&) EBVElektronik Technology. Passion. EBV.

Gianluca Filippini
EBV / FAE -ML Specialist

@ EBVElektronik Technology. Passion. EBV.

2017: We will create systems and robots, which are smarter than us

Raymond Kurzweil, Google’s Director of Engineering, is a well-known futurist with a
high-hitting track record for accurate predictions.

“2029 is the consistent date | have predicted for when an Al will pass a valid Turing test
and therefore achieve human levels of intelligence. | have set the date 2045 for the
‘Singularity’ which is when we will multiply our effective intelligence a billion fold by
merging with the intelligence we have created”

Using big data, computer programs (artificial intelligence) will be capable of analyzing
massive amounts of information, identifying trends and using that knowledge to come
up with solutions to the world’s biggest problems..

https://en.wikipedia.org/wiki/Ray Kurzweil

https://futurism.com/kurzweil-claims-that-the-singularity-will-happen-by-2045

https://en.wikipedia.org/wiki/Technological singularity

@ EBVE|ekironik 1950: The Imitation Game. Technology. Passion. EBV.

} Computing Machinery and Intelligence (Mind 49, 433-460)

"_ ._'.‘_f | propose to consider the question, "Can machines think?"
R This should begin with definitions of the meaning of the terms "machine” and "think.”
| i It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of
either sex. The interrogator stays in a room apart front the other two. The object of the game
for the interrogator is to determine which of the other two is the man and which is the woman.
o) | He knows them by labels X and Y, and at the end of the game he says either "X is Aand Y is B"
Alan Turing or "XisBandYisA."
[...]
We now ask the question, "What will happen when a machine takes the part of A in this
}Q game?" Will the interrogator decide wrongly as often when the game is played like this as he

does when the game is played between a man and a woman? These questions replace our

original, "Can machines think?"
https://www.csee.umbc.edu/courses/471/papers/turing.pdf

PDF

Mind 49 :
The Imitation Game

The Turing machine was invented in 1936. Turing called it an "a-machine" (automatic machine).
https://en.wikipedia.org/wiki/Turing _machine

& EBVElektronik Technology. Passion. EBV.

| An Avnet Company |

Sept. 4, 2019: A Breakthrough for A.l. Technology, passing an 8th-Grade Science Test

The Allen Institute for Artificial Intelligence unveiled a new system that passed the Che
test with room to spare. It correctly answered more than 90 percent of the questions chﬂork_
on an eighth-grade science test and more than 80 percent on a 12th-grade exam Cimes

https://www.nytimes.com/2019/09/04/technology/artificial-intelligence-aristo-passed-test.html

https://allenai.org/

Al2: The Allen Institute for Artificial Intelligence is a research institute founded by late Microsoft
co-founder Paul Allen. The institute seeks to achieve scientific breakthroughs by constructing
Al systems with reasoning, learning, and reading capabilities.

Aristo: The goal is to design an artificially intelligent system that can successfully read and
understand science texts and ultimately demonstrate its knowledge by passing an AP
biology exam. The focus of the project is explained by the guiding philosophy that artificial
- | intelligence is about having a mental model for how things operate and refining that mental
~ : model based on new knowledge

@ https://allenai.org/team/orene/videos.html

4 https://en.wikipedia.org/wiki/Oren Etzioni

@ EBVElekironik

/ Al

/

M.L

D.L

\\

Technology. Passion. EBV.

Artificial Intelligence

The goal of Artificial Intelligence (A.l) is to provide algorithms and techniques
to solve problems that humans perform intuitively and near automatically,
but are otherwise very challenging for computers.

(inferring, planning, heuristics etc.)

Machine Learning is a subset of Al which focuses on pattern recognition and
learning from data.

Deep Learning is a subset of ML with peculiar algorithm structures
that are very efficient on specific tasks like data classification,

object recognition etc. etc.
(computation is intensive even for modern computer systems)

Research is driven by the scientist community, often with the contribution of
industry leaders (Google, Facebook etc)

& EBVEIektronik

| An Avnet Company

Deep Learning and Convolutional Neural Networks

Technology. Passion. EBV.

Artificial Intelligence (A.l.)

Computer Vision

Pattern
Recognition

Machine Speech
Learning Recognition

O0ooo

Fuzzy Systems

@ EBVEektronik Deep Learning and Convolutional Neural Networks Technology. Passion. EBV.

Artificial Intelligence (A.l.)

. Pattern Machine Speech
Computer Vision .) . Fuzzy Systems
Recognition Learning Recognition
. : K-Means Deep Learning . Reinforcement
Linear Regression . Decision Trees .
Clustering DNNs Learning

O0o0ooOo

@ EBVElektroni Deep Learning and Convolutional Neural Networks Technology. Passion. EBV.

| An Avnet Comp any |

Artificial Intelligence (A.l.)

. Pattern Machine Speech
Computer Vision .) . Fuzzy Systems
Recognition Learning Recognition

. : K-Means Deep Learning - Reinforcement

Linear Regression . Decision Trees .

Clustering DNNs Learning
Multi-Layer L. Convolutional C .. Recurrent
Neural Networks Neural Networks Neural Networks

O0o0ooOo

@ EBVEektronik Deep Learning and Convolutional Neural Networks Technology. Passion. EBV.

| An Avnet Company |

Artificial Intelligence (A.l.)

. Pattern Machine Speech
Computer Vision .) . Fuzzy Systems
Recognition Learning Recognition
. : K-Means Deep Learning . Reinforcement
Linear Regression . Decision Trees .
Clustering DNNs Learning

Why Deep Learning with CNN ?

Convolutional - Lower computational complexity, reduced model size
Neural Networks - Better learning capabilities, faster learning
- Very good feature extraction operator

I - Proved best results on image classification

LeNet, AlexNet, VGGNet, ResNet, Inception, DenseNet, MobileNet etc.
[

& EBVElektronik Technology. Passion. EBV.

An Avnet Company |

11

& EBVElektronik Technology. Passion. EBV.

| An Avnet Company |

Machine learning is based on training data to learn data patterns. How we use the training data depends on the specific ML type.
Supervised Learning: an algorithm is given both the input and the output result at the same time. The algorithm goal is to map the
input to the correct output by automatically learning a patter on multiple input data. (support vector machines, random forests, neural
network ..) This technique is based on “labeling” the input data. Each data is assigned to a specific class (i.e. the output result)

Semi-Supervised Learning: the input data are not fully labeled. The algorithm has to learn patterns from the fully labeled
set of data and also try to improve its own performance by using the remaining data that were not previously classified.

Unsupervised Learning: there are no information on the target output for each input data. The algorithm must search and distinguish
features in the incoming data set, automatically.

https://machinelearningmastery.com/types-of-learning-in-machine-learning/

Classical method: write code for features extraction and classification

DSP code for FIXED

» ALGORITHMS and ML OUTPUT
feature extraction C|aSSification -
(edges, histograms, fft, hog ' CLASS

(decision tree)
etc.)

Deep NN method: the network will learn important features automatically from the data itself

Deep Neural Network OUTPUT
- learn key features from data
Perform classification CLASS

Data, Signals, Numbers ...
NN do apply to many types of signals, for example images (video) and audio recordings. We consider signals to be digital.
Digital signals in their lowest representation are numbers. Numbers might have different format (integer, floating point) but are the

fundamental building block to understand input datasets for neural networks.

Images: represented in a color space (rgbh) and each pixel on a color space is one value of a matrix. 170|238| 85 |255(221| 0
=0 a2 47 la=wm 449 EE
170|238 (8D | 255|221 O 255
68
- 238| 85 | 258[221] 0 | —8|%*®
25513 2s5||
- 136 17 [170[119| 68 | —
! [0 |23B|136| O |255
. E 255|! B
768x432 pixels (rgb) = 255| 85 [170(136(238 E
3 ch: red, green, blue pixel, single number, 8bit (or 16, 32 etc |[238| 17 |221| 88 |119|255|—— G
8bit, value range is 0 to 255 85 [170]19221] 17 ﬁﬁR
[Analog audio signals are converted to digital signals in different digital formats (DSD, PCM etc)
| For PCM the audio level is sampled at a specific frequency and quantized with a speC|f|c amount of bits.
Each sample is a number, the collection of sample values does form an array. — ._; w20 T o
LL
\ s i

fmne fmsh

S[ele o=+]=] - []

13

@ EBVE|ektronik Technology. Passion. EBV.

Tensor
A tensor is a mathematical construct that enables us to represent entities that otherwise we would not be able to describe. For

a simple understanding of what is a tensor for ML we can think of: Scalar Vector Matrix Tensor
* Ascalaris asingle number | .
* Avector is an array of numbers. 1 1 1 2 _ _
* A matrixisa 2-D array 1 3 4 1 7105 4

 Atensoris a N-dimensional array with n>2

Data is often multi-dimensional. Tensors can play an important role in ML by encoding multi-dimensional data. A picture is represented
by three fields: width, height and depth (color). It makes sense to encode it as a 3D tensor. However, more than often we are dealing
with tens of thousands of pictures. Hence this is where the forth field, sample size comes into play. A series of images in a dataset can
be stored in a 4D tensor. This representation allows problems involving big data to be solved easily

Dataset: a collection of data points / datapoint

Data point: a single instance of data. An image, an audio chunk, a text chunk is a data point.

Datasets are used to allow NN to learn features needed to perform data classification. By learning
how to detect complex patterns into the input data the network can distinguish object in images,
words in sounds recording etc.

https://towardsdatascience.com/quick-ml-concepts-tensors-eb1330d7760f

_ T
! e | =
\ - QAR R :

https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensors/

dataset

Data Classification: We perform a test on input data to define if the data point is part of a class or not.
The “classification function” effectiveness can be measured based on hit/miss rates (binary classification)

TP: True Positive.

Input Data is “positive” and is classified as “positive”.

TN: True Negative. Input Data is “negative” and is classified as “negative”.

FP: False Positive.

Accuracy = TP+TN / total_data
Predicted Data

P

N

o)

Real Data

Z

High Accuracy
High Precision

@e0e®

https://en.wikipedia.org/wiki/Sensitivity and specificity

High Accuracy
Low Precision

Low Accuracy
High Precision

Real Data

DN
=
P FN
N TN

Low Accuracy
Low Precision

Input Data is “negative” and is classified as “positive”.
FN: False Negative. Input Data is “positive” and is classified as “negative”.

Precision = TP / (TP+FP)
Predicted Data

P N
40 | 20
10 | 30

(Sensitivity, hit rate)
Recall = TP / (TP+FN)

Predicted Data

P N
©
O
©
SN[FP | TN

Accuracy = (40+30)/100 = 70%
Precision = 40/(40+10) =80%

Recall =40/(40+20) =66%

https://en.wikipedia.org/wiki/Evaluation of binary classifiers

Precision

Relevant elements

o
'

false negatives

true negatives

selected elements

OUT: Predicted Data

(S P N
o
(C
Q p TP | FN
o
oc
ZN| FP | TN

06 08

1.04

02 04

Recall

15

@ EBVE|ektronik Technology. Passion. EBV.

Data is the new “gold”

Good training of a neural network is mostly based on the guality of the dataset and expertise of the data scientists.

Dataset quality is related to the coverage of a “core” of data that will allow the final network to generalize better on the remaining
datapoints from the field. Modern datasets are databases of signal samples and metadata associated to the signal itself (class label,

bounding boxes, coordinates etc). Dataset tends to be very large for modern networks and an accurate work of “labeling” and manual
classification is the real value of a “good” dataset.

The expert data scientist knows how to train a neural network for a specific dataset, tweaking hyper-parameters, starting-stopping
training etc.

Public Datasets

Private companies will rarely share their datasets (service fees).

These datasets are usually built over time with many resources to gain a competitive advantage. But scientific communities have built
many public datasets that are available to learn NN. Some of them are famous for historical reasons:

MNIST : handwritten digits CIFAR-10 : images of animals and cars PASCAL-VOC
Modified National Institute of Standards and Technology Canadian Institute For Advanced Research Pattern Analysis, Statistical modeling,
https://en.wikipedia.org/wiki/MNIST database https://en.wikipedia.org/wiki/CIFAR-10 Computational Learning
contains 60,000 32x32 color images in 10 different classes http://host.robots.ox.ac.uk/pascal/VOC/
OO0 L2200 P00 L OO0 airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships,
AR NEVEREERYE and trucks H E\ﬂ
2422222022023 202 ‘ &
212338385533 83333 dee F
H # FY 4 4§y Faorg o § 5 &F 5§ 3 mm- "H
FS5853%555387<s55r5r55% _.- -
b b bblLbCbbwEsLfbEE b dog .ﬂmu
EELREEESEREEERENEE & ﬂ
YFEivE s P FPEPYEYRTD
rog [y I I A

ImageNet

Labeled object image database, used in the
ImageNet Large Scale Visual Recognition

Challenge http://www.image-net.org/
https://devopedia.org/imagenet

One of the largest databases for object
recognition, 14M images over thousands of
classes. By Stanford University is “the” benchmark
for image classification

CoCo

Common Objects in Context.
Started by Microsoft is now a large contribution

from different companies and univ. around wwide.

https://www.microsoft.com/en-
us/research/publication/microsoft-coco-common-
objects-in-context/

COCO is a large-scale object detection,
segmentation, and captioning dataset.
http://cocodataset.org/#home

Kaggle
Much more than a dataset.
https://www.kaggle.com/

Hosted by Google, is an online community of data
scientists and machine learners.

Kaggle allows users to find and publish data sets,
work with other data scientists and machine
learning engineers, and enter competitions to
solve data science challenges.

kaggle

Even More Datasets...

