
ACIM KV58 Demo

NXP Semiconductors Document identifier: ACIMKV58DEMOUG
User's Guide

Contents
Chapter 1 Introduction... 3

Chapter 2 Hardware setup ..4

Chapter 3 Demo setup...7

Chapter 4 MCU peripheral settings..9

Chapter 5 Motor-Control Peripheral Drivers.. 14

Chapter 6 FreeMASTER user interface .. 17

Chapter 7 Tuning and controlling the application...20

Chapter 8 Conclusion.. 49

Chapter 9 Acronyms and abbreviations...50

Chapter 10 References..51

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 2 / 52

Chapter 1
Introduction
This user’s guide provides a step-by-step guide on how to build and download the SDK package with the AC Induction Machine
(ACIM) sensorless application, open and flash demo software into MCU, and implement the sensorless field-oriented control
software for a three-phase ACIM. It includes the machine parameters identification algorithm on 32-bit Kinetis MCUs. The
sensorless control software and the ACIM control theory in general is described in Sensorless ACIM Field-Oriented Control
(document DRM150). The motor parameter identification theory and algorithms are described in ACIM parameter identification.
The hardware-dependent part of the sensorless control software, which includes the peripheral setup and the Motor Control
Peripheral Drivers (MCDRV), is described as well. The last part of the document describes the user interface represented by the
Motor Control Application Tuning (MCAT) page based on the FreeMASTER run-time debugging tool. These tools represent a
simple and user-friendly way of machine parameter identification, algorithm tuning, software control, debugging, and diagnostics.

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 3 / 52

http://www.nxp.com/doc/DRM150

Chapter 2
Hardware setup
This section describes the default supported hardware configurations consisting of the HVP-MC3PH power stage, supported
daughter card, and default induction motor.

2.1 HVP-MC3PH power stage
The ACIM reference solution package is available only for the 3-phase High-Voltage Motor-Control Platform (HVP), which is a
115/230-VAC, 1-kW power stage and a part of the HVP-MC3PH kit. In combination with one of the supported controller cards
based on a Kinetis MCU, it provides a software development platform for more than one horse-power high-voltage motors. The
block diagram of the complete High-Voltage Motor-Control Platform with the controller card is shown in Figure 1.

Figure 1. High-Voltage Motor-Control Platform block diagram

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 4 / 52

Figure 2. HVP-MC3PH High-Voltage Platform

The HVP power stage setup is easy and straightforward. See Freescale High-Voltage Motor-Control Platform User's Guide
(document HVPMC3PHUG) for more information about the HVP setup.

Due to the presence of high voltage, the HVP platform represents a safety risk when not used properly. For more
information about the High-Voltage Motor-Control Platform, see www.nxp.com.

 NOTE

2.2 Default AC induction motor
The default induction motor (for which the application is pre-tuned) is Elektrim 0.33HP. The motor parameters provided by the
manufacturer are listed in Table 1.

Table 1. Elektrim 0.33HP motor parameters

Characteristic Symbol Value Units

Nominal voltage UN 230/400 V

Nominal frequency fN 50 Hz

Nominal current IN 1.5/0.85 A

Number of pole pairs pp 2 -

2.3 HVP-KV58F220M daughter card
The HVP-KV58F220M daughter card features a Kinetis KV58F MCU, which is built around the Arm® Cortex®-CM7 core with a
single-precision floating-point unit, running at 240 MHz and containing up to 1 MB of flash memory (see KV5x Sub-Family
Reference Manual (document KV5XP144M240RM)). This daughter card is developed for use in motor-control applications,
together with the High-Voltage Platform power stage. It contains OpenSDA, which is NXP's USB-based open-source hardware
embedded serial and debug adapter and bootloader.

NXP Semiconductors
Hardware setup

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 5 / 52

http://www.nxp.com/doc/HVPMC3PHUG
http://www.nxp.com
http://www.nxp.com/doc/KV5XP144M240RM

Figure 3. HVP-KV58F220M daughter card

2.4 High-Voltage Platform assembling
1. Make sure the HVP-MC3PH power stage is disconnected from the power source and the capacitors are not charged (no

LED is lit).

2. Insert one of the supported daughter cards to the HVP-MC3PH main board (connector J11).

3. Connect the ACIM motor phase wires into the screw terminals on the board (MOTOR connector J13).

4. Place the protective plastic cover on top of the power stage to ensure safety.

5. Connect the USB cable to the OpenSDA mini USB connector.

6. Connect the power supply to the power connector and switch the power stage on.

NXP Semiconductors
Hardware setup

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 6 / 52

Chapter 3
Demo setup
This section describes how to run the demo software.

3.1 Running the demo software
Downloading the demo software into the controller board:

1. Assembly the NXP hardware according to the instructions in High-Voltage Platform assembling.

2. Open the downloaded ACIM application in the IDE tool for which the software was downloaded (or choose your favorite
IDE tool if you downloaded the ACIM application for all supported IDE tools).

3. Flash the project into the target device via the OpenSDA debug interface, as described in the Getting Started with
MCUXpresso SDK document.

The Getting Started with MCUXpresso SDK document is included in the downloaded SDK package.

 NOTE

Running the motor:

1. Open the FreeMASTER project and establish the communication between the MCU and the PC according to the
instructions in Remote control using FreeMASTER.

2. Set up the required motor speed using the "Control Struc" tab (Figure 18).

Stopping the motor:

1. Click the “ON/OFF” button in the "Control Struc" tab (Figure 18).

2. Set the required speed to zero in the "Control Struc" tab (Figure 18).

3. In case of emergency, turn off the power supply.

Clearing the fault:

To clear the fault, remove the fault source (for example under-voltage) and click the fault button in the "Control Struc" tab, as
shown in Figure 4.

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 7 / 52

Figure 4. Fault clearing

NXP Semiconductors
Demo setup

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 8 / 52

Chapter 4
MCU peripheral settings
This section focuses on the hardware-dependent part of code, which includes the peripheral initialization and explanation of the
application timing.

4.1 MKV58F family
The Kinetis KV5x MCU family is a high-performance solution offering exceptional precision, sensing, and control. It is targeted
for the industrial motor-control, automation, and power-conversion applications. The Kinetis KV5x MCU is built around the Arm®

Cortex®-M7 core running at 240 MHz with a single-precision floating-point unit and up to 1 MB of flash and 256 KB of RAM. It
features a high-resolution Pulse-Width Modulation (PWM) with a 260-ps resolution, four 12-bit Analog-to-Digital Converters
(ADCs) sampling at five mega samples per second (MS/s), three FlexCAN modules, and the Ethernet communication. For more
information, see the KV5x Sub-Family Reference Manual (document KV5XP144M240RM).

The HVP-KV58F220M controller card is based on the MKV58F1M0VLL24 MCU. The controller card is equipped with the open-
standard serial and debug USB-based interface (OpenSDA). For more information about the HVP-KV58F220M controller card,
see the HVP-KV58F220M User’s Guide (document HVPKV58F220MUG).

The peripherals (whose setup is described in more detail later on in this chapter) used by the ACIM motor-control software on
MKV58F are:

• Two 12-bit 5-MS/s Analog-to-Digital Converters (HSADC0 and HSADC1) to measure the phase currents, the DC-bus
voltage, and the Integrated Power Module (IPM) temperature.

• Enhanced Flex Pulse Width Modulator (PWMA) for 6-channel PWM generation.

• FlexTimer module 2 (FTM1) for the slow control loop timing.

• Inter-Peripheral Crossbar Switch A (XBARA) to route the trigger signal from PWMA to HSADC and to route the over-
current signals to PWMA.

• General-Purpose Input/Output (GPIO) pins for the inrush relay and brake circuit control.

The application timing diagram is shown in Figure 5. All tasks are handled using the following interrupt service routines:

• HSADC0_CCA_IRQHandler()—level-one priority interrupt, triggered when the conversion of all enabled samples is
completed by HSADCA. It handles the fast control loop of FOC and the FreeMASTER recorder feature.

• FTM1_IRQHandler()—level-two priority interrupt, triggered by the overflow of FTM1. It handles the slow control loop of
FOC.

The fast and slow control loop ISRs are more closely described in Sensorless ACIM Field-Oriented Control (document DRM150).

