
AMCLIB User's Guide
ARM® Cortex® M33F

NXP Semiconductors Document identifier: CM33FAMCLIBUG
User Guide Rev. 5, 01 November 2021



Contents
Chapter 1 Library................................................................................................... 4

1.1 Introduction................................................................................................................................4
1.1.1 Overview..................................................................................................................................... 4
1.1.2 Data types................................................................................................................................... 4
1.1.3 API definition............................................................................................................................... 4
1.1.4 Supported compilers................................................................................................................... 5
1.1.5 Library configuration....................................................................................................................5
1.1.6 Special issues............................................................................................................................. 5

1.2 Library integration into project (MCUXpresso IDE) .................................................................. 6
1.3 Library integration into project (Keil µVision) ............................................................................9
1.4 Library integration into project (IAR Embedded Workbench) ................................................. 17

Chapter 2 Algorithms in detail..............................................................................24
2.1 AMCLIB_ACIMCtrlMTPA.........................................................................................................24

2.1.1 Available versions..................................................................................................................... 25
2.1.2 AMCLIB_ACIM_CTRL_MTPA_T_FLT type description.............................................................25
2.1.3 Declaration................................................................................................................................ 25
2.1.4 Function use..............................................................................................................................26

2.2 AMCLIB_ACIMRotFluxObsrv.................................................................................................. 26
2.2.1 Available versions..................................................................................................................... 28
2.2.2 AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT type description.................................................29
2.2.3 Declaration................................................................................................................................ 30
2.2.4 Function use..............................................................................................................................31

2.3 AMCLIB_ACIMSpeedMRAS....................................................................................................31
2.3.1 Available versions..................................................................................................................... 32
2.3.2 AMCLIB_ACIMSpeedMRAS_T_FLT type description...............................................................33
2.3.3 Declaration................................................................................................................................ 34
2.3.4 Function use..............................................................................................................................34

2.4 AMCLIB_AngleTrackObsrv......................................................................................................35
2.4.1 Available versions..................................................................................................................... 37
2.4.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32.............................................................................. 38
2.4.3 AMCLIB_ANGLE_TRACK_OBSRV_T_FLT.............................................................................. 39
2.4.4 Declaration................................................................................................................................ 40
2.4.5 Function use..............................................................................................................................40

2.5 AMCLIB_CtrlFluxWkng............................................................................................................41
2.5.1 Available versions..................................................................................................................... 43
2.5.2 AMCLIB_CTRL_FLUX_WKNG_T_A32......................................................................................44
2.5.3 AMCLIB_CTRL_FLUX_WKNG_T_FLT......................................................................................45
2.5.4 Declaration................................................................................................................................ 45
2.5.5 Function use..............................................................................................................................46

2.6 AMCLIB_PMSMBemfObsrvAB................................................................................................47
2.6.1 Available versions..................................................................................................................... 50
2.6.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description..............................................................51
2.6.3 AMCLIB_BEMF_OBSRV_AB_T_FLT type description..............................................................52
2.6.4 Declaration................................................................................................................................ 54
2.6.5 Function use..............................................................................................................................54

2.7 AMCLIB_PMSMBemfObsrvDQ............................................................................................... 55
2.7.1 Available versions..................................................................................................................... 58
2.7.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description............................................................. 59
2.7.3 AMCLIB_BEMF_OBSRV_DQ_T_FLT type description............................................................. 61

NXP Semiconductors

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 2 / 85



2.7.4 Declaration................................................................................................................................ 62
2.7.5 Function use..............................................................................................................................62

2.8 AMCLIB_TrackObsrv...............................................................................................................63
2.8.1 Available versions..................................................................................................................... 64
2.8.2 AMCLIB_TRACK_OBSRV_T_F32.............................................................................................65
2.8.3 AMCLIB_TRACK_OBSRV_T_FLT............................................................................................ 66
2.8.4 Declaration................................................................................................................................ 66
2.8.5 Function use..............................................................................................................................66

Appendix A Library types..................................................................................... 68
A.1 bool_t.......................................................................................................................................68
A.2 uint8_t......................................................................................................................................68
A.3 uint16_t....................................................................................................................................69
A.4 uint32_t....................................................................................................................................70
A.5 int8_t........................................................................................................................................70
A.6 int16_t......................................................................................................................................71
A.7 int32_t......................................................................................................................................71
A.8 frac8_t..................................................................................................................................... 72
A.9 frac16_t................................................................................................................................... 73
A.10 frac32_t................................................................................................................................. 73
A.11 acc16_t..................................................................................................................................74
A.12 acc32_t..................................................................................................................................75
A.13 float_t.....................................................................................................................................75
A.14 GMCLIB_3COOR_T_F16......................................................................................................78
A.15 GMCLIB_3COOR_T_FLT......................................................................................................78
A.16 GMCLIB_2COOR_ALBE_T_F16...........................................................................................79
A.17 GMCLIB_2COOR_ALBE_T_FLT...........................................................................................79
A.18 GMCLIB_2COOR_DQ_T_F16...............................................................................................80
A.19 GMCLIB_2COOR_DQ_T_F32...............................................................................................80
A.20 GMCLIB_2COOR_DQ_T_FLT.............................................................................................. 80
A.21 GMCLIB_2COOR_SINCOS_T_F16...................................................................................... 81
A.22 GMCLIB_2COOR_SINCOS_T_FLT......................................................................................81
A.23 FALSE...................................................................................................................................82
A.24 TRUE.................................................................................................................................... 82
A.25 FRAC8.................................................................................................................................. 82
A.26 FRAC16................................................................................................................................ 83
A.27 FRAC32................................................................................................................................ 83
A.28 ACC16...................................................................................................................................83
A.29 ACC32...................................................................................................................................84

NXP Semiconductors
Contents

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 3 / 85



Chapter 1
Library
1.1 Introduction

1.1.1 Overview
This user's guide describes the Advanced Motor Control Library (AMCLIB) for the family of ARM Cortex M33F core-based
microcontrollers. This library contains optimized functions.

1.1.2 Data types
AMCLIB supports several data types: (un)signed integer, fractional , and accumulator, and floating point. The integer data types
are useful for general-purpose computation; they are familiar to the MPU and MCU programmers. The fractional data types enable
powerful numeric and digital-signal-processing algorithms to be implemented. The accumulator data type is a combination of
both; that means it has the integer and fractional portions. The floating-point data types are capable of storing real numbers in
wide dynamic ranges. The type is represented by binary digits and an exponent. The exponent allows scaling the numbers from
extremely small to extremely big numbers. Because the exponent takes part of the type, the overall resolution of the number is
reduced when compared to the fixed-point type of the same size.

The following list shows the integer types defined in the libraries:

• Unsigned 16-bit integer—<0 ; 65535> with the minimum resolution of 1

• Signed 16-bit integer—<-32768 ; 32767> with the minimum resolution of 1

• Unsigned 32-bit integer—<0 ; 4294967295> with the minimum resolution of 1

• Signed 32-bit integer—<-2147483648 ; 2147483647> with the minimum resolution of 1

The following list shows the fractional types defined in the libraries:

• Fixed-point 16-bit fractional—<-1 ; 1 - 2-15> with the minimum resolution of 2-15

• Fixed-point 32-bit fractional—<-1 ; 1 - 2-31> with the minimum resolution of 2-31

The following list shows the accumulator types defined in the libraries:

• Fixed-point 16-bit accumulator—<-256.0 ; 256.0 - 2-7> with the minimum resolution of 2-7

• Fixed-point 32-bit accumulator—<-65536.0 ; 65536.0 - 2-15> with the minimum resolution of 2-15

The following list shows the floating-point types defined in the libraries:

• Floating point 32-bit single precision—<-3.40282 · 1038 ; 3.40282 · 1038> with the minimum resolution of 2-23

1.1.3 API definition
AMCLIB uses the types mentioned in the previous section. To enable simple usage of the algorithms, their names use set prefixes
and postfixes to distinguish the functions' versions. See the following example:

f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);

where the function is compiled from four parts:

• MLIB—this is the library prefix

• Mac—the function name—Multiply-Accumulate

• F32—the function output type

NXP Semiconductors

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 4 / 85



• lss—the types of the function inputs; if all the inputs have the same type as the output, the inputs are
not marked

The input and output types are described in the following table:

Table 1. Input/output types

Type Output Input

frac16_t F16 s

frac32_t F32 l

acc32_t A32 a

float_t FLT f

1.1.4 Supported compilers
AMCLIB for the ARM Cortex M33F core is written in C language or assembly language with C-callable interface depending on the
specific function. The library is built and tested using the following compilers:

• MCUXpresso IDE

• IAR Embedded Workbench

• Keil µVision

For the MCUXpresso IDE, the library is delivered in the amclib.a file.

For the Kinetis Design Studio, the library is delivered in the amclib.a file.

For the IAR Embedded Workbench, the library is delivered in the amclib.a file.

For the Keil µVision, the library is delivered in the amclib.lib file.

The interfaces to the algorithms included in this library are combined into a single public interface include file, amclib.h. This is
done to lower the number of files required to be included in your application.

1.1.5 Library configuration
AMCLIB for the ARM Cortex M33F core is written in C language or assembly language with C-callable interface depending on the
specific function. Some functions from this library are inline type, which are compiled together with project using this library. The
optimization level for inline function is usually defined by the specific compiler setting. It can cause an issue especially when high
optimization level is set. Therefore the optimization level for all inline assembly written functions is defined by compiler pragmas
using macros. The configuration header file RTCESL_cfg.h is located in: specific library folder\MLIB\Include. The optimization
level can be changed by modifying the macro value for specific compiler. In case of any change the library functionality is
not guaranteed.

Similarly as optimization level the PowerQuad DSP Coprocessor and Accelerator support can be disable or enable if it has
not been done by defined symbol RTCESL_PQ_ON or RTCESL_PQ_OFF in project setting described in the PowerQuad DSP
Coprocessor and Accelerator support cheaper for specific compiler.

1.1.6 Special issues
1. The equations describing the algorithms are symbolic. If there is positive 1, the number is the closest number to 1 that

the resolution of the used fractional type allows. If there are maximum or minimum values mentioned, check the range
allowed by the type of the particular function version.

2. The library functions that round the result (the API contains Rnd) round to nearest (half up).

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 5 / 85



3. This RTCESL requires the DSP extension for some saturation functions. If the core does not support the DSP extension
feature the assembler code of the RTCESL will not be buildable. For example the core1 of the LPC55s69 has no DSP
extension.

1.2 Library integration into project (MCUXpresso IDE)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB into any MCUXpresso SDK example or
new SDK project using MCUXpresso IDE. The SDK based project uses RTCESL from SDK package.

PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common calculations in DSP applications. This
section shows how to turn the PowerQuad (PQ) support for a function on and off.

1. In the MCUXpresso SDK project name node or in the left-hand part, click Properties or select Project > Properties from the
menu. A project properties dialog appears.

2. Expand the C/C++ Build node and select Settings. See Figure 1.

3. On the right-hand side, under the MCU C Compiler node, click the Preprocessor node. See Figure 1.

Figure 1. Defined symbols

4. In the right-hand part of the dialog, click the Add... icon located next to the Defined symbols (-D) title.

5. In the dialog that appears (see Figure 2), type the following:

• RTCESL_PQ_ON—to turn the PowerQuad support on

• RTCESL_PQ_OFF—to turn the PowerQuad support off

If neither of these two defines is defined, the hardware division and square root support is turned off by default.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 6 / 85



Figure 2. Symbol definition

6. Click OK in the dialog.

7. Click OK in the main dialog.

8. Ensure the PowerQuad moduel to be clocked by calling function RTCESL_PQ_Init(); prior to the first function using PQ
module calling.

See the device reference manual to verify whether the device contains the PowerQuad DSP Coprocessor and
Accelerator support.

Adding RTCESL component to project

The MCUXpresso SDK package is necessary to add any example or new project and RTCESL component. In case the
package has not been downloaded go to mcuxpresso.nxp.com, build the final MCUXpresso SDK package for required board and
download it.

After package is dowloaded, open the MCUXpresso IDE and drag&drop the SDK package in zip format to the Installed SDK
window of the MCUXpresso IDE. After SDK package is dropped the mesage accepting window appears as can be show in
following figure.

Figure 3. MCUXpresso IDE - imporing the SDK package to MCUXpresso IDE

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 7 / 85



Click OK to confirm the SDK package import. Find the Quickstart panel in left bottom part of the MCUXpresso IDE and click New
project... item or Import SDK example(s)... to add rtcesl component to the project.

Figure 4. MCUXpresso IDE - create new project or Import SDK example(s)

Then select your board, and clik Next button.

Figure 5. MCUXpresso IDE - selecting the board

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 8 / 85



Find the Middleware tab in the Components part of the window and click on the checkbox to be the rtcesl component ticked. Last
step is to click the Finish button and wait for project creating with all RTCESL libraries and include paths.

Figure 6. MCUXpresso IDE - selecting rtcesl component

Type the #include syntax into the code where you want to call the library functions. In the left-hand dialog, open the required .c
file. After the file opens, include the following lines into the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gdflib_FP.h"
#include "gmclib_FP.h"
#include "amclib_FP.h"

When you click the Build icon (hammer), the project is compiled without errors.

1.3 Library integration into project (Keil µVision)

This section provides a step-by-step guide on how to quickly and easily include AMCLIB into an empty project or any
MCUXpresso SDK example or demo application projects using Keil µVision. This example uses the default installation path
(C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL). If you have a different installation path, use that path instead. If any MCUXpresso
SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter otherwise read
next chapter.

NXP pack installation for new project (without MCUXpresso SDK)

This example uses the NXP LPC55s69 part, and the default installation path (C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL) is
supposed. If the compiler has never been used to create any NXP MCU-based projects before, check whether the NXP MCU pack
for the particular device is installed. Follow these steps:

1. Launch Keil µVision.

2. In the main menu, go to Project > Manage > Pack Installer….

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 9 / 85



3. In the left-hand dialog (under the Devices tab), expand the All Devices > Freescale (NXP) node.

4. Look for a line called "KVxx Series" and click it.

5. In the right-hand dialog (under the Packs tab), expand the Device Specific node.

6. Look for a node called "Keil::Kinetis_KVxx_DFP." If there are the Install or Update options, click the button to install/
update the package. See Figure 7.

7. When installed, the button has the "Up to date" title. Now close the Pack Installer.

Figure 7. Pack Installer

New project (without MCUXpresso SDK)

To start working on an application, create a new project. If the project already exists and is opened, skip to the next section. Follow
these steps to create a new project:

1. Launch Keil µVision.

2. In the main menu, select Project > New µVision Project…, and the Create New Project dialog appears.

3. Navigate to the folder where you want to create the project, for example C:\KeilProjects\MyProject01. Type the name of the
project, for example MyProject01. Click Save. See Figure 8.