Long list from Wikipedia: image, sound, text,
biological, aerial etc. etc.
https://en.wikipedia.org/wiki/List of datasets for
machine-learning research

Google periodically releases data of interest to
researchers in a wide range of areas:
https://ai.google/tools/datasets/

Datasets
A\

/—

Datasets & Tips:

- Public databases to compare performance and save time on your R&D.
- Save time with pre-trained models (Model Zoos) https://modelzoo.co/
- Your private dataset are he most accurate and expensive (time and resources)

Always study metadata formats before training any networks. Metadata are

“annotations™: |[

the most important value added to a
carefully selected dataset.

There are commercially available
datasets that have been built with
extended metadata (automotive,
medical etc.)

Annotation Tools for Dataset

Image&Text annotation is the process of manually defining regions in an image/text and creating
structured descriptions of those regions (yaml, json etc.). Annotation is also used to classify any
type of signals that are represented as a image.

 Labellmg: is an open source graphical image annotation tool that you can use to label object
bounding boxes in images.

* PixelAnnotationTool: Software that allows you to annotate images in directories. The method is
pseudo manual because it uses the algorithm watershed marked of OpenCV.

« Anno-Mage: is an advanced open source image annotation tool that incorporates an existing state-
of-the-art object detection model (RetinaNet) to show suggestions of 80 common object classes
while annotation to reduce the amount of human labeling tasks.

 ImageTagger: ImageTagger is an open source online platform for collaborative image labeling.

 CVAT: Computer Vision Annotation Tool (CVAT) is a free interactive video and image annotation tool
for computer vision.

e Fast Annotation Tool: Fast Annotation Tool is an open source online platform for collaborative image
annotation for image classification, optical character reading, etc.

 Labelbox: Labelbox is a platform for data labeling, data management, and data science. Its features
include image annotation, bounding boxes, text classification, and more.

* Prodigy: Prodigy is an annotation tool for various machine learning models such as image
classification, entity recognition and intent detection. You can stream in your own data from live
APIs, update your model in real-time, and chain models together to build more complex systems.

 TrainingData.io: TrainingData.io is a medical image annotation tool for data labeling. It supports
DICOM image format for radiology Al

e Supervise.ly: provides services and image annotation and data management tool for machine
learning models. Also includes a self-hosted infrastructure for training your machine learning models
and continuing to improve them with human-in-the-loop.

https://awesomeopensource.com/projects/annotation-tool
https://lionbridge.ai/articles/image-annotation-tools-for-computer-vision/

List of Objocts

Show Suggestions
% 481, y: 110
COCO Clisses for Suggestions

Zoom Pamel
T Y

Anno—l\/lage

COCO has five%nnotation types: for object detection, keypoint detection, stuff segmentation, panoptic segmentation, and
image captioning. The annotations are stored using JSON. Please note that the COCO AP described on the download page
can be used to access and manipulate all anotations. All annotations share the same basic data structure below:

"info" : info,
"images" : [image],
"annotations” : [annotation], > _ S .
"licenses . : [license], Common Objects in Context

version"

: F]
Surl® s st
"date_created” : datetime,

¥

image{
"id” 3 LRty
"width" s 1nk,
"height" eI,
LI et

http://cocodataset.org/#format-data

Workflow and “data splitting”: the 70-20-10 rule

Once the dataset is available the collection is splitted in three parts (equally randomized to include all categories):
* Training set : used to train the network

* Validation set : used to provide an unbiased evaluation of a model at the end of each epoch
 Test set : used for final model evaluation (accuracy)

Dataset partitions should never be mixed while training to avoid model evaluation bias on specific datapoints.

hyperparameters
' tuning by humans

N }

NN L
7 =\J '
| MOUe| | e)" Train ~ wep| Validate =9 Test =P : ‘ : model
O (empty) 1 __® " [trained)
A
\ data
& augmeftation

z % =3 % o 20% Validate Test set
3 o X -~
P 2P P split training et
g @af 3 i set 10%

@ EBVElektronik

DeepLearning Frameworks
A Framework is a set of tools (user interface, code library, debugging/monitoring) that allows to build NN models more

easily and quickly, leveraging all the work from a wide community of data scientists around the world.
Frameworks do provide a specific APl for multiple languages (python, C, C++) and also a collection of pre-built (and
sometimes pre-trained) models and optimized components.

Berkley
university

Catfte

L2 Keras

Tensor

Google Francois Chollet

Facebook

PYTHRCH

@Xnet Apache

Foundation

2013

2015

2016

2015

Developed by Berkley Univ Al Research team became the most used framework for data scientist.
Allows C, C++, Python, Matlab programming. Provides a large “Model Zoo” with pre-trained networks.

Open Source.

Developed at Google, joined with Keras (Francois Chollet) in 2019. Written in C++,Python. Provides
an high-level API to start writing NNs. Tensorflow allows the usage of CPU and GPU(CUDA). One of
the most used in both industry and academic world.

Developed at Facebook, based on C, Python. Allows CPU/GPU(CUDA) computation. Provide tensor
computation and uses dynamic computation graphs. Instead of predefined graphs with specific
functionalities, PyTorch provides a framework for us to build computational graphs as we go, and
even change them during runtime.

Apache MXNet is a scalable framework used to train NN. MXNet supports multiple languages like C++,
Python, R, Julia, Perl etc. It is very scalable from multiple GPU to distributed servers infrastructures.
MXNet has been chosen by Amazon for its Web Services’ Deep Learning frameworks.

https://skymind.ai/wiki/comparison-frameworks-dl4j-tensorflow-pytorch

https://towardsdatascience.com/top-10-best-deep-learning-frameworks-in-2019-5ccb90eabde

@ EBVElektronik

DeepLearning Frameworks

Jeremy Howard 5017 Developed by Jeremy Howard it is a machine learning programming library built on top of PyTorch.
It is open source and the goal is to make the programming of NN extremely simple and intuitive. The

saster Al website https://www.fast.ai/about/ offers documentation and tutorials.

https://www.usfca.edu/data-institute/certificates/deep-learning-part-one
https://en.wikipedia.org/wiki/Jeremy Howard (entrepreneur)

Even More frameworks... QN
oy €) ONNX de~ Chainer g Sonnet DL4J
Darknet Microsoft Preferred Networks (JPN) Deelend JAVA Lib
(YoLo) Dr. Kei Hiraki (TensorFlow) open source
https://en.wikipedia.org/wiki/Comparison of deep-learning software
Which one to start from? Research-vs-Industry (April 2019)
Arxiv.org Articles Online Job Listing

3000 1,500

+ @ - el B MONSTER

Tensorflow keras . %‘1 ~ .. 99 Wi Slmplyleed
w |
. o : indeed
PYTHRCH - 5 o B Linked [}
=
—— " PyTorch = Keras ' FastAI 0= TensorFlow PyTorch Keras “FastAl

raster A Jeff Hale : https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318

DeepLearnig Frameworks growing trend: 2019

Percent of ML papers that mention._..

= theano

o ¥o)
14 =8~ ‘ensorflow C\—ID
=@~ keras ©
caffe LN
2 —— twrch 0
—&8— pytorch 8
o et
8~ dhainar g
i —— otk Q
P
ﬂ &
N
a N w s —a- I = —l
Andrej Karpathy @ . ON LN . L W - o - 00 - S
@karpathy i —l e Tt - g " e “r' g 46
] i] ; P) —_
Director of Al at Tesla. Previously a . 8 LS S o u-%" - ”‘ = 2 ad o GIJ 'S_
Research Scientist at OpenAl, and CS PhD a P PR . - ST - Sy o S _ e e S == =8 ! e £ ~
student at Stanford. | like to train Deep 3 'S 8
Neural Nets on large datasets. N e R N NN R R I A I I LR SR iR 2o R E RE R R ERRRERREEsEREEEREER®R © ™M
RRESRBESSSRRERBERRRE3RRERRBBRSBS3SRRERRERRRRSRRRSRBRRRRRSIBRRRRBRRSRSEEREBER g o
) ~ = o = - 1 - i} = e = re] = o o = - L] fl = = ooe i
https.//cs.stanford.edu/karpathv/] + 0o = = | e B o = T - = B S T B S A = = oMo DR O3 5= G = - = = 3] FHOREODD S = 3] é ﬂ
. Percent of ML papers that mention._.. /
Director of A.l. FHpe B X
. .. c LN
and Autopilot Vision at Tesla —%— teano 9 ©
14 =@ lensorflow + %
. —@= koras o N
On March, 9 2019 Andrej Karpathy caffa Y
12 Py
. . —8— forch o o
posted an analysis on A.i. Frameworks ol <
-8~ pytorch © g
trends.. 10 et S &
b~ chainer <)
| .
“« . . . © =
Unique mentions of deep learning s &
- | -
L5
. . A, ~ S
frameworks in arxiv papers (full text) . gy I S 2
.) .'i o Wiy - O E
over time, based on 43K ML papers 4 g a o ~- E S
A r Sy, & = .
; - o’ @ : - o
over last 6 years. So far TF mentioned 5 . v . Y g 3 2
A}
. e ‘-‘ =) =
in 14.3% of all papers, PyTorch 4.7%, —yo. MQQ” i aet=it g 2
0 =g . I 3
Keras 4.0%, Caffe 3.8%, Theano 2.3%, 2 g
. ” o e B e L L LTI T Tt it ol S A St G o O e e el e i R L el ool B B
Torch 1.5%, mxnet/chainer/cntk <1%. SEE5E8S5 525558553 BR50555588E535R58285888888888 8 =
(= ﬂ e B B A T = B ==« | § - ﬂ = 05l M F 01 @ = & & ‘é._ 2 ._-»1_4 — ol M o= O @ F= @ o =1 E F,ll — N

oo EBVElektronik

I An Avnet Company |

DeepLearnig Frameworks growing trend: 2019

Andrej Karpathy @
@karpathy

Director of Al at Tesla. Previously a
Research Scientist at OpenAl, and CS PhD
student at Stanford. | like to train Deep
Neural Nets on large datasets.

https://cs.stanford.edu/~karpathy/

Director of A.l.

Percent of ML papers that mention._..

teano
‘ensorflow
keras
caffe
torch
pytorch

o et
cheinar
antk

14

12

EERER

4

e e T e e T e A e e T e T TR = e S e = B = T == S e I I T o i T e

and Autopilot Vision at Tesla %= theana

14 —i#— ensorflow
On March, 9 2019 Andrej Karpathy Bl

. . 12
posted an analysis on A.i. Frameworks s,
trends.. » iy
i cheinar

g —— otk
“Unique mentions of deep learning) ‘
frameworks in arxiv papers (full text) ’ ~ N y A T W=
over time, based on 43K ML papers 4 I L i AN N —
over last 6 years. So far TF mentioned 5 S 5 0 g ' f/ By
in 14.3% of all papers, PyTorch 4.7%, piEIEE G .M!ﬁ.ﬁ i

i = = = - s e e

Keras 4.0%, Caffe 3.8%, Theano 2.3%,

Torch 1.5%, mxnet/chainer/cntk <1%.”

0o

THE TN BG BG LGB LE e NN R RO B @ =T T T R S S A S T == -
ey e e ol gl (bt el T L G 2 A i - e et S e T e R ey iy gl
ot T = 0 e O = T~ [W A = P S = it S [= 0 Rl = e~ S = gy = P I T~ B - 0)~ G - = (T = = o et i
o B I I T - R = B T = R e - . B =~ W= I i R I~ . R e~ =S
2 Eaky =T kL = i 5 = i

https://medium.com/@karpathy/a-peek-at-trends-in-machine-learning-ab8a1085a106

https://twitter.com/karpathy/status/972295865187512320/photo/1

EBVElektronik

I An Avnet Company |

DeepLearnig Frameworks growing trend: 2020

% of total framework mentions

Jeff Hale https://towardsdatascience.com/is-pytorch-catching-tensorflow-ca88f9128304

Jan 28, 2020

Research / Academia

% PyTorch Papers of Total TensorFlow/PyTorch Papers

80%

60%

40%

20%

0% @

8- ECCV
ICLR

2017 2018 2019

Date
NeurlPS ACL - NAACL ICML
- ICCV =i~ EMNLP

Source: https://chillee.github.io/pytorch-vs-tensorflow/

- C\VPR

Job search

Google Search Results

S0

Feb 26,17 May 21,17 Augis, 17 Nov 5, 17 Jan 28, 18 Apr22,18 Jul1s, 18 Oct7,18 Dec 30, 18 Mar24,19 Jun 16,19 Sep 8, 19 Dec1,19 Feb 23,20

Week of Date

Framework |Indeed | Monster| Simply Hired | LinkedIn | Mean
TensorFlow | 66.3%| 66.8% 65.5%| 67.7%]|66.6%
PyTorch 33.7%| 33.2% 34.5%| 32.3%|33.8%

@ EBVElektronik

I An Avnet Compan

Parameterized Learning for Data Classification

The goal is to define a mathematical model which will learn from a large number of input data but will be defined by a small
set of parameters regardless of the training size.

Once the data are consumed to computes the parameters the model will predict result on a new set of data without the need
of the whole data history. No matter how big is the size of training dataset the model will not change size.

The process of defining the parameters of the model requires the following components:

 Dataset: where each datapoint is composed by the “raw” input data and the associated class label (supervised learning)

e Scoring function: the mathematical function that allow to map “raw” data in a corresponding class label

* Loss function: the mathematical function that measures how accurate is the predicted class (result) in comparison to the
original correct class (ground-truth label). The higher is the accuracy of the prediction the lower is the loss function when
using the training dataset. The goal of the “training phase” is to minimize the loss function (with specific algorithms and
techniques) thereby increasing the classification accuracy

* Weights and Biases: collection of parameters which define the final model in its scoring function.

