Freescale BeeStack™
Application Development Guide for ZigBee 2007

Document Number: BSADGZB2007
Rev. 1.3
07/2011

pod frees,caltew

semicon ductor

W POWERED
®

ARM

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006, 2007, 2008, 2009, 2010, 2011. All rights reserved.

Contents

About This BoOK. 1ii
AUAICNCE . . . ottt il
Organization vttt e e e e 111
Revision Historyo o v
CONVENTIONS . . . o\ttt ettt e e e et e e e e e e e e v
Definitions, Acronyms, and Abbreviations i v
Reference Materials e vi
Chapter 1
Introduction
1.1 What This Document Describes 1-1
1.2 What This Document Does Not Describe. 1-1
1.3 BeeKit. . .o 1-2
1.4 CodeWarTIOT oot teee 1-3
1.5 BeeStack e 1-4
1.6 The Development Process e e e 1-5
Chapter 2
Building A Custom Application
2.1 Creating a Custom Application InBeeKit 2-2
2.2 Editing the Custom Application in CodeWarrior., 2-5
23 Installing and Running The Custom Application., 2-8
2.4 Examining the Custom Application i 2-9
Chapter 3
Designing A Custom Profile
3.1 Application Profiles 3-1
3.2 Endpoints, Clusters and Attributes e 3-2
33 Customizing A Public Profile. 3-2
3.4 Stack Profiles 3-2
Chapter 4
Selecting Platform Components
4.1 The Display Component. e e 4-1
4.2 The Keyboard Componentttt et 4-1
4.3 The LED Componentttt e e et e e ettt 4-1
4.4 The NVM COmMPONENLottt ittt et e e e e e e e e e e e 4-2
4.5 The Low-Power COmponent.ttt e 4-3
4.6 The Timer COMPONENtottt e e e et e e e et et 4-3
4.7 The UART Component.ottt e e e e e 4-4

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor i

Chapter 5
Managing BeeStack Resources

5.1 BeeStack Start-up Sequence. 5-1
5.2 Managing Tasks e 5-1
53 Managing TIMETSo e 5-3
5.4 Managing Message Buffers 5-3
5.5 Managing MeEmOTYottt et e e 5-4
5.6 Managing The C Stacko 5-4
5.7 Managing RAM and FLASH 5-5
5.8 Managing ZigBee Channels e 5-5
5.9 Managing ZigBee Bandwidth. 5-7
Chapter 6

Debugging BeeStack Applications

6.1 The P&E MultiLink BDM o 6-1
6.2 LEDsandthe Display. e e 6-1
6.3 Network Protocol Analyzers. i 6-2
6.4 ZigBee Test CLient o 6-2
Chapter 7

Creating a Custom BeeStack BlackBox Application

7.1 Generating a BeeStack BlackBox Project with BeeKit 7-1
7.1.1 ZigBee Black Box Device Type Configuration 7-3
Chapter 8

Creating a ZigBee Host Application

8.1 Hardware Setup.o 8-1
8.1.1 Setting Up a MC1320x QE128 BoardasaHost it 8-1
8.1.2 Setting Up a MC1322x Boardasa Host. i 8-1
8.1.3 Setting Up a MC1320x QE128 BoardasaBlackBox 8-2
8.1.4 Setting Up a MC1322x Board asa BlackBox 8-2
8.2 Software SEtUPot e 8-2
8.2.1 Software Setup on the BlackBox Board 8-2
8.2.2 Software Setuponthe Host Board i 8-3

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor

About This Book

The BeeStack Application Development Guide for ZigBee 2007describes how to develop an application
for the ZigBee 2007 compliant BeeStack , including discussions on major considerations for commercial
applications.

Audience

This document is intended for software developers who write applications for BeeStack-based products
using Freescale development tools.

It is assumed the reader is a programmer with at least rudimentary skills in the C programming language
and that the reader is already familiar with the edit/compile/debug process.

Organization

This document is organized into the following chapters.

Chapter 1 Introduction — provides an overview of the BeeStack Application Development
Guide, including what’s included and what is not in the guide. It also describes the
basic development process using both BeeKit and CodeWarrior (only in concept.
This guide is not a user guide for either BeeKit or CodeWarrior).

Chapter 2 Building A Custom Application — provides a step-by-step example of creating a
custom sample application.

Chapter 3 Designing A Custom Profile — describes designing a new custom-profile
application, including selecting a profile, clusters, attributes and endpoints. It also
describes ZigBee 2007 security options.

Chapter 4 Selecting Platform Components — describes selecting the appropriate
hardware-related platform components, including the use of non-volatile memory,
LEDs, the keyboard, serial port, and general hardware selection.

Chapter 5 Managing BeeStack Resources — describes using the non-hardware-related
platform components appropriately, including the use of timers, messages, data
queues, the task scheduler, Non-volatile-memory and low power library. It also
describes how to determine how much RAM and Flash is available to the
application and what to do if an application exceeds memory size.

Chapter 6 Debugging BeeStack Applications — describes how to debug an application that
may not work, including use of the BDM, LEDs, ZigBee Test Client and Sensor
Network Analyzers.

Chapter 7 Creating a Custom BeeStack BlackBox Application - Describes how to create a
custom BeeStack BlackBox Application.

Chapter 8 Creating a ZigBee Host Application - Describes how to create a custom ZigBee
Host Application.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor iii

Revision History

The following table summarizes revisions to this document since the previous release (Rev. 1.2).

Conventions

Revision History

Location Revision

Entire document

Multiple changes through entire document for
CodeWarrior 10 and MC1323x.

This BeeStack Documentation Overview uses the following formatting conventions when detailing
commands, parameters, and sample code:

Courier mono-space type indicates commands, command parameters, and code examples.

Bold style indicates the command line elements, which must be entered exactly as written.

Italic type indicates command parameters that the user must type in or replace, as well as
emphasizes concepts or foreign phrases and words.

Definitions, Acronyms, and Abbreviations

ACK

ADC

AF

AIB

APDU

API

APL

APS

APSDE
APSDE-SAP
APSME
APSME-SAP
ASDU
Binding
BTR

BTT
CBC-MAC
CCA

Cluster

Cluster identifier

Acknowledgement

Analog to digital converter

Application framework

Application support sub-layer information base

Application support sub-layer protocol data unit

Application programming interface

Application layer

Application support sub-layer

APS data entity

APS data entity - service access point

APS management entity

APS management entity - service access point

APS service data unit

Matching ZigBee devices based on services and needs

Broadcast transaction record, the local receipt of a broadcast message
Broadcast transaction table, holds all BTRs

Cipher block chaining message authentication code

Clear channel assessment

A collection of attributes associated with a specific cluster-identifier

An enumeration that uniquely identifies a cluster within an application profile

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor

CSMA-CA
CTR

Data Transaction

Device/Node
Direct addressing

Endpoint
IB

IEEE

Indirect addressing

ISO

LCD

LED

LQI

MAC
MCPS-SAP
MIC
MLME
MLME-SAP
NIB

NLDE
NLDE-SAP
NLME
NLME-SAP
NPDU
NSDU
NVM
NWK

Octet

OSI

PAN
PD-SAP
PDU

Carrier sense multiple access with collision avoidance
Counter

Process of data transmission from the endpoint of a sending device to the endpoint
of the receiving device

ZigBee network component containing a single IEEE 802.15.4 radio
Direct data transmission including both destination and source endpoint fields

Component within a unit; a single IEEE 802.15.4 radio may support up to 240
independent endpoints

Information base, the collection of variables configuring certain behaviors in a
layer

Institute of Electrical and Electronics Engineers, a standards body

Transmission including only the source endpoint addressing field along with the
indirect addressing bit

International Standards Organization

Liquid crystal display

Light-emitting diode

Link quality indicator or indication

Medium access control sub-layer

MAC common part sub-layer - service access point
Message integrity code

MAC layer management entity

MAC sub-layer management entity service access point
Network layer information base

Network layer data entity

Network layer data entity - service access point
Network layer management entity

Network layer management entity - service access point
Network protocol data unit

Network service data unit

Non-volatile memory

Network layer

Eight bits of data, or one byte

Open System Interconnect

Personal area network

Physical layer data - service access point

Protocol data unit (packet)

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor

PHY
PIB
PLME-SAP
Profile
RF

SAP
SKG
SKKE
SSp
Stack
UART
WDA
WPAN
ZDO
ZDP
802.15.4

Physical layer

Personal area network information base

Physical layer management entity - service access point
Set of options in a stack or an application

Radio frequency

Service access point

Secret key generation

Symmetric-key key establishment protocol

Security service provider, a ZigBee stack component
ZigBee protocol stack

Universal asynchronous receiver transmitter

wireless demo application

wireless personal area network

ZigBee device object(s)

ZigBee device profile

An IEEE standard radio specification that underlies the ZigBee Specification

Reference Materials

This following served as references for this manual:
1. Document 053474r17, ZigBee Specification, ZigBee Alliance, October 2007
2. Document 075123100, ZigBee Cluster Library Specification, ZigBee Alliance, July 2007
3. Document 053520124, Home Automation Profile Specification, ZigBee Alliance, September 2007

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

vi

Freescale Semiconductor

Chapter 1
Introduction

Freescale’s BeeStack is a complete, robust implementation of the ZigBee 2007 networking specification.
BeeStack applications typically are used in wireless sensor and control networks.

This section provides an overview of BeeStack Application Development Guide for ZigBee 2007,
describing what is and what is not included in the guide. It also describes the basic development process
for BeeStack applications using both BeeKit and CodeWarrior.

This guide is a “how-to” guide that leads a developer through the process of developing BeeStack
applications. It also includes advice on building robust networks and managing network resources.

1.1

What This Document Describes

This guide describes the following:

1.2

How to build and customize BeeStack applications for use in wireless sensor and control
applications

A step-by-step example of modifying a BeeStack application

How to design a custom ZigBee application profile and the intended use of application profiles,
endpoints, clusters and attributes. It includes how to manage bandwidth and channels

A suggested process for selecting the appropriate hardware platform components

Suggestions on how best to use the Freescale task scheduler, timers, memory and other platform
resources

How to debug an application
A step by step example of how to create a BeeStack BlackBox application

What This Document Does Not Describe

This guide does not describe the following:

How to install BeeKit. For the BeeKit installation process, see the BeeKit Wireless Connectivity
Toolkit User s Guide

How to install CodeWarrior. For instructions, see the CodeWarrior documentation

The complete BeeStack API in detail. For the BeeStack API for ZigBee 2007, see the BeeStack
Software Reference Manual for ZigBee 2007

How to port applications from any other stack including any implementation of the ZigBee 2004
specification.

