .pKish
The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.
i16K1GainSh int16_t Observer K2 gain shift takes care of keeping the f16K1Gain variable within the fractional

range <-1; 1). The shift is determined as:
log (T K ;* mrig) — log 1 < K Ish < log (T~ K ;") — log 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

38/85

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Input Description
type
f16K2Gain frac16_t | Observer K2 gain is set up according to Equation 11 as:

w, _
KZ' max. . K 2sh

677![1)(

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K2GainSh int16_t Observer K2 gain shift takes care of keeping the f16K2Gain variable within the fractional
range <-1; 1). The shift is determined as:

log(K - Z:Z;)— log, 1< K2sh<log(K,- %) —log,0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16A2Gain frac16_t | Observer A2 gain for the output position is set up according to Equation 10 as:

2 -
T, max o A2sh
'max

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16A2GainSh int16_t | Observer A2 gain shift for the position integrator takes care of keeping the f16A2Gain
variable within the fractional range <-1 ; 1). The shift is determined as:

log (T’ maxy log,1< A2sh<log (T maxy log,0.5

Omax Omax

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

243 AMCLIB_ANGLE_TRACK_OBSRV_T_FLT

Variable name Input Description
type
fliSpeed float_t Estimated speed as the output of the first numerical integrator. The parameter is within

the range <-32768.0; 32767.99998). Controlled by the AMCLIB_AngleTrackObsrv_A32ff
algorithm; cleared by AMCLIB_AngleTrackObsrvinit_A32af function.

f32A2 frac32_t | Output of the second numerical integrator. The parameter is within
the range <-1 ; 1). Controlled by the AMCLIB_AngleTrackObsrv_A32ff and
AMCLIB_AngleTrackObsrvinit_A32af algorithms.

a32Theta acc32_t | Estimated position as the output of the observer. The parameter is normalized to the range
<-1; 1) that represents an angle (in radians) within the range <-1 ;). Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvinit_A32af algorithms.

fltSinEstim float_t Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1 ; 1>. Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvinit_A32af algorithms.

fltCosEstim float_t Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1 ; 1>. Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvinit_A32af algorithms.

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 39/85

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Input Description
type

fltK1Gain float_t Observer K1 gain is set up according to Equation 6 as: KTs.
The parameter is a 32-bit single precision floating-point value in range (0; 16383.99999). Set
by the user.

fltK2Gain float_t Observer K2 gain is set up according to Equation 8 as: Kj.
The parameter is a 32-bit single precision floating-point value in range (0; 65535.9999689999).
Set by the user.

fltA2Gain float_t Observer A2 gain for the output position is set up according to Equation 7 as: T.

The parameter is a 32-bit single precision floating-point value in range (0; 65535.9999689999).

Set by the user.

2.4.4 Declaration

The available AMCLIB_AngleTrackObsrvinit functions have the following declarations:

void AMCLIB AngleTrackObsrvInit F16(fraclé t fl6Thetalnit, AMCLIB ANGLE TRACK OBSRV T F32 *psCtrl)

void AMCLIB AngleTrackObsrvInit A32ff (acc32_t a32Thetalnit, AMCLIB_ANGLE_ TRACK_OBSRV_T_FLT *psCtrl)

The available AMCLIB_AngleTrackObsrv functions have the following declarations:

fraclé_t AMCLIB AngleTrackObsrv_F16 (const GMCLIB 2COOR SINCOS T F16 *psAnglePos,
AMCLIB ANGLE TRACK OBSRV T F32 *psCtrl)

acc32_t AMCLIB AngleTrackObsrv_A32ff (const GMCLIB_2COOR_SINCOS T FLT *psAnglePos,
AMCLIB ANGLE TRACK OBSRV_T FLT *psCtrl)

2.45 Function use
The use of the AMCLIB_AngleTrackObsrvInit and AMCLIB_AngleTrackObsrv functions is shown in the following example:

#include

{

"amclib.h"

void Isr (void);
void main (void)
sAto.f16KlGain

sAto.il16K1GainSh
sAto.f16K2Gain

static AMCLIB ANGLE TRACK OBSRV_T F32 sAto;
static GMCLIB 2COOR SINCOS T F16 sAnglePos;
static fraclé6 t

fl6PositionEstim, fl6PositionInit;

= FRAC16(0.6434);
-9;
= FRAC16(0.6801) ;

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

40/85

NXP Semiconductors

Algorithms in detail

sAto.i16K2GainSh = -2;
sAto.fl6A2Gain = FRAC16(0.6400) ;
sAto.il6A2GainSh = -4;

fl6PositionInit = FRAC16(0.0);
AMCLIB_AngleTrackObsrvInit F16(fl6PositionInit, &sAto);

sAnglePos.fl16Sin = FRAC16(0.0);
sAnglePos.fl6Cos = FRAC16(1.0);

/* Periodical function or interrupt */
void Isr(void)
{
/* Angle tracking observer calculation */
fl6PositionEstim = AMCLIB AngleTrackObsrv F16 (&sAnglePos, &sAto);

2.5 AMCLIB_CtrIFluxWkng

The AMCLIB_CtrIFluxWkng function controls the motor magnetizing flux for a speed exceeding above the nominal speed of the
motor. Where a higher maximum motor speed is required, the flux (field) weakening technique must be used. The basic task of the
function is to maintain the motor magnetizing flux below the nominal level which does not require a higher supply voltage when the
motor rotates above the nominal motor speed. The lower magnetizing flux is provided by maintaining the flux-producing current
component ip in the flux-weakening region, as shown in Figure 1).

voltage T
flux

flux voltage

nominal flux
flux-weakening region
(constant power)

normal operation
(constant torque)

nominal speed speed

Figure 33. Flux weakening operating range

The AMCLIB_CtrIFluxWkng function processes the magnetizing flux by the PI controller function with the anti-windup functionality
and output limitation. The controller integration can be stopped if the system is saturated by the input flag pointer in the
flux-weakening controller structure. The flux-weakening controller algorithm is executed in the following steps:

1. The voltage error calculation from the voltage limit and the required voltage.

1 gain

Uerr = (UQLim= [UQreq|) * T gain

Figure 34.

where:

* U is the voltage error

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 41/85

NXP Semiconductors

Algorithms in detail

* UqLim is the Q voltage limit component

* Uqreq is the Q required voltage component

* lgain is the voltage scale - max. value (for fraction gain = 1)
* Ugain is the current scale - max. value (for fraction gain = 1)

2. The input Q current error component must be positive and filtered by the infinite impulse response first-order filter.

iQerrIIR= IIRI(|iQerr|)

Figure 35.

where:
* igerrir is the Q current error component filtered by the first-order IR

* igerr is the input Q current error component (calculated before calling the AMCLIB_CtrIFluxWkng function from the
measured and limited required Q current component value).

3. The flux error is obtained from the previously calculated voltage and current errors as follows:

Lerr = IQerrIR = Uerr

Figure 36.

where:
* igrr is the Q current error component for the flux Pl controller
* iqemiir is the current error component filtered by the first-order IR
* U is the voltage error for the flux PI controller

4. Finally, the flux error (corresponding the Ip) is processed by the flux Pl controller:

ipreq = CtriPIpAW (iey)

Figure 37.

where:
* ibreq i the required D current component for the current control
* igr is the flux error (corresponding the D current component) for the flux PI controller

The controller output should be used as the required D current component in the fast control loop and concurrently used as an
input for the GFLIB_VectorLimit1 function which limits the I controller as follows:

. %) ")
I0req = Vlnzax “!Dreq

Figure 38.

where:
* iqreq is the required Q current component for the current control
* imax is application current limit
* ipreq is the required D current component for the current control

The following figure shows an example of applying the flux-weakening controller function in the control structure. The flux
controller starts to operate when the I controller is not able to compensate the Iq ¢ and creates a deviation between its input
and ouput. The flux controller processes the deviation and decreases the flux excititation (for ACIM, or starts to create the flux
extitation against a permanent magnet flux in case of PMSM). A lower BEMF causes a higher Iq and the motor speed increases.
The speed controller with Iq (g 0N the output should be limited by the vector limit1 function because a part of the current is used
for flux excitation.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 42 /85

NXP Semiconductors

Algorithms in detail

UQIim
Abs
mre
:) UQreq
© ilCllim
UD req
stop integration flag ~ ACM:lonom OF I
MTPA output

Figure 39. Flux weakening function in control block structure

2.5.1 Available versions
This function is available in the following versions:

» Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1) in case of no limitation.
The parameters are of fractional or accumulator types.

 Floating-point output - the output is the floating-point result within the type's full range in case of no limitation. The parameters
are of a floating-point type as well.

The available versions of the AMCLIB_CtrIFluxWknglnit function are shown in the following table:

Table 10. Init function versions

Function name Input Parameters Result
type type

AMCLIB_CtrIFluxWknglnit_F |frac16_t | AMCLIB_CtrlIFluxWknglnit_A32* void

16
The inputs are a 16-bit fractional initial value for the flux Pl controller integrating the part state
and a pointer to the flux-weakening controller's parameters structure. The function initializes the
flux PI controller and the IIR1 filter.

AMCLIB_CtrIFluxWknglnit_F | float_t AMCLIB_CtrIFluxWknglnit_FLT* void

LT

The inputs are a 32-bit single precision floating-point initial value for the flux Pl controller
integrating the part state and a pointer to the flux-weakening controller's parameters structure.
The function initializes the flux PI controller and the 1IR1 filter.

