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1   Preface

1.1  About This Document
This is a guide of how to do customization work on security features supported by i.MX Android software. It
provides an overview of the i.MX Android security features and it focuses on how to configure and use these
security features.

The released code can be built into images both with and without Trusty OS integrated while the Trusty OS
related contents in this document can only be applied on the images with Trusty OS integrated.

Different SoCs may have different security-related hardware modules. This document has provided detailed
information about it. Users of a specific SoC only need to focus on the information about the specific one. If the
SoC type is not explicitly specified, refer to the common descriptions for all SoCs.

1.2  NXP security disclaimer
• NXP has documented how to correctly configure the security IPs in the documentation for the i.MX family.
• It is not possible to provide a universal secure configuration for Trusty OS that meets all users' requirements

and the security of Trusty OS is enhanced release by release.
• Users should therefore customize the Trusty OS security configuration to lock and secure their end products

according to their specific security requirements.
• NXP delivers Trusty OS including its Android space secure modules as an open-source software enablement

and not as a secure production ready implementation.
• Using Google AOSP Trusty OS source codes instead of NXP Trusty OS source codes might have an impact

on the features supported and security level of i.MX platforms.

1.3  Conventions
The following conventions are used in this document:

• Software code is shown in Consolas font.
• ${MY_ANDROID} is a reference to the i.MX Android source code root directory.
• ${MY_TRUSTY} is a reference to i.MX Trusty OS source code root directory.

2   Overview of i.MX Android Security Features

2.1  Introduction of security-related hardware modules
Security features are based on security-related codes, which need to do some cryptographic calculations to
protect security data. Security requires that only security-related code is allowed to run on certain hardware
resources. Therefore, these hardware resources are called security-related hardware modules. There are some
security hardware modules on the i.MX platform, which co-work with the Trusty OS to guarantee security:

• CAAM: Cryptographic Acceleration and Assurance Module, is a hardware component of a System on Chip
(SoC) that provides security assurance and hardware acceleration of cryptographic algorithms, packet
encapsulation and decapsulation, and other cryptographic operations.

• TrustZone: Arm TrustZone creates an isolated secure world, which can be used to provide confidentiality and
integrity to the system. It is used to protect high-value code and data for diverse use cases like authentication.
It is frequently used to provide a security boundary for the Trusted Execution Environment, like Trusty OS.

• TZASC: TrustZone Address Space Controller, is an Advanced Microcontroller Bus Architecture (AMBA)
compliant SoC peripheral. It is a high-performance, area-optimized address space controller to protect
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security-sensitive software and data in a trusted execution environment against potentially compromised
software running on the platform.

• CSU: Central Security Unit sets access control policies between the bus masters and bus slaves, enabling the
peripherals to be separated into distinct security domains.

• RDC: Resource Domain Controller (RDC) provides support for the isolation of destination memory mapped
locations such as peripherals and memory to a single core, a bus master, or set of cores and bus masters.

• xRDC: On i.MX 8QuadMax and i.MX 8QuadXPlus, the eXtended Resource Domain Controller (xRDC)
replaces the RDC and TrustZone components (CSU, TZASC, etc.), which can be found in previous i.MX
processors.
i.MX 8QuadMax and i.MX 8QuadXPlus SoC contain a mix of Cortex-A and Cortex-M CPUs, which frequently
operate in an asymmetric mode with different software environments executing on them. To keep these
software environments from unintentionally interfering with each other, the SoC contains xRDC to enforce
isolation. The xRDC operates in a manner like Arm's TrustZone. Transactions from masters are annotated
with user-side band information to indicate their domain and the access control logic allows/disallows
accesses to peripherals/memory based on this information.

• AHAB/HABv4: The Advanced High Assurance Boot (AHAB) and High Assurance Boot (HABv4) support
authentication on the images by using cryptography operations to prevent unauthorized software from being
executed during the device boot sequence. Details about how to verify images with HAB can be found in
Chapter 2.1.

• SCU: The System Controller Unit (SCU) is only for i.MX 8QuadMax and i.MX 8QuadXPlus platforms. It
consists of a Cortex-M4 processor and a set of peripherals and interfaces to connect to an external PMIC
and to control internal subsystems. The SCU Cortex-M4 is the first processor to boot the chip. The SCU is
dedicated to:
– Boot management
– Power management

– External power management by communicating with external PMIC
– Internal power management of all the subsystems

– Clock and reset management
– I/O configuration and muxing
– Resource partitioning/access control

• SECO: The Security Controller Subsystem (SECO) is only for i.MX 8QuadMax and i.MX 8QuadXPlus
platforms. It manages several security hardware modules (CAAM, SNVS, OTP, ADM, etc.) to perform
cryptography acceleration and ensure the security of the whole system.

• ELE: The ELE(EdgeLock Secure Enclave) introduces Platform Security services to a SoC, building upon an
embedded security enclave. Whereas the passive security element subsystem is essentially securing itself
and then performing crypto and key management functions, the ELE adds new trust-based services such
as SoC secure boot, debug domains, distributed subsystem security state management for SoC security IP
and low power, advanced root of trust management of fuses and start of life security decisions, support for
optimized fast boot (automotive), attestation, tamper detection and response, and other features.

• eMMC RPMB: RPMB is a separate physical partition in the eMMC device designed for secure data storage.
Every access to RPMB is authenticated and it allows the host to store data to this area in an authenticated
and replay protected manner.
In Trusty OS, the RPMB partition is managed as the secure storage to store all critical data like lock/unlock
status, rollback index, etc.

The following table lists the modules on the i.MX 8QuadMax, i.MX 8QuadXPlus, i.MX 8M Mini, i.MX 8M Quad
platforms:
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Modules i.MX 8QuadMax and 8Quad
XPlus

i.MX 8M Quad, 8M Mini, 8M Nano,
and 8M Plus

i.MX 8ULP

CAAM Y Y Y

TZASC N Y N

CSU N Y N

RDC N Y N

xRDC Y N Y

AHAB Y N Y

HABv4 N Y N

SCU Y N N

SECO Y N N

ELE N N Y

eMMC Y Y Y

Table 1. Modules on the i.MX 8QuadMax, i.MX 8QuadXPlus, i.MX 8M Mini, i.MX 8M Quad platforms

2.2  Trusty OS security recommendations for i.MX 8 SoC configuration

2.2.1  Secure CSU configuration

The Central Security Unit (CSU) manages the system security policy for peripheral access on the SoC. The
CSU allows trusted code to set individual security access privileges on each of the peripherals, using one
of the eight security access privilege levels. The CSU may assign bus master security privileges during bus
transactions according to the programmed policy. The CSU has two primary security-related features:

• Peripheral Access Policy: The appropriate bus master privilege and identity are required to access each
peripheral.

• Masters Privilege Policy: The CSU overrides the bus master privilege signals (secure/non-secure).

On the i.MX 8M platforms, Trusty OS and other software components such as ATF, SPL, and potentially U-
Boot (if run in the secure world) have access to CSU registers and potentially configure or overwrite peripheral
access and master privilege policies. The secure code (CSU driver) may have a non-secure CSU configuration
by default. The CSU configuration should be modified from the default non-secure configuration based on the
security requirements of the final application/end product:

• The CSU_CSLn registers that control the Peripheral access policy and the CSU_SA registers that control the
Masters privilege policy should be set appropriately.

• All CSU register configuration should be locked with the appropriate bit fields to prevent any CSU modification
at runtime.

• The CSU may need to be re-configured upon power state transitions depending on the i.MX platform and low-
power support.

Note:

• Since imx-android-11.0.0_2.2.0, the Trusty OS and ATF have made some default CSU configuration for
reference.

• For more information, refer to the CSU chapter and Security Integration chapters in the respective SoC i.MX
Security Reference Manual.

• An i.MX Security Checklist is available and should be perused to ensure the end product is correctly secured.
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2.2.2  Secure TZASC configuration

The TrustZone Address Space Controller (TZASC) protects security-sensitive SW and data in a trusted
execution environment against potentially compromised SW running on the platform. The i.MX 8M platforms
use the TZC-380 controller.

On the i.MX 8M platforms, Trusty OS and other software components such as ATF, SPL, and potentially U-Boot
(if run in the secure world) have access to the TZASC registers and potentially configure or overwrite memory
regions. The secure code may have a non-secure TZASC configuration by default. The TZASC configuration
should be modified from the default non-secure configuration based on the security requirements of the final
application/end product:

• Set the memory regions to meet the security requirement.
• The region 0 should be set to secure to prevent any access to secure memory through aliased memory range.
• Memory region configuration must be locked to prevent runtime modification.
• Depending on the platform, the TZASC may need to be re-configured upon power state transitions.

Note:

• Since imx-android-11.0.0_1.0.0, the default ATF has the reference code to configure Trusty OS memory
region as TZASC protected.

• For more information, refer to the SoC i.MX Security Reference Manual and the CoreLink TrustZone Address
Space Controller TZC-380 Technical Reference Manual.

• An i.MX Security Checklist is available and should be reviewed to ensure the end product is correctly secured.

2.2.3  Secure OCRAM configuration

The OCRAM (On Chip RAM) is a small memory embedded on the SoC. The OCRAM size varies based on the
i.MX SoC. Just like the DRAM, the OCRAM memory can be protected by the TrustZone through configuration.
The OCRAM supports TrustZone and non-TrustZone accesses and there is an option to configure a TrustZone-
only access region. The CSU can be used to set access permissions to the OCRAM memory and in addition
has programmable lock bits to prevent runtime modifications.

On the i.MX 8M platforms, Trusty OS and other software components such as ATF, SPL, and potentially U-Boot
(if run in the secure world) can potentially configure or overwrite peripheral access and master privilege policies.
However, the secure world and the non-secure world have both access to the GPR registers. The OCRAM
configuration should be modified from the default non-secure configuration to a secure configuration based on
the security requirements of the final application/end product:

• Check the Secure CSU configuration recommendations.
• The CSU must be set to protect the OCRAM.
• The respective GPR registers must be set to enable the protection of the OCRAM by the TrustZone.
• Lock GPR and CSU registers with the respective lock bits to prevent runtime modifications.

Note:

• i.MX 8M Plus, 8M Quad, and 8M Nano have this configured in ATF.
• For more information, refer to the CSU chapter and Security Integration chapters in the respective SoC i.MX

Security Reference Manual.
• An i.MX Security Checklist is available and should be reviewed to ensure the end product is correctly secured.

2.2.4  Secure RDC configuration

The Resource Domain Controller (RDC) provides support for the isolation of destination memory mapped
locations such as peripherals and memory to a single core, a bus master, or set of cores and bus masters. The
RDC provides a mechanism to allow boot time configuration code to establish resource domains by assigning

ASUG All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-14.0.0_1.0.0 — 7 January 2025 Document feedback
5 / 76

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_ASUG


NXP Semiconductors ASUG
i.MX Android Security User's Guide

cores, bus masters, peripherals and memory regions to domain identifiers. Once configured, bus transactions
are monitored to restrict accesses initiated by cores and bus masters to their respective peripherals and
memory.

On the i.MX 8M platforms, the secure world and the non-secure world have both access permissions to the
RDC registers. The RDC configuration should be modified from the default non-secure configuration to a secure
configuration based on the security requirements of the final application/end product:

• Check the code for default and non-secure RDC configuration.
• Set the RDC configuration for your security requirements.
• Ensure that the settings do not conflict with the CSU and AIPSTZ configurations.
• Lock the RDC settings with the respective lock bits to prevent runtime modifications.

Note:

• For more information, refer to the RDC chapter and Security Integration chapters in the respective SoC i.MX
Security Reference Manual.

• An i.MX Security Checklist is available and should be reviewed to ensure the end product is correctly secured.

2.2.5  Secure AIPSTZ configuration

The AIPSTZ is a peripheral designed as the bridge between AHB bus and peripherals with the lower bandwidth
IP Slave (IPS) buses. The AIPSTZ bridge provides programmable access protections for both masters and
peripherals. It allows the privilege level of a master to be overridden, forcing it to user mode privilege, and
allows masters to be designated as trusted or untrusted.

On the i.MX 8M platforms, the secure world and the non-secure world have both access the AIPSTZ
registers. The AIPSTZ configuration should be modified from the default non-secure configuration to a secure
configuration based on the security requirements of the final application/end product:

• Check the code for default and non-secure AIPSTZ configuration.
• Set the AIPSTZ configuration for your security requirements.
• Ensure that the settings do not conflict with the CSU and RDC configurations.
• Lock the AIPSTZ settings with lock bits to prevent runtime modifications.

Note:

• For more information, refer to the AIPSTZ Chapter in the respective SoC i.MX Reference Manual and the SoC
i.MX Security Reference Manual.

• An i.MX Security Checklist is available and should be reviewed to ensure the end product is correctly secured.

2.2.6  SCU/SCFW

On the i.MX 8QuadMax and 8QuadXPlus platforms, System Controller Firmware (SCFW) which running on
the System Controller Unit (SCU) maintains the power, clock and security components like xRDC and TZASC.
Other software components can communicate with SCU by the SCFW APIs.

By default, the Trusty OS is running on the secure partition and this is configured in the ATF. Refer to the SCFW
API manual for more information.

2.3  i.MX Android security framework
i.MX Android/Android Automotive security framework includes secure enhanced U-Boot, Android/Android Auto,
i.MX Trusty OS, and the related hardware.

Secure enhanced U-Boot provides the Android Verified Boot module, keys provisioning interface, and secure
storage proxy.
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Android Verified Boot assures the end user of the integrity of the software loaded and started by secure-
enhanced U-Boot. This is defined by Google, and more details can be found in https://source.android.com/
security/verifiedboot/avb.

Key provisioning interface provides the RPMB keys, key attestation, and AVB keys provisioning interface. These
interfaces can be used to inject the keys into the device to make it secure.

Secure Storage Proxy is the client of Secure Storage service from Trusty OS. It helps to access the RPMB
secure storage device by SoC IPs.

Android/Android Auto platform, based on Google’s design, integrates the Keymaster HAL, Gatekeeper HAL,
and Secure Storage proxy.

Keymaster HAL uses trusty-backed one and supports Keymaster V2 and Keymaster V3 APIs. For more details
about keymaster, see https://source.android.com/security/keystore.

Gatekeeper also uses the Trusty-backed gatekeeper HAL. For more details about gatekeeper, see https://
source.android.com/security/authentication/gatekeeper.

i.MX Trusty OS is based on Trusty OS that is released from Google. Secure TAs and services are integrated in
it. Trusty OS is a very important module for the whole security of i.MX Android/Android Auto platform.

Trusty OS provides a trusty-ipc, which is used to realize communication between secure and non-secure world.
Trusty OS has the hardware driver for CAAM used for keyblob calculation and security algorithm acceleration.

The following figure shows the logic between these components.

Figure 1. i.MX Android security framework

The following figure shows the i.MX Android/Android Auto security trust chain.
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Figure 2. i.MX Android security trust chain

Secure root key is programed into the One Time Programmable (OTP) eFuse hardware in i.MX chips and work
as the root trust of the solution. It is used by CAAM to generate other keys. In the trust chain, the HAB/AHAB,
AVB, and DM-Verity are used by a different level to verify the specific images or encrypt user data.

After power-on, the boot process begins, U-Boot and Trusty OS are loaded by ROM code. They are the first to
be verified by ROM code with HAB/AHAB. They can only be executed after they pass the verification. U-Boot
loads the Linux kernel and uses AVB to verify it before jumping to the Linux kernel. The Linux kernel mounts the
Android file system. Data access from Android file system will be verified by DM-Verity to assure integrity. The
security chain is formed by these features.

3   Customization work on i.MX Android Security Features

3.1  Verifying images with HAB
The i.MX family of application processors provides the High Assurance Boot (HAB) feature in the on-chip ROM.
The ROM is responsible for loading the initial image and verifying the image before the image is executed.

Due to the new architecture, multiple firmware and software images are required to boot i.MX 8 family devices.
NXP defines "container" to organize images. AHAB for i.MX 8Quad and i.MX 8ULP devices can recognize
the format of "container" and verify the images in a container. For i.MX 8M devices, these images are stored
in the format of Flattened Image Tree (FIT) with an appropriate Image Vector Table (IVT) set. HABv4 for i.MX
8M devices can recognize this format and verify the images. By default, HAB verification is enabled and i.MX
chip is in open stage, so failure of HAB verification does not block the boot process. After closing the chip, only
correctly signed images can be executed.

This section covers AHAB used on i.MX 8Quad and i.MX 8ULP family devices and HABv4 used on i.MX 8M
family devices.

3.1.1  Secure boot with AHAB

AHAB is closely bound with "container". Detailed information about "container" can be found in the Reference
Manual of specific chips. According to the Reference manual, the hash values of multiple firmware and software
components are stored in the container header. The container sign process described below embeds an SRK
table in the container and signs the container. The contents described in the sign process is used to verify the
container during the boot time.
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For i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK, "container" is used to organize the SECO firmware, SCU
firmware, MCU software, Arm Trusted Firmware, Trusty OS, and U-Boot. For i.MX 8ULP, "container" is used to
organize the ELE firmware, Upower firmware, MCU software, Arm Trusted Firmware, Trusty OS, and U-Boot.

The SECO firmware on i.MX 8Quad or the ELE firmware on i.MX 8ULP are always in the first container.
When U-Boot has SPL enabled, three containers are used to organize the images. If SPL is not enabled, two
containers are used. i.MX 8QuadMax is taken as an example below to introduce the different layout of images.

The UUU U-Boot images of i.MX 8Quad platforms do not have SPL enabled, so two containers are used. The
first container contains the SECO firmware, which is provided as a binary file and signed by NXP. The second
container contains SCU firmware, Arm Trusted Firmware, and U-Boot proper. It is constructed in build time and
will be appended to the end of the first container. Taking u-boot-imx8qm-mek-uuu.imx as an example, its
high-level layout structure is denoted in the following figure.

Figure 3. Layout structure when SPL is not enabled

Unlike i.MX 8Quad, the UUU U-Boot image of i.MX 8ULP enables SPL, so it has three containers included.

The normal U-Boot images to be flashed to the board on i.MX 8Q has SPL enabled, so three containers are
used. The first container contains SECO firmware. The second container is constructed in build time and
appended to the first container. This container contains SPL. The third container is also constructed in build
time, and it contains U-Boot proper. The two containers constructed at build time are not signed by default. The
three containers are in two files if dual-bootloader is enabled. For single-bootloader condition, take u-boot-
imx8qm.imx of the standard Android images as an example. The following figure shows the layout structure.

Figure 4. Layout structure when SPL is enabled with single bootloader

For dual-bootloader condition, take spl-imx8qm-trusty-dual.bin and bootloader-imx8qm-trusty-
dual.img of Android images as an example. The first container and the second container are combined
as one image, and the third container is combined as another image. The following figure shows the layout
structure.
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Figure 5. Layout structure when SPL is enabled with dual bootloaders

Like i.MX 8Quad, the normal U-Boot image on i.MX 8ULP also has three containers. The single-bootloader and
dual-bootloader conditions have the similar layout.

To sign the containers constructed in the process of building Android images, perform the following steps:

1. Download Code Signing Tool (CST) from the NXP official website. Decompress the package using the
following command:

$ tar zxvf cst-3.1.0.tgz

2. Generate AHAB PKI tree. After the tool package is decompressed, enter the directory of ${CST}/keys/,
and execute the following command:

$ ./ahab_pki_tree.sh

Then enter some parameters based on the output of this script. An example is as follows:

Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, p521: p384
Enter the digest algorithm to use: sha384
Enter PKI tree duration (years): 5
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

After the preceding command is successfully executed, the private keys are under the keys/ directory, and
the public key certificates are under the crts/ directory.

3. Generate AHAB SRK tables.
Enter the directory of ${CST}/crts/, and execute the following command:

$ ../linux64/bin/srktool -a -s sha384 -t SRK_1_2_3_4_table.bin \
-e SRK_1_2_3_4_fuse.bin -f 1 -c \
SRK1_sha384_secp384r1_v3_usr_crt.pem,\
SRK2_sha384_secp384r1_v3_usr_crt.pem,\
SRK3_sha384_secp384r1_v3_usr_crt.pem,\
SRK4_sha384_secp384r1_v3_usr_crt.pem

Additionally, for platforms like i.MX 8ULP, which only has 8 words of SRK fuses, regenerate
SRK_1_2_3_4_fuse.bin by SHA256 from SRK_1_2_3_4_table.bin:

$ openssl dgst -binary -sha256 SRK_1_2_3_4_table.bin > SRK_1_2_3_4_fuse.bin

After the command is executed successfully, the SRK table and its SHA512 or SHA256 value are generated
and saved respectively in two files under ${CST}/crts/.
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The SRK table is embedded in the container in the process of signing that container. Therefore, during the
boot time, it can be used to verify the signature. If the signature is authenticated, the hash value of firmware
and software images can be trusted to verify the corresponding firmware and software. The SRK table hash
value will be fused to the OTP eFuse hardware and work as the "secure root key". It is used to verify the
SRK table embedded in the container.
Files generated in ${CST}/keys/ and ${CST}/crts/ are very important. If the SRK HASH value is fused
to the chip and then the chip is changed from open to close state, the board can only boot with images
signed with these files.
It is suggested to use a dedicated copy of the CST package for different device families, since this process
will generate files with the same names in the same directory.