How to port from Freescale BeeStack for ZigBee 2006 to BeeStack for ZigBee 2007. (See the
BeeStack Software Reference Manual for ZigBee 2007)

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 1-1

b -

Introduction

» How to port BeeStack to a custom board.

» ZigBee networking in general. For an overview of ZigBee, see the BeeStack Software Reference
Manual for ZigBee 2007 and the ZigBee Specification

* How to use the BeeStack Sample Applications. For the user interface to the sample applications,
see Freescale ZigBee Application User's Guide for ZigBee 2007

1.3 BeeKit

BeeKit is a desktop PC graphical application that allows developers to configure Freescale networking
solutions, including BeeStack, BeeStack Consumer (RF4CE), IEEE® 802.15.4 MAUC, and the Freescale
proprietary Simple MAC (SMAC). Figure 1-1 shows the BeeKit Wireless Connectivity start-up window.

=¥ Freescale BeeKit
File Soluton Project Help

e =0 RN 4,38

Stet Page. | Propety Lt | Search Resls |

Freescale

BeeKit"

Using HC508 BeeStack Codebase 2.0.0. Select Other Codebase...

-,
=
—

~
1L
First select the codebase(Beestack(ZigBee). MAC or SMAC) you want to
use: Select "File -> Select Codebase”.
Qpen: Solution...
Create: New Project. .. 2
To start developing a Solution using BeeKit: Select "File -= New project” or
press "Create: New Project " in the "Recent Solutions” window.
-
Freescale expands 8-bit control o.. 3.
Siemens selects Freescale MRA.. Select the type of project, enter the name, and pick the directory location.
Freescale introduces highly integr. .. For Example:
Freescale's Multicore Communicat...
WontaVista Software commits as .. Select "HA OnOffLight” to make a project for a Home
Freescale ships a record 300 mili... Automation(HA) OnOffiLight device.
Freescale opens embedded gree...
Freezcale adds IEEE(R) 1588 cloc.
Freescale MRAM rockets into spa.. 4.
Freescale helps consumer and in... To add multiple projects to the same Solution, select "Solution->Add project”
or right click on the Solution name in the Solution Explorer and select "Add ol

Messages

Eror

- Lrtputng

Description Qrigin

I Ready

Figure 1-1. BeeKit Starting Window

BeeKit creates a sample application from templates, providing the ability to set properties (also called

compile-time options) which configure the application and BeeStack. The resulting project may then be
exported as an XML file to a file folder and imported into CodeWarrior or IAR Embedded WorkBench for
editing, compiling and debugging. In addition, BeeKit provides a quick-start wizard that can prepare and
configure sample applications in moments.

BeeKit provides compile-time configuration of BeeStack and applications during the entire life of the
project.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

1-2 Freescale Semiconductor

h o
g |

Introduction

See the BeeKit documentation for more information.

14 CodeWarrior

CodeWarrior is a desktop PC integrated development environment (IDE) which includes a C compiler for
the HCS08 core MCUs and the other tools to generate a downloadable image as well as a debugger that
can download code into the MCU’s flash memory.

= C/C++ - CodeWarrior Development Studio

File Edit Refactor Mavigate Search Project Run Profiler Processor Expert Window Help
P S S omwp g o L mn o 4 . [. o 4 . o 3 . . o 3 2 I =
F] o ¢ o= @ A 1140 M i (%) €] @ i % 3] i 3& 0 % i @ A : = ﬁ|%qc++|
. e, w
FZ) codewarrior Projects &2 =0 = O 5= outin &2 (& Make | — O
|%|laz @ | B d><b p = An outling is not available.
File: Marne Size | Type
= = Beedpps
[AsL
@ Beedpp.c 16 KB Source|
@ Beedpp.h 3KB C Header
€] Beesppinit.c ISKE C Source |
1| Beesppinit.h 4KE C Header
= Configure
@ EndPointConfig.c SKE Sourcel
[W| EndPaintCanfig.h 4KE C Header
= HA
@ HaonoffLightEndPoint. c 7KE CSourcel
(= HC
= SE
(= StackGlobals
(el
[700
1= beekit, b 0KE
1= beekit, bl 1KEB
[Includes
(= MacPhy
[PLM
postload,cnd 1KEB
f:::;:dmd izg [g_\ProbIems) E,Tasks El console E Properties JERemote Syskems BT =0
(= 55M 0 ikems
startup.cmd 1 KB Description Resource Path Locak... T
= ZcHaonOffLight . launch 17 KB
= ZigBee
] 2|]
: O® {ZeHaOnOffLight

Figure 1-2. Freescale CodeWarrior

CodeWarrior takes the output of BeeKit and compiles and links the C source code and libraries into a
binary image that may be downloaded into the FLASH memory of an HCS08 MCU using the background
debug memory (BDM) port.

See the CodeWarrior documentation for more information.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 1-3

A
4

4
A

Introduction

1.5 BeeStack

BeeStack is the term used to describe all of the software placed into target boards, with the exception of
the application. BeeStack is comprised of ZigBee networking components, which provide access to
ZigBee networking functionality, and platform components, which provide a framework for the
application to operate and access the hardware.

The components of BeeStack are shown in Figure 1-3.

UART

Application Framework

Timer

LED

LCD

Keyboard

MNVIM

Task Physical (PHY) Layver
Scheduler

Figure 1-3. BeeStack Components

The networking (NWK) task in BeeStack is responsible for routing packets, including broadcasting, route
discovery, unicasting and rejecting packets not for this node or network.

The Application Support Sub-layer (APS) task is responsible for delivering and receiving application data,
including binding endpoints, and end-to-end acknowledgements. APS also contains the authentication
process for secure networks, including the trust center on ZigBee Coordinator (ZC) nodes.

The Application Framework (AF) task is responsible for delivery of data indications and confirms to the
application endpoints.

The ZigBee Device Object (ZDO) task is responsible for the state of the network, and it includes functions
to join and leave the network.

The ZigBee Device Profile (ZDP) task handles requests and responses for a set of common over-the-air
ZigBee commands for managing nodes within the network. For example, any node may ask for the IEEE
(or MAC) address of any other node in the network using a ZDP command.

The various platform management (PLM) components are responsible for interacting with the hardware
such as switches, LEDs, the LCD or timers. All of the PLM components may be customized for a particular
application.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

1-4 Freescale Semiconductor

1.6

Introduction

The Development Process

Developing applications for BeeStack is similar to any embedded development. The addition of BeeKit
makes starting and configuring a new application very easy. The steps are as follows.

1.
2.

A S BRI o

Design the application.

Use BeeKit to create the application framework from a template and to configure the application
to include the appropriate components, property settings and endpoint settings.

Export the application solution from BeeKit and import it into Code Warrior.
Edit the application as necessary, adding custom code.

Compile the application.

Download the application into a target board.

Debug the application (see Chapter 6, “Debugging BeeStack Applications”).
Repeat steps 4-7 as necessary.

If creating more than one application, use BeeKit to add another application to the BeeKit solution
and repeat steps 2-8 as necessary.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 1-5

-

Introduction

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

1-6 Freescale Semiconductor

Chapter 2
Building A Custom Application

This chapter provides a step-by-step example of how to create a sample custom application. Chapter 3,
“Designing A Custom Profile” and Chapter 4, “Selecting Platform Components” explain in more detail
about how to build applications for BeeStack.

The general process for creating this custom application is as follows:

» Create the project in BeeKit from an existing application template, making custom property
settings and endpoint settings

* Export the project from BeeKit

» Import the project into CodeWarrior

 Edit the application in CodeWarrior to remove unneeded functionality from the template code and
add the new functionality of the application

» Compile the custom application with CodeWarrior
» Download the custom application in the target board with CodeWarrior
* Debug the custom application

When building a custom application, always start with a template application in BeeKit. In this case the
example will start with the Generic Application Template and transform it into a custom application.

The Generic Application Template by default uses the accelerometer hardware available in some of the
Freescale boards to determine tilt of the board and transmit this data to a remote node for display on that
remote node. The same code is used for both the accelerometer and display nodes (that is, a node can
assume either role).

The custom application described in this chapter will ignore the accelerometer; it will simply flash a light
(LED2) on the remote display for a one-second period.

NOTE

Both the Generic Application and this Custom Application use what is
called a private profile. Private profiles are useful for those application that
do not need to interoperate at an ZigBee application level with other
vendors’ applications. For Public Profiles which do interoperate (such as a
Home Automation On/Off Light and Switch), see the ZigBee Cluster
Library Reference Manual.

The keys for the Custom Application will be as follows:

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 2-1

Building A Custom Application

Table 2-1. Custom Application Keys

Switch Description
SWi1 Form (ZC) or join (ZR, ZED) the network
SW2 Flash remote light (LED2)
Long SW2 No action
SW3 Find a remote node with a light for sending light commands to
SW4 No action

2.1 Creating a Custom Application In BeeK:it

This section describes the steps required in BeeKit to create the custom application. This is not a BeeKit
tutorial and assumes users have some familiarity with BeeKit.

1. Create a new project starting from Other ZigBee Applications -> GenericApp named
ZcQe128CustomApp. The solution should be named CustomApp. This example uses the Freescale
QE128 board. If using another board for the ZigBee Coordinator (such as the MC1323x boards),
use the name of that board in the name of the project. Using the three-part naming convention for
projects, with the ZigBee node type (ZC, ZR or ZED), the Freescale board type (QE128), and the
application name (CustomApp) allows any project to be easily recognized by name. The location
of this project should be the folder: c:\Beestack. Also users may select another path, but this path
should be known.