Image as a tensor .|

An image can be represented as a vector of pixels, i.e. a special case of m : IN NN OUT
tensor. In this example a 28x28x1 (1ch,grayscale) pixels are aligned in a -:ii- ‘ 1

28x28=784 size vector .

& EBV Elektronik

& EBVElektronik Technology. Passion. EBV.

| An Avnet Company |

Neurons and Activation Functions
Artificial Neural Networks have been inspired by biology and what we know about our brain functionality.
ANN are modeled on the brain but are not a representation of the brain itself.

x1
1 dendrite o | : .
5 (activation) Vg
X — g o . r_
y nucleus % ¥ axonterminal
n T 4 % Scwann cell -
XN . y=f(W.x + b) : P
b(blas) 7 | 'y Ao node of Ranvier
/L Rosenblatt: The Perceptron (1958) .
poF | ref docs\[NN]rosenblatt perceptron 10.1.1.335.3398.pdf

Our brain is composed by 10e12 (ten billions) neurons, each one connected to about 10e3 (ten thousands) other
neurons. Each neuron does receive electrochemical inputs from other neurons. Only if the collection of all inputs is
sufficient to activate the neuron it will transmit the signal to other neurons on its axon.

The human neuron does perform a binary operation: it will trigger a signal or not, there is no signal modulation.

An artificial neuron is modeling the same behavior: computes a sum of weighted inputs and has a non linear activation
function which allows the neuron propagate the information.

https://en.wikipedia.org/wiki/List of animals by number of neurons
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

@ EBVElektronik

Artificial Neuron

x1
The input vector x (collection of all the stimulus) is multiplied by a vector of wl (activation)
weights w. The weighted sum is then passed into the function activation which X2 —\\2
will return a binary output. (Perceptron, Rosenblatt) : 2 f
whn
output = f (x1*w1 + x2*w2 + + xn*wn) Xn b y=(W.x +b)
(bias)
. . step ‘ 15 . taph . i 5 . sigmoid
Activation Functions | Y "
Multiple activations functions have been proposed. ool | . / |
step: most intuitive but not differentiable 2 ' 'O'f o2 J
, e —e ”
tanh: used until “90s tanh(z) = (' - Z)
c* + ¢~
Sigmoid characteristics:
1 * Continuous and differentiable everywhere
sigmoid: very important s(z) =] - * Symmetric on the output axis
+e”

* Asymptotically approaches output values (0,1)

http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1p1l.html

@ EBVElektronik

Other variants have been introduced to simplify computation
while maintaining the characteristics of the sigmoid function.

T . RELU . 10 | leaky RELU
Rectified Linear Unit (RelLU) is part of the ramp function family. 8| _—
It has been proved to perform better than sigmoid and tanh, 6| | ol
It is the most frequent activation function used in today’s CNNs. ol | Wl
ReLU(z) = maz(0, x)))
Leaky RelU is a variant of ReLU which allows to compute the gradient also 10 — R 10 — B
when the neuron is not firing 8 8
> i 6
LeakyReLU (z) = {ha;‘m f ~ 2 A 41
ku&.’b L~ U .
Exponential Linear Unit (ELU) was introduced in 2015 to improve the . 0
classification results when using RelLU: https://arxiv.org/abs/1511.07289 0 s o0 s 1020 s o S o

o T x>0
ELU(x) = {a(ef’f —1) <0

RelLU6 is a “capped” version of ReLU and was empirically tuned to better
perform on sparse matrix. It has been used in recent CNN (MobileNet) with

good results
https://www.tensorflow.org/api docs/python/tf/nn/relu6é https://arxiv.org/pdf/1803.08375.pdf
http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf https://en.wikipedia.org/wiki/Rectifier (neural networks) @ EBVElektronik

Perceptron and Delta Rule
Rosenblatt defined the perceptron as a system that learns from vectors of features (x) and labeled examples (ground-
truth) mapping the input values into the corresponding output class labels.

The simplest architecture of a perceptron is composed x1 1

x1
1 .
by only one layer with one neuron. O \\ (activation)
XN

The training of the perceptron is done by approximations T

based on all the input data points x; and by computing a xn 5 y=f(W.x + b)
delta of the error between the prediction and the 'as (bias)

ground-truth label (expected result). The pseudo-algorithm is:

1)Initialize W with small random values (uniform distribution) Perceptron XOR problem: cannot Classify

2)While (convergence——False) dataset that are nonlinearly separable.

a)Loop over each feature vector X; and
label dy in the whole training dataset D

- | = o|lo |-
- o o|o =]
=

b)Given feature x,, compute the output y,=f(W(t) * x;)

c)Update W with the delta rule:
Wl(t+l) = W: (t) + alpha * (dj_yj)xj,l (i=O..1’l)

1

http://www.di.unito.it/~cancelli/retineull 12/FNN.pdf

al|lalale |~
ey e S E=- -]

http://www.cs.stir.ac.uk/courses/ITNP4B/lectures/kms/2-Perceptrons.pdf

& EBVElektronik Technology. Passion. EBV.

| An Avnet Company |

Convolutions & Kernels

Regular Neural Nets don’t scale well to full images. In CIFAR-10, images are 32x32x3 (32 wide,
32 high, 3 color channels), a single fully-connected neuron in a first hidden layer of a regular
Neural Network would have 32*32*3 = 3072 weights. What if we have larger images?

Convolutional Networks
CNN are a special type of NN which have been widely used in the last decade thanks to its
performance in learning features and high accuracy on data classification.

32x32x3=3072

CNN have peculiar architectures which are different from a FC network and uses different operators,

in particular the convolution operator. CNN also have two characteristics which make them powerful:

Local invariance: allows to identify a pattern (an object) inside the input signal (an image) regardless of where the
pattern is located inside the signal itself.

Compositionality: each layer is building “knowledge” on top of the previous layers and the composition can be altered
by specific operators. Features extracted from a high level analysis can be combined with features from a low level
analysis (not a sequential architecture).

Convolution is the most important function used to build CNNs.
- Uses one or more filters (kernels) to extract features from the input data (images)
- Images and kernels are both matrix, convolution leverages the dot product.

http://cs231n.github.io/convolutional-networks/

& EBV F e Kt ron ik

Convolution as matrix multiplication (el.wise) and sum

Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

kernel

1

Feature Map (FM)

01

1)
0(1)0

01

input
1/1/1{0(0|0
O/1/1/1|0|1
oO/o0|1|1|1]|1
0/0(1,1/0/|0
0/1{1,0/0]|0
0/1/0/1/0|1

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

| i o |

@ EBVElektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

input

0

O O | 0| &S| | =
|—\Hoc§>|-l=-‘>|-®
Ok |- |||

R Ok ||

OO0, O)|0O

R O O|F |~ | O

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

| o |

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

Feature Map (FM)

5/9

@ EBVE|ektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

input
1afafn]o]o
ojafajal o1
OD(A(f|f1]1
O, 0/1(1(0]|0
0O(1/1/0,0/|60
0/1/0/1/0/|1

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

| o |

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9
FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

Feature Map (FM)

5/9

4/9

@ EBVElektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

input
11112130
o|1|jafln)®| 1
0(0|[R|Alff]|l1
O/0(1/1/0/0
0O(1/1/0,0/|60
0/1/0/1/0/|1

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

| [|

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9
FM(1,2) O*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9

Feature Map (FM)

5/9

4/9

4/9

@ EBVE|ektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal

and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

input
1111)21)
o|l1]|1]afo)a
o|lo|1(|h[QAl|d
O, 0/1(1(0]|0
O/1(1,0/0/0
0O/ 1/0(1(|0]|1

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

| o i [|

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9
FM(1,2) = 1/9%(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9

Feature Map (FM)

5/9

4/9

4/9 3/9

& EBV Elektronik

Convolution as matrix multiplication (el.wise) and sum

Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

input
1(1|/1(0|0]|0
DA 1|1|0]|1
@2@@111
DjO|1|1]|0]|0
0/1(1|0/0]0
0|1/0[1|0]1

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

OO0O00OOoOo0o0o0od

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9
FM(1,2) = 1/9%(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVElektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal

and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

input
1/1{1/0/0]|0
oj4j@j4jo|1
ofl@fa)al 11
o(B]4A|X|o0]|O0
0|1(1/0|0]|0
0|1(0|1|0]|1

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

OO0O00OOoOo0o0o0od

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9
FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

(-..)

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVElektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

input
1(1/1(/0|0]|0
O(1[1|Q|D|1
o|olafa)al1
o|lofi[ajo|o
o/1(1/0/0]0
0|1/0|1/0]1

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

OO0O0O0OOo0o0o0d

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9
FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

(-..)

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVE ektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

input
1/1/1/0|0/|0
O(1(1)1]0]1
olo|1(Qfajaq
o|0[1|1]|©]D
0|1/1/0/0]|0
0|1/0[1|0|1

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

OO0O0OOOo0Oo0o0od

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9
FM(1,2) = 1/9%(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

(-..)

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVE|ektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal

and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

input
11/1({0/0|0
O/1/1/1|0|1
O/o0|1|1|1(1
0|0(1[/1[0|0
0[1[1[/0(D)0
0|1(0[|1][01

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

OO0O0O0O0O0Oo0o0a0d

FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9
FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9
FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

(-..)

with signal S and kernel K: (S« K)(i,j) = Z Z St+m,j+n)K(m,n)

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVE|ektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

Ol 0O 0O 0|00 0| O
O 0 0O 0j0o|O0(—r | O

oOlkr P OO |~ O

olo|lRr|Rr|R|R|R| O

O, O ||| OO

OO0 00|, |O| OO

Ok, O O|FR|[FL|O|O

OO 0O 0O OO0 |0 O

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

O00o0oOo

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVElektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

pjojojo|ojo|o]oO
ofiJaj1/o|o|o0]|0
pj0/1|/1|1]0|1]0
ojlojof1[1/1/1]0
ojlojof1|1/0/0]0
ojlo/1]1]/0/0/0]0
ojlo/1]/o[1/0/1]0
o|lojofo|olo|0]|o0

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

O00ooo

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVE ektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

olo[o|d|olo|0]|O
ola[a)alolo|o]o0
o|jo|@jif1|0(1]|0
olojo|1|1]|1|1]0
olojo|1|1]|0/0]0
oloj1/1|/0|0/0]0
oloj1/0[1]|0/1]0
olojo/lo|olo|0]|O

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

O00ooo

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVE|ektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

O 0O 0O 00|00 O
O 0 0O 0j0o|O0(—r | O

O|lrR|[kR OO

OOHHH@@“@

O|lr | O|lr | |(|I=|E|le

OO0 00|, |O| OO

Ok, O O|FR|[FL|O|O

OO 0O 0O OO0 |0 O

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

O00o0ooOo

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVElektronik

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one

value on the output feature map.

Ol 0O 0O 0|00 0| O
O 0 0O 0j0o|O0(—r | O

oOlkr P OO |~ O

olo|lRr|Rr|R|R|R| O

O, O ||| OO

OO0 00|, |O| OO

Ok, O O|FR|[FL|O|O

OO 0O 0O OO0 |0 O

Rachel Draelos https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/

O00O0oOo

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

Feature Map (FM)

5/9

4/9

4/9 3/9

2/9

@ EBVElektronik

Convolution as matrix multiplication (el.wise) and sum

Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

.f'"ffﬁ
Convolving a smaller filter with a larger signal
is related to the concept of Receptive Field of ~
a neuron. The amount of data that are used / = __ ot
to compute a specific result in the feature map Source ' 0 il |
i L : Pixel v = i
is a subset of the entire input datapoint. It r |
_ S et
Convolution 1 = i
kernel = i g |
New pixel value | :
(destination ' '
pixel)

https://blogs.nvidia.com/blog/2018/09/05/whats-the-difference-between-a-cnn-and-an-rnn/
https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

@ EBVElektronik

& EBVElektronik Technology. Passion. EBV.

| An Avnet Company |

CNN building blocks

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume

(channels num)

Kernels have the same depth of the input data. Usually we describe input and

(7:1)(3) kernels in terms of Volume size. Each kernel of the CONV layer does generate a
5 — 1 #1 2-dim activation map. All the activations maps (K, one for each kernel)
GJ ________ | 7 are stacked into a volume of MxNxK (M,N depends on kernel stride & padding)
R&— | Ay
| - [#2
224pX| input — 3

224px j #K

EOoO0O @ EBVElektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input n=1
(7x7x3)
R d=0
B [#1 d=0 -
Y { 77
R— i -7 :
224pX input /7 b g1 | 921
224px 1]#K .
; d4e> d=2

DEOOoo @ EBVElektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input n=1
(7x7x3) o i N
S
B [#1 d=0
T T T T T T T i 77
Re— — |#2 T “SUM

L__p —
224px| input /7 _ 4 d=1 d=1 Output

o B #1

i i
224px B

z d=2

OoEO00 @ EBVE|ektronik

DDDDDDDDDDDDDDD

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input n=2
(7x7x3) o i N
S
B [#1 d=0
T T T T T T T i 77
Re— — |#2 1T “SUM T
224px| input 7 _ d=1 Output
/ = T - #2
224px [#K L .
' g=2 | 972

DooEoo & EBVElektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input n=K

(7x7x3) o i N
i

B | H1 d=0 r

r T T T T T T i 77 /

i | —t 2 :L/IE/// ~SUM
224px| input /7 7 d=1 d=1 Output _—_ #K

i T L B

laK . i
224px B

z d=2

Dooooo & EBVElektronik

I An Avnet Company |

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume

(channels num)

o

/
~SUM

Output

input n=K
=== In
S

d=0

d=1 d=1
L
-

d=2 d=2

One
Feature
Map

(7x7x3)

B — 1
Y { 77

R— i -7
224pX input /§7 _)7

224px — 1 |#K

4
; -O

[[[; *

A
>

All Feature Maps

#K

@ EBVEI

nnnnnnnnnnnnnnnn

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

(7x7x3) //
B —1 1 24
4 | _/17 . \ f/” P ‘
R i A __ Tx7x3 q = il
: 2 24 g |
224pX| input | | i TN | b
- ; . 224 | K
A___ | 7 (num of filters)
IN: volume of size W1xH1xD1 OUT: volume of size W2xH2xD2 Stride (S): the amount of “sliding”
Hyperparameters: W2=(W1-F+2P)/S+1=(224-7+2*3)/1+1 | of the kernel between each
1. Number of filters K, computation.
2. their spatial extent F, H2=(H1-F+2P)/S+1=(224-7+2*3)/1+1
3. thestride S, Useful to change the WxH of the
4. the amount of zero padding P | D2=K output volume.

