
1

Convolutional Neural Networks (CNN)
for data classification

Gianluca Filippini
EBV / FAE -ML Specialist

2

2017: We will create systems and robots, which are smarter than us

Raymond Kurzweil, Google’s Director of Engineering, is a well-known futurist with a
high-hitting track record for accurate predictions.

“2029 is the consistent date I have predicted for when an AI will pass a valid Turing test
and therefore achieve human levels of intelligence. I have set the date 2045 for the
‘Singularity’ which is when we will multiply our effective intelligence a billion fold by
merging with the intelligence we have created”

Using big data, computer programs (artificial intelligence) will be capable of analyzing
massive amounts of information, identifying trends and using that knowledge to come
up with solutions to the world’s biggest problems..

https://en.wikipedia.org/wiki/Ray_Kurzweil

https://futurism.com/kurzweil-claims-that-the-singularity-will-happen-by-2045

https://en.wikipedia.org/wiki/Technological_singularity

Ray Kurzweil

3

1950: The Imitation Game.

Computing Machinery and Intelligence (Mind 49, 433-460)

I propose to consider the question, "Can machines think?"
This should begin with definitions of the meaning of the terms "machine" and "think.“
[…]
It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of
either sex. The interrogator stays in a room apart front the other two. The object of the game
for the interrogator is to determine which of the other two is the man and which is the woman.
He knows them by labels X and Y, and at the end of the game he says either "X is A and Y is B"
or "X is B and Y is A."
[…]
We now ask the question, "What will happen when a machine takes the part of A in this
game?" Will the interrogator decide wrongly as often when the game is played like this as he
does when the game is played between a man and a woman? These questions replace our
original, "Can machines think?"
https://www.csee.umbc.edu/courses/471/papers/turing.pdf

The Turing machine was invented in 1936. Turing called it an "a-machine" (automatic machine).
https://en.wikipedia.org/wiki/Turing_machine

Alan Turing

Mind 49 :
The Imitation Game

4

https://www.nytimes.com/2019/09/04/technology/artificial-intelligence-aristo-passed-test.html

Sept. 4, 2019: A Breakthrough for A.I. Technology, passing an 8th-Grade Science Test

The Allen Institute for Artificial Intelligence unveiled a new system that passed the
test with room to spare. It correctly answered more than 90 percent of the questions
on an eighth-grade science test and more than 80 percent on a 12th-grade exam

Oren Etzioni

https://en.wikipedia.org/wiki/Oren_Etzioni

https://allenai.org/

Aristo: The goal is to design an artificially intelligent system that can successfully read and
understand science texts and ultimately demonstrate its knowledge by passing an AP
biology exam. The focus of the project is explained by the guiding philosophy that artificial
intelligence is about having a mental model for how things operate and refining that mental
model based on new knowledge

AI2: The Allen Institute for Artificial Intelligence is a research institute founded by late Microsoft
co-founder Paul Allen. The institute seeks to achieve scientific breakthroughs by constructing
AI systems with reasoning, learning, and reading capabilities.

https://allenai.org/team/orene/videos.html

5

A.I.

M.L

D.L

Artificial Intelligence
The goal of Artificial Intelligence (A.I) is to provide algorithms and techniques
to solve problems that humans perform intuitively and near automatically,
but are otherwise very challenging for computers.
(inferring, planning, heuristics etc.)

Machine Learning is a subset of AI which focuses on pattern recognition and
learning from data.

Deep Learning is a subset of ML with peculiar algorithm structures
that are very efficient on specific tasks like data classification,
object recognition etc. etc.
(computation is intensive even for modern computer systems)

Research is driven by the scientist community, often with the contribution of
industry leaders (Google, Facebook etc)

6

Artificial Intelligence (A.I.)

Computer Vision Pattern
Recognition

Machine
Learning

Speech
Recognition Fuzzy Systems. . .

Deep Learning and Convolutional Neural Networks

7

Artificial Intelligence (A.I.)

Computer Vision Pattern
Recognition

Machine
Learning

Speech
Recognition Fuzzy Systems. . .

Linear Regression K-Means
Clustering Decision Trees

Reinforcement
Learning

Deep Learning
DNNs

Deep Learning and Convolutional Neural Networks

8

Artificial Intelligence (A.I.)

Computer Vision Pattern
Recognition

Machine
Learning

Speech
Recognition Fuzzy Systems. . .

Linear Regression K-Means
Clustering Decision Trees

Reinforcement
Learning

Deep Learning
DNNs

Multi-Layer
Neural Networks

Recurrent
Neural Networks

Convolutional
Neural Networks

.

Deep Learning and Convolutional Neural Networks

9

Artificial Intelligence (A.I.)

Computer Vision Pattern
Recognition

Machine
Learning

Speech
Recognition Fuzzy Systems. . .

Linear Regression K-Means
Clustering Decision Trees

Reinforcement
Learning

Deep Learning
DNNs

Deep Learning and Convolutional Neural Networks

Convolutional
Neural Networks

LeNet, AlexNet, VGGNet, ResNet, Inception, DenseNet, MobileNet etc.

Why Deep Learning with CNN ?
- Lower computational complexity, reduced model size
- Better learning capabilities, faster learning
- Very good feature extraction operator
- Proved best results on image classification

10

Machine Learning, data and tools

11

Machine learning is based on training data to learn data patterns. How we use the training data depends on the specific ML type.
Supervised Learning: an algorithm is given both the input and the output result at the same time. The algorithm goal is to map the
input to the correct output by automatically learning a patter on multiple input data. (support vector machines, random forests, neural
network ..) This technique is based on “labeling” the input data. Each data is assigned to a specific class (i.e. the output result)

Semi-Supervised Learning: the input data are not fully labeled. The algorithm has to learn patterns from the fully labeled
set of data and also try to improve its own performance by using the remaining data that were not previously classified.

Unsupervised Learning: there are no information on the target output for each input data. The algorithm must search and distinguish
features in the incoming data set, automatically.

Classical method: write code for features extraction and classification

Deep NN method: the network will learn important features automatically from the data itself

INPUT
DATA

DSP code for FIXED
ALGORITHMS and
feature extraction

(edges, histograms, fft, hog
etc.)

ML
classification

(decision tree)

OUTPUT
CLASS

INPUT
DATA

Deep Neural Network
learn key features from data

Perform classification

OUTPUT
CLASS

https://machinelearningmastery.com/types-of-learning-in-machine-learning/

Data, Signals, Numbers …
NN do apply to many types of signals, for example images (video) and audio recordings. We consider signals to be digital.
Digital signals in their lowest representation are numbers. Numbers might have different format (integer, floating point) but are the
fundamental building block to understand input datasets for neural networks.

Images: represented in a color space (rgb) and each pixel on a color space is one value of a matrix.

768x432 pixels (rgb)

3 ch: red, green, blue pixel, single number, 8bit (or 16, 32 etc)

R
G

B

8bit, value range is 0 to 255

Analog audio signals are converted to digital signals in different digital formats (DSD, PCM etc)
For PCM the audio level is sampled at a specific frequency and quantized with a specific amount of bits.
Each sample is a number, the collection of sample values does form an array.

-50 -80 10 70 10 13 -5 -45 …

FF
T

Time

13

https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensors/

https://towardsdatascience.com/quick-ml-concepts-tensors-eb1330d7760f

Tensor
A tensor is a mathematical construct that enables us to represent entities that otherwise we would not be able to describe. For
a simple understanding of what is a tensor for ML we can think of:

• A scalar is a single number
• A vector is an array of numbers.
• A matrix is a 2-D array
• A tensor is a N-dimensional array with n>2

Data is often multi-dimensional. Tensors can play an important role in ML by encoding multi-dimensional data. A picture is represented
by three fields: width, height and depth (color). It makes sense to encode it as a 3D tensor. However, more than often we are dealing
with tens of thousands of pictures. Hence this is where the forth field, sample size comes into play. A series of images in a dataset can
be stored in a 4D tensor. This representation allows problems involving big data to be solved easily

Dataset: a collection of data points

Data point: a single instance of data. An image, an audio chunk, a text chunk is a data point.

Datasets are used to allow NN to learn features needed to perform data classification. By learning
how to detect complex patterns into the input data the network can distinguish object in images,
words in sounds recording etc.

dataset

datapoint

High Accuracy
High Precision

Data Classification: We perform a test on input data to define if the data point is part of a class or not.
The “classification function” effectiveness can be measured based on hit/miss rates (binary classification)

https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiershttps://en.wikipedia.org/wiki/Sensitivity_and_specificity

TP: True Positive. Input Data is “positive” and is classified as “positive”.
TN: True Negative. Input Data is “negative” and is classified as “negative”.
FP: False Positive. Input Data is “negative” and is classified as “positive”.
FN: False Negative. Input Data is “positive” and is classified as “negative”.