Figure 8. Create New Project dialog

4. In the next dialog, select the Software Packs in the very first box.

5. Type '' into the Search box, so that the device list is reduced to the devices.

6. Expand the node.

7. Click the LPC55s69 node, and then click OK. See Figure 9.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 10 / 85



Figure 9. Select Device dialog

8. In the next dialog, expand the Device node, and tick the box next to the Startup node. See Figure 10.

9. Expand the CMSIS node, and tick the box next to the CORE node.

Figure 10. Manage Run-Time Environment dialog

10. Click OK, and a new project is created. The new project is now visible in the left-hand part of Keil µVision. See Figure 11.

Figure 11. Project

11. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog appears.

12. Select the Target tab.

13. Select Use Single Precision in the Floating Point Hardware option. See Figure 11.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 11 / 85



Figure 12. FPU

PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common calculations in DSP applications. This
section shows how to turn the PowerQuad (PQ) support for a function on and off.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog appears.

2. Select the C/C++ tab. See Figure 13.

3. In the Include Preprocessor Symbols text box, type the following:

• RTCESL_PQ_ON—to turn the hardware division and square root support on.

• RTCESL_PQ_OFF—to turn the hardware division and square root support off.

If neither of these two defines is defined, the hardware division and square root support is turned off by default.

Figure 13. Preprocessor symbols

4. Click OK in the main dialog.

5. Ensure the PowerQuad moduel to be clocked by calling function RTCESL_PQ_Init(); prior to the first function using PQ
module calling.

See the device reference manual to verify whether the device contains the PowerQuad DSP Coprocessor and
Accelerator support.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 12 / 85



Linking the files into the project

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The following steps show how to include all
dependent modules.

To include the library files in the project, create groups and add them.

1. Right-click the Target 1 node in the left-hand part of the Project tree, and select Add Group… from the menu. A new group
with the name New Group is added.

2. Click the newly created group, and press F2 to rename it to RTCESL.

3. Right-click the RTCESL node, and select Add Existing Files to Group 'RTCESL'… from the menu.

4. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\MLIB\Include, and select the
mlib_FP.h file. If the file does not appear, set the Files of type filter to Text file. Click Add. See Figure 14.

Figure 14. Adding .h files dialog

5. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\MLIB, and select the mlib.lib file. If the file does
not appear, set the Files of type filter to Library file. Click Add. See Figure 15.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 13 / 85



Figure 15. Adding .lib files dialog

6. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GFLIB\Include, and select the
gflib_FP.h file. If the file does not appear, set the Files of type filter to Text file. Click Add.

7. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GFLIB, and select the gflib.lib file. If the file
does not appear, set the Files of type filter to Library file. Click Add.

8. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GDFLIB\Include, and select the
gdflib_FP.h file. If the file does not appear, set the Files of type filter to Text file. Click Add.

9. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GDFLIB, and select the gdflib.lib file. If the file
does not appear, set the Files of type filter to Library file. Click Add.

10. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GMCLIB\Include, and select the
gmclib_FP.h file. If the file does not appear, set the Files of type filter to Text file. Click Add.

11. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GMCLIB, and select the gmclib.lib file. If the
file does not appear, set the Files of type filter to Library file. Click Add.

12. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\AMCLIB\Include, and select the
amclib_FP.h file. If the file does not appear, set the Files of type filter to Text file. Click Add.

13. Navigate to the parent folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\AMCLIB, and select the amclib.lib file. If the
file does not appear, set the Files of type filter to Library file. Click Add.

14. Now, all necessary files are in the project tree; see Figure 16. Click Close.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 14 / 85



Figure 16. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules.

1. In the main menu, go to Project > Options for Target 'Target1'…, and a dialog appears.

2. Select the C/C++ tab. See Figure 17.

3. In the Include Paths text box, type the following paths (if there are more paths, they must be separated by ';') or add them
by clicking the … button next to the text box:

• "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\MLIB\Include"

• "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GFLIB\Include"

• "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GDFLIB\Include"

• "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\GMCLIB\Include"

• "C:\NXP\RTCESL\CM33F_RTCESL_4.7_KEIL\AMCLIB\Include"

4. Click OK.

5. Click OK in the main dialog.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 15 / 85



Figure 17. Library path addition

Type the #include syntax into the code. Include the library into a source file. In the new project, it is necessary to create a
source file:

1. Right-click the Source Group 1 node, and Add New Item to Group 'Source Group 1'… from the menu.

2. Select the C File (.c) option, and type a name of the file into the Name box, for example 'main.c'. See Figure 18.

Figure 18. Adding new source file dialog

3. Click Add, and a new source file is created and opened up.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 16 / 85



4. In the opened source file, include the following lines into the #include section, and create a main function:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gdflib_FP.h"
#include "gmclib_FP.h"
#include "amclib_FP.h"
        
int main(void)
{
  while(1);
}

When you click the Build (F7) icon, the project will be compiled without errors.

1.4 Library integration into project (IAR Embedded Workbench)

This section provides a step-by-step guide on how to quickly and easily include the AMCLIB into an empty project or any
MCUXpresso SDK example or demo application projects using IAR Embedded Workbench. This example uses the default
installation path (C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR). If you have a different installation path, use that path instead. If
any MCUXpresso SDK project is intended to use (for example hello_world project) go to Linking the files into the project chapter
otherwise read next chapter.

New project (without MCUXpresso SDK)

This example uses the NXP LPC55S69 part, and the default installation path (C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR) is
supposed. To start working on an application, create a new project. If the project already exists and is opened, skip to the next
section. Perform these steps to create a new project:

1. Launch IAR Embedded Workbench.

2. In the main menu, select Project > Create New Project… so that the "Create New Project" dialog appears. See Figure 19.

Figure 19. Create New Project dialog

3. Expand the C node in the tree, and select the "main" node. Click OK.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 17 / 85



4. Navigate to the folder where you want to create the project, for example, C:\IARProjects\MyProject01. Type the name of the
project, for example, MyProject01. Click Save, and a new project is created. The new project is now visible in the left-hand
part of IAR Embedded Workbench. See Figure 20.

Figure 20. New project

5. In the main menu, go to Project > Options…, and a dialog appears.

6. In the Target tab, select the Device option, and click the button next to the dialog to select the MCU. In this example, select
NXP > LPC55S69 > NXP LPC55S69_core0. Select VFPv5 single precision in the FPU option.The DSP instructions group
is required please check the DSP Extensions checkbox if not checked. Click OK. See Figure 21.

Figure 21. Options dialog

PowerQuad DSP Coprocessor and Accelerator support

Some LPC platforms (LPC55S6x) contain a hardware accelerator dedicated to common calculations in DSP applications. Only
functions runing faster through the PowerQuad module than the core itself are supported and targeted to be calculated by the
PowerQuad module. This section shows how to turn the PowerQuad (PQ) support for a function on and off.

1. In the main menu, go to Project > Options…, and a dialog appears.

2. In the left-hand column, select C/C++ Compiler.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 18 / 85



3. In the right-hand part of the dialog, click the Preprocessor tab (it can be hidden in the right-hand side; use the arrow icons
for navigation).

4. In the text box (at the Defined symbols: (one per line)), type the following (See Figure 22):

• RTCESL_PQ_ON—to turn the PowerQuad support on.

• RTCESL_PQ_OFF—to turn the PowerQuad support off.

If neither of these two defines is defined, the hardware division and square root support is turned off by default.

Figure 22. Defined symbols

5. Click OK in the main dialog.

6. Ensure the PowerQuad moduel to be clocked by calling function RTCESL_PQ_Init(); prior to the first function using PQ
module calling.

See the device reference manual to verify whether the device contains the PowerQuad DSP Coprocessor and
Accelerator support.

Library path variable

To make the library integration easier, create a variable that will hold the information about the library path.

1. In the main menu, go to Tools > Configure Custom Argument Variables…, and a dialog appears.

2. Click the New Group button, and another dialog appears. In this dialog, type the name of the group PATH, and click OK.
See Figure 23.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 19 / 85



Figure 23. New Group

3. Click on the newly created group, and click the Add Variable button. A dialog appears.

4. Type this name: RTCESL_LOC

5. To set up the value, look for the library by clicking the '…' button, or just type the installation path into the box:
C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR. Click OK.

6. In the main dialog, click OK. See Figure 24.

Figure 24. New variable

Linking the files into the project

AMCLIB requires MLIB and GDFLIB and GFLIB and GMCLIB to be included too. The following steps show the inclusion of all
dependent modules.

To include the library files into the project, create groups and add them.

1. Go to the main menu Project > Add Group…

2. Type RTCESL, and click OK.

3. Click on the newly created node RTCESL, go to Project > Add Group…, and create a MLIB subgroup.

4. Click on the newly created node MLIB, and go to the main menu Project > Add Files… See Figure 26.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 20 / 85



5. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\MLIB\Include, and select the mlib.h
file. (If the file does not appear, set the file-type filter to Source Files.) Click Open. See Figure 25.

6. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\MLIB, and select the mlib.a file. If
the file does not appear, set the file-type filter to Library / Object files. Click Open.

Figure 25. Add Files dialog

7. Click on the RTCESL node, go to Project > Add Group…, and create a GFLIB subgroup.

8. Click on the newly created node GFLIB, and go to the main menu Project > Add Files….

9. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GFLIB\Include, and select the
gflib.h file. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

10. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GFLIB, and select the gflib.a file.
If the file does not appear, set the file-type filter to Library / Object files. Click Open.

11. Click on the RTCESL node, go to Project > Add Group…, and create a GDFLIB subgroup.

12. Click on the newly created node GDFLIB, and go to the main menu Project > Add Files….

13. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GDFLIB\Include, and select the
gdflib.h file. (If the file does not appear, set the file-type filter to Source Files.) Click Open.

14. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GDFLIB, and select the gdflib.a
file. If the file does not appear, set the file-type filter to Library / Object files. Click Open.

15. Click on the RTCESL node, go to Project > Add Group…, and create a GMCLIB subgroup.

16. Click on the newly created node GMCLIB, and go to the main menu Project > Add Files….

17. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GMCLIB\Include, and select the
gmclib.h file. If the file does not appear, set the file-type filter to Source Files. Click Open.

18. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\GMCLIB, and select the gmclib.a
file. If the file does not appear, set the file-type filter to Library / Object files. Click Open.

19. Click on the RTCESL node, go to Project > Add Group…, and create an AMCLIB subgroup.

20. Click on the newly created node AMCLIB, and go to the main menu Project > Add Files….

21. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\AMCLIB\Include, and select the
amclib.h file. If the file does not appear, set the file-type filter to Source Files. Click Open.

22. Navigate into the library installation folder C:\NXP\RTCESL\CM33F_RTCESL_4.7_IAR\AMCLIB, and select the amclib.a
file. If the file does not appear, set the file-type filter to Library / Object files. Click Open.

23. Now you will see the files added in the workspace. See Figure 26.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 21 / 85



Figure 26. Project workspace

Library path setup

The following steps show the inclusion of all dependent modules:

1. In the main menu, go to Project > Options…, and a dialog appears.

2. In the left-hand column, select C/C++ Compiler.

3. In the right-hand part of the dialog, click on the Preprocessor tab (it can be hidden in the right; use the arrow icons
for navigation).

4. In the text box (at the Additional include directories title), type the following folder (using the created variable):

• $RTCESL_LOC$\MLIB\Include

• $RTCESL_LOC$\GFLIB\Include

• $RTCESL_LOC$\GDFLIB\Include

• $RTCESL_LOC$\GMCLIB\Include

• $RTCESL_LOC$\AMCLIB\Include

5. Click OK in the main dialog. See Figure 27.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 22 / 85



Figure 27. Library path adition

Type the #include syntax into the code. Include the library included into the main.c file. In the workspace tree, double-click the
main.c file. After the main.c file opens up, include the following lines into the #include section:

#include "mlib_FP.h"
#include "gflib_FP.h"
#include "gdflib_FP.h"
#include "gmclib_FP.h"
#include "amclib_FP.h"

When you click the Make icon, the project will be compiled without errors.

NXP Semiconductors
Library

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 23 / 85



Chapter 2
Algorithms in detail
2.1 AMCLIB_ACIMCtrlMTPA

The AMCLIB_ACIMCtrlMTPA function enables to minimize the ACIM losses by applying the Max Toque per Ampere (MTPA)
strategy. The principle is derived from the ACIM torque equation:

where:

• isd is the D component of the stator current vector

• isq is the Q component of the stator current vector

• isdq is the stator current vector

• θI is the angle of stator the current vector

• Lr is the rotor equivalent inductance

• Lm is the mutual equivalent inductance

• PP is the motor pole pair number constant

• T is the motor mechanic torque

Motor torque depends on the angle of the stator current vector. Maximum eficency (minimum stator joule losses) can be calculated
when motor torque differential is equal zero:

It is clear that the stator current components must be the same values to achieve theθI = π/4 angle. The MTPA stator current vector
trajectory in consideration of the isd limits given by the minimal field excitation and current limitations is shown in Figure 1).

Figure 28. Minimal losses stator current vector trajectory with limits

NXP Semiconductors

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 24 / 85



2.1.1 Available versions
The available versions of the AMCLIB_ACIMCtrlMTPA function are shown in the following table:

Table 2. Init function versions

Function name Input type Parameters Result
type

IdMin IdMax

AMCLIB_ACIMCtrlMTPAInit_F
LT

float_t float_t AMCLIB_ACIM_CTRL_MTPA_T_FLT* void

The input arguments are the 32-bit single precision floating-point values that contain
the limits for isd. They both are positive values (the minimum must be lower than
the maximum) and the pointers to a structure that contains the parameters defined in
AMCLIB_ACIM_CTRL_MTPA_T_FLT type description.

Table 3. Function version

Function name Input
type

Parameters Result
type

AMCLIB_ACIMCtrlMTPA_F
LT

float_t AMCLIB_ACIM_CTRL_MTPA_T_FLT* float_t

The input arguments are the 32-bit single precision floating-point values that contain
the limits for isd. They both are positive values (the minimum must be lower than
the maximum) and the pointers to a structure that contains the parameters defined in
AMCLIB_ACIM_CTRL_MTPA_T_FLT type description.

2.1.2 AMCLIB_ACIM_CTRL_MTPA_T_FLT type description

Variable
name

Data type Description

fltIdExpPara
m

GDFLIB_FILTER_EXP_T_FL
T

The exponential filter structure for the isd current filtration. Set by the user.

fltLowerLim float_t The minimal output limit of isd. Usually determined from the minimum ACIM
rotor flux excitation, as shown in Figure 1. Set by the user, must be a positive
value lower than the upper limit.

fltUpperLim float_t The maximal output limit of isd. Usually determined from the maximum
(typically nominal) ACIM current, as shown in Figure 1. Set by the user, must
be a positive value higher than the lower limit.