@ EBVE|ektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

Input Feature Map (FM)
1lal1lol o010 Stride = 1, no pad
oDy F
0of1|1[1]l1
0/0/1[{1/0|0
0 1/1/{0/0|0
0/1/0[{1]0|1

moo @ EBVEIektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input Feature Map (FM)
1/1/0]0j0/0| —Strde=Lnopad
JONLE — [
olelolelelal . — |
olol1]/1]0]0
o/1/1]/0|0]|0
0/1/0|1]/0/1

ooo @ EBVE|ektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input Feature Map (FM)
1/1[t]0jajo| —Stide=lnopad
o[1]af1)o0]|1 T
ololzjel2]2] ——
o(oj1{1/0/0
0[1/1]/0/0]0
0[1]/0[|1|0]1

ooe @ EBVElektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

Input Feature Map (FM)
1lal1|lol0oT0 Stride = 2, no pad
0(1)a1]o0 1>>
efof1]1]1l1
0/0|1/1/0/|O0
0/1/1/{0/0|0
0/[1]0|1/0|1

B000 @ EBVFE ektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input Feature Map (FM)
1{1(1]0 QTW
oj1|af1)o]|1 —
olof[1]0a 1;/
0/0|1|1|0|0
O/ 1/1({0(0]|0
0O/1/0/{1|0|1

oooo D EBVEektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input Feature Map (FM)
Stride = 2, no pad

—

OIBIOB|O|K
(=)

ol |B|lRr|FR|F

|—\\o R(= RO

o # O Rr|O|O

= c# O | Rk O

ooEo @ EBVEektronik

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume

(channels num)

input

Feature Map (FM)

1

0

Stride = 2, no pad

1

@

]

(1)

|

P

OO0 00 O|F

R, O|lO|kFR|F

Olr|e|r |k

o|l2e|O|Rr|O|O

= kD OlF|F | O

O0O0o0Oo

@ EBVElektronik

CNN building blocks: CONV (convolutional) layer

The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

" <N\ < - \\\x #1 AN <

#ZE%EQ \;\\\\ 5%‘ 3ﬂﬁf\ #zt%gj ‘\\“x\ ;“y

H 3[2]@ 59 _ | N H 3[%5} 227 28 |

#4 U= i | #4@ |

#s%? #s[gﬁ s
| > #GEJ// N AN

i P i

3
#96 kernels, no padding, 11x11, s=4 #128 kernels, no padding, 11x11, s=8

The output volume has one W2xH?2 feature map for each of the K kernels of the CNN architecture.
Each kernel coefficients are learned by the CNN during the training over the given dataset.
Each feature map will “learn” one specific feature of the class we want to identify.

Input & Output data are considered as “volumes” of data. & EBVElektronik

CNN building blocks: ACT (activation) layer

Activation layers are needed to apply a non-linear activation function to all the values of a data volume.
Input and output volume sizes do not change.

CONV RELU
W_ .=W
10 | -1 | -4 | 30 0o | 0 | 30 out In
20 | 21 | 31 | 1 21 [31| o y y
70|70 | 1 | 11 70| o | 11 out = "in
9| a1 |1 0| 1|1 Dout = Din

CNN building blocks: POOL (pooling) layer
The main purpose of a pooling layer is to reduce (downsample) the size of the input data volume (alternative to a
stride >2 for CONV). Pooling does reduce the complexity of a model while controlling data overfitting.

Micro-architecture is related to the math operator while macro-architecture is related to the receptive field and
stride. The most common is MAX POOL.

INPUT MAXPOOL INPUT MAXPOOL _

10 -1 4|30 10 | -1 | 4 | 30 WOUt B ((Win_F)/S)-I-l
21 | 31 | 31 31

20 |21 | 31 F=2x2 - T 20 | 21 | 31| -1 ' F » Hout _ ((Hin-F)/S)+1
70\ 70 | -1 S=1 70 | 70 | -1 | 11 S

A 70 | 11
9 >\\ 94|11 Dout = Din

ax(F)

oo @ EBVElektronik

CNN building blocks: ACT (activation) layer

Activation layers are needed to apply a non-linear activation function to all the values of a data volume.

Input and output volume sizes do not change.

CNN building blocks: POOL (pooling) layer

CONV

10 -1

-4

30

20 | 21

31

70 | 70

-1

11

9 | 4

1

RELU

30

21

31

70

11

Wout = Win
Hout = Hin
Dout = Din

The main purpose of a pooling layer is to reduce (downsample) the size of the input data volume (alternative to a
stride >2 for CONV). Pooling does reduce the complexity of a model while controlling data overfitting.
Micro-architecture is related to the math operator while macro-architecture is related to the receptive field and
stride. The most common is MAX POOL.

INPUT

MAXPOOL

10

-1

-4

30

20

21

31

31

31

70

70

-1

=

70

31

-4

1

1

70

11

0o

INPUT

10

20

70\

MAXPOOL

W, e = (W, -F)/S)+1

Hout = ((H:-F)/S)+1

Dout = Din

@ EBVE|ektronik

CNN building blocks: FC (fully connecter) layer

This is a classical “feedforward” network and these layers are always used at the end of a CNN to classify the results
from the previous (feature extraction) layers. It is common to place them before a SOFTMAX classifier to understand
the result of data classification. This often requires “flattening” the last layer of the feature extraction part of the CNN

CONV RELU FLATTEN FC1 FC2 S.MAX

- - pool2 feature maps FC1: 128
10 | 1| -4 10| 0| 0|30 0 feaiyre 11
OUT: 10
20 | 21 | 31 | | 21 [31| o - .]
70 70 -1 2| ' 70 0 11 0
-9 -4 1 0 0 1 1 |
o Full connection Full ct':unnemion
1

CNN building blocks: BN (batch normalization) layer

It was introduced in 2015 to have a layer which does a normalization of all the signals (activations) from a previous
input volume and passing the result to the next layer. Extremely helpful to make the training more stable, i.e. robust
to the intrinsic variance of input data. Penalty on computation. It is placed after an activation layer.

" €T; — L CONV=>RELU =>BN=>
i = \/0_2 1 ¢ 10 0 0

Tre

-0.3 -0.7 -0.7 0.6
1
p=—>
M 4
1=1

T 06 | 015 | 02 | 0.7
u ! : ' 23 | 23 | 07 | 02
1 T
2 _ . 2 0 0 1 1 07 | -07 | -0.6 | -0.6
O'—M (.CUZ—M) -0. -0. -0. -0.
i=1 '
& EBVElektronik
I An Avnet Company |

20 21 31

70 70 0

CNN building blocks: DO (dropout) layer

Dropout is a form of regularization to prevent overfitting to the expense
of testing accuracy. For each batch of training dataset it will disconnect
(randomly with probability P) the input of a preceding layer to the next
layer in the CNN architecture. By altering the network architecture we
make sure that there is no “preferred path” between nodes to produce
a specific result. It is mostly used between FC layers, for example:

a) Standard Neural Net (b) After applying dropout.

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

CONV=>RELU=>POOL=>FC=>DO=>FC=>DO=>FC=>SOFTMAX

http://jmlIr.org/papers/volumel5/srivastaval4a.old/srivastaval4a.pdf

CNNs are:
CNN and Translation, Rotation, Scaling Rotation invariant: NO
When we use a CNN over a specific image (signal) is the result affected by an image Scaling invariant: NO
geometrical transformation? In general CNNs are invariant only to translation thanks Translation invariant: YES

to the convolution properties.

data augmentation

For this reason it is important to train network with data_augmentation, using v during training
multiple (altered) copies of the same input, so that the inner kernels can learn to

select features even when they are different from the most frequent use case. Using CNNs can be:

data augmentation like scaling, cropping, skew, rotation, noise we will reduce the Rotation invariant: YES
training accuracy (and increase training time..) but we will obtain a more robust Scaling invariant: YES
model, capable of generalize better for all the use cases. Translation invariant: YES

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cle2

@ EBVElektronik

& EBVElektronik Technology. Passion. EBV.

| An Avnet Company |

LeNet (1998)
Fundamental architecture introduced by Yann LeCun in 1998 with the paper “Gradient-Based Learning Applied to

Document Recognition”. http://yann.lecun.com/exdb/lenet/index.html
The original purpose was OCR for handwritten numbers.

C3: f. maps 16@10x10

INPUT gégg:tgge maps S4: f. maps 16@5x5
32x32 S52: f. maps C5: layer :
6@14x14 il L

Full conrl:ection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whaose weights are constrained to be identical.

https://www.youtube.com/watch?v=FwFduRA L6

\ J \] \ J 1993: Demo of "LeNet 1", the first convolutional
In;!ut NN Featu‘re Extraction NN CILssification network that could recognize handwritten digits with
good speed and accuracy.

LeNet-5: today one of the simplest networks to learn how to implement CNN, often called the “Hello World” of CNN.

Footprint: The original LeNet-5 has ~60.000 parameters (this is considered very small)

It is a sequential CNN, all the data are processed layer-by-layer on single dataflow until the final classification section

at the end.
& EBVElektronik

| An Avnet Company |

LeNet on MNIST
To implement LeNet for MNIST we are going to modify the network a bit. Input size is 28x28 pixels and activation is RelLu

Layer Output
Size px

INPUT
CONV
ACT(RelLu)
POOL
CONV
ACT(ReLu)
POOL

FC
ACT(ReLu)
FC

28x28x1
28x28x20
28x28x20
14x14x20
14x14x50
14x14x50
7x7x50
500

500

10

50@14x14

5x5x1, k=20 20@28x28 29@14x14

maxpool 2x2 1%10

.. os— (softmax)

5x5x20, k=50

maxpool 2x2

MaxPool (2x2
flattening AP

Conv=>Relu

L

9" Flatten
MAXPool(2x2)

IN=>CONV=>ReLu=>POOL=>CONV=>ReLu=>POOL=>FC=>ReLu=>FC=>softmax

SoftMax

}Q Gradient-Based Learning Applied to Document Recognition

PDF

ref docs\[CNN]lecun 1998.pdf

& EBVElektroni

I An Avnet Compan

K

LeNet on MNIST
To implement LeNet for MNIST we are going to modify the network a bit. Input size is 28x28 pixels and activation is RelLu

Layer Output FC1 softmax
Size px = -

INPUT 28x28x1 - ‘]

flatten | i

CONV 28x28x20 5x5x1, k=20 o _ 0
ACT(Relu) 28x28x20 . PooL [T~
POOL 14x14x20 maxpool 2x2 e | | >
CONV = s
CONV 14x14x50 5x5x20, k=50 i [i
POOL [T té_— Hl
ACT(ReLu) 14x14x50 =l :
CONV [T28 2P - o ‘o
POOL 7x7x50 maxpool 2x2 o0 1 14
9f. S
FC 500 flattening > T a0
28
ACT(ReLu) 500 = i
FC 10 SoftMax : T

iy,

IN=>CONV=>ReLu=>POOL=>CONV=>ReLu=>POOL=>FC=>ReLu=>FC=>softmax

Since the kernel size is always few pixels wide as a consequence we have that early layers will learn “tiny details” while
deeper layers will learn “macro details”. The more we go deeper the more we add kernels. This is a common strategy
for sequential CNNs.

& EBVElektronik

I An Avnet Company I

LeNet on MNIST
Keras implementation as a class is very compact. Also Keras has already MNIST as an “embedded” database.

1~ class LeMet:l
I-ayer OUtPUt 2 @=taticmethod
Size pX - def build(width, height, depth, classes):
initialize the meodel

3
4
5 model = Sequential()
INPUT 28x28x1 6 inputShape = (height, width, depth)
7
CONV 28x28x20 5x5x1, k=20 8 # STAGE1: CONV => RELU => POOL layers TIME!
9 model.add{Conv2D(2@, (5, 5), padding="same", input shape=inputShape))
ACT(ReLu) 28x28x20 1e model.add(Activation("relu”))
11 model.add(MaxPooling2D(pool size=(2, 2), strides=(2, 2)))
12
POOL 14x14x20 maxpool 2x2 13 # STAGE2: CONV => RELU => POOL layers
14 model.add({Conv2D(5@, (5, 5), padding="same"))
CONV 14x14x50 5X5X20, k=50 15 model. add(Activation("relu”))
16 model.add(MaxPooling2D(pool size=(2, 2}, strides=(2, 2)))
ACT(ReLu) 14x14x50 1
18 # STAGE3: FC1 =» RELU layers
19 model.add(Flatten())
POOL 7x7x50 maxpool 2x2 20 model.add(Dense(500))
21 model.add({Activation("relu"))
FC 500 flattening 22
23 # softmax classifier: we have 18 classes
24 model.add(Dense(classes))
ACT(ReLu) 500 25 model.add({Activation("softmax"))
26
FC 10 SoftMax 27 # return the constructed network architecture
28 return model

Once the network class is defined we only have three steps to follow: build&compile, fit(i.e. train), predict(i.e. evaluate).

model = LeNet.build(width=28, height=28, depth=1, classes=18)
#1 model.compile(loss="categorical crossentropy”, optimizer=opt, metrics=["accuracy"])

#2 H = model.fit$trainData ainl ahels
validation_data ft-.