4. Build Android images to construct the containers to be signed.
To use AHAB to verify images in SPL, enable CONFIG_AHAB_BOOT configurations in corresponding
defconfig files in U-Boot code. they are not enabled by default. Take imx8qm_mek_android_trusty_
dual_defconfig as an example:

 diff --git a/configs/imx8qm_mek_android_trusty_dual_defconfig b/configs/
imx8qm_mek_android_trusty_dual_defconfig
 index 7a8a7a3c1c5..d441bded80d 100644
 --- a/configs/imx8qm_mek_android_trusty_dual_defconfig
 +++ b/configs/imx8qm_mek_android_trusty_dual_defconfig
 @@ -214,3 +214,4 @@ CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
  CONFIG_ATTESTATION_ID_MODEL="MEK-MX8Q"
  CONFIG_SHA256=y
  CONFIG_DUAL_BOOTLOADER=y
 +CONFIG_AHAB_BOOT=y

mkimage_imx8 is a tool used to construct containers. It outputs the layout information of a container on
standard output when constructing it. When building the Android images, save the log information of the
build system. For example, execute the following command:

$ ./imx-make.sh –j12 2>&1 | tee make_android.txt

During the build process, the build system output information is saved in make_android.txt. The three-
example layout mentioned above can be categorized into two when signing the images: the image file
directly generated by mkimage_imx8 and the image file not directly generated by mkimage_imx8. As
mkimage_imx8 outputs the container layout information in a file generated by itself, if the image file is
directly generated by mkimage_imx8, the layout information parameter can be directly used. If the final
image is assembled with intermediate files generated by mkimage_imx8, the layout information parameters
need to be properly processed before being used.
If SPL is enabled, single bootloader image like u-boot-imx8qm.imx is assembled with two files generated
by mkimage_imx8. In fact, dual bootloader condition keeps these two files separated, while single
bootloader condition appends one file after another at 1KB aligned boundary.

5. Get the layout information of containers in a file.
Layout information is needed when signing the container. To be more specific, it is the offset information of
the container and the container signature block in a file. Code signing tool uses these offsets to locate the
container in a file. The layout information can be found in make_android.txt just generated. With the
following principles, the offset of the container to be signed in a file can be easily found.
The generated files with containers to be signed mentioned before are built based on different U-Boot
defconfig files. Different U-Boot compilation targets with different U-Boot defconfig files can be found in
${MY_ANDROID}/device/nxp/${PLATFORM}/${BOARD}/BoardConfig.mk. Taking i.MX 8QuadMax
MEK and i.MX 8QuadXPlus MEK as example, the U-Boot configurations are listed below with some
annotations.

# bootloader-imx8qm.img and spl-imx8qm.bin
TARGET_BOOTLOADER_CONFIG := imx8qm:imx8qm_mek_androidauto_trusty_defconfig
# bootloader-imx8qm-secure-unlock.img and spl-imx8qm-secure-unlock.bin
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TARGET_BOOTLOADER_CONFIG += imx8qm-secure-
unlock:imx8qm_mek_androidauto_trusty_secure_unlock_defconfig
# bootloader-imx8qxp.img and spl-imx8qxp.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp:imx8qxp_mek_androidauto_trusty_defconfig
# u-boot-imx8qxp-c0.imx
TARGET_BOOTLOADER_CONFIG += imx8qxp-
c0:imx8qxp_mek_androidauto_trusty_defconfig
# bootloader-imx8qxp-secure-unlock.img and spl-imx8qxp-secure-unlock.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-secure-
unlock:imx8qxp_mek_androidauto_trusty_secure_unlock_defconfig
# u-boot-imx8qm.imx
TARGET_BOOTLOADER_CONFIG := imx8qm:imx8qm_mek_android_defconfig
# u-boot-imx8qxp.imx
TARGET_BOOTLOADER_CONFIG += imx8qxp:imx8qxp_mek_android_defconfig
# bootloader-imx8qm-dual.img and spl-imx8qm-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qm-dual:imx8qm_mek_android_dual_defconfig
# bootloader-imx8qxp-dual.img and spl-imx8qxp-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-dual:imx8qxp_mek_android_dual_defconfig
# u-boot-imx8qm-hdmi.imx
TARGET_BOOTLOADER_CONFIG += imx8qm-hdmi:imx8qm_mek_android_hdmi_defconfig
# u-boot-imx8qxp-c0.imx
TARGET_BOOTLOADER_CONFIG += imx8qxp-c0:imx8qxp_mek_android_defconfig
# u-boot-imx8qm-md.imx
TARGET_BOOTLOADER_CONFIG += imx8qm-md:imx8qm_mek_android_hdmi_defconfig
# bootloader-imx8qxp-c0-dual.img and spl-imx8qxp-c0-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-c0-
dual:imx8qxp_mek_android_dual_defconfig
# u-boot-imx8dx.imx
TARGET_BOOTLOADER_CONFIG += imx8dx:imx8dx_mek_android_defconfig
# u-boot-imx8dx-mek-uuu.imx
TARGET_BOOTLOADER_CONFIG += imx8dx-mek-uuu:imx8dx_mek_android_uuu_defconfig
# bootloader-imx8qm-trusty-dual.img and spl-imx8qm-trusty-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qm-trusty-
dual:imx8qm_mek_android_trusty_dual_defconfig
# bootloader-imx8qxp-trusty-dual.img and spl-imx8qm-trusty-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-trusty-
dual:imx8qxp_mek_android_trusty_dual_defconfig
# bootloader-imx8qm-trusty-secure-unlock-dual.img and spl-imx8qm-trusty-
secure-unlock-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qm-trusty-secure-unlock-
dual:imx8qm_mek_android_trusty_secure_unlock_dual_defconfig
# bootloader-imx8qxp-trusty-c0-dual.img and spl-imx8qxp-trusty-c0-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-trusty-c0-
dual:imx8qxp_mek_android_trusty_dual_defconfig
# bootloader-imx8qxp-trusty-secure-unlock-dual.img and spl-imx8qxp-trusty-
secure-unlock-dual.bin
TARGET_BOOTLOADER_CONFIG += imx8qxp-trusty-secure-unlock-
dual:imx8qxp_mek_android_trusty_secure_unlock_dual_defconfig
# u-boot-imx8qm-mek-uuu.imx
TARGET_BOOTLOADER_CONFIG += imx8qm-mek-uuu:imx8qm_mek_android_uuu_defconfig
# u-boot-imx8qxp-mek-uuu.imx
TARGET_BOOTLOADER_CONFIG += imx8qxp-mek-uuu:imx8qxp_mek_android_uuu_defconfig

The defconfig file name can be used to locate the layout information of containers. Search the defconfig file
name in make_android.txt just generated. A line prompts that the build process for that defconfig file
has been finished. Container and container signature block offset can be found in several lines before this
line.
Search the log file for container layout information. For the condition that images to be signed are directly
generated by mkimage_imx8, the container layout information of u-boot-imx8qm-mek-uuu.imx with
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the defconfig file of imx8qm_mek_android_uuu_defconfig like below can be found in the log file.
Unrelated lines are omitted and represented with ellipsis.

CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x590
...
=================== Finish building imx8qm-mek-
uuu:imx8qm_mek_android_uuu_defconfig ===================

The log file includes the container layout information of bootloader-imx8qm-trusty-dual.img and
spl-imx8qm-trusty-dual.bin with the defconfig file of imx8qm_mek_android_trusty_dual_
defconfig as follows. The layout information of the first two lines is for bootloader-imx8qm-trusty-
dual.img, and the information in the following two lines is for spl-imx8qm-trusty-dual.bin.

CST: CONTAINER 0 offset: 0x0
CST: CONTAINER 0: Signature Block: offset is at 0x190
...
CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x610
...
=================== Finish building
 imx8qm:imx8qm_mek_android_trusty_dual_defconfig ===================

For the condition that images to be signed are not directly generated by mkimage_imx8, take u-boot-
imx8qm.imx with the defconfig file of imx8qm_mek_android_defconfig as an example. The following
information should be retrieved in the log file. The first two lines are for the intermediate file u-boot-atf-
container.img. This file is the third container that has Arm Trusted Firmware and U-Boot proper in it. The
layout information in the following two lines are for another intermediate file, which has the second container
in it. This intermediate file is padded to 1 KB aligned boundary, and then u-boot-atf-container.img is
appended to this file. Therefore, the second two lines can be directly used, while the first two lines should be
added with an offset. It is 388KB, 0x61000 in hexadecimal, and then the offset of the third container in the
final u-boot-imx8qm.imx is 0x61000. Its signature offset in the file is 0x61000+0x190=0x61190.

CST: CONTAINER 0 offset: 0x0
CST: CONTAINER 0: Signature Block: offset is at 0x190
...
CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x610
...
append u-boot-atf-container.img at 388 KB
...
=================== Finish building imx8qm:imx8qm_mek_android_defconfig
 ===================

The following table lists a summary of the offsets of container and container signature.

Files having container to be signed Container offset in the file Container signature block offset

u-boot-imx8qm-mek-uuu.imx 0x400 0x590

bootloader-imx8qm-trusty-
dual.img

0x0 0x190

spl-imx8qm-trusty-dual.bin 0x400 0x610

u-boot-imx8qm.imx 0x400
0x61000

0x610
0x61190

Table 2. Container offset information
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The same rule can be used on other targets with one exception that the UUU U-Boot target for i.MX 8ULP
has SPL enabled, so the target config imx8ulp_evk_android_uuu_defconfig should follow the same
rule as u-boot-imx8qm.imx.

6. Sign the image files.
Copy the files to be signed to the directory of linux64/bin/ in Code Signing Tool (CST) directory, the
binary file named cst is used to sign these files. This cst needs CSF description file to be as an input file
when it is executed. CSF examples are in the directory of ${MY_ANDROID}/vendor/nxp-opensource/
uboot-imx/doc/imx/ahab/csf_examples/. cst_uboot_atf.txt is copied to Code Signing Tool
(CST) linux64/bin/ directory.
Make some changes to the cst_uboot_atf.txt just copied based on the image to sign. For the condition
that images to be signed are directly generated by mkimage_imx8. Taking u-boot-imx8qm-mek-
uuu.imx as an example, the modification is as follows:

@@ -4,9 +4,9 @@ Version = 1.0
[Install SRK]
# SRK table generated by srktool
-File = "../crts/SRK_1_2_3_4_table.bin"
+File = "../../crts/SRK_1_2_3_4_table.bin"
# Public key certificate in PEM format on this example only using SRK key
-Source = "../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
+Source = "../../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
# Index of the public key certificate within the SRK table (0 .. 3)
Source index = 0
# Type of SRK set (NXP or OEM)
@@ -16,6 +16,6 @@ Revocations = 0x0
[Authenticate Data]
# Binary to be signed generated by mkimage
-File = "u-boot-atf-container.img"
+File = "u-boot-imx8qm-mek-uuu.imx"
# Offsets = Container header Signature block (printed out by mkimage)
-Offsets = 0x0 0x110
+Offsets = 0x400 0x590

Then execute the command below:

$ ./cst -i cst_uboot_atf.txt -o signed-u-boot-imx8qm-mek-uuu.imx

With preceding command successfully executed, signed-u-boot-imx8qm-mek-uuu.imx is generated.
Copy it back to the output directory, and change its name as before, because uuu_imx_android_flash
script flashes images based on their names.
Based on the description of signing u-boot-imx8qm-mek-uuu.imx to sign all other images directly
generated by mkimage_imx8 like bootloader-imx8qm-trusty-dual.img, spl-imx8qm-trusty-
dual.bin, etc. Signing process of images not directly generated by mkimage_imx8 is a bit different. It
should be signed twice. Taking u-boot-imx8qm.imx as an example, make the following changes to the
original cst_uboot_atf.txt:

@@ -4,9 +4,9 @@ Version = 1.0
[Install SRK]
# SRK table generated by srktool
-File = "../crts/SRK_1_2_3_4_table.bin"
+File = "../../crts/SRK_1_2_3_4_table.bin"
# Public key certificate in PEM format on this example only using SRK key
-Source = "../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
+Source = "../../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
# Index of the public key certificate within the SRK table (0 .. 3)
Source index = 0
# Type of SRK set (NXP or OEM)
@@ -16,6 +16,6 @@ Revocations = 0x0
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[Authenticate Data]
# Binary to be signed generated by mkimage
-File = "u-boot-atf-container.img"
+File = "u-boot-imx8qm.imx"
# Offsets = Container header Signature block (printed out by mkimage)
-Offsets = 0x0 0x110
+Offsets = 0x400 0x610

Then execute the command below:

$ ./cst -i cst_uboot_atf.txt -o first_signed_u-boot-imx8qm.imx
Apply the following change on the "cst_uboot_atf.txt" as below to do the
 second sign
@@ -16,6 +16,6 @@ Revocations = 0x0
[Authenticate Data]
# Binary to be signed generated by mkimage
-File = "u-boot-imx8qm.imx"
+File = "first_signed_u-boot-imx8qm.imx"
# Offsets = Container header  Signature block (printed out by mkimage)
-Offsets   = 0x400 0x610
+Offsets   = 0x61000 0x61190

And execute the command below:

$ ./cst -i cst_uboot_atf.txt -o second_signed_u-boot-imx8qm.imx

With preceding command successfully executed, second_signed_u-boot-imx8qm.imx is generated,
copy it back to the output directory, and change its name as before. All the images not directly generated
by mkimage_imx8 can be signed with preceding method, which means SPL enabled single bootloader
images can be signed with this method.
Images are signed now. When booting with signed images, SRK table embedded in image file is used to
verify the signature. Embedded SRK table is verified based on its hash value. The hash value is programed
in OTP eFuse in i.MX chips, so it is not tempered by others. Perform the following steps to fuse the SRK
hash value.

7. Dump the SRK hash value.
Change the directory to crts/ in Code Signing Tool (CST). For i.MX 8Quad platforms, execute the
following command to dump the SRK hash value:

$ od -t x4 SRK_1_2_3_4_fuse.bin
0000000 d436cc46 8ecccda9 b89e1601 5fada3db
0000020 d454114a b6cd51f4 77384870 c50ee4b2
0000040 a27e5132 eba887cf 592c1e2b bb501799
0000060 ee702e07 cf8ce73e fb55e2d5 eba6bbd2

On i.MX 8ULP, the SRK Hash uses SHA-256 and dump 8 words fuses:

$ od -t x4 SRK_1_2_3_4_fuse.bin
0000000 db2959f2 90dfc39c 53394566 e0b75829
0000020 85e6f3b1 af00983d e5e804fe 7a451024

8. Use the U-Boot fuse command to fuse the hash value to a chip.
Because the fuse command is removed from U-Boot for Android Auto images to shorten the boot time, use
UUU to load the U-Boot used by UUU to RAM, and then use the fuse command.
Change the board to serial download mode, and execute the following command to download U-Boot to
RAM. It then enters fastboot mode.
For i.MX 8QuadMax, it is as follows:

$ sudo ./uuu_imx_android_flash.sh -f imx8qm -i
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For i.MX 8QuadXPlus, it is as follows:

$ sudo ./uuu_imx_android_flash.sh -f imx8qxp -i

For i.MX 8ULP, it is as follows:

$ sudo ./uuu_imx_android_flash.sh -f imx8ulp -i

With the commands above executed, U-Boot used by UUU under the current working directory is loaded to
RAM on board and it enters fastboot mode.
On the U-Boot console, it shows that U-Boot is in fastboot mode. Press "CTRL+C" to exit fastboot mode and
enter U-Boot command mode.
For i.MX 8QuadMax, execute the following commands on the U-Boot console:

=> fuse prog 0 722 0xd436cc46
=> fuse prog 0 723 0x8ecccda9
=> fuse prog 0 724 0xb89e1601
=> fuse prog 0 725 0x5fada3db
=> fuse prog 0 726 0xd454114a
=> fuse prog 0 727 0xb6cd51f4
=> fuse prog 0 728 0x77384870
=> fuse prog 0 729 0xc50ee4b2
=> fuse prog 0 730 0xa27e5132
=> fuse prog 0 731 0xeba887cf
=> fuse prog 0 732 0x592c1e2b
=> fuse prog 0 733 0xbb501799
=> fuse prog 0 734 0xee702e07
=> fuse prog 0 735 0xcf8ce73e
=> fuse prog 0 736 0xfb55e2d5
=> fuse prog 0 737 0xeba6bbd2

For i.MX 8QuadXPlus, execute the following commands on the U-Boot console:

=> fuse prog 0 730 0xd436cc46
=> fuse prog 0 731 0x8ecccda9
=> fuse prog 0 732 0xb89e1601
=> fuse prog 0 733 0x5fada3db
=> fuse prog 0 734 0xd454114a
=> fuse prog 0 735 0xb6cd51f4
=> fuse prog 0 736 0x77384870
=> fuse prog 0 737 0xc50ee4b2
=> fuse prog 0 738 0xa27e5132
=> fuse prog 0 739 0xeba887cf
=> fuse prog 0 740 0x592c1e2b
=> fuse prog 0 741 0xbb501799
=> fuse prog 0 742 0xee702e07
=> fuse prog 0 743 0xcf8ce73e
=> fuse prog 0 744 0xfb55e2d5
=> fuse prog 0 745 0xeba6bbd2

For i.MX 8ULP, execute the following commands on the U-Boot console:

=> fuse prog 15 0 0xdb2959f2
=> fuse prog 15 1 0x90dfc39c
=> fuse prog 15 2 0x53394566
=> fuse prog 15 3 0xe0b75829
=> fuse prog 15 4 0x85e6f3b1
=> fuse prog 15 5 0xaf00983d
=> fuse prog 15 6 0xe5e804fe
=> fuse prog 15 7 0x7a451024

Now, images are signed and SRK hash value is fused. The images can be flashed to boards. For how to
flash i.MX Android images, see the Android Release Notes (ARN).
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The chip is now in open stage, and verification failure does not block the boot process. To make sure that
SRK hash value is correctly fused and images are correctly signed, check the SECO event during boot.
After CONFIG_AHAB_BOOT is enabled in the defconfig file of U-Boot, use a U-Boot command to check
the SECO events. After images are signed and SRK hash value is programed, boot the board to U-Boot
command mode. On the U-Boot console, execute the following command:

=> ahab_status

If preceding command outputs the SECO event, use the following code to check whether it is related to
AHAB verification.

0x0087EE00 = The container image is not signed.
0x0087FA00 = The container image was signed with wrong key that is not
 matching the OTP SRK hashes.

For example, if the SRK hash value is programed, but images are not signed, after ahab_status is
executed, the following prompt is displayed on the console:

=> ahab_status
Lifecycle: 0x0020, NXP closed
SECO Event[0] = 0x0087EE00
CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
IND = AHAB_NO_AUTHENTICATION_IND (0xEE)
SECO Event[1] = 0x0087EE00
CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
IND = AHAB_NO_AUTHENTICATION_IND (0xEE)

After it is confirmed that the SRK hash value is correctly fused, and signed images do not cause AHAB-
related SECO events, execute the following command on the U-Boot console to close the chip:

=> ahab_close

Note:  This close operation is irreversible to the chips and the closed chips does not boot up if AHAB
verification fails.
Note:  Also, a power on reset is needed to make the above take effect.

3.1.2  Secure boot with HABv4

HABv4 verifies images based on Image Vector Table (IVT) and Flattened Image Tree (FIT). Detailed information
of the boot image format can be found in the Reference Manual of specific chips. According to the Reference
manual, the sign process described below embeds the Command Sequence File (CSF) generated by code
signing tool in the final image. The CSF is used to verify the images during the boot time.

There are three kinds of layouts. The following takes i.MX 8M Mini as an exampl to describe the different
layouts of images.

The UUU U-Boot images of i.MX 8M platforms are constructed by SPL and FIT. The FIT structure contains the
Arm Trusted Firmware and U-Boot proper. It is constructed in build time and is appended to the end of the SPL
image. Taking u-boot-imx8mm-evk-uuu.imx as an example, its high-level layout structure is shown in the
following figure.
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For single-bootloader condition, the U-Boot images of i.MX 8M have no structural differences from UUU U-Boot
images, except for the difference in functional configuration. Takeing u-boot-imx8mm.imx as an example, the
following figure shows the layout structure.

For dual-bootloader condition, take spl-imx8mm-trusty-dual.bin and bootloader-imx8mm-trusty-
dual.img as an example. U-Boot is split into SPL and FIT images in this case. The following figure shows the
layout structure.

To sign the images for i.MX 8M devices, perform the steps in the following sections.