The available versions of the AMCLIB_CtrIFluxWkng function are shown in the following table:

Table 11. Function versions

Function name Input type Parameters Result
e
Q current Q required Q voltage typ
error voltage limit
AMCLIB_CtrIFluxWkn |frac16_t frac16_t frac16_t AMCLIB_CTRL_FLUX WKNG_T_A32* frac16_t

F16
9- The Q current error component value input (Iq controller input) and the Q required voltage value input

(Ig controller output) are 16-bit fractional values within the range <-1; 1). The Q voltage limit value input

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 43/85

NXP Semiconductors

Table 11. Function versions (continued)

Algorithms in detail

Function name

Input type Parameters Result
e
Q current Q required Q voltage typ
error voltage limit

(constant value) is a 16-bit fractional value within the range (0 ; 1). The parameters are pointed to by an
input pointer. The function returns a 16-bit fractional value in the range <f16LowerLim ; f16UpperLim>.

g_FLT

AMCLIB_CtrIFluxWkn

float_t float_t

float_t AMCLIB_CTRL_FLUX_WKNG_T_FLT* float_t

The Q current error component value input (lq controller input) is a 32-bit single precision floating-point
value within the full type's range. The Q required voltage value input (Iq controller output) is a 32-bit
single precision floating-point value within the full type's range.The Q voltage limit value (constant
value) is a 32-bit single precision floating-point positive value. The parameters are pointed to by

an input pointer. The function returns a 32-bit single precision floating-point value in the range
<fltLowerLim ; fltUpperLim>.

2.5.2 AMCLIB_CTRL_FLUX_WKNG_T_A32

Variable name

Input type

Description

sFWPiParam

GFLIB_CTRL_PI_P_AW_T_A
32

The input pointer for the flux Pl controller parameter structure. The flux
controller output should be negative. Therefore, set at least the following
parameters:

» a32PGain - proportional gain, the range is <0 ; 65536.0).
+ a32IGain - integral gain, the range is <0 ; 65536.0).
» f16UpperLim - upper limit, the zero value should be set.

« f16LowerLim - the lower limit, the range is <-1; 0).

slgErrlIR1Para
m

GDFLIB_FILTER_IIR1_T_F32

The input pointer for the 1IR1 filter parameter structure. The 1IR1 filters the
absolute value of the Q current error component for the flux controller. Set
at least the following parameters:

» sFltCoeff.f32B0 - BO coefficient, must be divided by 2.
+ sFItCoeff.f32B1 - B1 coefficient, must be divided by 2.

» sFltCoeff.f32A1 - A1 (sign-inverted) coefficient, must be divided by -2
(negative two).

g

f16IqErrlIR1 frac32_t The lq current error component,filtered by the IIR1 filter for the flux PI
controller, as shown in Equation 2. The output value calculated by the
algorithm.

f16UFWETrr frac16_t The voltage error, as shown in Equation 1. The output value calculated by
the algorithm.

f1I6FWErr frac16_t The flux-weakening error, as shown in Equation 3. The output value
calculated by the algorithm.

*bStoplintegFla |frac16_t The integration of the PI controller is suspended if the stop flag is set.

When it is cleared, the integration continues. The pointer is set by the user
and controlled by the application.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

44 /85

NXP Semiconductors

Algorithms in detail

2.5.3 AMCLIB_CTRL_FLUX_WKNG_T_FLT

Variable name Input type Description

sFWPiParam GFLIB_CTRL_PI_P_AW_T_F | The input pointer for the flux PI controller parameter structure. The flux
LT controller output should be negative. Therefore, set at least the following
parameters:

+ fltPGain - the proportional gain, the parameter is a 32-bit single
precision floating-point type non-negative value.

« fltiGain - the integral gain, the parameter is a 32-bit single precision
floating-point type non-negative value.

« fltUpperLim - the upper limit, the zero value should be set.

« fltLowerLim - the lower limit, the parameter is a 32-bit single precision
floating-point type positive value.

slgErrlIR1Para | GDFLIB_FILTER_IIR1_T_FLT | The input pointer for the 1IR1 filter parameter structure. The IIR1 filters the
m absolute value of the Q current error component for the flux controller. Set
at least the following parameters:

» sFItCoeff.fitBO - BO coefficient.
» sFItCoeff.fltB1 - B1 coefficient.
» sFItCoeff.fitA1 - A1 coefficient.

fltigErrlIR1 float_t The Iq current error, filtered by the 1IR1 filter for the flux Pl controller, as
shown in Equation 2. The output value calculated by the algorithm.

fitUFWETrr float_t The voltage error, as shown in Equation 1. The output value calculated by
the algorithm.

fitFWErr float_t The flux-weakening error, as shown in Equation 3. The output value
calculated by the algorithm.

fltiGainUgain float_t The current/voltage scale, calculated according to:

I .
fltIGainU gain= Ugmfl
gain

Set by the user.

*bStopintegFla | float_t The integration of the flux PI controller is suspended if the input stop flag is
g set. When it is cleared, the integration continues. The pointer is set by the
user and controlled by the application.

2.5.4 Declaration
The available AMCLIB_CtrIFluxWknglnit functions have the following declarations:

void AMCLIB CtrlFluxWkngInit F16(fracl6_t fl6InitVval, AMCLIB_CTRL_FLUX WKNG T A32 *psParam)

void AMCLIB CtrlFluxWkngInit FLT (float t fltInitVal, AMCLIB CTRL FLUX WKNG T FLT *psParam)

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 45/ 85

NXP Semiconductors

The available AMCLIB_CtrIFluxWkng functions have the following declarations:

fraclé t AMCLIB CtrlFluxWkng F16 (fracl6 t f16IQErr, fracl6 t f16UQReq, fracl6 t £16UQLim,

AMCLIB CTRL FLUX WKNG T A32 *psParam)

float t AMCLIB CtrlFluxWkng FLT (float t fltIQErr, float t fltUQReq, float t f1tUQLim,

AMCLIB CTRL FLUX WKNG T FLT *psParam)

2.5.5 Function use

Algorithms in detail

The use of the AMCLIB_CtrIFluxWknglnit and AMCLIB_CtrIFluxWkng functions is shown in the following examples:

Fixed-point version:
#include "amclib.h"

static AMCLIB_CTRL_FLUX WKNG T A32 sCtrl;
static fraclé t f16IQErr, f16UQReq, f16UQLim;
static fraclé6 t fl16IdReqg, flé6InitVal;

static bool t bStopIntegFlag;

void Isr(void) ;

void main (void)

{
/* Associate input stop integration flag */
bStopIntegFlag = FALSE;
sCtrl.bStopIntegFlag = &bStopIntegFlag;

/* Set PI controller and IIR1 parameters */
sCtrl.sFWPiParam.a32PGain = ACC32(0.1);
sCtrl.sFWPiParam.a32IGain = ACC32(0.2);
sCtrl.sFWPiParam.f1l6UpperLim = FRAC16(0.);
sCtrl.sFWPiParam.fl6LowerLim = FRAC1l6(-0.9);

/* Flux weakening controller initialization */
fl16InitVal = FRAC16(0.0);
AMCLIB CtrlFluxWkngInit F16(f16InitVal, &sCtrl);

/* Assign input variable */
f16IQErr = FRAC16(-0.1);
f16UQReq FRAC16(-0.2) ;
£f16UQLim = FRAC16(0.8);

/* Periodical function or interrupt */
void Isr()
{
/* Flux weakening controller calculation */
fl6Result = AMCLIB CtrlFluxWkng F16 (f16IQErr, f16UQReq, f16UQLim,

sCtrl.sIgErrIIlParam.sFltCoeff.£f32B0 = FRAC32(0.245237275252786 / 2.0);
sCtrl.sIgErrIIlParam.sFltCoeff.£f32B1 = FRAC32(0.245237275252786 / 2.0);
sCtrl.sIgErrIIlParam.sFltCoeff.f32A1 = FRAC32(-0.509525449494429 / -2.0);

&sCtrl) ;

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

46 /85

NXP Semiconductors

Algorithms in detail

Floating-point version:
#include "amclib.h"

static AMCLIB CTRL FLUX WKNG T FLT sCtrl;
static float t fltIQErr, fl1tUQReq, f1ltUQLim;
static float_t fltIdReqg, fltInitVval;

static bool t bStopIntegFlag;

void Isr(void) ;

void main (void)

{
/* Associate input stop integration flag */
bStopIntegFlag = FALSE;
sCtrl.bStopIntegFlag = &bStopIntegFlag;

/* Set PI controller and IIRl parameters */
sCtrl.sFWPiParam.fltPGain = 0.1F;

sCtrl.sFWPiParam.fltIGain = 0.2F;
sCtrl.sFWPiParam.fltUpperLim = 0.0F;
sCtrl.sFWPiParam.fltLowerLim = -0.9F;
sCtrl.sIgErrIIRIParam.sFltCoeff.f1tB0 = 0.245237275252786f;
sCtrl.sIgErrIIR1Param.sF1ltCoeff.f1tBl = 0.245237275252786f;
sCtrl.sIgErrIIRl1Param.sFltCoeff.f1tAl = -0.509525449494429f;

/* Flux weakening controller initialization */
fltInitval = 0.0F;

AMCLIB CtrlFluxWkngInit FLT (fltInitVal, &sCtrl);

/* Assign input variable */

fltIQErr = -0.1F;
f1tUQReq = -0.2F;
£1tUQLim = 0.8F;

/* Periodical function or interrupt */
void Isr (void)
{
/* Flux weakening controller calculation */
fltIdReq = AMCLIB CtrlFluxWkng FLT (f1tIQErr, f1ltUQReq, f1tUQLim, &sCtrl);

2.6 AMCLIB_PMSMBemfObsrvAB

The AMCLIB_PMSMBemfObsrvAB function calculates the algorithm of the back-electro-motive force (back-EMF) observer in a
stationary reference frame. The estimation method for the rotor position and the angular speed is based on the mathematical
model of an interior PMSM motor with an extended electro-motive force function, which is realized in the alpha/beta stationary
reference frame.