Note: training is done on the training dataset
Note: test dataset is used also for validation
(but is never used for training...) & EBVElektronik

I An Avnet Company |

atch size=128, epochs=28, verbose=1)

#3 predictions = model.predic =128}

LeNet on MNIST
Keras implementation as a class is very compact. Also Keras has already MNIST as an “embedded” database.

Loss/Accuracy

Training Loss and Accuracy

fl-score

.99
.99
.99
.99
.99
.99
.99
.99
.98
.98

O O O O O O oo o o

support

980
1135
1032
1010

982

892

958
1028

974
1009

10000

L digit precision recall
) 0 0.99 0.99
e 1 1.00 0.99
2 0.98 0.99
s e 3 0.99 0.99
e 4 0.99 0.99
----- train_acc 5 0.99 0.99
2 i — val_acc 6 0.99 0.99
I 0.99 0.98
8 0.97 0.99
Bk 9 0.99 0.97
accuracy
0.0 - == , , , , | | ,
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5
Epoch #
NOTE: MNIST is an “easy” dataset for todays networks (high risk of overfitting)
see .
o ConvNetJS See also ConvNetJS example:

®é Deep Learning in your browser Nttps://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

@ EBVE|ektronik

AlexNET (2012)

Developed at the Univ. of Toronto. Was specifically created to compete at the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012). It won the competition thanks to the “SuperVision” team.

The model follows the footsteps of LeNet with a larger

footprint.

The success of AlexNet was a turning point for the
computer vision community which started to work heavily
on new optimized models of CNNs

55

Stride 96

228\ || of 4

Max
pooling

n.2 GPUs
1 week

-

dense

Max
pooling

Max
pooling

4096

dense

F]

4096

Alex Krizhevsky, llya Sutskever, Geoffrey Hinton
University of Toronto

Our model is a large, deep convolutional neural network trained
on raw RGB pixel values. The neural network, which has 60 million
parameters and 650,000 neurons, consists of five convolutional
layers, some of which are followed by max-pooling layers, and
three globally-connected layers with a final 1000-way softmax. It
was trained on two NVIDIA GPUs for about a week. To make
training faster, we used non-saturating neurons and a very
efficient GPU implementation of convolutional nets. To reduce
overfitting in the globally-connected layers we employed hidden-
unit "dropout", a recently-developed regularization method that
proved to be very effective.

http://image-net.org/challenges/LSVRC/2012/results.html#tl

E ImageNet Classification with Deep Convolutional Neural Networks
PDF

ref docs\[CNN]AlexNet.pdf

@ EBVElekt

I An Avne

ronik

AlexNET (2012)

Layer Output Size
px

T

c
.o -
S INPUT 227x227x3 (NOTE: 224 was a typo) - Output Size m
() px
) CONV 55x55x96 11x11 S=4 K=96 g
O CONV 13x13x384 3x3, S=1 k=384 .
eLu X X
. pX
BN 55x55x96 o—
BN 13x13x384 O FC 4096
POOL 27x27x96 3x3, $=2 v
CONV 13x13x384 3x3, S=1 K=384 U Relu 4096
DROPOUT 27x27x96 0.25 Rel 13,13x384 an 1096
o DIRINAES | S, SRL 2 BN 13x13x384 DROPOUT 4096
Relu 27x27x256 CONV 13x13x256 3x3, S=1 K=256 FC 4096
BN 27x27x256 Relu 13x13x256 Relu 4096
DROPOUT 13x13x256 0.25 POOL 6X6x256 3x3, 5=2 DROPOUT 4096
DROPOUT 6Xx6x256 FC 1000 SoftMax
55 — —
)
. %, 13 13 13
CNN Complexity: "Q .] _ -
- 60M parameters 2;‘ - _,Q: _ - - :ﬁ: T-% | - 13 jzﬁ: “ X pe dense | |dense]
- 5 CONV layers 5 B = = — L
Max Ma pooling 49%% 4096
- 3 FC layers \ || striae_gq | ooling pooling
of 4
|] |\ J \ J

& EBVElektronik

I An Avnet Company |

AlexNET (modified)
Modified (sub-optimal) network to show training on CIFAR-10 on the local CPU (no GPU)
Training Loss and Accuracy on CIFAR-10

1~ class Alexiet:

2
3‘-
4
5
6
-
8

9
18
11
12
13
14
15
16
17
18
19
28
21
22
23
24
25
26
27
28
29
3@
=4
32
33
34
35
36
37
38
39
49
41

(|

@staticmethod

def build{width, height, depth, classes):
initialize
model = Sequential()
inputShape = (height, width, depth)
chanDim = -1

#
SECTION - A
#

CONY n.l

K

IT'S
DEMO
TIME!

model.add{Conv2D(filters=96, input_shape=(32,32,3), kernel_size=(7,7),\

strides=(2,2), padding='same'))
model . add{Activation('relu'))

BN
model.add({BatchNormalization())
POOL

model.add(MaxPooling2D(pool size=(2,2), strides=(2,2), padding='same’))

Dropout to prevent overfitting
model . add{Dropout(@.25))

CONV n.2

model.add{Conv2D(filters=256, kernel size=(5,5), strides=(1,1), padding="same'))

model . add{Activation{ 'ralu'))

BN
model.add{BatchNormalization())
POOL

model . add{MaxPooling2D(pool size=(2,2), strides=(2,2), padding="same'))

Dropout
model . add{Dropout(©.25))

#
SECTION - B
-

CONV n.3

model. add{Conv2D(filters=384, kernel size=(3,3), strides=(1,1), padding="same')})

model.add(Activation{ 'relu'))
BN

2.0 -

Loss/Accuracy

0.5

0.0 -

pees
LN

P
=]

—— ftrain_loss
—— val_loss
—— ftrain_acc
—— val_acc
é é lh 15 Eh 25 Eb 35 dﬁ
Epoch #
precision recall fl-score support
airplane 0.82 0.82 0.82 1000
automobile 0.89 0.84 0.87 1000
bird 0.73 0.63 0.67 1000
cat 0.56 0.59 0.57 1000
deer 0.70 0.74 0.72 1000
dog 0.61 0.71 0.66 1000
frog 0.79 0.83 0.81 1000
horse 0.84 0.77 0.80 1000
ship 0.88 0.85 0.87 1000
truck 0.85 0.82 Qo= 1000
accuracy @ 10000

AlexNET (modified)
Modified (sub-optimal) network to show training on CIFAR-10 on the local CPU (no GPU)

Training Loss and Accuracy on CIFAR-10

1~ class Alexhlet:
@staticmethod
def build{width, height, depth, classes):

K

initialize

model = Sequential()

inputShape = (height, width, depth)
chanDim = -1

#.
SECTION - A
i

CONY n.l

model.add{Conv2D(filters=96, input_shape=(32,32,3), kernel_size=

strides=(2,2), padding='same'))
model . add{Activation('relu'))

BN
model.add({BatchNormalization())
POOL

model.add(MaxPooling2D(pool size=(2,2), strides=(2,2), padding="

Dropout to prevent overfitting
model . add{Dropout(@.25))

COMV n.2

model.add{Conv2D(filters=256, kernel size=(5,5), strides=(1,1),
model . add{Activation{ 'ralu'))

BN

model.add{BatchNormalization())

POOL

model . add{MaxPooling2D(pool size=(2,2), strides=(2,2), padding="

Dropout
model . add{Dropout(©.25))

#
SECTION - B
-

CONV n.3

model.add{Conv2D(filters=384, kernel size=(3,3), strides=(1,1),
model.add(Activation{ 'relu'))

BN

—— train _loss
—— val loss
2.0 - —— train_acc
—— val _acc
> 15- OVERFITTING
i
=
] validation_loss
(7.7)5\ Efﬁ Lo
)
= val acc
0.5 -
sama’))
train_loss
0.0 -
padding="Sam")) 0 5 10 15 20 25 30 35 40
Epoch #
precision recall fl-score support
same*)) airplane 0.82 0.82 0.82 1000
automobile 0.89 0.84 0.87 1000
bird 0.73 0.63 0.67 1000
cat 0.56 0.59 0.57 1000
deer 0.70 0.74 0.72 1000
dog 0.61 0.71 0.66 1000
frog 0.79 0.83 0.81 1000
padding="same")) horse 0.84 0.77 0.80 1000
ship 0.88 0.85 0.87 1000
truck 0.85 0.82 Qo= 1000
accuracy @ 10000

VGGNet (2014)

Visual Geometry Group, Department of Engineering Science, University of Oxford.

Introduced in 2014 was the first architecture to improve the performance for large scale image recognition.
While previous networks used a variety of kernel sizes VGG uses small 3x3 kernels across the whole network.
In addition it does use multiple convolutional layers “stacked” to improve the feature extraction.

This network has a large number of parameters (VGG16 ~138M, VGG19 ~144M) and requires a lot of computational
power. The VGG11/VGG16/VGG19 refers to the number of layers (CONV+FC)

convl

56 % 56 x 256

1% 112 x 128

L
224 x 224 x 64

PDF

/28 x 28 x 512

conv4

VGG16

14 x 14 % 512

fcb fc7 fc8
= 5 E

1x1x4096 1x1x 1000

TxTx512

@ convolution+ReLLU
[_ﬁ max pooling
.-;_1 fully connected+ReLU

Very Deep Convolutional Networks for Large-Scale Image Recognition
ref docs\[CNN]VGGNet 1409.1556.pdf

ConvNet Contfiguration

A A-IRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)

conv3-64 conv3-H4d convi-64 conv3-64 conv3-64 convi-64
LRN conv3-64 conv3-64 conv3-G4 comv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | comv3-128 | conv3-128
conv3-128 | conv3-128 | comv3-128 | comv3-128

maxpool
conv3-256 | conv3-256 | comv3-256 | convi-256 | conv3-256 | conv3-256
comv3-256 | conv3-256 | conv3-256 | conv3-256 | comv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
comv3-512 | conw3-512 | conmv3-512 | conv3-512 | comv3-512 | conv3-512
conv3-512 | conw3-512 | comv3-512 | convi-512 | comv3-512 | comv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
comv3-512 | comw3-512 | comv3-512 | convi-512 | comw3-512 | comvi3-512
comv3-512 | conw3-512 | comv3-512 | comw3-512 | comv3-512 | comv3-512
convl-512 | conv3-512 | comv3-512
conv3-512

maxpoipl

FC-4096

FC-4096

FC-1000

soft-max

@ EBVE|ektronik

VGGNet (modified)
The most important feature of VGGNet family are:

- 3x3 convolutions everywhere
- Multiple CONV=>RELU layers stacked before a POOL.

We use a simplified version to speed up computation
on CIFAR-10 dataset (note: still very slow on CPU)

= (1L | | 512

i P £
:) o P

A J #| %o v p __ -

g i /"' —— - A
< - S . - 4
-~ i . -~
o~ -~ L Fad
i

H?%yﬁ P
64

2 / 32 3 f
INPUT T

CONV-11 /‘ CONV-21

CONV-12 CONV-22
POOL-1 POOL-2

N g =
32 | I8 1 _—"rl-F____l;f;Li!ffi

—
10

B

CONV-11

CONV-12

POOL-1

CONV-11 _|

CONV-12

POOL-2

INPUT
CONV
Relu

BN

CONV
Relu

BN

POOL
DROPOUT
CONV
Relu

BN

CONV
Relu

BN

POOL
DROPOUT
FC

Relu

BN
DROPOUT
FC

Output Size

px
32x32x3
32x32x32
32x32x32
32x32x32
32x32x32
32x32x32
32x32x32
16x16x32
16x16x64
16x16x64
16x16x64
16x16x64
16x16x64
16x16x64
16x16x64
8x8x64
8x8x64
512

512

512

512

10

3x3x3, K=32

3x3x3, K=32

2x2
0.25
3x3x3, K=64

3x3x3, K=64

2x2
0.25

0.5
SoftMax

VGGNet (mOdl_fIEd) Layer Output Size

1~ class MiniVGGNet:| pX

2 @=taticmethod

3 def build(width, height, depth, classes): INPUT 32x32x3

4 # initializ

: nodi o= Eogueniisil] CONV 32x32x32 3x3x3, K=32
6 inputShape = (height, width, depth)

7 chanDim = -1 Relu 32x32x32

8

9 - # CONV1: BN 32x32x32

1@ # CONV => RELU => CONV => RELU => POOL layer set I

11 model.add(Conv2D(32, (3, 3), padding="same", TIM E. CONV 32x32x32 3x3x3, K=32
12 input_shape=inputShape))

13 model.add({Activation(“relu™)) RelLu 32x32x32

14 model . add({BatchNormalization{axis=chanDim))

15 model.add(Conv2D(32, (3, 3), padding="same")) BN 32x32x32

16 model.add(Activation({"relu”™))

17 model.add(BatchNormalization(axis=chanDim)) POOL 16x16x32 2%2

18 model . add(MaxPooling2D(pool size=(2, 2)))

19 model . add{Dropout(@.25)) DROPOUT 16x16x64 0.25

28

21 = # CONVZ: _
22 # CONV =»> RELU =»> CONV => RELU => POOL layer set CONV 16x16x64 3X3X3' K=64
23 model.add(Conv2D(64, (3, 3), padding="same"))