3.1.2.1  Getting CST tool and keys configuration

1. Download Code Signing Tool (CST) from NXP official website.
Decompress the package with the following command:

$ tar zxvf cst-3.1.0.tgz

2. Generate the HABv4 PKI tree.
After the tool package is decompressed, enter the directory of ${CST}/keys/, and execute the following
command:

./hab4_pki_tree.sh

Then enter some parameters based on the output of this script. An example is as follows:

Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: n
Enter key length in bits for PKI tree: 2048
Enter PKI tree duration (years): 5
How many Super Root Keys should be generated? 4
Do you want the SRK certificates to have the CA flag set? (y/n)?: y

3. Generate AHAB SRK tables and eFuse hash.
Enter the directory of ${CST}/crts/, and execute the following command:

$ ../linux64/bin/srktool -h 4 -t SRK_1_2_3_4_table.bin -e \
SRK_1_2_3_4_fuse.bin -d sha256 -c \
SRK1_sha256_2048_65537_v3_ca_crt.pem,\
SRK2_sha256_2048_65537_v3_ca_crt.pem,\
SRK3_sha256_2048_65537_v3_ca_crt.pem,\
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SRK4_sha256_2048_65537_v3_ca_crt.pem

After the preceding commands are executed successfully. The SRK table and its SHA256 value are
generated and saved respectively in two files under ${CST}/crts/.
The SRK table is embedded in the CSF. Therefore, during the boot time, it can be used to verify the
signature. The SRK table SHA256 value is fused to the OTP eFuse hardware and works as the "secure root
key". It is used to verify the SRK table in CSF.
Files generated in ${CST}/keys/ and /release/crts/ are very important. If the SRK HASH value is
fused to the chip and then changes the chip from open to close state, the board can only boot with images
signed with these files.
If you are a user of both i.MX 8Quad and i.MX 8M devices, use two copies of this CST respectively for two
device families, since this process generates files with the same names in the same directory, while these
files should be prevented from being overwritten.

4. Dump the SRK hash value.
Change directory to crts/ in Code Signing Tool (CST). Execute the following command to dump the SRK
hash value:

hexdump -e '/4 "0x"' -e '/4 "%X""\n"' SRK_1_2_3_4_fuse.bin
0x20593752
0x6ACE6962
0x26E0D06C
0xFC600661
0x1240E88F
0x1209F144
0x831C8117
0x1190FD4D

5. Use the U-Boot fuse command to fuse the hash value to a chip.
Flash the image just signed to the board, and then boot to U-Boot command mode, and execute the
following command to fuse the SRK hash value. This is the same for i.MX 8M Mini, i.MX 8M Nano, i.MX 8M
Quad, and i.MX 8M Plus.

fuse prog -y 6 0 0x20593752 0x6ACE6962 0x26E0D06C 0xFC600661
fuse prog -y 7 0 0x1240E88F 0x1209F144 0x831C8117 0x1190FD4D

3.1.2.2  Signing bootloader images

1. Build Android images to generate the file to be signed.
To support HAB features, enable CONFIG_IMX_HAB configurations in the corresponding defconfig files in
U-Boot code. They are not enabled by default. Taking i.MX 8M Mini EVK and i.MX 8M Nano EVK as an
example, the files are:

imx8mm_evk_android_defconfig
imx8mm_evk_android_dual_defconfig
imx8mm_evk_android_trusty_secure_unlock_dual_defconfig
imx8mm_evk_android_trusty_dual_defconfig
imx8mm_evk_android_uuu_defconfig

Layout information of the final U-Boot image is needed during the signing process. When building the
Android images, save the log information of build system. For example, execute the following command:

$ ./imx-make.sh –j12 2>&1 | tee make_android.txt

During the build process, the build system output information is also saved in make_android.txt.
2. Get the layout information of the file to be signed.

Final U-Boot image files are generated with different U-Boot defconfig files. Taking i.MX 8M Mini as an
example, different U-Boot compilation targets with different U-Boot defconfig files can be found in ${MY_
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ANDROID}/device/nxp/imx8m/evk_8mm/BoardConfig.mk. They are listed below with some
annotations.

TARGET_BOOTLOADER_CONFIG := imx8mm:imx8mm_evk_android_defconfig
TARGET_BOOTLOADER_CONFIG += imx8mm-dual:imx8mm_evk_android_dual_defconfig
TARGET_BOOTLOADER_CONFIG += imx8mm-trusty-secure-unlock-
dual:imx8mm_evk_android_trusty_secure_unlock_dual_defconfig
TARGET_BOOTLOADER_CONFIG += imx8mm-trusty-
dual:imx8mm_evk_android_trusty_dual_defconfig
TARGET_BOOTLOADER_CONFIG += imx8mm-evk-uuu:imx8mm_evk_android_uuu_defconfig

Search the defconfig file name in the log of make_android.txt just generated for a line prompt that the
build process for that defconfig file is finished. The layout information needed in the signing process is
several lines before that. The layout information needs to be categorized based on whether dual-bootloader
is enabled. The defconfig files with "dual" substring in their names have dual-bootloader enabled. On the
contrary, the ones without "dual" substring in their names do not enable dual-bootloader.
For the single bootloader condition, taking imx8mm_evk_android_uuu_defconfig as an example, its
corresponding output file is u-boot-imx8mm-evk-uuu.imx. The lines directly related to the layout info of
this output file are listed below, and unrelated lines are omitted and represented with ellipsis.

Loader IMAGE:
 ...
 csf_off                0x2ea00
 spl hab block:         0x7e0fc0 0x0 0x2ea00
 ...
Second Loader IMAGE:
 sld_header_off         0x57c00
 sld_csf_off            0x58c20
 sld hab block:         0x401fadc0 0x57c00 0x1020
 fit-fdt csf_off        0x5ac20
 fit-fdt hab block:     0x401fadc0 0x57c00 0x3020
 ...
 0x40200000 0x5CC00 0x108548
 0x40308548 0x165148 0xE5E8
 0x920000 0x173730 0xA8E0
 ...
===================Finish building imx8mm-evk-
uuu:imx8mm_evk_android_uuu_defconfig ===================

For the dual-bootloader condition, taking imx8mm_evk_android_trusty_dual_defconfig as an
example, its corresponding output files are spl-imx8mm-trusty-dual.bin and bootloader-imx8mm-
trusty-dual.img. The lines directly related to the layout info of this output file are listed below, and
unrelated lines are omitted and represented with ellipsis.

Loader IMAGE:
 ...
 csf_off                0x34600
 spl hab block:         0x7e0fc0 0x0 0x34600
 ...
FIT IVT IMAGE:
 fit_csf_off            0x1020 
 fit hab block:         0x401fadc0 0x0 0x1020
 fit-fdt_csf_off        0x3020
 fit-fdt hab block:     0x401fadc0 0x0 0x3020
 ...
 0x40200000 0x5000 0x11CA50
 0x4031CA50 0x121A50 0xE5F0
 0x920000 0x130040 0xDB30
 0xBE000000 0x13DB70 0x191A00
 ...
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===================Finish building imx8mm-trusty-
dual:imx8mm_evk_android_trusty_dual_defconfig ===================

The same method of retrieving the layout information can be used on other targets.
3. Sign the image files.

Copy the files to be signed to the directory of linux64/bin/ in Code Signing Tool (CST) directory, the
binary file named cst is used to sign these files. This cst need CSF description file to be as an input file
when it is executed. CSF description file examples are in the directory of ${MY_ANDROID}/vendor/
nxp-opensource/uboot-imx/doc/imx/habv4/csf_examples/mx8m/. Copy csf_fit.txt,
csf_spl.txt and csf_fit_fdt.txt to Code Signing Tool (CST) linux64/bin/, the file to be signed
also need to be copied to this directory. The signing process is different between single bootloader condition
and dual-bootloader condition. The examples of the two conditions are described in this section, but in
practice, different U-Boot target files should be signed with the following steps one by one.
For the single-bootloader example with imx8mm_evk_android_uuu_defconfig defconfig file, modify the
copied csf_fit.txt, csf_spl.txt and csf_fit_fdt.txt as follows.

diff --git a/csf_fit.txt b/csf_fit.txt
index d9218ab..dfd0ded 100644
--- a/csf_fit.txt
+++ b/csf_fit.txt
@@ -8,12 +8,12 @@

    [Install SRK]
        # Index of the key location in the SRK table to be installed
-    File = "../crts/SRK_1_2_3_4_table.bin"
+    File = "../../crts/SRK_1_2_3_4_table.bin"
        Source index = 0

    [Install CSFK]
        # Key used to authenticate the CSF data
-    File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate CSF]

@@ -23,14 +23,14 @@
        # Target key slot in HAB key store where key will be installed
        Target index = 2
        # Key to install
-    File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate Data]
        # Key slot index used to authenticate the image data
        Verification index = 2
        # Authenticate Start Address, Offset, Length and file
-    Blocks = 0x401fcdc0 0x057c00 0x01020 "flash.bin", \
-             0x40200000 0x05AC00 0x9AAC8 "flash.bin", \
-             0x00910000 0x0F56C8 0x09139 "flash.bin", \
-             0xFE000000 0x0FE804 0x4D268 "flash.bin", \
-             0x4029AAC8 0x14BA6C 0x06DCF "flash.bin"
+    Blocks = 0x401fadc0 0x57c00 0x1020 "u-boot-imx8mm-evk-uuu.imx", \
+             0x40200000 0x5CC00 0x108548 "u-boot-imx8mm-evk-uuu.imx", \
+             0x40308548 0x165148 0xE5E8 "u-boot-imx8mm-evk-uuu.imx", \
+             0x920000 0x173730 0xA8E0 "u-boot-imx8mm-evk-uuu.imx"
diff --git a/csf_fit_fdt.txt b/csf_fit_fdt.txt
index dd88843dee..21498de8b9 100644
--- a/csf_fit_fdt.txt
+++ b/csf_fit_fdt.txt
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@@ -8,12 +8,12 @@

    [Install SRK]
        # Index of the key location in the SRK table to be installed
-    File = "../crts/SRK_1_2_3_4_table.bin"
+    File = "../../crts/SRK_1_2_3_4_table.bin"
        Source index = 0

    [Install CSF}
        # Key used to authenticate the CSF data
-    File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate CSF]

@@ -23,10 +23,10 @@
        # Target key slot in HAB key store where key will be installed
        Target index = 2
        # Key to install
-    File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate Data]
        # Key slot index used to authenticate the image data
        Verification index = 2
        # Authenticate Start Address, Offset, Length and file
-    Blocks = 0x401fadc0 0x57c00 0x3020 "signed-flash.bin"
+    Blocks = 0x401fadc0 0x57c00 0x3020 "u-boot-imx8mm-evk-uuu.imx"
diff --git a/csf_spl.txt b/csf_spl.txt
index 39adf7a..80165a8 100644
--- a/csf_spl.txt
+++ b/csf_spl.txt
@@ -8,12 +8,12 @@

    [Install SRK]
        # Index of the key location in the SRK table to be installed
-    File = "../crts/SRK_1_2_3_4_table.bin"
+    File = "../../crts/SRK_1_2_3_4_table.bin"
        Source index = 0

    [Install CSFK]
        # Key used to authenticate the CSF data
-    File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate CSF]

    [Unlock]
        # Leave Job Ring and DECO master ID registers Unlocked
        Engine = CAAM
-          Features = MID
+          Features = MID, MFG

    [Install Key]
        # Key slot index used to authenticate the key to be installed
@@ -28,10 +28,10 @@
        # Target key slot in HAB key store where key will be installed
        Target index = 2
        # Key to install
-    File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
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+    File = "../../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate Data]
        # Key slot index used to authenticate the image data
        Verification index = 2
        # Authenticate Start Address, Offset, Length and file
-    Blocks = 0x7e0fc0 0x1a000 0x2a600 "flash.bin"
+    Blocks = 0x7e0fc0 0x0 0x2ea00 "u-boot-imx8mm-evk-uuu.imx"

For the dual-bootloader example with imx8mm_evk_android_trusty_dual_defconfig defconfig file,
modify the copied csf_fit.txt, csf_spl.txt and csf_fit_fdt.txt as follows.

diff --git a/csf_fit.txt b/csf_fit.txt
index d9218ab..dfd0ded 100644
--- a/csf_fit.txt
+++ b/csf_fit.txt
@@ -8,12 +8,12 @@

    [Install SRK]
        # Index of the key location in the SRK table to be installed
-    File = "../crts/SRK_1_2_3_4_table.bin"
+    File = "../../crts/SRK_1_2_3_4_table.bin"
        Source index = 0

    [Install CSFK]
        # Key used to authenticate the CSF data
-    File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate CSF]

@@ -23,14 +23,14 @@
        # Target key slot in HAB key store where key will be installed
        Target index = 2
        # Key to install
-    File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate Data]
        # Key slot index used to authenticate the image data
        Verification index = 2
        # Authenticate Start Address, Offset, Length and file
-    Blocks = 0x401fcdc0 0x057c00 0x01020 "flash.bin", \
-             0x40200000 0x05AC00 0x9AAC8 "flash.bin", \
-             0x00910000 0x0F56C8 0x09139 "flash.bin", \
-             0xFE000000 0x0FE804 0x4D268 "flash.bin", \
-             0x4029AAC8 0x14BA6C 0x06DCF "flash.bin"
+    Blocks = 0x401fadc0 0x0 0x1020 "bootloader-imx8mm-trusty-dual.img", \
+             0x40200000 0x5000 0x11CA50 "bootloader-imx8mm-trusty-dual.img",
 \
+             0x4031CA50 0x121A50 0xE5F0 "bootloader-imx8mm-trusty-dual.img",
 \
+             0x920000 0x130040 0xDB30 "bootloader-imx8mm-trusty-dual.img", \
+             0xBE000000 0x13DB70 0x191A00 "bootloader-imx8mm-trusty-
dual.img"
diff --git a/csf_fit_fdt.txt b/csf_fit_fdt.txt
index dd88843dee..21498de8b9 100644
--- a/csf_fit_fdt.txt
+++ b/csf_fit_fdt.txt
@@ -8,12 +8,12 @@
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    [Install SRK]
        # Index of the key location in the SRK table to be installed
-    File = "../crts/SRK_1_2_3_4_table.bin"
+    File = "../../crts/SRK_1_2_3_4_table.bin"
        Source index = 0

    [Install CSFK]
        # Key used to authenticate the CSF data
-    File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate CSF]

@@ -23,10 +23,10 @@
        # Target key slot in HAB key store where key will be installed
        Target index = 2
        # Key to install
-    File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate Data]
        # Key slot index used to authenticate the image data
        Verification index = 2
        # Authenticate Start Address, Offset, Length and file
-    Blocks = 0x401fadc0 0x57c00 0x3020 "signed-flash.bin"
+    Blocks = 0x401fadc0 0x0 0x3020 "bootloader-imx8mm-trusty-dual.img"
diff --git a/csf_spl.txt b/csf_spl.txt
index 39adf7a..80165a8 100644
--- a/csf_spl.txt
+++ b/csf_spl.txt
@@ -8,12 +8,12 @@

    [Install SRK]
        # Index of the key location in the SRK table to be installed
-    File = "../crts/SRK_1_2_3_4_table.bin"
+    File = "../../crts/SRK_1_2_3_4_table.bin"
        Source index = 0

    [Install CSFK]
        # Key used to authenticate the CSF data
-    File = "../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"

    [Authenticate CSF]

    [Unlock]
        # Leave Job Ring and DECO master ID registers Unlocked
        Engine = CAAM
-          Features = MID
+          Features = MID, MFG

    [Install Key]
        # Key slot index used to authenticate the key to be installed
@@ -28,10 +28,10 @@
        # Target key slot in HAB key store where key will be installed
        Target index = 2
        # Key to install
-    File = "../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
+    File = "../../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"

ASUG All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-14.0.0_1.0.0 — 7 January 2025 Document feedback
24 / 76

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_ASUG


NXP Semiconductors ASUG
i.MX Android Security User's Guide

    [Authenticate Data]
        # Key slot index used to authenticate the image data
        Verification index = 2
        # Authenticate Start Address, Offset, Length and file
-    Blocks = 0x7e0fc0 0x1a000 0x2a600 "flash.bin"
+    Blocks = 0x7e0fc0 0x0 0x34600 "spl-imx8mm-trusty-dual.bin"

Execute the following commands to generate CSF with the CSF description file. They are the same for
single bootloader condition and dual-bootloader condition.

$ ./cst --i=csf_spl.txt --o=csf_spl.bin
$ ./cst --i=csf_fit.txt --o=csf_fit.bin

Execute the following commands to embed the CSF into the U-Boot image.

# For the single bootloader example with "imx8mm_evk_android_uuu_defconfig"
 defconfig file
$ dd if=csf_spl.bin of=u-boot-imx8mm-evk-uuu.imx seek=$((0x2ea00)) bs=1
 conv=notrunc
$ dd if=csf_fit.bin of=u-boot-imx8mm-evk-uuu.imx seek=$((0x58c20)) bs=1
 conv=notrunc

# For the dual bootloader example with
 "imx8mm_evk_android_trusty_dual_defconfig" defconfig file
$ dd if=csf_spl.bin of=spl-imx8mm-trusty-dual.bin seek=$((0x34600)) bs=1
 conv=notrunc
$ dd if=csf_fit.bin of=bootloader-imx8mm-trusty-dual.img seek=$((0x1020))
 bs=1 conv=notrunc

Execute the following commands to generate CSF with the CSF description file for FDT header. They are
the same for single-bootloader condition and dual-bootloader condition.

./cst -i csf_fit_fdt.txt -o csf_fit_fdt.bin

Execute the following commands to insert the CSF into the U-Boot image.

# For the single bootloader example with "imx8mm_evk_android_uuu_defconfig"
 defconfig file
$ dd if=csf_fit_fdt.bin of=u-boot-imx8mm-evk-uuu.imx seek=$((0x5ac20)) bs=1
 conv=notrunc

# For the dual bootloader example with
 "imx8mm_evk_android_trusty_dual_defconfig" defconfig file
$ dd if=csf_fit_fdt.bin of=bootloader-imx8mm-trusty-dual.img seek=$((0x3020))
 bs=1 conv=notrunc

With preceding commands successfully executed, u-boot-imx8mm-evk-uuu.imx or spl-imx8mm-
trusty-dual.bin and bootloader-imx8mm-trusty-dual.img are well signed. Then sign other
images according to the description of the signing process.
Images are signed now. When booting with signed images, the SRK table embedded in the image file is
used to verify the signature. Embedded SRK table is verified based on its hash value. The hash value is
programed in OTP eFuse in i.MX chips, so it is not affected by others.

3.1.2.3  Signing the MCU firmware

The MCU firmware on i.MX 8M is kicked off by the Cortex-A core. Its signature would be verified by HABv4.
Some scripts are provided below to auto-sign the MCU firmware. Save these scripts to linux64/bin/.

1. Create a CSF template.
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Save the following CSF template and rename it as mcucsf_template. This is the CSF file of the MCU
firmware.

[Header]
    Version = 4.3
    Hash Algorithm = sha256
    Engine Configuration = 0
    Certificate Format = X509
    Signature Format = CMS
[Install SRK]
    File = "../../crts/SRK_1_2_3_4_table.bin"
    Source index = 0
[Install CSFK]
    File = "../../crts/CSF1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate CSF]
[Install Key]
    Verification index = 0
    Target index = 2
    File = "../../crts/IMG1_1_sha256_2048_65537_v3_usr_crt.pem"
[Authenticate Data]
    Verification index = 2
    Blocks = %ddr_addr% 0x0 %auth_len% "mcu-pad-ivt.bin"

2. Create an IVT generation template.
Save the following IVT template and rename it as genivt_template. This script helps generate the IVT.

#! /usr/bin/perl -w
use strict;
open(my $out, '>:raw', 'ivt.bin') or die "Unable to open: $!";
print $out pack("V", 0x402000D1);   # Signature
print $out pack("V", %jump_addr%);  # Jump Location
print $out pack("V", 0x0);      # Reserved
print $out pack("V", 0x0);      # DCD pointer
print $out pack("V", 0x0);      # Boot Data
print $out pack("V", %self_ptr%);   # Self Pointer
print $out pack("V", %csf_ptr%);    # CSF Pointer
print $out pack("V", 0x0);      # Reserved
close($out);

3. Create a script habmcugen_template.
Save the following template and rename it as habmcugen_template. This script helps combine the
generated images.

#! /bin/bash
echo "extend mcu image to %pad_len%..."
objcopy -I binary -O binary --pad-to %pad_len% --gap-fill=0x5A mcu.bin mcu-
pad.bin
echo "generate IVT"
./genIVT
echo "attach IVT..."
cat mcu-pad.bin ivt.bin > mcu-pad-ivt.bin
echo "generate csf data..."
./cst --o mcu_csf.bin --i mcu.csf
echo "merge image and csf data..."
cat mcu-pad-ivt.bin mcu_csf.bin > mcu-signed.bin
echo "extend final image to %sig_len%..."
objcopy -I binary -O binary --pad-to %sig_len% --gap-fill=0x5A mcu-signed.bin
 mcu-signed-pad.bin

4. Create script mk_secure_mcu_imx8m.
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Save the following script and rename it as mk_secure_mcu_imx8m. This script invokes all the scripts
above and generates the final signed MCU image.