The back-EMF observer detects the generated motor voltages, induced by the permanent magnets. The angle-tracking observer
uses the back-EMF signals to calculate the position and speed of the rotor. The transformed model is then derived as:

sin(6,)
0s(0)

U Iy

ug -

RSJ"SLD COrAL
~w, AL Rg+sLp|

18,

+ [AL . (a)ri D siQ)+ S”mcor] . [_c

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 47/ 85

NXP Semiconductors

Algorithms in detail

Where:
* Rgis the stator resistance
* Lp and Lq are the D-axis and Q-axis inductances
* AL = Lp - Lq is the motor saliency
* Y, is the back-EMF constant
* wy is the angular electrical rotor speed
* Ug and ug are the estimated stator voltages
* igand ig are the estimated stator currents
* B, is the estimated rotor electrical position
s is the operator of the derivative

This extended back-EMF model includes both the position information from the conventionally defined back-EMF and the stator
inductance as well. This enables extracting the rotor position and velocity information by estimating the extended back-EMF only.

Both the alpha and beta axes consist of the stator current observer based on the RL motor circuit which requires the
motor parameters.

The current observer input is the sum of the actual applied motor voltage and the cross-coupled rotational term, which corresponds
to the motor saliency (Lp - Lg) and the compensator corrective output. The observer provides the back-EMF signals as a
disturbance because the back-EMF is not included in the observer model.

The block diagram of the observer in the estimated reference frame is shown in Figure 1. The observer compensator is substituted
by a standard PI controller with following equation in the fractional arithmetic.

isc(k) *Imax = KP) exc(k) “Cmaxt Ts* KI) esc(k) “Epax T isc(k - 1) *Imax

where:
» Kp is the observer proportional gain [-]
» K| is the observer integral gain [-]
* isc(K) = [iy, ig] is the scaled stator current vector in the actual step
* ise(k - 1) =iy, is] is the scaled stator current vector in the previous step
* esc(k) = [ey, eg] is the scaled stator back-EMF voltage vector in the actual step
* imax is the maximum current [A]
* emax IS the maximum back-EMF voltage [V]
» Tgis the sampling time [s]

As shown in Figure 1, the observer model and hence also the Pl controller gains in both axes are identical to each other.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 48 /85

NXP Semiconductors

Algorithms in detail

Ua
. - 3 1
— e L
o 21 SLo+Rs
X Eu
wr—Llp—-Lo
X »€8
i A\ f> , 1
b = ¢ SLp+Rs
up

Figure 40. Block diagram of back-EMF observer

It is obvious that the accuracy of the back-EMF estimates is determined by the correctness of the motor parameters used (R, L),
the fidelity of the reference stator voltage, and the quality of the compensator, such as the bandwidth, phase lag, and so on.

The appropriate dynamic behavior of the back-EMF observer is achieved by the placement of the poles of the stator current
observer characteristic polynomial. This general method is based on matching the coefficients of the characteristic polynomial to
the coefficients of the general second-order system.

. Fs)
Eu9)= ~ B T R TP

The back-EMF observer is a Luenberger-type observer with a motor model, which is implemented using the backward Euler
transformation as:

. _ TS TS ALT&) LD .
l(k)— LD+TSRS -u(k)"r LD+TSRS oe(k)— LD+TSRS .we(k).l(k)+m -l(k_ 1)

Where:
* i(k) = [iy, is] is the stator current vector in the actual step
* i(k - 1) =iy, iz] is the stator current vector in the previous step
* u(k) = [uy, ug] is the stator voltage vector in the actual step
* e(k) = [ey, eg] is the stator back-EMF voltage vector in the actual step
* i'(k) = [iy, -is] is the complementary stator current vector in the actual step
* we(K) is the electrical angular speed in the actual step
» Tgis the sampling time [s]

This equation is transformed into the fractional arithmetic as:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 49/85

NXP Semiconductors

Algorithms in detail

Cyei =L e 4L o yeo AT o ()i +i-’k71-'
sdk) lmax*LD.q.TSRS us(K) * tmax Lp+ TR sk) * emax L+ TR Wesk) * Omax * V'sdK) * Imax L+ TR sl) ® imax

Where:
* isc(K) = [iy, is] is the scaled stator current vector in the actual step
* isc(k - 1) =iy, i] is the scaled stator current vector in the previous step
* Ugc(k) = [uy, ug] is the scaled stator voltage vector in the actual step
* egc(k) = [y, eg] is the scaled stator back-EMF voltage vector in the actual step
* i'sc(k) = [iy, -ig] is the scaled complementary stator current vector in the actual step
* Wesc(K) is the scaled electrical angular speed in the actual step
* imax is the maximum current [A]
* €may is the maximum back-EMF voltage [V]
* Umax IS the maximum stator voltage [V]
* Wmax IS the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary reference frame, the back-EMF can be
estimated as a disturbance produced by the observer controller. However, this is only valid when the back-EMF term is not
included in the observer model. The observer is a closed-loop current observer, therefore, it acts as a state filter for the
back-EMF term.

The estimate of the extended EMF term can be derived from AMCLIB_PMSMBemfObsrvAB_Eq1 as:

_Ey(;(s) - sKp+ K,
E,fs) s2Lp+sRs+sKp+K;

The observer controller can be designed by comparing the closed-loop characteristic polynomial to that of a standard second-
order system as:

Kp+Ry K,
§2+ I, 's+L—D=s2+25wos+a%

where:
* wy is the natural frequency of the closed-loop system (loop bandwidth)
« ¢ is the loop attenuation
» Kp is the proporional gain

» K, is the integral gain

2.6.1 Available versions
This function is available in the following versions:

 Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1). The parameters use
the accumulator types.

» Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the AMCLIB_PMSMBemfObsrvAB function are shown in the following table:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 50/85

NXP Semiconductors

Algorithms in detail

Table 12. Init versions
Function name Parameters Result type
AMCLIB_PMSMBemfObsrvABInit_F16 AMCLIB_BEMF_OBSRV_AB_T_A32 * void

The initialization does not have an input.

AMCLIB_PMSMBemfObsrvABInit_A32fff

AMCLIB_BEMF_OBSRV_AB_T_FLT * void

The initialization does not have an input.

The available versions of the AMCLIB_PMSMBemfObsrvAB function are shown in the following table:

Table 13. Function versions
Function name Input/output type Result type
AMCLIB_PMSMBemfObsrvAB_F16 | Input GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_ALBE_T_F16 *

frac16_t

Parameters AMCLIB_BEMF_OBSRV_AB_T_A32 *

The back-EMF observer with a 16-bit fractional input Alpha/Beta current and voltage, and
a 16-bit electrical speed. All are within the range <-1; 1).

AMCLIB_PMSMBemfObsrvAB_FLT | Input GMCLIB_2COOR_ALBE_T_FLT * void

GMCLIB_2COOR_ALBE_T_FLT *

float_t

Parameters AMCLIB_BEMF_OBSRV_AB_T_FLT *

within the full range.

The back-EMF observer with a 32-bit single precision floating-point input Alpha/Beta
current and voltage, and a 32-bit single precision floating-point electrical speed. All are

2.6.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description

Variable name

Data type

Description

sEObsrv GMCLIB_2COOR_ALBE | The estimated back-EMF voltage structure.
_T_F32
slObsrv GMCLIB_2COOR_ALBE | The estimated current structure.
_T_F32
sCtrl f321Alpha_1 frac32_t The state variable in the alpha part of the observer, integral part
at step k-1. The variable is within the range <-1; 1).
f32IBeta_1 frac32_t The state variable in the beta part of the observer, integral part
at step k-1. The variable is within the range <-1; 1).
a32PGain acc32_t The observer proportional gain is set up according to Equation

7 as:

i
(28woLp-Rs) Tmax

€max

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

51/85

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Data type Description

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32lGain acc32_t The observer integral gain is set up according to Equation 7 as:

imax
wiLpT

S €max

The parameter is within the range <0 ; 65536.0). Set by the

user.
a32lGain acc32_t The current coefficient gain is set up according to Equation 5
as:
_Lp
L+ TR,

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32UGain acc32_t The voltage coefficient gain is set up according to Equation 5
as:

T . umwc
Lp+TRg imax

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain acc32_t The angular speed coefficient gain is set up according to
Equation 5 as:
ALT,
L+ TRy = “max

The parameter is within the range <0 ; 65536.0).Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to Equation 5
as:

T S emax

LpTT5Rs * Tmax

The parameter is within the range <0 ; 65536.0). Set by the
user.

sUnityVctr GMCLIB_2COOR_SINC | The output - estimated angle as the sin/cos vector.
OS_T_F16