High Accuracy
Low Precision

TP FN

FP TNRe
al

D
at

a

Predicted Data
P N

P

N

Accuracy = TP+TN / total_data Precision = TP / (TP+FP)

TP FN

FP TNRe
al

D
at

a

Predicted Data

P

N

P N

Recall = TP / (TP+FN)

TP FN

FP TNRe
al

D
at

a

Predicted Data
P N

P

N

(Sensitivity, hit rate)

Low Accuracy
High Precision

Low Accuracy
Low Precision

40 20

10 30

P N

P

N

Accuracy = (40+30)/100 = 70%

Precision = 40/(40+10) = 80%

Recall = 40/(40+20) = 66%

Relevant elements

TP FN

FP TNIN
: R

ea
lD

at
a

OUT: Predicted Data

P N

P

N

15

Data is the new “gold”
Good training of a neural network is mostly based on the quality of the dataset and expertise of the data scientists.
Dataset quality is related to the coverage of a “core” of data that will allow the final network to generalize better on the remaining
datapoints from the field. Modern datasets are databases of signal samples and metadata associated to the signal itself (class label,
bounding boxes, coordinates etc). Dataset tends to be very large for modern networks and an accurate work of “labeling” and manual
classification is the real value of a “good” dataset.

The expert data scientist knows how to train a neural network for a specific dataset, tweaking hyper-parameters, starting-stopping
training etc.

Public Datasets
Private companies will rarely share their datasets (service fees).
These datasets are usually built over time with many resources to gain a competitive advantage. But scientific communities have built
many public datasets that are available to learn NN. Some of them are famous for historical reasons:

MNIST : handwritten digits
Modified National Institute of Standards and Technology
https://en.wikipedia.org/wiki/MNIST_database

CIFAR-10 : images of animals and cars
Canadian Institute For Advanced Research
https://en.wikipedia.org/wiki/CIFAR-10
contains 60,000 32x32 color images in 10 different classes
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships,
and trucks

PASCAL-VOC
Pattern Analysis, Statistical modeling,
Computational Learning
http://host.robots.ox.ac.uk/pascal/VOC/

ImageNet
Labeled object image database, used in the
ImageNet Large Scale Visual Recognition
Challenge http://www.image-net.org/
https://devopedia.org/imagenet
One of the largest databases for object
recognition, 14M images over thousands of
classes. By Stanford University is “the” benchmark
for image classification

CoCo
Common Objects in Context.
Started by Microsoft is now a large contribution
from different companies and univ. around wwide.
https://www.microsoft.com/en-
us/research/publication/microsoft-coco-common-
objects-in-context/
COCO is a large-scale object detection,
segmentation, and captioning dataset.
http://cocodataset.org/#home

Kaggle
Much more than a dataset.
https://www.kaggle.com/
Hosted by Google, is an online community of data
scientists and machine learners.

Kaggle allows users to find and publish data sets,
work with other data scientists and machine
learning engineers, and enter competitions to
solve data science challenges.

Even More Datasets…
Long list from Wikipedia: image, sound, text,
biological, aerial etc. etc.
https://en.wikipedia.org/wiki/List_of_datasets_for
_machine-learning_research

Google periodically releases data of interest to
researchers in a wide range of areas:
https://ai.google/tools/datasets/

Datasets & Tips:
- Public databases to compare performance and save time on your R&D.
- Save time with pre-trained models (Model Zoos) https://modelzoo.co/
- Your private dataset are he most accurate and expensive (time and resources)

Always study metadata formats before training any networks. Metadata are
the most important value added to a
carefully selected dataset.
There are commercially available
datasets that have been built with
extended metadata (automotive,
medical etc.)

Annotation Tools for Dataset
Image&Text annotation is the process of manually defining regions in an image/text and creating
structured descriptions of those regions (yaml, json etc.). Annotation is also used to classify any
type of signals that are represented as a image.

• LabelImg: is an open source graphical image annotation tool that you can use to label object
bounding boxes in images.

• PixelAnnotationTool: Software that allows you to annotate images in directories. The method is
pseudo manual because it uses the algorithm watershed marked of OpenCV.

• Anno-Mage: is an advanced open source image annotation tool that incorporates an existing state-
of-the-art object detection model (RetinaNet) to show suggestions of 80 common object classes
while annotation to reduce the amount of human labeling tasks.

• ImageTagger: ImageTagger is an open source online platform for collaborative image labeling.
• CVAT: Computer Vision Annotation Tool (CVAT) is a free interactive video and image annotation tool

for computer vision.
• Fast Annotation Tool: Fast Annotation Tool is an open source online platform for collaborative image

annotation for image classification, optical character reading, etc.
• Labelbox: Labelbox is a platform for data labeling, data management, and data science. Its features

include image annotation, bounding boxes, text classification, and more.
• Prodigy: Prodigy is an annotation tool for various machine learning models such as image

classification, entity recognition and intent detection. You can stream in your own data from live
APIs, update your model in real-time, and chain models together to build more complex systems.

• TrainingData.io: TrainingData.io is a medical image annotation tool for data labeling. It supports
DICOM image format for radiology AI

• Supervise.ly: provides services and image annotation and data management tool for machine
learning models. Also includes a self-hosted infrastructure for training your machine learning models
and continuing to improve them with human-in-the-loop.

https://lionbridge.ai/articles/image-annotation-tools-for-computer-vision/

PixelAnnotationTool

Anno-Mage

http://cocodataset.org/#format-datahttps://awesomeopensource.com/projects/annotation-tool

Workflow and “data splitting”: the 70-20-10 rule
Once the dataset is available the collection is splitted in three parts (equally randomized to include all categories):
• Training set : used to train the network
• Validation set : used to provide an unbiased evaluation of a model at the end of each epoch
• Test set : used for final model evaluation (accuracy)

Dataset partitions should never be mixed while training to avoid model evaluation bias on specific datapoints.

split Training
set

Test setValidate
set

Train Validate

10%20%

70%

Test

data
augmentation

RAW
 DATA

(sensors)

PREPRO
C.

(labeling)

DATASET
(data + labels)

NN
model
(empty)

NN
model
(trained)

hyperparameters
tuning by humans

Google Francois Chollet

2015 Developed at Google, joined with Keras (Francois Chollet) in 2019. Written in C++,Python. Provides
an high-level API to start writing NNs. Tensorflow allows the usage of CPU and GPU(CUDA). One of
the most used in both industry and academic world.

Facebook 2016 Developed at Facebook, based on C, Python. Allows CPU/GPU(CUDA) computation. Provide tensor
computation and uses dynamic computation graphs. Instead of predefined graphs with specific
functionalities, PyTorch provides a framework for us to build computational graphs as we go, and
even change them during runtime.

Berkley
university

2013 Developed by Berkley Univ AI Research team became the most used framework for data scientist.
Allows C, C++, Python, Matlab programming. Provides a large “Model Zoo” with pre-trained networks.
Open Source.

DeepLearning Frameworks
A Framework is a set of tools (user interface, code library, debugging/monitoring) that allows to build NN models more
easily and quickly, leveraging all the work from a wide community of data scientists around the world.
Frameworks do provide a specific API for multiple languages (python, C, C++) and also a collection of pre-built (and
sometimes pre-trained) models and optimized components.

Apache
Foundation

2015 Apache MXNet is a scalable framework used to train NN. MXNet supports multiple languages like C++,
Python, R, Julia, Perl etc. It is very scalable from multiple GPU to distributed servers infrastructures.
MXNet has been chosen by Amazon for its Web Services’ Deep Learning frameworks.

https://towardsdatascience.com/top-10-best-deep-learning-frameworks-in-2019-5ccb90ea6de

https://skymind.ai/wiki/comparison-frameworks-dl4j-tensorflow-pytorch

Arxiv.org Articles Online Job Listing

keras

Online Job Listing

DeepLearning Frameworks

Jeremy Howard 2017 Developed by Jeremy Howard it is a machine learning programming library built on top of PyTorch.
It is open source and the goal is to make the programming of NN extremely simple and intuitive. The
website https://www.fast.ai/about/ offers documentation and tutorials.

https://www.usfca.edu/data-institute/certificates/deep-learning-part-one
https://en.wikipedia.org/wiki/Jeremy_Howard_(entrepreneur)

Even More frameworks…

Darknet
(YoLo)

Microsoft Preferred Networks (JPN)
Dr. Kei Hiraki

DeepMind
(TensorFlow)

JAVA Lib
open source

https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software

Which one to start from? Research-vs-Industry (April 2019)

Jeff Hale : https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318

DeepLearnig Frameworks growing trend: 2019

On March, 9 2019 Andrej Karpathy
posted an analysis on A.i. Frameworks
trends..

“Unique mentions of deep learning
frameworks in arxiv papers (full text)
over time, based on 43K ML papers
over last 6 years. So far TF mentioned
in 14.3% of all papers, PyTorch 4.7%,
Keras 4.0%, Caffe 3.8%, Theano 2.3%,
Torch 1.5%, mxnet/chainer/cntk <1%.”

20
12

20
15

20
18

ht
tp

s:
//

m
ed

iu
m

.c
om

/@
ka

rp
at

hy
/a

-p
ee

k-
at

-t
re

nd
s-

in
-m

ac
hi

ne
-le

ar
ni

ng
-a

b8
a1

08
5a

10
6

ht
tp

s:
//

tw
itt

er
.c

om
/k

ar
pa

th
y/

st
at

us
/9

72
29

58
65

18
75

12
32

0/
ph

ot
o/

1

https://cs.stanford.edu/~karpathy/

Director of A.I.
and Autopilot Vision at Tesla

ht
tp

s:
//

m
ed

iu
m

.c
om

/@
ka

rp
at

hy
/a

-p
ee

k-
at

-t
re

nd
s-

in
-m

ac
hi

ne
-le

ar
ni

ng
-a

b8
a1

08
5a

10
6

ht
tp

s:
//

tw
itt

er
.c

om
/k

ar
pa

th
y/

st
at

us
/9

72
29

58
65

18
75

12
32

0/
ph

ot
o/

1

https://cs.stanford.edu/~karpathy/

DeepLearnig Frameworks growing trend: 2019

Director of A.I.
and Autopilot Vision at Tesla

2016 2017

On March, 9 2019 Andrej Karpathy
posted an analysis on A.i. Frameworks
trends..