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 9 / 52

http://www.nxp.com/doc/KV5XP144M240RM
http://www.nxp.com/doc/HVPKV58F220MUG
http://www.nxp.com/doc/DRM150

Figure 5. Example of application timing on KV58F

The PWMA Sub-Module 0 (SM0) timer internal counter counts from the PWMA_SM0VAL0 value to the PWMA_SM0VAL1 value
with the TPWM period. The switching of the transistors on each motor phase is determined by the PWMA_SM[0..2]VAL2 and
PWMA_SM[0..2]VAL3 register pair on PWMA SM0, SM1, and SM2. The dead time, which delays the rising edge of the transistor
control signals by TDT, is inserted to avoid a short-circuit on the DC-bus.

The selection of the PWM switching frequency affects the switching power losses (a lower frequency is better) and audible noise
(a higher frequency is better). This reference solution offers the possibility to easily increase the ratio between the FOC
sampling period TS and the PWM period TPWM(see MCDRV configuration). The example in Figure 5 shows the case when TS is
double the TPWM

HSADC0 and HSADC1 are connected to the PWMA SM3 trigger 0 signal via XBARA. The trigger is issued when the SM3 internal
counter reaches the PWMA_SM3VAL4 value, which is set to TDT/2 by default (this value ensures correct ADC sampling even at
a very high duty cycle). The internal counter of SM3 is reloaded by the master reload trigger event from SM0. It is possible to set
SM3 to ignore up to first 15 trigger opportunities, which allows to define the sampling period TS to the PWM period TPWM ratio.
A total of four samples are converted at the beginning of the sampling period TS:

• The first two samples on HSADC0A (channel 2 for phase A or 6 for phase C) and HSADC1A (channel 2 for phase A or 3
for phase B) are the samples of the phase currents.

• The DC-bus voltage is sampled second by the HSADC0A channel 1.

• The IPM temperature is sampled second by the HSADC0B channel 1.

NXP Semiconductors
MCU peripheral settings

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 10 / 52

When all samples are converted, the processing of the HSADC0_CCA_IRQHandler() high-priority ISR starts.

The CPU load and memory usage for the ACIM sensorless application software is in Table 2. The results apply to the
demonstration application built using the IAR® Embedded Workbench® IDE with the maximum speed optimization. The memory
usage is calculated from the linker .map file, including the 8-KB FreeMASTER recorder buffer (allocated in RAM) and the 6.1-KB
FreeMASTER TSA (Target-Side Addressing) table (allocated in flash). The CPU load was measured using the SysTick timer and
calculated according to:

where cyclesslow and cyclesfast are the numbers of the CPU cycles measured in the fast and slow loops. TSslow = 1 ms is the slow
loop sampling period and TS = 100 μs is the fast loop sampling period.

Table 2. KV58F CPU and memory usage

- KV58

CPU clock [MHz] 240

Fast Control Loop [cycles] (%) 4297 (17.9 %)

Slow Control Loop [cycles] (%) 4699 (2.0 %)

Total CPU load [%] 19.9 %

Flash usage [B] 26 589

RAM usage [B] 10029

4.1.1 Multi-purpose Clock Generator (MCG) and System Integration Module (SIM)
The MKV58F MCU uses the MCG and SIM modules to configure and distribute the clock across the peripheral modules. The
MCG module provides several clock-source options for the MCU. The SIM module provides system control and chip configuration.
The MCG module is configured as follows:

• The 12-MHz external oscillator is used as a reference clock source.

• The PLL is used to generate the 240-MHz MCG output clock (MCG_C5[PRDIV] = 0 and MCG_C6[VDIV] = 0x18).

The SIM module configuration is as follows:

• The clock is enabled for all peripheral modules used.

• The system clock frequency is 240 MHz (divider SIM_CLKDIV1[OUTDIV1] = 0).

• The fast peripheral clock frequency is 120 MHz (divider SIM_CLKDIV1[OUTDIV2] = 1).

• The Flexbus clock frequency is 120 MHz (divider SIM_CLKDIV1[OUTDIV3] = 1).

• The flash clock frequency is 24 MHz (divider SIM_CLKDIV1[OUTDIV4] = 9).

The MCU clock is set using the standard Kinetis Software Development Kit (KSDK) v2.0 clock setup procedure. Select a different
pre-defined clock setup using the CLOCK_SETUP pre-processor directive, which can be changed in the project options in a given
IDE. A total of six options (CLOCK_SETUP ranging from 0 to 5) are available, where the setup number 5 is the default. For more
information about Kinetis SDK, see www.nxp.com/KSDK.

4.1.2 FlexTimer (FTM1)
The FTM1 peripheral module is used for the slow control loop timing. The FTM1 configuration is as follows:

• The input clock is set to 7.5 MHz (1/16 of the fast peripheral clock frequency).

• The interrupt with a level-two priority is enabled on the counter reaching the modulo value.

NXP Semiconductors
MCU peripheral settings

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 11 / 52

http://www.nxp.com/KSDK

• The modulo is set so that the overflow interrupt occurs with the slow control loop period.

4.1.3 12-bit 5-MS/s Analog-to-Digital Converters (HSADC0 and HSADC1)
The HSADC0 and HSADC1 modules are used to measure the phase currents, DC-bus voltage, and IPM temperature (a total of
four samples are taken each sampling period). Each HSADC module consists of two converters (for example, HSADC0 consists
of HSADC0A and HSADC0B).

HSADC0 is configured as follows:

• The input clock is set to 30 MHz (one quarter of the fast peripheral clock frequency).

• The end-of-scan interrupt with a level-one priority is enabled on HSADC0A.

• A single-ended, 12-bit conversion with the hardware trigger from PWMA is selected. The triggered parallel conversion is
used on both the HSADC0A and HSADC0B.

• Only the SAMPLE0, SAMPLE1, SAMPLE8, and SAMPLE9 samples are enabled.

HSADC1 is configured as follows:

• The input clock is set to 30 MHz (one quarter of the fast peripheral clock frequency).

• A single-ended, 12-bit conversion with the hardware trigger from PWMA is selected. The triggered sequential conversion
is used on HSADC1A. HSADC0B is disabled.

• Only the SAMPLE0 and SAMPLE1 samples are enabled.

4.1.4 Enhanced flex Pulse Width Modulator (PWMA)
The first three sub-modules of the eFlexPWM periphery (PWMA) are used to generate the 6-phase PWM for motor control with
this setup:

• The input clock is set to fPWMin = 120 MHz (fast peripheral clock frequency).

• The output PWM frequency is set to fPWM = 1/TPWM = 10 KHz. The PWM frequency setup is described in MCDRV
configuration. The PWMA_SM[0..2]INIT and PWMA_SM[0..2]VAL1 registers are used to define the PWM period and the
PWMA_SM[0..2]VAL2 and PWMA_SM[0..2]VAL3 registers specify the current duty cycle.

• The counters at SM1 and SM2 are synchronized with the master sync signal from sub-module 0.

• A center-aligned, complementary PWM is generated with a full cycle reload only.

• A dead time of TDT = 1.5 μs is inserted. This value is recommended by the manufacturer of the IPM used on the HVP-
MC3PH board. The dead-time counter modulo is set to PWMA_SM[0..2]DTCNT0 PWMA_SM[0..2]DTCNT1 = TDTfPWMin =
180.

• Channels A and B at SM0, SM1, and SM2 are disabled on faults 0 or 1 active, with an automatic clearing (the PWM
outputs are re-enabled at the first PWM reload after the fault disappears). Fault number 0 (connected to the IPM fault pin
via GPIO, active in low) is enabled.

Sub-module 3 is used for the HSADC0 and HSADC1 triggering with this setup:

• The trigger is issued when the PWMA_SM0VAL4 value is reached (TDT/2 by default).

• The 120-MHz fast peripheral input clock is divided by two.

• It is reloaded by the master reload event on sub-module 0 at every second opportunity. This can be selected by the
M1_FOC_FREQ_VS_PWM_FREQ macro (see MCDRV configuration).

4.1.5 Inter-peripheral crossbar switch A (XBARA)
The XBARA module is used to route the following signals:

• The XBARA input IN7 (XBARA_IN7 signal) is connected to output OUT30 (PWMA_FAULT0).

• The XBARA input IN26 (PWMA3_TRG0 signal) is connected to output OUT12 (HSADC0A_SYNC).

NXP Semiconductors
MCU peripheral settings

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 12 / 52

• The XBARA input IN26 (PWMA3_TRG0 signal) is connected to output OUT42 (HSADC1A_SYNC).