2.6.3 AMCLIB_BEMF_OBSRV_AB_T_FLT type description

Variable name Data type Description

sEObsrv GMCLIB_2COOR_ALBE | The estimated back-EMF voltage structure.
_T_FLT

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 52/85

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name

Data type

Description

slObsrv GMCLIB_2COOR_ALBE | The estimated current structure.
_T_FLT
sCtrl fltIAlpha_1 float_t The state variable in the alpha part of the observer, integral part
at step k-1. The variable is within the range <-1; 1).
fltiBeta_1 float_t The state variable in the beta part of the observer, integral part
at step k-1. The variable is within the range <-1; 1).
fltPGain float_t The observer proportional gain is set up according to Equation
7 as:
2% wolp-Rs
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltIGain float_t The observer integral gain is set up according to Equation 7 as:
wilp-Rs
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltIGain float_t The current coefficient gain is set up according to Equation 4
as:
LD
L+ TR,
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltUGain float_t The voltage coefficient gain is set up according to Equation 4
as:
I
Lp+ TR
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltWIGain float_t The angular speed coefficient gain is set up according to
Equation 4 as:
ALT
Lp+TRg
The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.
fltEGain float_t The back-EMF coefficient gain is set up according to Equation 4
as:
Ts
Lp+TsRg
Table continues on the next page...
AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 53/85

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Data type Description

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

sUnityVctr GMCLIB_2COOR_SINC | The output - estimated angle as the sin/cos vector.
OS_T_FLT

2.6.4 Declaration
The available AMCLIB_PMSMBemfObsrvABInit functions have the following declarations:

void AMCLIB PMSMBemfObsrvABInit F16 (AMCLIB BEMF OBSRV_AB T A32 *psCtrl)
void AMCLIB_ PMSMBemfObsrvABInit FLT (AMCLIB BEMF OBSRV AB T FLT *psCtrl)

The available AMCLIB_PMSMBemfObsrvAB functions have the following declarations:
void AMCLIB PMSMBemfObsrvAB F16(const GMCLIB 2COOR ALBE T F16 *psIAlBe, const GMCLIB 2COOR ALBE T F16
*psUAlBe, fracl6 t fl6Speed, AMCLIB BEMF OBSRV_AB T A32 *psCtrl)

void AMCLIB PMSMBemfObsrvAB FLT (const GMCLIB 2COOR ALBE T FLT *psIAlBe, const GMCLIB 2COOR ALBE T FLT
*psUAlBe, float_t fltSpeed, AMCLIB_BEMF OBSRV_AB_T_FLT *psCtrl)

2.6.5 Function use
The use of the AMCLIB_PMSMBemfObsrvAB function is shown in the following examples:

Fixed-point version:
#include "amclib.h"

static GMCLIB 2COOR ALBE T F16 sIAlBe, sUAlBe;
static AMCLIB BEMF OBSRV_AB T A32 sBemfObsrv;
static fracl6 t fl6Speed;

void Isr (void);

void main (void)

{
sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
sBemfObsrv.sCtrl.a32IGain= ACC32(0.134);
sBemfObsrv.a32IGain = ACC32(0.986) ;
sBemfObsrv.a32UGain = ACC32(0.170) ;
sBemfObsrv.a32WIGain= ACC32(0.110) ;
sBemfObsrv.a32EGain = ACC32(0.116)

’

/* Initialization of the observer's structure */
AMCLIB_PMSMBemfObsrvABInit F16 (&sBemfObsrv) ;

sIAlBe.fl6Alpha = FRAC16(0.05);

sIAlBe.fl6Beta = FRAC16(0.1);
sUAlBe.fl6Alpha = FRAC16(0.2);
sUAlBe.fl6Beta = FRACl6(-0.1);

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 54 /85

NXP Semiconductors

/* Periodical function or interrupt */
void Isr(void)
{

/* BEMF Observer calculation */

Algorithms in detail

AMCLIB_ PMSMBemfObsrvAB F16 (&sIAlBe, &sUAlBe, &sBemfObsrv) ;

}

Floating-point version:

#include "amclib.h"

static GMCLIB_ 2COOR ALBE T FLT sIAlBe, sUAlBe;

static AMCLIB BEMF OBSRV _AB T FLT sBemfObsrv;

static float t fltSpeed;

void Isr (void) ;

void main (void)

{
sBemfObsrv.sCtrl.fltIAlpha 1 = 0.0F;
sBemfObsrv.sCtrl.fltIBeta 1 = 0.0F;
sBemfObsrv.sCtrl.f1tPGain = 1.697F;
sBemfObsrv.sCtrl.f1tIGain = 0.134F;
sBemfObsrv.f1tIGain = 0.986F;
sBemfObsrv.f1tUGain = 0.170F;
sBemfObsrv.fl1tWIGain = 0.110F;
sBemfObsrv.fltEGain = 0.116F;
sIAlBe.fltAlpha = 0.05F;
sIAlBe.fltBeta = 0.1F;
sUAlBe.fltAlpha = 0.2F;
sUAlBe.fltBeta = -0.1F;

}

/* Periodical function or interrupt */

void Isr (void)

{
/* BEMF Observer calculation */
AMCLIB PMSMBemfObsrvAB FLT (&sIAlBe, &sUAlBe, &sBemfObsrv) ;

2.7 AMCLIB_PMSMBemfObsrvDQ

The AMCLIB_PMSMBemfObsrvDQ function calculates the algorithm of back-electro-motive force observer in a rotating reference
frame. The method for estimating the rotor position and angular speed is based on the mathematical model of an interior PMSM
motor with an extended electro-motive force function, which is realized in an estimated quasi-synchronous reference frame y-o

as shown in Figure 1.

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

55/85

NXP Semiconductors

Algorithms in detail

Figure 41. The estimated and real rotor dq synchronous reference frames

The back-EMF observer detects the generated motor voltages induced by the permanent magnets. A tracking observer uses the
back-EMF signals to calculate the position and speed of the rotor. The transformed model is then derived as follows:

Rg+sLp —awlp

Uy
oLy Rg+sLp

u(57

", (AL + (i~ sig)+ ¥e,) *

s,

- Sin(gerror)]
c08(Oerror)

where:
* Rgis the stator resistance
* Lp and Lq are the D-axis and Q-axis inductances
* Y, is the back-EMF constant
* wy is the angular electrical rotor speed
* Uy and ug are the estimated stator voltages
* iy and i5 are the estimated stator currents
* Beror is the error between the actual D-Q frame and the estimated frame position
» s is the operator of the derivative

The block diagram of the observer in the estimated reference frame is shown in Figure 1. The observer compensator is substituted
by a standard PI controller with following equation in the fractional arithmetic.

isc(k) *Imax = KP) esc(k) “Emax T T- KI) esc(k) “Epax T isc(k - 1) *Imax

where:
* Kp is the observer proportional gain [-]
» K, is the observer integral gain [-]
* isc(k) = [iy, ig] is the scaled stator current vector in the actual step
* isc(k - 1) =iy, is] is the scaled stator current vector in the previous step
* egc(k) = [y, eg] is the scaled stator back-EMF voltage vector in the actual step
* imax IS the maximum current [A]
* emax IS the maximum back-EMF voltage [V]
* Tgis the sampling time [s]

As shown in Figure 1, the observer model and hence also the Pl controller gains in both axes are identical to each other.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 56/ 85

NXP Semiconductors

Algorithms in detail

Uy
Py 1
e
by z sLp+Rs
X lev
Wr Lo _f — Berror
X Tea
(72)—» -
8 /- \ sLp+Rs
Us

Figure 42. Block diagram of proposed Luenberger-type stator current observer acting as state filter for back-EMF

The position estimation can now be performed by extracting the B¢, term from the model, and adjusting the position of the
estimated reference frame to achieve B¢ = 0. Because the B, term is only included in the saliency-based EMF component of
both uy, and ug axis voltage equations, the Luenberger-based disturbance observer is designed to observe the u, and us voltage
components. The position displacement information B¢, is then obtained from the estimated back-EMFs as follows:

24
Ocrror = at an(e_é)

The estimated position

A

0.
can be obtained by driving the position of the estimated reference frame to achieve zero displacement B¢ro; = 0. The
phase-locked-loop mechanism can be adopted, where the loop compensator ensures correct tracking of the actual rotor flux
position by keeping the error signal B¢ror zeroed, Bgror = 0.

A perfect match between the actual and estimated motor model parameters is assumed, and then the back-EMF transfer function
can be simplified as follows:

A Fs)
El= =Bl ST, TR)

The appropriate dynamic behavior of the back-EMF observer is achieved by the placement of the poles of the stator current
observer characteristic polynomial. This general method is based on matching the coefficients of the characteristic polynomial with
the coefficients of the general second-order system.