In the BeeStack configuration wizard, make sure to select the MC1320x-S08QE128-EVB board as the
hardware target (or the board already chosen), with LEDs, Keyboard, LCD module enabled in the Platform
Modules Page, ZTC disabled, ZigBee Coordinator device type, no security without mesh routing network
type Stack Profile 1, default BeeStack Configuration Parameters, default extended address and PAN ID
and channel 25 as the default channel.

2. Modity the endpoint and simple descriptor to contain the information depicted in Figure 2-2
(endpoint number 1, profile 0xc021, application id 0x1234, an input and output OnOff cluster
0x0100).

3. To edit the endpoint, click on the button in the BeeKit window as circled in Figure 2-1. This button
will only be available if the “Generic Endpoint” is selected in the Solution Explorer window.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

2-2 Freescale Semiconductor

Building A Custom Application

Freescale BeeKit

File Soluion Project Help

e =N MRy N ~ | Eind: QD

= Ej CustomApp (HCS08 BeeStack Codebase 3.0.12)
B2 ZcQe128CustomApp

B[] BeeStack
{Simple descriptor) ﬁ =-|] Freescale BesApps
-] Endpoints
----- |_1 Generic Endpaint
------ |_1 GenericApp application
|j MacPhy
|j Software Support Modules
lj Platform

Help

A simple descriptor contains information specific to each endpoint contained in this node.

Documentation
X | eywords to find in documentatio
% BeeStack 2007 /Pro Documentation
Q HCS08 Transceiver and MCU Documentation
@ HCS08 Evaluation Boards and Kits Documentation
Q BeekKit Documentation

Find Sk,

Error List | Qutput |

Error Description Qrigin

£ 1]] ¥ || | Documentation View: Codebase Documentation -
—=

Project added 'ZcQe128CustomApp’

Figure 2-1. Modifying Endpoints in BeeKit

After clicking this button, the Simple Descriptor Editor window appears as shown in Figure 2-2. Modify
the endpoint’s simple descriptor to contain the same information as shown in Figure 2-2.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 2-3

}{—

Building A Custom Application

Simple Descriptor Editor

Profile
Name: | CustomAppProfile | 1d: |mcozi |

Application
Mame: |Cu5ton'| App | Id: |[b-:123-4 |

Clusters

MName Type Id
Mandatory

OnOff Input (0700
OniCif Output (0700

[ok || cancel

Figure 2-2. Custom Application Simple Descriptor

4. Add another project in the same solution starting from GenericApp named ZedQe128CustomApp
(from the menu, use Solution ->Add New Project...). This project will be used with another
Freescale QE128 board. Again, if selecting a different Freescale board, change the project name
accordingly. This time, make sure to select ZigBee node type of ZigBee End Device in the
BeeStack configuration wizard on the “Select ZigBee Device Type” page. Keep default low power
setting. All other settings are the same as in Step 1.

5. Change the endpoint’s simple descriptor as described in Step 2.

6. Export the solution to the folder c:\Beestack\customapp (from the menu, use Solution ->Export
Solution...). Users can employ another path; BeeKit and CodeWarrior place no restriction on using
another path.

Once the solution (containing two projects) is exported, the following two directories will exist:

C:\BeeStack\CustomApp\ZcQel28CustomApp
C:\BeeStack\CustomApp\ZedQel28CustomApp

At this point, the application is ready for importing into CodeWarrior and editing to contain custom code.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

2-4 Freescale Semiconductor

Building A Custom Application

2.2 Editing the Custom Application in CodeWarrior

This section describes the steps involved to transform the source code from the Generic Application
Template to the custom application.
1. Start CodeWarrior 10.1 and choose an workspace.

2. Import the project that was exported by BeeKit into CodeWarrior. From the menu, choose File
->Import -> Existing Projects into Workspace... and navigate to Beestack\customapp. Select both
Zc and Zed projects to be imported into CodeWarrior.

3. Compile the project to make sure everything in BeeKit and CodeWarrior worked. The projects
should compile without warnings or errors. To compile, click on the build icon as shown in
Figure 2-3 after.

R -

Figure 2-3. Build Icon

4. Edit the Beenpp. c file of the ZcQe128CustomApp to contain the custom code. This is the longest
step and requires a number of edits as outlined below. Beeapp . c can be found in the Bee Apps folder.

In Beerpp. c, find the BeeApplnit() function. The key combination Ctrl-L in the CodeWarrior editor will
go to a specified line. Ctrl-F will find text.

In BeeApplnit(), change the name of the application. Change the following lines from:

/* indicate the app on the LCD */
LCD WriteString (2, “Accelerometer”);

To:

/* indicate the app on the LCD */
LCD WriteString (2, “CustomApp”):;

In BeeApplnit(), remove the accelerometer timer and initialization code. Change the following lines from:

/* allocate timers for use by this application */
appTimerId = TMR AllocateTimer () ;
accelModeTimerId = TMR AllocateTimer () ;

/* initialize accelerometer */
AccelerometerInit () ;

To:

/* allocate timers for use by this application */
appTimerId = TMR AllocateTimer ();

Next, modify the defines for the Accelerometer to be those for the custom application. Find these defines:

/* BeeAppTask events */

#define accelEventReport c (1 << 0) /* send a report */

#define accelEventState c (1 << 1) /* move on to next state */
#define accelEventDisplay c¢ (1 << 2) /* display data */

Add an event, so the lines read:

/* BeeBAppTask events */

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 2-5

\
4

(

Building A Custom Application

#define accelEventReport c (1 << 0) /* send a report */

#define accelEventState c (1 << 1) /* move on to next state */
#define accelEventDisplay c¢ (1 << 2) /* display data */

#define customAppTurnOffled2 c (1 << 3) /* turn off light */

Find the function, BeeAppTask(). Find the lines that read:

/* display the accelerometer data */
if (events & accelEventDisplay c) {
AccelerometerDisplayDatal() ;

}

/* report accelerometer data */
if (events & accelEventReport c) {

/* report data over-the-air (assumes SW3 has been pressed to find display) */

AccelerometerReportDatal() ;

/* start up state machine again */
giAccelDemoState = accelStateStart c;
TS SendEvent (gAppTaskID, accelEventState c);

/* handle accelerometer events */
if (events & accelEventState c) {
AccelerometerStateMachine (giAccelDemoState) ;

}
And replace these lines in BeeAppTask() with the following lines of code:

if (events & customAppTurnOffled2 c)
LED SetLed(LED2, gLedOff c);

Next, find the function BeeAppHandleKeys(). Find the lines that read as follows, and remove them:

uint8_t led;
uint8 t accelData;

Next find the lines in BeeAppHandleKeys() that read:

case gKBD EventSW2 c:

/* walk through value of accelerometer */

accelData = gaAccelDemoXYZ[giAccelIndex];

if (accelData < accelDemolLed c)
accelData = accelDemolLed c;

else if (accelData < accelDemo2Leds_c)
accelData = accelDemo2Leds c;

else if (accelData < accelDemo3Leds c)
accelData = accelDemo3Leds c;

else if (accelData < accelDemo4Leds_c)
accelData = accelDemo4leds c;

else
accelData = 0;

gaAccelDemoXYZ[giAccelIndex] = accelData;

/* display on LEDs, LCD */
TS SendEvent (gAppTaskID, accelEventDisplay c);
break;

And replace them with:

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

2-6

Freescale Semiconductor

Building A Custom Application

case gKBD EventSW2 c:
CustomAppToggleLED2 () ;
break;

Remove the code from the case statements for gKBD EventSW4 cand gKBD EventLongSW2 c so they
have no action, as shown below:

case gKBD EventSW4 c:
break;

Find the BeeAppDatalIndication () function. Find the text that reads:

if (pIndication->aClusterId[0] == appDataCluster[0]) {

/* indicate we're the display */
gfAccelIsDisplay = TRUE;

/* get the new accelerometer readings */
FLib MemCpy (gaAccelDemoXYZ, plIndication->pAsdu, sizeof (gaAccelDemoXYZ));

/* update display with new data */
TS SendEvent (gAppTaskID, accelEventDisplay c);
}

And change that text to read:

if (pIndication->aClusterId[0] == appDataCluster([0]) {
LED SetLed(LED2, gLedOn c);
TMR StartSingleShotTimer (appTimerId, 1000, CustomAppTimerCallBack);

/* update display with new data */
TS SendEvent (gAppTaskID, accelEventDisplay c);
}

Add the following two functions at the end of the file:

void CustomAppTimerCallBack

(
tmrTimerID t timerId /* IN: */

)
(void) timerId; /* to prevent compiler warnings */

TS SendEvent (gAppTaskID, customAppTurnOfflLed2 c);
}

void CustomAppToggleLED2
(
void

)
afAddrInfo t addrInfo;
/* don't have a place to send data to, give up */
if (!gfAccelFoundDst)
return;
/* set up address information */

addrInfo.dstAddrMode = gZbAddrModel6Bit c;
Copy2Bytes (addrInfo.dstAddr.aNwkAddr, gaAccelDstAddr);

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 2-7

Building A Custom Application

addrInfo.dstEndPoint
addrInfo.srcEndPoint

gAccelDstEndPoint;
appEndPoint;

addrInfo.txOptions = gApsTxOptionNone c;
addrInfo.radiusCounter = afDefaultRadius c;

/* set up cluster */
Copy2Bytes (addrInfo.aClusterId, appDataCluster);

/* send the data request */
(void) AF DataRequest (&addrInfo, 10, “ToggleLed2”, NULL);

}

Finally, add prototypes for those functions in the “Private Prototypes” section of the file.

void CustomAppTimerCallBack (tmrTimerID t timerId);
void CustomAppToggleLED2 (void) ;

At this point, all changes are made to the code. Press Ctrl-S to save the file.

5.

2.3

Make sure the code compiles without errors or warnings (if users cut and paste from this document,
it should). Resolve any compiler warnings or errors before running the custom application. (See
Section 2.3, “Installing and Running The Custom Application”)

Copy the Beerpp. c file created in the BeeStack\Customapp\zcQel28Customapp\Beeapps directory to
the Beestack\Customapp\zedQel28Customapp\Beeapps directory. This overwrites the previous
BeeApp.c in that directory.

Import and compile the ZedSrbCustomApp application. CodeWarrior allows multiple projects to
be open at the same time.