4.1.6 Universal Asynchronous Receiver and Transmitter (UART1)
The UART1 module is used for the FreeMASTER communication between the MCU board and the PC. The module is configured
as follows:

• The baud rate is set to 115200 bit/s.

• Both the receiver and transmitter are enabled.

• The other settings are set to default.

4.1.7 General-Purpose Input/Output (GPIO)
The following GPIO pins are used:

• Inrush relay control on PTC13

• Braking circuit control on PTC16

• LED state indication on PTB19

NXP Semiconductors
MCU peripheral settings

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 13 / 52

Chapter 5
Motor-Control Peripheral Drivers
The Motor-Control Peripheral Drivers (MCDRV) are a simple way of peripheral initialization and access for a 3-phase ACIM
control. The features provided by the MCDRV library include 3-phase PWM generation using Space Vector Modulation (SVM)
and measurement of the 3-phase current, DC-bus voltage, and IPM temperature (or one general user-defined auxiliary quantity).
The principles of the 3-phase current measurement and SVM are described in Sensorless ACIM Field-Oriented Control (document
DRM150).

The MCDRV consists of two parts:

• The first part is the peripheral configuration module, which is unique for each supported device. The header file includes
all MCDRV setup options, including the ADC channel assignment. This part is described in MCDRV configuration.

• The second part consists of the peripheral driver library modules for each supported periphery. All the ADC and PWM
periphery drivers share the same API within their class. This enables the higher-level code to be platform-independent,
because the peripheral driver function calls are replaced by universally-named macros. The list of supported peripherals
and APIs of their drivers is in MCDRV application interface.

5.1 MCDRV configuration
The mcdrv_hvp-<device>.h header file provides several options that you can define:

• M1_MCDRV_ADC—this macro specifies the ADC periphery used.

• M1_MCDRV_PWM3PH—this macro specifies the PWM periphery used.

• M1_MCDRV_TMR_SLOWLOOP—this macro specifies the timer for the slow control loop timing.

• M1_PWM_FREQ—the value of this definition sets the PWM frequency in Hz.

• M1_FOC_FREQ_VS_PWM_FREQ—enables you to select a ratio between the sampling period and the PWM period
(where M1_FOC_FREQ_VS_PWM_FREQ). This is convenient when the PWM frequency must be higher than the
maximum fast-loop interrupt length due to the CPU performance restrictions.

• M1_SLOW_LOOP_FREQ—the value of this definition sets the slow loop period frequency in Hz.

• M1_PWM_PAIR_PH[A..C]—these macros enable a simple assignment of the physical motor phases to the PWM
periphery channels or sub-modules. You may alter the order of the motor phases this way. Only the values of 0, 1, and 2
can be assigned to these macros.

• M1_BRAKE_[SET, CLEAR]—DC-bus brake circuit control macro.

• M1_ADC[0,1]_PH_[A..C]—these macros serve to assign the ADC channels for the phase-current measurement (the
unassigned ADC channels are set to the ADC_NO_CHAN value). The general rule is that at least one of the phase
currents must be measurable on both ADC converters and the remaining two phase currents must be measurable on
different ADC converters. If this rule is broken, a pre-processor error is issued. The reason for this rule is that to ensure a
proper ADC measurement in a wide range of the PWM duty cycle, the selection of the phase-current pair to measure
depends on the current SVM sector. For more information about the 3-phase current measurement, see Sensorless ACIM
Field-Oriented Control (document DRM150).

• ADC[0,1]_UDCB and ADC[0,1]_AUX—these defines are used to select the ADC channel for the measurement of the DC-
bus voltage and one user-defined auxiliary quantity, which is not used directly for motor control (the IPM temperature is
measured by default). The rule for the ADC channel assignment is that the DC-bus voltage and the auxiliary quantity must
be measurable on different ADC converters, so that the measurement can be done simultaneously. If this rule is broken, a
pre-processor error is issued during the software build.

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 14 / 52

http://www.nxp.com/doc/DRM150
http://www.nxp.com/doc/DRM150

5.2 MCDRV application interface
The ADC and PWM motor-control drivers share the same API within their class. To ensure device independency on the MCDRV
API, all driver functions are accessible through universally-named macros in the mcdrv_hvp-<device>.h file.

5.2.1 ADC control API description
The initialization macros are used to assign I/O variables (for example; to store the measurement results to the variables in your
application). These macros are defined:

• M1_SET_PTR_I_ABC(var)—assigns a pointer to the GMCLIB_3COOR_T_F16 structurevariable var, in which you want to
store the phase current measurement results. The GMCLIB_3COOR_T_F16 datatype is defined in the Real-Time Control
Embedded Software Libraries (RTCESL). For more information, see www.nxp.com/rtcesl.

• M1_SET_PTR_U_DC_BUS(var)—assigns a pointer to the 16-bit fractional variable var, in which you want to store the DC-
bus voltage measurements.

• M1_SET_PTR_AUX_CHAN(var)—assigns a pointer to the 16-bit fractional variable var, in which you want to store the
auxiliary quantity measured values.

• M1_SET_PTR_SECTOR(var)—assigns a pointer to the 16-bit unsigned integer variable var that contains the number of
the current SVM sector.

These macros must be executed before calling any MCDRV ADC functions. Otherwise, your application goes to
a hard fault.

 NOTE

These functions are available:

• bool_t M1_MCDRV_CURR_3PH_CHAN_ASSIGN(MCDRV_ADC_T*)—calling this function assigns proper ADC channels
for the next 3-phase current measurement based on the SVM sector. This function always returns true.

• bool_t M1_MCDRV_CURR_3PH_CALIB_INIT(MCDRV_ADC_T*)—this function initializes the phase current channel offset
measurement. This function always returns true.

• bool_t M1_MCDRV_CURR_3PH_CALIB(MCDRV_ADC_T*)—this function reads the current information from the
unpowered phases of a stand-still motor and filters them using moving average filters. The goal is to obtain the value of
the measurement offset. The length of the window for moving average filters is set to eight samples by default. This
function always returns true.

• bool_t M1_MCDRV_CURR_3PH_CALIB_SET(MCDRV_ADC_T*)—this function asserts the phase current measurement
offset values to the internal registers. Call it after a sufficient number of M1_MCDRV_CURR_3PH_CALIB() calls. This
function always returns true.

• bool_t M1_MCDRV_ GET(MCDRV_ADC_T*)—this function reads and calculates the actual values of the 3-phase
currents, the DC-bus voltage, and the auxiliary quantity and stores them in the variables defined by the user in the
initialization macros (see above). This function always returns true.

5.2.2 PWM control API description
The initialization macros are used to assign the I/O variables (for example; to set the required duty cycles from your application).
These macros are defined:

• M1_SET_PTR_DUTY(var)—sets the pointer to the GMCLIB_3COOR_T_F16 structure variable var, in which you define the
required phase PWM duty cycles. The GMCLIB_3COOR_T_F16 datatype is defined in RTCESL.

This macro must be executed before calling any MCDRV PWM functions. Otherwise, your application goes to a
hard fault.

 NOTE

These functions are available:

NXP Semiconductors
Motor-Control Peripheral Drivers

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 15 / 52

http://www.nxp.com/rtcesl

• bool_t M1_MCDRV_PWM3PH_SET(M1_MCDRV_PWM_T*)—this function updates the PWM phase duty cycles based on
the required values stored in the variable defined by the user in the initialization macros (see above). This function always
returns true.

• bool_t M1_MCDRV_PWM3PH_EN(M1_MCDRV_PWM_T*)—calling this function enables all PWM channels. This function
always returns true.

• bool_t M1_MCDRV_PWM3PH_DIS(M1_MCDRV_PWM_T*)—calling this function disables all PWM channels. This
function always returns true.

• bool_t M1_MCDRV_PWM3PH_FAULT_GET(M1_MCDRV_PWM_T*)—this function returns and automatically clears the
state of the over-current fault flags. This function returns true when an over-current event occurs. Otherwise, it returns
false.

NXP Semiconductors
Motor-Control Peripheral Drivers

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 16 / 52

Chapter 6
FreeMASTER user interface
This section provides information about the tools and recommended procedures to control the sensorless ACIM Field-Oriented
Control (FOC) application using FreeMASTER. The application contains the embedded-side driver of the FreeMASTER real-time
debug monitor and data visualization tool for communication with the PC. It supports non-intrusive monitoring, as well as the
modification of target variables in real time, which is very useful for the algorithm tuning. Besides the target-side driver, the
FreeMASTER tool requires the installation of the PC application as well.

