
UG10159
i.MX Graphics User's Guide
Rev. 9.1 — 9 August 2024 User guide

Document information
Information Content

Keywords i.MX, Linux, Android, Graphics, UG10159

Abstract The purpose of this document is to provide information on graphic APIs and driver support.

https://www.nxp.com

NXP Semiconductors UG10159
i.MX Graphics User's Guide

1 Introduction

The purpose of this document is to provide information on graphic APIs and driver support. Each chapter
describes a specific set of APIs or driver integration as well as specific hardware acceleration customization.
The target audiences for this document are developers writing graphics applications or video drivers.

1.1 i.MX full GPU line
The whole family of GPUs are listed in the following table. On i.MX 6 boards, only 6Quad and 6QuadPlus
support OpenCL. The theoretical number of GFLOPS, the key performance indicator of OpenCL, is also shown
in the table. Some benchmarks such as Clpeak, can be used to verify it.

i.MX 8QuadMax supports OpenVX, which will be introduced in next chapter.

i.MX 9
i.MX 95

i.MX 8
8QuadMax

i.MX 8M Plus
i.MX 8M Quad,

Dual
QuadLite

i.MX 8X
8DualXPlus

8QuadXPlus
i.MX 8M Nanoi.MX 8M Minii.MX

8ULP
i.MX
7ULP

i.MX
6DualPlus

6QuadPlus

i.MX
6Quad

i.MX
6Solo

6DualLite

i.MX
6SoloX

Product

High Perf
2D Blit Engine

High Perf
2D Blit Engine

GC520LN/AHigh Perf
2D Blit Engine

N/AGC520LGC520LGC328GC355 (VG)
GC328

GC355 (VG)
GC320

GC320GC400T (2D)GPU 2D

G310 V2
x2

GC7000 XSVXGC7000 UltraLiteGC7000 LiteGC7000 Lite
GC7000
UltraLite

GC7000
NanoUltra

GC7000
NanoUltra31

GC700
NanoUltraGC2000+GC2000GC880GC400T (3D)GPU 3D

18 + 824421114411# Shaders (Vec4)

1000800 [1000]1000[1000]800 [800]700 [850]500 [600]1000317 [317]400 [400]594 [720]528 [594]264 [528]360 [720]Clock (MHz)
Core [Shader]

4000
1600 + 1600 (dual)

3200 (bridged)10001600140050050029620011881056264180Pixel Rate (Mpix/s)

400267 + 267 (dual)
267 (bridged)

166267234835052401981768136Geom. Rate
(MTri/s)

120/60256 / 12832/1651.2 / 25.655.2 / 27.619.2/9.616/84.8/2.43.2/1.646 / 2319 (high)4.2 (high)2.9 (high)GFLOPS (Theoretical)
Med/High Precision

G2DOpenVG 1.1†, G2DOpenVG 1.1†,
G2D

OpenVG 1.1†OpenVG 1.1†,
G2D

OpenVG 1.1†,
G2D

OpenVG 1.1†,
G2D

OpenVG 1.1†,
G2D

OpenVG 1.1†, G2DOpenVG 1.1,
G2D

OpenVG 1.1
G2D

OpenVG 1.1†, G2DOpenVG 1.1†, G2D2D API

OGL ES 3.2, VulkanOGL ES 3.2, Vulkan
OGL ES 3.1,

Vulkan
OGL ES 3.1,

Vulkan
OGL ES 3.1,

Vulkan
OGL ES 3.1,

VulkanOGL ES 2.0
OGL ES 3.1

VulkanOGL ES 2.0OGL ES 3.0OGL ES 3.0OGL ES 3.0OGL ES 2.03D API

OCL 3.0OCL 3.0OCL 3.0OCL 3.0OCL 3.0OCL 3.0N/AOCL 3.0N/AOCL 1.2 FPOCL 1.2 EPN/AN/ACompute

NoOpenVX 1.2OpenVX 1.2
(NPU)

N/AN/AN/AN/AN/AN/AN/AN/AN/A2D / 3D
Multithreaded

Other

Figure 1. GPU Scalability across i.MX processors

Note: † OpenVG on 3D GPU with software tessellation.