Installing and Running The Custom Application

This section describes how to download the custom application created in the previous section.

1.

Connect the P&E USB Multilink pod to the BDM port on the QE128 Zc board. Click the debug
icon in the ZcQel128CustomApp project to download the code to the QE128 board. Note: the red

portion of the ribbon cable should be toward the edge of the board. The 6-pin connector is labelled
BDM.

Connect the P&E USB Multilink pod to the BDM port on the QE128 Zed board. Click the green
debug icon in the ZedQe128CustomApp project to download the code to the QE128 board. Note:
the red portion of the ribbon cable should be toward the edge of the board. The 6-pin connector is
labelled BDM. Disconnect the BDM pod.

Reset each board. Press SW1 on each board. The LEDs should chase each other for a few seconds
while BeeStack forms a ZigBee network.

Tell each board to find the other in the network by pressing SW3 on each board. LED3 should light
indicating a remote custom application was found.

Press SW2 on the device that has LED3 on to toggle the remote LED2 on for 1 second.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor

Building A Custom Application

24 Examining the Custom Application

In addition to using the tools, this example demonstrates a number of concepts.
» All application initialization takes place in BeeApplInit().
» Events for the application task come into the function BeeAppTask().
* Incoming ZigBee messages come into the function BeeAppDatalndication().
» Keyboard events come into the function BeeAppHandleKeys().

Examine the BeeAppDatalndication() function. Notice the newly added code both starts a timer and sends
an event to the application task. The timer is used to turn off the LED that was turned on in the data
indication handler.

Notice also the data indication handler didn’t need to worry about the application profile or endpoints,
because these are taken care of when the application registered the endpoint in BeeApplInit(). The lower
layers will filter any incoming data not for that registered endpoint or on the wrong application profile ID.
The application needs only to concern itself with clusters.

The cluster ID itself was retrieved from the endpoint’s simple descriptor, as found in
BeeAppDatalndication().

Examine the function BeeAppHandleKeys(). Note how SW1 starts the network with a single call to ZDO.
Note how SW3 finds the other node using the ASL MatchDescriptor req() function. The results of that
function come back to the callback registered in BeeApplnit(), in the line that reads:

Zdp_ AppRegisterCallBack(BeeAppZdpCallBack);

The function BeeAppZdpCallBack() stores the results of a successful match descriptor so that LED3 can
be lit and the application can now know which node to send its commands to. Note that match descriptor
will return ALL nodes that match, so it’s only useful if the application knows there will be no or only a
few nodes in the network with the same profile ID and cluster list as described by their endpoint’s simple
descriptor.

This same set of nodes will work in any sized ZigBee network, filled with many devices on many
application profiles, and they can still communicate with each other.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 2-9

Building A Custom Application

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

2-10 Freescale Semiconductor

Chapter 3
Designing A Custom Profile

This chapter describes some issues to consider when designing a new custom-profile application,
including selecting a profile ID, clusters, attributes and endpoints. It also describes ZigBee 2006 security
options and includes a discussion on channel and bandwidth use.

3.1 Application Profiles

Application profiles are a collection of related services designed to be interoperable. In the case of public
application profiles, the ZigBee Alliance specifies these services to allow for interoperability between
OEM vendors’ products. An Application Profile ID is a 16-bit number assigned by the ZigBee Alliance.
Private Application Profile IDs must also be obtained from the ZigBee Alliance. The Freescale Private
Profile ID 0xc021 is used for the example code provided by Freescale.

ZigBee Alliance public profiles include
* Home Automation
* Smart Energy
* Health Care
* Commercial Building Automation
* Industrial Plant Monitoring

Most profiles require the use of the ZigBee Cluster Library, a common library of services shared among
profiles.

Every ZigBee node contains one or more application profiles. As an OEM, the only decision to make is
whether to use a public ZigBee Alliance profile or a private profile. Private profiles have the advantage of
being simple to implement and flexible for the project. Public profiles have the advantage of being
interoperable among vendors, but at the expense of extra code size and complexity.

Public profiles are given an ID by the ZigBee alliance, for example 0x0104 for Home Automation. Contact
the ZigBee Alliance (http://www.zigbee.org) for a private profile ID.

One public profile is available in every ZigBee node: the ZigBee Device Profile (profile ID 0x0000). This
profile provides common services to all ZigBee nodes.

As an OEM, users should choose a public profile ID that matches their particular application or request a
private profile from the ZigBee Alliance.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 3-1

http://www.zigbee.org

Designing A Custom Profile

3.2 Endpoints, Clusters and Attributes

Think of endpoints as a virtual wire. Endpoints serve three purposes in ZigBee:

» To provide a location within a node to connect two services. For example, an endpoint on an on/off
switch connects to an endpoint on an on/off light

* To provide addressing within the node. Separate endpoints could control separate lights within a
single node, for example

» To support multiple application profiles within a node (every endpoint supports exactly one
profile)

Application endpoints are numbered 1-240. Endpoint 0 is for the ZigBee Device Profile (a set of common
ZigBee services available in all nodes). Endpoint 255 is the broadcast endpoint; a message to endpoint 255
is delivered to all endpoints in the receiving node with the same application profile as the sender.

Clusters are the services on that endpoint. For example, a single home automation endpoint which supports
an on/off light, supports an on/off cluster for turning the light on and off. In addition, that endpoint will
contain a groups cluster for grouping a set of lights together and a scenes cluster so that the light can be
set up to go to various scenes (movie viewing or gone on vacation, for example).

In the ZigBee Cluster Library, a cluster can support zero or more attributes. Where clusters are commands,
attributes define the state of the application on that endpoint. For example, an on/off light has an attribute
that describes whether the light is on or off.

3.3 Customizing A Public Profile

Public profiles using the ZigBee Cluster Library can be augmented with OEM specific extensions. For
example, an HaOnOffLight, which normally can only turn a light on and off, could be augmented with a
feature of adjusting the hue of the light in addition to turning it on and off. Check with the latest ZigBee
Alliance profile specifications, however, because the feature may exist in the profile already.

To augment a cluster, a payload must be created starting with the zcIMfgFrame t type. This frame contains
a manufacturer specific ID which must be obtained from the ZigBee Alliance.

3.4 Stack Profiles

ZigBee networking, in addition to supporting multiple application profiles within a network, must reside
on a single stack profile.The ZigBee feature set uses the Home Controls Stack Profile. Its profile ID is
0x01. Although the stack profile is called Home Controls, it supports both Home and Commercial
applications and is used by Industrial Plant Monitoring.

This stack profile has the following characteristics:
* Supports up to 31,101 nodes in the network, theoretically.

* Uses both tree and mesh routing. Tree routing allows reduced routing tables.

* Supports full AES 128-bit encryption with a network-wide key. The network key may be
predetermined, or it may be sent over the air to nodes as they join. Note: it is sent over the air in
the clear, so there is a small time window when the network is open for joining that would allow a
rogue node to obtain the network key.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

3-2 Freescale Semiconductor

Designing A Custom Profile

Supports a maximum of 10 hops (maxdepth 5 * 2) across the network.
Supports 20 children per router, 14 of which may be ZigBee End Devices.
End Devices can sleep for up to 1 hour.

End Devices will be compatible with upcoming ZigBee specifications.

It is possible to make a custom stack profile with a different number of maximum hops across the network
or number of children, but it is not recommended, except under very rare circumstances.

See also gNwkMaximumDepth ¢, gNwkMaximumChildren ¢ and gNwkMaximumRouters_c in

BeeStackConfiguration.h.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 3-3

N

Designing A Custom Profile

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

34 Freescale Semiconductor

Chapter 4
Selecting Platform Components

This chapter describes how to select the appropriate hardware-related platform components, including the
use of non-volatile memory, LEDs, the keyboard, serial port, and general hardware.

Platform components are optional for any given ZigBee application. Platform components are enabled in
BeeKit using the Platform Property List in the Solution Explorer pane. They include:

» Display (LCD, not available on all standard Freescale platforms)

* Keyboard
« LED

« NVM

* Power

* Timer

« UART

4.1 The Display Component

The display component can be used to support an LCD controller. There is a LCD display built into the
some Freescale boards. Enable this in BeeKit to support an LCD. The file pisp1ay.c (found in the PLM
folder) will also need to be modified, unless using the same controller as found on Freescale development
boards.

4.2 The Keyboard Component

The keyboard component supports 8 key inputs using only 4 physical keys. Each keypress can be detected
as either a short or long press. This component can be disabled if not needed. The keyboard interface is
also a way to wake low power units on interrupt. For example, a keyboard pin could be used to detect that
a window or door was opened. This could wake a low power node which would then inform a security
monitor of a breach. From the application’s standpoint, it received a key-press and can act accordingly.

4.3 The LED Component

The LED interface allows for LEDs to be independently controlled. The LED interface simply sets a GPIO
pin to high or low. This interface can also be used to control any sort of device, such as starting a motor,
or communicating data on the GPIO pins. See 1ed.n for a definition of the pins used.

The function LED SetLed() is used for almost all of the LED interaction. The states a particular LED can
be set to are:

» gledFlashing ¢ — flash at a fixed rate

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 4-1

|
y

'
A

Selecting Platform Components

» gledBlip c — just like flashing, but blinks only once
 gledOn ¢ — on solid

* gledOff ¢ — off solid

+ gledToggle ¢ — toggle state

The LEDs can be combined using bitwise OR. This save code space. For example:
LED SetLed(LED2 | LED3, gLedOn c);

44 The NVM Component

Non-volatile Memory (NVM) is used to preserve the state of the ZigBee network across reboots and power
outages. For example, it is critical for a light switch to remember which lights it is controlling after a power
outage is over and power returns.

The application can also use NVM to store critical application data that should be preserved across resets.
The following join modes are available from ZDO:

+ gStartWithOutNvm_c

+ gStartAssociationRejoinWithNvm _c

» gStartOrphanRejoinWithNvm ¢

+ gStartNwkRejoinWithNvm ¢

+ gStartSilentRejoinWithNvm ¢

+ gStartSilentRejoinWithOutNvm _c¢

+ gStartSilentNwkRejoin ¢

To start the network using NVM (or not), use the zDO Start () function. For example:
ZDO_Start (gStartSilentRejoinWithNvm c);

NVM uses flash pages of 512 bytes in size to store the non-volatile data. Due to the limitations of flash,
the entire page is erased before rewriting to it. The NVM engine keeps a spare page, so when new data is
written, it is written to the spare before the old page is erased.