6.1 Remote control using FreeMASTER
The remote operation is provided by FreeMASTER via the USB interface. FreeMASTER 2.0 (or higher) is required for the
application to operate properly. Download the up-to-date version of FreeMASTER at www.nxp.com/freemaster.

Perform these steps to control an ACIM motor using FreeMASTER:

1. Open the FreeMASTER file located in pack_motor_(board)\middleware\motor_control\freemaster\acim.pmp. All projects
use the TSA by default, so it is not necessary to select a symbol file for FreeMASTER (see FreeMASTER TSA and user
variables addition to FreeMASTER watch).

• Click the communication button (the green GO! button in the top left-hand corner, as shown in Figure 6) to establish
the communication.

Figure 6. Green GO! button placed in top left-hand corner

• ACIM Control Reference Solution Package, User’s Guide, Rev. 3, 01/2017 NXP Semiconductors 23—if the
communication is established successfully, the FreeMASTER communication status in the bottom right-hand corner
changes from “Not connected” to “RS232 UART Communication; COMxx; speed=115200” (see Figure 7). Otherwise,
a FreeMASTER warning pop-up window appears.

Figure 7. Example FreeMASTER communication established successfully

2. Control the AC induction motor using the control page or MCAT.

If the communication is not established successfully, perform these steps:

1. Go to the “Project→Options→Comm” tab and make sure that “OpenSDA” is set in the “Port” option and the communication
speed is set to 115200 bit/s.

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 17 / 52

http://www.nxp.com/freemaster

Figure 8. FreeMASTER communication setup window

2. If “OpenSDA-CDC Serial Port” is not printed out in the message box next to the “Port” dropdown menu, unplug and then
plug in the USB cable and reopen the FreeMASTER project.

3. Make sure to supply your development board from a sufficient energy source. Sometimes the PC USB port is not sufficient
to supply the development board.

6.1.1 FreeMASTER TSA and user variables addition to FreeMASTER watch
By default, all projects use TSA (Target Side Addressing). This means that the information about the variables’ address and size
are stored in the MCU flash memory. Only the variables necessary for the MCAT functionality are stored in the TSA. Only these
variables are visible in FreeMASTER. If you want to monitor your own variables, provide a symbol file that contains the information
about the addresses of all variables in the project to FreeMASTER. The symbol files are generated during the build process to
the \boards\(board_name)\demo_apps\mc_acim\/<compiler>/<debug or release> folder. For more information about the TSA,
see FreeMASTER Serial Communication Driver (document FMSTERSCIDRVUG).

NXP Semiconductors
FreeMASTER user interface

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 18 / 52

https://www.nxp.com/doc/FMSTERSCIDRVUG

Figure 9. FreeMASTER MAP Files tab

NXP Semiconductors
FreeMASTER user interface

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 19 / 52

Chapter 7
Tuning and controlling the application
This section provides information about the tools and recommended procedures for controlling the sensorless MCRSP for ACIM
application. As the primary means of communication, the application contains an embedded-side driver of the FreeMASTER real-
time debug monitor and data visualization tool for communication with the PC. FreeMASTER supports non-intrusive monitoring,
as well as modifying of the target variables in real time, which is very useful for algorithm tuning. Besides the target-side driver,
FreeMASTER requires installing the PC application as well. For more information, see www.nxp.com/freemaster.

The ACIM sensorless FOC application can be easily tuned using the Motor Control Application Tuning (MCAT) page for ACIM.
The MCAT for ACIM is a user-friendly modular page, which runs within the FreeMASTER PC application. To launch it, execute
the .pmp file. When the communication with the MCU side of the application is established, the MCU platform is detected and a
proper MCAT setup is used. Without a connection, many features are disabled and the pertinent files are generated next to
the .pmp file. See FreeMASTER user interface. Figure 10. shows the MCAT for ACIM welcome page. The tool consists of the
tab menu (point one), the tuning experience level selector (point two), the detected platform (point three), and the tab content
itself (point four). Each tab represents one sub-module, which enables you to tune and control different aspects of the application:

• Introduction—welcome page with the ACIM sensorless FOC diagram and a short description of the application.

• Motor Identif—ACIM semi-automated parameter-measurement control page. The ACIM parameter identification is
described in ACIM parameter identification.

• Parameters—this page enables you to modify the motor parameters, the specification of the hardware and application
scales, and the fault limits. For more information, see Input Application Parameters tab.

• Current Loop—specify the current loop PI controller gains, output limits, and default d-axis stator current reference here.
For more information, see Current loop tuning.

• Speed loop—this tab contains fields to specify the speed controller proportional and integral gains, as well as the output
limits, the parameters of the speed ramp, and the startup procedure. For more information, see Speed loop tuning.

• Flux loop—this tab is used to set up the d-axis current control, which includes the Max-Torque Per Ampere (MTPA) and
Field-Weakening (FW) algorithm settings. For more information, see Flux loop tuning.

• Sensorless—this page enables you to tune the parameters of the Rotor Flux Observer (RFO) for the rotor flux position
estimator and the Model-Reference Adaptive System (MRAS) speed observer. For more information, see Sensorless rotor
flux position and speed estimation.

• Control Struc—the application control page enables you to choose between the scalar control (also known as Volt per
Hertz or V/Hz) and FOC, where you can disable parts of the FOC cascade structure for tuning purposes. This tab enables
you to set the required speed, the stator currents, and the stator voltage. It also provides information about the application
state. For more information, see Application control using MCAT.

• Output file—this tab enables you to view all the calculated constants that are required by the ACIM sensorless FOC
control algorithms and to generate a new m1_acim_appconfig.h application configuration header file. For more
information, see MCAT output file generation.

• Control page—this tab contains graphical elements such as the speed gauge, DC-bus voltage measurement bar, and
variety of switches that enable simple, quick, and user-friendly application control.

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 20 / 52

http://www.nxp.com/freemaster

Figure 10. MCAT for ACIM welcome page

Most of the tabs offer the possibility to immediately load the parameters specified in the MCAT into the target using the Update
target button, and save them to (or restore them from) the hard drive file using the Store Data (or Reload Data) button. The data
stored using the Store Data button is automatically loaded the next time the MCAT is launched and the MCU communication is
established. For more information about the application states, see Sensorless ACIM Field‑Oriented Control (document
DRM150).

The basic and expert tuning modes are available. Selecting the latter one grants you the access to modify all parameters and
fields available in the MCAT. Using the expert mode is not recommended for inexperienced users. When the MCAT operates in
the offline mode, the App Id line reads offline. When the communication with the target MCU is established using a correct
software, the App Id line displays the correct platform name and all stored parameters for the given MCU are loaded.

Besides the MCAT page for ACIM, several scopes, recorders, and variables in the variable watch window are pre-defined in the
FreeMASTER project file to further simplify the motor parameter tuning and debugging.

The following sections provide simple instructions on how to identify the parameters of the connected ACIM, and how to tune the
application.

7.1 ACIM parameter identification
Because the model-based control methods of the ACIM drives are the most effective and usable, obtaining an accurate model
of a motor is an important part of the drive design and control. The machine parameters required by the FOC can be classified
as either electrical or mechanical parameters.

For the electrical parameters, it is necessary to know the values of stator resistance RS, magnetizing inductance Lm, leakage
stator inductance LSl, leakage rotor inductance Lrl, and rotor resistance Rr. An equivalent steady-state circuit for one phase of an
induction motor is shown in Figure 11. While the stator resistance RS can be obtained by a simple DC measurement, the other
parameters require a more complex approach. The most common identification methods of the ACIM parameters are based on
the no-load and blocked-rotor tests. The ACIM sensorless control software contains parameter-identification algorithms that
employ these methods as well. These algorithms also enable you to perform the power stage characterization, which allows to
compensate for the inverter nonlinearity.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 21 / 52

http://www.nxp.com/doc/DRM150

Figure 11. ACIM equivalent circuit

There are two mechanical parameters that are important for the speed-loop controller tuning. They are the moment of inertia J
and the viscous friction B, which characterize the mechanical equation:

where ɷm is the mechanical angular speed, T is the torque generated by the machine, and Tload is the loading torque. To identify
the moment of inertia and the viscous friction, both the speed and the torque on the shaft must be estimated or measured. The
identification is usually conducted during acceleration or deceleration with a known torque, because the moment of inertia can
be only detected when the speed is changing.