2.1.3 Declaration
The available AMCLIB_ACIMCtrlMTPAInit functions have the following declarations:

void AMCLIB_ACIMCtrlMTPAInit_FLT(float_tfltMin,float_tfltMax,AMCLIB_ACIM_CTRL_MTPA_T_FLT *psCtrl)
        

        

The available AMCLIB_ACIMCtrlMTPA functions have the following declarations:

float_t AMCLIB_ACIMCtrlMTPA_FLT(float_tfltIq,AMCLIB_ACIM_CTRL_MTPA_T_FLT *psCtrl)

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 25 / 85



        

        

2.1.4 Function use
The use of the AMCLIB_ACIMCtrlMTPA function is shown in the following examples:

Floating-point version:

#include "amclib.h"

static AMCLIB_ACIM_CTRL_MTPA_T_FLT sMTPAParam;       
static float_t fltIsd;
static float_t fltIsq;   
static float_t fltIDMin; 
static float_t fltIDMax;           

void Isr(void);

void main (void)
{  
    /* Structure parameter setting */
    sMTPAParam.sCtrl.fltIdExpParam.fltA = 0.05F;
    fltIDMin = 0.1F; 
    fltIDMax = 2.2F;
    
    /* Initialization of the ACIMCtrlMTPA's structure */
    AMCLIB_ACIMCtrlMTPAInit_FLT (fltIDMin, fltIDMax, &sMTPAParam);
    
    /* Assign Isq value */
    fltIsq = -0.6F;       
}

/* Periodical function or interrupt */
void Isr(void)
{
    /* Calculating required Isd by MTPA algorithm */
    fltIsd = AMCLIB_ACIMCtrlMTPA_FLT(fltIsq, &sMTPAParam);
}

2.2 AMCLIB_ACIMRotFluxObsrv

The AMCLIB_ACIMRotFluxObsrv function calculates the ACIM flux estimate and its position (angle) from the available
measured signals (currents and voltages). In the case of ACIM FOC, the rotor flux position (angle) is needed to perform
the Park transformation.

The closed-loop flux observer is formed from the two most desirable open-loop estimators, which are referred to as the voltage
model and the current model (as shown in Figure 1). The current model is used for low-speed operation and the voltage model
is used for high-speed operation. A smooth transition between these two models is ensured by the PI controller.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 26 / 85



Figure 29. ACIM rotor flux observer block diagram

The voltage model (stator model) is used to estimate the stator flux-linkage vector or the rotor flux-linkage vector without a speed
signal. The voltage model is derived by integrating the stator voltage equation in the stator stationary coordinates as:

Expressed in discrete form as:

where:

• us is the stator voltage vector

• is is the stator current vector

• Ψs is the stator flux-linkage vector

• Ψr is the rotor flux-linkage vector

• ωr is the rotor electrical angular speed

• ωs is the electrical angular slip speed

• Rs is the stator resistance

• Rr is the rotor equivalent resistance

• Ls is the stator equivalent inductance

• Lr is the rotor equivalent inductance

• Lm is the mutual equivalent inductance

• τr is the motor electrical time constant

• Ts is the sample time

• σ is the motor leakage coefficient

These equations show that the rotor flux linkage is basically the difference between the stator flux-linkage and the leakage flux.
The rotor flux equation is used to estimate the respective flux-linkage vector, corresponding angle. The argument Ψr of the rotor
flux-linkage vector is the rotor field angle θΨr calculated as:

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 27 / 85



The voltage model (stator model) is sufficiently robust and accurate at higher stator frequencies. Two basic deficiencies can
degrade this model as the speed reduces: the integration problem, and model’s sensitivity to stator resistance mismatch.

The current model (rotor model) is derived from the differential equation of the rotor winding. The stator coordinate
implementation is:

When applying field-oriented control assumptions (such as Ψrq = 0 ), then the rotor flux estimated by the current model in the
synchronous rotating frame is:

In discrete form:

The accuracy of the rotor model depends on correct model parameters. It is the rotor time constant in particular that determines
the accuracy of the estimated field angle (the most critical variable in a vector-controlled drive).

2.2.1 Available versions
The available versions of the AMCLIB_ACIMRotFluxObsrv function are shown in the following table:

Table 4. Init version

Function name Parameters Result type

AMCLIB_ACIMRotFluxObsrvInit_FLT AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT * void

The initialization does not have any input.

Table 5. Function version

Function name Input/output type Result type

AMCLIB_ACIMRotFluxObsrv_FLT Input GMCLIB_2COOR_ALBE_T_FLT * void

GMCLIB_2COOR_ALBE_T_FLT *

Parameters AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT *

Rotor flux observer with a 32-bit single precision floating-point inputs: stator
current and voltage in alpha-beta coordinates. All are within the full range. The
function does not return anything. All calculated variables are stored in the
AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT structure.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 28 / 85



2.2.2 AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT type description

Variable name Data type Description

sPsiRotRDQ GMCLIB_2COOR_DQ_T_
FLT

The output rotor flux estimated structure calculated from the current
model. The structure consists of the D and Q rotor flux components
stored for the next steps. The quadrature component is forced to
zero value - required by FOC.

sPsiRotSAlBe GMCLIB_2COOR_ALBE_
T_FLT

The output rotor flux estimated structure calculated from the voltage
model. The structure consists of the alpha and beta rotor flux
components stored for the next steps.

sPsiStatSAlBe GMCLIB_2COOR_ALBE_
T_FLT

The output stator flux estimated structure calculated from the
voltage model. The structure consists of the alpha and beta stator
flux components stored for the next steps.

fltTorque float_t The output estimated motor torque calculated as:

The variable is a 32-bit single precision floating-point type value.

a32RotFluxPos acc32_t The output rotor flux estimated electric position (angle) - a 32-bit
accumulator is normalized to the range <-1 ; 1) that represents an
angle (in radians) within the range <-π ; π).

sCtrl fltCompAlphaInt
eg_1

float_t The state variable in the alpha part of the controller; integral part at
step k-1.

fltCompBetaInte
g_1

float_t The state variable in the beta part of the controller; integral part at
step k-1.

fltCompAlphaErr
_1

float_t The state variable in the alpha part of the controller; error part at
step k-1.

fltCompBetaErr_
1

float_t The state variable in the beta part of the controller; error part at step
k-1.

fltPGain float_t The proportional gain Kp for the stator model PI correction. Set by
the user.

fltIGain float_t The integration gain Ki for the stator model PI correction. Set by the
user.

fltPsiRA1Gain float_t The gain is defined as:

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltPsiRB1Gain float_t The coefficient gain is defined as:

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 29 / 85



Table continued from the previous page...

Variable name Data type Description

fltPsiSA1Gain float_t The gain is defined as:

The finteg is a cut-off frequency of a low-pass filter approximation of
a pure integrator. The parameter is a 32-bit single precision floating-
point type non-negative value. Set by the user.

fltPsiSA2Gain float_t The coefficient gain is defined as:

The finteg is a cut-off frequency of a low-pass filter approximation of
a pure integrator. The parameter is a 32-bit single precision floating-
point type non-negative value. Set by the user.

fltKrInvGain float_t The gain is defined as:

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltKrLsTotLeakGain float_t The coefficient gain is defined as:

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltRsEst float_t The stator resistance parameter is a 32-bit single precision floating-
point type non-negative value. Set by the user.

fltTorqueGain float_t The torque constant coefficient gain is defined as:

The PP is a number of motor pole-pairs. The parameter is a 32-bit
single precision floating-point type non-negative value. Set by the
user.

2.2.3 Declaration
The available AMCLIB_ACIMRotFluxObsrvInit function has the following declarations:

void AMCLIB_ACIMRotFluxObsrvInit_FLT(AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT *psCtrl)       

        

The available AMCLIB_ACIMRotFluxObsrv function has the following declarations:

void AMCLIB_ACIMRotFluxObsrv_FLT(const GMCLIB_2COOR_ALBE_T_FLT *psISAlBe, const 
GMCLIB_2COOR_ALBE_T_FLT *psUSAlBe, AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT *psCtrl)        

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 30 / 85



        

2.2.4 Function use
The use of the AMCLIB_ACIMRotFluxObsrv function is shown in the following examples:

Floating-point version:

#include "amclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sIsAlBe, sUsAlBe;
static AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT sRfoParam;

void Isr(void);

void main (void)
{  
    sRfoParam.sCtrl.fltPGain     = 32750.0F;
    sRfoParam.sCtrl.fltIGain     = 12500.0F;  
    sRfoParam.fltKrInvGain       = 1.0851063829787235F;
    sRfoParam.fltKrLsTotLeakGain = 0.08340425531914897F;
    sRfoParam.fltPsiRA1Gain      = 0.995151077592515F;
    sRfoParam.fltPsiRB1Gain      = 0.002278993531517996F;
    sRfoParam.fltPsiSA1Gain      = 0.9981185907806752F;
    sRfoParam.fltPsiSA2Gain      = 0.00009981185907806752F;  
    sRfoParam.fltRsEst           = 26.06F;
  
    /* Initialization of the RFO's structure */
    AMCLIB_ACIMRotFluxObsrvInit_FLT (&sRfoParam);
    
    sIsAlBe.fltAlpha = 0.05F; 
    sIsAlBe.fltBeta  = 0.1F; 
    sUsAlBe.fltAlpha = 0.2F; 
    sUsAlBe.fltBeta  = -0.1F;       
}

/* Periodical function or interrupt */
void Isr(void)
{
    /* Rotor flux observer calculation */
    AMCLIB_ACIMRotFluxObsrv_FLT(&sIsAlBe, &sUsAlBe, &sRfoParam);
}

2.3 AMCLIB_ACIMSpeedMRAS

The AMCLIB_ACIMSpeedMRAS function is based on the model reference approach (MRAS), and it uses the redundancy of two
machine models of different structures that estimate the same state variable based on different sets of input variables. It means
that the rotor speed can obtained using an estimator with MRAS principle, in which the error vector is formed from the outputs of
two models (both dependent on different motor parameters) - as shown in Figure 1.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 31 / 85



Figure 30. The estimated and real rotor dq synchronous reference frames

The closed-loop flux observer provides a stationary-axis-based rotor flux ΨR from RFO as a reference for the MRAS model,
whereas the adaptive model of MRAS is the current-mode flux observer, which provides adjustable stationary-axis-based
rotor flux:

where:

• is is the stator current vector

• Ψr is the rotor flux-linkage vector

• ωr is the rotor electrical angular speed

• τr is the rotor electrical time constant

• Lm is the mutual equivalent inductance

The phase angle between the two estimated rotor flux vectors is used to correct the adaptive model, according to:

The estimated speed ωR is adjusted by a PI regulator.

2.3.1 Available versions
The available versions of the AMCLIB_ACIMSpeedMRAS function are shown in the following table:

Table 6. Init version

Function name Parameters Result type

AMCLIB_ACIMSpeedMRASInit_FLT AMCLIB_ACIMSpeedMRAS_T_FLT * void

The initialization does not have an input.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 32 / 85



Table 7. Function version

Function name Input/output type Result type

AMCLIB_ACIMSpeedMRAS_FLT Input GMCLIB_2COOR_ALBE_T_FLT * void

GMCLIB_2COOR_ALBE_T_FLT *

acc32_t

Parameters AMCLIB_ACIMSpeedMRAS_T_FLT *

The AMCLIB_ACIMSpeedMRAS_FLT function with a 32-bit single precision
floating-point inputs: stator current and voltage in alpha-beta coordinates.

2.3.2 AMCLIB_ACIMSpeedMRAS_T_FLT type description

Variable name Data type Description

sSpeedIIR1Param GDFLIB_FILTER_IIR1_T_
FLT

The IIR1 filter structure for estimated speed filtration. Set by the
user.

sPsiRotRDQ GMCLIB_2COOR_DQ_T_
FLT

The output rotor flux estimated structure from the current model.
The structure consists of the D and Q rotor flux components stored
for the next step.

fltSpeed float_t The output rotor estimated electrical speed.

fltSpeedElIIR1 float_t The output rotor estimated electrical speed filtered.

fltSpeedMeIIR1 float_t The output rotor estimated mechanical speed filtered.

a32RotPos acc32_t The output rotor estimated electric position (angle) - a 32-bit
accumulator is normalized to the range <-1 ; 1) that represents an
angle (in radians) within the range <-π ; π).

sCtrl fltSpeedInteg_1 float_t The speed integral part - state variable at step k-1 of the electrical
speed controller.

fltSpeedErr_1 float_t The speed error - state variable at step k-1 of the electrical speed
controller.

fltPGain float_t The MRAS proportional gain coefficient. Set by the user.

fltIGain float_t The MRAS integral gain coefficient. Set by the user.

fltPsiRA1Gain float_t The coefficient gain is defined as:

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

fltPsiRB1Gain float_t The coefficient gain is defined as:

The parameter is a 32-bit single precision floating-point type non-
negative value. Set by the user.

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 33 / 85



Table continued from the previous page...

Variable name Data type Description

fltTs float_t The sample time constant - the time between the steps. Set by the
user.

fltSpeedMeGain float_t The speed gain coefficient, defined as:

Where PP is the number of motor pole-pairs. The parameter is a
32-bit single precision floating-point type non-negative value. Set by
the user.

2.3.3 Declaration
The available AMCLIB_ACIMSpeedMRASInit function have the following declarations:

void AMCLIB_ACIMSpeedMRASInit_FLT(AMCLIB_ACIM_SPEED_MRAS_T_FLT *psCtrl)

        

The available AMCLIB_ACIMSpeedMRAS function have the following declarations:

void AMCLIB_ACIMSpeedMRAS_FLT(const GMCLIB_2COOR_ALBE_T_FLT *psISAlBe, const GMCLIB_2COOR_ALBE_T_FLT 
*psPsiRAlBe, acc32_t a32RotPos, AMCLIB_ACIM_SPEED_MRAS_T_FLT *psCtrl)

        

2.3.4 Function use
The use of the AMCLIB_ACIMSpeedMRAS function is shown in the following examples:

Floating-point version:

#include "amclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sIsAlBe, sPsiRAlBe;
static AMCLIB_ACIM_SPEED_MRAS_T sMrasParam;
static acc32_t a32RotPosIn;

void Isr(void);

void main (void)
{  
    sMrasParam.sCtrl.fltIGain  = 12500.0F;
    sMrasParam.sCtrl.fltPGain  = 32750.0F; 
    sMrasParam.fltPsiRA1Gain   = 0.995151077592515F;
    sMrasParam.fltPsiRB1Gain   = 0.002278993531517996F;
    sMrasParam.fltTs           = 0.0001F;
    
    /* Initialization of the MRAS's structure */
    AMCLIB_ACIMSpeedMRASInit_FLT (&sMrasParam);
    
    sIsAlBe.fltAlpha   = 0.05F; 
    sIsAlBe.fltBeta    = 0.1F; 

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 34 / 85



    sPsiRAlBe.fltAlpha = 0.2F; 
    sPsiRAlBe.fltBeta  = -0.1F;       
}

/* Periodical function or interrupt */
void Isr(void)
{
    /* Speed estimation calculation based on MRAS */
    AMCLIB_ACIMSpeedMRAS_FLT(&sIsAlBe, &sPsiRAlBe, a32RotPosIn, &sMrasParam);
}

2.4 AMCLIB_AngleTrackObsrv

The AMCLIB_TrackObsrv function calculates an angle-tracking observer for determination of angular speed and position of the
input signal. It requires two input arguments as sine and cosine samples. The practical implementation of the angle-tracking
observer algorithm is described below.

The angle-tracking observer compares values of the input signals - sin(θ), cos(θ) with their corresponding estimations. As in any
common closed-loop systems, the intent is to minimize the observer error towards zero value. The observer error is given here
by subtracting the estimated resolver rotor angle from the actual rotor angle.