#! /bin/bash
let ddr_addr=$1
if [ ! -f mcu.bin ]
then
    printf "File \"mcu.bin\" does not exist.\n"
    exit 1
fi
# Calculate the size
let pad_len=$((0x20000)) # padding mcu image to 128KB
let auth_len=$((pad_len + 0x20)) # +0x20 "IVT"
let sig_len=$((auth_len + 0x2000))
let self_ptr=$((ddr_addr + pad_len))
let csf_ptr=$((ddr_addr + auth_len))
let jump_addr=$((ddr_addr))
# change value to hex string
pad_len=`printf "0x%X" ${pad_len}`
auth_len=`printf "0x%X" ${auth_len}`
sig_len=`printf "0x%X" ${sig_len}`
ddr_addr=`printf "0x%X" ${ddr_addr}`
self_ptr=`printf "0x%X" ${self_ptr}`
csf_ptr=`printf "0x%X" ${csf_ptr}`
jump_addr=`printf "0x%X" ${jump_addr}`
# Create habUimagegen
sed -e s/%pad_len%/${pad_len}/g -e s/%sig_len%/${sig_len}/g
 habmcugen_template > habmcuGen
chmod +x habmcuGen
# Create mcu.csf
sed -e s/%ddr_addr%/${ddr_addr}/g -e s/%auth_len%/${auth_len}/g
 mcucsf_template > mcu.csf
# Create genIVT
sed -e s/%jump_addr%/${jump_addr}/g -e s/%self_ptr%/${self_ptr}/g -e s/
%csf_ptr%/${csf_ptr}/g genivt_template > genIVT
chmod +x genIVT
# Generate secure boot
./habmcuGen
# OK
printf "mcu image with Signature \"mcu-signed-pad.bin\" is ready to use.\n"

5. Generate the signed MCU firmware.
Copy the unsigned MCU firmware to linux64/bin and rename it as mcu.bin. Execute the following
command to generate the final signed MCU firmware mcu-signed-pad.bin:

./mk_secure_mcu_imx8m <mcu-firmware-load-address>

As only TCM is supported to run the MCU firmware on the Android platform, so the mcu-firmware-load-
address should be the load address in TCM like 0x7e0000.

3.1.2.4  Closing the chip

With the steps above, the images are signed and SRK hash value is fused. But as the chip is in open stage,
verification failure does not block the boot process. One way to make sure that SRK hash value is correctly
fused and images are correctly signed is to check HAB events in the U-Boot log. Flash the images that are
signed and reboot to U-Boot console, and execute the following command:

=> hab_status
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Make sure there is no HAB EVENT reported. Before SPL invokes HAB to verify the FIT part, it first validates the
CSF. Make sure there is no CSF-related error as follows in the boot log.

Error: CSF header command not found

After it is confirmed that the SRK hash value is correctly fused, and signed images do not cause HAB event,
execute the following command on the U-Boot console to close the chip.

=> fuse prog -y 1 3 0x2000000

This close operation is irreversible to the chips and closed chips do not boot up if HABv4 verification fails.

3.1.3  Encrypted boot with AHAB

The encrypted boot image requires a Data Encryption Key (DEK) blob when AHAB is used to decrypt an image.
AHAB is able to decrypt image containers by calling EdgeLock Secure Enclave (ELE) or SECO authentication
functions. The image must be encrypted by CST and the resulted DEK must be encapsulated and included into
the container signature block. To encrypt and sign the images for i.MX 8ULP or i.MX 8Quad series devices,
follow the steps below.

3.1.3.1  Image layout of bootloader

There are two kinds of boot image structures. Taking imx8ulp_evk_android_trusty_defconfig as an
example, its corresponding output file is u-boot-imx8ulp-trusty.imx. The following diagram shows the
structure of the output file.

Figure 6. Output file structure 1

Taking imx8ulp_evk_android_trusty_dual_defconfig as an example, its corresponding output files
are spl-imx8ulp-trusty-dual.bin and bootloader-imx8ulp-trusty-dual.img. The following
diagram shows the structure of the output files.
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Figure 7. Output file structure 2

3.1.3.2  Enabling the encrypted boot support in CST

CST Version 3.0.0 and later have the encryption feature enabled by default. If using an earlier version, the
encryption feature must be explicitly enabled.

For CST versions earlier than 3.0.0, the CST back-end must be recompiled. Execute the following commands to
enable encryption support in CST:

$ sudo apt-get install libssl-dev openssl
$ cd <CST install directory>/code/back_end/src 
$ gcc -o cst_encrypted -I ../hdr -L ../../../linux64/lib *.c -lfrontend -lcrypto
$ cp cst_encrypted ../../../linux64/bin/cst

3.1.3.3  Building Android images to construct the containers

For i.MX 8ULP series devices, additional U-Boot tools are needed. Enable the following features:

• Defconfig

CONFIG_CMD_DEKBLOB=y
CONFIG_AHAB_BOOT=y
CONFIG_IMX_ELE_DEK_ENCAP=y

For i.MX 8Quad series devices, enable the following features:
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• Defconfig

CONFIG_CMD_DEKBLOB=y
CONFIG_AHAB_BOOT=y
CONFIG_IMX_SECO_DEK_ENCAP=y

The U-Boot image must be recompiled after these changes are made.

3.1.3.4  Recording the build log to get the layout information

The layout information of the final U-Boot image is needed during the signing and encrypting process. When
building the Android images, save the log information of the build system. The mkimage log is used during the
encrypted boot procedure to create the Command Sequence File (CSF).

• Single-bootloader condition
For the single bootloader condition, take imx8ulp_evk_android_trusty_defconfig as an example.
The lines directly related to the layout info of this output file are listed below, and unrelated lines are omitted
and represented with ellipsis.

CST: CONTAINER 0 offset: 0x0
CST: CONTAINER 0: Signature Block: offset is at 0x190
...
CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x590
...
append u-boot-atf-container.img at 317 KB
...
========Finish building imx8ulp-trusty:imx8ulp_evk_android_trusty_defconfig
 =========

• Dual-bootloader condition
For the dual-bootloader condition, take imx8ulp_evk_android_trusty_dual_defconfig as an
example. The lines directly related to the layout information of this output file are listed below, and the
unrelated lines are omitted and represented with ellipsis.

CST: CONTAINER 0 offset: 0x0
CST: CONTAINER 0: Signature Block: offset is at 0x190
...
CST: CONTAINER 0 offset: 0x400
CST: CONTAINER 0: Signature Block: offset is at 0x590
...
======Finish building imx8ulp-trusty-
dual:imx8ulp_evk_android_trusty_dual_defconfig =======

3.1.3.5  Creating the CSF description file for SPL image

Copy the files to be signed to the directory of linux64/bin/ in the Code Signing Tool (CST) directory. The
binary file named CST is used to sign these files. This CST needs CSF description file to be as an input file
when it is executed. CSF description file examples are in the directory of ${MY_ANDROID}/vendor/nxp-
opensource/uboot-imx/doc/imx/ahab/csf_examples/. Copy the file listed below to CST linux64/
bin/:

csf_enc_boot_image.txt

The file to be signed also needs to be copied to this directory. The signing process is different between single-
bootloader condition and dual-bootloader condition. The examples of the two conditions are described in the
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following sections, but in practice, different U-Boot target files should be signed with the following steps one by
one.

• Single-bootloader condition
For the single-bootloader example with imx8ulp_evk_android_trusty_defconfig defconfig file,
modify the CSF description file as follows to encrypt the U-Boot image for the first time and generate the
dek_spl.bin file. The encrypted images are generated as first-u-boot-imx8ulp-trusty.imx.
Execute the following command to copy the CSF description file:

$ cp csf_enc_boot_image.txt csf_enc_spl_image.txt

Then modify the file just copied. Because the first container has been signed by NXP, this CSF description file
is expected to apply on the second container. The offset entry should be filled as the second container.

[Authenticate Data]
# Binary to be signed generated by mkimage
File = "u-boot-imx8ulp-trusty.imx"
# Offsets = Container header  Signature block (printed out by mkimage)
Offsets   = 0x400             0x590

[Install Secret Key]
Key = "dek_spl.bin"
Key Length = 128
#Key Identifier = 0x1234CAFE
Image Indexes = 0xFFFFFFFE

• Dual-bootloader condition
For the dual-bootloader example with the imx8ulp_evk_android_trusty_dual_defconfig defconfig
file, it is very similar with single-bootloader condition. Modify the CSF description file as follows, and then the
encrypted SPL images is generated as spl-imx8ulp-trusty-dual-enc.bin.

[Authenticate Data]
# Binary to be signed generated by mkimage
File = "spl-imx8ulp-trusty-dual.bin"
# Offsets = Container header  Signature block (printed out by mkimage)
Offsets   = 0x400             0x590

[Install Secret Key]
Key = "dek_spl.bin"
Key Length = 128
#Key Identifier = 0x1234CAFE
Image Indexes = 0xFFFFFFFE

3.1.3.6  Encrypting and signing the SPL image

The image is encrypted using the Code Signing Tool. The tool generates the encrypted image and a random
dek_spl.bin file. CSF binary files are generated at the same time.

• Single-bootloader condition

$ ./cst -i csf_enc_spl_image.txt -o first-u-boot-imx8ulp-trusty.imx
The DEK BLOB must be inserted at offset 0x7c0 (its expected size is 72 bytes)
CSF Processed successfully and signed image available in first-u-boot-imx8ulp-
trusty.imx

• Dual-bootloader condition

$ ./cst -i csf_enc_spl_image.txt -o spl-imx8ulp-trusty-dual-enc.bin
The DEK BLOB must be inserted at offset 0x7c0 (its expected size is 72 bytes)
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CSF Processed successfully and signed image available in spl-imx8ulp-trusty-
dual-enc.bin

The output log is used in a later step to insert the DEK blob into the signature block.

3.1.3.7  Creating the CSF description file for bootloader image

• Single-bootloader condition
Similar to the SPL image, execute the following command to copy the CSF description file:

$ cp csf_enc_boot_image.txt csf_enc_bl_image.txt

imx-mkimage has printed the offset of u-boot-atf-container.img to append as follows:

imx-mkimage output:
append u-boot-atf-container.img at 317 KB

The offset to append u-boot-atf-container.img is 317 KB, 0x4F400 in hexadecimal. The offset of the
third container header has been printed as 0x0, and the offset of the signature block has be printed as 0x190.
The offset of the third container signature block in the final image can be calculated as follows:

Container header = 0x0 + 0x4f400 = 0x4f400
Signature block = 0x190 + 0x4f400 = 0x4f590

Then modify the file just copied. This CSF description is expected to apply on the third container, encrypt the
U-Boot image for the second time, and generate the dek_bl.bin file. The encrypted image is generated as
second-u-boot-imx8ulp-trusty.imx.

[Unlock]
# Leave Job Ring and DECO master ID registers Unlocked
Features = MID, MFG

[Authenticate Data]
# Binary to be signed generated by mkimage
File = "first-u-boot-imx8ulp-trusty.imx"
# Offsets = Container header  Signature block (printed out by mkimage)
Offsets   = 0x4f400             0x4f590

[Install Secret Key]
Key = "dek_bl.bin"
Key Length = 128
#Key Identifier = 0x1234CAFE
Image Indexes = 0xFFFFFFFE

• Dual-bootloader condition
It does not need to calculate the offset here because the container is in a separated file in this condition.
Modify the CSF description file as follows. The encrypted image is generated as bootloader-imx8ulp-
trusty-dual-enc.img.

[Unlock]
# Leave Job Ring and DECO master ID registers Unlocked
Features = MID, MFG

[Authenticate Data]
# Binary to be signed generated by mkimage
File = "bootloader-imx8ulp-trusty-dual.img"
# Offsets = Container header  Signature block (printed out by mkimage)
Offsets   = 0x0             0x190

[Install Secret Key]
Key = "dek_bl.bin"
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Key Length = 128
#Key Identifier = 0x1234CAFE
Image Indexes = 0xFFFFFFFE

3.1.3.8  Encrypting and signing the bootloader image

• Single-bootloader condition
For the single-bootloader condition, execute the following commands to generate the encrypted image and a
random dek_blob_bl.bin file. The CSF binary files is generated at the same time.

./cst -i csf_enc_bl_image.txt -o second-u-boot-imx8ulp-trusty.imx
    The DEK BLOB must be inserted at offset 0x4f7c0 (its expected size is 72
 bytes)
    CSF Processed successfully and signed image available in second-u-boot-
imx8ulp-trusty.imx

• Dual-bootloader condition
For the dual-bootloader condition, execute the following commands:

./cst -i csf_enc_bl_image.txt -o bootloader-imx8ulp-trusty-dual-enc.img
    The DEK BLOB must be inserted at offset 0x3c0 (its expected size is 72
 bytes)
    CSF Processed successfully and signed image available in bootloader-
imx8ulp-trusty-dual-enc.img

3.1.3.9  Generating a DEK blob

The DEK must be encapsulated into a CAAM blob so that it can be included into the final encrypted binary.
The U-Boot provides a fastboot command called generate-dek-blob, which calls the ELE or SECO blob
encapsulation API. This command is only functional on a board with a closed configuration and signed images.
See Section 3.1.1 to generate secure boot images and correctly close the board. The following steps are the
same for single-bootloader condition and dual-bootloader condition.

Boot the board and enter fastboot mode. Execute the following commands from the host PC:

fastboot stage dek_spl.bin
fastboot oem generate-dek-blob
fastboot get_staged dek_blob_spl.bin
fastboot stage dek_bl.bin
fastboot oem generate-dek-blob
fastboot get_staged dek_blob_bl.bin

3.1.3.10  Assembling the encrypted image

The DEK blob generated in the previous steps should be inserted into the container signature block.

• Single-bootloader condition
The following CSF log is used to determine the DEK blob offset in the second container:

The DEK BLOB must be inserted at offset 0x7c0 (its expected size is 72 bytes)
CSF Processed successfully and signed image available in first-u-boot-imx8ulp-
trusty.imx 

1. Insert the DEK blob into the second container signature block:

dd if=dek_blob_spl.bin of=second-u-boot-imx8ulp-trusty.imx bs=1 seek=
$((0x7c0)) conv=notrunc
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The following CSF log is used to determine the DEK blob offset in the third container:

The DEK BLOB must be inserted at offset 0x4f7c0 (its expected size is 72
 bytes)
CSF Processed successfully and signed image available in second-u-boot-
imx8ulp-trusty.imx

2. Insert the DEK blob into the third container signature block:

dd if=dek_blob_bl.bin of=second-u-boot-imx8ulp-trusty.imx bs=1 seek=
$((0x4f7c0)) conv=notrunc

• Dual-bootloader condition
The following CSF log is used to determine the DEK blob offset in the second container of SPL image:

The DEK BLOB must be inserted at offset 0x7c0 (its expected size is 72 bytes)
CSF Processed successfully and signed image available in spl-imx8ulp-trusty-
dual-enc.bin

1. Insert the DEK blob into the second container signature block:

dd if=dek_blob_spl.bin of=spl-imx8ulp-trusty-dual-enc.bin bs=1 seek=
$((0x7c0)) conv=notrunc

2. The following CSF log is used to determine the DEK blob offset in the first container of bootloader image:

The DEK BLOB must be inserted at offset 0x3c0 (its expected size is 72
 bytes)
CSF Processed successfully and signed image available in bootloader-imx8ulp-
trusty-dual-enc.img

3. Insert the DEK blob into the first container signature block:

dd if=dek_blob_bl.bin of=bootloader-imx8ulp-trusty-dual-enc.img bs=1 seek=
$((0x3c0)) conv=notrunc

3.1.3.11  Flashing encrypted boot image

With preceding command successfully executed, signed and encrypted images are generated. Copy them
back to the output directory, change their names as before, and flash them to the corresponding partition. If
everything is done correctly, the board boots successfully.

3.1.4  Encrypted boot with HABv4

The encrypted boot image requires a Data Encryption Key (DEK) blob when HABv4 is used to decrypt an
image. The DEK blob is used as a security layer to wrap and store the DEK off-chip using the One-Time
Programmable Master Key (OTPMK), which is unique per device. To encrypt and sign the images for i.MX 8M
devices, follow the steps below.

3.1.4.1  Image layout of bootloader

There are two kinds of boot image structures. Taking imx8mm_evk_android_trusty_defconfig as an
example, its corresponding output file is u-boot-imx8mm-trusty.imx. The following diagram shows the
structure of the output file.
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Figure 8. Output file structure 1

Taking imx8mm_evk_android_trusty_dual_defconfig as an example, its corresponding output files are
spl-imx8mm-trusty-dual.bin and bootloader-imx8mm-trusty-dual.img. The following diagram
shows the structure of the output file.
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Figure 9. Output file structure 2

3.1.4.2  Enabling the encrypted boot support in U-Boot

To deploy an encrypted boot image, additional U-Boot tools are needed. Enable the following feature:

• Defconfig

CONFIG_IMX_HAB=y
CONFIG_CMD_PRIBLOB=y
CONFIG_CMD_DEKBLOB=y

3.1.4.3  Enabling the encrypted boot support in CST

CST version 3.0.0 and later have the encryption feature enabled by default. If using an earlier version, the
encryption feature must be explicitly enabled.

For CST versions earlier than 3.0.0, the CST back-end must be recompiled. Execute the following commands to
enable encryption support in CST:

$ sudo apt-get install libssl-dev openssl
$ cd <CST install directory>/code/back_end/src
$ gcc -o cst_encrypted -I ../hdr -L ../../../linux64/lib *.c -lfrontend -lcrypto
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$ cp cst_encrypted ../../../linux64/bin/cst

3.1.4.4  Building Android images to generate the file to be signed

As explained in ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/doc/imx/habv4/guides/
mx8m_secure_boot.txt, the imx-mkimage project is used to package all images.

Create a dummy DEK blob at ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage/iMX8M:

$ dd if=/dev/zero of=iMX8M/dek_blob_fit_dummy.bin bs=96 count=1 && sync

The U-Boot image must be recompiled after these changes are made. The existence of this dummy file enables
the build script to add a dek_blob node in u-boot.its, and then mkimage_imx8 adds reserved space for
dek_blob in the target file.

3.1.4.5  Recording the build log to get the layout information

The layout information of the final U-Boot image is needed during the signing and encrypting process. When
building the Android images, save the log information of the build system. The mkimage log is used during the
encrypted boot procedure to create the Command Sequence File (CSF).

• Single-bootloader condition
For the single bootloader condition, take imx8mm_evk_android_trusty_defconfig as an example, the
lines directly related to the layout information of this output file are listed below, and the unrelated lines are
omitted and represented with ellipsis.

Loader IMAGE:
  header_image_off       0x0
  dcd_off                0x0
  image_off              0x40
  csf_off                0x33e00
  spl hab block:         0x7e0fc0 0x0 0x33e00

Second Loader IMAGE:
  sld_header_off         0x57c00
  sld_csf_off            0x58c20
  sld hab block:         0x401fadc0 0x57c00 0x1020
  fit-fdt csf_off        0x5ac20
  fit-fdt hab block:     0x401fadc0 0x57c00 0x3020
...

  0x40200000 0x5CC00 0x11C918
  0x4031C918 0x179518 0xE5E8
  0x920000 0x187B00 0xDB30
  0xBE000000 0x195630 0x191A00
...
===================Finish building imx8mm-
trusty:imx8mm_evk_android_trusty_defconfig ===================

• Dual-bootloader condition
For the dual-bootloader condition, take imx8mm_evk_android_trusty_dual_defconfig as an example.
The lines directly related to the layout information of this output file are listed below, and the unrelated lines
are omitted and represented with ellipsis.

Loader IMAGE:
    header_image_off       0x0
    dcd_off                0x0
    image_off              0x40
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    csf_off                0x34600
    spl hab block:         0x7e0fc0 0x0 0x34600

...

FIT IVT IMAGE:
    fit_csf_off            0x1020
    fit hab block:         0x401fadc0 0x0 0x1020
    fit-fdt_csf_off        0x3020
    fit-fdt hab block:     0x401fadc0 0x0 0x3020

...

    0x40200000 0x5000 0x11CA50
    0x4031CA50 0x121A50 0xE5F0
    0x920000 0x130040 0xDB30
    0xBE000000 0x13DB70 0x191A00
...
===================Finish building imx8mm-trusty-
dual:imx8mm_evk_android_trusty_dual_defconfig ===================

3.1.4.6  Creating the CSF description file for SPL + DDR FW image

Copy the files to be signed to the directory of linux64/bin/ in the Code Signing Tool (CST) directory. The
binary file named CST is used to sign these files. This CST needs the CSF description file to be as an input file
when it is executed. The CSF description file examples are in the directory of ${MY_ANDROID}/vendor/nxp-
opensource/uboot-imx/doc/imx/habv4/csf_examples/mx8m/. Copy the files listed below to CST
linux64/bin/:

csf_spl_enc.txt
csf_spl_sign_enc.txt
csf_fit_enc.txt
csf_fit_sign_enc.txt
csf_fit_fdt.txt

The file to be signed also needs to be copied to this directory. The signing process is different between the
single-bootloader condition and dual-bootloader condition. The examples of the two conditions are described in
the following sections, but in practice, different U-Boot target files should be signed with the following steps one
by one.

The current CST implementation is not possible to encrypt and sign an image at the same time. Therefore, two
CSF files are required when HAB is used.