One page is devoted entirely to network structures, such as the neighbor and routing tables. A second page
is partially available for the application to use, and is partly in use by BeeStack.

See NV_Data. c. Each page is called a “data set”, which contains a collection of pointers and sizes of the
items to store in that page when the data is “dirty” or has been changed. Data is marked “dirty”” when one
of the following functions is used:

void NvSaveOnIdle (NvDataSetID t dataSetID);
void NvSaveOnInterval (NvDataSetID t dataSetID);
void NvSaveOnCount (NvDataSetID t dataSetID);

Notice that only the data set ID is used. The entire data set is saved, even if one byte in the data set has
changed.

Make sure not to save data to NVM too often. For a 20 year product life, the system should not save to
NVM more than once every 1.8 hours (This is calculated assuming 100,000 erase cycles). Typically,

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

4-2 Freescale Semiconductor

Selecting Platform Components

applications will save often when first forming or joining the network and during the commissioning
process. From then on, saving should occur rarely.

See the Freescale Platform Reference Manual for more information on non-volatile memory.

4.5 The Low-Power Component

BeeStack allows for low power devices on ZigBee End Devices (ZEDs) only. ZigBee Routers (ZR) and
the ZigBee Coordinator (ZC) do not have this capability.

To enable low power, disable the MAC Capability: Rx On When Idle property and enable the ZDO:
Low Power Mode Enabled property in BeeKit in a ZigBee End Device. The low-power component is
shared by other Freescale networking solutions, such as the IEEE 802.15.4 MAC and the SMAC. The
power library options can be found in pwr Configuration.h.

Keep in mind also that the power library will not enter deep sleep unless all of the BeeStack timers are off.
Timers may still be active if, for example, BeeStack is still attempting to deliver an acknowledged message
or broadcast. Also, the power library will not enter sleep at all unless every task is idle. See the Freescale
Platform Reference Manual for more information on power management.

46 The Timer Component

BeeStack timers are used to gain control within a task after a certain period of time has elapsed. Timers
can be one-time events (single-shot) or repeating (interval), and can range in duration from 4 to 262,143
milliseconds (about 4 minutes). Interval timers will continue to repeat until stopped.

Use timers to blink LEDs, pace ZigBee data requests, or for application timing purposes.

BeeStack timers are implemented using a single hardware timer (TPM1 on the HCS08), leaving any other
hardware timer resources available to the application.

In BeeStack, the number of timers available to the application is defined at compile-time through a
property in BeeKit called gTmrApplicationTimers_c, in TMR_Interface.n. The default number of
application timers is 4. Each timer requires 7 bytes of RAM.

Like all BeeStack platform (PLM) components, timers retrieve control via a callback. The callback is a
function with the following prototype (it can have any name the application chooses)

void BeeAppTimerCallBack

(
tmrTimerID t timerId /* IN: */

)

Timers are initiated through the use of one of the following functions

void TMR StartSingleShotTimer
(
tmrTimerID t timerID,
tmrTimeInMilliseconds t timeInMilliseconds,
void (*pfTimerCallBack) (tmrTimerID t)
)

void TMR StartIntervalTimer
(

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 4-3

Selecting Platform Components

tmrTimerID t timerID,
tmrTimeInMilliseconds t timeInMilliseconds,
void (*pfTimerCallBack) (tmrTimerID t)

)

void TMR StartMinuteTimer
(
tmrTimerID t timerId,
tmrTimeInMilliseconds t timeInMinutes,
void (*pfTmrCallBack) (tmrTimerID t)
)

Timers (both interval and single-shot) are stopped through the use of

void TMR StopTimer
(

tmrTimerID t timerID

)

4.7 The UART Component

One platform component that is often useful in ZigBee applications is the UART component. This allows
one or both of the HCS08 SCI (serial communications interface) ports to be used to connect to a PC or
another host processor.

All standard Freescale development boards provide a hardware connection to one or more UARTSs. Some
boards offer a USB connection, and others offer RS-232. The UART software component does not need
to distinguish between these two port types because the differences are handled by external hardware.

The UART can be used to communicate all networking traffic. The ZigBee Test Client (ZTC) interface is
very useful for this function, or a custom serial protocol can be developed. See the Freescale BeeStack
BlackBox ZigBee Test Client (ZTC) Reference Manual for more information on the ZigBee Test Client.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

4-4 Freescale Semiconductor

Chapter 5
Managing BeeStack Resources

This chapter describes using the non-hardware related platform components appropriately, including the
use of messages, timers, data queues, and the task scheduler. It also describes how to determine how much
RAM and Flash is available to the application and what to do if an application exceeds memory size. It
also describes managing ZigBee channels and bandwidth.

5.1 BeeStack Start-up Sequence

BeeStack begins control (at least from a C language point of view) in a module called Beerppinit.c, at the
function main(). From there, main() initializes the radio, MAC, platform components and ZigBee
networking stack. After all of BeeStack is initialized, the application is initialized when BeeApplnit() is
called in the application.

The typical application BeeApplnit() (which is found in Beeapp.c, not Beerppinit.c) registers endpoints
with the stack (to be able to receive ZigBee networking communications), registers with the keyboard to
receive key presses, and initializes the Application Support Layer (ASL) and possibly the ZigBee Cluster
Library (ZCL).

Most applications will not need to modify the start-up sequence, however it is provided in full source code,
so that it can be modified as appropriate for any given application.

5.2 Managing Tasks

BeeStack relies on a platform component called the task scheduler to accomplish ZigBee networking. This
scheduler is a non-pre-emptive priority based scheduler. It can have up to 255 tasks.

BeeStack contains a task for each of the ZigBee functional modules (NWK, APS, AF, ZDP, ZDO, ZCL),
and for some platform components (such as UART).

The application is contained in one task by default but can be split up into multiple tasks for a particularly
complex application.

NOTE

MCU interrupts operate independently of tasks, and may often pass control
to a task through the use of the TS _SendEvent() function.

The maximum number of tasks in a BeeStack system is allocated at compile-time using the rs: Number of
tasks BeeKit property, which defaults to 14 tasks. Each task requires 6 bytes of RAM. Depending on
BeeKit property settings, BeeStack uses up to 11 tasks.

Each task is comprised of at least two (2) functions:

» Task initialization — this function is run once on start-up to initialize the task

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 5-1

V¥ ¢
i

Managing BeeStack Resources

» Task event handler — this function is run every time there is an event for the task

The task prototypes are as follows:

void TaskInit(void);
void TaskEventHandler (event t events);

Each task may define up to 16 distinct events, each of which is an event of the event t type. Events are
unique per task (that is, the event mask for one task is distinct from the event masks of all other tasks).
Each event is a single bit in the events bit mask.

In the application task, defined by the functions BeeApplnit() and BeeAppTask(), the events are used as

in Table 5-1.
Table 5-1. Application Events
Event Bit Mask Description

gAppEvtDataConfirm_c 0x8000 Sent by APS when a data confirm is received on an endpoint

gAppEvtDatalndication_c 0x4000 Sent by APS when a data indication is received on an endpoint

gAppEVtSyncReq_c 0x2000 Sent by ZDO when it’s time to poll for data from a parent (ZigBee End
Devices only)

gAppEVtAddGroup_c 0x1000 Sent by the ZigBee Cluster Library (ZCL) when it’s time to add a group.

gAppEvtStoreScene_c 0x0800 Sent by ZCL when it’s time to store a scene

Available variable Bits 0-10 are available for the application. If the ZigBee Cluster Library is not
used, bits 11 and 12 are available also. If the device is a ZigBee Router or
Coordinator, bit 13 is also available.

The following compile-time tasks are defined in BeeStack:

 idle task — gains control when there is nothing else to do

* MAC task — services MAC layer primitives

» NWK task — services network layer primitives

« ZDO task — services ZigBee Device Object primitives

» APS task — services Application Support Sub-layer primitives

» AF task — services application framework primitives

* PLM task — services platform management primitives

* Application Task — services the application
BeeStack tasks are non-pre-emptive. Once a task gains control, it has full control until the task completes
(returns from the task event handler function). Tasks should complete quickly (less than 2ms) to avoid
starving other tasks of processing time. If the task takes too long to process it will prevent the lower layers

of the Stack to process incoming packets.A task should under no circumstance take longer than 10
milliseconds.

BeeStack tasks are priority based, with the idle task being the lowest priority. The highest priority task is
the MAC task, to service network data traffic. Applications may use task priority 0x40 — Oxbf. The default
priority for the BeeAppTask() is 0x80, as defined by gTsAppTaskPriority c.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

5-2 Freescale Semiconductor

Managing BeeStack Resources

The decision of whether to make more than one application task is up to the application designer.
Generally, a single application task is sufficient, but if an application is particularly complex, or if it
contains an independent hardware component, adding a task can simplify the coding.

Call TS_TaskCreate() to add a task, usually in BeeApplInit(), and make sure to call an initialization
function for the task.

5.3 Managing Timers

Use timers whenever some event must be timed. When a timer expires, it calls a callback function of the
application’s choice, as given to the start timer functions, TMR_StartSingleShotTimer() and

TMR _StartIntervalTimer(). Typically, the callback function should set an event, but it could do any work
required. The callback is in the timer task context.

The stop timer function, TMR_StopTimer() is safe to call at any time, even if a timer is already stopped.

Timers must be allocated before they can be started or stopped. Use the TMR _AllocateTimer() function
for this purpose.

The total number of timers for the application is defined by gTmrApplicationTimers_c.

When one or more timer is active (currently counting down), low-power mode will not enter deep sleep,
but will use light sleep only. Make sure all application timers are stopped to enter deep sleep on ZigBee
End Devices (Routers and Coordinators do not sleep).

5.4 Managing Message Buffers

BeeStack uses message buffers to transmit data over the ZigBee network (data requests) and to receive
data from other nodes (data indications). This section describes some tips and techniques to manage these
buffers so the network runs smoothly and to reduce or eliminate packet loss due to insufficient buffers.