The tracking-observer algorithm uses the phase-locked loop mechanism. It is recommended to call this function at every sampling
period. It requires a single input argument as phase error. A phase-tracking observer with standard PI controller used as the loop
compensator is shown in Figure 1.

Figure 31. Block diagram of proposed PLL scheme for position estimation

Note that the mathematical expression of the observer error is known as the formula of the difference between two angles:

If the deviation between the estimated and the actual angle is very small, then the observer error may be expressed using the
following equation:

The primary benefit of the angle-tracking observer utilization, in comparison with the trigonometric method, is its smoothing
capability. This filtering is achieved by the integrator and the proportional and integral controllers, which are connected in series
and closed by a unit feedback loop. This block diagram tracks the actual rotor angle and speed, and continuously updates their
estimations. The angle-tracking observer transfer function is expressed as follows:

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 35 / 85



The characteristic polynomial of the angle-tracking observer corresponds to the denominator of the following transfer function:

Appropriate dynamic behavior of the angle-tracking observer is achieved by the placement of the poles of characteristic
polynomial. This general method is based on matching the coefficients of characteristic polynomial with the coefficients of a
general second-order system.

The analog integrators in the previous figure (marked as 1 / s) are replaced by an equivalent of the discrete-time integrator
using the backward Euler integration method. The discrete-time block diagram of the angle-tracking observer is shown in the
following figure:

Figure 32. Block scheme of discrete-time tracking observer

The essential equations for implementating the angle-tracking observer (according to this block scheme) are as follows:

where:

• K1 is the integral gain of the I controller

• K2 is the proportional gain of the PI controller

• Ts is the sampling period [s]

• e(k) is the position error in step k

• ω(k) is the rotor speed [rad / s] in step k

• ω(k - 1) is the rotor speed [rad / s] in step k - 1

• a(k) is the integral output of the PI controler [rad / s] in step k

• a(k - 1) is the integral output of the PI controler [rad / s] in step k - 1

• θ(k) is the rotor angle [rad] in step k

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 36 / 85



• θ(k - 1) is the rotor angle [rad] in step k - 1

• θ̂(k) is the estimated rotor angle [rad] in step k

• θ̂(k - 1) is the estimated rotor angle [rad] in step k - 1

In the fractional arithmetic, AMCLIB_AngleTrackObsrv_Eq5 to AMCLIB_AngleTrackObsrv_Eq8 are as follows:

where:

• esc(k) is the scaled position error in step k

• ωsc(k) is the scaled rotor speed [rad / s] in step k

• ωsc(k - 1) is the scaled rotor speed [rad / s] in step k - 1

• asc(k) is the integral output of the PI controler [rad / s] in step k

• asc(k - 1) is the integral output of the PI controler [rad / s] in step k - 1

• θsc(k) is the scaled rotor angle [rad] in step k

• θsc(k - 1) is the scaled rotor angle [rad] in step k - 1

• θ̂sc(k) is the scaled rotor angle [rad] in step k

• θ̂sc(k - 1) is the scaled rotor angle [rad] in step k - 1

• ωmax is the maximum speed

• θmax is the maximum rotor angle (typicaly π)

2.4.1 Available versions
The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1).

• Accumulator output with floating point inputs - the output is the accumulator type, where the inputs for the calculation are the
floating-point types within the range <-1.0 ; 1.0>.

The available versions of the AMCLIB_AngleTrackObsrv function are shown in the following table:

Table 8. Init versions

Function name Init angle Parameters Result
type

AMCLIB_AngleTrackObsrvInit_F16 frac16_t AMCLIB_ANGLE_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1 ; 1) that
represents an angle in (radians) within the range <-π ; π).

AMCLIB_AngleTrackObsrvInit_A32af acc32_t AMCLIB_ANGLE_TRACK_OBSRV_T_FLT * void

The input is a 32-bit accumulator value of the angle divided by π.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 37 / 85



Table 9. Function versions

Function name Input type Parameters Result
type

AMCLIB_AngleTrackObsrv_F16 GMCLIB_2COOR_SINCOS_T_F16 * AMCLIB_ANGLE_TRACK_OBSRV_
T_F32 *

frac16_t

Angle-tracking observer with a two-componenent (sin/cos) 16-bit fractional position input
within the range <-1 ; 1). The output from the obsever is a 16-bit fractional position
normalized to the range <-1 ; 1) that represents an angle (in radians) within the range
<-π ; π).

AMCLIB_AngleTrackObsrv_A32ff GMCLIB_2COOR_SINCOS_T_FLT * AMCLIB_ANGLE_TRACK_OBSRV_
T_FLT *

acc32_t

Tracking observer with a a two-componenent (sin/cos) 32-bit accumulator position input
within the range <-1.0 ; 1.0>. The output from the obsever is a 32-bit accumulator position
normalized to the range <-1 ; 1) that represents an angle (in radians) within the range
<-π ; π).

2.4.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32

Variable name Input
type

Description

f32Speed frac32_t Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1 ; 1). Controlled by the AMCLIB_AngleTrackObsrv_F16 algorithm; cleared by the
AMCLIB_AngleTrackObsrvInit_F16 function.

f32A2 frac32_t Output of the second numerical integrator. The parameter is within the range <-1 ; 1).
Controlled by the AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16
algorithms.

f16Theta frac16_t Estimated position as the output of the observer. The parameter is normalized to the range
<-1 ; 1) that represents an angle (in radians) within the range <-π ; π). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16SinEstim frac16_t Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1 ; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16CosEstim frac16_t Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1 ; 1). Controlled by the
AMCLIB_AngleTrackObsrv_F16 and AMCLIB_AngleTrackObsrvInit_F16 algorithms.

f16K1Gain frac16_t Observer K1 gain is set up according to Equation 9 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K1GainSh int16_t Observer K2 gain shift takes care of keeping the f16K1Gain variable within the fractional
range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 38 / 85



Table continued from the previous page...

Variable name Input
type

Description

f16K2Gain frac16_t Observer K2 gain is set up according to Equation 11 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16K2GainSh int16_t Observer K2 gain shift takes care of keeping the f16K2Gain variable within the fractional
range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16A2Gain frac16_t Observer A2 gain for the output position is set up according to Equation 10 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16A2GainSh int16_t Observer A2 gain shift for the position integrator takes care of keeping the f16A2Gain
variable within the fractional range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

2.4.3 AMCLIB_ANGLE_TRACK_OBSRV_T_FLT

Variable name Input
type

Description

fltSpeed float_t Estimated speed as the output of the first numerical integrator. The parameter is within
the range <-32768.0; 32767.99998). Controlled by the AMCLIB_AngleTrackObsrv_A32ff
algorithm; cleared by AMCLIB_AngleTrackObsrvInit_A32af function.

f32A2 frac32_t Output of the second numerical integrator. The parameter is within
the range <-1 ; 1). Controlled by the AMCLIB_AngleTrackObsrv_A32ff and
AMCLIB_AngleTrackObsrvInit_A32af algorithms.

a32Theta acc32_t Estimated position as the output of the observer. The parameter is normalized to the range
<-1 ; 1) that represents an angle (in radians) within the range <-π ; π). Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvInit_A32af algorithms.

fltSinEstim float_t Sine of the estimated position as the output of the actual step. Keeps the sine of the
position for the next step. The parameter is within the range <-1 ; 1>. Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvInit_A32af algorithms.

fltCosEstim float_t Cosine of the estimated position as the output of the actual step. Keeps the cosine of the
position for the next step. The parameter is within the range <-1 ; 1>. Controlled by the
AMCLIB_AngleTrackObsrv_A32ff and AMCLIB_AngleTrackObsrvInit_A32af algorithms.

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 39 / 85



Table continued from the previous page...

Variable name Input
type

Description

fltK1Gain float_t Observer K1 gain is set up according to Equation 6 as: K1Ts.

The parameter is a 32-bit single precision floating-point value in range (0; 16383.99999). Set
by the user.

fltK2Gain float_t Observer K2 gain is set up according to Equation 8 as: K2.

The parameter is a 32-bit single precision floating-point value in range (0; 65535.9999689999).
Set by the user.

fltA2Gain float_t Observer A2 gain for the output position is set up according to Equation 7 as: Ts.

The parameter is a 32-bit single precision floating-point value in range (0; 65535.9999689999).
Set by the user.

2.4.4 Declaration
The available AMCLIB_AngleTrackObsrvInit functions have the following declarations:

void AMCLIB_AngleTrackObsrvInit_F16(frac16_t f16ThetaInit, AMCLIB_ANGLE_TRACK_OBSRV_T_F32 *psCtrl)
          
void AMCLIB_AngleTrackObsrvInit_A32ff(acc32_t a32ThetaInit, AMCLIB_ANGLE_TRACK_OBSRV_T_FLT *psCtrl)
        

The available AMCLIB_AngleTrackObsrv functions have the following declarations:

frac16_t AMCLIB_AngleTrackObsrv_F16(const GMCLIB_2COOR_SINCOS_T_F16 *psAnglePos, 
AMCLIB_ANGLE_TRACK_OBSRV_T_F32 *psCtrl)
          
acc32_t AMCLIB_AngleTrackObsrv_A32ff(const GMCLIB_2COOR_SINCOS_T_FLT *psAnglePos, 
AMCLIB_ANGLE_TRACK_OBSRV_T_FLT *psCtrl)
        

2.4.5 Function use
The use of the AMCLIB_AngleTrackObsrvInit and AMCLIB_AngleTrackObsrv functions is shown in the following example:

#include "amclib.h"

static AMCLIB_ANGLE_TRACK_OBSRV_T_F32  sAto;
static GMCLIB_2COOR_SINCOS_T_F16 sAnglePos;
static frac16_t      f16PositionEstim, f16PositionInit;

void Isr(void);

void main(void)
{
  sAto.f16K1Gain    = FRAC16(0.6434); 
  sAto.i16K1GainSh  = -9; 
  sAto.f16K2Gain    = FRAC16(0.6801); 

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 40 / 85



  sAto.i16K2GainSh  = -2; 
  sAto.f16A2Gain    = FRAC16(0.6400); 
  sAto.i16A2GainSh  = -4; 

  f16PositionInit = FRAC16(0.0);

  AMCLIB_AngleTrackObsrvInit_F16(f16PositionInit, &sAto);
  
  sAnglePos.f16Sin  = FRAC16(0.0); 
  sAnglePos.f16Cos  = FRAC16(1.0); 
}

/* Periodical function or interrupt */
void Isr(void)
{
  /* Angle tracking observer calculation */
  f16PositionEstim = AMCLIB_AngleTrackObsrv_F16(&sAnglePos, &sAto);
}

2.5 AMCLIB_CtrlFluxWkng

The AMCLIB_CtrlFluxWkng function controls the motor magnetizing flux for a speed exceeding above the nominal speed of the
motor. Where a higher maximum motor speed is required, the flux (field) weakening technique must be used. The basic task of the
function is to maintain the motor magnetizing flux below the nominal level which does not require a higher supply voltage when the
motor rotates above the nominal motor speed. The lower magnetizing flux is provided by maintaining the flux-producing current
component iD in the flux-weakening region, as shown in Figure 1).

Figure 33. Flux weakening operating range

The AMCLIB_CtrlFluxWkng function processes the magnetizing flux by the PI controller function with the anti-windup functionality
and output limitation. The controller integration can be stopped if the system is saturated by the input flag pointer in the
flux-weakening controller structure. The flux-weakening controller algorithm is executed in the following steps:

1. The voltage error calculation from the voltage limit and the required voltage.

Figure 34.

where:

• uerr is the voltage error

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 41 / 85



• uQLim is the Q voltage limit component

• uQreq is the Q required voltage component

• Igain is the voltage scale - max. value (for fraction gain = 1)

• Ugain is the current scale - max. value (for fraction gain = 1)

2. The input Q current error component must be positive and filtered by the infinite impulse response first-order filter.

Figure 35.

where:

• iQerrIIR is the Q current error component filtered by the first-order IIR

• iQerr is the input Q current error component (calculated before calling the AMCLIB_CtrlFluxWkng function from the
measured and limited required Q current component value).

3. The flux error is obtained from the previously calculated voltage and current errors as follows:

Figure 36.

where:

• ierr is the Q current error component for the flux PI controller

• iQerrIIR is the current error component filtered by the first-order IIR

• uerr is the voltage error for the flux PI controller

4. Finally, the flux error (corresponding the ID) is processed by the flux PI controller:

Figure 37.

where:

• iDreq is the required D current component for the current control

• ierr is the flux error (corresponding the D current component) for the flux PI controller

The controller output should be used as the required D current component in the fast control loop and concurrently used as an
input for the GFLIB_VectorLimit1 function which limits the IQ controller as follows:

Figure 38.

where:

• iQreq is the required Q current component for the current control

• imax is application current limit

• iDreq is the required D current component for the current control

The following figure shows an example of applying the flux-weakening controller function in the control structure. The flux
controller starts to operate when the IQ controller is not able to compensate the IQ err and creates a deviation between its input
and ouput. The flux controller processes the deviation and decreases the flux excititation (for ACIM, or starts to create the flux
extitation against a permanent magnet flux in case of PMSM). A lower BEMF causes a higher IQ and the motor speed increases.
The speed controller with IQ reg on the output should be limited by the vector limit1 function because a part of the current is used
for flux excitation.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 42 / 85



Figure 39. Flux weakening function in control block structure

2.5.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1) in case of no limitation.
The parameters are of fractional or accumulator types.

• Floating-point output - the output is the floating-point result within the type's full range in case of no limitation. The parameters
are of a floating-point type as well.

The available versions of the AMCLIB_CtrlFluxWkngInit function are shown in the following table:

Table 10. Init function versions

Function name Input
type

Parameters Result
type

AMCLIB_CtrlFluxWkngInit_F
16

frac16_t AMCLIB_CtrlFluxWkngInit_A32* void

The inputs are a 16-bit fractional initial value for the flux PI controller integrating the part state
and a pointer to the flux-weakening controller's parameters structure. The function initializes the
flux PI controller and the IIR1 filter.

AMCLIB_CtrlFluxWkngInit_F
LT

float_t AMCLIB_CtrlFluxWkngInit_FLT* void

The inputs are a 32-bit single precision floating-point initial value for the flux PI controller
integrating the part state and a pointer to the flux-weakening controller's parameters structure.
The function initializes the flux PI controller and the IIR1 filter.

The available versions of the AMCLIB_CtrlFluxWkng function are shown in the following table:

Table 11. Function versions

Function name Input type Parameters Result
type

Q current
error

Q required
voltage

Q voltage
limit

AMCLIB_CtrlFluxWkn
g_F16

frac16_t frac16_t frac16_t AMCLIB_CTRL_FLUX_WKNG_T_A32* frac16_t

The Q current error component value input (IQ controller input) and the Q required voltage value input
(IQ controller output) are 16-bit fractional values within the range <-1 ; 1). The Q voltage limit value input

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 43 / 85



Table 11. Function versions (continued)

Function name Input type Parameters Result
type

Q current
error

Q required
voltage

Q voltage
limit

(constant value) is a 16-bit fractional value within the range (0 ; 1). The parameters are pointed to by an
input pointer. The function returns a 16-bit fractional value in the range <f16LowerLim ; f16UpperLim>.