• Single-bootloader condition
For the single-bootloader example with imx8mm_evk_android_trusty_defconfig defconfig file, modify
csf_spl_enc.txt and csf_spl_sign_enc.txt just copied.
Modify the first file csf_spl_enc.txt as follows to encrypt the SPL and DDR FW images, and generate the
dek_spl.bin file. The encrypted SPL and DDR FW images are generated as u-boot-imx8mm-trusty-
spl-enc.imx.
1. Add the MFG feature to avoid Manufacturing Protection Public Key (MPPUBK, generated from CAAM

module) being wiped.

[Unlock]
  Engine = CAAM
  Features = MID, MFG
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2. Add the Authenticate Data command to only cover SPL IVT and boot data:

[Authenticate Data]
  ...
  # Blocks = Authenticate_Start_Address Header_Image_Off SPL_header(fixed
 value)
  Blocks = 0x7e0fc0 0x0 0x40 "u-boot-imx8mm-trusty.imx"

Note:  All hexadecimal numbers here can be obtained from the build log.
Authenticate_Start_Address is the first hexadecimal number in the spl hab block entry:

spl hab block:         0x7e0fc0                     0x0               
 0x33e00
                       Authenticate_Start_Address   Header_Image_Off  
 SPL_Image_length

3. Add the Install Secret Key command to generate the dek_spl.bin file and install the blob. The Blob
Address depends on your image layout and can be calculated as follows:

[Install Secret Key]
  ...
  Key = "dek_spl.bin"
  # Blob Address = Authenticate_Start_Address + SPL_Image_length +
 CSF_Padding(fixed value)
  #              = 0x7e0fc0 + 0x33e00 + 0x2000 = 0x816dc0
  Blob Address = 0x816dc0

Note:  CSF_Padding is a fixed value. This is the space reserved for CSF.
4. Add the Decrypt Data command to encrypt the file. As the SPL image header cannot be encrypted,

calculate the Block as follows:
Start Address = Authenticate_Start_Address + SPL_header (fixed value) = 0x7e0fc0 + 0x40 = 0x7e1000
Offset = image_off = 0x40
Decrypt size = SPL_Image_length - SPL_header (fixed value) = 0x33e00 - 0x40 = 0x33dc0

[Decrypt Data]
  ...
   Blocks = 0x7e1000 0x40 0x33dc0 "u-boot-imx8mm-trusty-spl-enc.imx"

Note:  SPL_header is a fixed value, which is determined by the size of the SPL header structure.
Modify the second file csf_spl_sign_enc.txt as follows. This file is used to sign the encrypted SPL
image previously generated (u-boot-imx8mm-trusty-spl-enc.imx).

5. Add the MFG feature to avoid MPPUBK being wiped.

[Unlock]
  Engine = CAAM
  Features = MID, MFG

6. The Authenticate Data command should cover the entire SPL and DDR FW image. The file parameter is
the encrypted image u-boot-imx8mm-trusty-spl-enc.imx:

[Authenticate Data]
  ...
  # Blocks = Authenticate_Start_Address Header_Image_Off SPL_Image_length
  Blocks = 0x7e0fc0 0x0 0x33e00 "u-boot-imx8mm-trusty-spl-enc.imx"

7. Add the Install Secret Key command to generate a dummy DEK blob file. The blob address should be the
same as used in csf_spl_enc.txt:

[Install Secret Key]
  ...
  Key = "dek_spl_dummy.bin"
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  Blob Address = 0x816dc0

8. Add the Decrypt Data command to encrypt the file. As the image was encrypted in CSF above, encrypt a
dummy file. The block addresses should be the same as used in csf_spl_enc.txt:

[Decrypt Data]
  ...
  Blocks = 0x7e1000 0x40 0x33dc0 "u-boot-imx8mm-trusty-spl-enc-dummy.imx"

• Dual-bootloader condition
For the dual-bootloader example with the imx8mm_evk_android_trusty_dual_defconfig defconfig file,
modify csf_spl_enc.txt and csf_spl_sign_enc.txt just copied.
Modify the first file csf_spl_enc.txt as follows to encrypt the SPL and DDR FW images and generate
the dek_spl.bin file. The encrypted SPL and DDR FW images are generated as spl-imx8mm-trusty-
dual-enc.bin.
1. Add the MFG feature to avoid MPPUBK being wiped:

[Unlock]
  Engine = CAAM
  Features = MID, MFG

2. Add the Authenticate Data command to only cover SPL IVT and boot data:

[Authenticate Data]
  ...
  # Blocks = Authenticate_Start_Address header_image_off SPL_header(fixed
 value)
  Blocks = 0x7e0fc0 0x0 0x40 "spl-imx8mm-trusty-dual.bin"

Note:  All hexadecimal numbers here can be obtained from the build log.
Authenticate_Start_Address is the first hexadecimal number in the spl hab block entry:

spl hab block:         0x7e0fc0                     0x0                
 0x34600
                       Authenticate_Start_Address   header_image_off   
 SPL_Image_length

3. Add the Install Secret Key command to generate the dek_spl.bin file and install the blob. The Blob
Address depends on the image layout and can be calculated as follows:

[Install Secret Key]
  ...
  Key = "dek_spl.bin"
  # Blob Address = Authenticate_Start_Address +  SPL_Image_length +
 CSF_Padding(fixed value)
  #              = 0x7e0fc0 + 0x34600 + 0x2000 = 0x8175c0
  Blob Address = 0x8175c0

4. Add the Decrypt Data command to encrypt the file. As the SPL image header cannot be encrypted,
calculate the Block as follows:
Start Address = Authenticate_Start_Address + SPL_header (fixed value) = 0x7e0fc0 + 0x40 = 0x7e1000
Offset = image_off = 0x40
Decrypt size = SPL_Image_length - SPL_header (fixed value) = 0x34600 - 0x40 = 0x345c0

[Decrypt Data]
  ...
  Blocks = 0x7e1000 0x40 0x345c0 "spl-imx8mm-trusty-dual-enc.bin"

Modify the second file csf_spl_sign_enc.txt as follows to sign the encrypted SPL image previously
generated (spl-imx8mm-trusty-dual-enc.bin).
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5. Add the MFG feature to avoid MPPUBK being wiped:

[Unlock]
  Engine = CAAM
  Features = MID, MFG

6. The Authenticate Data command should cover the entire SPL and DDR FW image. The file parameter is
the encrypted image spl-imx8mm-trusty-dual-enc.bin:

[Authenticate Data]
  ...
  # Blocks = Authenticate_Start_Address header_image_off SPL_Image_length
  Blocks = 0x7e0fc0 0x0 0x34600 "spl-imx8mm-trusty-dual-enc.bin"

7. Add the Install Secret Key command to generate a dummy DEK blob file. The blob address should be the
same as used in csf_spl_enc.txt:

[Install Secret Key]
  ...
  Key = "dek_spl_dummy.bin"
  Blob Address = 0x8175c0

8. Add the Decrypt Data command to encrypt the file. As the image was encrypted in CSF above, encrypt a
dummy file. The block addresses should be the same as used in csf_spl_enc.txt:

[Decrypt Data]
  ...
  Blocks = 0x7e1000 0x40 0x345c0 "spl-imx8mm-trusty-dual-enc-dummy.bin"

3.1.4.7  Encrypting and signing the SPL + DDR FW image

The CST is used to encrypt the image and regenerate a random DEK. During this procedure, two CSF binaries
are generated, but only one is included in the final image.

• Single-bootloader condition
For the single-bootloader condition, execute the following commands to generate CSF with the CSF
description files.
– Encrypt the SPL + DDR FW image:

$ cp u-boot-imx8mm-trusty.imx u-boot-imx8mm-trusty-spl-enc.imx
$ ./cst -i csf_spl_enc.txt -o csf_spl_enc.bin

– Sign the encrypted SPL + DDR FW image:

$ cp u-boot-imx8mm-trusty-spl-enc.imx u-boot-imx8mm-trusty-spl-enc-dummy.imx
$ ./cst -i csf_spl_sign_enc.txt -o csf_spl_sign_enc.bin

• Dual-bootloader condition
For the dual-bootloader condition, execute the following commands to generate CSF with the CSF description
files.
– Encrypt the SPL + DDR FW image:

$ cp spl-imx8mm-trusty-dual.bin spl-imx8mm-trusty-dual-enc.bin
$ ./cst -i csf_spl_enc.txt -o csf_spl_enc.bin

– Sign the encrypted SPL + DDR FW image:

$ cp spl-imx8mm-trusty-dual-enc.bin spl-imx8mm-trusty-dual-enc-dummy.bin
$ ./cst -i csf_spl_sign_enc.txt -o csf_spl_sign_enc.bin
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3.1.4.8  Creating the final CSF binary for SPL image

As only one CSF binary is included in the final image, it is necessary to swap Nonce/MAC from
csf_spl_enc.bin to csf_spl_sign_enc.bin. The following steps are the same for single-bootloader
condition and dual-bootloader condition.

1. Calculate Nonce/MAC size based on the MAC bytes value in CSF:

Nonce/MAC size = Nonce size + MAC bytes + CSF header for Nonce/Mac = 12 + 16
 + 8 = 36 bytes

2. Calculate Nonce/MAC offset in CSF:

MAC offset = csf_spl_enc.bin size - Nonce/MAC size = 3980 - 36 = 3944 Bytes

3. Extract Nonce/MAC from csf_spl_enc.bin:

$ dd if=csf_spl_enc.bin of=noncemac.bin bs=1 skip=3944 count=36

4. Replace the MAC address of csf_spl_sign_enc.bin with the one extracted above:

$ dd if=noncemac.bin of=csf_spl_sign_enc.bin bs=1 seek=3944 count=36

3.1.4.9  Creating the CSF description file for FIT image

• Single-bootloader condition
Similar to SPL image, two CSF files are required to encrypt and sign the FIT image. For the single-bootloader
condition, the following steps use the u-boot-imx8mm-trusty-spl-enc.imx image created in the steps
above. Modify csf_fit_enc.txt and csf_fit_sign_enc.txt just copied.
Modify the first file csf_fit_enc.txt as follows to encrypt the FIT image and generate the dek_fit.bin
file.
1. Modify the Authenticate Data command to only cover FIT image FDT header:

[Authenticate Data]
  ...
  # Blocks = Authenticate_Start_Address sld_header_off sld_csf_off -
 sld_header_off
  Blocks = 0x401fadc0 0x57c00 0x1020 "u-boot-imx8mm-trusty-spl-enc.imx"

Note:  All hexadecimal numbers here can be obtained from the build log.
Authenticate_Start_Address is the first hexadecimal number in the sld hab block entry:

sld hab block:         0x401fadc0                   0x57c00            
 0x1020
                       Authenticate_Start_Address   sld_header_off     
 sld_csf_off - sld_header_off

2. Add the Install Secret Key command to generate the dek_fit.bin file and install the blob. The Blob
Address is a fixed address defined in imx-mkimage project in the iMX8M/soc.mak file:

DEK_BLOB_LOAD_ADDR = 0x40400000

3. Modify the Blob Address:

[Install Secret Key]
  ...
  Key = "dek_fit.bin"
  Blob Address = 0x40400000

4. Add the Decrypt Data command to encrypt the file.
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The CST can only encrypt images that are 16 bytes aligned. As u-boot-nodtb.bin and u-boot.dtb
are together 16 bytes aligned, we should consider the first two lines provided in print_fit_hab as a
single block.
imx-mkimage output:

0x40200000 0x5CC00 0x11C918----+----Total length = 0x11c918 + 0xe5e8 =
 0x12af00
0x4031C918 0x179518 0xE5E8-----+
0x920000 0x187B00 0xDB30
0xBE000000 0x195630 0x191A00

Decrypt data in csf_fit_enc.txt:

[Decrypt Data]
    ...
    Blocks = 0x40200000 0x5cc00 0x12af00 "u-boot-imx8mm-trusty-fit-enc.imx",
 \
            0x920000 0x187b00 0xdb30 "u-boot-imx8mm-trusty-fit-enc.imx", \
            0xbe000000 0x195630 0x191a00 "u-boot-imx8mm-trusty-fit-enc.imx"

Modify the second file csf_fit_sign_enc.txt as follows to sign the encrypted FIT image previously
generated (u-boot-imx8mm-trusty-fit-enc.imx).

5. The Authenticate Data command should cover the entire FIT image:

[Authenticate Data]
    ...
    Blocks = 0x401fadc0 0x57c00 0x1020 "u-boot-imx8mm-trusty-fit-enc.imx"  \
            0x40200000 0x5cc00 0x12af00 "u-boot-imx8mm-trusty-fit-enc.imx",
 \
            0x920000 0x187b00 0xdb30 "u-boot-imx8mm-trusty-fit-enc.imx", \
            0xbe000000 0x195630 0x191a00 "u-boot-imx8mm-trusty-fit-enc.imx"

6. Add the Install Secret Key command to generate a dummy DEK blob file. The blob address should be the
same as used in csf_fit_enc.txt:

[Install Secret Key]
  ...
  Key = "dek_fit_dummy.bin"
  Blob Address = 0x40400000

7. Add the Decrypt Data command to encrypt the file. As the image was encrypted in CSF above, encrypt a
dummy file. The block address should be the same as used in csf_fit_enc.txt:

[Decrypt Data]
    ...
    Blocks = 0x40200000 0x5cc00 0x12af00 "u-boot-imx8mm-trusty-fit-enc-
dummy.imx", \
            0x920000 0x187b00 0xdb30 "u-boot-imx8mm-trusty-fit-enc-
dummy.imx", \
            0xbe000000 0x195630 0x191a00 "u-boot-imx8mm-trusty-fit-enc-
dummy.imx"

• Dual-bootloader condition
For the dual-bootloader condition, the CSF file is generated based on bootloader-imx8mm-trusty-
dual.img. Modify csf_fit_enc.txt and csf_fit_sign_enc.txt just copied.
Modify the first file csf_fit_enc.txt as follows to encrypt the FIT image and generate the dek_fit.bin
file.
1. Modify the Authenticate Data command to only cover FIT image FDT header:

[Authenticate Data]
  ...

ASUG All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-14.0.0_1.0.0 — 7 January 2025 Document feedback
43 / 76

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_ASUG


NXP Semiconductors ASUG
i.MX Android Security User's Guide

  # Blocks = Authenticate_Start_Address fit_header_off fit_csf_off -
 fit_header_off
  Blocks = 0x401fadc0 0x0 0x1020 "bootloader-imx8mm-trusty-dual.img"

Note:  All hexadecimal numbers here can be obtained from the build log.
Authenticate_Start_Address is the first hexadecimal number in the spl hab block entry:

fit hab block:         0x401fadc0                   0x0                
 0x1020
                       Authenticate_Start_Address   fit_header_off     
 fit_csf_off - fit_header_off

2. Add the Install Secret Key command to generate the dek_fit.bin file and install the blob. The Blob
Address is a fixed address defined in the imx-mkimage project in the iMX8M/soc.mak file:

DEK_BLOB_LOAD_ADDR = 0x40400000

3. Modify the Blob Address:

[Install Secret Key]
  ...
  Key = "dek_fit.bin"
  Blob Address = 0x40400000

The CST can only encrypt images that are 16 bytes aligned. As u-boot-nodtb.bin and u-boot.dtb
are together 16 bytes aligned, we should consider the first two lines provided in print_fit_hab as a
single block.
imx-mkimage output:

0x40200000 0x5000 0x11ca50----+----Total length = 0x11ca50 + 0xe5f0 =
 0x12b040
0x4031ca50 0x121a50 0xe5f0----+
0x920000 0x130040 0xdb30
0xbe000000 0x13db70 0x191a00

4. Add the Decrypt Data command to encrypt the file.

[Decrypt Data]
    ...
    Blocks = 0x40200000 0x5000 0x12b040 "bootloader-imx8mm-trusty-dual-
enc.img", \
            0x920000 0x130040 0xdb30 "bootloader-imx8mm-trusty-dual-
enc.img", \
            0xbe000000 0x13db70 0x191a00 "bootloader-imx8mm-trusty-dual-
enc.img"

Modify the second file csf_fit_sign_enc.txt as follows to sign the encrypted FIT image previously
generated (bootloader-imx8mm-trusty-dual-enc.img).

5. The Authenticate Data command should cover the entire FIT image:

[Authenticate Data]
    ...
    Blocks = 0x401fadc0 0x0 0x1020 "bootloader-imx8mm-trusty-dual-enc.img" 
 \
            0x40200000 0x5000 0x12b040 "bootloader-imx8mm-trusty-dual-
enc.img", \
            0x920000 0x130040 0xdb30 "bootloader-imx8mm-trusty-dual-
enc.img", \
            0xbe000000 0x13db70 0x191a00 "bootloader-imx8mm-trusty-dual-
enc.img"
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6. Add the Install Secret Key command to generate a dummy DEK blob file, the blob address should be the
same as used in csf_fit_enc.txt:

[Install Secret Key]
  ...
  Key = "dek_fit_dummy.bin"
  Blob Address = 0x40400000

7. Add the Decrypt Data command to encrypt the file. As image was encrypted in CSF above, encrypt a
dummy file. The block address should be the same as used in csf_fit_enc.txt:

[Decrypt Data]
    ...
    Blocks = 0x40200000 0x5000 0x12b040 "bootloader-imx8mm-trusty-dual-enc-
dummy.img", \
            0x920000 0x130040 0xdb30 "bootloader-imx8mm-trusty-dual-enc-
dummy.img", \
            0xbe000000 0x13db70 0x191a00 "bootloader-imx8mm-trusty-dual-enc-
dummy.img"

3.1.4.10  Encrypting and signing the FIT image

The CST is used to encrypt the image and regenerate a random DEK. During this procedure, two CSF binaries
are generated, but only one is included in the final image.

• Single-bootloader condition
For the single-bootloader condition, execute the following commands to encrypt and sign the image. The CSF
description files are generated at the same time.
1. Encrypt the FIT image:

$ cp u-boot-imx8mm-trusty-spl-enc.imx u-boot-imx8mm-trusty-fit-enc.imx
$ ./cst -i csf_fit_enc.txt -o csf_fit_enc.bin

2. Sign the encrypted FIT image:

$ cp u-boot-imx8mm-trusty-fit-enc.imx u-boot-imx8mm-trusty-fit-enc-dummy.imx
$ ./cst -i csf_fit_sign_enc.txt -o csf_fit_sign_enc.bin

• Dual-bootloader condition
For the dual-bootloader condition, execute the following commands.
1. Encrypt the FIT image:

$ cp bootloader-imx8mm-trusty-dual.img bootloader-imx8mm-trusty-dual-enc.img
$ ./cst -i csf_fit_enc.txt -o csf_fit_enc.bin

2. Sign the encrypted FIT image:

$ cp bootloader-imx8mm-trusty-dual-enc.img bootloader-imx8mm-trusty-dual-
enc-dummy.img
$ ./cst -i csf_fit_sign_enc.txt -o csf_fit_sign_enc.bin

3.1.4.11  Creating the final CSF binary for FIT image

As only one CSF binary is included in the final image, it is necessary to swap Nonce/MAC from
csf_fit_enc.bin to csf_fit_sign_enc.bin. The following steps are the same for single-bootloader
condition and dual-bootloader condition.
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1. Calculate the Nonce/MAC size based on the MAC bytes value in CSF:

Nonce/MAC size = Nonce size + MAC bytes + CSF header for Nonce/Mac = 12 + 16
 + 8 = 36 bytes

2. Calculate the Nonce/MAC offset in csf_fit_enc.bin:

MAC offset = csf_fit_enc.bin size - Nonce/MAC size = 3996 - 36 = 3960 Bytes

3. Extract Nonce/MAC from csf_fit_enc.bin:

$ dd if=csf_fit_enc.bin of=noncemac.bin bs=1 skip=3960 count=36

4. Calculate the Nonce/MAC offset in csf_fit_sign_enc.bin:

MAC offset = csf_fit_enc.bin size - Nonce/MAC size = 4020 - 36 = 3984 Bytes

5. Replace the MAC of csf_fit_sign_enc.bin with the one extracted above:

$ dd if=noncemac.bin of=csf_fit_sign_enc.bin bs=1 seek=3984 count=36

3.1.4.12  Generating the DEK Blob

The DEK must be encapsulated into a CAAM blob, so it can be included into the final encrypted binary. The
U-Boot provides fastboot commands called generate-dek-blob, which calls the CAAM implementation
included in the Trusty OS. This command is only functional on a board with a closed configuration and signed
images. See Section 3.1.2 to generate secure boot images and correctly closed the board. The following step is
the same for single-bootloader condition and dual-bootloader condition.

Boot the board and enter fastboot mode. Execute the following commands from host PC:

$ fastboot stage dek_spl.bin
$ fastboot oem generate-dek-blob
$ fastboot get_staged dek_spl_blob.bin
$ fastboot stage dek_fit.bin
$ fastboot oem generate-dek-blob
$ fastboot get_staged dek_fit_blob.bin

The host PC then generates dek_spl_blob.bin and dek_fit_blob.bin.