The number of BeeStack message buffers is determined at compile-time through a set of BeeStack
properties, one called gTotalBigMsgs d, and another called gTotalSmallMsgs_d. The defaults for these are
5 each.

Big messages are 161 bytes in size and are large enough to hold the largest ZigBee packet, including all
over-the-air frame headers plus some additional information for housekeeping. Big messages are used for
both data transmit and receive. If the network is expected to be very busy, transmitting or routing many
packets over a short period of time, the number of big buffers should be increased as much as RAM allows.
The value 7 is reasonable for a modestly busy network.

Small messages are used for temporary data within BeeStack and the number of these buffers should not
be changed.

When the application initiates a ZigBee data request (to transmit data) using AF_DataRequest(), it
allocates a big buffer. AF_DataRequest() will fail if no big buffers are available. ZDP commands also
allocate big buffers to do their work.

Freeing buffers once they are no longer needed is of course critical to system operation. BeeStack follows
very specific rules for freeing buffers, as follows:

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 5-3

Managing BeeStack Resources

When the higher layer allocates a message buffer (e.g., a data request) and passes it to a lower layer, the
lower layer is responsible for freeing the message buffer.

When a lower layer allocates a message buffer (e.g. a data indication) and passes it to a higher layer, the
higher layer is responsible for freeing the message buffer.

AF FreeDataIndicationMsg () must be used to free Data indication messages and MSG_Free ()
should be used to free any other message.

AF MsgAlloc () must be used to allocate a message buffer for a Data Request and the
AF MsgAllocFragment () must be used for allocation of message buffers for Data Request that uses
fragmentation.. MSG_Alloc () should be used in any other case.

Lower layers may retain the message buffer for up to a number of seconds, depending on the operation.
For example, if an application initiates an AF_DataRequest() to transmit data and has the
gApsTxOptionAckTx_c flag set in the txOptions field, the big message buffer will be retained until the
acknowledgement (ACK) is received from the remote node or a time-out of 4.5 seconds occurs, whichever
comes first. If required, the packet will be resent by the APS layer up to 3 times to ensure reliable
transmission of the packet.

BeeStack issues a confirm on each data request, received through the BeeAppDataConfirm() callback.
This confirm can be used to regulate the pace of data requests, and thus regulate the use of big buffers.
Follow these rules to effectively manage message bufters:

* Do not issue broadcasts more often than once every 2 seconds. Be aware that other nodes may
issues broadcasts. Broadcasts must retain big buffers for up to 2 seconds

* Do not issue another unicast until the confirm has been received

* Check the confirm value. If the confirm is gZbBusy c, the request was not sent due to a busy
system (many routing packets). Try again after waiting 100 milliseconds or so

Two message buffers are always reserved by the MAC for data indications.

5.5 Managing Memory

In BeeStack, memory is generally allocated statically at compile-time. There is no concept in BeeStack of
a heap, and there is no malloc(). Do not use the message buffers for application allocation as they are
needed by BeeStack to operate ZigBee networking.

5.6 Managing The C Stack

When a task gains control, it is at the top of the stack. When a callback (such as a timer or keyboard
callback) is made, it is not at the top of the stack, because callbacks are not in the context of some stack.

The number of bytes used in the stack is dependant on the application. To detect how many bytes are used,
look at offset 0x0100 in memory (the bottom of the stack) and count the number of bytes that are equal to
0x55 (the stack initialization value).

Make sure the stack doesn’t overflow in an application during its testing phase. A rule of thumb is to make
sure there are at least 40 bytes of stack unused after worst case testing.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

5-4 Freescale Semiconductor

Managing BeeStack Resources

If the stack is largely unused in a particular application, some RAM can be saved by adjusting the size of
the stack. The size of the stack can be adjusted in the linker file *.prm.

5.7 Managing RAM and FLASH

RAM and FLASH in embedded systems can be a scarce resource. The Freescale development platforms
have the following RAM and Flash characteristics:

MC13213 (HCS08GT60) 4KB of RAM and approximately 60KB of FLASH

HCSQE128 8KB of RAM and approximately 128KB of FLASH

MC13233 5KB of RAM and approximately 82KB of FLASH

MC1322x 96KB of RAM with FLASH mirroring and an 80KB ROM containing
code for IEEE 802.15.4 MAC (MC13224/M(C13225) and BeeStack
(MC13226).

Depending on the BeeStack options chosen, any application could exceed either RAM or FLASH.

Tips to help reduce FLASH:

» Use a ZigBee End Device rather than a ZigBee Router. ZigBee End Devices can be about 10KB
smaller in FLASH. ZigBee End Devices can also be set to RxOnldle. This means they do not need
to poll and can respond immediately.

* Only include those ZDP functions actually used by the application. These can be selected in
BeeKit.

* Do not use ZTC or the UART driver unless the application needs them.
* Do not use a secure network unless required. ZigBee security is approximately 8 KB.

* Look in the *.map file generated by the linker for the largest functions and modules. Try to
eliminate functions that are not required by the application.

* Remove debugging code (if any).
» Ifpossible, reduce NVM storage needs or disable the NVM module.

Tips to help reduce RAM:
» Make tables as small as possible. For example, the routing table, neighbor table or group table can
be reduced.

* Reduce the C stack size if the application does not use the full stack.

5.8 Managing ZigBee Channels

ZigBee communicates on the IEEE® 802.15.4 MAC and PHY standard. In the 2.4 GHz band, this standard
allows for 16 channels, numbered 11-26 (channels 0-11 are used for sub 1GHz bands). The 2.4 GHz
channels are physically separated by 5 MHz, so they cannot hear each other. ZigBee operates on one
channel at a time.

Some application profiles require a specific channel selection. For example, Home Automation requires a
node to be able to operate in a network on any channel.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 5-5

Managing BeeStack Resources

Private profiles can restrict the application to a particular set of channels. Channels 11 and 26 (the edge
channels) are often good choices for a private profile.

Channels 15, 20, 25 and 26 tend to be clear of WiFi channels. In practice, ZigBee tends to co-exist with
WiFi and other 2.4 GHz technologies. ZigBee uses CSMA-CA, so it takes advantage of silence on the
channels to communicate.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

5-6 Freescale Semiconductor

Managing BeeStack Resources

5.9 Managing ZigBee Bandwidth

On any given channel, in a given location, only one radio may be transmitting at the same time. That means
that a dense network with lots of traffic could end up interfering with itself.
Keep the following items in mind when planning or deploying a network:

« ZigBee End Devices (ZEDs) that sleep, poll their parent to receive messages. Keep this polling rate
to 5 seconds or longer if possible. Most ZEDs can wait for responses

* Usea “push” rather than a “pull” method of communicating. That is, have a sensor report a change,
rather than querying the sensor constantly for change

» Keep the broadcast radius small (1-3) for broadcasts that are expected to be serviced by nearby
nodes. Do not use up bandwidth on other parts of the network

» If gateways are used, do not create a bottleneck by sending all traffic to a single data aggregator or
gateway. Instead, aggregate the data in intermediate nodes, which in turn send combined packets
back to the gateway to reduce network traffic

» If the network is large (200+ nodes) consider multiple gateways

* Do not use ACK on data requests unless the application will use the data confirm results
* Do not use security unless the application needs it. Security makes larger packets

» ZigBee is a low-speed network. Use it as such

* Always keep bandwidth in mind. Bandwidth is finite

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 5-7

Managing BeeStack Resources

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

5-8 Freescale Semiconductor

Chapter 6
Debugging BeeStack Applications

This section describes how to debug a networking application, including use of the BDM, LEDs, ZigBee
Test Client, and Sensor Network Analyzers.

6.1 The P&E MultiLink BDM

One of the most powerful tools for debugging a BeeStack application is the use of the P&E MultiLink
Background Debug Mode (BDM) pod. This device plugs into a 6-pin connector on each development
board and not only allows code download into the on-board flash of the HCS08 MCU, but it also allows
stepping through the source code.
When using the CodeWarrior TrueTime debugger, the following tips can be helpful

* Only 2 breakpoints at any given time are allowed

* Only set or clear breakpoints when the debugger is stopped

» When single stepping through the code, if the debugger ends up in an interrupt handler instead of
the next C source line, use single step (F10) again (in the interrupt handler) and then step out
(Shift-F11). It may take several iterations if the interrupts are particularly active

» If the BDM will not download the code, disconnect the BDM, reset the board and try again
* Multiple BDMs (and debuggers) can be used simultaneously
* Only keep at most one debugger window open per BDM

For details on the CodeWarrior TrueTime debugger, see the CodeWarrior documentation.

6.2 LEDs and the Display

The BeeStack LED component contains a function, LED SetHex(), which allows a hex nibble (the lower
4 bits of a byte) to be displayed on the 4 LEDs on the Freescale reference boards. This function can be used
to show the latest state of the application.

Another technique is to toggle the LED every time the application task gets control. Use LED SetLED()
with gledToggle c as the state parameter.

LEDs can also be useful to see when the board enters low power (see the idle task in BeeApplnit.c) or when
the board is communicating over ZigBee on BeeAppDatalndication(), for example.

The LCD display on those boards that support them, such as the NCB and Axiom, is also a very useful
debugging tool. LCD_WriteString() and LCD WriteStringValue() can be used to great effect, indicating
where the problem lies.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 6-1

Debugging BeeStack Applications

6.3 Network Protocol Analyzers

A network protocol analyzer is a tool that captures over-the-air data for later examination to aid in
debugging network activity. Freescale offers “sniffer” hardware that can passively monitor an 802.15.4
channel for activity, and reports each packet through a USB port to the desktop PC. Communication
problems that are extremely difficult to identify in the code are frequently very easy to understand from
the over-the-air behavior.

Third parties offer protocol analyzers. Figure 6-1 shows one of the many network analyzers available.
Notice that the network is shown as a graphic and with packet decode. This includes time stamps on the
packets.