“Unique mentions of deep learning
frameworks in arxiv papers (full text)
over time, based on 43K ML papers
over last 6 years. So far TF mentioned
in 14.3% of all papers, PyTorch 4.7%,
Keras 4.0%, Caffe 3.8%, Theano 2.3%,
Torch 1.5%, mxnet/chainer/cntk <1%.”

20
12

20
15

20
18

https://towardsdatascience.com/is-pytorch-catching-tensorflow-ca88f9128304
Jan 28, 2020

DeepLearnig Frameworks growing trend: 2020

Research / Academia Job search

Parameterized Learning for Data Classification

The goal is to define a mathematical model which will learn from a large number of input data but will be defined by a small
set of parameters regardless of the training size.
Once the data are consumed to computes the parameters the model will predict result on a new set of data without the need
of the whole data history. No matter how big is the size of training dataset the model will not change size.

The process of defining the parameters of the model requires the following components:

• Dataset: where each datapoint is composed by the “raw” input data and the associated class label (supervised learning)
• Scoring function: the mathematical function that allow to map “raw” data in a corresponding class label
• Loss function: the mathematical function that measures how accurate is the predicted class (result) in comparison to the

original correct class (ground-truth label). The higher is the accuracy of the prediction the lower is the loss function when
using the training dataset. The goal of the “training phase” is to minimize the loss function (with specific algorithms and
techniques) thereby increasing the classification accuracy

• Weights and Biases: collection of parameters which define the final model in its scoring function.

Image as a tensor

An image can be represented as a vector of pixels, i.e. a special case of
tensor. In this example a 28x28x1 (1ch,grayscale) pixels are aligned in a
28x28=784 size vector

NN
IN

(784x1)
OUT
N-Class

25

Neurons & Activation functions

Neurons and Activation Functions
Artificial Neural Networks have been inspired by biology and what we know about our brain functionality.
ANN are modeled on the brain but are not a representation of the brain itself.

Our brain is composed by 10E12 (ten billions) neurons, each one connected to about 10E3 (ten thousands) other
neurons. Each neuron does receive electrochemical inputs from other neurons. Only if the collection of all inputs is
sufficient to activate the neuron it will transmit the signal to other neurons on its axon.

The human neuron does perform a binary operation: it will trigger a signal or not, there is no signal modulation.

An artificial neuron is modeling the same behavior: computes a sum of weighted inputs and has a non linear activation
function which allows the neuron propagate the information.
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

x1

x2

xn

.

.

b(bias)

w1
w2

wn y=f(W.x + b)

(activation)

y

ref_docs\[NN]rosenblatt_perceptron_10.1.1.335.3398.pdf
Rosenblatt: The Perceptron (1958)

Artificial Neuron
The input vector x (collection of all the stimulus) is multiplied by a vector of
weights w. The weighted sum is then passed into the function activation which
will return a binary output. (Perceptron, Rosenblatt)

output = f (x1*w1 + x2*w2 + …. + xn*wn)

Activation Functions
Multiple activations functions have been proposed.

step: most intuitive but not differentiable

tanh: used until ‘90s

sigmoid: very important

b
(bias)

x1

x2

xn

.

.

w1
w2

wn y=f(W.x + b)

(activation)

http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1p1.html

Sigmoid characteristics:
• Continuous and differentiable everywhere
• Symmetric on the output axis
• Asymptotically approaches output values (0,1)

Other variants have been introduced to simplify computation
while maintaining the characteristics of the sigmoid function.

Rectified Linear Unit (ReLU) is part of the ramp function family.
It has been proved to perform better than sigmoid and tanh,
It is the most frequent activation function used in today’s CNNs.

Leaky ReLU is a variant of ReLU which allows to compute the gradient also
when the neuron is not firing

Exponential Linear Unit (ELU) was introduced in 2015 to improve the
classification results when using ReLU: https://arxiv.org/abs/1511.07289

ReLU6 is a “capped” version of ReLU and was empirically tuned to better
perform on sparse matrix. It has been used in recent CNN (MobileNet) with
good results
https://www.tensorflow.org/api_docs/python/tf/nn/relu6
http://www.cs.utoronto.ca/~kriz/conv-cifar10-aug2010.pdf https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

https://arxiv.org/pdf/1803.08375.pdf

Perceptron and Delta Rule
Rosenblatt defined the perceptron as a system that learns from vectors of features (x) and labeled examples (ground-
truth) mapping the input values into the corresponding output class labels.

The simplest architecture of a perceptron is composed
by only one layer with one neuron.

The training of the perceptron is done by approximations
based on all the input data points xi and by computing a
delta of the error between the prediction and the
ground-truth label (expected result). The pseudo-algorithm is:

1)Initialize W with small random values (uniform distribution)

2)While (convergence==False)
a)Loop over each feature vector Xj and

label dj in the whole training dataset D

b)Given feature xj, compute the output yj=f(W(t) * xj)

c)Update W with the delta rule:
wi(t+1) = wi(t) + alpha * (dj-yj)xj,i (i=0..n)

w1

w2

wn

x1

x2

xn

1
wbias b

(bias)

x1

x2

xn

.

.

w1
w2

wn y=f(W.x + b)

(activation)

http://www.cs.stir.ac.uk/courses/ITNP4B/lectures/kms/2-Perceptrons.pdf

http://www.di.unito.it/~cancelli/retineu11_12/FNN.pdf

Perceptron XOR problem: cannot classify
dataset that are nonlinearly separable.

30

Convolutions & Kernels

Convolutional Networks
CNN are a special type of NN which have been widely used in the last decade thanks to its
performance in learning features and high accuracy on data classification.

CNN have peculiar architectures which are different from a FC network and uses different operators,
in particular the convolution operator. CNN also have two characteristics which make them powerful:

Local invariance: allows to identify a pattern (an object) inside the input signal (an image) regardless of where the
pattern is located inside the signal itself.

Compositionality: each layer is building “knowledge” on top of the previous layers and the composition can be altered
by specific operators. Features extracted from a high level analysis can be combined with features from a low level
analysis (not a sequential architecture).

Convolution is the most important function used to build CNNs.
- Uses one or more filters (kernels) to extract features from the input data (images)
- Images and kernels are both matrix, convolution leverages the dot product.

http://cs231n.github.io/convolutional-networks/

Regular Neural Nets don’t scale well to full images. In CIFAR-10, images are 32x32x3 (32 wide,
32 high, 3 color channels), a single fully-connected neuron in a first hidden layer of a regular
Neural Network would have 32*32*3 = 3072 weights. What if we have larger images?

32x32x3=3072

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input Feature Map (FM)
01 1
10 0
01 1

kernel

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

Feature Map (FM)

5/9

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

Feature Map (FM)

5/9 4/9

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9

Feature Map (FM)

5/9 4/9 4/9

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9

Feature Map (FM)

5/9 4/9 4/9 3/9

FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9

Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9

Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

(…)

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9

Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

(…)

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9

Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

(…)

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input
FM(1,1) = 1/9*(1*1+0*1+1*1+0*0+1*1+0*1+1*0+0*0+1*1)=5/9

FM(1,2) = 1/9*(1*1+0*1+1*0+0*1+1*1+0*1+1*0+0*1+1*1)=4/9

FM(1,3) = 1/9*(1*1+0*0+1*0+0*1+1*1+0*0+1*1+0*1+1*1)=4/9

Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

FM(1,3) = 1/9*(1*0+0*0+1*0+0*1+1*0+0*1+1*1+0*1+1*1)=3/9
FM(2,1) = 1/9*(1*0+0*1+1*1+0*0+1*0+0*1+1*0+0*0+1*1)=1/9

(…)

with signal S and kernel K :

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

00 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

00 0 0 0 0 00

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

00 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

00 0 0 0 0 00

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

00 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

00 0 0 0 0 00

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

00 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

00 0 0 0 0 00

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

01 1
10 0
01 1

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input Feature Map (FM)

5/9 4/9

2/9

4/9 3/9

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

00 0 0 0 0
0
0
0
0
0
0

0
0
0
0
0
0
0

0

00 0 0 0 0 00

Depending on kernel size we need to apply padding
(normally zero-filled) to maintain the same size for
input and feature map.

https://glassboxmedicine.com/2019/07/26/convolution-vs-cross-correlation/Rachel Draelos

Convolution as matrix multiplication (el.wise) and sum
Given an input signal (image, matrix) we have a smaller filter (kernel, matrix). The filter will covers the whole input signal
and computes the element-wise matrix multiplication and sum. Each result of the kernel computation generates one
value on the output feature map.

https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807
https://blogs.nvidia.com/blog/2018/09/05/whats-the-difference-between-a-cnn-and-an-rnn/

Convolving a smaller filter with a larger signal
is related to the concept of Receptive Field of
a neuron. The amount of data that are used
to compute a specific result in the feature map
is a subset of the entire input datapoint.