24 model.add({Activation{"relu”™)) Relu 16x16x64

25 model.add(BatchNormalization(axis=chanDim))

26 model.add(Conv2D(64, (3, 3), padding="same")) BN 1bx16x64

27 model . add({Activation{"relu™})

28 model.add(BatchNormalization(axis=chanDim)) CONV 16x16x64 3x3x3, K=64
29 model.add(MaxPooling2D(pool size=(2, 2)))

30 model. add(Dropout(@.25)) Relu 16x16x64

31

33 model.add(Flatten())

34 model.add(Dense(512)) POOL 8x8x64 2x2

35 model.add(Activation{"relu™))

36 model . add(BatchNormalization()) DROPOUT 8x8x64 0.25

37 model.add(Dropout(@.5))

38 FC 512

39 # softmax classifier
4@ model.add(Dense(classes)) Relu 512
41 model.add(Activation("softmax"))
47 BN 512
43 # return the constructed network architecture
a4 i DROPOUT 512 0.5

FC 10 SoftMax

VGGNet on CIFAR-10

Loss/Accuracy

Training Loss and Accuracy on CIFAR-10

-— frain_loss
LG — val loss
—— train_acc
1.4 - — val_acc
alrplane
1.2~ automobile
bird
1.0 - cat
deer
0.8 - dog
frog
0.6 - horse
ship
0.4 - truck
0.2- . . . , . ! : .
0 5 10 15 20 25 30 35 40
Epoch #

precision

O O O O O oo o oo

.87
.93
.78
.67
.76
.73
.82
.91
.91
.87

recall

.81
.90
.12
.65
.86
LT
.89
.83
.90
.90

O O O O O oo o oo

fl-score support
0.84 1000
0.92 1000
0.75 1000
0.66 1000
0.80 1000
0.75 1000
0.86 1000
0.87 1000
0.90 1000
0.89 1000

accuracy 10000

& EBVElektronik

I An Avnet Company I

VGGNet on ILSVRC2014

Team VGG was the winner of the ILSVRC (ImageNet Large Scale Visual Recognition Competition) 2014 in the

classification & localization (task 2a)

Classification+localization

VGG

Task 2a: Classification+localization with provided training data

Classification+localization with provided training data: Ordered by localization error

Karen Simonyan, University of Oxford
Andrew Zisserman, University of Oxford

Team name ||[Entry description

Loc
errc We have used three ConvNet architectures with the following

0.2¢ weight layer configurations:

1. ten 3x3 convolutional layers, three 1x1 convolutional layers,
and three fully-connected layers - 16 weight layers in total;

2. thirteen 3x3 convolutional layers and three fully-connected

3. sixteen 3x3 convolutional layers and three fully-connected

detected boxes were not updated

a combination of multiple ConvNets (by averaging)
a combination of multiple ConvNets (fusion weights learnt on the §
VGG I (K22
validation set)
a combination of multiple ConvNets, including a net trained on _ _
VGG images of different size (fusion done by averaging); detected boxes ||0.28 layers - 16 weight layers in total;
were not updated
a combination of multiple ConvNets, including a net trained on layers - 19 weight layers in total.
VGG images of different size (fusion weights learnt on the validation set); 0.2¢ { 3}

Our implementation is derived from the Caffe toolbox, but

GoogleNet |Model W?th Incal?zat?nn ~26% tops val error. _ 0.2€ contains a number of significant modifications, including parallel
GoogLeNet E’;gg:e!;“'th localization ~26% tops val error, limiting ”””’hz: e o¢ training on multiple GPUs installed in a single system. Training a

e _ n.4 GPUs single ConvNet on 4 NVIDIA Titan GPUs took from 2 to 3 weeks
VGG a single ConvNet (13 convolutional and 3 fully-coni n.3 weeks (depending on the ConvNet configuration).

http://www.image-net.org/challenges/LSVRC/2014/results

https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvic-2014-image-classification-d02355543a11

& EBVElektronik

I An Avnet Company |

& EBVElektronik Technology. Passion. EBV.

| An Avnet Company |

CNN: InceptionNet and Res

GooglLeNet a.k.a InceptionNet (2014)
Google research team started the idea of building networks with multi-level feature extraction.
For this purpose a special “core module” was created.

The Inception module is an example of a “graph” network which is
not “sequential” anymore since multiple path are taken to compute
the module output. This is also called Network-in-Network architecture.

reduce
channel depth

Conv Conv Conv Conv
1x1+1(5) Ix3+1(S) 5x5+1(5) 1x1+1(S)
A

We have four branches: g
- 1%t branch: a series of 1x1 convolutions to learn local features (think FC) MaxPool
_ 1x1+1(S) [l 1x1+1(5) [l 3x3+1(5)
- 2" branch: reduce the volume with 1x1 conv (num3x3Reduce conv)
and expand with 3x3 conv (num3x3 conv)
- 3" branch: same reduce&expand, but with a 5x5 conv
(num5x5Reduce and num5x5)
- 4™ branch: pool projection branch. A MaxPool reduction with a 1x1 conv.

DepthConcat

(NOTE: it was added for historical/empirical reasons since MaxPool was very common...) conv
Input ; NXMNXK 5x5
volymie ‘:
; output
A new tool: DepthConcat ix1 V7 . volume
the volumes from all the branches are BB l< 3X3
“concatenated” on the depth axis to form the output volume result. [
;ffl - —
S 1x1

POOL
https://www.coursera.org/lecture/convolutional-neural-networks/inception-network-motivation-5WIZm & EBVE|ektronik

GooglLeNet a.k.a InceptionNet (2014)

The network used a CNN inspired by LeNet but implemented a novel, the inception module.

This module is based on several very small convolutions in order to drastically reduce the number of parameters.
Their architecture consisted of a 22 layer deep CNN but reduced the number of parameters from 60 million
(AlexNet) to 4 million.

ISIT+ESE IS+ 1T

IS THE=E 1SITHIAT

(AT +ixr

fon
*
T
=
")
sl
=
lai
+
it
W

ISk HT%T {SIT+E%%

NI+
T
SIT+1eT {Sht+5¥g

ISHT #1471 {SIT+Ex5
AT} O

(51 T+

https://sites.google.com/site/aidysft/objectdetection/recent-list-items

ooo & EBVElektronik

| An Avnet Company |

GooglLeNet a.k.a InceptionNet (2014)

The network used a CNN inspired by LeNet but implemented a novel, the inception module.

This module is based on several very small convolutions in order to drastically reduce the number of parameters.
Their architecture consisted of a 22 layer deep CNN but reduced the number of parameters from 60 million

(AlexNet) to 4 million.

#18 #19 #yoH21

g1 #16 #17
#12#13 #14

#10 #11

ISIT+ESE IS+ 1T
IS IT+HEXE {SIT+T1%1

IS THE=E 1SITHIAT

{SIT+1¥T

|SIT+ N sT+1%1

ISk HT%T {SIT+E%%

SHTHEXE {sit+1m
SIT+1eT {Sht+5¥g

@
T
WL
+LH
=
=i
&
B
3
ik
Ak
7

Note: count layers only if they contains weights...

https://sites.google.com/site/aidysft/objectdetection/recent-list-items

s & EBVElektronik

I An Avnet Company |

GooglLeNet a.k.a InceptionNet (2014)

The network used a CNN inspired by LeNet but implemented a novel, the inception module.

This module is based on several very small convolutions in order to drastically reduce the number of parameters.
Their architecture consisted of a 22 layer deep CNN but reduced the number of parameters from 60 million

(AlexNet) to 4 million.

ISIT+ESE IS+ 1T

=
=
oot
+ 4§
i
in
&
)
b
Al
et

AT +Lxe
poogabes
24
(e s e e

|SIT+ N sT+1%1

LT HTET {SIT+E%%

Al
AUDT

E

N

AITHIAT

I E

hT E {sit+1m
SIT+1eT {Sht+5¥g

ISHT #1471 {5lT+5%g
AGOT O

S T+TI¥T

SIT+1aT Eh+aeg

\ These are intermediate results...

training time: few days by Andrej Karpathy ...

https://sites.google.com/site/aidysft/objectdetection/recent-list-items

ooo & EBVElektronik

| An Avnet Company |

GooglLeNet (modified)

1+ class GoogleNet:

2 @staticmethod

e def conv_module(x, K, kX, k¥, stride, chanDim, padding="samz"}):

4 # define a CONV =» BN =»> RELU pattern

5 ¥ = Conw2D(K, (kX, kY), strides=stride, padding=padding)(x)

B ¥ = BatchMormalization{axis=chanDim)(x)

7 X = Activation("relu")}{x)

8 return x

g

18 @staticmethod
11~ def inception module(x, numklxl, numkK3x3, chanDim):
12 # two COMV modules, concatenate across depth axis

13 conv_1x1 = GoogleNet.conv_module(x, numkixl, 1, 1, {1, 1}, chanDim)
14 conv_3x3 = GoogleNet.conv module{x, numk3x3, 3, 2, (1, 1), chanDim)
15 X = concatenate([conv 1x1, conv 3x3], axis=chanDim)

15 return X

17

18 @staticmethod
15 - det downsample module{x, K, chanDim):

28 # COMV module and POOL, concatenate across depth axis
21 conv_3x3 = GoogLeNet.conv module(x, K, 3, 3, (2, 2), chanDim, padding="valid")
22 pool = MaxPooling2D{(3, 3), strides=(2, 2))(x)
23 ¥x = concatenate([conv 3x3, pool], axis=chanDim)
24 return x

conv_module

e

Inception module

.

downsample module

INCPT

INCPT

DOWN

INCPT

INCPT

INCPT

INCPT

DOWN

v
INCPT

B8+ < R oy W B - SR BRI R
L]

N ¥ W I W W T T [I T W B Wy N Fod Pod Pod Pod B Pl Bd B R
WNH@@WHU\WLWNH@W%Hmmhwml—‘mlﬂmﬂmmhwwl—‘m

INCPT

def

POOL

build{width, height, depth, classes):

initialize the input shape to be "channels last™ and the
channels dimension itself

inputShape = (height, width, depth)

chanDim = -1

if we are using "channels first"”, update the input shape
and channels dimension
if K.image data format() == "channels first":

inputShape = (depth, height, width)

chanDim = 1

define the model input and first CONV module
inputs = Input{shape=inputshape)
®x = GoogleNet.conv_module{inputs, 96, 3, 3, (1, 1), chanDim)

two Inception modules followed by a downsample module
GoogleNet.inception module(x, 32, 32, chanDim)
GoogleNet.inception module(x, 32, 48, chanDim)
GoogleNlet.downsample module(x, 88, chanDim)

- A A
1

four Inception modules followed by a downsample module
GoogleMet.inception _module(x, 112, 48, chanDim)
GoogleNet.inception module(x, 96, 64, chanDim)
GoogleNet.inception module(x, 88, 288, chanDim)
GoogleNet.inception module(x, 48, 95, chanDim)
GoogLeNlet.downsample module(x, 96, chanDim)

- A
I

two Inception modules followed by global POOL and dropout
% = GoogleMet.inception module(x, 176, 16€, chanDim)

¥ = GoogleMet.inception module(x, 176, 168, chanDim)

¥ = AveragePooling2D((7, 7)) (x)

¥ = Dropout(8.5){x)

softmax classifier

¥ = Flatten{}(x)

% = Dense{classes)(x)

X = Activation("softmax")(x)

create the model
model = Model{inputs, x, name="googlenet")

return model

& EBVElektronik

I An Avnet Company |

GooglLeNet (modified)

Loss/Accuracy

!_d
o
I

ek
o

|
—

e = = i
= o oo o
I I I

'

=
P

Training Loss and Accuracy on CIFAR-10

10

20

—— train loss
—— val _loss
—— ftrain_acc
—— val acc
30 40 50 60 70
Epoch #
= & EE
S ngi®l|iSl] =
O = IE o

precision
airplane 0.92
automobile 0.94
bird 0.75
cat 0.66
deer 0.97
dog 0.85
frog 0.98
horse 0.91
ship 0.90
truck 0.94
accuracy
Allal &l &l B allal
O| O] OO % =P OO 8-—)»8
IEIEIE o =< =

recall

0.
.96
.88
.88
.70
.80
.79
.92
.96
.93

O O OO O o o oo

86

fl-score

0.
.95
.81
.75
.81
.83
.88
.91
.93
.93

O O O O O o o o o

89

support
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

& EBVElektronik

I An Avnet Company |

GooglLeNet a.k.a InceptionNet (2014)
Team Google was the winner of the ILSVRC (ImageNet Large Scale Visual Recognition Competition) 2014 in the
Object Detection (task 1b)

Task 1b: Object detection with additional training data

Object detection with additional training data: Ordered by number of categories won

GooglLeNet

Christian Szegedy, Wei Liu, Yangging Jia, Pierre
Sermanet, Scott Reed, Drago Anguelov, Dumitru
Erhan, Andrew Rabinovich

We explore an improved convolutional neural network
E?nrg Entry description Esesgrtptiﬂn ofoutside data grchitecture which combines the multi-scale idea with
intuitions gained from the Hebbian principle. Additional
GoogLeNet ﬂls‘;ﬁnbie of detection models. Validation is |Pretraining on ILSVRC12 .dim.erjsion redUCtion. layers based on embedding learning
5% mAP classification data. intuition allow us to increase both the depth and the
(D:g:plf[)- Combine multiple models described in the |ImageNet classification and width of the network significantly without incurring
Net abstract without contextual modeling localization data significant computational overhead. Combining these
D_eep - | Three CNNs from ideas allow for increasing the number of parameters in
Insight Combination of three detection models classi convolutional layers significantly while cutting the total
forini| less parameters . L
o —— ' number of parameters and resulting in improved
Euvision |P€€P learning with outside data ImageNet T00U generalization. Various incarnations of this architecture
Rerkeley | The CNN was pre-trained or are trained for and applied at various scales and the
ieion R-CNN baseline E:lhaeta!itvﬂc 2013 CLS resulting scores are averaged for each image.
= I o http://www.image-net.org/challenges/LSVRC/2014/results
Going deeper with convolutions Rethinking the Inception Architecture for Computer Vision
PoF | ref docs\[CNN]Inception-vl 1409.4842.pdf | ppr | ref docs\[CNN]Inception-v2 1512.00567.pdf

@ EBVE|ekt

ronik

I An Avnet Compa

GooglLeNet becomes InceptionNet (2014)

CNN names are often selected with references to their
main functionality.