2 i.MX G2D API

2.1 Overview
The G2D Application Programming Interface (API) is designed to be easy to understand and to use the 2D
Bit blit (BLT) function. It allows the user to implement the customized applications with simple interfaces. It is
hardware and platform independent for i.MX 2D Graphics.

G2D API supports the following features but is not limited to these:

• Simple BLT operation from source to destination
• 16/32bit RGB(alpha) and YUV color format conversions
• Alpha blending for source and destination with Porter-Duff rules
• High-performance memory copy from source to destination
• Up-scaling and down-scaling from source to destination
• 90/180/270 degrees rotation from source to destination
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
2 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• Horizontal and vertical flip from source to destination
• Enhanced visual quality with dither for pixel precision-loss (*)
• High performance memory clear for destination
• Pixel-level cropping for source surface
• Global alpha blending for source only
• Asynchronous mode and sync
• Contiguous memory allocator
• Support cacheable memory (*)
• Support VG engine (*)
• Multi source blit (*)

Note: The features with (*) are available on specific devices. Applications can query G2D for available features.

The G2D API document includes a detailed interface description and sample code for reference.

The API is designed with C-Style coding and can be used in both C and C++ applications.

2.2 Enumerations and structures
This chapter describes all enumerations and structure definitions in G2D.

2.2.1 g2d_format enumeration

This enumeration describes the pixel format for source and destination.

Name Numeric Description

G2D_RGB565 0 RGB565 pixel format

G2D_RGBA8888 1 32-bit RGBA pixel format

G2D_RGBX8888 2 32-bit RGBX without alpha blending

G2D_BGRA8888 3 32-bit BGRA pixel format

G2D_BGRX8888 4 32-bit BGRX without alpha blending

G2D_BGR565 5 16-bit BGR565 pixel format

G2D_ARGB8888 6 32-bit ARGB pixel format

G2D_ABGR8888 7 32-bit ABGR pixel format

G2D_XRGB8888 8 32-bit XRGB without alpha

G2D_XBGR8888 9 32-bit XBGR without alpha

G2D_RGB888 10 24-bit RGB

G2D_BGR888 11 24-bit BGR

G2D_NV12 20 Y plane followed by interleaved U/V plane

G2D_I420 21 Y, U, V are within separate planes

G2D_YV12 22 Y, V, U are within separate planes

G2D_NV21 23 Y plane followed by interleaved V/U plane

G2D_YUYV 24 Interleaved Y/U/Y/V plane

G2D_YVYU 25 Interleaved Y/V/Y/U plane

G2D_UYVY 26 Interleaved U/Y/V/Y plane

Table 1. g2d_format enumeration

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
3 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Name Numeric Description

G2D_VYUY 27 Interleaved V/Y/U/Y plane

G2D_NV16 28 Y plane followed by interleaved U/V plane

G2D_NV61 29 Y plane followed by interleaved V/U plane

Table 1. g2d_format enumeration...continued

2.2.2 g2d_blend_func enumeration

This enumeration describes the blend factor for source and destination.

Name Numeric Description

G2D_ZERO 0 Blend factor with 0

G2D_ONE 1 Blend factor with 1

G2D_SRC_ALPHA 2 Blend factor with source alpha

G2D_ONE_MINUS_SRC_ALPHA 3 Blend factor with 1 - source alpha

G2D_DST_ALPHA 4 Blend factor with destination alpha

G2D_ONE_MINUS_DST_ALPHA 5 Blend factor with 1 - destination alpha

G2D_PRE_MULTIPLIED_ALPHA 0x10 Extensive blend as pre-multiplied alpha

G2D_DEMULTIPLY_OUT_ALPHA 0x20 Extensive blend as demultiply out alpha

Table 2. g2d_blend_func enumeration

2.2.3 g2d_cap_mode enumeration

This enumeration describes the alternative capability in 2D BLT.