AMCLIB_CtrlFluxWkn
g_FLT

float_t float_t float_t AMCLIB_CTRL_FLUX_WKNG_T_FLT* float_t

The Q current error component value input (IQ controller input) is a 32-bit single precision floating-point
value within the full type's range. The Q required voltage value input (IQ controller output) is a 32-bit
single precision floating-point value within the full type's range.The Q voltage limit value (constant
value) is a 32-bit single precision floating-point positive value. The parameters are pointed to by
an input pointer. The function returns a 32-bit single precision floating-point value in the range
<fltLowerLim ; fltUpperLim>.

2.5.2 AMCLIB_CTRL_FLUX_WKNG_T_A32

Variable name Input type Description

sFWPiParam GFLIB_CTRL_PI_P_AW_T_A
32

The input pointer for the flux PI controller parameter structure. The flux
controller output should be negative. Therefore, set at least the following
parameters:

• a32PGain - proportional gain, the range is <0 ; 65536.0).

• a32IGain - integral gain, the range is <0 ; 65536.0).

• f16UpperLim - upper limit, the zero value should be set.

• f16LowerLim - the lower limit, the range is <-1; 0).

sIqErrIIR1Para
m

GDFLIB_FILTER_IIR1_T_F32 The input pointer for the IIR1 filter parameter structure. The IIR1 filters the
absolute value of the Q current error component for the flux controller. Set
at least the following parameters:

• sFltCoeff.f32B0 - B0 coefficient, must be divided by 2.

• sFltCoeff.f32B1 - B1 coefficient, must be divided by 2.

• sFltCoeff.f32A1 - A1 (sign-inverted) coefficient, must be divided by -2
(negative two).

f16IqErrIIR1 frac32_t The IQ current error component,filtered by the IIR1 filter for the flux PI
controller, as shown in Equation 2. The output value calculated by the
algorithm.

f16UFWErr frac16_t The voltage error, as shown in Equation 1. The output value calculated by
the algorithm.

f16FWErr frac16_t The flux-weakening error, as shown in Equation 3. The output value
calculated by the algorithm.

*bStopIntegFla
g

frac16_t The integration of the PI controller is suspended if the stop flag is set.
When it is cleared, the integration continues. The pointer is set by the user
and controlled by the application.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 44 / 85



2.5.3 AMCLIB_CTRL_FLUX_WKNG_T_FLT

Variable name Input type Description

sFWPiParam GFLIB_CTRL_PI_P_AW_T_F
LT

The input pointer for the flux PI controller parameter structure. The flux
controller output should be negative. Therefore, set at least the following
parameters:

• fltPGain - the proportional gain, the parameter is a 32-bit single
precision floating-point type non-negative value.

• fltIGain - the integral gain, the parameter is a 32-bit single precision
floating-point type non-negative value.

• fltUpperLim - the upper limit, the zero value should be set.

• fltLowerLim - the lower limit, the parameter is a 32-bit single precision
floating-point type positive value.

sIqErrIIR1Para
m

GDFLIB_FILTER_IIR1_T_FLT The input pointer for the IIR1 filter parameter structure. The IIR1 filters the
absolute value of the Q current error component for the flux controller. Set
at least the following parameters:

• sFltCoeff.fltB0 - B0 coefficient.

• sFltCoeff.fltB1 - B1 coefficient.

• sFltCoeff.fltA1 - A1 coefficient.

fltIqErrIIR1 float_t The IQ current error, filtered by the IIR1 filter for the flux PI controller, as
shown in Equation 2. The output value calculated by the algorithm.

fltUFWErr float_t The voltage error, as shown in Equation 1. The output value calculated by
the algorithm.

fltFWErr float_t The flux-weakening error, as shown in Equation 3. The output value
calculated by the algorithm.

fltIGainUgain float_t The current/voltage scale, calculated according to:

Set by the user.

*bStopIntegFla
g

float_t The integration of the flux PI controller is suspended if the input stop flag is
set. When it is cleared, the integration continues. The pointer is set by the
user and controlled by the application.

2.5.4 Declaration
The available AMCLIB_CtrlFluxWkngInit functions have the following declarations:

void AMCLIB_CtrlFluxWkngInit_F16(frac16_t f16InitVal, AMCLIB_CTRL_FLUX_WKNG_T_A32 *psParam)

void AMCLIB_CtrlFluxWkngInit_FLT(float_t fltInitVal, AMCLIB_CTRL_FLUX_WKNG_T_FLT *psParam)

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 45 / 85



The available AMCLIB_CtrlFluxWkng functions have the following declarations:

frac16_t AMCLIB_CtrlFluxWkng_F16(frac16_t f16IQErr, frac16_t f16UQReq, frac16_t f16UQLim, 
AMCLIB_CTRL_FLUX_WKNG_T_A32 *psParam)

float_t AMCLIB_CtrlFluxWkng_FLT(float_t fltIQErr, float_t fltUQReq, float_t fltUQLim, 
AMCLIB_CTRL_FLUX_WKNG_T_FLT *psParam)

2.5.5 Function use
The use of the AMCLIB_CtrlFluxWkngInit and AMCLIB_CtrlFluxWkng functions is shown in the following examples:

Fixed-point version:

#include "amclib.h"
          
static AMCLIB_CTRL_FLUX_WKNG_T_A32 sCtrl;
static frac16_t f16IQErr, f16UQReq, f16UQLim;
static frac16_t f16IdReq, f16InitVal;
static bool_t bStopIntegFlag;

void Isr(void);

void main(void)
{   
    /* Associate input stop integration flag */ 
    bStopIntegFlag = FALSE;
    sCtrl.bStopIntegFlag = &bStopIntegFlag; 
    
    /* Set PI controller and IIR1 parameters */
    sCtrl.sFWPiParam.a32PGain = ACC32(0.1);     
    sCtrl.sFWPiParam.a32IGain = ACC32(0.2); 
    sCtrl.sFWPiParam.f16UpperLim = FRAC16(0.);
    sCtrl.sFWPiParam.f16LowerLim = FRAC16(-0.9);
    sCtrl.sIqErrII1Param.sFltCoeff.f32B0 = FRAC32(0.245237275252786 / 2.0);
    sCtrl.sIqErrII1Param.sFltCoeff.f32B1 = FRAC32(0.245237275252786 / 2.0);
    sCtrl.sIqErrII1Param.sFltCoeff.f32A1 = FRAC32(-0.509525449494429 / -2.0);
          
    /* Flux weakening controller initialization */
    f16InitVal = FRAC16(0.0);
    AMCLIB_CtrlFluxWkngInit_F16(f16InitVal, &sCtrl);
    
    /* Assign input variable */
    f16IQErr = FRAC16(-0.1); 
    f16UQReq = FRAC16(-0.2); 
    f16UQLim = FRAC16(0.8); 
}

/* Periodical function or interrupt */
void Isr()
{
    /* Flux weakening controller calculation */
    f16Result = AMCLIB_CtrlFluxWkng_F16(f16IQErr, f16UQReq, f16UQLim, &sCtrl); 
}

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 46 / 85



Floating-point version:

#include "amclib.h"

static AMCLIB_CTRL_FLUX_WKNG_T_FLT  sCtrl;
static float_t fltIQErr, fltUQReq, fltUQLim;
static float_t fltIdReq, fltInitVal;
static bool_t bStopIntegFlag;

void Isr(void);

void main(void)
{
    /* Associate input stop integration flag */ 
    bStopIntegFlag = FALSE;
    sCtrl.bStopIntegFlag =  &bStopIntegFlag;   
    
    /* Set PI controller and IIR1 parameters */
    sCtrl.sFWPiParam.fltPGain = 0.1F;    
    sCtrl.sFWPiParam.fltIGain = 0.2F;
    sCtrl.sFWPiParam.fltUpperLim = 0.0F;
    sCtrl.sFWPiParam.fltLowerLim = -0.9F;
    sCtrl.sIqErrIIR1Param.sFltCoeff.fltB0 = 0.245237275252786f;
    sCtrl.sIqErrIIR1Param.sFltCoeff.fltB1 = 0.245237275252786f;
    sCtrl.sIqErrIIR1Param.sFltCoeff.fltA1 = -0.509525449494429f;

    /* Flux weakening controller initialization */
    fltInitVal = 0.0F;
    AMCLIB_CtrlFluxWkngInit_FLT(fltInitVal, &sCtrl);

    /* Assign input variable */
    fltIQErr = -0.1F;
    fltUQReq = -0.2F;
    fltUQLim = 0.8F;
}

/* Periodical function or interrupt */
void Isr(void)
{
  /* Flux weakening controller calculation */
  fltIdReq = AMCLIB_CtrlFluxWkng_FLT(fltIQErr, fltUQReq, fltUQLim, &sCtrl);
}

2.6 AMCLIB_PMSMBemfObsrvAB

The AMCLIB_PMSMBemfObsrvAB function calculates the algorithm of the back-electro-motive force (back-EMF) observer in a
stationary reference frame. The estimation method for the rotor position and the angular speed is based on the mathematical
model of an interior PMSM motor with an extended electro-motive force function, which is realized in the alpha/beta stationary
reference frame.

The back-EMF observer detects the generated motor voltages, induced by the permanent magnets. The angle-tracking observer
uses the back-EMF signals to calculate the position and speed of the rotor. The transformed model is then derived as:

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 47 / 85



Where:

• RS is the stator resistance

• LD and LQ are the D-axis and Q-axis inductances

• ΔL = LD - LQ is the motor saliency

• Ψm is the back-EMF constant

• ωr is the angular electrical rotor speed

• uα and uβ are the estimated stator voltages

• iα and iβ are the estimated stator currents

• θr is the estimated rotor electrical position

• s is the operator of the derivative

This extended back-EMF model includes both the position information from the conventionally defined back-EMF and the stator
inductance as well. This enables extracting the rotor position and velocity information by estimating the extended back-EMF only.

Both the alpha and beta axes consist of the stator current observer based on the RL motor circuit which requires the
motor parameters.

The current observer input is the sum of the actual applied motor voltage and the cross-coupled rotational term, which corresponds
to the motor saliency (LD - LQ) and the compensator corrective output. The observer provides the back-EMF signals as a
disturbance because the back-EMF is not included in the observer model.

The block diagram of the observer in the estimated reference frame is shown in Figure 1. The observer compensator is substituted
by a standard PI controller with following equation in the fractional arithmetic.

where:

• KP is the observer proportional gain [-]

• KI is the observer integral gain [-]

• isc(k) = [iγ, iδ] is the scaled stator current vector in the actual step

• isc(k - 1) = [iγ, iδ] is the scaled stator current vector in the previous step

• esc(k) = [eγ, eδ] is the scaled stator back-EMF voltage vector in the actual step

• imax is the maximum current [A]

• emax is the maximum back-EMF voltage [V]

• TS is the sampling time [s]

As shown in Figure 1, the observer model and hence also the PI controller gains in both axes are identical to each other.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 48 / 85



Figure 40. Block diagram of back-EMF observer

It is obvious that the accuracy of the back-EMF estimates is determined by the correctness of the motor parameters used (R, L),
the fidelity of the reference stator voltage, and the quality of the compensator, such as the bandwidth, phase lag, and so on.

The appropriate dynamic behavior of the back-EMF observer is achieved by the placement of the poles of the stator current
observer characteristic polynomial. This general method is based on matching the coefficients of the characteristic polynomial to
the coefficients of the general second-order system.

The back-EMF observer is a Luenberger-type observer with a motor model, which is implemented using the backward Euler
transformation as:

Where:

• i(k) = [iγ, iδ] is the stator current vector in the actual step

• i(k - 1) = [iγ, iδ] is the stator current vector in the previous step

• u(k) = [uγ, uδ] is the stator voltage vector in the actual step

• e(k) = [eγ, eδ] is the stator back-EMF voltage vector in the actual step

• i'(k) = [iγ, -iδ] is the complementary stator current vector in the actual step

• ωe(k) is the electrical angular speed in the actual step

• TS is the sampling time [s]

This equation is transformed into the fractional arithmetic as:

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 49 / 85



Where:

• isc(k) = [iγ, iδ] is the scaled stator current vector in the actual step

• isc(k - 1) = [iγ, iδ] is the scaled stator current vector in the previous step

• usc(k) = [uγ, uδ] is the scaled stator voltage vector in the actual step

• esc(k) = [eγ, eδ] is the scaled stator back-EMF voltage vector in the actual step

• i'sc(k) = [iγ, -iδ] is the scaled complementary stator current vector in the actual step

• ωesc(k) is the scaled electrical angular speed in the actual step

• imax is the maximum current [A]

• emax is the maximum back-EMF voltage [V]

• umax is the maximum stator voltage [V]

• ωmax is the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary reference frame, the back-EMF can be
estimated as a disturbance produced by the observer controller. However, this is only valid when the back-EMF term is not
included in the observer model. The observer is a closed-loop current observer, therefore, it acts as a state filter for the
back-EMF term.

The estimate of the extended EMF term can be derived from AMCLIB_PMSMBemfObsrvAB_Eq1 as:

The observer controller can be designed by comparing the closed-loop characteristic polynomial to that of a standard second-
order system as:

where:

• ω0 is the natural frequency of the closed-loop system (loop bandwidth)

• ξ is the loop attenuation

• KP is the proporional gain

• KI is the integral gain

2.6.1 Available versions
This function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The parameters use
the accumulator types.

• Floating-point output - the output is the floating-point result within the type's full range.

The available versions of the AMCLIB_PMSMBemfObsrvAB function are shown in the following table:

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 50 / 85



Table 12. Init versions

Function name Parameters Result type

AMCLIB_PMSMBemfObsrvABInit_F16 AMCLIB_BEMF_OBSRV_AB_T_A32 * void

The initialization does not have an input.

AMCLIB_PMSMBemfObsrvABInit_A32fff AMCLIB_BEMF_OBSRV_AB_T_FLT * void

The initialization does not have an input.

The available versions of the AMCLIB_PMSMBemfObsrvAB function are shown in the following table:

Table 13. Function versions

Function name Input/output type Result type

AMCLIB_PMSMBemfObsrvAB_F16 Input GMCLIB_2COOR_ALBE_T_F16 * void

GMCLIB_2COOR_ALBE_T_F16 *

frac16_t

Parameters AMCLIB_BEMF_OBSRV_AB_T_A32 *

The back-EMF observer with a 16-bit fractional input Alpha/Beta current and voltage, and
a 16-bit electrical speed. All are within the range <-1 ; 1).

AMCLIB_PMSMBemfObsrvAB_FLT Input GMCLIB_2COOR_ALBE_T_FLT * void

GMCLIB_2COOR_ALBE_T_FLT *

float_t

Parameters AMCLIB_BEMF_OBSRV_AB_T_FLT *

The back-EMF observer with a 32-bit single precision floating-point input Alpha/Beta
current and voltage, and a 32-bit single precision floating-point electrical speed. All are
within the full range.