3.1.4.13  Inserting CSF files and DEK blob

• Single-bootloader condition
1. For the single-bootloader condition, execute the following commands from the host PC:

$ cp u-boot-imx8mm-trusty-fit-enc.imx encrypted-u-boot-imx8mm-trusty.imx

2. imx-mkimage has reserved space for the CSF binary at target files. Check the build log. The offset of the
CSF binary for SPL is printed after the csf_off label. Insert csf_spl_sign_enc.bin in encrypted-
u-boot-imx8mm-trusty.imx at the 0x33e00 offset:

$ dd if=csf_spl_sign_enc.bin of=encrypted-u-boot-imx8mm-trusty.imx seek=
$((0x33e00)) bs=1 conv=notrunc 

3. The size of CSF reserved space is 0x2000 bytes. dek_blob should be added next to it. Insert
dek_spl_blob.bin in encrypted-u-boot-imx8mm-trusty.imx at the 0x33e00 + 0x2000 offset:

$ dd if=dek_spl_blob.bin of=encrypted-u-boot-imx8mm-trusty.imx seek=
$((0x35e00)) bs=1 conv=notrunc
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4. The offset of the CSF binary for FIT is printed after the sld_csf_off label. Insert
csf_fit_sign_enc.bin in encrypted-u-boot-imx8mm-trusty.imx at the 0x58c20 offset:

$ dd if=csf_fit_sign_enc.bin of=encrypted-u-boot-imx8mm-trusty.imx seek=
$((0x58c20)) bs=1 conv=notrunc

5. The DEK blob must be inserted in the last image entry on FIT image. The last line provided by the
print_fit_hab target log can be used:

0x40200000 0x5CC00 0x11C918
0x4031C918 0x179518 0xE5E8
0x920000 0x187B00 0xDB30
0xBE000000 0x195630 0x191A00 -> Last line in print_fit_hab log

6. Insert dek_fit_blob.bin in  encrypted-u-boot-imx8mm-trusty.imx at the 0x195630 +
0x191a00 offset:

$ dd if=dek_fit_blob.bin of=encrypted-u-boot-imx8mm-trusty.imx seek=
$((0x327030)) bs=1 conv=notrunc

• Dual-bootloader condition
1. For the dual-bootloader condition, execute the following commands from the host PC:

$ cp spl-imx8mm-trusty-dual-enc.bin encrypted-spl-imx8mm-trusty-dual.bin
$ cp bootloader-imx8mm-trusty-dual-enc.img encrypted-bootloader-imx8mm-
trusty-dual.img

2. Similar to the single-bootloader condition, the offset of the CSF binary for SPL is printed after the
csf_off label. Insert csf_spl_sign_enc.bin in encrypted-spl.bin at the 0x35200 offset:

$ dd if=csf_spl_sign_enc.bin of=encrypted-spl-imx8mm-trusty-dual.bin seek=
$((0x34600)) bs=1 conv=notrunc

3. The size of the CSF reserved space is 0x2000 bytes. dek_blob should be added next to it. Insert
dek_spl_blob.bin in encrypted-spl.bin at the 0x35200 + 0x2000 offset:

$ dd if=dek_spl_blob.bin of=encrypted-spl-imx8mm-trusty-dual.bin seek=
$((0x36600)) bs=1 conv=notrunc

4. The difference from the single-bootloader condition is that, the offset of the CSF binary for FIT is printed
after the fit_csf_off label. Insert csf_fit_sign_enc.bin in encrypted-fit.bin at the 0x1020
offset:

$ dd if=csf_fit_sign_enc.bin of=encrypted-bootloader-imx8mm-trusty-dual.img
 seek=$((0x1020)) bs=1 conv=notrunc

5. The DEK blob must be inserted in the last image entry on the FIT image. The last line provided by the
print_fit_hab target log can be used:

0x40200000 0x5000 0x11CA50
0x4031CA50 0x121A50 0xE5F0
0x920000 0x130040 0xDB30
0xBE000000 0x13DB70 0x191A00 -> Last line in print_fit_hab log

6. Insert dek_fit_blob.bin in encrypted-fit.bin at the 0x13db70 + 0x191a00 offset:

$ dd if=dek_fit_blob.bin of=encrypted-bootloader-imx8mm-trusty-dual.img
 seek=$((0x2cf570)) bs=1 conv=notrunc
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3.1.4.14  Signing the FIT header

Modify the third file csf_fit_fdt.txt as follows to sign the FIT header (FDT-FIT, IVT-FIT, CSF-FIT, and IVT-
FIT FDT).

• Single-bootloader condition:

[Authenticate Data]
    ...
    # Blocks = Authenticate Start Address, sld_header_off, fit-fdt_csf_off -
 sld_header_off
    Blocks = 0x401fadc0 0x57c00 0x3020 "encrypted-u-boot-imx8mm-trusty.imx"

• Dual-bootloader condition:

[Authenticate Data]
    ...
    # Blocks = Authenticate Start Address, fit_header_off, fit-fdt_csf_off -
 fit_header_off
    Blocks = 0x401fadc0 0x0 0x3020 "encrypted-bootloader-imx8mm-trusty-
dual.img"

Then use the following command to sign the FIT header and generate the CSF. This step is same for the single-
bootloader condition and dual-bootloader condition.

$ ./cst -i csf_fit_fdt.txt -o csf_fit_fdt.bin

Finally, insert the CSF file to the encrypted FIT image by the following command.

• Single-bootloader condition:
The offset of the CSF binary for the FIT header is printed after the fit-fdt csf_off label. Insert
csf_fit_fdt.bin to encrypted-u-boot-imx8mm-trusty.imx at the 0x5ac20 offset:

$ dd if=csf_fit_fdt.bin of=encrypted-u-boot-imx8mm-trusty.imx seek=$((0x5ac20))
 bs=1 conv=notrunc

• Dual-bootloader condition:
The offset of the CSF binary for the FIT header is printed after the fit-fdt csf_off label. Insert
csf_fit_fdt.bin to encrypted-bootloader-imx8mm-trusty-dual.img at the 0x3020 offset:

$ dd if=csf_fit_fdt.bin of=encrypted-bootloader-imx8mm-trusty-dual.img seek=
$((0x3020)) bs=1 conv=notrunc

3.1.4.15  Flashing the encrypted boot image

With preceding command successfully executed, signed and encrypted images are generated. Copy them
back to the output directory, change their names as before, and flash them to the corresponding partition. If
everything is done correctly, the board boots successfully.

3.2  Configurations on TEE

3.2.1  Memory region configuration in ATF

The TEE binary is loaded to DRAM at the address of $BL32_BASE by SPL. By default, the load address
$BL32_BASE is defined as 0xFE000000. It is specified during the process of generating the bootloader image
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with imx-mkimage. For example, you can specify the load address as 0xFF000000 for i.MX 8QuadMax and
i.MX 8QuadXPlus in ${MY_ANDROID}/vendor/nxp-opensource/imx-mkimage as follows:

diff --git a/iMX8QM/soc.mak b/iMX8QM/soc.mak
index 355851e..fe70191 100644
--- a/iMX8QM/soc.mak
+++ b/iMX8QM/soc.mak
@@ -82,7 +82,7 @@ u-boot-atf-container.img: bl31.bin u-boot-hash.bin
fi
if [ -f "tee.bin" ]; then \
    if [ $(shell echo $(ROLLBACK_INDEX_IN_CONTAINER)) ]; then \
       - ./$(MKIMG) -soc QM -sw_version $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -
c -ap bl31.bin a53 0x80000000 -ap u-boot-hash.bin a53 0x80020000 -ap tee.bin a53
 0xFE000000 -out u-boot-atf-container.img; \
       + ./$(MKIMG) -soc QM -sw_version $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -
c -ap bl31.bin a53 0x80000000 -ap u-boot-hash.bin a53 0x80020000 -ap tee.bin a53
 0xFF000000 -out u-boot-atf-container.img; \
   else \
       ./$(MKIMG) -soc QM -rev B0 -c -ap bl31.bin a53 0x80000000 -ap u-
boot-hash.bin a53 0x80020000 -ap tee.bin a53 0xFE000000 -out u-boot-atf-
container.img; \
fi; \
diff --git a/iMX8QX/soc.mak b/iMX8QX/soc.mak
index 56422e0..d917dc3 100644
--- a/iMX8QX/soc.mak
+++ b/iMX8QX/soc.mak
@@ -73,7 +73,7 @@ u-boot-atf.itb: u-boot-hash.bin bl31.bin
u-boot-atf-container.img: bl31.bin u-boot-hash.bin
if [ -f tee.bin ]; then \
   if [ $(shell echo $(ROLLBACK_INDEX_IN_CONTAINER)) ]; then \
       - ./$(MKIMG) -soc QX -sw_version $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -
c -ap bl31.bin a35 0x80000000 -ap u-boot-hash.bin a35 0x80020000 -ap tee.bin a35
 0xFE000000 -out u-boot-atf-container.img; \
       + ./$(MKIMG) -soc QX -sw_version $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -
c -ap bl31.bin a35 0x80000000 -ap u-boot-hash.bin a35 0x80020000 -ap tee.bin a35
 0xFF000000 -out u-boot-atf-container.img; \
   else \
       ./$(MKIMG) -soc QX -rev B0 -c -ap bl31.bin a35 0x80000000 -ap u-
boot-hash.bin a35 0x80020000 -ap tee.bin a35 0xFE000000 -out u-boot-atf-
container.img; \
   fi; \

After loading the TEE binary to DRAM, the ATF tries to kick it at the address of $BL32_BASE with the size
of $BL32_SIZE, which are defined in ${MY_ANDROID}/vendor/nxp-opensource/arm-trusted-
firmware/plat/imx/$(PLAT)/include/platform_def.h. By default, $BL32_BASE is defined
as 0xFE000000 and $BL32_SIZE is 0x02000000, but you can configure them as needed. For example,
$BL32_BASE can be configured as 0xFF000000 and $BASE_SIZE can be configured as 0x03000000 for i.MX
8QuadMax and i.MX 8QuadXPlus as follows:

diff --git a/plat/imx/imx8qm/include/platform_def.h b/plat/imx/imx8qm/include/
platform_def.h
index b305bfc..6f9f7d4 100644
--- a/plat/imx/imx8qm/include/platform_def.h
+++ b/plat/imx/imx8qm/include/platform_def.h
@@ -37,8 +37,8 @@
#define BL31_LIMIT 0x80020000
#ifdef TEE_IMX8
-#define BL32_BASE 0xfe000000
-#define BL32_SIZE 0x02000000
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+#define BL32_BASE 0xff000000
+#define BL32_SIZE 0x03000000
#define BL32_SHM_SIZE 0x00400000
#define BL32_LIMIT 0x100000000
#endif
diff --git a/plat/imx/imx8qxp/include/platform_def.h b/plat/imx/imx8qxp/include/
platform_def.h
index 24eacc2..cfc0717 100644
--- a/plat/imx/imx8qxp/include/platform_def.h
+++ b/plat/imx/imx8qxp/include/platform_def.h
@@ -33,8 +33,8 @@
#define BL31_LIMIT 0x80020000
#ifdef TEE_IMX8
-#define BL32_BASE 0xfe000000
-#define BL32_SIZE 0x02000000
+#define BL32_BASE 0xff000000
+#define BL32_SIZE 0x03000000
#define BL32_SHM_SIZE 0x00400000
#define BL32_LIMIT 0x100000000
#define PLAT_TEE_IMAGE_OFFSET 0x84000000

The following table lists the recommended $BL32_BASE and $BL32_SIZE for DRAM with different sizes on the
i.MX 8Quad platform:

DRAM Size (GB) $BL32_BASE $BL32_SIZE

6 0xFE000000 0x02000000

4 0xFE000000 0x02000000

3 0xFE000000 0x02000000

2 0xFE000000 0x02000000

1 0xBE000000 0x02000000

Table 3. Recommended $BL32_BASE and $BL32_SIZE for DRAM

3.2.2  Basic file and folder construction for Trusty OS

i.MX Trusty OS provides a security solution for Android platform and Android Automotive platform. It also
provides a set of development APIs for customer to develop their own TAs.

Trusty OS is based on LittleKernel. i.MX Trusty OS has the following basic file structure.

Folder name Folder description

trusty/device/nxp/imx8 This folder contains the script files. Most of the configurations for the build target
are defined in this folder, including project configuration files.
The Makefile configurations, board configurations, and modules need to be built.

trusty/hardware/nxp/app NXP-specific TA source code folder. Currently the hwcrypto TA located in this
folder that provides security functions depends on the i.MX SoC hardware.

trusty/hardware/nxp/target NXP reference board target folder. Only rules.mk for the build target in this
folder, platform name, and UART information are defined in this file.

trusty/hardware/nxp/platform/
imx

NXP SoC specific source codes for Trusty OS. All i.MX SoCs share these
codes. It includes platform initialization codes, UART drivers, and registers map
definitions.

Table 4. Basic file structure of i.MX Trusty OS
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Folder name Folder description

trusty/kernel/lib Trusty OS core codes including secure monitor calls management, TIPC/QL-
TIPC stack.

external/lk LittleKernel codes, including all LittleKernel modules like arch codes, interrupt
management, task management, and SMP support.

trusty/user/app Trusty OS TAs are placed here, including AVB, Gatekeeper, and Keymaster user
space source codes.

Table 4. Basic file structure of i.MX Trusty OS...continued

For TAs implementation, see Google Trusty OS reference webpage: https://source.android.com/security/trusty/
trusty-ref.

3.2.3  Applying new build target in Trusty OS

By default, NXP already provides i.MX 8QuadMax/8QuadXPlus and i.MX 8M Mini/8M Quad series template
in the i.MX Trusty OS. To add a new platform based on i.MX 8QuadMax/8QuadXPlus or i.MX 8M Mini/8M
Quad/8M Plus, add or modify the following file or modules.

In ${MY_TRUSTY}/trusty/device/nxp/imx8/project, imx8-inc.mk contains all common
configurations, such as CPU cores, modules that need to be built. The imx8-inc.mk can be overwritten by the
build target mk files, such as imx8qm.mk.

For example, to add a new build target based on i.MX 8QuadMax SoC called imx8qm-abc, which has six
CPUs and 1024 RPMB blocks, write a new .mk file called imx8qm-abc.mk in ${MY_TRUSTY}trusty/
device/nxp/imx8/project. The content is as follows:

TARGET := imx8q
# imx8q/x use lpuart for UART IP
IMX_USE_LPUART := true
SMP_MAX_CPUS := 6
STORAGE_RPMB_BLOCK_COUNT := 1024
include project/imx8-inc.mk

In the root of Trusty OS codes, execute $make list. Then imx8qm-abc is displayed.

3.2.4  Adding unit tests in Trusty OS and adding CAAM self-tests in Trusty OS

Trusty OS supports two unit tests to test the functionality of Trusty IPC (TIPC) and CAAM. It is only for
debugging purposes and should not be released with the open unit tests. For i.MX 8QuadMax and i.MX
8QuadXPlus, to include these unit tests, make the following changes in ${MY_TRUSTY}/trusty/device/
nxp/imx8/project:

diff --git a/project/imx8-inc.mk b/project/imx8-inc.mk
index 681a223..e7dcfdb 100644
--- a/project/imx8-inc.mk
+++ b/project/imx8-inc.mk
@@ -70,6 +70,7 @@ GLOBAL_DEFINES += APP_STORAGE_RPMB_BLOCK_COUNT=$(STORAGE_RPMB_BLOCK_COUNT)
GLOBAL_DEFINES += \
WITH_LIB_VERSION=1 \
+   WITH_CAAM_SELF_TEST=1 \
# ARM suggest to use system registers to access GICv3/v4 registers
GLOBAL_DEFINES += ARM_GIC_USE_SYSTEM_REG=1
@@ -98,6 +99,8 @@ TRUSTY_ALL_USER_TASKS := \
trusty/user/app/keymaster \
trusty/user/app/gatekeeper \
trusty/user/app/storage \
+   trusty/user/base/lib/tipc/test/main \
+   trusty/user/base/lib/tipc/test/srv \
# This project requires trusty IPC
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WITH_TRUSTY_IPC := true

Rebuild the Trusty OS and copy the output binary to ${MY_ANDROID}/vendor/nxp/fsl-proprietary/
uboot-firmware/imx8q_car. Make the following changes to build out the trusty-ut-ctrl binary:

diff --git a/imx8q/mek_8q/mek_8q.mk b/imx8q/mek_8q/mek_8q.mk
index f34f38e1..ea64ed94 100644
--- a/imx8q/mek_8q/mek_8q.mk
+++ b/imx8q/mek_8q/mek_8q.mk
@@ -277,7 +277,8 @@ PRODUCT_PACKAGES += \
        android.hardware.gatekeeper-service.trusty \
        storageproxyd \
        imx_dek_extractor \
-    imx_dek_inserter
+    imx_dek_inserter \
+    trusty-ut-ctrl
    endif

    ifeq ($(PRODUCT_IMX_TRUSTY),true)

Rebuild the Android project, the trusty-ut-ctrl binary is located at ${MY_ANDROID}/out/target/
product/mek_8q/vendor/bin/trusty-ut-ctrl.

Flash the images to board, Trusty OS runs the CAAM unit test when initializing the CAAM, The following logs
are displayed in U-Boot if the CAAM is initialized correctly:

hwsecure: 22: hwsecure init.
caam_drv: 2425: caam hwrng test PASS!!!
caam_drv: 2458: caam blob test PASS!!!
caam_drv: 969: dek blob decap succeed!
caam_drv: 2482: caam dek blob test PASS!!!
caam_drv: 2565: caam gen kdf root key test PASS!!!
caam_drv: 2515: caam AES enc test PASS!!!
caam_drv: 2524: caam AES enc test PASS!!!
caam_drv: 2552: caam hash test PASS!!!
caam_drv: 2645: AES CBC encrytion test passed!
caam_drv: 2653: AES CBC decrytion test passed!
caam_drv: 2596: AES ECB encrytion test passed!
caam_drv: 2604: AES ECB decrytion test passed!
caam_drv: 2703: AES CTR encrytion test passed!
caam_drv: 2711: AES CTR decrytion test passed!
caam_drv: 2775: AES GCM encryption test passed!
caam_drv: 2784: AES GCM decryption test passed!
caam_drv: 2820: DES EDE ECB encrytion test passed!
caam_drv: 2828: DES EDE ECB decrytion test passed!
caam_drv: 2899: DES EDE CBC  encrytion test passed!
caam_drv: 2907: DES EDE CBC decrytion test passed!

Run the following command to test the Trusty Inter Process Communication (IPC):

mek_8q:/ # trusty-ut-ctrl com.android.ipc-unittest.ctrl

The correct results are:

ipc-unittest-main: 2778: first_free_handle_index: 3
ipc-unittest-main: 2762: retry ret 0, event handle 1000, event 0x1
ipc-unittest-main: 2765: nested ret -13, event handle 1000, event 0x1
[ RUN      ] ipc.wait_negative
[       OK ] ipc.wait_negative
[ RUN      ] ipc.close_handle_negative
[       OK ] ipc.close_handle_negative
[ RUN      ] ipc.set_cookie_negative
[       OK ] ipc.set_cookie_negative
...
[ RUN      ] ipc.recv_handle
[       OK ] ipc.recv_handle
[ RUN      ] ipc.recv_handle_negative
[       OK ] ipc.recv_handle_negative
[ RUN      ] ipc.send_handle_bulk
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[       OK ] ipc.send_handle_bulk
[ RUN      ] ipc.echo_handle_bulk
[       OK ] ipc.echo_handle_bulk
[ RUN      ] ipc.tipc_connect
[       OK ] ipc.tipc_connect
[ RUN      ] ipc.tipc_send_recv_1
[       OK ] ipc.tipc_send_recv_1
[ RUN      ] ipc.tipc_send_recv_hdr_payload
[       OK ] ipc.tipc_send_recv_hdr_payload
[ RUN      ] ipc.dup_is_different
[       OK ] ipc.dup_is_different
[==========] 42 tests ran.
[  PASSED  ] 42 tests.
[ DISABLED ] 2 tests.

3.2.5  Modifying the console port for Trusty OS

Due to different hardware board designs, the debug UART may be different. i.MX Trusty OS supports to
configure a different UART port by modifying the configuration file.

To change the debug UART port, see the SoC reference manual to get the specific UART port base address.
The debug UART address is defined in trusty/hardware/nxp/target/$SOC_NAME/rules.mk.

For example, if LPUART1 is used instead of LPUART0 for i.MX 8QuadMax board, make the following
modification on rules.mk:

diff --git a/target/imx8q/rules.mk b/target/imx8q/rules.mk
index e6239e2..8ea3f37 100644
--- a/target/imx8q/rules.mk
+++ b/target/imx8q/rules.mk
@@ -25,4 +25,4 @@
PLATFORM_SOC := imx8qm
PLATFORM := imx
-CONFIG_CONSOLE_TTY_BASE := 0x5A060000
+CONFIG_CONSOLE_TTY_BASE := 0x5A070000

3.2.6  Configuring the related TA services

The Trusted Application (TA) is the software running in a secure context. There are several TAs running in the
Trusty OS. The following figure shows their relationships.
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Figure 10. Relationship between TAs

• AVB TA: It provides tamper proof operations for data used during Android Verified Boot (AVB), such as
rollback index, lock/unlock state, and vbmeta public key.

• Storage TA: It provides encrypted and tamper proof storage to secure applications, such as AVB TA. All
operations that modify the secure storage are transactional.