This section explains the motor-identification theory, as well as the implementation of these algorithms in the ACIM sensorless
control software, including the MCAT identification page description.

7.1.1 Power stage characterization
All VSIs introduce non-linear error voltage Uerr to their output. This parasitic effect is caused by the current-clamping effect, the
dead time, and the transistor voltage drop. It depends on phase current iph, DC-bus voltage UDCbus, and dead time TDT. The error
voltage Uerr dependency on the phase current is measured during the power stage characterization process. An example of the
inverter voltage error characteristic is shown in Figure 12. Such characteristic is then used by the motor-control application to
linearize the output voltage. This is especially important in the case of sensorless control.

The power stage characterization can be done through the MCAT Motor Identif tab (see Parameter measurement process). To
perform the characterization, connect a motor with a known stator resistance and set this value in the Calib Rs field. The other
parameter that you must specify is the calibration range Iph,cal of the stator phase current iph in the Calib range field. The range
must be set so that the non-linearity of the error voltage (the knee of the curve in Figure 12) is captured. Start the characterization
by pressing the Calibrate button. A total of 65 points are measured in the range (-Iph,cal;Iph,cal). Each measurement takes 300 ms,
so the process takes about 20 s and the motor must withstand this load. The acquired characterization data can be saved to a
file using the Generate Calibration Data File button (point two in Figure 16).

The power stage characterization is necessary only for non-NXP hardware boards. If you use NXP power stages with the
sensorless ACIM application, you can omit the characterization process, because the calibration data file is already generated.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 22 / 52

Figure 12. Example power stage characteristic

7.1.2 Stator resistance measurement
The stator resistance RS is measured with the DC current value Iph,DC (equal to the nominal stator current amplitude by default),
which is applied to the motor for 1200 ms. The DC phase voltage Uph,DC is kept using the current controllers. The current controller
parameters are selected conservatively, so that stability is assured. The stator resistance RS is calculated using the Ohm’s law:

7.1.3 No-load test
The main goal of the no-load test is to determine the parameters of the transverse branch of the equivalent circuit (the core-
loss resistance RC and the magnetizing reactance Xm = jɷLm X_m=jωL_m). The no-load conditions mean that the motor runs at
the rated frequency fN, phase voltage UN, and without an external load. The machine rotates at an almost synchronous speed
and only little power is drawn from the power supply. The slip is close to zero, which means that the impedance of the rotor loop
in the equivalent circuit is very high and you can ignore the entire rotor loop, as shown in Figure 13. The results of the no-load
test are the no-load phase input active power Pph0, the no-load phase input reactive power Qph0, and the no-load phase current
Iph0.

Figure 13. Equivalent circuit for no-load test

7.1.4 Blocked rotor test
The blocked-rotor test provides information about the parameters of the longitudinal branch of the equivalent circuit, such as the
stator and rotor resistances and the stator and rotor reactances XS = jɷLS and Xr = jɷLr. When the rotor of an ACIM locks up, the
slip is equal to one and the rotor resistance Rr is much lower than the core resistance RC. You can ignore the transverse branch
of the equivalent circuit. The unity slip means that all energy supplied to the motor is converted to heat. The measurement is
therefore made at a reduced supply voltage UphL so that the steady-state phase current reaches only the rated value IphN. The

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 23 / 52

measurement is carried out as quickly as possible to prevent errors caused by the rotor and stator windings heating. The results
of a blocked-rotor test are the load phase voltage UphL, the load phase input active power PphL, and the load phase input reactive
power QphL. Rs

Rr/s
Lsl Lrl

Upℎ Ipℎ Lm Rc
Figure 14. Equivalent circuit for blocked-rotor test

7.1.5 Calculation of electrical parameters
The no-load test results are used to calculate the combined stator and magnetic circuit resistance R0 and the combined stator
and magnetic circuit reactance X0 as follows:

The blocked-rotor test results are used to calculate the total resistance RL and the total reactance XL:

The stator and rotor leakage reactances XS and Xr are considered equal and calculated as:

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 24 / 52

The magnetizing reactance is:

This leads to the magnetizing inductance:

The stator and rotor single phase leakage inductances LSl and Lrl are calculated as:

The stator and rotor single-phase inductances LS and Lr are calculated as:

The last parameter needed is the rotor resistance Rr referred to the stator, which is calculated as:

7.1.6 Mechanical parameter measurement and calculation
As explained in ACIM parameter identification, it is necessary to know the moment of inertia J and the viscous friction B to tune
the speed controller loop. The parameters can be identified using equation Eq. 2 during the speed acceleration test, with a known
generated and loading torque.

If using a sensorless algorithm, the mechanical parameters estimation is affected by the accuracy of the speed
and torque estimations.

 NOTE

The ACIM identification software uses the torque profile, as shown in Figure 15. The loading torque is (for the purpose of simplicity)
said to be zero during the whole measurement and only the friction and the motor-generated torque are considered. During the

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 25 / 52

first phase of measurement, the constant torque Tmeas is applied and the motor accelerates to 50 % of the nominal speed in time
t1. These integrals are calculated during the time period from t0 (speed estimation is accurate enough) to t1:

During the second phase, the rotor decelerates freely with no generated torque, only by friction. This allows to simply measure
the mechanical time constant τm=J/B as the time in which the rotor decelerates from its original value by 63 %.

The final mechanical parameter estimation can be calculated by integrating equation Eq. 2 :

The moment of inertia is as follows:

The viscous friction is then derived from the relation between the mechanical time constant and the moment of inertia.

Figure 15. Mechanical parameter measurement process

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 26 / 52

7.1.7 Parameter measurement process
You can control and set up the motor identification process using the MCAT Motor Identif tab, which is shown in Figure 16. After
filling in the motor label information (point three) and selecting the mechanical parameter measurement torque and current and
speed loop bandwidth (point four), start the measurement by clicking the Measure button (point five). A flowchart of the
measurement process is shown in Figure 18. When the measurement is complete, the results appear on the right side of the
screen (point six). To apply the measured FOC algorithm parameters, click the Apply parameters on target button. If the results
are satisfactory, click the Store data in MCAT button to update the motor parameters in MCAT and continue with fine-tuning the
application in the other MCAT tabs. Otherwise, you can return to the previous parameters using the Restore parameters in target
button.

1
Characterization
file generation2

3

4

HW board
selector

Motor label
parameters
Measurement
and FOC setup

6 Measured motor
parameters

7 Status bar

8 Save/load
parameters

5 Start button
1

2

3

4

6

7

8

5

Figure 16. MCAT ACIM parameters identification page

There are several faults and warnings that can occur during the measurement or calibration processes. Do not confuse the
measurement faults with the application faults, such as the DC-bus under-voltage (see Sensorless ACIM Field-Oriented Control
(document DRM150)). The measurement faults are listed in Table 3, together with their sources and possible troubleshooting. If
any of these faults occur, the identification process ends immediately:

Table 3. Measurement faults and their description

Fault

number

Fault description Fault source Troubleshooting

1 User abort Measurement aborted by user —

Table continues on the next page...

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 27 / 52

http://www.nxp.com/doc/DRM150

Table 3. Measurement faults and their description (continued)

Fault

number

Fault description Fault source Troubleshooting

2 Motor not connected iph>50mAcannot be reached
using the available DC-bus
voltage

Check that a motor is
connected

3 RS too high for calibration iph,cal could not be reached
using the available DC-bus
voltage

Use a motor with a lower RS for
the power stage
characterization

4 Mechanical measurement
timeout

Mechanical measurement
takes too long

Repeat the measurement
process with a different setup

Unlike faults, warnings do not stop the identification process, but inform you of the possible problem sources. Warnings can often
be ignored. The warnings that can occur during the measurement process are described in Table 4.