Going deeper with convolutions
Originally Google’s research team decided to

make a reference to the seminal (goog)LeNet arch,

but in the original paper for Inception Net they Christian Szegedy Wei Liu Yangging Jia

refe rred to the movie as fO”OW' Google Inc. University of North Carolina, Chapel Hill Google Inc.
Pierre Sermanet Scott Reed Dragomir Anguelov Dumitru Erhan

In this paper, we will focus on an efficient deep neural network Google Inc. University of Michigan Google Inc. Google Inc.

architecture for computer vision, codenamed Inception, which derives R o e

its name from the Network in network paper by Lin et al [12] in Google Inc. Google Inc.

conjunction with the famous “we need to go deeper” internet meme
[1]. In our case, the word “deep” is used in two different meanings:
first of all, in the sense that we introduce a new level of organization in

]
*<WENEED T0 GO
the form of the “Inception module” and also in the more direct sense of ‘ -

increased network depth. : '

[

'l" ’.EO”I‘IARDD BpcAPRIO :‘
I i

WATAHARE G2 = o = camg

References

[1] Know your meme: We need to go deeper. http://knowyourmeme.com/memes/
we—-need-to—go—deeper. Accessed: 2014-09-15.

Going deeper with convolutions
poF | ref docs\[CNN]Inception-vl 1409.4842.pdf

@ EBVE|ektronik

Company |

ResNet(2015) a.k.a ResidualNet
Very deep networks with a sequential model suffer from one problem: vanishing gradient.
(https://en.wikipedia.org/wiki/Vanishing gradient problem). Backpropagation di SGD becomes more and more inaccurate and adding

layers does not improve network performance.

ResNet solves this problem with an “identity mapping” layer (also called “linear shortcut”) which takes part of the

previous activation layer and joins with the current layer right before the final ACT/ReLu layer. X
. . . CONYV, 3x3, 64
This core architecture is than stacked over and over to reach very deep networks, F(x) lre'“
ResNet50 is a de-facto reference network for benchmarking performance on CNN. CONV. 3x3. 64 ; x
vt identity

ResNet advantage: smaller model footprint
The are only two POOL layers (at the beginning and at the end) but the network
volume is controlled by the usage of convolutions with stride>1 instead of pooling.

Original ResNet “residual block”

256-d

| 1x1, 64

relu
Variant “Bottleneck”: improvement to the original block that leverages two CONV | 3x3l, 6 |
layers with a smaller volume (1/4 of the input depth) and a one final CONV layer with | e

the same depth as the input.

Variant: “Bottleneck” residual block

/&Q Deep Residual Learning for Image Recognition }Q Identity Mappings in Deep Residual Networks

PDF | ref docs\[CNN]resnet 1512.03385.pdf PDF | ref docs\[CNN]resnet modified 1603.05027.pdf
@ EBVElektronik

ResNet_bottleneck block

ResNet (modified)

256-d

1~ class Reshet:| 1 @staticmethod|
2 @staticmathod 8— 2 def build{width, height, depth, classes, stages, filters,
3 def residual module(data, K, stride, chanDim, red=Fzls=e, 3~ reg=e.8e81, bnEps=2e-5, bnMom=8.9):
LR reg=2.8881, bnEps=2e-5, bnMom=2.9): 2 4 # input shape for “channel first/last”
5 # the shortcut branch of the ResNet module should be | > inputShape = (height, width, depth)
B # initialize as the input (identity) data O & chanDim = -1
7 shortcut = data — ¥
8 S5 8 # set the input and apply BHN
g # ResNet module: first BN=>Relu=»>1x1 CONVs IT'S o @ inputs = Input(shape-inputShape) _
18 bnl = BatchNormalization{axis=chanDim, epsilon=bnEps, | 18 X = BatchNormalization(axis=chanDim, epsilon=bnEps,
11 momentum=bnMom) (data) D E M o 4 11 momentum=bnMom) { inputs)
12 actl = Activation("relu”)(bni) Q 12 :
12 convl = Conv2D(int(K * ©.25), (1, 1), use bias=False, Z 13 # loop over the number of stages
14 kernel regularizer=12(reg))(actl) TIM EI v 14~ for 1 in range(@, len(stages)):
15 . Q 15 # stride is (1,1) only for the first (input) stage
16 # ResNet module: second BN=>Relu=>3x3 CONVs o 16 stride = (1, 1) if i == 8 else (2, 2)
17 bn2 = BatchMormalization{axis=chanDim, spsilon=bnEps, 17
12 momentum=bntMom) (convil) 18 ® = ResHet.residual module(x, filters[i], stride,
19 act2 = Activation("relu")(bn2) 19 chanDim, red=Truz, bnEps=bnEps, bnMom=bnMom)
20 conv2 = Conv2D(int(K * @.25), (3, 3), strides=stride, 20 _
21 padding="same", use bias=Fzlse, 21 # loop over the number of layers in the stage
22 kernel regularizer=12(reg)){act2) e for j in range(®, stages[i] - 1):
23 23 # apply a ResMet module
24 # ResNet module: third BN=>Relu=> 1x1 COMVs 24 x = ResNet.residual module(x, filters[i],
25 bn3 = BatchNormalization(axis=chanDim, epsilon=bnEps, 25 (1, 1), chanDim, red=Fzlse, bnEps=bnEps, bnMom=bnMom)
26 momentum=bniMom) (conv2) 26 _ 1
27 act3 = Activation("relu")({bn3) 27 # apply BN => ACT => POOL
28 comw3 = Conv2D(K, (1, 1), use bias=False, 28 x = BatchNormalization(axis=chanDim, epsilon=bnEps,
29 kernel_regularizer=12(reg)){act3) 29 momentum=bnMom) {x)
38 36 X = Activation("relu”)(x)
31 # if needed to reduce size use a COMV layer (do not pool) 31 X = AveragePooling2D((8, 8))(x)
32 if red: 32 o
33 shortcut = Conv2D(K, (1, 1), strides=stride, 33 # softmax classifier
34 use bias=Fzlsz, kernel regularizer=12(reg))(actl) 34 x = Flatten()(x)
35 25 X = Dense(classes, kernel regularizer=12(reg))(x)
36 # SUM: add together the shortcut and the final CONV 36 x = Activation("softmax")(x)
37 ¥ = add([conv3, shortcut]) 37
38 28 # create the model
39 return x 39 model = Model(inputs, x, name="resnet")
n.9 layers 9]
Nn.J layers
32x32x64 CONV y n.9 layers
m 16x16x128 CONV —
8x8x256 CONV
CIFAR-10 () | () () FC (softmax)
32x32x3 " " 10 categories
<3 [¢[o R
(o} (o} ~
212 1E - ||
i m
B stage#1 stagetf2 stage#3
- — = # SYNTAX: ResNet.build({width, height, depth, classes, stages, filters, reg, bnEps, bnMom) @ EBVE|ektronik
model = ResNet.build(32, 32, 3, 18, (9, 9, 9), (64, 128, 256), reg=@.8e65)

ResNet(modified)

2.00 -

0 b i T

1.50 -

125~

1.00 -

Loss/Accuracy

0.75-

0.50 -

Training Loss and Accuracy on CIFAR-10

20

—— train_loss
— val loss
——— ftrain_acc
— val_acc

30 40

Epoch #
CIFAR-10
32x32x3

50 60 70

n.9 layers
32x32x64 CONV

(-.)

stage#l

precision recall fl-score

airplane 0.92 0.89 0.91
automobile 0.92 0.97 0.94
bird 0.89 0.88 0.88
cat 0.83 0.80 0.81
deer 0.88 0.91 0.90
dog 0.92 0.79 0.85
frog 0.91 0.94 0.92
horse 0.89 0.95 0.92
ship 0.91 0.96 0.93
truck 0.93 0.92 0.93
accuracy

n.9 layers n.9 layers

16x16x128 CONV

HilHET

stage#2 stage#3

support

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

10000

FC (softmax)
10 categories

& EBVElektronik

I An Avnet Company v |

ResNet(2015)

Was ResNet Successful?

MSRA (ResNet)

Kaiming He, Xiangyu Zhang, Shaoqing Ren

 Won 1st place in the ILSVRC 2015 classification Jian Sun, Microsoft Research

competition with top-5 error rate of 3.57%

We train neural networks with depth of over 150 layers. We propose a "deep

* Won the 1st place in ILSVRC and COCO 2015 residual learning" framework [a] that eases the optimization and convergence

competition in ImageNet Detection, ImageNet of extremely deep networks. Ou.r "deep residual nets" enjoy accur.acy gains
. . . . when the networks are substantially deeper than those used previously. Such

localization, Coco detection and Coco segmentation. accuracy gains are not witnessed for many common networks when going

* Replacing VGG-16 layers in Faster R-CNN with ResNet- dleEpEr
101. They observed a relative impI‘OVGmentS of 28% Our localization and detection systems are based on deep residual nets and

¢ Efficiently trained networks with 100 layers and 1000 the "Faster B'CNN“ syst(_em i @ o2 paper [b]. The extremely deep

representations generalize well, and greatly improve the results of the Faster

/GyerS also R-CNN system. Furthermore, we show that the region proposal network

(RPN) in [b] is a generic framework and performs excellent for localization.

https://towardsdatascience.com/review-resnet-winner-of- p.//image-net.ore/challenges/LSVRC/2015/results
ilsvrc-2015-image-classification-localization-detection-
e39402bfa5d8

https://medium.com/@14prakash/understanding-and-
implementing-architectures-of-resnet-and-resnext-for-
state-of-the-art-image-cf51669e1624

@ EBVElektronik

I An Avnet Company

@ EBVElektronik Technology. Passion. EBV.

n Avnet Company |

L

V.

A

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE

Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEARNEER

intensity orientation in a cell

https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

obj yes/no = NO

Obj Detect
(HOG+SVM)

DO00000000 & EBVElektronik

| An Avnet Company |

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE

Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEARNEER

intensity orientation in a cell

https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

obj yes/no = NO

Obj Detect
(HOG+SVM)

DOO0000000 & EBVElektronik

I An Avnet Company |

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE

Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEARNEER

intensity orientation in a cell

https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

Obj Detect
(HOG+SVM)

DOO0000000 & EBVElektronik

| An Avnet Company |

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE

Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEARNEER

intensity orientation in a cell

https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

Obj Detect
(HOG+SVM)

DOOO000000 & EBVElektronik

I An Avnet Company |

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE

Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEARNEER

intensity orientation in a cell

https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

‘

obj yes/no = YES

Obj Detect
(HOG+SVM)

DOOO000000 & EBVElektronik

I An Avnet Company |

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE

Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEARNEER

intensity orientation in a cell

https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

‘

obj yes/no = YES

Obj Detect
(HOG+SVM)

SEEEEEEEE & EBVElektronik

I An Avnet Company |

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE

Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEARNEER

intensity orientation in a cell

https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

‘

obj yes/no = YES

Obj Detect
(HOG+SVM)

SEEEEEEEE & EBVElektronik

I An Avnet Company |

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE

Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEARNEER

intensity orientation in a cell

https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

‘ Lower resolution for bigger objects

obj yes/no = YES

Obj Detect
(HOG+SVM)

& EBVElektronik

I An Avnet Compan vl

OOOOooooOO

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE
Before CNN became popular few algorithms were common for feature detection, for example T el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. & e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEEPRNEEE

https://www.learnopencv.com/histogram-of-oriented-gradients/

intensity orientation in a cell

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”. T I

of HOG feature

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

‘ Lower resolution for bigger objects I"I - -

obj yes/no = YES

Obj Detect
(HOG+SVM)

NMS

% :—Z- s

.

T | ' & EBVElektronik

I An Avnet Company |

Classical object detection algorithms

Blok (2x2 cells)

A= w|™ NEERE
Before CNN became popular few algorithms were common for feature detection, for example el
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification. e et
https://en.wikipedia.org/wiki/Histogram of oriented gradients R R
AEERREEE

=

https://www.learnopencv.com/histogram-of-oriented-gradients/

—» E.

F

g s
= N
2 < 2
B g
B

Q

=

B

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the

whole algorithm.

ome
of HOG feature

% wm m =

These methods have a strong penalty on performance because we have to run the same
algorithm multiple times on different overlapping sub-pictures (loop of detections)

Computationally not efficient

\ %

DOoOooooooD & EBVElektronik

I An Avnet Compan

CNN: Object Localization

CNN like ResNet will classify “the whole picture” as if it does contain only one object (a cat or a dog). This is because we have

trained the network to output only a label which is a “list of features” related to a “list of class”

‘

convnet
CIFAR-10

A better labeling..