• Hardware Crypto TA: It provides hardware crypto and accelerates operations based on CAAM, such as RNG
generation and SHA1/SHA256 hash calculation.

• Keymaster TA: It provides all secure Keystore operations, with access to the raw key material, validating all of
the access control conditions on keys.

• Gatekeeper TA: It authenticates user passwords and generates authentication tokens used to prove to the
Keymaster TA that an authentication is done for a particular user at a particular point in time.

3.2.7  Specifying apploader encryption and sign keys

Trusted Applications (TAs) in Trusty OS can either be built into the Trusty binary or be built as loadable
modules. In the case of building the TAs as loadable modules, the build system would encrypt and sign the
modules to ensure its integrity and validity.

1. Specify apploader encryption keys.
The Trusty OS build system would encrypt the loadable modules (in AES-GCM mode) if the encryption key
file is specified. The encryption keys can be any valid customized keys. An example of the encryption key is
in: ${MY_TRUSTY}/trusty/device/nxp/imx8/project/keys/aeskey.bin.
It is generated by:

openssl rand 16 -out aeskey.bin

Note:  This example encryption key must be replaced by customized key before shipping the products.
In additional, two kinds of encryption keys are supported for different purpose. After generating the
encryption key, specify the encryption key files in ${MY_TRUSTY}/trusty/device/nxp/imx8/
project/imx8-inc.mk as follows:

APPLOADER_ENCRYPT_KEY_0_FILE := <path-to-encryption-key-0>
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APPLOADER_ENCRYPT_KEY_1_FILE := <path-to-encryption-key-1>

To encrypt an application, set the appropriate variable in the application's rules.mk as follows:

# choose encryption key 0
APPLOADER_ENCRYPT_KEY_ID_FOR_$(MODULE) := 0

or

# choose encryption key 1
APPLOADER_ENCRYPT_KEY_ID_FOR_$(MODULE) := 1

2. Specify apploader sign keys.
The Trusty OS build system would sign and generate ECDSA signatures for the loadable modules. An
example of the ECDSA sign key pairs are in: ${MY_TRUSTY}/trusty/device/nxp/imx8/project/
keys. They are generated by the script in {MY_TRUSTY}/trusty/user/base/app/apploader/g
enerate_ecdsa_keys.sh:

./generate_ecdsa_keys.sh <private key file> <public key file>

Note:  These example sign keys MUST be replaced by customized keys before shipping the products.
Similar to encryption keys, two pairs of sign key files can be provided for different purpose. After generating
the sign key pairs, specify the key files in ${MY_TRUSTY}/trusty/device/nxp/imx8/project/imx8-
inc.mk as follows:

134 PROJECT_KEYS_DIR := trusty/device/nxp/imx8/project/keys
135
136 APPLOADER_SIGN_PRIVATE_KEY_0_FILE := \
137         $(PROJECT_KEYS_DIR)/privateKey0.der
138
139 APPLOADER_SIGN_PUBLIC_KEY_0_FILE := \
140         $(PROJECT_KEYS_DIR)/publicKey0.der
141
142 APPLOADER_SIGN_PRIVATE_KEY_1_FILE := \
143         $(PROJECT_KEYS_DIR)/privateKey1.der
144
145 APPLOADER_SIGN_PUBLIC_KEY_1_FILE := \
146         $(PROJECT_KEYS_DIR)/publicKey1.der
147
150
151 APPLOADER_SIGN_KEY_ID ?= 0

If the apploader sign key is not explicitly specified, Trusty OS would sign the loadable modules with
APPLOADER_SIGN_PRIVATE_KEY_0_FILE (as 'APPLOADER_SIGN_KEY_ID' is 0). To sign an application
with different key, set the appropriate variable in the application's rules.mk as follows:

# sign with key 0
APPLOADER_SIGN_KEY_ID_FOR_$(MODULE) := 0

or

# sign with key 1
APPLOADER_SIGN_KEY_ID_FOR_$(MODULE) := 1

3.3  Configurations in U-Boot for security
U-Boot is loaded by SPL and verified with HAB. ATF starts U-Boot. The primary purpose of U-Boot is to load
and verify Android images.
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3.3.1  Overview of security features in U-Boot

Android Verified Boot (AVB) is enabled in i.MX Android images. There is an additional vbmeta image used
in AVB. This vbmeta image does not contain any code that the device will execute. It is used by U-Boot to
authenticate its own and other Android images. The other images to be authenticated with the vbmeta image
include images for boot, dtbo, system, and vendor partitions. If there are other images containing executing
code, like product, they are also authenticated based on the data in the vbmeta image. The hash value of
these images is calculated and the metadata is stored in the vbmeta image. The following figure shows the
relationship of these images.

Figure 11. Relationship between vbmeta image and related images

To make sure that the vbmeta image is trusted, it is signed with the RSA key, and the signature of the vbmeta
image is verified at boot time before the data in it are used to verify other images.

To prevent rollback attack, there is a rollback index value stored in the vbmeta image. The value can increase
with the release of images. This rollback index value in the vbmeta image is also saved in the RPMB partition
of eMMC after all the images are verified as bootable. If the rollback index value in the vbmeta image is smaller
than the one stored in the RPMB partition of eMMC, U-Boot does not boot with the related images. With dual-
bootloader enabled, SPL and U-Boot proper are not in one file, so there is another rollback index value for U-
Boot proper.

To prevent the device from getting bricked during OTA, a/b slot feature is provided. Some partitions used
to store images have two copies in the boot device. They are called "slot a" and "slot b". The image update
process only flashes one slot. An update failure does not affect the other slot.

3.3.2  Generating and fusing the eMMC RPMB key

The RPMB partition of eMMC can be fused with the 256-bit secure key. The secure key can only be
programmed one time. This secure key can only be accessed by secure world (either TEE or SPL). It is used to
sign and verify data transfer between eMMC RPMB and TEE.

There are two ways to generate the RPMB key: CAAM hardware bound key and vendor-specified key. Both
ways are associated with CAAM, which uses the value in efuse hardware. If the SRK hash value needs to
be programmed into efuse hardware and close the chips, do it first, and only after that can the RPMB key be
programmed.

• CAAM hardware bound key
The RPMB key can be derived from CAAM. This is hardware bound and is unique per device. TEE derives
this hardware bound key in every boot from CAAM, and as it is bound to the CAAM hardware, so it does not
need to store one copy of this key. This way is preferred as it is simpler and more secure.
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Fastboot command is provided to set the RPMB key from CAAM hardware bound key:

$ fastboot oem set-rpmb-hardware-key

Another method is also provided to program an RPMB key which derived from CAAM, this method is enabled
on boards which is HAB closed only. Using the i.MX 8MP evk board as example, modify the defconfig file as
follows:

diff --git a/configs/imx8mp_evk_android_trusty_dual_defconfig b/configs/
imx8mp_evk_android_trusty_dual_defconfig
index 4e2238d789..b05627c255 100644
--- a/configs/imx8mp_evk_android_trusty_dual_defconfig
+++ b/configs/imx8mp_evk_android_trusty_dual_defconfig
@@ -229,3 +229,4 @@ CONFIG_ATTESTATION_ID_DEVICE="evk_8mp"
 CONFIG_ATTESTATION_ID_PRODUCT="evk_8mp"
 CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
 CONFIG_ATTESTATION_ID_MODEL="EVK_8MP"
+CONFIG_AUTO_SET_RPMB_KEY=y

Update the bootloader and bootup, then the RPMB key is set automatically on a HAB closed board.

• Vendor specified key
Vendor can specify any customized RPMB key. One copy of the key is encapsulated with CAAM and the
generated key blob is saved into the last block of the eMMC BOOT1 partition. The BOOT1 partition size of
eMMC on i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK is 8 MB. It is 4 MB on i.MX 8M Mini EVK, i.MX
8M Plus EVK, and i.MX8M Nano EVK. To prevent key blob from being tampered when the system is running,
the BOOT1 partition is set with power-on write protection when the board boots up.
The location to store the key blob may need to be changed based on the board design. Two macros are used
to control the location of the key blob. These two macros are the same for i.MX 8QuadMax MEK and i.MX
8QuadXPlus MEK. Their definitions are as follows:

#define KEYSLOT_HWPARTITION_ID 2
#define KEYSLOT_BLKS 0x3FFF

While for i.MX 8M Mini EVK and i.MX 8M Nano EVK, the definition is as follows:

#define KEYSLOT_HWPARTITION_ID 2
#define KEYSLOT_BLKS 0x1FFF

KEYSLOT_HWPARTITION_ID represents the eMMC partition. 0 means USERDATA partition, 1 means
BOOT0 partition, and 2 means BOOT1 partition. KEYSLOT_BLKS represents the block in which the key blob is
stored.
For i.MX 8QuadMax MEK, they are in the following files. For other platforms, it is in other board-related
header files in the same folder.

/* Android Automotive */
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/
imx8qm_mek_android_auto.h
/* Standard Android */
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/
imx8qm_mek_android.h

The customized RPMB key file should be started with magic "RPMB" and followed by the raw key. The
following steps show how to generate the default key file rpmb_key_test.bin:

$ touch rpmb_key_test.bin
$ echo –n "RPMB" > rpmb_key_test.bin
$ echo –n -e
 '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'>> rpmb_key_test.bin
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The \xHH means eight-bit character whose value is the hexadecimal value 'HH'. You can replace above "00"
with the key you want to set.
After generating the customized RPMB key file, the following fastboot commands are available to set the
RPMB key:

$ fastboot stage rpmb_key_test.bin
$ fastboot oem set-rpmb-staged-key

After the RPMB key is programed with either of the two ways, reboot the board. The RPMB service in Trusty
OS is then initialized successfully.

3.3.3  Generating keys to sign and verify images

Images are signed during the time of building Android platform to ensure their integrity. A pair of asymmetric
keys (AVB keys) is used to sign the vbmeta struct in the vbmeta image. On the standard Android platform,
there is another pair of asymmetric keys (AVB boot keys) to sign the vbmeta struct in the boot image,
which would be built as 'chained partition'. For more information about chained partition, see https://android.
googlesource.com/platform/external/avb/+/master/README.md.

By default, the private AVB key used to sign the vbmeta struct in vbmeta image is located at:

${MY_ANDROID}/device/nxp/common/security/testkey_rsa4096.pem

Its corresponding public key is:

${MY_ANDROID}/device/nxp/common/security/testkey_public_rsa4096.bin.

The default private AVB boot key used to sign the boot image is located at:

${MY_ANDROID}/external/avb/test/data/testkey_rsa2048.pem

The private key can be generated with OpenSSL. For example, the following command can generate RSA-4096
private key test_rsa4096_private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out
 custom_rsa4096_private.pem

The corresponding public key can be extracted from the private key with avbtool. The avbtool can be found in
${MY_ANDROID}/external/avb. Execute the following command to extract the public key from the private
key:

avbtool extract_public_key --key custom_rsa4096_private.pem --output
 custom_rsa4096_public.bin

SHA256_RSA4094 and SHA256_RSA2048 are recommended algorithm to sign the images for i.MX 8Quad and
i.MX 8M devices whose Cryptographic Acceleration and Assurance Module (CAAM) can help accelerate the
hash calculation. We can keep it as default.

Custom keys should be used to sign the images for production, examples to set the custom AVB key to sign the
vbmeta image are as follows:

diff --git a/imx8q/mek_8q/BoardConfig.mk b/imx8q/mek_8q/BoardConfig.mk
index 8e367bb..e1385f9 100644
--- a/imx8q/mek_8q/BoardConfig.mk
+++ b/imx8q/mek_8q/BoardConfig.mk
@@ -207,7 +207,7 @@ BOARD_AVB_ENABLE := true
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ifeq ($(PRODUCT_IMX_CAR),true)
BOARD_AVB_ALGORITHM := SHA256_RSA4096
# The testkey_rsa4096.pem is copied from external/avb/test/data/
testkey_rsa4096.pem
-BOARD_AVB_KEY_PATH := device/nxp/common/security/testkey_rsa4096.pem
+BOARD_AVB_KEY_PATH := ${your-key-directory}/custom_rsa4096_private.pem
endif
TARGET_USES_MKE2FS := true

Examples to set the custom AVB boot key to sign the boot image are as follows:

diff --git a/imx8q/mek_8q/BoardConfig.mk b/imx8q/mek_8q/BoardConfig.mk
index dbfb2821..744c2086 100644
--- a/imx8q/mek_8q/BoardConfig.mk
+++ b/imx8q/mek_8q/BoardConfig.mk
@@ -253,7 +253,7 @@ BOARD_AVB_ALGORITHM := SHA256_RSA4096
BOARD_AVB_KEY_PATH := device/nxp/common/security/testkey_rsa4096.pem
ifneq ($(PRODUCT_IMX_CAR),true)
-BOARD_AVB_BOOT_KEY_PATH := external/avb/test/data/testkey_rsa2048.pem
+BOARD_AVB_BOOT_KEY_PATH := ${your-key-directory}/custom_rsa2048_private.pem
BOARD_AVB_BOOT_ALGORITHM := SHA256_RSA2048
BOARD_AVB_BOOT_ROLLBACK_INDEX := 0
BOARD_AVB_BOOT_ROLLBACK_INDEX_LOCATION := 2

AVB checks the signature and the AVB public key when verifying the vbmeta image, so the AVB public key
must be stored to the TEE backed RPMB when Trusty is enabled. Make the board enter fastboot mode, and
execute the following commands:

$ fastboot stage custom_rsa4096_public.bin
$ fastboot oem set-public-key

custom_rsa4096_public.bin is the public AVB key just generated. If you use the default AVB keys for
debug purpose, flash the default public key with the following commands:

$ fastboot stage testkey_public_rsa4096.bin
$ fastboot oem set-public-key

3.3.4  Bypass vbmeta/lock check for development purposes

Bypassing vbmeta/lock check is very convenient for development work. To unlock the device after all images
are flashed, boot the board to the Android UI, enable "Developer options" in the "Settings" Application, open
"OEM unlocking" under "Developer options", and reboot the board to fastboot mode. Execute the following
command:

$ sudo fastboot oem unlock

After the board is unlocked, images can be flashed with the fastboot command. To bypass vbmeta check,
use fastboot to flash the vbmeta image with the --disable-verity option. Take i.MX 8QuadMax MEK as an
example, execute the following commands:

$ sudo fastboot flash vbmeta_a vbmeta-imx8qm.img --disable-verity
$ sudo fastboot flash vbmeta_b vbmeta-imx8qm.img --disable-verity
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3.3.5  Changing the value of the rollback index in images

There are three rollback index values involved in this release: bootloader rollback index, boot rollback index,
and vbmeta rollback index. The bootloader rollback index is used to prevent bootloader rollback attack. It is only
available when the dual-bootloader feature is enabled. The boot rollback index is available when the boot image
is built as chained partition. It is only supported on standard Android platform. The vbmeta rollback index is
supported on all platforms. By default, the initial value of all kinds of rollback index is zero.

When a version of images is to be released to fix a bug in previous version, which makes previous images
under potential attacks, it is suggested to increase the rollback index values by one compared to previous
version. For more information about rollback index usage, see https://android.googlesource.com/platform/e
xternal/avb/+/master/README.md.

In this release of i.MX Android platform, some modifications are made to the Android build system. A shell script
named imx-make.sh is provided to build U-Boot and kernel code independently from the building process of
Android images. To make the build process simple, as all images can be built with only one command, imx-
make.sh starts to build Android images after U-Boot and kernel are built. When executing the imx-make.sh
script, a shell variable named BOOTLOADER_RBINDEX can be specified to change the bootloader rollback index,
a shell variable named AVB_BOOT_RBINDEX can be specified to change the boot rollback index, and a shell
variable named AVB_RBINDEX can be specified to change the vbmeta rollback index.

As an example, the following command can be executed to change the rollback index values. Change
${bootloader_rbindex}, ${avb_rbindex}, and ${avb_boot_rbindex} to the value you want to set:

BOOTLOADER_RBINDEX=${bootloader_rbindex} AVB_RBINDEX=${avb_rbindex}
 AVB_BOOT_RBINDEX=${avb_boot_rbindex} ./imx-make.sh -j4

If the U-Boot and kernel are already built and they do not need to be updated, make can be used to build
vbmeta and other related images need to be updated. Change the rollback index value as shown in the
following example. Change ${avb_rbindex} and ${avb_boot_rbindex} to the value you want to set.

make -j4 AVB_RBINDEX=$(avb_rbindex) AVB_BOOT_RBINDEX=${avb_boot_rbindex}

3.3.6  Programming the attestation key

Attestation key is programmed in U-Boot. The keystore key attestation aims to provide a way to strongly
determine if an asymmetric key pair is hardware-backed, what the properties of the key are, and what
constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA) and the
corresponding certificate chains to partners from the Android Partner Front End (APFE). After retrieving the
"keybox" from Google, parse the "keybox", and provision the keys and certificates to secure storage. Both keys
and certificates should be encoded with Distinguished Encoding Rules (DER).

Two ways are provided to provision the attestation keys and certificates:

• Provisioning the keys and certificates in plaintext format directly.
• Provisioning the keys and certificates in AES-ECB encrypted format, which is then decrypted into plaintext

before written into the secure storage.

Before the provisioning, make sure the secure storage is properly initialized for Trusty OS.

1. Provision keys and certificates in plaintext format.
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Fastboot commands are provided to flash the attestation keys and certificates in plaintext format to device.
This way is simpler but has more risk of leaking the keys. Boot the board into fastboot mode and use the
following commands.
• Set the RSA private key:

$ fastboot stage ${path-to-rsa-private-key}
$ fastboot oem set-rsa-atte-key

• Set the ECDSA private key:

$ fastboot stage ${path-to-ecdsa-private-key}
$ fastboot oem set-ec-atte-key

• Append the RSA certificate chain:

$ fastboot stage ${path-to-rsa-atte-cert}
$ fastboot oem append-rsa-atte-cert

The second command may need to be executed multiple times to append the whole certificate chain.
• Append the ECDSA certificate chain:

$ fastboot stage < path-to-ecdsa-cert >
$ fastboot oem append-ec-atte-cert

The second command may need to be executed multiple times to append the whole certificate chain.
2. Provision keys and certificates in AES-ECB encrypted format.

Fastboot commands are provided to flash AES-ECB encoded keys and certificates to device. It can prevent
leakage of the plaintext materials. This way encrypts the keys and certificates with the MPPUBK, and then
the encrypted keys and certificates would be decrypted into plaintext in Trusty OS before they are written
into secure storage. This way can only be used on the HAB CLOSED board. The workflow is as follows.

Figure 12. Flashing AES-ECB encoded keys and certificates to device
Boot the board into fastboot mode and perform the following steps:
a. Get MPPUBK:

$ fastboot oem get-mppubk
$ fastboot get_staged mppubk.bin

b. Encrypt the plaintext attestation keys and certificates with the MPPUBK.
The attestation keys and certificates should be encrypted in AES-ECB with the generated MPPUBK.
The following is a simple encryption python scripts gen_secure_atte.py:

from Crypto.Cipher import AES
import struct
import argparse
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parser = argparse.ArgumentParser(description='Secure Provision encrypt
 tool.')
parser.add_argument('key', type=file)
parser.add_argument('plaintext', type=file)
parser.add_argument('blob', type=argparse.FileType('w'))
args = parser.parse_args()
data = args.plaintext.read()
data_len = len(data)
written_len  = struct.pack('I', data_len)
#AES need 16 bytes align, so pad the data it
data += '\0' * (((len(data)+15)/16 * 16) - len(data))
key2 = args.key.read()
key = key2[0:16]
magic = "!AT"
pad0 = struct.pack('B', 0)
cipher = AES.new(key, AES.MODE_ECB)
blob = cipher.encrypt(data)
args.blob.write(magic)
args.blob.write(pad0)
args.blob.write(written_len)
args.blob.write(blob)
#blob structure describe as below:
#{
#  char magic[4] = "!AT";
#  uint32_t len = plaintext_length
#  uint8 *encrypted_data
#}

Encrypt the keys and the certificates on the host computer:

$ python gen_secure_atte.py mppubk.bin < path-to-plaintext-keys-or-
certificates > < encrypted-keys-or-certificates >

c. Set encrypted RSA private key:

$ fastboot stage ${path-to-encrypted-rsa-private-key}
$ fastboot oem set-rsa-atte-key-enc

d. Set encrypted ECDSA private key:

$ fastboot stage ${path-to-encrypted-ecdsa-private-key}
$ fastboot oem set-ec-atte-key-enc

e. Append encrypted RSA certificate chain:

$ fastboot stage ${path-to-encrypted-rsa-atte-cert}
$ fastboot oem append-rsa-atte-cert-enc

The second command may need to be executed multiple times to append the whole certificate chain.
f. Append encrypted ECDSA certificate chain:

$ fastboot stage < path-to-encrypted-ecdsa-cert >
$ fastboot oem append-ec-atte-cert-enc

The second command may need to be executed multiple times to append the whole certificate chain.

3.3.7  Programming the hardware identifiers

ID attestation allows the device to provide proof of its hardware identifiers. For more information about ID
attestation, see https://source.android.com/security/keystore/attestation. All hardware identifiers provisioned
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should match related system properties. The following table shows a map of all supported identifiers and the
system properties.