Table 4. Measurement warnings and their description

Warning

number

Warning description Warning source Troubleshooting

1 RS measurement current
Iph,DC not reached

The defined Iph,DC was not
reached, so the measurement
was taken with a lower value

Raise the DC-bus voltage to
reach the Iph,DC, or lower the
IphN to avoid this warning

2 No-load test voltage UphN not
reached

User-defined UphN was not
reached, so the measurement
was taken with a lower value

Raise the DC-bus voltage to
reach the UphN, or lower the
value to avoid this warning

3 Blocked-rotor test current IphN
not reached

User-defined IphN was not
reached, so the measurement
was taken with a lower value

Raise the DC-bus voltage to
reach the IphN or lower the
value to avoid this warning

4 Low precision of the RS
measurement

The DC measurement voltage
and current were low and the
calculated value might not be
precise

Raise the IphN value to avoid
this warning (beware of
overloading the motor)

To access the expert settings of the measurement algorithms, navigate to the mid_def.h file in your ACIM application. In that file,
you can change various well-commented definitions in case of measurement failures that cannot be troubleshot.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 28 / 52

Figure 17. Parameter measurement flowchart

7.2 Application control using MCAT
Control the application using the Control Struc tab, which is shown in Figure 18. The application state control area on the left-
hand side of the screen (points one and two) shows the current application state and enables switching the main application
switch on or off (turning the running application off disables all PWM outputs). The Cascade Control Structure area is placed on
the right-hand side of the screen (points three to six). Here you can choose between the scalar and FOC control using the
appropriate buttons. Enable the selected parts of the FOC cascade structure by selecting Voltage FOC, Current FOC, or Speed
FOC. This is useful for application tuning and debugging.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 29 / 52

1
Application state
& fault clear2

3

4

Application
ON/OFF button

Scalar control

Voltage FOC

6 Speed FOC

5 Current FOC

1

2

3

4

6

5

Figure 18. MCAT for ACIM control page

The scalar control diagram is shown in Figure 19. It is the simplest type of an ACIM control strategy. The ratio between the
magnitude of the stator voltage and the frequency (frequency information is contained in the Speedreq value) is kept at the nominal
value, which results in a nominal flux amplitude. This control method is sometimes called Volt per Hertz (V/Hz). The position-
estimation Rotor Flux Observer (RFO) algorithm is running in the background to enable the RFO tuning.

Figure 19. Scalar control mode

The block diagram of the Voltage FOC is shown in Figure 20. Unlike V/Hz, the position feedback is closed using the RFO algorithm
and the stator voltage magnitude is not dependent on the motor speed. Specify both the d-axis and q-axis stator voltages using
the usd_req and usq_req fields. This control method is useful for the RFO tuning as well.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 30 / 52

Figure 20. Voltage FOC control mode

The Current FOC (torque) control requires the rotor position feedback as well as the currents transformed into the rotor flux frame.
Control the motor using the reference variables isd_req and isq_req, as shown in Figure 21. The d-axis current component isd_req
generates the rotor flux, while the q-axis current component of the current isq_req generates the torque for the motor to run. Change
the polarity of the isq_req current to change the rotation direction. The Current FOC control structure can be used for the current
controller tuning, provided that the RFO is tuned correctly.

Figure 21. Current FOC (torque) control mode

The full ACIM sensorless FOC is activated by enabling the Speed FOC control structure. The block diagram is shown in Figure
22. Two outer control loops were added when compared to the Current FOC. The speed loop contains the PI controller, which
controls the rotor speed and sets the q-axis current isq_req. The flux loop contains the Max Torque Per Ampere (MTPA) and Flux
Weakening (FW) algorithms, which set the d-axis current isd_req to optimize the power efficiency and allow the motor to run at a
speed that is higher than nominal. To run a motor at the required speed, simply enter the required value into the Speedreq field.
This control scheme is used for the speed PI controller and the flux loop design (see Speed loop tuning and Flux loop tuning),
which is the final stage of the ACIM sensorless application tuning.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 31 / 52

Figure 22. Speed FOC control mode

7.3 Application tuning using MCAT
The ACIM sensorless FOC algorithm tuning is described in this section. The flowchart of the complete process of connecting and
running a new ACIM is shown in Figure 23. The first step of acquiring the motor parameters using the identification algorithms is
described in ACIM parameter identification. The control of the ACIM sensorless FOC application using MCAT is described in
Application control using MCAT. The subsequent steps, including the tuning of the sensorless Rotor Flux Observer (RFO), current
loops, speed loop, and the flux loop, are described in the following sections. Only the expert MCAT tuning mode is described.
When in the basic mode, omit the grayed-out input fields and leave them at their pre-defined values. Most of the input field labels
in the MCAT also show a short description of the item and the maximum range of input parameters when you hover over them
with the mouse cursor.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 32 / 52

Figure 23. Running a new ACIM flowchart

7.3.1 Input Application Parameters tab
When the parameters of a connected ACIM are obtained using the identification algorithms or simply known before, navigate to
the Parameters tab, as shown in Figure 24. On the left side, you can modify the motor parameters (point one) and the hardware
board scales (point two). Do not change the latter one unless using a user-specific hardware. The right side contains the Fault
Limits area (point three), which is accessible only in the expert mode.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 33 / 52

1

HW scales2

3

Motor
parameters

Fault limits

1

2

3

Figure 24. MCAT input application parameters tab

Table 5 shows the list of MCAT input parameters with their physical units, brief description, impacted algorithms, and accessibility
status in the basic mode:

Table 5. Parameters tab inputs

Input

name

Units Description Use in constant
calculation

Basic mode

accessibility

IN Arms Nominal stator current Speed and flux loop yes

UN Vrms Nominal stator voltage Current and flux loop yes

fN Hz Nominal frequency Speed and flux loop yes

pp — Number of motor pole
pairs

Speed control, RFO,
and MRAS

yes

RS Ω Stator resistance Current loop and RFO yes

Rr Ω Rotor resistance Current loop and RFO yes

LS H Stator inductance Current loop and RFO yes

Lr H Rotor inductance Current loop and RFO yes

Table continues on the next page...

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 34 / 52

Table 5. Parameters tab inputs (continued)

Input

name

Units Description Use in constant
calculation

Basic mode

accessibility

Lm H Magnetizing inductance Current loop, flux loop,
and RFO

yes

J kgm2 Moment of inertia Speed loop yes

Tm s Mechanical time
constant

Speed loop yes

Imax A Hardware current-
sensing scale

Current sensing yes

UDCB,max V Hardware DC-bus
voltage sensing scale

Voltage sensing yes

UDCB,trip V Trigger value that
switches an external
DC-bus braking
resistor on

Fault protection no

UDCB,under V Voltage value that
generates the DC-bus
under-voltage fault

Fault protection no

UDCB,over V Voltage value that
generates the DC-bus
over-voltage fault

Fault protection no

Nover-speed rpm Over-speed threshold Fault protection no

7.3.2 Sensorless rotor flux position and speed estimation
The rotor flux position and mechanical speed feedback signals are obtained using the sensorless RFO and the Model Reference
Adaptive System (MRAS) speed-estimation algorithm. For information about their principles, see Sensorless ACIM Field-Oriented
Control (document DRM150). Tune both algorithms using the Sensorless sub-module MCAT tab, as shown in Figure 25. All the
sensorless sub-module tab inputs are listed in Table 6.

Most of the RFO parameters are calculated automatically by MCAT, and they do not need any tuning. The only parameters left
for you to tune are the proportional gain Kp,CMPNS and the integral gain Ki,CMPNS of the RFO compensation PI controller. These
parameters are usually set manually, because the settings do not vary greatly for different motors, and you can keep them at the
default settings. A similar situation applies to the MRAS speed estimator and its proportional and integral gains Kp,MRASand
Ki,MRAS of the internal PI controller. To tune the parameters of these algorithms, run the motor in the scalar control mode, while
referring to the Speed scope located in the Scalar/Voltage Control sub-block in the FreeMASTER project tree. Here you can see
the estimated filtered rotor speed. The estimated and scalar rotor speeds are not going to exactly match the properly-tuned RFO
and MRAS because of the speed slip.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 35 / 52

http://www.nxp.com/doc/DRM150

1
Startup d-axis
current2

3

MTPA settings

Flux-weakening
settings

1

2

3

Figure 25. MCAT sensorless position and speed estimation tab

Table 6. MCAT sensorless position and speed estimation tab inputs

Parameter

Name

Units Description Use in constant

calculation

Basic mode

accessibility

KPCMPNS — Compensation PI
controller proportional
gain

RFO no

KICMPNS — Compensation PI
controller integral gain

RFO no

fPsiSInt Hz Stator flux integrator
filter frequency

RFO no

KPMRAS — Compensation PI
controller proportional
gain

MRAS speed
estimation

no

KIMRAS — Compensation PI
controller integral gain

MRAS speed
estimation

no

A part of the RFO algorithm requires an internal calculation of the stator flux, which involves pure integration that has problems
with the integrator drift. These problems are solved by approximating the pure integrator with the low-pass filter. See Sensorless
ACIM Field-Oriented Control (document DRM150) for more details. The low-pass filter cut-off frequency is set in the fPsiSInt input

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 36 / 52

http://www.nxp.com/doc/DRM150

field and it is recommended to be set in the range from 1 Hz to 3 Hz. Higher values can lead to a high number of flux and speed
estimation errors.