2.6.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description

Variable name Data type Description

sEObsrv GMCLIB_2COOR_ALBE
_T_F32

The estimated back-EMF voltage structure.

sIObsrv GMCLIB_2COOR_ALBE
_T_F32

The estimated current structure.

sCtrl f32IAlpha_1 frac32_t The state variable in the alpha part of the observer, integral part
at step k-1. The variable is within the range <-1 ; 1).

f32IBeta_1 frac32_t The state variable in the beta part of the observer, integral part
at step k-1. The variable is within the range <-1 ; 1).

a32PGain acc32_t The observer proportional gain is set up according to Equation
7 as:

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 51 / 85



Table continued from the previous page...

Variable name Data type Description

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32IGain acc32_t The observer integral gain is set up according to Equation 7 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32IGain acc32_t The current coefficient gain is set up according to Equation 5
as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32UGain acc32_t The voltage coefficient gain is set up according to Equation 5
as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain acc32_t The angular speed coefficient gain is set up according to
Equation 5 as:

The parameter is within the range <0 ; 65536.0).Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to Equation 5
as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

sUnityVctr GMCLIB_2COOR_SINC
OS_T_F16

The output - estimated angle as the sin/cos vector.

2.6.3 AMCLIB_BEMF_OBSRV_AB_T_FLT type description

Variable name Data type Description

sEObsrv GMCLIB_2COOR_ALBE
_T_FLT

The estimated back-EMF voltage structure.

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 52 / 85



Table continued from the previous page...

Variable name Data type Description

sIObsrv GMCLIB_2COOR_ALBE
_T_FLT

The estimated current structure.

sCtrl fltIAlpha_1 float_t The state variable in the alpha part of the observer, integral part
at step k-1. The variable is within the range <-1 ; 1).

fltIBeta_1 float_t The state variable in the beta part of the observer, integral part
at step k-1. The variable is within the range <-1 ; 1).

fltPGain float_t The observer proportional gain is set up according to Equation
7 as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltIGain float_t The observer integral gain is set up according to Equation 7 as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltIGain float_t The current coefficient gain is set up according to Equation 4
as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltUGain float_t The voltage coefficient gain is set up according to Equation 4
as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltWIGain float_t The angular speed coefficient gain is set up according to
Equation 4 as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltEGain float_t The back-EMF coefficient gain is set up according to Equation 4
as:

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 53 / 85



Table continued from the previous page...

Variable name Data type Description

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

sUnityVctr GMCLIB_2COOR_SINC
OS_T_FLT

The output - estimated angle as the sin/cos vector.

2.6.4 Declaration
The available AMCLIB_PMSMBemfObsrvABInit functions have the following declarations:

void AMCLIB_PMSMBemfObsrvABInit_F16(AMCLIB_BEMF_OBSRV_AB_T_A32 *psCtrl)
void AMCLIB_PMSMBemfObsrvABInit_FLT(AMCLIB_BEMF_OBSRV_AB_T_FLT *psCtrl)

The available AMCLIB_PMSMBemfObsrvAB functions have the following declarations:

void AMCLIB_PMSMBemfObsrvAB_F16(const GMCLIB_2COOR_ALBE_T_F16 *psIAlBe, const GMCLIB_2COOR_ALBE_T_F16 
*psUAlBe, frac16_t f16Speed, AMCLIB_BEMF_OBSRV_AB_T_A32 *psCtrl)
          
void AMCLIB_PMSMBemfObsrvAB_FLT(const GMCLIB_2COOR_ALBE_T_FLT *psIAlBe, const GMCLIB_2COOR_ALBE_T_FLT 
*psUAlBe, float_t fltSpeed, AMCLIB_BEMF_OBSRV_AB_T_FLT *psCtrl)
        

2.6.5 Function use
The use of the AMCLIB_PMSMBemfObsrvAB function is shown in the following examples:

Fixed-point version:

#include "amclib.h"

static GMCLIB_2COOR_ALBE_T_F16 sIAlBe, sUAlBe;
static AMCLIB_BEMF_OBSRV_AB_T_A32 sBemfObsrv;
static frac16_t f16Speed;

void Isr(void);

void main (void)
{  
  sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
  sBemfObsrv.sCtrl.a32IGain= ACC32(0.134);
  sBemfObsrv.a32IGain = ACC32(0.986);
  sBemfObsrv.a32UGain = ACC32(0.170);
  sBemfObsrv.a32WIGain= ACC32(0.110);
  sBemfObsrv.a32EGain = ACC32(0.116);    
  
  /* Initialization of the observer's structure */
  AMCLIB_PMSMBemfObsrvABInit_F16(&sBemfObsrv);

  sIAlBe.f16Alpha = FRAC16(0.05); 
  sIAlBe.f16Beta  = FRAC16(0.1); 
  sUAlBe.f16Alpha = FRAC16(0.2); 
  sUAlBe.f16Beta  = FRAC16(-0.1);        

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 54 / 85



}

/* Periodical function or interrupt */
void Isr(void)
{
  /* BEMF Observer calculation */
  AMCLIB_PMSMBemfObsrvAB_F16(&sIAlBe, &sUAlBe, f16Speed, &sBemfObsrv);
}

Floating-point version:

#include "amclib.h"

static GMCLIB_2COOR_ALBE_T_FLT sIAlBe, sUAlBe;
static AMCLIB_BEMF_OBSRV_AB_T_FLT sBemfObsrv;
static float_t fltSpeed;

void Isr(void);

void main (void)
{  
  sBemfObsrv.sCtrl.fltIAlpha_1 = 0.0F; 
  sBemfObsrv.sCtrl.fltIBeta_1 = 0.0F; 
  sBemfObsrv.sCtrl.fltPGain = 1.697F;
  sBemfObsrv.sCtrl.fltIGain = 0.134F;
  sBemfObsrv.fltIGain = 0.986F;
  sBemfObsrv.fltUGain = 0.170F;
  sBemfObsrv.fltWIGain = 0.110F;
  sBemfObsrv.fltEGain = 0.116F;    
  
  sIAlBe.fltAlpha = 0.05F; 
  sIAlBe.fltBeta = 0.1F; 
  sUAlBe.fltAlpha = 0.2F; 
  sUAlBe.fltBeta = -0.1F;        
}

/* Periodical function or interrupt */
void Isr(void)
{
  /* BEMF Observer calculation */
  AMCLIB_PMSMBemfObsrvAB_FLT(&sIAlBe, &sUAlBe, fltSpeed, &sBemfObsrv);
}

2.7 AMCLIB_PMSMBemfObsrvDQ

The AMCLIB_PMSMBemfObsrvDQ function calculates the algorithm of back-electro-motive force observer in a rotating reference
frame. The method for estimating the rotor position and angular speed is based on the mathematical model of an interior PMSM
motor with an extended electro-motive force function, which is realized in an estimated quasi-synchronous reference frame γ-δ
as shown in Figure 1.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 55 / 85



Figure 41. The estimated and real rotor dq synchronous reference frames

The back-EMF observer detects the generated motor voltages induced by the permanent magnets. A tracking observer uses the
back-EMF signals to calculate the position and speed of the rotor. The transformed model is then derived as follows:

where:

• RS is the stator resistance

• LD and LQ are the D-axis and Q-axis inductances

• Ψm is the back-EMF constant

• ωr is the angular electrical rotor speed

• uγ and uδ are the estimated stator voltages

• iγ and iδ are the estimated stator currents

• θerror is the error between the actual D-Q frame and the estimated frame position

• s is the operator of the derivative

The block diagram of the observer in the estimated reference frame is shown in Figure 1. The observer compensator is substituted
by a standard PI controller with following equation in the fractional arithmetic.

where:

• KP is the observer proportional gain [-]

• KI is the observer integral gain [-]

• isc(k) = [iγ, iδ] is the scaled stator current vector in the actual step

• isc(k - 1) = [iγ, iδ] is the scaled stator current vector in the previous step

• esc(k) = [eγ, eδ] is the scaled stator back-EMF voltage vector in the actual step

• imax is the maximum current [A]

• emax is the maximum back-EMF voltage [V]

• TS is the sampling time [s]

As shown in Figure 1, the observer model and hence also the PI controller gains in both axes are identical to each other.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 56 / 85



Figure 42. Block diagram of proposed Luenberger-type stator current observer acting as state filter for back-EMF

The position estimation can now be performed by extracting the θerror term from the model, and adjusting the position of the
estimated reference frame to achieve θerror = 0. Because the θerror term is only included in the saliency-based EMF component of
both uγ and uδ axis voltage equations, the Luenberger-based disturbance observer is designed to observe the uγ and uδ voltage
components. The position displacement information θerror is then obtained from the estimated back-EMFs as follows:

The estimated position

can be obtained by driving the position of the estimated reference frame to achieve zero displacement θerror = 0. The
phase-locked-loop mechanism can be adopted, where the loop compensator ensures correct tracking of the actual rotor flux
position by keeping the error signal θerror zeroed, θerror = 0.

A perfect match between the actual and estimated motor model parameters is assumed, and then the back-EMF transfer function
can be simplified as follows:

The appropriate dynamic behavior of the back-EMF observer is achieved by the placement of the poles of the stator current
observer characteristic polynomial. This general method is based on matching the coefficients of the characteristic polynomial with
the coefficients of the general second-order system.

The back-EMF observer is a Luenberger-type observer with a motor model, which is implemented using the backward Euler
transformation as follows:

where:

• i(k) = [iγ, iδ] is the stator current vector in the actual step

• i(k - 1) = [iγ, iδ] is the stator current vector in the previous step

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 57 / 85



• u(k) = [uγ, uδ] is the stator voltage vector in the actual step

• e(k) = [eγ, eδ] is the stator back-EMF voltage vector in the actual step

• i'(k) = [iγ, -iδ] is the complementary stator current vector in the actual step

• ωe(k) is the electrical angular speed in the actual step

• TS is the sampling time [s]

This equation is transformed into the fractional arithmetic as follows:

where:

• isc(k) = [iγ, iδ] is the scaled stator current vector in the actual step

• isc(k - 1) = [iγ, iδ] is the scaled stator current vector in the previous step

• usc(k) = [uγ, uδ] is the scaled stator voltage vector in the actual step

• esc(k) = [eγ, eδ] is the scaled stator back-EMF voltage vector in the actual step

• i'sc(k) = [iγ, -iδ] is the scaled complementary stator current vector in the actual step

• ωesc(k) is the scaled electrical angular speed in the actual step

• imax is the maximum current [A]

• emax is the maximum back-EMF voltage [V]

• umax is the maximum stator voltage [V]

• ωmax is the maximum electrical angular speed in [rad / s]

If the Luenberger-type stator current observer is properly designed in the stationary reference frame, the back-EMF can be
estimated as a disturbance produced by the observer controller. However, this is only valid when the back-EMF term is not
included in the observer model. The observer is a closed-loop current observer, therefore it acts as a state filter for the
back-EMF term.

The estimate of the extended EMF term can be derived from AMCLIB_PMSMBemfObsrvDQ_Eq3 as follows:

The observer controller can be designed by comparing the closed-loop characteristic polynomial with that of a standard
second-order system as follows:

where:

• ω0 is the natural frequency of the closed-loop system (loop bandwith)

• ξ is the loop attenuation

• KP is the proporional gain

• kI is the integral gain

2.7.1 Available versions
This function is available in the following versions:

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 58 / 85



• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The parameters use
the accumulator types.

• Accumulator output with floating-point inputs - the output is the accumulator result; the result is within the range <-1 ; 1). The
inputs are 32-bit single precision floating-point values.

The available versions of the AMCLIB_PMSMBemfObsrvDQ function are shown in the following table:

Table 14. Init versions

Function name Parameters Result type

AMCLIB_PMSMBemfObsrvDQInit_F16 AMCLIB_BEMF_OBSRV_DQ_T_A32 * void

Initialization does not have any input.

AMCLIB_PMSMBemfObsrvDQInit_A32fff AMCLIB_BEMF_OBSRV_DQ_T_FLT * void

Initialization does not have any input.

Table 15. Function versions

Function name Input/output type Result type

AMCLIB_PMSMBemfObsrvDQ_F16 Input GMCLIB_2COOR_DQ_T_F16 * frac16_t

GMCLIB_2COOR_DQ_T_F16 *

frac16_t

Parameters AMCLIB_BEMF_OBSRV_DQ_T_A32 *

Back-EMF observer with a 16-bit fractional input D-Q current and voltage, and a
16-bit electrical speed. All are within the range <-1 ; 1).

AMCLIB_PMSMBemfObsrvDQ_A32fff Input GMCLIB_2COOR_DQ_T_FLT * acc32_t

GMCLIB_2COOR_DQ_T_FLT *

float_t

Parameters AMCLIB_BEMF_OBSRV_DQ_T_FLT *

Back-EMF observer with a 32-bit single precision floating-point input D-Q current
and voltage, and a 32-bit single precision floating-point electrical speed. All are
within the full range. The output is a 32-bit accumulator angle error normalized to the
range <-1 ; 1) that represents an angle (in radians) within the range <-π ; π).

2.7.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description

Variable name Data type Description

sEObsrv GMCLIB_2COOR_DQ_T
_F32

Estimated back-EMF voltage structure.

sIObsrv GMCLIB_2COOR_DQ_T
_F32

Estimated current structure.

sCtrl f32ID_1 frac32_t State variable in the alpha part of the observer, integral part at
step k - 1. The variable is within the range <-1 ; 1).

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 59 / 85



Table continued from the previous page...

Variable name Data type Description

f32IQ_1 frac32_t State variable in the beta part of the observer, integral part at
step k - 1. The variable is within the range <-1 ; 1).

a32PGain acc32_t The observer proportional gain is set up according to Equation
7 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32IGain acc32_t The observer integral gain is set up according to Equation 7 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32IGain acc32_t The current coefficient gain is set up according to Equation 5
as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32UGain acc32_t The voltage coefficient gain is set up according to Equation 5
as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32WIGain acc32_t The angular speed coefficient gain is set up according to
Equation 5 as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

a32EGain acc32_t The back-EMF coefficient gain is set up according to Equation 5
as:

The parameter is within the range <0 ; 65536.0). Set by the
user.

f16Error frac16_t Output - estimated phase error between a real D / Q frame
system and an estimated D / Q reference system. The error is
within the range <-1 ; 1).

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 60 / 85



2.7.3 AMCLIB_BEMF_OBSRV_DQ_T_FLT type description

Variable name Data type Description

sEObsrv GMCLIB_2COOR_DQ_T
_FLT

Estimated back-EMF voltage structure.

sIObsrv GMCLIB_2COOR_DQ_T
_FLT

Estimated current structure.

sCtrl fltID_1 float_t State variable in the alpha part of the observer; integral part at
step k - 1. The variable is within the range <-1 ; 1).

fltIQ_1 float_t State variable in the beta part of the observer; integral part at
step k - 1. The variable is within the range <-1 ; 1).

fltPGain float_t Observer proportional gain is set up according to Equation 7 as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltIGain float_t The observer integral gain is set up according to Equation 7 as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltIGain float_t The current coefficient gain is set up according to Equation 4
as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltUGain float_t The voltage coefficient gain is set up according to Equation 4
as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltWIGain float_t The angular speed coefficient gain is set up according to
Equation 4 as:

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

fltEGain float_t The back-EMF coefficient gain is set up according to Equation 4
as:

Table continues on the next page...