The back-EMF observer is a Luenberger-type observer with a motor model, which is implemented using the backward Euler
transformation as follows:

N TS Ts LQTS . LD .
l(k)* LD+TSRS .u(k)+LD+TSRS oe(k)+ LD+TSRS .we(k).l(k)+—LD+TSRS -l(k* 1)

where:
* i(k) = [iy, is] is the stator current vector in the actual step

s i(k - 1) =iy, i5] is the stator current vector in the previous step

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 57/85

NXP Semiconductors

Algorithms in detail

* u(k) = [uy, ug] is the stator voltage vector in the actual step

* e(k) = [ey, eg] is the stator back-EMF voltage vector in the actual step

* i'(k) = [iy, -ig] is the complementary stator current vector in the actual step
* we(K) is the electrical angular speed in the actual step

» Tgis the sampling time [s]

This equation is transformed into the fractional arithmetic as follows:

YT A _ I _Loly it D :
Isc(k) * imax = Ly+ TRy * s (k) * gy + Lp+ TR * es k) ® emaxt+ Lp+ TR * Wesdk) ® Omax ® §'5lk) * imax + Lp+ TR * dsclk = 1) iy

where:
* isc(K) = [iy, is] is the scaled stator current vector in the actual step
* isc(k - 1) =iy, i] is the scaled stator current vector in the previous step
* Use(K) = [uy, ug] is the scaled stator voltage vector in the actual step
* esc(k) = [ey, eg] is the scaled stator back-EMF voltage vector in the actual step
* i'sc(k) = [iy, -ig] is the scaled complementary stator current vector in the actual step
* Wwesc(k) is the scaled electrical angular speed in the actual step
* imax is the maximum current [A]
* emax IS the maximum back-EMF voltage [V]
* Umax IS the maximum stator voltage [V]
* Wmax IS the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary reference frame, the back-EMF can be
estimated as a disturbance produced by the observer controller. However, this is only valid when the back-EMF term is not
included in the observer model. The observer is a closed-loop current observer, therefore it acts as a state filter for the
back-EMF term.

The estimate of the extended EMF term can be derived from AMCLIB_PMSMBemfObsrvDQ_Eq3 as follows:

_f?y,s(S): sKp+K;
E\ss) s2Lp+sRg+sKp+ K,

The observer controller can be designed by comparing the closed-loop characteristic polynomial with that of a standard
second-order system as follows:

Kp+Rg K;
52+ 5 °s+L—D= 2+2§w0s+w%

where:
* Wy is the natural frequency of the closed-loop system (loop bandwith)
« ¢ is the loop attenuation
* Kp is the proporional gain

* k; is the integral gain

2.7.1 Available versions

This function is available in the following versions:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 58 /85

NXP Semiconductors

Algorithms in detail

 Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The parameters use
the accumulator types.

» Accumulator output with floating-point inputs - the output is the accumulator result; the result is within the range <-1; 1). The
inputs are 32-bit single precision floating-point values.

The available versions of the AMCLIB_PMSMBemfObsrvDQ function are shown in the following table:

Table 14. Init versions

Function name Parameters Result type

AMCLIB_PMSMBemfObsrvDQInit_F16 AMCLIB_BEMF_OBSRV_DQ_T_A32 * void

Initialization does not have any input.

AMCLIB_PMSMBemfObsrvDQInit_A32fff AMCLIB_BEMF_OBSRV_DQ_T_FLT * void

Initialization does not have any input.

Table 15. Function versions

Function name Input/output type Result type

AMCLIB_PMSMBemfObsrvDQ_F16 Input GMCLIB_2COOR_DQ_T_F16 * frac16_t
GMCLIB_2COOR_DQ_T_F16 *

frac16_t
Parameters AMCLIB_BEMF_OBSRV_DQ_T_A32 *

Back-EMF observer with a 16-bit fractional input D-Q current and voltage, and a
16-bit electrical speed. All are within the range <-1 ; 1).

AMCLIB_PMSMBemfObsrvDQ_A32fff Input GMCLIB_2COOR_DQ_T_FLT * acc32_t
GMCLIB_2COOR_DQ_T_FLT *

float_t

Parameters | AMCLIB_BEMF_OBSRV_DQ_T_FLT *

Back-EMF observer with a 32-bit single precision floating-point input D-Q current
and voltage, and a 32-bit single precision floating-point electrical speed. All are
within the full range. The output is a 32-bit accumulator angle error normalized to the
range <-1; 1) that represents an angle (in radians) within the range <-1r ;).

2.7.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description

Variable name Data type Description
sEObsrv GMCLIB_2COOR_DQ_T | Estimated back-EMF voltage structure.
_F32
slObsrv GMCLIB_2COOR_DQ_T | Estimated current structure.
_F32
sCtrl f32ID_1 frac32_t State variable in the alpha part of the observer, integral part at
step k - 1. The variable is within the range <-1 ; 1).

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 59/85

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Data type Description
f321Q_1 frac32_t State variable in the beta part of the observer, integral part at
step k - 1. The variable is within the range <-1 ; 1).
a32PGain acc32_t The observer proportional gain is set up according to Equation
7 as:

(28woLp-Ry) o

€max

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32lGain acc32_t The observer integral gain is set up according to Equation 7 as:

i
2 max
wOL DT sCmax

The parameter is within the range <0 ; 65536.0). Set by the

user.
a32IGain acc32_t The current coefficient gain is set up according to Equation 5
as:
Lp
Lp+TsRg

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32UGain acc32_t The voltage coefficient gain is set up according to Equation 5
as:

TS . umax
Lp+TRg imax

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain acc32_t The angular speed coefficient gain is set up according to
Equation 5 as:

LoTy
Lp+ TRy " @max

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to Equation 5
as:

Ty o Gmax
Lp+TRg imax

The parameter is within the range <0 ; 65536.0). Set by the
user.

f16Error frac16_t Output - estimated phase error between a real D / Q frame
system and an estimated D / Q reference system. The error is
within the range <-1; 1).

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 60 /85

NXP Semiconductors

Algorithms in detail

2.7.3 AMCLIB_BEMF_OBSRV_DQ_T_FLT type description

Variable name

Data type

Description

sEObsrv

GMCLIB_2COOR_DQ_T
_FLT

Estimated back-EMF voltage structure.

slObsrv

GMCLIB_2COOR_DQ_T
_FLT

Estimated current structure.

sCitrl

fltID_1

float_t

State variable in the alpha part of the observer; integral part at
step k - 1. The variable is within the range <-1 ; 1).

fitlIQ_1

float_t

State variable in the beta part of the observer; integral part at
step k - 1. The variable is within the range <-1; 1).

fltPGain

float_t

Observer proportional gain is set up according to Equation 7 as:
2% wolp- R

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltiIGain

float_t

The observer integral gain is set up according to Equation 7 as:
w%LD'RS

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltIGain

float_t

The current coefficient gain is set up according to Equation 4
as:

LD
L, +T,Rg

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltUGain

float_t

The voltage coefficient gain is set up according to Equation 4
as:
Ty
Lp+ TR

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltWIGain

float_t

The angular speed coefficient gain is set up according to
Equation 4 as:
LoTy
L+ TR,

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltEGain

float_t

The back-EMF coefficient gain is set up according to Equation 4
as:

I
I+ TsRs

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

61/85

NXP Semiconductors

Algorithms in detail

Table continued from the previous page...

Variable name Data type Description

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

a32Error acc32_t Output - estimated phase error between a real D / Q frame
system and an estimated D / Q reference system. The error is
within the range <-1; 1).

2.7.4 Declaration
The available AMCLIB_PMSMBemfObsrvDQInit functions have the following declarations:

void AMCLIB PMSMBemfObsrvDQInit F16 (AMCLIB BEMF OBSRV_DQ T A32 *psCtrl)
void AMCLIB_ PMSMBemfObsrvDQInit A32fff (AMCLIB BEMF OBSRV_DQ T FLT *psCtrl)

The available AMCLIB_PMSMBemfObsrvDQ functions have the following declarations:
fracl6 t AMCLIB PMSMBemfObsrvDQ F16 (const GMCLIB 2COOR DQ T F16 *psIDQ, const GMCLIB 2COOR DQ T F16
*psUDQ, fraclé t fl6Speed, AMCLIB BEMF OBSRV DQ T A32 *psCtrl)

acc32 t AMCLIB PMSMBemfObsrvDQ A32fff (const GMCLIB 2COOR DQ T FLT *psIDQ, const GMCLIB 2COOR DQ T FLT
*psUDQ, float t fltSpeed, AMCLIB_BEMF OBSRV_DQ T FLT *psCtrl)

2.7.5 Function use
The use of the AMCLIB_PMSMBemfObsrvDQ function is shown in the following example:

#include "amclib.h"

static GMCLIB 2COOR DQ T F16 sIdqg, sUdg;
static AMCLIB BEMF OBSRV_DQ T A32 sBemfObsrv;
static fracl6 t fl6Speed, fl6Error;

void Isr (void);

void main (void)

{
sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
sBemfObsrv.sCtrl.a32IGain= ACC32(0.134);
sBemfObsrv.a32IGain = ACC32(0.986) ;
sBemfObsrv.a32UGain = ACC32(0.170) ;
sBemfObsrv.a32WIGain= ACC32(0.110) ;
sBemfObsrv.a32EGain = ACC32(0.116)

’

/* Initialization of the observer's structure */
AMCLIB_PMSMBemfObsrvDQInit F16 (&sBemfObsrv) ;

sIdq.f16D = FRACL6(0.05);
sIdq.£16Q = FRAC16(0.1);
sUdq.£16D = FRAC16(0.2) ;
sUdq.£16Q = FRACL6(-0.1);

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 62/85

NXP Semiconductors

Algorithms in detail

/* Periodical function or interrupt */
void Isr(void)
{
/* BEMF Observer calculation */
fl6Error = AMCLIB PMSMBemfObsrvDQ F16 (&sIdq, &sUdq, fl6Speed, &sBemfObsrv);

2.8 AMCLIB_TrackObsrv

The AMCLIB_TrackObsrv function calculates a tracking observer for the determination of angular speed and position of the input
error functional signal. The tracking-observer algorithm uses the phase-locked-loop mechanism. It is recommended to call this
function at every sampling period. It requires a single input argument as a phase error. A phase-tracking observer with a standard
P1 controller used as the loop compensator is shown in Figure 1.