%: Dalntres Metworks Sensor Hetwork Anabyzer - Packed List ==

Fe Ve Canre Pronok Fls Semngs Wb Hep
& G B e | camniconmarce 4o =] 2| cranves - Repa [1L =] @
2] B -
Wiewe [repmraree, B @A T (e B B[sekTor | P e ']
T + Fram: 57 (leagsh = 36 bytead
9 e 4 [EEE E0Z,15.4
.
= ;.- "
= .,,r,} i

e mr || oooe: & TR D & TR

| | o
|3 packor Lt
Pitar: | A Fackat -2 (0 W b sodi et M
St I | b | e Bea
"
Le:
For Help, pram 1 Seson Fia: | Log Fie: | Frareex: 82

Figure 6-1. Sensor Network Analyzer

6.4 ZigBee Test Client

Another method for debugging a network is the Freescale Test Tool and ZigBee Test Client combination.
Test Tool, a desktop PC tool from Freescale, uses a serial (USB) port to communicate to one or more
boards. An XML file describes the commands Test Tool uses, which in turn communicates to Freescale
ZigBee development boards. A small network of 2-10 nodes can easily be set up and controlled by Test
Tool for manual testing of application commands.

ZTC and Test Tool can be extended to support any commands over the serial link allowing a very flexible
tool for debugging. The standard ZTC configuration supports all BeeStack ZigBee commands.

ZTC also allows for automated testing. Freescale uses this technique to test BeeStack itself, with a large
test suite covering the BeeStack API and ZigBee commands.

For a complete list of ZTC commands, see the Freescale BeeStack BlackBox ZigBee Test Client Reference
Manual. For more information about Test Tool, see the Freescale Test Tool User s Guide.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

6-2 Freescale Semiconductor

Chapter 7

Creating a Custom BeeStack BlackBox Application

This chapter describes how to create and extend a Custom BeeStack BlackBox application.

71 Generating a BeeStack BlackBox Project with BeeKit

This section describes how to generate a BeeStack Development project in Beekit.

1. Start BeeKit. The BeeKit main window appears as shown in Figure 1-1.

2. If another Codebase (MAC, SMAC or SynkroRF) is selected, perform the following:
a) Select File -> Select Codebase... or click the “Select Other Codebase...” link.

b) Select the BeeStack Codebase version to use from the codebase list.

c) Click Set Active.

3. To create a new project to configure a new device, select File -> New Project...

The New Project window appears as shown in Figure 7-1.

New Project @
Project bypes: Templates:

Zigkee Home Automation Applications GeneticApp

FigBee Smart Energy Applications wirelessUART

ZigBee Black Box Binary
= Other Project Types
Solutions

Project Mame: |Black Box
Solution Marme: |My Solution

Lacation: Ditempl]

Other ZigBee Applications

Test Profile 2
Elack Box

Black Box Template application

[Ok, H Cancel]

Figure 7-1. New Project Window

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor

\
4

(

Creating a Custom BeeStack BlackBox Application

4.
3.

Select the “Other ZigBee Applications” project type from the left side of the window.

As shown in Figure 7-1, select the “BlackBox” template and fill in the Project name, Solution name
and location fields.

Click the OK button to create the project.

After the New Project window closes, the BeeKit Project Wizard Welcome window appears as
shown in Figure 7-2.

¢ Freescale Beskit Project Configuration: Black Box

-,
¥, Freescale

oo B e eKit"" Welcome to the BeeStack configuration wizard

-

Lsing the wizard you can make configuration changes to the default settings of the
application,

Currently the main default settings of the Black Box application are:

» Target Board: MC1322% Sensor Node
» ZigBee Device Type: Coordinator

» BeeStack Configuration: No security without mesh routing - Stack profile 1

Click =Mexts> to start making configuration changes,
Click «Finishiz= at ary time to close the wizard and save the modified configuration.

Click =Set Defaults= at any time to close the wizard and discard arny modifications.

Back [Mext H Finish H Set Defaults]

Figure 7-2. Project Configuration Wizard Window

Review the current project settings. The default settings used in this example are shown in
Figure 7-2.

There are four ways to proceed from the project configuration wizard window.
a) Accept all the current settings by clicking on the Finish button. (No more configuration.)

b) Ifusers are sure of the settings that need changing, go directly to them and make the appropriate
selections from the menu choices on the left side of the project configuration wizard window.

c) Ifusers are not sure of the settings that need changing, click on the Next button. This is the
choice described in Section 2.1, “Creating a Custom Application In BeeKit”.

d) Ifusers need to discard the modifications already made to the default configuration and close
the wizard, click the Set Defaults button.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

7-2

Freescale Semiconductor

Creating a Custom BeeStack BlackBox Application

711 ZigBee Black Box Device Type Configuration

As shown in Figure 7-3, users can now choose one of the following ZigBee BlackBox device types from
the Freescale BeeKit Project Configuration Black Box window:

* Coordinator

* Router

* End device

* Combo device.

NOTE

Selecting the proper device type has a significant impact on the size of the
memory available for the application. Choosing the Combo device type
allows the target to function as a Coordinator, a Router or an End device, but
the Combo device type uses the most memory.

For example, if the target is only intended to function as an End device, then select the End device type
instead of'a Combo device type. This leaves more memory space for adding other useful ZigBee features
such as fragmentation or for defining a larger memory pool for buffer allocation.

I x|

. Freescale Beekit Project Configuration: Black Box

¢, Freescale

::: B e eKit“‘ Select the ZigBee device type of the target

' Coordinator
' Router
" End device

" Combo device

Back | Iexk I Finish Set Defaults

Figure 7-3. Device type selection window.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 7-3

PR 4

Creating a Custom BeeStack BlackBox Application

8. After configuring the devices as shown in Figure 7-4 and after completing the tasks in the project
configuration wizard window, configure and match the project with a feature set.

Freescale BeeKit

File Solution Project Help
LS 23 R | = S | 7 | Find: Q)
tPage | Froperty List |]

(ARM7 BesStack Codebase 3.0.5)

| Black Box
APS: 64 Bt Address Resalution Tmealt 1500 A = 1) Bosstack
4PS: Seoultarious APSDE-Dat: 2 2] Freescale Besipps
4P5: Number OF Simultaneous Entity ALthentication 3) BlackBox applcation
5 Number Of EndPoints supported a
P: Number OF Incomming Securiy Frame Counters 1) Software Support Modules
O: System Event Enabled rue L1 Piatform
©: Scan Durakion
P: Enable MWK _Ader req e
0P+ Enable NWK_Ackr rsp True
20P+ Enable IEEE_Adch_req True 8
2P Enable IEEE_Addr_rsp e
0P Enable fode_Desc_req False
70P: Enable Node_Desc_1sp e
e Pawer_Desc rsp e
| B Fase
| 20 Enable Simpl_pesc r=p e
| B2 Desc_re Fabe
0P Desc_rsp False
2P Enable Active_EP_req False ¥
Help

Enable Power Descriptor request
2.43.1.4 Power_Desc_req, (ClusterD=0x0003)

The Power_Desc_req command is generated fiom alocal device wishing to inguire as to the power descriptor of a rerote device. This command shall be
unicast either to the remote device itself or to an altemative device that contains the discovery information of the remote device.

The local device shall generate the Power_Desc_req command using the format illustrated in Table 2.44. The NWKAddrOfinterest field shall contain the
network address of the remote device for which the power descriptor is required.

#define for property: gPower_Desc_req_d

Jrod

Besstack 2007jPro Documentation

MC1322¢ Transceiver and MCU Documentation
MC1322 Evaluation Boards and Kits Documentation
Beekit Documentation

Eror Desarption orign

Documentation Visw: | Codshase Dacumertation -

Froject added Black Box'

Figure 7-4. Project Configuration

NOTE
The BeeStack BlackBox ZTC client, UART or IIC module must be enabled
to be able to communicate with a host CPU.
9. As shown in Figure 7-5, the project can now be exported and opened in the Integrated
Development Environment (IDE).

% AR Embedded Workbench DE LEX|

Fle Edt yew Propct Ioos Window telp

L=T-) /YR EED D &5 82 L
EET— ==
E—] |
Rip * BlackBoxRe gt cMe
R Plack Bor * Duckorseceivedtotessave
F@CaBeehppe + Recetves & nessage fron 3TU (Test Tool). Used to contzol the Blackbor
mgéstﬁ . application through the serial port.
onfigure
FeaHa foia BlackBoxReceiveztclessaye (ZTCHessage_t+ plisy)
faane ¢ -
acise . ZbCounissioninghteributes_t pSAS:
f-a0Steckal
Qe .
fagzmo . /¢ Chsck tor invazia an paraneters <
-0 @ AppTo . it ((ghlackboxGrow_c ‘= pig->apCode) ||
Pl “ > GRa_e))
Co B ||
[Bocoam | o
{-@@BecApp. -
E‘ %E::;;P . sviten pHsg->opCoseTa)
L— B EndPoi /#+ Overvrite SAS structure +/
- CaMacphy Case gBlackBoxVrtesks_ct
a2 g z;?a N FLib_} pisg->data, %)) :
Fa . break:
@ OzigBee
L@ 0utput 7+ Return SAS to Tes

if (gRAILC == plisg->:
DIAS = cBlackBoxhtrrsbata;
else if (gRON_C == plisy->data(0])
DIAS = (zbComnissioningAteributes_t¥)cgshs Ron;

ZTCQuene_QueueToTestC1ient ({uints_t 7} (p3AS), plsg->opCode,

break:
)

)

|—

* BesAppidpCaliback

* 80P calls this function when it receives a response to & reguest.
* For exauple, ASL_MatchDescriptor_req will return whether it worked or mot.

oid BeeApp2dpCaliBack
¢

ZdpTohppltessage_t "plisg,
=bCounter_t counter

)
Bk o I#i_Ls

Ready

&

in 424, colt

Figure 7-5. Integrated Development Environment

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor

Creating a Custom BeeStack BlackBox Application

To learn more about BeeKit and project configuration see the Freescale ZigBee Applications
User's Guide (ZAUGZB2007).

10. Modify and debug the project using the IDE.

To learn more about how to add commands to the BlackBox application, see the Freescale BeeStack
BlackBox ZTC Reference Manual (BSBBZTCRM).

NOTE

The BlackBoxReceiveZtcMessage() function in Beeapp.c contains a
framework for adding new commands to simplify the process.