48

CNN building blocks

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input

R
G

B

224px

224px

(7x7x3)

#1

#2

#K

.

.

Kernels have the same depth of the input data. Usually we describe input and
kernels in terms of Volume size. Each kernel of the CONV layer does generate a
2-dim activation map. All the activations maps (K, one for each kernel)
are stacked into a volume of MxNxK (M,N depends on kernel stride & padding)

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input

R
G

B

224px

224px

(7x7x3)

#1

#2

#K

.

.

CONV
R

d=0

G
d=1

B
d=2

input n=1

d=0

d=1

d=2

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input

R
G

B

224px

224px

(7x7x3)

#1

#2

#K

.

.

CONV
R

d=0

G
d=1

B
d=2

input n=1

d=0

d=1

d=2

Output

SUM

#1

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input

R
G

B

224px

224px

(7x7x3)

#1

#2

#K

.

.

CONV

R
d=0

G
d=1

B
d=2

input n=2

d=0

d=1

d=2

Output

SUM

#2

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input

R
G

B

224px

224px

(7x7x3)

#1

#2

#K

.

.

CONV

R
d=0

G
d=1

B
d=2

input n=K

d=0

d=1

d=2

Output

SUM
#K

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

input

R
G

B

224px

224px

(7x7x3)

#1

#2

#K

.

.

CONV

R
d=0

G
d=1

B
d=2

input n=K

d=0

d=1

d=2

Output

SUM
#K

#5 #12
#5

#12

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

IN: volume of size W1×H1×D1
Hyperparameters:
1. Number of filters K,
2. their spatial extent F,
3. the stride S,
4. the amount of zero padding P

input

R
G

B

224px

224px

(7x7x3)

#1

#2

#K

.

.

CONV

224

224

3

7x7x3
S=1

224

224

K
(num of filters)

OUT: volume of size W2×H2×D2
W2=(W1−F+2P)/S+1=(224-7+2*3)/1+1

H2=(H1−F+2P)/S+1=(224-7+2*3)/1+1

D2=K

Stride (S): the amount of “sliding”
of the kernel between each
computation.

Useful to change the WxH of the
output volume.

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input

01 1
10 0
01 1

Stride = 1, no pad
Feature Map (FM)

Feature Map (FM)

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input

01 1
10 0
01 1

Stride = 1, no pad

Feature Map (FM)

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input

01 1
10 0
01 1

Stride = 1, no pad

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input

01 1
10 0
01 1

Stride = 2, no pad
Feature Map (FM)

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input

01 1
10 0
01 1

Stride = 2, no pad
Feature Map (FM)

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input

01 1
10 0
01 1

Stride = 2, no pad
Feature Map (FM)

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

11 1 0 0
10 1 1 0
00 1 1 1
00 1 1 0
10 1 0 0

0
1
1
0
0

10 0 1 0 1

input

01 1
10 0
01 1

Stride = 2, no pad
Feature Map (FM)

CNN building blocks: CONV (convolutional) layer
The convolutional layer is the core building block for deep learning. It consists of a set of K kernels (learned during
training) with specific width, height, depth, stride. Usually small in size they extend for the whole input volume
(channels num)

227

227

3
#96 kernels, no padding, 11x11, s=4

55

55

96

#128 kernels, no padding, 11x11, s=8

227

227

28

28
128

The output volume has one W2xH2 feature map for each of the K kernels of the CNN architecture.
Each kernel coefficients are learned by the CNN during the training over the given dataset.
Each feature map will “learn” one specific feature of the class we want to identify.

Input & Output data are considered as “volumes” of data.

#1
#2
#3
#4
#5
#6
….
#K=96

#1
#2
#3
#4
#5
#6
….
#K=128

CNN building blocks: ACT (activation) layer
Activation layers are needed to apply a non-linear activation function to all the values of a data volume.
Input and output volume sizes do not change.

010 0 30

2120 31 0

7070 0 11

00 1 1

-110 -4 30

2120 31 -1

7070 -1 11

-4-9 1 1

CONV RELU

CNN building blocks: POOL (pooling) layer
The main purpose of a pooling layer is to reduce (downsample) the size of the input data volume (alternative to a
stride >2 for CONV). Pooling does reduce the complexity of a model while controlling data overfitting.
Micro-architecture is related to the math operator while macro-architecture is related to the receptive field and
stride. The most common is MAX POOL.

-110 -4 30

2120 31 -1

7070 -1 11

-4-9 1 1

INPUT

F=2x2
S=1

MAXPOOL

3121 31

7070 31

7070 11

-110 -4 30

2120 31 -1

7070 -1 11

-4-9 1 1

INPUT

F=2x2
S=2

MAXPOOL

3121

1170

Wout = ((Win-F)/S)+1

Hout = ((Hin-F)/S)+1

Dout = Din

Wout = Win

Hout = Hin

Dout = Din

max(F)
max(F)

CNN building blocks: ACT (activation) layer
Activation layers are needed to apply a non-linear activation function to all the values of a data volume.
Input and output volume sizes do not change.

-110 -4 30

2120 31 -1

7070 -1 11

-4-9 1 1

INPUT

F=2x2
S=1

MAXPOOL

3121 31

7070 31

7070 11

-110 -4 30

2120 31 -1

7070 -1 11

-4-9 1 1

INPUT

F=2x2
S=2

MAXPOOL

3121

1170

Wout = ((Win-F)/S)+1

Hout = ((Hin-F)/S)+1

Dout = Din

Wout = Win

Hout = Hin

Dout = Din

max(F) max(F)

CNN building blocks: POOL (pooling) layer
The main purpose of a pooling layer is to reduce (downsample) the size of the input data volume (alternative to a
stride >2 for CONV). Pooling does reduce the complexity of a model while controlling data overfitting.
Micro-architecture is related to the math operator while macro-architecture is related to the receptive field and
stride. The most common is MAX POOL.

010 0 30

2120 31 0

7070 0 11

00 1 1

-110 -4 30

2120 31 -1

7070 -1 11

-4-9 1 1

CONV RELU

CNN building blocks: FC (fully connecter) layer

CNN building blocks: BN (batch normalization) layer
It was introduced in 2015 to have a layer which does a normalization of all the signals (activations) from a previous
input volume and passing the result to the next layer. Extremely helpful to make the training more stable, i.e. robust
to the intrinsic variance of input data. Penalty on computation. It is placed after an activation layer.

This is a classical “feedforward” network and these layers are always used at the end of a CNN to classify the results
from the previous (feature extraction) layers. It is common to place them before a SOFTMAX classifier to understand
the result of data classification. This often requires “flattening” the last layer of the feature extraction part of the CNN

010 0 30

2120 31 0

7070 0 11

00 1 1

-110 -4 30

2120 31 -1

7070 -1 11

-4-9 1 1

CONV RELU FLATTEN
10

0

0

1

… … … …

FC1 FC2 S.MAX

010 0 30

2120 31 0

7070 0 11

00 1 1

CONV=>RELU =>BN=>
-0.7-0.3 -0.7 0.6

0.150.6 0.2 -0.7

2.32.3 -0.7 0.2

-0.7-0.7 -0.6 -0.6

CNN building blocks: DO (dropout) layer
Dropout is a form of regularization to prevent overfitting to the expense
of testing accuracy. For each batch of training dataset it will disconnect
(randomly with probability P) the input of a preceding layer to the next
layer in the CNN architecture. By altering the network architecture we
make sure that there is no “preferred path” between nodes to produce
a specific result. It is mostly used between FC layers, for example:

CONV=>RELU=>POOL=>FC=>DO=>FC=>DO=>FC=>SOFTMAX http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

CNN and Translation, Rotation, Scaling
When we use a CNN over a specific image (signal) is the result affected by an image
geometrical transformation? In general CNNs are invariant only to translation thanks
to the convolution properties.

CNNs are:
Rotation invariant: NO
Scaling invariant: NO
Translation invariant: YES

For this reason it is important to train network with data_augmentation, using
multiple (altered) copies of the same input, so that the inner kernels can learn to
select features even when they are different from the most frequent use case. Using
data augmentation like scaling, cropping, skew, rotation, noise we will reduce the
training accuracy (and increase training time..) but we will obtain a more robust
model, capable of generalize better for all the use cases.
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNNs can be:
Rotation invariant: YES
Scaling invariant: YES
Translation invariant: YES

data augmentation
during training

68

CNN: LeNet, AlexNet and VGGNet

LeNet (1998)
Fundamental architecture introduced by Yann LeCun in 1998 with the paper “Gradient-Based Learning Applied to
Document Recognition”. http://yann.lecun.com/exdb/lenet/index.html
The original purpose was OCR for handwritten numbers.

LeNet-5: today one of the simplest networks to learn how to implement CNN, often called the “Hello World” of CNN.

Footprint: The original LeNet-5 has ~60.000 parameters (this is considered very small)

It is a sequential CNN, all the data are processed layer-by-layer on single dataflow until the final classification section
at the end.