Oerror __, W 1 _,9
S

Figure 43. Block diagram of proposed PLL scheme for position estimation

The depicted tracking observer structure has the following transfer function:

Os) _ sKptK;
O(s) ~ s2+sKp+K;

The controller gains K, and K; are calculated by comparing the characteristic polynomial of the resulting transfer function to a
standard second-order system polynomial.

The essential equations for implementation of the tracking observer according to the block scheme in Figure 1 are as follows:

(k)= Kp+ek)+ Ty* Ky » k) + ok —)

0(k) =Ty w(k)+0(k—1)

where:
» Kp is the proportional gain
» K is the integral gain
* T is the sampling period [s]
» e(k) is the position error in step k
» w(k) is the rotor speed [rad / s] in step k
* w(k - 1) is the rotor speed [rad / s] in step k - 1
* B(k) is the rotor angle [rad] in step k
* B(k - 1) is the rotor angle [rad] in step k - 1
In the fractional arithmetic, AMCLIB_TrackObsrv_Eq1 and AMCLIB_TrackObsrv_Eq2 are as follows:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 63/85

NXP Semiconductors

Algorithms in detail

s dk)* Opax = Kp - es k) + T K- e k) + sk = 1) 0pax

Osc (k) Omax = Ty 05 (k) Opa T Osc (K= 1)~ Oy

where:
» eq(K) is the scaled position error in step k
* wgc(K) is the scaled rotor speed [rad / s] in step k
* Wgc(k - 1) is the scaled rotor speed [rad / s] in step k - 1
* B4c(K) is the scaled rotor angle [rad] in step k
* Bsc(k - 1) is the scaled rotor angle [rad] in step k - 1
* Wmax is the maximum speed

* Bmax is the maximum rotor angle (typically)

2.8.1 Available versions
The function is available in the following versions:
 Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1).

» Accumulator output with floating point structure - the output is the accumulator result; the result is within the range <-1; 1).
The structure of the parameters contains the 32-bit single precision floating-point values.

The available versions of the AMCLIB_TrackObsrv function are shown in the following table:

Table 16. Init versions

Function name Init angle Parameters Result type

AMCLIB_TrackObsrvinit_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1; 1) that
represents an angle (in radians) within the range <-r ;).

AMCLIB_TrackObsrvinit_A32af acc32_t AMCLIB_TRACK_OBSRV_T_FLT * void

Input is the 32-bit accumulator value of the angle normalized to the range <-1 ; 1) that
represents an angle in radians within the range <-11;). The parameters are 32-bit single
precision values.

Table 17. Function versions

Function name Input type Parameters Result type

AMCLIB_TrackObsrv_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * frac16_t

Tracking observer with a 16-bit fractional position error input divided by 1. The output from
the obsever is a 16-bit fractional position normalized to the range <-1 ; 1) that represents
an angle (in radians) within the range <-1r ;).

AMCLIB_TrackObsrv_A32af acc32_t AMCLIB_TRACK_OBSRV_T_FLT * acc32_t

Tracking observer with a 32-bit accumulator position divided by 1. The output from

the obsever is a 32-bit accumulator position normalized to the range <-1 ; 1) that
represents an angle (in radians) within the range <-1r; 11). The parameters are 32-bit single
precision values.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 64 /85

NXP Semiconductors

Algorithms in detail

2.8.2 AMCLIB_TRACK_OBSRV_T_F32

Variable name Input Description
type
f32Theta frac32_t | Estimated position as the output of the second numerical integrator. The parameter is within

the range <-1; 1). Controlled by the algorithm.

f32Speed frac32_t | Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1; 1). Controlled by the algorithm.

f321_1 frac32_t | State variable in the controller part of the observer; integral part at step k - 1. The parameter
is within the range <-1; 1). Controlled by the algorithm.

f161Gain frac16_t | The observer integral gain is set up according to Equation 4 as:

Ty Kp g 279"

DOmax

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i161GainSh int16_t The observer integral gain shift takes care of keeping the f161Gain variable within the
fractional range <-1 ; 1). The shift is determined as:

log (T K~ mragr) — log 1 < Ish < log (T K" mzz) ~ 10g 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16PGain frac16_t | The observer proportional gain is set up according to Equation 4 as:

KP' 1 .Z*Psh

Dmax

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16PGainSh int16_t The observer proportional gain shift takes care of keeping the f16PGain variable within the
fractional range <-1 ; 1). The shift is determined as:

log (K p* agz) — log, 1< Psh < log (K p apizz) — l0g 0.5

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16ThGain frac16_t | The observer gain for the output position integrator is set up according to Equation 5 as:

Ty . Ymax | 27Thsh

max

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16ThGainSh int16_t The observer gain shift for the position integrator takes care of keeping the f16ThGain
variable within the fractional range <-1 ; 1). The shift is determined as:

log (T 5%) ~ log,1 < THsh < log (T, 7"*) ~ log 0.5

The parameter is a 16-bit integer type within the range <-15; 15>. Set by the user.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 65/85

NXP Semiconductors

Algorithms in detail

2.8.3 AMCLIB_TRACK_OBSRV_T_FLT

Variable name Input Description
type
f32Theta frac32_t | Estimated position as the output of the second numerical integrator. The parameter is within

the range <-1; 1). Controlled by the algorithm.

fliSpeed float_t Estimated speed as the output of the first numerical integrator. The parameter is within the
full range. Controlled by the algorithm.

fltl_1 float_t State variable in the controller part of the observer; integral part at the step k- 1. The
parameter is within the full range. Controlled by the algorithm.

fltIGain float_t The observer integral gain is set up according to Equation 2 as: K|Tg

The parameter is a 32-bit single precision floating-point value in range (0; 16383.99999). Set

by the user.

fltPGain float_t The observer proportional gain is set up according to Equation 2 as: Kp
The parameter is a 32-bit single precision floating-point value in range (0; 32767.99998). Set
by the user.

fltThGain float_t The observer gain for the output position integrator is set up according to Equation 3 as: T

The parameter is a 32-bit single precision floating-point value in range (0; 1). Set by the user.

2.8.4 Declaration

The available AMCLIB_TrackObsrvInit functions have the following declarations:

void AMCLIB TrackObsrvInit F16(fraclé t flé6ThetaInit, AMCLIB TRACK OBSRV T F32 *psCtrl)
void AMCLIB TrackObsrvInit A32af (acc32 t a32Thetalnit, AMCLIB TRACK OBSRV T FLT *psCtrl)

The available AMCLIB_TrackObsrv functions have the following declarations:
fraclé_t AMCLIB TrackObsrv_F16 (fraclé t fléError, AMCLIB TRACK OBSRV_T F32 *psCtrl)

acc32_t AMCLIB TrackObsrv_A32af (acc32_t a32Error, AMCLIB TRACK OBSRV_T FLT *psCtrl)

2.8.5 Function use

The use of the AMCLIB_TrackObsrv function is shown in the following example:

#include "amclib.h"

static AMCLIB TRACK OBSRV T F32 sTo;
static fraclé6 t fléThetaError;
static fraclé6 t fl6PositionEstim;

void Isr (void) ;

void main (void)

{

sTo.f16IGain = FRAC16(0.6434) ;
sTo.116IGainSh = -9;
sTo.f16PGain = FRAC16(0.6801) ;
sTo.116PGainSh = -2;

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 66/ 85

NXP Semiconductors

Algorithms in detail

sTo.f16ThGain = FRAC16(0.6400) ;
sTo.116ThGainSh = -4;

AMCLIB TrackObsrvInit F16 (FRAC16(0.0), &sTo);

fl6ThetaError = FRAC16(0.5);

/* Periodical function or interrupt */
void Isr(void)

{
/* Tracking observer calculation */
fléPositionEstim = AMCLIB TrackObsrv F16 (flé6ThetaError, &sTo);

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 67 /85

NXP Semiconductors

Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two states: TRUE (1) or FALSE (0). Its definition
is as follows:

typedef unsigned short bool t;

The following figure shows the way in which the data is stored by this type:

Table 18. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused Logi

cal

TRUE Ol o|o|o0o|]o|O0O|]O|O|]O|O|]O|O/|]O]|oO]|]oO] 1
0 0 0 1

FALSE o|lo|o|lo|o|lo|]o|oOo|]O|O|]O|O|O|O|O|oO
0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within the range <0 ; 255>. Its definition is
as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

Table 19. Data storage

Value Integer

255 1 1 1 1 1 1 1 1

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 68 /85

NXP Semiconductors

Library types
Table 19. Data storage (continued)
11 0 0 0 1 1
0
124 0 1 1 1 0
7
159 1 0 0 1 1
9
A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables within the range <0 ; 65535>. Its definition is

as follows:

typedef unsigned short uintlé6 t;

The following figure shows the way in which the data is stored by this type:

Table 20. Data storage

15 14 13 12 1" 10 7 0
Value Integer

65535 1 1 1 1 1 1 1 1
F

5 0 0 0 0 0 0 0 1
0

15518 0 0 1 1 1 1 1 0
3

40768 1 0 0 1 1 1 0 0
9

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 69/85

NXP Semiconductors

A4 uint32_t

Library types

The uint32_t type is an unsigned 32-bit integer type. Itis able to store the variables within the range <0 ; 4294967295>. Its definition

is as follows:

typedef unsigned long uint32 t;