Identifiers Build property

ATTESTATION_ID_BRAND ro.product.brand

ATTESTATION_ID_DEVICE ro.product.device

ATTESTATION_ID_MANUFACTURER ro.product.manufacturer

ATTESTATION_ID_MODEL ro.product.model

ATTESTATION_ID_PRODUCT ro.product.product.name

ATTESTATION_ID_SERIAL ro.serialno

The hardware identifiers are provisioned in bootloader and they can be set by configs. Take i.MX 8QM as
example, its hardware identifiers are set in {UBOOT_PATH}/configs/imx8qm_mek_android_trusty_
defconfig:

CONFIG_ATTESTATION_ID_BRAND="Android"
CONFIG_ATTESTATION_ID_DEVICE="mek_8q"
CONFIG_ATTESTATION_ID_PRODUCT="mek_8q"
CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
CONFIG_ATTESTATION_ID_MODEL="MEK-MX8Q"

Note that the serial number is unique for each device, so its value is auto detected in bootloader.

Change the identifiers as needed, then flash updated bootloader image and boot the board into fastboot mode,
run the following command to provision the identifiers:

$ fastboot oem set-device-id

3.3.8  Provisioning Widevine L1 keybox

The Widevine is a widely used Digital Rights Management (DRM) technology, which helps to protect media
streaming from being copied and redistributed. The L1 level Widevine is now supported on the i.MX 8M Plus
EVK board. Before making the L1 level Widevine work, users need to provision the Widevine keybox first.

Just like attestation keys and certificates, two ways are provided to provision the Widevine keybox. One is
provisioning the keybox binary in plaintext format, and the other is provisioning the keybox binary in AES-ECB
encrypted format, which is then decrypted into plaintext before written into secure storage.

• Provisioning keybox binary in plaintext format
Fastboot commands are provided to flash the keybox in plaintext format to device. This way is simpler but has
more risks of leaking the keys.
Boot the board into fastboot mode and run the following commands:

$ fastboot stage ${path-to-keybox-binary}
$ fastboot oem provision-wv-keybox

• Provisioning keybox binary in AES-ECB encrypted format
Fastboot commands are provided to flash AES-ECB encoded keybox to device. It can prevent leakage of the
plaintext materials. This way encrypts the keybox with the MPPUBK (Manufacturing Protection Public Key,
generated from CAAM module), and then the encrypted keybox is decrypted into plaintext in Trusty OS before
written into secure storage. This way can only be used on the HAB CLOSED board (Manufacturing protection
feature is not ready on i.MX 8ULP, so this feature is disabled on i.MX 8ULP).
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Perform the following steps to encrypt the keybox and provision it into the device:
1. Get the MPPUBK.

$ fastboot oem get-mppubk
$ fastboot get_staged mppubk.bin

2. Encrypt the plaintext keybox with the MPPUBK.
The plaintext keybox binary should be encrypted in AES-ECB with the generated MPPUBK. Do the
encryption with the python scripts gen_secure_atte.py, which is mentioned in Section Section 3.3.6.

$ python gen_secure_atte.py mppubk.bin ${path-to-plaintext-keybox}
 ${encrypted-keybox}

3. Provision the widevine keybox.

$ fastboot stage ${path-to-encrypted-keybox}
$ fastboot oem provision-wv-keybox-enc

3.3.9  Changing the way to store lock status and/or rollback index

For images with TEE enabled, lock status and rollback index values are stored in RPMB. The rollback index
value for AVB is written/read by TEE into/from RPMB but the write/read process is initiated by U-Boot. For
i.MX Android with dual-bootloader feature, there is a rollback index for bootloader, this rollback index value for
bootloader is written/read by SPL into/from RPMB.

Rollback index values and lock status can be used for many purposes as designed by developers, not limited
to the usage in i.MX Android code. At this point, it is necessary to know how the lock status and rollback index
values are stored on board.

For i.MX Android with dual-bootloader feature, the rollback index value for bootloader is read from RPMB to
compare with the one in the bootloader image. If the rollback index value is bigger than the one stored in RPMB
and the images are verified as bootable, rollback index value in bootloader image is written into RPMB. This
logic is completed in the following function:

static int spl_verify_rbidx(struct mmc *mmc, AvbABSlotData *slot,
struct spl_image_info *spl_image)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/fsl_avb_ab_flow.c

For new boards just flashed with images, at their first time of boot, a default rollback index value is written in
RPMB in the following function:

int rpmb_init(void)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/fsl_avb_ab_flow.c

From the functions listed above, it is known that the rollback index value for bootloader is located by
a kblb_hdr_t type structure variable. This structure has a magic value. A member with the type of
kblb_tag_t is used to specify the rollback index value.
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Now in i.MX Android Auto, the offset of the rollback index value for bootloader is controlled by a macro named
BOOTLOADER_RBIDX_START as defined in the following two files respectively for i.MX 8QuadMax MEK and
i.MX 8QuadXPlus MEK.

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/
imx8qm_mek_android_auto.h
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/
imx8qxp_mek_android_auto.h

The value for BOOTLOADER_RBIDX_START is 0x3FF000, 4KB offset from the end of the RPMB partition.

The read process of the rollback index value for AVB is initiated by U-Boot in the following function:

FbLockState fastboot_get_lock_stat(void)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/drivers/usb/gadget/
fastboot_lock_unlock.c

For images with TEE enabled, this function invokes the following function. It uses TIPC to communicate with
TEE to get the value.

int trusty_read_lock_state(uint8_t *lock_state)

The write process of the rollback index value for AVB is initiated by U-Boot in the following function:

int fastboot_set_lock_stat(FbLockState lock)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/drivers/usb/gadget/
fastboot_lock_unlock.c

For images with TEE enabled, this function invokes the following function. It uses TIPC to communicate with
TEE to save the value.

int trusty_write_lock_state(uint8_t lock_state)

Rollback index value for AVB is read to compare with the one in vbmeta image and the one in vbmeta image is
saved into RPMB if necessary. This logic is completed in the following function:

AvbABFlowResult avb_flow_dual_uboot(AvbABOps* ab_ops,
const char* const* requested_partitions,
AvbSlotVerifyFlags flags,
AvbHashtreeErrorMode hashtree_error_mode,
AvbSlotVerifyData** out_data)

In the following file:

${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/fsl_avb_ab_flow.c

The following two functions are invoked to read and store the rollback index for vbmeta:

AvbIOResult fsl_read_rollback_index_rpmb(AvbOps* ops, size_t rollback_index_slot,
uint64_t* out_rollback_index)
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AvbIOResult fsl_write_rollback_index_rpmb(AvbOps* ops, size_t rollback_index_slot,
uint64_t rollback_index)

They finally communicate with TEE to finish the work.

3.3.10  Choosing to boot a specific slot

With both slots flashed with images, a specific slot can be chosen to boot manually for development purpose.
Boot the board into fastboot mode, and execute the following command to boot from "slot a" or "slot b":

$ sudo fastboot set_active a
$ sudo fastboot set_active b

3.3.11  Disabling development options in U-Boot

To facilitate development, some development options are set in U-Boot, which may bring in potential security
holes. Before shipping the final products, these options must be closed.

• Boot delay
By default, the U-Boot reserves 2 seconds count-down to help developer stop at U-Boot and run some U-Boot
commands. This can be disabled by setting CONFIG_BOOTDELAY to -2. For i.MX 8M Plus EVK, make the
following changes. Similar changes need to be made on other platforms that you are working on.

diff --git a/configs/imx8mp_evk_android_trusty_defconfig b/configs/
imx8mp_evk_android_trusty_defconfig
index 80a4d45a5e..0ea9e3b9fc 100644
--- a/configs/imx8mp_evk_android_trusty_defconfig
+++ b/configs/imx8mp_evk_android_trusty_defconfig
@@ -185,3 +185,4 @@ CONFIG_ATTESTATION_ID_DEVICE="evk_8mp"
 CONFIG_ATTESTATION_ID_PRODUCT="evk_8mp"
 CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
 CONFIG_ATTESTATION_ID_MODEL="EVK_8MP"
+CONFIG_BOOTDELAY=-2

• Bootargs appending
The bootargs may need to be changed frequently during development. NXP U-Boot supports appending the
U-Boot variable append_bootargs to the default bootargs, which will be passed to kernel. However, this
feature can be used by hackers to compromise the device and should be disabled in any formal release. To
disable the bootargs appending feature, you need to disable CONFIG_APPEND_BOOTARGS. For For i.MX 8M
Plus EVK, make the following changes. Similar changes need to be made on other platforms that you are
working on.

diff --git a/configs/imx8mp_evk_android_trusty_defconfig b/configs/
imx8mp_evk_android_trusty_defconfig
index 80a4d45a5e..62ab4afaa0 100644
--- a/configs/imx8mp_evk_android_trusty_defconfig
+++ b/configs/imx8mp_evk_android_trusty_defconfig
@@ -171,7 +171,6 @@ CONFIG_CMD_BMP=y
 CONFIG_LZ4=y
 CONFIG_FLASH_MCUFIRMWARE_SUPPORT=y
-CONFIG_APPEND_BOOTARGS=y
 CONFIG_SPL_MMC_SUPPORT=y
 CONFIG_AVB_WARNING_LOGO=y
 CONFIG_AVB_WARNING_LOGO_COLS=0x320

• Disable manufacturing production public key extraction
The manufacturing production public key can be used as encryption/decryption keys in some cases, leaking
the key has potential risk of leaking other important materials. The extraction of the manufacturing production
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public must be disabled for shipping images. For i.MX 8M Plus EVK, you can make below changes. Similar
changes need to be made on other platforms that you are working on.

diff --git a/configs/imx8mp_evk_android_trusty_defconfig b/configs/
imx8mp_evk_android_trusty_defconfig
index 80a4d45a5e..61be3f5ebe 100644
--- a/configs/imx8mp_evk_android_trusty_defconfig
+++ b/configs/imx8mp_evk_android_trusty_defconfig
@@ -185,3 +185,4 @@ CONFIG_ATTESTATION_ID_DEVICE="evk_8mp"
 CONFIG_ATTESTATION_ID_PRODUCT="evk_8mp"
 CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
 CONFIG_ATTESTATION_ID_MODEL="EVK_8MP"
+CONFIG_GENERATE_MPPUBK=n

3.3.12  Secure unlock

Secure unlock is designed to prevent unauthorized unlock. It requires the unlock credential. The unlock
operation can only occur after a valid unlock credential is provided.

An example is provided, which generates the unlock credential with serial number and MPPUBK (Manufacturing
Protection Public Key, generated from CAAM module). To enable the secure unlock feature, enable
CONFIG_SECURE_UNLOCK. For i.MX 8M Plus EVK, make the following changes. Similar changes need to be
made on other platforms that you are working on:

diff --git a/configs/imx8mp_evk_android_trusty_defconfig b/configs/
imx8mp_evk_android_trusty_defconfig
index 80a4d45a5e..b3da5c6ea3 100644
--- a/configs/imx8mp_evk_android_trusty_defconfig
+++ b/configs/imx8mp_evk_android_trusty_defconfig
@@ -185,3 +185,4 @@ CONFIG_ATTESTATION_ID_DEVICE="evk_8mp"
 CONFIG_ATTESTATION_ID_PRODUCT="evk_8mp"
 CONFIG_ATTESTATION_ID_MANUFACTURER="nxp"
 CONFIG_ATTESTATION_ID_MODEL="EVK_8MP"
+CONFIG_SECURE_UNLOCK=y

Perform the following steps to verify the secure unlock feature. These operations can only be executed on the
HAB closed boards (Manufacturing protection feature is not ready on i.MX 8ULP, secure unlock feature requires
the MPPUBK support, so this feature is disabled on i.MX 8ULP):

1. Get MPPUBK.

$ fastboot oem get-mppubk
$ fastboot get_staged mppubk.bin

2. Get the serial number.

$ fastboot oem get-serial-number
$ fastboot get_staged serial.bin

3. Generate the unlock credential. Encrypt serial.bin with mppubk.bin on the host PC. For the encryption
script, see Section Section 3.3.6.

$ python gen_secure_atte.py mppubk.bin serial.bin serial-enc.bin

4. Verify the secure unlock feature.

$ fastboot stage serial-enc.bin
$ fastboot oem unlock

You may need to lock the device first if the device is already in unlocked state.
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3.3.13  Secure firmware loader

On i.MX 8QuadMax, Widevine L1 is enabled. Therefore, to protect the VPU firmware, the secure firmware
loader is enabled. The firmware to be protected is encrypted with an AES symmetric key, and then signed with
an asymmetric key generated with OPENSSL. When the firmware needs to be loaded, the signed firmware is
sent to the Trusty OS, which is verified and decrypted by the firmware Loader Trusted Application.

By default, the key used to encrypt the firmware is located at:

${MY_ANDROID}/device/nxp/common/security/firmware_encrypt_key.bin

The private key that is used to sign the firmware is located at:

 ${MY_ANDROID}/device/nxp/common/security/firmware_private_key.der

The public key in the RPMB partition is used to verify the firmware and it is located at:

 ${MY_ANDROID}/device/nxp/common/security/firmware_public_key.der

These keys also have been copied to $OUT/firmware_test_keys/. Users can replace them as required.

The three keys above can be directly generated by an example script located at:

${MY_ANDROID}/device/nxp/common/tools/generate_key.sh

These keys can be generated by referring to the following commands:

./${MY_ANDROID}/device/nxp/common/tools/generate_key.sh firmware_private_key.der
 firmware_public_key.der firmware_encrypt_key.bin

To protect the key required for decryption and signature verification, the public key and encrypt key need to be
flashed to the RPMB partition, and the Trusty OS then obtains the two keys from the RPMB partition through the
secure storage.

Make the board enter fastboot mode, and then execute the following commands to flash the decrypt key:

$ fastboot stage firmware_encrypt_key.bin
$ fastboot oem provision-firmware-encrypt-key

Make the board enter fastboot mode, and then execute the following commands to flash the verify key:

$ fastboot stage firmware_public_key.der
$ fastboot oem provision-firmware-sign-key

When imx-make.sh is used to build the kernel module, package_tool is used to encrypt and sign the
specified VPU firmware. When the build is finished, vpu_fw_imx8_dec.bin.signed is created at the ${MY_
ANDROID}/vendor/nxp/linux-firmware-imx/firmware/vpu/ directory.

3.3.14  Setting up encrypted boot OTA

Encrypted boot OTA allows to upgrade images with encrypted boot enabled on a HAB closed device.
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3.3.14.1  Provisioning a DEK blob

The DEK blob files that obtained in the encrypt process are essential in the upgrade process. Save them as
dek_blob_spl.bin and dek_blob_bl.bin. The following commands are used to provision DEK blobs to
secure storage.

$ fastboot stage dek_blob_spl.bin
$ fastboot oem provision-spl-dek-blob
$ fastboot stage dek_blob_bl.bin
$ fastboot oem provision-bootloader-dek-blob

3.3.14.2  Setting up bootargs to enable encrypted boot OTA

The encrypted boot OTA is not enabled by default. You can add the bootargs to enable it. Set device bootargs
as follows:

=> setenv append_bootargs androidboot.encrypted_boot_ota=true
=> saveenv

With this bootargs set, the imx_dek_extractor services is launched during the boot process and it is used to
extract the DEK blobs during the OTA process.

3.4  Configurations in Linux/Android platform for security features

3.4.1  DM-Verity relationship with vbmeta

The Device Mapper verity (DM-verity) kernel feature supports transparent integrity checking of block devices.
This feature helps Android users be sure that when booting a device, it is in the same state as when it
is flashed. The vbmeta image contains a kernel command-line descriptor for setting up DM-verity for
system.img, together with hashtree descriptors for system.img and vendor.img. The hash tree descriptor
in the vbmeta image contains the root hash, salt and the offset of the hashtree, which are essential to do the
DM-verity check for system and vendor partitions.

When the DM-verity is enabled for system and vendor partition, any operations that break the consistency of the
system.img, vendor.img, and vbmeta.img will cause DM-verity check failure, and thus cause the system
boot failure.

3.4.2  Trusty OS Linux driver configuration

The Trusty OS supports to output the logs to UART or TIPC log channel. The Trusty OS Linux driver supports to
carry the logs from the Trusty OS by TIPC channel. By default, this feature is enabled in the reference image.

In the Trusty OS Linux driver trusty-log, when it is enabled, the Trusty OS shuts down the UART output log port.
The UART driver in the Trusty OS outputs characters synchronously and it costs much IO time.

The trusty-log driver is configured in the device tree as follows:

trusty-log {
compatible = "android,trusty-log-v1";
};
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3.4.3  Trusty based keymaster, gatekeeper, and secure storage proxy

The trusty backed keymaster HAL is a dynamically loadable library used by the keystore service to provide
hardware-backed cryptographic services. It does not provide any sensitive operations in user space, or even in
kernel space. All sensitive operations are delegated to the keymaster TA in the Trusty OS (secure world). The
relationship is shown in the following figure.

Figure 13. Relationship between keymaster HAL and keymaster TA

The trusty backed keymaster HAL 3.0 is designed for Android Pie 9 or later, which cannot work for Android
Oreo 8.1. Instead, the Android Oreo 8.1 is running trusty backed keymaster HAL 2.0.

The Gatekeeper subsystem performs device pattern/password authentication. It enrolls and verifies passwords
through an HMAC with a secret key. Additionally, the Gatekeeper throttles consecutive failed verification
attempts and refuses to service requests based on a given timeout and a given number of consecutive failed
attempts. The trusty backed gatekeeper sends all critical operations to the gatekeeper TA in trusty.

The secure storage proxy is running in the Linux end to communicate with the storage TA in trusty to perform
secure storage read/write operations, for example, reading/writing data from/to RPMB partition of the eMMC
device.

Trusty backed keymaster, gatekeeper, and secure storage proxy all depend on secure storage, which
can only be accessed by trusty, but users may not want to set the secure storage properly (like the key
of RPMB), because in some instances, security is not so important and can even be neglected. In this
case, both keymaster and gatekeeper fall back to software backed version, and they are chosen by the
androidboot.keystore variable in the kernel command line.

When the trusty and associated trusted applications (such as keymaster TA and storage TA) are initialized
properly, U-Boot sets androidboot.keystore to trusty, otherwise to software, and then passes it to the
kernel through the kernel command line. The androidboot.keystore is translated to ro.boot.keystore
Android property, and then the initialization program chooses the keymaster and gatekeeper version (trusty
backed or software backed) and starts the secure storage proxy according to this property. The following figure
shows the workflow.
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Figure 14. TEE and TA initialization and workflow

3.4.4  Disabling GPU flat mapping

When GPU flat mapping is enabled, hackers may be able to snoop privileged memory. The GPU flat mapping is
enabled by default, but the user can disable it by adding bootargs as follows:

galcore.baseAddress=<dram-base-address> galcore.physSize=0
 galcore.mmuException=0

The dram-base-address varies on different platforms. The value should be decided based on each platform.
Take i.MX 8M Plus as an example. The user can disable the GPU flat mapping by adding the following bootargs
in {MY_ANDROID}/imx8m/evk_8mp/BoardConfig.mk:

diff --git a/imx8m/evk_8mp/BoardConfig.mk b/imx8m/evk_8mp/BoardConfig.mk
index 4732374b..83089631 100644
--- a/imx8m/evk_8mp/BoardConfig.mk
+++ b/imx8m/evk_8mp/BoardConfig.mk
@@ -119,6 +119,9 @@ BOARD_KERNEL_CMDLINE := init=/init
 androidboot.console=ttymxc1 androidboot.hardw
BOARD_KERNEL_CMDLINE += transparent_hugepage=never
BOARD_KERNEL_CMDLINE += swiotlb=65536
+# disable GPU flat mapping
+BOARD_KERNEL_CMDLINE += galcore.baseAddress=0x40000000 galcore.physSize=0
 galcore.mmuException=0
+
# display config
BOARD_KERNEL_CMDLINE += androidboot.lcd_density=240
 androidboot.primary_display=imx-drm

4   Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.
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3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

5   Revision History

Revision number Release date Description

ASUG v.android-14.0.0_1.0.0 7 January 2025 Added Section 3.1.4.14.
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android-13.0.0_2.2.0 24 October 2023 i.MX 8ULP EVK, i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, i.MX
8M Quad, i.MX 8QuadMax, and i.MX 8QuadXPlus GA release.
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android-12.0.0_1.0.0 03/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano, i.MX
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android-11.0.0_2.6.0 01/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano, i.MX
8M Plus, and i.MX 8M Quad GA release.

android-11.0.0_2.4.0 10/2021 i.MX 8ULP EVK Alpha release, i.MX 8M Mini, i.MX 8M Nano, i.MX
8M Plus, and i.MX 8M Quad GA release.

android-11.0.0_2.2.0 07/2021 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, and i.MX 8M Quad
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Revision number Release date Description

android-11.0.0_1.0.0 12/2020 i.MX 8M Plus EVK Beta release, and all the other i.MX 8 GA
release.

android-10.0.0_2.3.0 07/2020 i.MX 8M Plus EVK Beta1 release, and all the other i.MX 8 GA
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P9.0.0_1.0.0-beta 11/2018 Initial release
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