Input NN Feature Extraction NN Classification

https://www.youtube.com/watch?v=FwFduRA_L6Q
1993: Demo of "LeNet 1", the first convolutional
network that could recognize handwritten digits with
good speed and accuracy.

LeNet on MNIST
To implement LeNet for MNIST we are going to modify the network a bit. Input size is 28x28 pixels and activation is ReLu

Layer Output
Size px

Kernel

INPUT 28x28x1

CONV 28x28x20 5x5x1, k=20

ACT(ReLu) 28x28x20

POOL 14x14x20 maxpool 2x2

CONV 14x14x50 5x5x20, k=50

ACT(ReLu) 14x14x50

POOL 7x7x50 maxpool 2x2

FC 500 flattening

ACT(ReLu) 500

FC 10 SoftMax

IN=>CONV=>ReLu=>POOL=>CONV=>ReLu=>POOL=>FC=>ReLu=>FC=>softmax

ref_docs\[CNN]lecun_1998.pdf
Gradient-Based Learning Applied to Document Recognition

LeNet on MNIST
To implement LeNet for MNIST we are going to modify the network a bit. Input size is 28x28 pixels and activation is ReLu

Layer Output
Size px

Kernel

INPUT 28x28x1

CONV 28x28x20 5x5x1, k=20

ACT(ReLu) 28x28x20

POOL 14x14x20 maxpool 2x2

CONV 14x14x50 5x5x20, k=50

ACT(ReLu) 14x14x50

POOL 7x7x50 maxpool 2x2

FC 500 flattening

ACT(ReLu) 500

FC 10 SoftMax

CONV

POOL

IN=>CONV=>ReLu=>POOL=>CONV=>ReLu=>POOL=>FC=>ReLu=>FC=>softmax

CONV

flatten

POOL

FC1 softmax

Since the kernel size is always few pixels wide as a consequence we have that early layers will learn “tiny details” while
deeper layers will learn “macro details”. The more we go deeper the more we add kernels. This is a common strategy
for sequential CNNs.

LeNet on MNIST
Keras implementation as a class is very compact. Also Keras has already MNIST as an “embedded” database.

Layer Output
Size px

Kernel

INPUT 28x28x1

CONV 28x28x20 5x5x1, k=20

ACT(ReLu) 28x28x20

POOL 14x14x20 maxpool 2x2

CONV 14x14x50 5x5x20, k=50

ACT(ReLu) 14x14x50

POOL 7x7x50 maxpool 2x2

FC 500 flattening

ACT(ReLu) 500

FC 10 SoftMax

Once the network class is defined we only have three steps to follow: build&compile, fit(i.e. train), predict(i.e. evaluate).

#1

#2

#3

Note: training is done on the training dataset
Note: test dataset is used also for validation
(but is never used for training…)

LeNet on MNIST
Keras implementation as a class is very compact. Also Keras has already MNIST as an “embedded” database.

digit precision recall f1-score support

0 0.99 0.99 0.99 980
1 1.00 0.99 0.99 1135
2 0.98 0.99 0.99 1032
3 0.99 0.99 0.99 1010
4 0.99 0.99 0.99 982
5 0.99 0.99 0.99 892
6 0.99 0.99 0.99 958
7 0.99 0.98 0.99 1028
8 0.97 0.99 0.98 974
9 0.99 0.97 0.98 1009

accuracy 0.99 10000

NOTE: MNIST is an “easy” dataset for todays networks (high risk of overfitting)

See also ConvNetJS example:
https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

AlexNET (2012)
Developed at the Univ. of Toronto. Was specifically created to compete at the ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012). It won the competition thanks to the “SuperVision” team.

ImageNet Classification with Deep Convolutional Neural Networks
ref_docs\[CNN]AlexNet.pdf

SuperVision

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton
University of Toronto
Our model is a large, deep convolutional neural network trained
on raw RGB pixel values. The neural network, which has 60 million
parameters and 650,000 neurons, consists of five convolutional
layers, some of which are followed by max-pooling layers, and
three globally-connected layers with a final 1000-way softmax. It
was trained on two NVIDIA GPUs for about a week. To make
training faster, we used non-saturating neurons and a very
efficient GPU implementation of convolutional nets. To reduce
overfitting in the globally-connected layers we employed hidden-
unit "dropout", a recently-developed regularization method that
proved to be very effective.

http://image-net.org/challenges/LSVRC/2012/results.html#t1

n.2 GPUs
1 week

The model follows the footsteps of LeNet with a larger
footprint.

The success of AlexNet was a turning point for the
computer vision community which started to work heavily
on new optimized models of CNNs

AlexNET (2012)

Layer Output Size
px

Kernel

INPUT 227x227x3 (NOTE: 224 was a typo)

CONV 55x55x96 11x11 S=4 K=96

ReLu 55x55x96

BN 55x55x96

POOL 27x27x96 3x3, S=2

DROPOUT 27x27x96 0.25

CONV 27x27x256 5x5, S=1 K=256

ReLu 27x27x256

BN 27x27x256

POOL 13x13x256 3x3, S=2

DROPOUT 13x13x256 0.25

Layer Output Size
px

Kernel

FC 4096

ReLu 4096

BN 4096

DROPOUT 4096

FC 4096

ReLu 4096

BN 4096

DROPOUT 4096

FC 1000 SoftMax

Layer Output Size
px

Kernel

CONV 13x13x384 3x3, S=1 K=384

ReLu 13x13x384

BN 13x13x384

CONV 13x13x384 3x3, S=1 K=384

ReLu 13x13x384

BN 13x13x384

CONV 13x13x256 3x3, S=1 K=256

ReLu 13x13x256

BN 13x13x256

POOL 6x6x256 3x3, S=2

DROPOUT 6x6x256

Se
ct

io
n-

A

Se
ct

io
n-

B

Se
ct

io
n-

C

A B C

CNN Complexity:
- 60M parameters
- 5 CONV layers
- 3 FC layers

AlexNET (modified)
Modified (sub-optimal) network to show training on CIFAR-10 on the local CPU (no GPU)

precision recall f1-score support
airplane 0.82 0.82 0.82 1000
automobile 0.89 0.84 0.87 1000
bird 0.73 0.63 0.67 1000
cat 0.56 0.59 0.57 1000
deer 0.70 0.74 0.72 1000
dog 0.61 0.71 0.66 1000
frog 0.79 0.83 0.81 1000
horse 0.84 0.77 0.80 1000
ship 0.88 0.85 0.87 1000
truck 0.85 0.82 0.83 1000
accuracy 0.76 10000

AlexNET (modified)
Modified (sub-optimal) network to show training on CIFAR-10 on the local CPU (no GPU)

precision recall f1-score support
airplane 0.82 0.82 0.82 1000
automobile 0.89 0.84 0.87 1000
bird 0.73 0.63 0.67 1000
cat 0.56 0.59 0.57 1000
deer 0.70 0.74 0.72 1000
dog 0.61 0.71 0.66 1000
frog 0.79 0.83 0.81 1000
horse 0.84 0.77 0.80 1000
ship 0.88 0.85 0.87 1000
truck 0.85 0.82 0.83 1000
accuracy 0.76 10000

OVERFITTING

val_acc

VGG16

VGGNet (2014)
Visual Geometry Group, Department of Engineering Science, University of Oxford.

Introduced in 2014 was the first architecture to improve the performance for large scale image recognition.
While previous networks used a variety of kernel sizes VGG uses small 3x3 kernels across the whole network.
In addition it does use multiple convolutional layers “stacked” to improve the feature extraction.

This network has a large number of parameters (VGG16 ~138M, VGG19 ~144M) and requires a lot of computational
power. The VGG11/VGG16/VGG19 refers to the number of layers (CONV+FC)

ref_docs\[CNN]VGGNet_1409.1556.pdf
Very Deep Convolutional Networks for Large-Scale Image Recognition

VGGNet (modified)
The most important feature of VGGNet family are:
- 3x3 convolutions everywhere
- Multiple CONV=>RELU layers stacked before a POOL.