The following figure shows the way in which the data is stored by this type:

Table 21. Data storage

31 24 23 16 15 7 0
Value Integer
4294967295 F F F F
2147483648 8 0 0 0
55977296 0 3 2 0
3451051828 C D D 4
A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the range <-128 ; 127>. Its definition is as follows:

typedef char int8 t;

The following figure shows the way in which the data is stored by this type:

Table 22. Data storage

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021

7 6 5 3 0
Value Sign Integer

127 0 1 1 1 1
7

-128 1 0 0 0 0
8

60 0 0 1 1 0
3

User Guide

70/85

NXP Semiconductors

Library types

Table 22. Data storage (continued)

-97 1 0 0 1 1 1 1 1

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the range <-32768 ; 32767>. Its definition is
as follows:

typedef short intl6 t;

The following figure shows the way in which the data is stored by this type:

Table 23. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Integer
32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 F F F
-32768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0
15518 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
3 Cc 9 E
-24768 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
9 F 4 0
A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the range <-2147483648 ; 2147483647>. Its
definition is as follows:

typedef long int32 t;

The following figure shows the way in which the data is stored by this type:

Table 24. Data storage

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 71/85

NXP Semiconductors

Library types
Table 24. Data storage (continued)
31 24 23 16 15 8 7 0
Value S Integer
2147483647 7 F F F F F F F
-2147483648 8 0 0 0 0 0 0 0
55977296 0 3 5 6 2 5 5 0
-843915468 C D B 2 D F 3 4
A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is as follows:
typedef char frac8 t;

The following figure shows the way in which the data is stored by this type:

Table 25. Data storage

7 6 5 4 3 2 1 0
Value Sign Fractional
0.99219 0 1 1 1 1 1 1 1
7 F
-1.0 1 0 0 0 0 0 0 0
8 0
0.46875 0 0 1 1 1 1 0 0
3 C
-0.75781 1 0 0 1 1 1 1 1
9 F

To store a real number as frac8_t, use the FRAC8 macro.

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 72/85

NXP Semiconductors

Library types

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is
as follows:

typedef short fraclé6 t;

The following figure shows the way in which the data is stored by this type:

Table 26. Data storage

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Value Sign Fractional
0.99997 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 F F F
-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0
0.47357 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
3 Cc 9 E
-0.75586 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0
9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within the range <-1; 1). Its definition is
as follows:

typedef long frac32 t;

The following figure shows the way in which the data is stored by this type:

Table 27. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995

~
M

F F F F F F

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 73/85

NXP Semiconductors

Table 27. Data storage (continued)

Library types

-1.0 8 0 0 0 0
0.02606645970 0 3 5 6 2
-0.3929787632 Cc D B 2 D

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-256 ; 256). Its definition is

as follows:
typedef short accl6 t;

The following figure shows the way in which the data is stored by this type:

Table 28. Data storage

15 14 13 12 11 10 9 8 7 6 5 3
Value Sign Integer Fractional

255.9921875 0 1 1 1 1 1 1 1 1 1 1 1
7 F F

-256.0 1 0 0 0 0 0 0 0 0 0 0 0
8 0 0

1.0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 8

-1.0 1 1 1 1 1 1 1 1 1 0 0 0
F F 8

13.7890625 0 0 0 0 0 1 1 0 1 1 1 0
0 6 E

-89.71875 1 {10 1]{o]o |11 |]0]|o0]1 0
D 3 2

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

74/85

NXP Semiconductors

Library types

To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables within the range <-65536 ; 65536). Its
definition is as follows:

typedef long acc32 t;

The following figure shows the way in which the data is stored by this type:

Table 29. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional
65535.999969 7 F F F F F F F
-65536.0 8 0 0 0 0 0 0 0
1.0 0 0 0 0 8 0 0 0
-1.0 F F F F 8 0 0 0
23.789734 0 0 0 B E 5 1 6
-1171.306793 F D B 6 5 8 B c

To store a real number as acc32_t, use the ACC32 macro.

A.13 float_t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE 754. It is able to store the full precision
(normalized) finite variables within the range <-3.40282 - 1038 ; 3.40282 - 1038) with the minimum resolution of 2-23, The smallest
normalized number is £1.17549 - 10-38. Nevertheless, the denormalized numbers (with reduced precision) reach yet lower values,
from £1.40130 - 1045 to £1.17549 - 1038, The standard also defines the additional values:

* Negative zero
* Infinity
» Negative infinity
* Not a number
The 32-bit type is composed of:
« Sign (bit 31)
» Exponent (bits 23 to 30)
* Mantissa (bits 0 to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit 31. The binary exponent is decoded as
an integer from bits 23 to 30 by subtracting 127. The mantissa (fraction) is stored in bits 0 to 22. An invisible leading bit (it is not

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 75/85

NXP Semiconductors

Library types

actually stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a value 0.25, and so on. As a result,
the mantissa has a value between 1.0 and 2. If the exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used
to enable the gradual underflow.

The float_t type definition is as follows:
typedef float float t;

The following figure shows the way in which the data is stored by this type:

Table 30. Data storage - normalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

(20-22%-227 /o1 1111110111111 11111111111111111

= 3.40282 - 1038 7 F 7 F F F F F

(20-22-2271111 111111011111 111111111111111111

=-3.40282 - 1038 F F 7 F F F F F

2126 0Oloooooo0oo0'0000000000D0O0DO0O0ODO0OO0OO0OO0GO 0O

= 1.17549 - 10-38 0 0 8 0 0 0 0 0

-2°126 Tooo0oo0000'"000000000000O0O0O0DO0OO0OO0GO0TO0DO

=-1.17549 - 10-38 8 0 8 0 0 0 0 0

1.0 0lo11111117000000000000000000O00O00O0O0O

-1.0 "o1111117000000000000000000O00O0O0GO0O

h oj/1o00000091001001000011111101101 1

= 3.1415927 4 0 4 9 0 F D B

-20810.086 |11 0 0 0110 1/01000101001010000101100

Cc 6 A 2 9 4 2 Cc

Table continues on the next page...

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 76 /85

NXP Semiconductors

Library types
Table 30. Data storage - normalized values (continued)
Table 31. Data storage - denormalized values
31 24 23 16 15 87 0
Value S Exponent Mantissa
0.0 0Oloo0o000090000000000000O0O0O0O0O0O00O0O0O0O
0 0 0 0 0 0 0 0
-0.0 "oooo00009%90000000000000O0DO0O0OOO0O0O0O0TO0OQO
8 0 0 0 0 0 0 0

(10-22%.2"%/glo 00 00000(11111111111111111111111

~1.17549 - 10'38 0 0 7 F F F F F

(1.0-22%.2726/110 00000091111 1111111111111111111

= -1.17549 - 1038 8 0 7 F F F F F

2. 2126 0Olooo000001000000000000000O0O0O0O0GO0O0O

= 5.87747 - 10739 0 0 4 0 0 0 0 0

2127126 "o 0000000100000 00000000O0DO0O0O0O0O0O0O0DO

= -5.87747 - 103 8 0 4 0 0 0 0 0

223 . p-126 Oloooo0oo0000/000000000DO0O0ODO0OOOO0OOOO0OGOTO0 1

= 1.40130 - 1045 0 0 0 0 0 0 0 1

-2-28. 2-126 "o o00000090000000000000O00O0O0OO0OGO0O0O0 1

= -1.40130 - 1045 8 0 0 0 0 0 0 1

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 77/85

NXP Semiconductors

Table 32. Data storage - special values

Library types

31 24 23 16 15
Value S Exponent Mantissa
o 0/|1111111170000000000000000000O0GO0TG 0O
7 F 8 0 0 0 0
- M1 11111117M00000000000000000000000
F F 8 0 0 0 0
Notanumber | *1q4 1 9 1 1 1 1 1 non zero
7IF F 800001 to FFFFFF

A.14 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary coordinate system, based on the A, B, and
C components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct

{
fracle t f1l6A;
fracle t f16B;
fracle t fl16C;

} GMCLIB 3COOR T F16;

The structure description is as follows:

Table 33. GMCLIB_3COOR_T_F16 members description

Type Name Description
frac16_t f16A A component; 16-bit fractional type
frac16_t f16B B component; 16-bit fractional type
frac16_t f16C C component; 16-bit fractional type

A.15 GMCLIB_3COOR_T_FLT

The GMCLIB_3COOR_T_FLT structure type corresponds to the three-phase stationary coordinate system, based on the A, B, and
C components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct

{
float t fltA;
float t f1tB;

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide 78185

NXP Semiconductors

float t fl1tC;

} GMCLIB 3COOR T FLT;

The structure description is as follows:

Table 34. GMCLIB_3COOR_T_FLT members description

Type Name Description
float_t fltA A component; 32-bit single precision floating-point type
float_t fltB B component; 32-bit single precision floating-point type
float_t fltC C component; 32-bit single precision floating-point type

A.16 GMCLIB_2COOR_ALBE_T_F16

Library types

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase stationary coordinate system, based on the
Alpha and Beta orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{

fraclée t fle6Alpha;
fraclé_t fléBeta;
} GMCLIB 2COOR ALBE T F16;

The structure description is as follows:

Table 35. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description
frac16_t f16Apha a-component; 16-bit fractional type
frac16_t f16Beta B-component; 16-bit fractional type

A.17 GMCLIB_2COOR_ALBE_T_FLT

The GMCLIB_2COOR_ALBE_T_FLT structure type corresponds to the two-phase stationary coordinate system based on the
Alpha and Beta orthogonal components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{

float t fltAlpha;

float t fltBeta;

} GMCLIB 2COOR ALBE T FLT;

The structure description is as follows:

Table 36. GMCLIB_2COOR_ALBE_T_FLT members description

Type Name Description
float_t fltApha a-component; 32-bit single precision floating-point type
float_t fliBeta B-component; 32-bit single precision floating-point type
AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 79/85

NXP Semiconductors

Library types

A.18 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct

{
fracle t f16D;
fraclée t £16Q;

} GMCLIB 2COOR DQ T F16;

The structure description is as follows:

Table 37. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description
frac16_t f16D D-component; 16-bit fractional type
frac16_t f16Q Q-component; 16-bit fractional type

A.19 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the frac32_t data type. The structure definition is as follows:

typedef struct

{
frac32 t £32D;
frac32 t £320;

} GMCLIB 2COOR DQ T F32;

The structure description is as follows:

Table 38. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description
frac32_t f32D D-component; 32-bit fractional type
frac32_t f32Q Q-component; 32-bit fractional type

A.20 GMCLIB_2COOR_DQ_T_FLT

The GMCLIB_2COOR_DQ_T_FLT structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct

{
float t fltD;
float t f1tQ;

} GMCLIB 2COOR DQ T FLT;

The structure description is as follows:

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 80/85

NXP Semiconductors

Table 39. GMCLIB_2COOR_DQ_T_FLT members description

Type Name Description
float_t fltD D-component; 32-bit single precision floating-point type
float_t fltQ Q-component; 32-bit single precision floating-point type

A.21 GMCLIB_2COOR_SINCOS_T_F16

Library types

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase coordinate system, based on the Sin and

Cos components of a certain angle. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct

{
fracle_t fl6Sin;
fraclée t fl6Cos;

} GMCLIB 2COOR SINCOS T F16;

The structure description is as follows:

Table 40. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description
frac16_t f16Sin Sin component; 16-bit fractional type
frac16_t f16Cos Cos component; 16-bit fractional type

A.22 GMCLIB_2COOR_SINCOS_T_FLT

The GMCLIB_2COOR_SINCOS_T_FLT structure type corresponds to the two-phase coordinate system, based on the Sin and

Cos components of a certain angle. Each member is of the float_t data type. The structure definition is as follows:

typedef struct

{
float t fltSin;
float t fltCos;

} GMCLIB 2COOR SINCOS T FLT;

The structure description is as follows:

Table 41. GMCLIB_2COOR_SINCOS_T_FLT members description

Type Name Description
float_t fltSin Sin component; 32-bit single precision floating-point type
float_t fliCos Cos component; 32-bit single precision floating-point type

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide

81/85

NXP Semiconductors

Library types

A.23 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value of the bool_t type. Its definition is as follows:

#define FALSE ((bool t)O0)

#include "mlib.h"
static bool t bval;
void main (void)

{
bval = FALSE; /* bval = FALSE */

A.24 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of the bool_t type. Its definition is as follows:

#define TRUE ((bool t)1)

#include "mlib.h"
static bool t bval;
void main (void)
{
bval = TRUE; /* bVal = TRUE */

A.25 FRACS8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as follows:

#define FRAC8 (x) ((frac8 t) ((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : Ox7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>, which corresponds to <-1.0 ; 1.0-27>.

#include "mlib.h"
static frac8 t f8val;
void main (void)

{
f8val = FRAC8(0.187); /* f8val = 0.187 */

AMCLIB User's Guide, Rev. 5, 01 November 2021

User Guide 82/85

NXP Semiconductors

Library types
A.26 FRAC16
The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is as follows:
#define FRACL6 (x) ((fracl6 t) ((x) < 0.999969482421875 2 ((x) >= -1 2 (x)*0x8000 : 0x8000) : O0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ; 0x7FFF>, which corresponds to
<-1.0; 1.0-21%>,

#include "mlib.h"
static fraclé t flé6Val;
void main (void)

{
fléval = FRAC16(0.736); /* fléval = 0.736 */

A.27 FRAC32
The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is as follows:

#define FRAC32 (x) ((frac32 t) ((x) <1 ? ((x) > -1 ? (x)*0x80000000 : 0x80000000) : Ox7FFFFFFF))

The inputis multiplied by 2147483648 (=231). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds
to <-1.0; 1.0-2-31>.

#include "mlib.h"
static frac32 t f32val;
void main (void)

{
f32val = FRAC32(-0.1735667) ; /* £32val = -0.1735667 */

A.28 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as follows:
#define ACC16(x) ((accl6 t) ((x) < 255.9921875 2 ((x) >= -256 2 (x)*0x80 : 0x8000) : Ox7TFFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ; 0x7FFF> that corresponds to
<-256.0 ; 255.9921875>.

#include "mlib.h"
static accl6_t aléval;

void main (void)

{

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 83/85

NXP Semiconductors

Library types

alévVal = ACC16(19.45627); /* alé6val = 19.45627 */

A.29 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as follows:

#define ACC32 (x) ((acc32 t) ((x) < 65535.999969482421875 ? ((x) >= -65536 2 (x)*0x8000 : 0x80000000)
O0x7FFFFFFF))

The input is multiplied by 32768 (=219). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds to
<-65536.0 ; 65536.0-21%>,

#include "mlib.h"
static acc32 t a32val;
void main (void)

{
a32Val = ACC32(-13.654437); /* a32val = -13.654437 */

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 84 /85

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at

the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer

is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision

Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 01 November 2021
Document identifier: CM33FAMCLIBUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Library
	1.1 Introduction
	1.1.1 Overview
	1.1.2 Data types
	1.1.3 API definition
	1.1.4 Supported compilers
	1.1.5 Library configuration
	1.1.6 Special issues

	1.2 Library integration into project (MCUXpresso IDE)
	1.3 Library integration into project (Keil µVision)
	1.4 Library integration into project (IAR Embedded Workbench)

	2 Algorithms in detail
	2.1 AMCLIB_ACIMCtrlMTPA
	2.1.1 Available versions
	2.1.2 AMCLIB_ACIM_CTRL_MTPA_T_FLT type description
	2.1.3 Declaration
	2.1.4 Function use

	2.2 AMCLIB_ACIMRotFluxObsrv
	2.2.1 Available versions
	2.2.2 AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT type description
	2.2.3 Declaration
	2.2.4 Function use

	2.3 AMCLIB_ACIMSpeedMRAS
	2.3.1 Available versions
	2.3.2 AMCLIB_ACIMSpeedMRAS_T_FLT type description
	2.3.3 Declaration
	2.3.4 Function use

	2.4 AMCLIB_AngleTrackObsrv
	2.4.1 Available versions
	2.4.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32
	2.4.3 AMCLIB_ANGLE_TRACK_OBSRV_T_FLT
	2.4.4 Declaration
	2.4.5 Function use

	2.5 AMCLIB_CtrlFluxWkng
	2.5.1 Available versions
	2.5.2 AMCLIB_CTRL_FLUX_WKNG_T_A32
	2.5.3 AMCLIB_CTRL_FLUX_WKNG_T_FLT
	2.5.4 Declaration
	2.5.5 Function use

	2.6 AMCLIB_PMSMBemfObsrvAB
	2.6.1 Available versions
	2.6.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description
	2.6.3 AMCLIB_BEMF_OBSRV_AB_T_FLT type description
	2.6.4 Declaration
	2.6.5 Function use

	2.7 AMCLIB_PMSMBemfObsrvDQ
	2.7.1 Available versions
	2.7.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description
	2.7.3 AMCLIB_BEMF_OBSRV_DQ_T_FLT type description
	2.7.4 Declaration
	2.7.5 Function use

	2.8 AMCLIB_TrackObsrv
	2.8.1 Available versions
	2.8.2 AMCLIB_TRACK_OBSRV_T_F32
	2.8.3 AMCLIB_TRACK_OBSRV_T_FLT
	2.8.4 Declaration
	2.8.5 Function use

	A Library types
	A.1 bool_t
	A.2 uint8_t
	A.3 uint16_t
	A.4 uint32_t
	A.5 int8_t
	A.6 int16_t
	A.7 int32_t
	A.8 frac8_t
	A.9 frac16_t
	A.10 frac32_t
	A.11 acc16_t
	A.12 acc32_t
	A.13 float_t
	A.14 GMCLIB_3COOR_T_F16
	A.15 GMCLIB_3COOR_T_FLT
	A.16 GMCLIB_2COOR_ALBE_T_F16
	A.17 GMCLIB_2COOR_ALBE_T_FLT
	A.18 GMCLIB_2COOR_DQ_T_F16
	A.19 GMCLIB_2COOR_DQ_T_F32
	A.20 GMCLIB_2COOR_DQ_T_FLT
	A.21 GMCLIB_2COOR_SINCOS_T_F16
	A.22 GMCLIB_2COOR_SINCOS_T_FLT
	A.23 FALSE
	A.24 TRUE
	A.25 FRAC8
	A.26 FRAC16
	A.27 FRAC32
	A.28 ACC16
	A.29 ACC32