1x1x10

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

O O O OO oo ooo

O R DN W RN O

Using a better labeling we can “add” features to our classification, for example localization of the object as a bounding box. Bounding
box is identified by the absolute coordinates of origin, width, height. We also code the probability of presence P for the identified

class. (note: coordinates are normalized)

(0,0)

y:

1x1x15

| convnet
(1,1) CIFAR-10

cl0
@ EBVE|ektronik

I An Avnet Company |

CNN: bounding box ... better than sliding window

"'I‘- Bounding box does combine a “superimposed grid” with the image classification+localization as seen
before. For each cell we define a label which contains 8 features: P, box(x,y,w,h), class(c1, c2,c3)

presence prob B.Box coordinates Classification result Note: coord. size are
. 7

.hh ‘\> Label : Y=(P=0, bx, by, bw, bh, c1,c2,c3...cn) always normalized

_ and referred to the cell origin
, abel : Y=(P=1, 0.1,0.3,0.7,0.8, c1,c2,c3) (upper left corner)

NOTE: The grid is NOT computed, it is defined as a coordinate system while creating labels for training.

e |
H...‘!E With only one pass into the CNN we obtain
information for object presence, bounding
==h.__ box, category of an object inside a “virtual”
HEEREE . grid cell.
HEEEFER. &
EEpSS <« 1. CNN 9x9x8 Cells: 9x9=81

BE AN u™

Labeling on a 9x9 grid (finer detail)

Label features: 8 (P, bbox, three classes)

oo & EBVElektronik

CNN: bounding box ... better than sliding window

—q-- Bounding box does combine a “superimposed grid” with the image classification+localization as seen
before. For each cell we define a label which contains 8 features: P, box(x,y,w,h), class(c1, c2,c3)

presence prob B.Box coordinates Classification result Note: coord. size are
° /7
‘h J Label : Y=(P=0, bx, by, bw, bh, c1,c2,c3...cn) always normalized

and referred to the cell origin
abel : Y=(P=1, 0.1,0.3,0.7,0.8, c1,c2,c3) (upper left corner)

NOTE: The grid is NOT computed, it is defined as a coordinate system while creating labels for training.

= = . .

NOTE:
object is assigned (labeling) to the cell
which contains the center point of the bounding box.

bx,by always between 0 and 1.
bw,bh always >0 but can be >1.

Labeling on a 9x9 grid (finer detail)

ao & EBVElektronik

An Avnet Company |

CNN: multiple detection and Non-Maxima suppression (NMS)

When running the CNN the output result will often have multiple detections for the same
object especially when we have a finer grid.

To select only the best bounding box from all the ones provided on the grid we
use loU (intersection over union). Given two bounding box we compute the ratio between
the area of intersection over the area of union

intersection

loU =

.) _ union
Intersection union

Example of NMS: When multiple bounding boxes are detected from different cells in the
grid we remove the one with the maximum loU referred to the one classified with the
higher result. This is a post-processing step repeated over all the objects classes found in
the input image.

(|

& EBVElektronik

I An Avnet Company |

CNN: multiple detection and Non-Maxima suppression (NMS)

When running the CNN the output result will often have multiple detections for the same
object especially when we have a finer grid.

To select only the best bounding box from all the ones provided on the grid we
use loU (intersection over union). Given two bounding box we compute the ratio between
the area of intersection over the area of union

intersection

loU =

.) . union
Intersection union

Example of NMS: When multiple bounding boxes are detected from different cells in the
grid we remove the one with the maximum loU referred to the one classified with the
higher result. This is a post-processing step repeated over all the objects classes found in
the input image.

NMS
loU > 0.5
delete orange

& EBVElektronik

I An Avnet Company |

CNN: overlapping objects and anchor boxes

When multiple objects are in the same position they will overlap.
The grid cell algorithm is based on the definition of one bounding box for each
grid cell assumed that there is only one object for a single cell

To be able to detect multiple (overlapping) objects for a single cell we
define a feature called anchor boxes where for each cell of the grid
we support multiple bounding boxes of different (pre defined)

aspect ratio.

Type #1

Each label y is now a longer vector with multiple bounding boxes where the order of
labeling is based on the shape of the anchor box. For example with only n.2 anchors:

[| |
Label: Y=(P, bx, by, bw, bh, c1,c2,c3...cn, P, bx, by, bw, bh, c1,c2,c3...cn)

#2

anchor bkox type #1

#3

#H4

anchor box type #2
\

& EBVElektroni

I An Avnet Compan

K

YOLO (you look only once) https://pjreddie.com/publications/

ref docs\[OBJ]yolo vl 1506.02640.pdf
}" ref docs\[OBJ]yolo v2 1612.08242.pdf
PDF

Unified, Real-Time Object Detection by Joseph Redmon, Santosh Divvala, Ross Girshick ref docs\[OBJ]yolo v3 1804.02767.pdf

and Ali Farhadi (2015).

Name Filters Output Dimension
* Dataset is labeling datapoints as per SxS grid o 7 % 61, strides ot x 2o« oz
. Max Pool 1 2 X 2, stride=2 112 x 112 x 64
e Dataset is labeled on C classes ok Ee S0 TP
: : : : Max Pool 2 2 X 2, stride=2 56 x 56 x 192
* Each grid cell contains B bounding boxes, but only 1 object (YOLO V1) o R L o e e
 CNN was trained on Pascal VOC for YOLO V1 (20 class) conv CEo R o E S
H H k k onv © 1 x 1 x 512 6 x 56 x 512
V1 CNN will return a result Y with [(P,bx,by,bw,bh)*B,C1...Cc] *(SxS) o e 3 | 2 s s S
. . -r: . Conv 7 1 x 1 x 256 28 x 28 x 256
(bx, by are now the center of the box relative to the grid cell, only one classification) o e s e el o o e els
Conv 9 1 x 1 x 256 28 x 28 x 256
Conv 10 3 x 3 x 512 28 x 28 x 512
H H P Conv 11 1 x 1 x 256 28 x 28 x 256
YOLO uses a custom Loss Function during training. o s e e el
YOLO does post-process results by eliminating anchor boxes with low P conv SElEe et
YOLO does NMS on the remaining results (one NMS for each class Cx) conv 2 SELEo R
Originally Pascal VOC dataset was used, S=7, B=2 and C=20. oox Pool 41 2 x 2, stride= IR
P H H Conv 18 3 x 3 x 1024 14 x 14 x 1024
CNN originally inspired by GooglLeNet. o S R
Conv 20 3 x 3 x 1024 14 x 14 x 1024
Conv 21 3 x 3 x 1024 14 x 14 x 1024
- I Conv 22 3 x 3 x 1024, stride=2 7 x 7 x 1024
CNN 24 Conv + ZFC pOSt pIIOCESSIng Conv 23 3 x 3 x 1024 7 x 7 x 1024
‘ Conv 24 3 x 3 x 1024 7 x 7 x 1024
FC 1 - y@*’_\
FC 2 - (7 x 7 x 30 (1470)

| %% % HMN 1><DX® »/a»

..................

777777

u%m’;ﬂm Muxpﬂ;; oooooooooo 7X7X 2 * 5 + 2 O
oty

222222

) EBVEektronik

An Avnet Company

YOLO (you look only once) https://en.wikipedia.org/wiki/YOLO (aphorism)

YOLO improved by changing

CNN (from GooglLeNet to Darknet),
by adding anchor boxes (V2), by
changing the training methodology
and (multi scale) and by using a
finer grid ...

YOLO V3 uses DarkNet (106 layers)
to perform detection at THREE
scales of resolution. Also uses 9
anchor boxes (3 for each scale)

nlnlw & EBVElektronik

n Avnet Company |

YOLO (you look only once) https://en.wikipedia.org/wiki/YOLO (aphorism)

> VI
-
T .

2) Given a 3x3 grid, the CNN is
trained to produce 2 b.boxes results
for each cell.

Y=[[P,bx,by,bw,bh,C1..C20]
[P,bx,by,bw,bh,C1..C20]]

P is our “confidence” for obj being
present in the cell.

YOLO improved by changing

CNN (from GooglLeNet to Darknet),
by adding anchor boxes (V2), by
changing the training methodology
and (multi scale) and by using a
finer grid ...

YOLO V3 uses DarkNet (106 layers)
to perform detection at THREE
scales of resolution. Also uses 9
anchor boxes (3 for each scale)

nnulw & EBVElektronik

I An Avnet Company |

YOLO (you look only once) https://en.wikipedia.org/wiki/YOLO (aphorism)

> VI
-
T .

2) Given a 3x3 grid, the CNN is
trained to produce 2 b.boxes results
for each cell.

Y=[[P,bx,by,bw,bh,C1..C20]
[P,bx,by,bw,bh,C1..C20]]

P is our “confidence” for obj being
present in the cell.

YOLO improved by changing 3) Based on the confidence level
CNN (from GooglLeNet to Darknet), being “too low” to be an object we
by adding anchor boxes (V2), by eliminate many false boxes while

changing the training methodology post processing the CNN results

and (multi scale) and by using a
finer grid ...

YOLO V3 uses DarkNet (106 layers)
to perform detection at THREE
scales of resolution. Also uses 9
anchor boxes (3 for each scale)

lnnlw & EBVElektronik

I An Avnet Company |

YOLO (you look only once) https://en.wikipedia.org/wiki/YOLO (aphorism)

> VI
-
T .

YOLO improved by changing

CNN (from GooglLeNet to Darknet),
by adding anchor boxes (V2), by
changing the training methodology
and (multi scale) and by using a
finer grid ...

YOLO V3 uses DarkNet (106 layers)
to perform detection at THREE
scales of resolution. Also uses 9
anchor boxes (3 for each scale)

O0o0oao

2) Given a 3x3 grid, the CNN is
trained to produce 2 b.boxes results
for each cell.

Y=[[P,bx,by,bw,bh,C1..C20]
[P,bx,by,bw,bh,C1..C20]]

P is our “confidence” for obj being
present in the cell.

3) Based on the confidence level
being “too low” to be an object we
eliminate many false boxes while
post processing the CNN results

4) The last step of post processing
will run NMS once for each class C
(i.e. 20 times in this example) to
keep only the most confident result.

class confidence = P(class_i) * loU

ktronik

An-Avnet Company |

YOLO (you look only once) Computer Vision & Pattern Recognition (CVPR2016)

Yolo: the fastest algorithm at the time of publication

‘Wil still not a lightweight model for “loT/Edge-Ai” devices

Cortex A-53@1.2Ghz : ~1 fps
Cortex A-72@1.5Ghz : ~2 fps

Y, O Lok Oner * Only ARM sw (no NN acceleration, no GPU)

RE/ * |Image resolution 416x416 px
Ly | | D L-TIME C\IPR 2016] . Arm NEON optimized
“ | —- ETECTION https://github.com/Tencent/ncnn/tree/master/benchmark

Mon ZELE-@E-37 14:15:14

There are simplified versions of YoLo which runs faster with a lower accuracy: see Tiny _Yolo, Yolo Lite (10x speedup)

« Removal of few conv layers YOLO-LITE

* Removal of batch normalization oop | ref docs\[CNN]Yolo Lite 1811.05588.pdf

 Removal of pooling layers in favor of conv+stride “ ... reducing the input image size by a half can more than

« Use of faster classification networks (MobileNet) double the speed of the network (6.94 FPS vs 2.4 FPS) but will
also effect the mAP (30.24% vs 40.48%). Reducing the input

Useful Links: image size means that less of the image is passed through the

network. This allows the network to be leaner, but also means

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b that some data was lost.”

https://hackernoon.com/understanding-yolo-f5a74bbc79 67

https://medium.com/@jonathan hui/real-time-object-d etection-with-yolo-yolov2-28b1b93e2088
https://gengineering.eu/deep-learning-with-raspberry-pi-and-alternatives.html
https://towardsdatascience.com/retinanet-how-focal-loss-fixes-single-shot-detection-cb320e3bb0de

@ EBVElektronik

& EBVElektronik Technology. Passion. EBV.

| An Avnet Company |

Books (as a quick start...)

THE HUNDRED-PAGE
MACHINE LEARNING

Deep Learning wi

‘ TensorFlow 2 BOOK

with Python with TF 2.0 with Keras Machine
F.Chollet and Keras Cookbook Learning,
A.Gulli A. Burkov

Deep Learning Deep Learning Neural Networks The 100Page

Deep Learning
lan Goodfellow,
Yoshua Bengio

Online Courses + Books + Tutorials + Blog

DEEP LEARNING
FOR COMPUTER VISION

https://www.pyimagesearch.com/
By Adrian Rosebrock, PhD

" for CNNs & image processing.

WITH PYTHON

(3] https://machinelearningmastery.com/
) § By Jason Brownlee, PhD

\STE \ for RNN, LSTM etc.

https://d2l.ai/index.html
Dive into Deep Learning

DIVE INTO
.| DEEP LEARNING |

discussions, based on the NumPy interface.

NOTE: one of the most comprehensive, updated, learning source

NOTE: not only focused on computer vision, excellent source also

An interactive deep learning book with code, math, and

Online Courses: Coursera by Andrew Ng

Machine Learning

Stanford University
s e | i
B [

a, %} 49 (1209

Mixed

https://www.coursera.org/learn/machine-learning

Deep Learning

deeplearning.ai

4.8

deeplearning.ai Wil Jrstenmediate

https://www.coursera.org/specializations/deep-learning

Online Courses: by Fast.Ai

https://www.fast.ai/

fast.ai

Online Courses: by Stanford Univ.

cose CONVNetJS : by A. Karpathy

®® Deep Learning in your browser

https://cs.stanford.edu/people/karpathy/convnetjs/

121

& EBVElektronik

Thank You.

ai@ebv.com

Gianluca Filippini
EBV / FAE - ML Specialist

Ulrich Schmidt
EBV / Segment Manager - Hi-End Processing

Technology. Passion. EBV.

PASSION.
_ EBV.