We use a simplified version to speed up computation
on CIFAR-10 dataset (note: still very slow on CPU)

INPUT
CONV-11

CONV-12
POOL-1

CONV-21

CONV-22
POOL-2

CONV-11

CONV-12

POOL-1

CONV-11

CONV-12

POOL-2

Layer Output Size
px

Kernel

INPUT 32x32x3

CONV 32x32x32 3x3x3, K=32

ReLu 32x32x32

BN 32x32x32

CONV 32x32x32 3x3x3, K=32

ReLu 32x32x32

BN 32x32x32

POOL 16x16x32 2x2

DROPOUT 16x16x64 0.25

CONV 16x16x64 3x3x3, K=64

ReLu 16x16x64

BN 16x16x64

CONV 16x16x64 3x3x3, K=64

ReLu 16x16x64

BN 16x16x64

POOL 8x8x64 2x2

DROPOUT 8x8x64 0.25

FC 512

ReLu 512

BN 512

DROPOUT 512 0.5

FC 10 SoftMax

VGGNet (modified) Layer Output Size
px

Kernel

INPUT 32x32x3

CONV 32x32x32 3x3x3, K=32

ReLu 32x32x32

BN 32x32x32

CONV 32x32x32 3x3x3, K=32

ReLu 32x32x32

BN 32x32x32

POOL 16x16x32 2x2

DROPOUT 16x16x64 0.25

CONV 16x16x64 3x3x3, K=64

ReLu 16x16x64

BN 16x16x64

CONV 16x16x64 3x3x3, K=64

ReLu 16x16x64

BN 16x16x64

POOL 8x8x64 2x2

DROPOUT 8x8x64 0.25

FC 512

ReLu 512

BN 512

DROPOUT 512 0.5

FC 10 SoftMax

VGGNet on CIFAR-10

precision recall f1-score support

airplane 0.87 0.81 0.84 1000
automobile 0.93 0.90 0.92 1000

bird 0.78 0.72 0.75 1000
cat 0.67 0.65 0.66 1000
deer 0.76 0.86 0.80 1000
dog 0.73 0.77 0.75 1000
frog 0.82 0.89 0.86 1000
horse 0.91 0.83 0.87 1000
ship 0.91 0.90 0.90 1000
truck 0.87 0.90 0.89 1000

accuracy 0.82 10000

VGGNet on ILSVRC2014
Team VGG was the winner of the ILSVRC (ImageNet Large Scale Visual Recognition Competition) 2014 in the
classification & localization (task 2a)

https://medium.com/coinmonks/paper-review-of-vggnet-1st-runner-up-of-ilsvlc-2014-image-classification-d02355543a11

VGG

Karen Simonyan, University of Oxford
Andrew Zisserman, University of Oxford
We have used three ConvNet architectures with the following
weight layer configurations:
1. ten 3x3 convolutional layers, three 1x1 convolutional layers,

and three fully-connected layers - 16 weight layers in total;
2. thirteen 3x3 convolutional layers and three fully-connected

layers - 16 weight layers in total;
3. sixteen 3x3 convolutional layers and three fully-connected

layers - 19 weight layers in total.
{…}
Our implementation is derived from the Caffe toolbox, but
contains a number of significant modifications, including parallel
training on multiple GPUs installed in a single system. Training a
single ConvNet on 4 NVIDIA Titan GPUs took from 2 to 3 weeks
(depending on the ConvNet configuration).

http://www.image-net.org/challenges/LSVRC/2014/results

n.4 GPUs
n.3 weeks

83

CNN: InceptionNet and ResNet

GoogLeNet a.k.a InceptionNet (2014)
Google research team started the idea of building networks with multi-level feature extraction.
For this purpose a special “core module” was created.

The Inception module is an example of a “graph” network which is
not “sequential” anymore since multiple path are taken to compute
the module output. This is also called Network-in-Network architecture.

We have four branches:
- 1st branch: a series of 1x1 convolutions to learn local features (think FC)
- 2nd branch: reduce the volume with 1x1 conv (num3x3Reduce conv)

and expand with 3x3 conv (num3x3 conv)
- 3rd branch: same reduce&expand, but with a 5x5 conv

(num5x5Reduce and num5x5)
- 4th branch: pool projection branch. A MaxPool reduction with a 1x1 conv.

(NOTE: it was added for historical/empirical reasons since MaxPool was very common…)

A new tool: DepthConcat
the volumes from all the branches are
“concatenated” on the depth axis to form the output volume result.

https://www.coursera.org/lecture/convolutional-neural-networks/inception-network-motivation-5WIZm

GoogLeNet a.k.a InceptionNet (2014)
The network used a CNN inspired by LeNet but implemented a novel, the inception module.
This module is based on several very small convolutions in order to drastically reduce the number of parameters.
Their architecture consisted of a 22 layer deep CNN but reduced the number of parameters from 60 million
(AlexNet) to 4 million.

https://sites.google.com/site/aidysft/objectdetection/recent-list-items

GoogLeNet a.k.a InceptionNet (2014)
The network used a CNN inspired by LeNet but implemented a novel, the inception module.
This module is based on several very small convolutions in order to drastically reduce the number of parameters.
Their architecture consisted of a 22 layer deep CNN but reduced the number of parameters from 60 million
(AlexNet) to 4 million.

https://sites.google.com/site/aidysft/objectdetection/recent-list-items

#1 #2 #3

#4 #5 #6 #7 #8 #9
#10 #11

#12 #13 #14
#15 #16 #17 #18 #19 #20 #21

#22

Note: count layers only if they contains weights…

GoogLeNet a.k.a InceptionNet (2014)
The network used a CNN inspired by LeNet but implemented a novel, the inception module.
This module is based on several very small convolutions in order to drastically reduce the number of parameters.
Their architecture consisted of a 22 layer deep CNN but reduced the number of parameters from 60 million
(AlexNet) to 4 million.

These are intermediate results…

training time: few days by Andrej Karpathy …

https://sites.google.com/site/aidysft/objectdetection/recent-list-items

GoogLeNet (modified)
CO

N
V

BN Re
Lu

conv_module

prev
act

c.m
.

1x1
c.m
3x3

D
epth

concat

Inception_module

prev
act

D
epth

concat

downsample_module

c.m
.

S>1
PO

O
L

CO
N

V

PO
O

L

FC

IN
CP

T
IN

CP
T

IN
CP

T
IN

CP
T

IN
CP

T
IN

CP
T

D
O

W
N

IN
CP

T
IN

CP
T

D
O

W
N

GoogLeNet (modified)

precision recall f1-score support
airplane 0.92 0.86 0.89 1000
automobile 0.94 0.96 0.95 1000
bird 0.75 0.88 0.81 1000
cat 0.66 0.88 0.75 1000
deer 0.97 0.70 0.81 1000
dog 0.85 0.80 0.83 1000
frog 0.98 0.79 0.88 1000
horse 0.91 0.92 0.91 1000
ship 0.90 0.96 0.93 1000
truck 0.94 0.93 0.93 1000

accuracy 0.87 10000

CO
N

V

PO
O

L

FC

IN
CP

T
IN

CP
T

IN
CP

T
IN

CP
T

IN
CP

T
IN

CP
T

D
O

W
N

IN
CP

T
IN

CP
T

D
O

W
N

GoogLeNet a.k.a InceptionNet (2014)
Team Google was the winner of the ILSVRC (ImageNet Large Scale Visual Recognition Competition) 2014 in the
Object Detection (task 1b)

GoogLeNet

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Drago Anguelov, Dumitru
Erhan, Andrew Rabinovich
We explore an improved convolutional neural network
architecture which combines the multi-scale idea with
intuitions gained from the Hebbian principle. Additional
dimension reduction layers based on embedding learning
intuition allow us to increase both the depth and the
width of the network significantly without incurring
significant computational overhead. Combining these
ideas allow for increasing the number of parameters in
convolutional layers significantly while cutting the total
number of parameters and resulting in improved
generalization. Various incarnations of this architecture
are trained for and applied at various scales and the
resulting scores are averaged for each image.

http://www.image-net.org/challenges/LSVRC/2014/results

Going deeper with convolutions
ref_docs\[CNN]Inception-v1_1409.4842.pdf

Rethinking the Inception Architecture for Computer Vision
ref_docs\[CNN]Inception-v2_1512.00567.pdf

less parameters

GoogLeNet becomes InceptionNet (2014)
CNN names are often selected with references to their
main functionality.

Originally Google’s research team decided to
make a reference to the seminal (goog)LeNet arch,
but in the original paper for Inception Net they
referred to the movie as follow:

In this paper, we will focus on an efficient deep neural network
architecture for computer vision, codenamed Inception, which derives
its name from the Network in network paper by Lin et al [12] in
conjunction with the famous “we need to go deeper” internet meme
[1]. In our case, the word “deep” is used in two different meanings:
first of all, in the sense that we introduce a new level of organization in
the form of the “Inception module” and also in the more direct sense of
increased network depth.

Going deeper with convolutions
ref_docs\[CNN]Inception-v1_1409.4842.pdf

CONV, 3x3, 64

CONV, 3x3, 64

Original ResNet “residual block”

ResNet(2015) a.k.a ResidualNet
Very deep networks with a sequential model suffer from one problem: vanishing gradient.
(https://en.wikipedia.org/wiki/Vanishing_gradient_problem). Backpropagation di SGD becomes more and more inaccurate and adding
layers does not improve network performance.

ResNet solves this problem with an “identity mapping” layer (also called “linear shortcut”) which takes part of the
previous activation layer and joins with the current layer right before the final ACT/ReLu layer.

This core architecture is than stacked over and over to reach very deep networks,
ResNet50 is a de-facto reference network for benchmarking performance on CNN.

ResNet advantage: smaller model footprint
The are only two POOL layers (at the beginning and at the end) but the network
volume is controlled by the usage of convolutions with stride>1 instead of pooling.

Variant “Bottleneck”: improvement to the original block that leverages two CONV
layers with a smaller volume (1/4 of the input depth) and a one final CONV layer with
the same depth as the input.