7.3.3 Current loop tuning
The Current Loop tab is designed for the current control loop tuning. The current control loop is the most inner loop in the cascade
control structure of a vector-control algorithm. One of the FOC characteristics is a separate control of the rotor flux-producing (d-
axis) and torque-producing (q-axis) components of the current. Therefore, the ACIM control structure has two current loops, and
each of them contains a PI controller. The Current Loop tab is shown in Figure 26. The individual fields are described in Table
7. Set all of the inputs on the left-hand side of the tab (points one and two). The PI controller resulting gains are located on the
right-hand side (point three). The sampling time field is filled in automatically when the MCU platform is successfully detected by
the MCAT and cannot be changed.

Table 7. MCAT current control loop tab inputs

Parameter

name

Units Description Use in constant

calculation

Basic mode

accessibility

F0 Hz Current control loop
bandwidth

Current loop no

ζ — Damping ratio of the
current control loop

Current loop no

Output limit % Current loop output limit
in percentage of the
DC-bus voltage

Current loop no

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 37 / 52

Figure 26. MCAT Current Control Loop tab

The simplified block diagrams of both the d-axis and q-axis current control loops are shown in Figure 27. The non-linear coupling
parts of the stator voltage are ignored and treated as unmeasured errors entering the controlled system. The parasitic time
constants (such as the inverter time constant) are ignored as well.

Figure 27. d-axis and q-axis current loop block diagram

Ignoring the non-linear coupling portion of the stator voltage (which is simply dealt with by the integral part of the current PI
controllers), the transfer functions of the stator currents isd and isq are:

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 38 / 52

where s is the Laplace operator, τSd and τSq are the stator d-axis and q-axis electric time constants, and

is the leakage coefficient.

The transfer function of the PI controller in a parallel form is:

where Kp is the proportional gain and Ki is the integral gain. The closed-loop d-axis and q-axis current transfer functions are:

By comparing these transfer functions to the transfer function of a second-order system with the unity gain

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 39 / 52

where f0 is the system natural frequency (or bandwidth) and ζ is the system damping ratio, you obtain:

The proportional and integral gains of a discrete version of the current PI controller can be obtained using the bilinear
transformation method:

The correct value of the integral gain (according to the bilinear transformation) must be half the value stated in
Eq. 30. The division by two is not shown because it is conducted internally by the PI controller algorithm in the
RTCESL (see www.nxp.com/rtcesl.)

 NOTE

The effect of the damping ratio ζ on the step response of a second-order system F2nd(s) is shown in Figure 28. MCAT allows
setting the damping ratio ζ in the range from 0.5 to 2.0. It is not recommended to divert from the value of 1 too much. Choose
the natural frequency in the range from tens to hundreds of Hz, but at least one order higher than the speed loop bandwidth. If
the bandwidth value is too high, it leads to problems with the sampling frequency, voltage limitation, and stability.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 40 / 52

http://www.nxp.com/rtcesl

Figure 28. Second-order system steps response for various damping ratios

When comparing the transfer functions in Eq. 24, Eq. 25, and Eq. 26, the numerator (zero of the system) with the time constant
Kp / Ki of the current closed-loop transfer function is ignored, because it has minor impact on the resulting system stability.

To check the current response, use the FreeMASTER recorder called Current Control, which is triggered during motor startup.
The examples of the d-axis current response for different setups of the current loop bandwidth are shown in Figure 29. The ideal
current response must not be too slow (as in case C), but it must neither contain a high overshoot. A very high current loop
bandwidth can lead to instability. If you are not satisfied with the automatically-calculated current loop PI controller parameters,
tune them manually. To do so, perform these steps:

• Go to the Current Loop tab and select the Expert tuning mode.

• Set the desired current loop bandwidth f0 and click Update Target. It is recommended to start with a lower value and then
keep increasing it until the desired response is achieved.

• Select the Current Loop recorder. The message at the bottom of the recorder must read “Running, waiting for trigger…”.

• Go to the Control struc tab, select the Current FOC control mode, and set small required values of both the d-axis and q-
axis currents.

• Run the application and wait for the data to load.

• Check the downloaded response in the recorder and repeat the procedure from step two (if necessary).

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 41 / 52

Figure 29. Response of d-axis current to different settings of current loop bandwidth

7.3.4 Speed loop tuning
The Speed Loop tab is designed to tune the speed-control loop. The speed-control loop is an outer loop in the cascade-control
structure of a vector-controlled ACIM. The speed loop consists of the PI controller, the estimated speed filter, and the S-ramp
function, which limits the maximum, minimum, acceleration, and jerk of the required speed. The screenshot of the Speed Loop
tuning page is shown in Figure 30 and the individual fields are described in Table 8.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 42 / 52

1

2

3

4

5

6

1
Speed controller
gains2

3

4

Speed loop
parameters

Speed controller
ouput limits
Speed filter
settings

6 Speed S-ramp
settings

5 Speed filter
parameters

Figure 30. MCAT Speed Control Loop tab

Table 8. MCAT Speed Control Loop tab parameters

Parameter

name

Units Description Use in constant

calculation

Basic mode

accessibility

Sample time s Speed loop sampling
time period

Speed loop no

F0 Hz Speed control loop
bandwidth

Speed loop yes

ζ — Damping ratio of speed
control loop

Speed loop no

β — Overshoot damping
coefficient

Speed loop no

Ilim,high A Speed loop output
upper limit

Speed loop no

Ilim,low A Speed loop output
lower limit

Speed loop no

Cut-off freq Hz Speed filter cut-off
frequency

Speed loop no

Table continues on the next page...

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 43 / 52

Table 8. MCAT Speed Control Loop tab parameters (continued)

Parameter

name

Units Description Use in constant

calculation

Basic mode

accessibility

Acceleration rpm/s Acceleration of the
required speed

Speed loop yes

Jerk rpm/s2 Jerk of the required
speed

Speed loop no

Nmax — Maximal required speed Speed loop no

Nmin % Minimal required speed Speed loop no

A simplified block diagram of the speed-control loop is shown in Figure 31. The simplification lies in ignoring the current loop
dynamics, because it is presumed to be much faster than the dynamics of a mechanical system.

Figure 31. Speed loop block diagram

Calculate the torque constant Kt of an ACIM as follows:

Note that the previous equation ignores the d-axis current. This value may change during the motor operation, which affects the
behavior of the transient speed response. The torque constant is therefore adapted in run-time according to the required d-axis
current required value and the speed controller is calculated for case iSd = 1A.

When ignoring the load torque, the transfer function of a complete driven mechanical system is:

where τm is the mechanical time constant, J is the moment of inertia, and B is the mechanical viscous friction. Considering the
PI controller to be in a parallel form according to Eq. 23, the closed speed control loop is:

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 44 / 52

where Kpɷ is the speed PI controller proportional gain and Kiɷ is the integral gain. By comparing this transfer function with the
transfer function of a second-order system in Eq. 26, you obtain:

The selection of damping ratio ζ and speed loop bandwidth f0 follows similar rules as in the current loop. Choose a bandwidth at
least one order smaller (in case of the current loop). Calculate the proportional and integral gains of a discrete version of the
speed βIP controller using the bilinear transformation method, as shown in Eq. 29 and Eq. 30. The parameter of the controller β
can be used to suppress the required speed response overshoot, while keeping a quick response to the changing load. The β
parameter can be set in a range from zero (maximal overshoot suppression and slower response) to one (no suppression, the
response is equal to a classic PI controller).

To check the speed response, open the FreeMASTER scope named Speed, located under the Speed Control sub-block. If you
are not satisfied with the speed response resulting from the automatically calculated parameters, tune the controller manually.
To do so, perform these steps:

• Go to the Speed Loop tab and select the Expert tuning mode.