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 61 / 85



Table continued from the previous page...

Variable name Data type Description

The parameter is a 32-bit single precision floating-point type
non-negative value. Set by the user.

a32Error acc32_t Output - estimated phase error between a real D / Q frame
system and an estimated D / Q reference system. The error is
within the range <-1 ; 1).

2.7.4 Declaration
The available AMCLIB_PMSMBemfObsrvDQInit functions have the following declarations:

void AMCLIB_PMSMBemfObsrvDQInit_F16(AMCLIB_BEMF_OBSRV_DQ_T_A32 *psCtrl)
void AMCLIB_PMSMBemfObsrvDQInit_A32fff(AMCLIB_BEMF_OBSRV_DQ_T_FLT *psCtrl)

The available AMCLIB_PMSMBemfObsrvDQ functions have the following declarations:

frac16_t AMCLIB_PMSMBemfObsrvDQ_F16(const GMCLIB_2COOR_DQ_T_F16 *psIDQ, const GMCLIB_2COOR_DQ_T_F16 
*psUDQ, frac16_t f16Speed, AMCLIB_BEMF_OBSRV_DQ_T_A32 *psCtrl)
          
acc32_t AMCLIB_PMSMBemfObsrvDQ_A32fff(const GMCLIB_2COOR_DQ_T_FLT *psIDQ, const GMCLIB_2COOR_DQ_T_FLT 
*psUDQ, float_t fltSpeed, AMCLIB_BEMF_OBSRV_DQ_T_FLT *psCtrl)
        

2.7.5 Function use
The use of the AMCLIB_PMSMBemfObsrvDQ function is shown in the following example:

#include "amclib.h"

static GMCLIB_2COOR_DQ_T_F16       sIdq, sUdq;
static AMCLIB_BEMF_OBSRV_DQ_T_A32  sBemfObsrv;
static frac16_t f16Speed, f16Error;

void Isr(void);

void main (void)
{  
  sBemfObsrv.sCtrl.a32PGain= ACC32(1.697);
  sBemfObsrv.sCtrl.a32IGain= ACC32(0.134);
  sBemfObsrv.a32IGain = ACC32(0.986);
  sBemfObsrv.a32UGain = ACC32(0.170);
  sBemfObsrv.a32WIGain= ACC32(0.110);
  sBemfObsrv.a32EGain = ACC32(0.116);    

  /* Initialization of the observer's structure */
  AMCLIB_PMSMBemfObsrvDQInit_F16(&sBemfObsrv);
  
  sIdq.f16D = FRAC16(0.05); 
  sIdq.f16Q = FRAC16(0.1); 
  sUdq.f16D = FRAC16(0.2); 
  sUdq.f16Q = FRAC16(-0.1);        
}

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 62 / 85



/* Periodical function or interrupt */
void Isr(void)
{
  /* BEMF Observer calculation */
  f16Error = AMCLIB_PMSMBemfObsrvDQ_F16(&sIdq, &sUdq, f16Speed, &sBemfObsrv);
}

2.8 AMCLIB_TrackObsrv

The AMCLIB_TrackObsrv function calculates a tracking observer for the determination of angular speed and position of the input
error functional signal. The tracking-observer algorithm uses the phase-locked-loop mechanism. It is recommended to call this
function at every sampling period. It requires a single input argument as a phase error. A phase-tracking observer with a standard
PI controller used as the loop compensator is shown in Figure 1.

Figure 43. Block diagram of proposed PLL scheme for position estimation

The depicted tracking observer structure has the following transfer function:

The controller gains Kp and Ki are calculated by comparing the characteristic polynomial of the resulting transfer function to a
standard second-order system polynomial.

The essential equations for implementation of the tracking observer according to the block scheme in Figure 1 are as follows:

where:

• KP is the proportional gain

• KI is the integral gain

• Ts is the sampling period [s]

• e(k) is the position error in step k

• ω(k) is the rotor speed [rad / s] in step k

• ω(k - 1) is the rotor speed [rad / s] in step k - 1

• θ(k) is the rotor angle [rad] in step k

• θ(k - 1) is the rotor angle [rad] in step k - 1

In the fractional arithmetic, AMCLIB_TrackObsrv_Eq1 and AMCLIB_TrackObsrv_Eq2 are as follows:

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 63 / 85



where:

• esc(k) is the scaled position error in step k

• ωsc(k) is the scaled rotor speed [rad / s] in step k

• ωsc(k - 1) is the scaled rotor speed [rad / s] in step k - 1

• θsc(k) is the scaled rotor angle [rad] in step k

• θsc(k - 1) is the scaled rotor angle [rad] in step k - 1

• ωmax is the maximum speed

• θmax is the maximum rotor angle (typically)

2.8.1 Available versions
The function is available in the following versions:

• Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1).

• Accumulator output with floating point structure - the output is the accumulator result; the result is within the range <-1 ; 1).
The structure of the parameters contains the 32-bit single precision floating-point values.

The available versions of the AMCLIB_TrackObsrv function are shown in the following table:

Table 16. Init versions

Function name Init angle Parameters Result type

AMCLIB_TrackObsrvInit_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * void

The input is a 16-bit fractional value of the angle normalized to the range <-1 ; 1) that
represents an angle (in radians) within the range <-π ; π).

AMCLIB_TrackObsrvInit_A32af acc32_t AMCLIB_TRACK_OBSRV_T_FLT * void

Input is the 32-bit accumulator value of the angle normalized to the range <-1 ; 1) that
represents an angle in radians within the range <-π ; π). The parameters are 32-bit single
precision values.

Table 17. Function versions

Function name Input type Parameters Result type

AMCLIB_TrackObsrv_F16 frac16_t AMCLIB_TRACK_OBSRV_T_F32 * frac16_t

Tracking observer with a 16-bit fractional position error input divided by π. The output from
the obsever is a 16-bit fractional position normalized to the range <-1 ; 1) that represents
an angle (in radians) within the range <-π ; π).

AMCLIB_TrackObsrv_A32af acc32_t AMCLIB_TRACK_OBSRV_T_FLT * acc32_t

Tracking observer with a 32-bit accumulator position divided by π. The output from
the obsever is a 32-bit accumulator position normalized to the range <-1 ; 1) that
represents an angle (in radians) within the range <-π ; π). The parameters are 32-bit single
precision values.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 64 / 85



2.8.2 AMCLIB_TRACK_OBSRV_T_F32

Variable name Input
type

Description

f32Theta frac32_t Estimated position as the output of the second numerical integrator. The parameter is within
the range <-1 ; 1). Controlled by the algorithm.

f32Speed frac32_t Estimated speed as the output of the first numerical integrator. The parameter is within the
range <-1 ; 1). Controlled by the algorithm.

f32I_1 frac32_t State variable in the controller part of the observer; integral part at step k - 1. The parameter
is within the range <-1 ; 1). Controlled by the algorithm.

f16IGain frac16_t The observer integral gain is set up according to Equation 4 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16IGainSh int16_t The observer integral gain shift takes care of keeping the f16IGain variable within the
fractional range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16PGain frac16_t The observer proportional gain is set up according to Equation 4 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16PGainSh int16_t The observer proportional gain shift takes care of keeping the f16PGain variable within the
fractional range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

f16ThGain frac16_t The observer gain for the output position integrator is set up according to Equation 5 as:

The parameter is a 16-bit fractional type within the range <0 ; 1). Set by the user.

i16ThGainSh int16_t The observer gain shift for the position integrator takes care of keeping the f16ThGain
variable within the fractional range <-1 ; 1). The shift is determined as:

The parameter is a 16-bit integer type within the range <-15 ; 15>. Set by the user.

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 65 / 85



2.8.3 AMCLIB_TRACK_OBSRV_T_FLT

Variable name Input
type

Description

f32Theta frac32_t Estimated position as the output of the second numerical integrator. The parameter is within
the range <-1 ; 1). Controlled by the algorithm.

fltSpeed float_t Estimated speed as the output of the first numerical integrator. The parameter is within the
full range. Controlled by the algorithm.

fltI_1 float_t State variable in the controller part of the observer; integral part at the step k - 1. The
parameter is within the full range. Controlled by the algorithm.

fltIGain float_t The observer integral gain is set up according to Equation 2 as: KITs

The parameter is a 32-bit single precision floating-point value in range (0; 16383.99999). Set
by the user.

fltPGain float_t The observer proportional gain is set up according to Equation 2 as: KP

The parameter is a 32-bit single precision floating-point value in range (0; 32767.99998). Set
by the user.

fltThGain float_t The observer gain for the output position integrator is set up according to Equation 3 as: Ts

The parameter is a 32-bit single precision floating-point value in range (0; 1). Set by the user.

2.8.4 Declaration
The available AMCLIB_TrackObsrvInit functions have the following declarations:

void AMCLIB_TrackObsrvInit_F16(frac16_t f16ThetaInit, AMCLIB_TRACK_OBSRV_T_F32 *psCtrl)
void AMCLIB_TrackObsrvInit_A32af(acc32_t a32ThetaInit, AMCLIB_TRACK_OBSRV_T_FLT *psCtrl)

The available AMCLIB_TrackObsrv functions have the following declarations:

frac16_t AMCLIB_TrackObsrv_F16(frac16_t f16Error, AMCLIB_TRACK_OBSRV_T_F32 *psCtrl)
acc32_t AMCLIB_TrackObsrv_A32af(acc32_t a32Error, AMCLIB_TRACK_OBSRV_T_FLT *psCtrl)

2.8.5 Function use
The use of the AMCLIB_TrackObsrv function is shown in the following example:

#include "amclib.h"

static AMCLIB_TRACK_OBSRV_T_F32  sTo;
static frac16_t      f16ThetaError;
static frac16_t      f16PositionEstim;

void Isr(void);

void main(void)
{
  sTo.f16IGain     = FRAC16(0.6434); 
  sTo.i16IGainSh   = -9; 
  sTo.f16PGain     = FRAC16(0.6801); 
  sTo.i16PGainSh   = -2; 

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 66 / 85



  sTo.f16ThGain    = FRAC16(0.6400); 
  sTo.i16ThGainSh  = -4; 
  
  AMCLIB_TrackObsrvInit_F16(FRAC16(0.0), &sTo);

  f16ThetaError    = FRAC16(0.5); 
}

/* Periodical function or interrupt */
void Isr(void)
{
  /* Tracking observer calculation */
  f16PositionEstim = AMCLIB_TrackObsrv_F16(f16ThetaError, &sTo);
}

NXP Semiconductors
Algorithms in detail

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 67 / 85



Appendix A
Library types
A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two states: TRUE (1) or FALSE (0). Its definition
is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

Table 18. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Unused Logi
cal

TRUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1

FALSE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within the range <0 ; 255>. Its definition is
as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:

Table 19. Data storage

7 6 5 4 3 2 1 0

Value Integer

255 1 1 1 1 1 1 1 1

F F

Table continues on the next page...

NXP Semiconductors

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 68 / 85



Table 19. Data storage (continued)

11 0 0 0 0 1 0 1 1

0 B

124 0 1 1 1 1 1 0 0

7 C

159 1 0 0 1 1 1 1 1

9 F

A.3 uint16_t

The uint16_t type is an unsigned 16-bit integer type. It is able to store the variables within the range <0 ; 65535>. Its definition is
as follows:

typedef unsigned short uint16_t;

The following figure shows the way in which the data is stored by this type:

Table 20. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Integer

65535 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F F F F

5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 5

15518 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

40768 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 69 / 85



A.4 uint32_t

The uint32_t type is an unsigned 32-bit integer type. It is able to store the variables within the range <0 ; 4294967295>. Its definition
is as follows:

typedef unsigned long uint32_t;

The following figure shows the way in which the data is stored by this type:

Table 21. Data storage

31 24 23 16 15 8 7 0

Value Integer

4294967295 F F F F F F F F

2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

3451051828 C D B 2 D F 3 4

A.5 int8_t

The int8_t type is a signed 8-bit integer type. It is able to store the variables within the range <-128 ; 127>. Its definition is as follows:

typedef char int8_t;

The following figure shows the way in which the data is stored by this type:

Table 22. Data storage

7 6 5 4 3 2 1 0

Value Sign Integer

127 0 1 1 1 1 1 1 1

7 F

-128 1 0 0 0 0 0 0 0

8 0

60 0 0 1 1 1 1 0 0

3 C

Table continues on the next page...

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 70 / 85



Table 22. Data storage (continued)

-97 1 0 0 1 1 1 1 1

9 F

A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the range <-32768 ; 32767>. Its definition is
as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table 23. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer

32767 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-32768 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

15518 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-24768 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the range <-2147483648 ; 2147483647>. Its
definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table 24. Data storage

Table continues on the next page...

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 71 / 85



Table 24. Data storage (continued)

31 24 23 16 15 8 7 0

Value S Integer

2147483647 7 F F F F F F F

-2147483648 8 0 0 0 0 0 0 0

55977296 0 3 5 6 2 5 5 0

-843915468 C D B 2 D F 3 4

A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is as follows:

typedef char frac8_t;

The following figure shows the way in which the data is stored by this type:

Table 25. Data storage

7 6 5 4 3 2 1 0

Value Sign Fractional

0.99219 0 1 1 1 1 1 1 1

7 F

-1.0 1 0 0 0 0 0 0 0

8 0

0.46875 0 0 1 1 1 1 0 0

3 C

-0.75781 1 0 0 1 1 1 1 1

9 F

To store a real number as frac8_t, use the FRAC8 macro.

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 72 / 85



A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is
as follows:

typedef short frac16_t;

The following figure shows the way in which the data is stored by this type:

Table 26. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Fractional

0.99997 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-1.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

0.47357 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0

3 C 9 E

-0.75586 1 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

9 F 4 0

To store a real number as frac16_t, use the FRAC16 macro.

A.10 frac32_t

The frac32_t type is a signed 32-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is
as follows:

typedef long frac32_t;

The following figure shows the way in which the data is stored by this type:

Table 27. Data storage

31 24 23 16 15 8 7 0

Value S Fractional

0.9999999995 7 F F F F F F F

Table continues on the next page...

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 73 / 85



Table 27. Data storage (continued)

-1.0 8 0 0 0 0 0 0 0

0.02606645970 0 3 5 6 2 5 5 0

-0.3929787632 C D B 2 D F 3 4

To store a real number as frac32_t, use the FRAC32 macro.

A.11 acc16_t

The acc16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-256 ; 256). Its definition is
as follows:

typedef short acc16_t;

The following figure shows the way in which the data is stored by this type:

Table 28. Data storage

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Sign Integer Fractional

255.9921875 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 F F F

-256.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0

1.0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 8 0

-1.0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

F F 8 0

13.7890625 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

0 6 E 5

-89.71875 1 1 0 1 0 0 1 1 0 0 1 0 0 1 0 0

D 3 2 4

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 74 / 85



To store a real number as acc16_t, use the ACC16 macro.