Variant: “Bottleneck” residual block

ref_docs\[CNN]resnet_1512.03385.pdf
Deep Residual Learning for Image Recognition

ref_docs\[CNN]resnet_modified_1603.05027.pdf
Identity Mappings in Deep Residual Networks

ResNet (modified)

(..) (..) (..)
CIFAR-10
32x32x3

n.9 layers
32x32x64 CONV n.9 layers

16x16x128 CONV
n.9 layers
8x8x256 CONV

stage#1 stage#2 stage#3

FC (softmax)
10 categories

Re
sN

et
_b

ot
tle

ne
ck

_b
lo

ck

Re
sN

et
_b

ui
ld

_l
oo

p

ResNet(modified)

(..) (..) (..)
CIFAR-10
32x32x3

n.9 layers
32x32x64 CONV n.9 layers

16x16x128 CONV
n.9 layers
8x8x256 CONV

stage#1 stage#2 stage#3

FC (softmax)
10 categories

precision recall f1-score support
airplane 0.92 0.89 0.91 1000
automobile 0.92 0.97 0.94 1000
bird 0.89 0.88 0.88 1000
cat 0.83 0.80 0.81 1000
deer 0.88 0.91 0.90 1000
dog 0.92 0.79 0.85 1000
frog 0.91 0.94 0.92 1000
horse 0.89 0.95 0.92 1000
ship 0.91 0.96 0.93 1000
truck 0.93 0.92 0.93 1000

accuracy 0.90 10000

ResNet(2015)

MSRA (ResNet)

Kaiming He, Xiangyu Zhang, Shaoqing Ren
Jian Sun, Microsoft Research
We train neural networks with depth of over 150 layers. We propose a "deep
residual learning" framework [a] that eases the optimization and convergence
of extremely deep networks. Our "deep residual nets" enjoy accuracy gains
when the networks are substantially deeper than those used previously. Such
accuracy gains are not witnessed for many common networks when going
deeper.

Our localization and detection systems are based on deep residual nets and
the "Faster R-CNN" system in our NIPS paper [b]. The extremely deep
representations generalize well, and greatly improve the results of the Faster
R-CNN system. Furthermore, we show that the region proposal network
(RPN) in [b] is a generic framework and performs excellent for localization.

http://image-net.org/challenges/LSVRC/2015/results

Was ResNet Successful?

• Won 1st place in the ILSVRC 2015 classification
competition with top-5 error rate of 3.57%

• Won the 1st place in ILSVRC and COCO 2015
competition in ImageNet Detection, ImageNet
localization, Coco detection and Coco segmentation.

• Replacing VGG-16 layers in Faster R-CNN with ResNet-
101. They observed a relative improvements of 28%

• Efficiently trained networks with 100 layers and 1000
layers also

https://towardsdatascience.com/review-resnet-winner-of-
ilsvrc-2015-image-classification-localization-detection-
e39402bfa5d8

https://medium.com/@14prakash/understanding-and-
implementing-architectures-of-resnet-and-resnext-for-
state-of-the-art-image-cf51669e1624

96

CNN: classification & object detection

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

Obj Detect
(HOG+SVM)

obj yes/no = NO

Obj Detect
(HOG+SVM)

obj yes/no = NO

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

Obj Detect
(HOG+SVM)

obj yes/no = NO

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

Obj Detect
(HOG+SVM)

obj yes/no = NO

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

Obj Detect
(HOG+SVM)

obj yes/no = YES

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

Obj Detect
(HOG+SVM)

obj yes/no = YES

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

Obj Detect
(HOG+SVM)

obj yes/no = YES

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

Obj Detect
(HOG+SVM)

obj yes/no = YES
Lower resolution for bigger objects

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

Obj Detect
(HOG+SVM)

obj yes/no = YES
Lower resolution for bigger objects

OUT NMS

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

These methods have a strong penalty on performance because we have to run the same
algorithm multiple times on different overlapping sub-pictures (loop of detections)

Computationally not efficient

Classical object detection algorithms

Before CNN became popular few algorithms were common for feature detection, for example
“histogram of oriented gradients (HOG)” used with “scalar vector machine (SVM)” for classification.
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://www.learnopencv.com/histogram-of-oriented-gradients/

See also “Haar Cascade Classifier”
http://www.willberger.org/cascade-haar-explained/

These algorithms are all based on “sliding window” and “image pyramid”.

Given an input image we extract multiple “sliding” sub-pictures and we perform image classification based on the features extracted
from it. Multi-resolution (image pyramid) is needed to support multiple size detection and it is a penalty for the complexity of the
whole algorithm.

CNN: Object Localization
CNN like ResNet will classify “the whole picture” as if it does contain only one object (a cat or a dog). This is because we have
trained the network to output only a label which is a “list of features” related to a “list of class”

convnet
CIFAR-10

1x1x10

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

0.1
0.9
0.1
0.2
0.1
0.3
0.2
0.2
0.1
0.5

y=
y

A better labeling..
Using a better labeling we can “add” features to our classification, for example localization of the object as a bounding box. Bounding
box is identified by the absolute coordinates of origin, width, height. We also code the probability of presence P for the identified
class. (note: coordinates are normalized)

convnet
CIFAR-10

x

y

(0,0)

(bx,by)

P
bx
by
bw
bh
c1
c2
c3
...
c10

y=

bh

bw
1x1x15

y

1
bx
by
bw
bh
c1
0.9
c3
...
c10

y=

0
bx
by
bw
bh
c1
C2
c3
...
c10

y=

(1,1)

CNN: bounding box … better than sliding window

Bounding box does combine a “superimposed grid” with the image classification+localization as seen
before. For each cell we define a label which contains 8 features: P, box(x,y,w,h), class(c1, c2,c3)

Label : Y=(P=0, bx, by, bw, bh, c1,c2,c3…cn)
presence prob B.Box coordinates Classification result

Label : Y=(P=1, 0.1, 0.3, 0.7, 0.8, c1,c2,c3)

NOTE: The grid is NOT computed, it is defined as a coordinate system while creating labels for training.

Note: coord, size are
always normalized
and referred to the cell origin
(upper left corner)

CNN

Labeling on a 9x9 grid (finer detail)

9x9x8

With only one pass into the CNN we obtain
information for object presence, bounding
box, category of an object inside a “virtual”
grid cell.

Cells: 9x9=81
Label features: 8 (P, bbox, three classes)

CNN: bounding box … better than sliding window

Bounding box does combine a “superimposed grid” with the image classification+localization as seen
before. For each cell we define a label which contains 8 features: P, box(x,y,w,h), class(c1, c2,c3)

Label : Y=(P=0, bx, by, bw, bh, c1,c2,c3…cn)
presence prob B.Box coordinates Classification result

Label : Y=(P=1, 0.1, 0.3, 0.7, 0.8, c1,c2,c3)

NOTE: The grid is NOT computed, it is defined as a coordinate system while creating labels for training.

Note: coord, size are
always normalized
and referred to the cell origin
(upper left corner)

Labeling on a 9x9 grid (finer detail)

NOTE:
object is assigned (labeling) to the cell
which contains the center point of the bounding box.

bx,by always between 0 and 1.
bw,bh always >0 but can be >1.

zoom

CNN: multiple detection and Non-Maxima suppression (NMS)

When running the CNN the output result will often have multiple detections for the same
object especially when we have a finer grid.

To select only the best bounding box from all the ones provided on the grid we
use IoU (intersection over union). Given two bounding box we compute the ratio between
the area of intersection over the area of union

intersection union

IoU =
intersection

union

Example of NMS: When multiple bounding boxes are detected from different cells in the
grid we remove the one with the maximum IoU referred to the one classified with the
higher result. This is a post-processing step repeated over all the objects classes found in
the input image.

CNN: multiple detection and Non-Maxima suppression (NMS)

When running the CNN the output result will often have multiple detections for the same
object especially when we have a finer grid.

To select only the best bounding box from all the ones provided on the grid we
use IoU (intersection over union). Given two bounding box we compute the ratio between
the area of intersection over the area of union

intersection union

IoU =
intersection

union

Example of NMS: When multiple bounding boxes are detected from different cells in the
grid we remove the one with the maximum IoU referred to the one classified with the
higher result. This is a post-processing step repeated over all the objects classes found in
the input image.

NMS
IoU > 0.5
delete orange

CNN: overlapping objects and anchor boxes

When multiple objects are in the same position they will overlap.
The grid cell algorithm is based on the definition of one bounding box for each
grid cell assumed that there is only one object for a single cell

To be able to detect multiple (overlapping) objects for a single cell we
define a feature called anchor boxes where for each cell of the grid
we support multiple bounding boxes of different (pre defined)
aspect ratio.

Each label y is now a longer vector with multiple bounding boxes where the order of
labeling is based on the shape of the anchor box. For example with only n.2 anchors:

Label: Y=(P, bx, by, bw, bh, c1,c2,c3…cn, P, bx, by, bw, bh, c1,c2,c3…cn)

anchor box type #1 anchor box type #2

Type #1 #2 #3 #4

YOLO (you look only once) https://pjreddie.com/publications/

Unified, Real-Time Object Detection by Joseph Redmon, Santosh Divvala, Ross Girshick
and Ali Farhadi (2015).

• Dataset is labeling datapoints as per SxS grid
• Dataset is labeled on C classes
• Each grid cell contains B bounding boxes, but only 1 object (YOLO_V1)
• CNN was trained on Pascal VOC for YOLO_V1 (20 class)
• V1 CNN will return a result Y with [(P,bx,by,bw,bh)*B,C1…Cc] *(SxS)

(bx, by are now the center of the box relative to the grid cell, only one classification)

YOLO uses a custom Loss Function during training.
YOLO does post-process results by eliminating anchor boxes with low P
YOLO does NMS on the remaining results (one NMS for each class Cx)
Originally Pascal VOC dataset was used, S=7, B=2 and C=20.
CNN originally inspired by GoogLeNet.