• Set the desired speed loop bandwidth f0 and click Update Target. It is recommended to start with a lower value (in the
range of Hz, depending on the mechanical time constant) and then increasing it until the desired response is achieved.

• Select the Speed scope in the Speed Control sub-section.

• Set the required speed and observe the response.

• Check the downloaded response in the recorder and repeat from step two (if necessary).

7.3.5 Flux loop tuning
The Flux Loop tab is designed to tune the Max Torque Per Ampere (MTPA) and Flux Weakening (FW) algorithms, which forms
the second outer loop in the cascade-control structure of the ACIM vector control. Both algorithms are more closely described in
Sensorless ACIM Field-Oriented Control (document DRM150). The screenshot of the Flux Loop tuning page is shown in Figure
32 and the individual fields are described in Table 9:

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 45 / 52

http://www.nxp.com/doc/DRM150

Table 9. MCAT flux control loop tab parameters

Parameter

name

Units Description Use in constant

calculation

Basic mode

accessibility

Maximum isd A Maximal d-axis current Speed loop no

Minimum isd A Minimal d-axis current Speed loop no

fc Hz Required d-axis current
filter

Speed loop no

Startup isd A Startup d-axis current Speed loop no

ffw Hz FW controller
bandwidth

Speed loop no

fIqErr Hz Speed loop output
lower limit

Speed loop no

Figure 32. MCAT flux loop tuning tab

The only parameters that are required to be set for the MTPA are the d-axis current limits iSd_req,max and iSd_req,min and the filter
bandwidth. The upper limit should be set to a value that corresponds to the nominal amplitude of the rotor flux, which means:

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 46 / 52

Setting the lower d-axis current limit low allows for better power optimization (depends on the load). However, setting it too low
might affect the RFO performance and lead to a control failure. It is recommended to set iSd_req,min to at least 25 % of the upper
limit iSd_req,max (or more).

Figure 33. Rotor flux control loop block diagram

The rotor flux control loop to tune the flux-weakening PI controller is shown in Figure 33. The transfer function of the controlled
rotor flux system is:

Considering the PI controller to be in a parallel form according to Eq. 23, the open control loop is:

By placing the controller zero to the systems pole, which means:

The open loop transfer reduces to F0Ψ = K / s, where K is the general constant. Setting the K = 2πf0 leads to the closed loop
transfer function:

where f0 is the flux-weakening controller bandwidth. The final discrete controller gains are therefore calculated as follows:

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 47 / 52

7.3.6 MCAT output file generation
When you successfully tune the application and want to store all the calculated parameters to the embedded application, navigate
to the Output File tab. View the list of all definitions generated by MCAT there. Clicking the Generate Configuration File button
overwrites the older version of the m1_acim_appconfig.h file, which contains all FOC algorithm definitions. To generate the file
into a correct location, connect the target MCU via FreeMASTER. Otherwise, when in the offline mode, the file is generated next
to the .pmp file.

NXP Semiconductors
Tuning and controlling the application

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 48 / 52

Chapter 8
Conclusion
This user's guide describes the implementation of the sensorless ACIM application. The hardware-dependent part of the software,
which includes peripheral initialization and application timing, is described in MCU peripheral settings. The initialization and API
of the Motor-Control Peripheral Drivers, which allows for a simple and unified access to the PWM and ADC on all supported
devices, is in Motor-Control Peripheral Drivers. The last part of the document describes the sensorless ACIM application tuning
and control using the FreeMASTER-based MCAT tool. All the steps necessary for running the ACIM-like parameter identification,
current loop, speed loop, and flux loop tuning are described as well.

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 49 / 52

Chapter 9
Acronyms and abbreviations
Table 10. Acronyms and abbreviations

Term Meaning

AC Alternating Current

ACIM AC Induction Machine

ADC Analog-to-Digital Converter

CPU Central Processing Unit

CMP Comparator

DC Direct Current

DRM Design Reference Manual

FOC Field-Oriented Control

FW Flux-Weakening

FTM FlexTimer Module

RTCESL Real-Time Embedded Software Library

GPIO General-Purpose Input/Output

HVP High-Voltage development Platform

I/O Input/Output interface

MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller Unit

MRAS Model Reference Adaptive System

MTPA Maximum Torque Per Ampere

PDB Programmable Delay Block

PI Proportional Integral controller

PWM Pulse-Width Modulation

RFO Rotor Flux Observer

UART Universal Asynchronous Receiver/Transmitter

VSI Voltage Source Inverter

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 50 / 52

Chapter 10
References
These references are available on www.nxp.com:

• Sensorless ACIM Field Oriented Control (document DRM150)

• KV31F Sub-Family Reference Manual (document KV31P100M120SF7RM)

• KV4x Reference Manual (documentKV4XP100M168RM)

• KV5x Sub-Family Reference Manual (document KV5XP144M240RM)

• NXP High-Voltage Motor Control Platform User's Guide (documentHVPMC3PHUG)

• HVP-KV31F120M User’s Guide (document HVPKV31F120MUG)

• HVP-KV46F150M User’s Guide (document HVPKV46F150MUG)

• HVP-KV58F220M User’s Guide (document HVPKV58F220MUG)

• Using FlexTimer in ACIM/PMSM Motor Control Applications (document AN3729)

• Tips and Tricks Using PDB in Motor Control Applications on Kinetis (document AN4822)

• Motor Control Application Tuning (MCAT) Tool for Three-Phase PMSM (document AN4642)

• Filter-Based Algorithm for Metering Applications (document AN4265)

NXP Semiconductors

ACIM KV58 Demo, Rev. 0, 05/2020
User's Guide 51 / 52

http://www.nxp.com/
http://www.nxp.com/doc/DRM150
http://www.nxp.com/doc/KV31P100M120SF7RM
http://www.nxp.com/doc/KV4XP100M168RM
http://www.nxp.com/doc/KV5XP144M240RM
http://www.fsls.co/doc/HVPMC3PHUG
http://www.fsls.co/doc/HVPKV31F120MUG
http://www.fsls.co/doc/HVPKV46F150MUG
http://www.fsls.co/doc/HVPKV58F220MUG
http://www.fsls.co/doc/AN3729
http://www.fsls.co/doc/AN4822
http://www.fsls.co/doc/AN4642
http://www.fsls.co/doc/AN4265

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or
all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release:
Document identifier: ACIMKV58DEMOUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Hardware setup
	2.1 HVP-MC3PH power stage
	2.2 Default AC induction motor
	2.3 HVP-KV58F220M daughter card
	2.4 High-Voltage Platform assembling

	3 Demo setup
	3.1 Running the demo software

	4 MCU peripheral settings
	4.1 MKV58F family
	4.1.1 Multi-purpose Clock Generator (MCG) and System Integration Module (SIM)
	4.1.2 FlexTimer (FTM1)
	4.1.3 12-bit 5-MS/s Analog-to-Digital Converters (HSADC0 and HSADC1)
	4.1.4 Enhanced flex Pulse Width Modulator (PWMA)
	4.1.5 Inter-peripheral crossbar switch A (XBARA)
	4.1.6 Universal Asynchronous Receiver and Transmitter (UART1)
	4.1.7 General-Purpose Input/Output (GPIO)

	5 Motor-Control Peripheral Drivers
	5.1 MCDRV configuration
	5.2 MCDRV application interface
	5.2.1 ADC control API description
	5.2.2 PWM control API description

	6 FreeMASTER user interface
	6.1 Remote control using FreeMASTER
	6.1.1 FreeMASTER TSA and user variables addition to FreeMASTER watch

	7 Tuning and controlling the application
	7.1 ACIM parameter identification
	7.1.1 Power stage characterization
	7.1.2 Stator resistance measurement
	7.1.3 No-load test
	7.1.4 Blocked rotor test
	7.1.5 Calculation of electrical parameters
	7.1.6 Mechanical parameter measurement and calculation
	7.1.7 Parameter measurement process

	7.2 Application control using MCAT
	7.3 Application tuning using MCAT
	7.3.1 Input Application Parameters tab
	7.3.2 Sensorless rotor flux position and speed estimation
	7.3.3 Current loop tuning
	7.3.4 Speed loop tuning
	7.3.5 Flux loop tuning
	7.3.6 MCAT output file generation

	8 Conclusion
	9 Acronyms and abbreviations
	10 References