11. After downloading the code with the debugger, the BeeStack BlackBox can be used as described
in the Freescale ZigBee Applications User s Guide (ZAUGZB2007).

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 7-5

Creating a Custom BeeStack BlackBox Application

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

7-6 Freescale Semiconductor

Chapter 8
Creating a ZigBee Host Application

This chapter describes how to create and extend a ZigBee Host application.

8.1 Hardware Setup

A ZigBee Host application requires that the target hardware be connected via the serial port to the
hardware on which the ZigBee BlackBox runs. This section describes how to setup and connect boards as
Hosts and BlackBoxes to each other. For more information on the boards, see the appropriate Freescale
development kit documentation delivered with BeeKit.

8.1.1 Setting Up a MC1320x QE128 Board as a Host

The MC1320x QE128 board uses the UART interface to communicate with the ZigBee BlackBox. The
UART?2 interface communicates with an external client such as the Freescale Test Tool. The MC1320x
QE128 Host board needs to use its own clock source.

Perform the following tasks on the MC1320x QE128 Host board:
* Remove jumpers J13 (TX) and J15 (RX)

» Set jumper J5 to the 32 KHz position

» Connect the TX pin to the appropriate UART RX pin of the ZigBee MC1320x QE128 BlackBox
board

» Connect the RX pin to the appropriate UART TX pin of the ZigBee MC1320x QE128 BlackBox
board

* Connect the GPIO connector GND pin to the appropriate system ground pin of the ZigBee
MC1320x QE128 BlackBox board

8.1.2 Setting Up a MC1322x Board as a Host

The MC1322x NCB and SRB boards use the UART?2 interface to communicate with a ZigBee MC1322x
BlackBox board. The UART1 interface communicates with an external client, such as the Freescale Test
Tool. Connect the UART?2 interface pins as follows:

* Connect GPIO connector UART2 TX pin (17) to the appropriate UART RX pin of the ZigBee

MC1322x BlackBox board

» Connect GPIO connector UART2 RX pin (18) to the appropriate UART TX pin of the ZigBee
MC1322x BlackBox board

* Connect GPIO connector GND (4) to the appropriate system ground pin on the ZigBee MC1322x
BlackBox board

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 8-1

Creating a ZigBee Host Application

8.1.3 Setting Up a MC1320x QE128 Board as a BlackBox

The MC1320x QE128 board uses the UART 1 interface to communicate with a ZigBee MC1320x QE128
Host board.
Perform the following tasks on the MC1320x QE128 BlackBox board:
* Remove jumpers J13 (TX) and J15 (RX)
* Set jumper J5 to the CLKO position
» Connect the TX pin to the appropriate UART RX pin of the ZigBee MC1320x QE128 Host board
» Connect the RX pin to the appropriate UART TX pin of the ZigBee MC1320x QE128 Host board

* Connect the GPIO connector GND pin to the appropriate system ground pin of the ZigBee
MC1320x QE128 Host board

8.14 Setting Up a MC1322x Board as a BlackBox

The MC1322x NCB and SRB boards use the UART?2 interface to communicate with a ZigBee MC1322x
Host board. Connect the UART?2 interface pins as follows:

» Connect GPIO connector UART2 TX pin (17) to the appropriate UART RX pin of the ZigBee

MC1322x Host board.

» Connect GPIO connector UART2 RX pin (18) to the appropriate UART TX pin of the ZigBee
MC1322x Host board.

* Connect GPIO connector GND (4) to the appropriate system ground pin on the ZigBee MC1322x
Host board.

8.2 Software Setup

This section describes the steps needed to generate a BlackBox Host solution after the two boards are
connected.

8.2.1 Software Setup on the BlackBox Board

Flash the appropriate ZigBee BlackBox image to the BlackBox board. The following image files are
available in the HCS08 Codebases and ARM7 Codebases (for MC13224 and MC13226):

HCsO8BeeStackBlackBox SP1 UART1.s19
HCSO08BeeStackBlackBox SP2 UART1.s19
ARM7BeeStackBlackBox SP1 UART2 MC13224.bin
ARM7BeeStackBlackBox SP2 UART2 MC13224.bin
ARM7BeeStackBlackBox SP1 UARTZ2 MC13226.bin
ARM7BeeStackBlackBox SP2 UART2 MC13226.bin

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

8-2 Freescale Semiconductor

Creating a ZigBee Host Application

8.2.2 Software Setup on the Host Board

This section describes how to configure the software on the Host board.

1. Ensure that the appropriate image is flashed to the BlackBox board as described in Section 8.2.1,
“Software Setup on the BlackBox Board”.

2. Depending on the target board, from the BeeKit main window, select the appropriate HCS08
(MC1320x) or ARM7 (MC1322x) BeeStack codebase.

3. Inthe New Project window shown in Figure 8-1, review the available ZigBee Host templates
located in the Project types display area. Be sure to review and select only those types that have
titles beginning with “BlackBox Host”. For example, BlackBox Host Automation Applications.

New Project x|
Project bypes: Templates;
- ZigBee Home Automation Applications Ha GGenericipp

- ZigBee Smart Energy Applications
- Other ZigBee Applications

- ZigBee EBlack Box Binary

- ZigBee Healthcare Applications

Ha OnCffSwitch
Ha DimmableLight
Ha Dimmer3witch
Ha Thermostat

- BlackBox Hosk Home Autornation Applications Ha TempSensar
- BlackBox Host Smart Energy Applications Ha RangeExtender
- BlackBox Host Other Applications Ha ConfigurationToal
- BlackBox Host Healthcare Applications Ha Combined Interface
[=]- Other Project Types
- Solutions

Ha OnOFfLight Template application

Project Mame: IHa OnOFFLight

Solution Mame: IMv Solution

Location: ID:'l,ProfiIes'l,rEDDDS&'l,My Dacurients o0 |
0K I Cancel |

Figure 8-1. New Project Window

NOTE

Because the 802.15.4 Mac/Phy software is configured within the BlackBox,
the Host project does not contain this component and it is not shown in the
Solution Explorer display area in BeeKit (Figure 8-2). Instead, a BlackBox
Host BeeStack Wrapper is included. Choosing this wrapper allows users to
select the Host type (Coordinator, Router, End Device or Combo device)
and whether to include the security library (Figure 8-2).

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

Freescale Semiconductor 8-3

PR 4

Creating a ZigBee Host Application

#* Freescale BeeKit

File Solution Project Help

G H G e v QD

=10l x|

Start Page Property List |Search Resultsl

Coordinator

Include Security Library False

Help
Select device type: Coordinator / Router / End Device / Combao Device

The Combo device allows for a runtime selection of Coordinator, router and end device.
Mote: Changing this property requires re-import of the project xml file.

Error List ©ubput

Solution Explorer
= E My Solution (HZS08 BeeStack Codebase 3.0.7a)
EED Ha GeneticApp
' lj BeeStack
=[] Freescale Beedpps

-] HA Genetic Endpaint
‘|] HA Generic application
|1 BlackBax Host BeeStack Wrapper
|1 BlackBax Host Saftware Support Madules
|1 BlackBax Host Platfarm

Documentation

¥ |Wepwords fa find in documentation Find @\

@ BeeStack 2007 Pro Docurment ation
@ HC508 Transceiver and MCU Documentation
-4 HCS08 Evaluation Boards and Kits Documentation
@ Beekit Docurnentation

Documentation Yiew! Codebase Documentation @

Project added 'Ha GenericApp'

Figure 8-2. Solution Explorer Display Area

NOTE

Ensure that the selected Host type matches the BlackBox device type. For
example, if the BlackBox is set to function as a Coordinator, then the Host
should also function as a Coordinator. For more details, see Section 7.1,
“Generating a BeeStack BlackBox Project with BeeKit”.

BeeStack™ Application Development Guide for ZigBee 2007, Rev. 1.3

8-4

Freescale Semiconductor

	About This Book
	Audience
	Organization
	Revision History
	Conventions
	Definitions, Acronyms, and Abbreviations
	Reference Materials
	Chapter 1 Introduction
	1.1 What This Document Describes
	1.2 What This Document Does Not Describe
	1.3 BeeKit
	1.4 CodeWarrior
	1.5 BeeStack
	1.6 The Development Process

	Chapter 2 Building A Custom Application
	2.1 Creating a Custom Application In BeeKit
	2.2 Editing the Custom Application in CodeWarrior
	2.3 Installing and Running The Custom Application
	2.4 Examining the Custom Application

	Chapter 3 Designing A Custom Profile
	3.1 Application Profiles
	3.2 Endpoints, Clusters and Attributes
	3.3 Customizing A Public Profile
	3.4 Stack Profiles

	Chapter 4 Selecting Platform Components
	4.1 The Display Component
	4.2 The Keyboard Component
	4.3 The LED Component
	4.4 The NVM Component
	4.5 The Low-Power Component
	4.6 The Timer Component
	4.7 The UART Component

	Chapter 5 Managing BeeStack Resources
	5.1 BeeStack Start-up Sequence
	5.2 Managing Tasks
	5.3 Managing Timers
	5.4 Managing Message Buffers
	5.5 Managing Memory
	5.6 Managing The C Stack
	5.7 Managing RAM and FLASH
	5.8 Managing ZigBee Channels
	5.9 Managing ZigBee Bandwidth

	Chapter 6 Debugging BeeStack Applications
	6.1 The P&E MultiLink BDM
	6.2 LEDs and the Display
	6.3 Network Protocol Analyzers
	6.4 ZigBee Test Client

	Chapter 7 Creating a Custom BeeStack BlackBox Application
	7.1 Generating a BeeStack BlackBox Project with BeeKit
	7.1.1 ZigBee Black Box Device Type Configuration

	Chapter 8 Creating a ZigBee Host Application
	8.1 Hardware Setup
	8.1.1 Setting Up a MC1320x QE128 Board as a Host
	8.1.2 Setting Up a MC1322x Board as a Host
	8.1.3 Setting Up a MC1320x QE128 Board as a BlackBox
	8.1.4 Setting Up a MC1322x Board as a BlackBox

	8.2 Software Setup
	8.2.1 Software Setup on the BlackBox Board
	8.2.2 Software Setup on the Host Board