CNN: 24 conv + 2FC

┌────────────┬────────────────────────┬───────────────────┐
│ Name │ Filters │ Output Dimension │
├────────────┼────────────────────────┼───────────────────┤
│ Conv 1 │ 7 x 7 x 64, stride=2 │ 224 x 224 x 64 │
│ Max Pool 1 │ 2 x 2, stride=2 │ 112 x 112 x 64 │
│ Conv 2 │ 3 x 3 x 192 │ 112 x 112 x 192 │
│ Max Pool 2 │ 2 x 2, stride=2 │ 56 x 56 x 192 │
│ Conv 3 │ 1 x 1 x 128 │ 56 x 56 x 128 │
│ Conv 4 │ 3 x 3 x 256 │ 56 x 56 x 256 │
│ Conv 5 │ 1 x 1 x 256 │ 56 x 56 x 256 │
│ Conv 6 │ 1 x 1 x 512 │ 56 x 56 x 512 │
│ Max Pool 3 │ 2 x 2, stride=2 │ 28 x 28 x 512 │
│ Conv 7 │ 1 x 1 x 256 │ 28 x 28 x 256 │
│ Conv 8 │ 3 x 3 x 512 │ 28 x 28 x 512 │
│ Conv 9 │ 1 x 1 x 256 │ 28 x 28 x 256 │
│ Conv 10 │ 3 x 3 x 512 │ 28 x 28 x 512 │
│ Conv 11 │ 1 x 1 x 256 │ 28 x 28 x 256 │
│ Conv 12 │ 3 x 3 x 512 │ 28 x 28 x 512 │
│ Conv 13 │ 1 x 1 x 256 │ 28 x 28 x 256 │
│ Conv 14 │ 3 x 3 x 512 │ 28 x 28 x 512 │
│ Conv 15 │ 1 x 1 x 512 │ 28 x 28 x 512 │
│ Conv 16 │ 3 x 3 x 1024 │ 28 x 28 x 1024 │
│ Max Pool 4 │ 2 x 2, stride=2 │ 14 x 14 x 1024 │
│ Conv 17 │ 1 x 1 x 512 │ 14 x 14 x 512 │
│ Conv 18 │ 3 x 3 x 1024 │ 14 x 14 x 1024 │
│ Conv 19 │ 1 x 1 x 512 │ 14 x 14 x 512 │
│ Conv 20 │ 3 x 3 x 1024 │ 14 x 14 x 1024 │
│ Conv 21 │ 3 x 3 x 1024 │ 14 x 14 x 1024 │
│ Conv 22 │ 3 x 3 x 1024, stride=2 │ 7 x 7 x 1024 │
│ Conv 23 │ 3 x 3 x 1024 │ 7 x 7 x 1024 │
│ Conv 24 │ 3 x 3 x 1024 │ 7 x 7 x 1024 │
│ FC 1 │ - │ 4096 │
│ FC 2 │ - │ 7 x 7 x 30 (1470) │
└────────────┴────────────────────────┴───────────────────┘

Prune
low P
boxes

NMS
for

each C
(7x7x(2*5+20))

post-processing

ref_docs\[OBJ]yolo_v1_1506.02640.pdf
ref_docs\[OBJ]yolo_v2_1612.08242.pdf
ref_docs\[OBJ]yolo_v3_1804.02767.pdf

YOLO (you look only once) https://en.wikipedia.org/wiki/YOLO_(aphorism)

1

YOLO improved by changing
CNN (from GoogLeNet to Darknet),
by adding anchor boxes (V2), by
changing the training methodology
and (multi scale) and by using a
finer grid …

YOLO_V3 uses DarkNet (106 layers)
to perform detection at THREE
scales of resolution. Also uses 9
anchor boxes (3 for each scale)

YOLO (you look only once) https://en.wikipedia.org/wiki/YOLO_(aphorism)

2) Given a 3x3 grid, the CNN is
trained to produce 2 b.boxes results
for each cell.

Y=[[P,bx,by,bw,bh,C1..C20]
[P,bx,by,bw,bh,C1..C20]]

P is our “confidence” for obj being
present in the cell.

1 2

YOLO improved by changing
CNN (from GoogLeNet to Darknet),
by adding anchor boxes (V2), by
changing the training methodology
and (multi scale) and by using a
finer grid …

YOLO_V3 uses DarkNet (106 layers)
to perform detection at THREE
scales of resolution. Also uses 9
anchor boxes (3 for each scale)

YOLO (you look only once) https://en.wikipedia.org/wiki/YOLO_(aphorism)

2) Given a 3x3 grid, the CNN is
trained to produce 2 b.boxes results
for each cell.

Y=[[P,bx,by,bw,bh,C1..C20]
[P,bx,by,bw,bh,C1..C20]]

P is our “confidence” for obj being
present in the cell.

3) Based on the confidence level
being “too low” to be an object we
eliminate many false boxes while
post processing the CNN results

1 2

3

YOLO improved by changing
CNN (from GoogLeNet to Darknet),
by adding anchor boxes (V2), by
changing the training methodology
and (multi scale) and by using a
finer grid …

YOLO_V3 uses DarkNet (106 layers)
to perform detection at THREE
scales of resolution. Also uses 9
anchor boxes (3 for each scale)

YOLO (you look only once) https://en.wikipedia.org/wiki/YOLO_(aphorism)

2) Given a 3x3 grid, the CNN is
trained to produce 2 b.boxes results
for each cell.

Y=[[P,bx,by,bw,bh,C1..C20]
[P,bx,by,bw,bh,C1..C20]]

P is our “confidence” for obj being
present in the cell.

3) Based on the confidence level
being “too low” to be an object we
eliminate many false boxes while
post processing the CNN results

4) The last step of post processing
will run NMS once for each class C
(i.e. 20 times in this example) to
keep only the most confident result.

1 2

3

4

YOLO improved by changing
CNN (from GoogLeNet to Darknet),
by adding anchor boxes (V2), by
changing the training methodology
and (multi scale) and by using a
finer grid …

YOLO_V3 uses DarkNet (106 layers)
to perform detection at THREE
scales of resolution. Also uses 9
anchor boxes (3 for each scale)

class confidence = P(class_i) * IoU

YOLO (you look only once) Computer Vision & Pattern Recognition (CVPR2016)

https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

https://medium.com/@jonathan_hui/real-time-object-d etection-with-yolo-yolov2-28b1b93e2088
https://qengineering.eu/deep-learning-with-raspberry-pi-and-alternatives.html
https://towardsdatascience.com/retinanet-how-focal-loss-fixes-single-shot-detection-cb320e3bb0de

https://hackernoon.com/understanding-yolo-f5a74bbc79 67

Useful Links:

YoLo: the fastest algorithm at the time of publication
still not a lightweight model for “IoT/Edge-Ai” devices

Cortex A-53@1.2Ghz : ~1 fps
Cortex A-72@1.5Ghz : ~2 fps

• Only ARM sw (no NN acceleration, no GPU)
• Image resolution 416x416 px
• Arm NEON optimized
https://github.com/Tencent/ncnn/tree/master/benchmark

There are simplified versions of YoLo which runs faster with a lower accuracy: see Tiny_Yolo, Yolo_Lite (10x speedup)

• Removal of few conv layers
• Removal of batch normalization
• Removal of pooling layers in favor of conv+stride
• Use of faster classification networks (MobileNet)

“ … reducing the input image size by a half can more than
double the speed of the network (6.94 FPS vs 2.4 FPS) but will
also effect the mAP (30.24% vs 40.48%). Reducing the input
image size means that less of the image is passed through the
network. This allows the network to be leaner, but also means
that some data was lost.”

ref_docs\[CNN]Yolo_Lite_1811.05588.pdf
YOLO-LITE

119

Books, Docs and Web resources

Deep Learning
Ian Goodfellow ,
Yoshua Bengio

Deep Learning
with Python
F.Chollet

Neural Networks
with Keras
Cookbook

Books (as a quick start…)

https://www.coursera.org/specializations/deep-learning

Online Courses: Coursera by Andrew Ng

https://www.coursera.org/learn/machine-learning

Online Courses: by Stanford Univ.

http://cs231n.stanford.edu/
http://cs231n.github.io/convolutional-networks/

Online Courses: by Fast.Ai

https://www.fast.ai/

Online Courses + Books + Tutorials + Blog

https://www.pyimagesearch.com/
By Adrian Rosebrock, PhD
NOTE: one of the most comprehensive, updated, learning source
for CNNs & image processing.

https://machinelearningmastery.com/
By Jason Brownlee, PhD
NOTE: not only focused on computer vision, excellent source also
for RNN, LSTM etc.

The 100Page
Machine
Learning,
A. Burkov

https://d2l.ai/index.html
Dive into Deep Learning
An interactive deep learning book with code, math, and
discussions, based on the NumPy interface.

Deep Learning
with TF 2.0
and Keras
A.Gulli

https://cs.stanford.edu/people/karpathy/convnetjs/

: by A. Karpathy

121

ai@ebv.com
Gianluca Filippini

EBV / FAE - ML Specialist

Ulrich Schmidt
EBV / Segment Manager - Hi-End Processing

122

