NXP'S DIFFERENTIATING GPIO EXPANDERS ADDRESS SYSTEM CHALLENGES IN EMERGING APPLICATIONS

MAY 21, 2020

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2020 NXP B.V.

TODAY'S AGENDA

- System benefits of General Purpose I/O (GPIO) Expanders
- Market trends and design challenges
- Recent developments
- What's next?
- Q&A

Featured Speakers:

Steve Blozis International Product Marketing Manager

Emmanuel Nana Technical Marketing Manager

SYSTEM BENEFITS OF GENERAL PURPOSE I/O (GPIO) EXPANDERS

A LITTLE BACKGROUND...

- I²C-bus invented by NXP (Philips) 30+ years ago
- Simple two-wire format
- Shrinks device footprint by reducing number of pins
- Fewer traces reduces design complexity and lowers system cost

MARKET TRENDS AND DESIGN CHALLENGES

THE INCREASING NEED FOR GENERAL PURPOSE IO EXPANDERS

- IO Expansion via I²C-bus
- Simplify Routing on PCB
- Power Management
- Voltage Level Translation

HOW DO I²C GPIO EXPANDERS WORK?

• To write to the outputs

• To read input values

S	Address	R	А	INPUT DATA	Ā	Ρ
---	---------	---	---	---------------	---	---

Quasi Output

Totem-Pole Output

Open-Drain Output

NP

GPIO PORTFOLIO COVERAGE... THERE'S MANY OPTIONS

- Over 50 unique functional devices
 - Interfaces
 - Output structures
 - Bit widths
 - Hardware and digital features
 - I²C-bus speeds
 - Supply voltage rails and translation
- Wide array of industry standard and custom packages

RECENT DEVELOPMENTS

RECENT PRODUCT DEVELOPMENT FOCUS AREAS

- Voltage translation
- Multiple supplies

- Agile IO
- More bit width options

Single Supply

Lower-Voltage Single Supply

Dual Supply

ULTRA-LOW VOLTAGE, LOW COST, GPIO EXPANDERS

- Voltage level translating
- V_{DD} (I²C): 0.8 V to 3.6 V or 1.65 V to 5.5 V
- V_{DD} (P-port): 1.65 V to 5.5 V
- 'Agile IO' features
- Lowest cost per bit
- Offerings:
 - PCA6408A & PCA6416A:
 - PCAL6408A & PCAL6416A:
 - PCAL6524 & PCAL6534:

Non Agile I/O 8-bit & 16-bit Agile I/O 8-bit & 16-bit Agile I/O Plus 24-bit & 34-bit

MULTIPLE SUPPLIES AND LOW VOLTAGE GPIO EXPANDER

- Independent supplies
 - Interface voltage range from 1.1 V to 3.6 V
 - I/O voltage range from 1.1 V to 3.6 V
- Separate V_{DD} for each 8-bit bank
- Offerings:
 - PCA9574: 8-bit
 - PCA9575: 16-bit

STANDARD PUSH PULL AND AGILE IO GPIO EXPANDER DIFFERENCES

Feature	PCA6408A PCA6416A	PCA9574 PCA9575	PCAL64xx PCAL65xx	Advantages
Bus-Hold Enable Command Byte		~		User may enable bus-hold on the I/O's. The bus-hold feature provides a valid logic level when the I/O is not actively driven.
Pull-up / Pull-down Selector Command Byte		~	~	User may program a 100-k Ω pull-up or pull-down at the I/O's.
Interrupt Mask Command Byte		~	~	User may select which I/O changes would not generate an interrupt to reduce spurious interrupts by setting the corresponding bits in this register.
Interrupt Status Command Byte		~	~	User may read this register to identify the source of an interrupt directly without having to remember the previous state of the input
Open Drain Output Register			~	Changes I/O from push pull to open drain per byte
Reset	Hardware	Hardware/ Software	Hardware	Reset device without having to cycle power

AGILE IO DEVICES ARE FEATURE-RICH AND PROVIDE FLEXIBILITY TO SYSTEM DESIGNERS

 \equiv

SMALL, LOW-COST, LOW VOLTAGE GPO EXPANDERS

- 4 mA push-pull outputs
- 1.1 V to 3.6 V operation
- 1 MHz I²C-bus interface
- Software Reset and power-on reset
- Available in tiny packages
- Offerings:
 - PCA9570: 4-bit
 - PCA9571: 8-bit

XQFN8 (1.6 x 1.6 x 0.5 with 0.5-mm pitch)

XQFN12 (1.7 x 2.0 x 0.5 with 0.4-mm pitch)

 \equiv

GPIO EXPANDERS PACKAGE COVERAGE

 \equiv

OFFERING SMALL AND LOW-PROFILE PACKAGES

QFN (Quad Flatpack No Leads) "Pads"

4 x 4 x 0.75 mm 0.5-mm pitch

BGA (Ball Grid Array) "Balls"

3 x 3 x 0.85 mm 0.5-mm pitch

LGA (Land Grid Array) "Pads"

2 x 2 x 0.35 mm 0.4-mm pitch

WHAT'S NEXT?

INNOVATION NEVER STOPS

- I3C higher speed and in-band interrupt – backward compatible to I²C
- Continued migration to lower voltage

 both to host and support chips (port)
- GPIO default as output low vs having to configure at power up

I3C...THE NEXT BIG THING!

From MIPI I3C White paper: <u>http://resources.mipi.org/MIPI I3C-sensor-whitepaper-from-mipi-alliance</u>

≡

NXP - AT THE FOREFRONT OF INNOVATION

- System benefits of General Purpose I/O (GPIO) Expanders
 - Serial interface reduces number of traces
 - GPIO Expanders allow systems designers to increase the IOs
- Market trends and design challenges
 - The increasing need for General Purpose I/O Expanders
- Recent developments
 - Lower I/O voltage
 - Multiple supplies
 - Agile I/O
- Future innovation
 - I3C: Higher speeds and in-band interrupt

ADDITIONAL RESOURCES

GPIO information: <u>http://nxp.com/gpio</u>

SUPPORT (D)

For questions, please contact: <u>Stephen.Blozis@nxp.com</u>

THANK YOU