A.12 acc32_t

The acc32_t type is a signed 32-bit accumulator type. It is able to store the variables within the range <-65536 ; 65536). Its
definition is as follows:

typedef long acc32_t;

The following figure shows the way in which the data is stored by this type:

Table 29. Data storage

31 24 23 16 15 8 7 0

Value S Integer Fractional

65535.999969 7 F F F F F F F

-65536.0 8 0 0 0 0 0 0 0

1.0 0 0 0 0 8 0 0 0

-1.0 F F F F 8 0 0 0

23.789734 0 0 0 B E 5 1 6

-1171.306793 F D B 6 5 8 B C

To store a real number as acc32_t, use the ACC32 macro.

A.13 float_t

The float_t type is a signed 32-bit single precision floating-point type, defined by IEEE 754. It is able to store the full precision
(normalized) finite variables within the range <-3.40282 · 1038 ; 3.40282 · 1038) with the minimum resolution of 2-23. The smallest
normalized number is ±1.17549 · 10-38. Nevertheless, the denormalized numbers (with reduced precision) reach yet lower values,
from ±1.40130 · 10-45 to ±1.17549 · 10-38. The standard also defines the additional values:

• Negative zero

• Infinity

• Negative infinity

• Not a number

The 32-bit type is composed of:

• Sign (bit 31)

• Exponent (bits 23 to 30)

• Mantissa (bits 0 to 22)

The conversion of the number is straighforward. The sign of the number is stored in bit 31. The binary exponent is decoded as
an integer from bits 23 to 30 by subtracting 127. The mantissa (fraction) is stored in bits 0 to 22. An invisible leading bit (it is not

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 75 / 85



actually stored) with value 1.0 is placed in front; therefore, bit 23 has a value of 0.5, bit 22 has a value 0.25, and so on. As a result,
the mantissa has a value between 1.0 and 2. If the exponent reaches -127 (binary 00000000), the leading 1.0 is no longer used
to enable the gradual underflow.

The float_t type definition is as follows:

typedef float float_t;

The following figure shows the way in which the data is stored by this type:

Table 30. Data storage - normalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

(2.0 - 2-23) · 2127 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

≈ 3.40282 · 1038 7 F 7 F F F F F

-(2.0 - 2-23) · 2127 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

≈ -3.40282 · 1038 F F 7 F F F F F

2-126 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

≈ 1.17549 · 10-38 0 0 8 0 0 0 0 0

-2-126 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

≈ -1.17549 · 10-38 8 0 8 0 0 0 0 0

1.0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 F 8 0 0 0 0 0

-1.0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B F 8 0 0 0 0 0

π 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1

≈ 3.1415927 4 0 4 9 0 F D B

-20810.086 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0

C 6 A 2 9 4 2 C

Table continues on the next page...

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 76 / 85



Table 30. Data storage - normalized values (continued)

Table 31. Data storage - denormalized values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-0.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

(1.0 - 2-23) · 2-126 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

≈ 1.17549 · 10-38 0 0 7 F F F F F

-(1.0 - 2-23) · 2-126 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

≈ -1.17549 · 10-38 8 0 7 F F F F F

2-1 · 2-126 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

≈ 5.87747 · 10-39 0 0 4 0 0 0 0 0

-2-1 · 2-126 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

≈ -5.87747 · 10-39 8 0 4 0 0 0 0 0

2-23 · 2-126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

≈ 1.40130 · 10-45 0 0 0 0 0 0 0 1

-2-23 · 2-126 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

≈ -1.40130 · 10-45 8 0 0 0 0 0 0 1

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 77 / 85



Table 32. Data storage - special values

31 24 23 16 15 8 7 0

Value S Exponent Mantissa

∞ 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 F 8 0 0 0 0 0

-∞ 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F F 8 0 0 0 0 0

Not a number * 1 1 1 1 1 1 1 1 non zero

7/F F 800001 to FFFFFF

A.14 GMCLIB_3COOR_T_F16

The GMCLIB_3COOR_T_F16 structure type corresponds to the three-phase stationary coordinate system, based on the A, B, and
C components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
    frac16_t f16A;
    frac16_t f16B;
    frac16_t f16C;
} GMCLIB_3COOR_T_F16;

The structure description is as follows:

Table 33. GMCLIB_3COOR_T_F16 members description

Type Name Description

frac16_t f16A A component; 16-bit fractional type

frac16_t f16B B component; 16-bit fractional type

frac16_t f16C C component; 16-bit fractional type

A.15 GMCLIB_3COOR_T_FLT

The GMCLIB_3COOR_T_FLT structure type corresponds to the three-phase stationary coordinate system, based on the A, B, and
C components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
    float_t fltA;
    float_t fltB;

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 78 / 85



    float_t fltC;
} GMCLIB_3COOR_T_FLT;

The structure description is as follows:

Table 34. GMCLIB_3COOR_T_FLT members description

Type Name Description

float_t fltA A component; 32-bit single precision floating-point type

float_t fltB B component; 32-bit single precision floating-point type

float_t fltC C component; 32-bit single precision floating-point type

A.16 GMCLIB_2COOR_ALBE_T_F16

The GMCLIB_2COOR_ALBE_T_F16 structure type corresponds to the two-phase stationary coordinate system, based on the
Alpha and Beta orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
    frac16_t f16Alpha;
    frac16_t f16Beta;
} GMCLIB_2COOR_ALBE_T_F16;

The structure description is as follows:

Table 35. GMCLIB_2COOR_ALBE_T_F16 members description

Type Name Description

frac16_t f16Apha α-component; 16-bit fractional type

frac16_t f16Beta β-component; 16-bit fractional type

A.17 GMCLIB_2COOR_ALBE_T_FLT

The GMCLIB_2COOR_ALBE_T_FLT structure type corresponds to the two-phase stationary coordinate system based on the
Alpha and Beta orthogonal components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
    float_t fltAlpha;
    float_t fltBeta;
} GMCLIB_2COOR_ALBE_T_FLT;

The structure description is as follows:

Table 36. GMCLIB_2COOR_ALBE_T_FLT members description

Type Name Description

float_t fltApha α-component; 32-bit single precision floating-point type

float_t fltBeta β-component; 32-bit single precision floating-point type

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 79 / 85



A.18 GMCLIB_2COOR_DQ_T_F16

The GMCLIB_2COOR_DQ_T_F16 structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
    frac16_t f16D;
    frac16_t f16Q;
} GMCLIB_2COOR_DQ_T_F16;

The structure description is as follows:

Table 37. GMCLIB_2COOR_DQ_T_F16 members description

Type Name Description

frac16_t f16D D-component; 16-bit fractional type

frac16_t f16Q Q-component; 16-bit fractional type

A.19 GMCLIB_2COOR_DQ_T_F32

The GMCLIB_2COOR_DQ_T_F32 structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the frac32_t data type. The structure definition is as follows:

typedef struct
{
    frac32_t f32D;
    frac32_t f32Q;
} GMCLIB_2COOR_DQ_T_F32;

The structure description is as follows:

Table 38. GMCLIB_2COOR_DQ_T_F32 members description

Type Name Description

frac32_t f32D D-component; 32-bit fractional type

frac32_t f32Q Q-component; 32-bit fractional type

A.20 GMCLIB_2COOR_DQ_T_FLT

The GMCLIB_2COOR_DQ_T_FLT structure type corresponds to the two-phase rotating coordinate system, based on the D and
Q orthogonal components. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
    float_t fltD;
    float_t fltQ;
} GMCLIB_2COOR_DQ_T_FLT;

The structure description is as follows:

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 80 / 85



Table 39. GMCLIB_2COOR_DQ_T_FLT members description

Type Name Description

float_t fltD D-component; 32-bit single precision floating-point type

float_t fltQ Q-component; 32-bit single precision floating-point type

A.21 GMCLIB_2COOR_SINCOS_T_F16

The GMCLIB_2COOR_SINCOS_T_F16 structure type corresponds to the two-phase coordinate system, based on the Sin and
Cos components of a certain angle. Each member is of the frac16_t data type. The structure definition is as follows:

typedef struct
{
    frac16_t f16Sin;
    frac16_t f16Cos;
} GMCLIB_2COOR_SINCOS_T_F16;

The structure description is as follows:

Table 40. GMCLIB_2COOR_SINCOS_T_F16 members description

Type Name Description

frac16_t f16Sin Sin component; 16-bit fractional type

frac16_t f16Cos Cos component; 16-bit fractional type

A.22 GMCLIB_2COOR_SINCOS_T_FLT

The GMCLIB_2COOR_SINCOS_T_FLT structure type corresponds to the two-phase coordinate system, based on the Sin and
Cos components of a certain angle. Each member is of the float_t data type. The structure definition is as follows:

typedef struct
{
    float_t fltSin;
    float_t fltCos;
} GMCLIB_2COOR_SINCOS_T_FLT;

The structure description is as follows:

Table 41. GMCLIB_2COOR_SINCOS_T_FLT members description

Type Name Description

float_t fltSin Sin component; 32-bit single precision floating-point type

float_t fltCos Cos component; 32-bit single precision floating-point type

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 81 / 85



A.23 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value of the bool_t type. Its definition is as follows:

#define FALSE    ((bool_t)0)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
  bVal = FALSE;               /* bVal = FALSE */
}

A.24 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of the bool_t type. Its definition is as follows:

#define TRUE     ((bool_t)1)

#include "mlib.h"

static bool_t bVal;

void main(void)
{
  bVal = TRUE;               /* bVal = TRUE */
}

A.25 FRAC8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as follows:

#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))

The input is multiplied by 128 (=27). The output is limited to the range <0x80 ; 0x7F>, which corresponds to <-1.0 ; 1.0-2-7>.

#include "mlib.h"

static frac8_t f8Val;

void main(void)
{
  f8Val = FRAC8(0.187);               /* f8Val = 0.187 */
}

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 82 / 85



A.26 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) : 0x7FFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x8000 ; 0x7FFF>, which corresponds to
<-1.0 ; 1.0-2-15>.

#include "mlib.h"

static frac16_t f16Val;

void main(void)
{
  f16Val = FRAC16(0.736);               /* f16Val = 0.736 */
}

A.27 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is as follows:

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) : 0x7FFFFFFF))

The input is multiplied by 2147483648 (=231). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds
to <-1.0 ; 1.0-2-31>.

#include "mlib.h"

static frac32_t f32Val;

void main(void)
{
  f32Val = FRAC32(-0.1735667);               /* f32Val = -0.1735667 */
}

A.28 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=27). The output is limited to the range <0x8000 ; 0x7FFF> that corresponds to
<-256.0 ; 255.9921875>.

#include "mlib.h"

static acc16_t a16Val;

void main(void)
{

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 83 / 85



  a16Val = ACC16(19.45627);               /* a16Val = 19.45627 */
}

A.29 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as follows:

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 : 0x80000000) : 
0x7FFFFFFF))

The input is multiplied by 32768 (=215). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds to
<-65536.0 ; 65536.0-2-15>.

#include "mlib.h"

static acc32_t a32Val;

void main(void)
{
  a32Val = ACC32(-13.654437);               /* a32Val = -13.654437 */
}

NXP Semiconductors
Library types

AMCLIB User's Guide, Rev. 5, 01 November 2021
User Guide 84 / 85



How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at
the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners.  AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 01 November 2021
Document identifier: CM33FAMCLIBUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Library
	1.1 Introduction
	1.1.1 Overview
	1.1.2 Data types
	1.1.3 API definition
	1.1.4 Supported compilers
	1.1.5 Library configuration
	1.1.6 Special issues

	1.2 Library integration into project (MCUXpresso IDE)
	1.3 Library integration into project (Keil µVision)
	1.4 Library integration into project (IAR Embedded Workbench)

	2 Algorithms in detail
	2.1 AMCLIB_ACIMCtrlMTPA
	2.1.1 Available versions
	2.1.2 AMCLIB_ACIM_CTRL_MTPA_T_FLT type description
	2.1.3 Declaration
	2.1.4 Function use

	2.2 AMCLIB_ACIMRotFluxObsrv
	2.2.1 Available versions
	2.2.2 AMCLIB_ACIM_ROT_FLUX_OBSRV_T_FLT type description
	2.2.3 Declaration
	2.2.4 Function use

	2.3 AMCLIB_ACIMSpeedMRAS
	2.3.1 Available versions
	2.3.2 AMCLIB_ACIMSpeedMRAS_T_FLT type description
	2.3.3 Declaration
	2.3.4 Function use

	2.4 AMCLIB_AngleTrackObsrv
	2.4.1 Available versions
	2.4.2 AMCLIB_ANGLE_TRACK_OBSRV_T_F32
	2.4.3 AMCLIB_ANGLE_TRACK_OBSRV_T_FLT
	2.4.4 Declaration
	2.4.5 Function use

	2.5 AMCLIB_CtrlFluxWkng
	2.5.1 Available versions
	2.5.2 AMCLIB_CTRL_FLUX_WKNG_T_A32
	2.5.3 AMCLIB_CTRL_FLUX_WKNG_T_FLT
	2.5.4 Declaration
	2.5.5 Function use

	2.6 AMCLIB_PMSMBemfObsrvAB
	2.6.1 Available versions
	2.6.2 AMCLIB_BEMF_OBSRV_AB_T_A32 type description
	2.6.3 AMCLIB_BEMF_OBSRV_AB_T_FLT type description
	2.6.4 Declaration
	2.6.5 Function use

	2.7 AMCLIB_PMSMBemfObsrvDQ
	2.7.1 Available versions
	2.7.2 AMCLIB_BEMF_OBSRV_DQ_T_A32 type description
	2.7.3 AMCLIB_BEMF_OBSRV_DQ_T_FLT type description
	2.7.4 Declaration
	2.7.5 Function use

	2.8 AMCLIB_TrackObsrv
	2.8.1 Available versions
	2.8.2 AMCLIB_TRACK_OBSRV_T_F32
	2.8.3 AMCLIB_TRACK_OBSRV_T_FLT
	2.8.4 Declaration
	2.8.5 Function use


	A Library types
	A.1 bool_t
	A.2 uint8_t
	A.3 uint16_t
	A.4 uint32_t
	A.5 int8_t
	A.6 int16_t
	A.7 int32_t
	A.8 frac8_t
	A.9 frac16_t
	A.10 frac32_t
	A.11 acc16_t
	A.12 acc32_t
	A.13 float_t
	A.14 GMCLIB_3COOR_T_F16
	A.15 GMCLIB_3COOR_T_FLT
	A.16 GMCLIB_2COOR_ALBE_T_F16
	A.17 GMCLIB_2COOR_ALBE_T_FLT
	A.18 GMCLIB_2COOR_DQ_T_F16
	A.19 GMCLIB_2COOR_DQ_T_F32
	A.20 GMCLIB_2COOR_DQ_T_FLT
	A.21 GMCLIB_2COOR_SINCOS_T_F16
	A.22 GMCLIB_2COOR_SINCOS_T_FLT
	A.23 FALSE
	A.24 TRUE
	A.25 FRAC8
	A.26 FRAC16
	A.27 FRAC32
	A.28 ACC16
	A.29 ACC32