Name Numeric Description

G2D_BLEND 0 Enable alpha blend in 2D BLT

G2D_DITHER 1 Enable dither in 2D BLT

G2D_GLOBAL_ALPHA 2 Enable global alpha in blend

G2D_BLEND_DIM 3 Enable blend dim effect

G2D_BLUR 4 Enable blur effect

G2D_YUY_BT_601 5 Enable YUV BT.601 mode

G2D_YUY_BT_709 6 Enable YUV BT.709 mode

G2D_YUY_BT_601FR 7 Enable YUV BT.601 full range mode

G2D_YUY_BT_709FR 8 Enable YUV BT.709 full range mode

Table 3. g2d_cap_mode enumeration

Note: G2D_GLOBAL_ALPHA is only valid when G2D_BLEND is enabled.

2.2.4 g2d_rotation enumeration

This enumeration describes the rotation mode in 2D BLT.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
4 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Name Numeric Description

G2D_ROTATION_0 0 No rotation

G2D_ROTATION_90 1 Rotation with 90 degrees

G2D_ROTATION_180 2 Rotation with 180 degrees

G2D_ROTATION_270 3 Rotation with 270 degrees

G2D_FLIP_H 4 Horizontal flip

G2D_FLIP_V 5 Vertical flip

Table 4. g2d_rotation enumeration

2.2.5 g2d_cache_mode enumeration

This enumeration describes the cache operation mode.

Name Numeric Description

G2D_CACHE_CLEAN 0 Clean the cacheable buffer

G2D_CACHE_FLUSH 1 Clean and invalidate cacheable buffer

G2D_CACHE_INVALIDATE 2 Invalidate the cacheable buffer

Table 5. g2d_cache_mode enumeration

2.2.6 g2d_hardware_type enumeration

This enumeration describes the supported hardware type.

Name Numeric Description

G2D_HARDWARE_2D 0 2D hardware type by default

G2D_HARDWARE_VG 1 VG hardware type

Table 6. g2d_hardware_type enumeration

2.2.7 g2d_surface structure

This structure describes the surface with operation attributes.

g2d_surface Members Type Description

format g2d_format Pixel format of surface buffer

planes[3] Int Physical addresses of surface buffer

left Int Left offset in blit rectangle

top Int Top offset in blit rectangle

right Int Right offset in blit rectangle

bottom Int Bottom offset in blit rectangle

stride Int RGB/Y stride of surface buffer

width Int Surface width in pixel unit

height Int Surface height in pixel unit

blendfunc g2d_blend_func Alpha blend mode

Table 7. g2d_surface structure

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
5 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

g2d_surface Members Type Description

global_alpha Int Global alpha value 0~255

clrcolor Int Clear color is 32bit RGBA

rot g2d_rotation Rotation mode

Table 7. g2d_surface structure...continued

Note: RGB and YUV formats conversion, Y(*) means feature available on i.MX 6Quad Plus, i.MX 7ULP and
i.MX 8 family devices.

• RGB pixel buffer only uses planes [0], buffer address is with 16 bytes alignment on i.MX 6 (except i.MX 6Quad
Plus), 1 pixel alignment on i.MX 6Quad Plus, i.MX 7ULP and i.MX 8 family devices.

• NV12: Y in planes [0], UV in planes [1], with 64bytes alignment,
• I420: Y in planes [0], U in planes [1], U in planes [2], with 64 bytes alignment
• The cropped region in source surface is specified with left, top, right and bottom parameters.
• RGB stride alignment is 16 bytes on i.MX 6 (except i.MX 6Quad Plus), 1 pixel alignment on i.MX 6Quad Plus,

i.MX 7ULP and i.MX 8 family devices, both for source and destination surface.
• NV12 stride alignment is 8 bytes for source surface, UV stride = Y stride,
• I420 stride alignment is 8 bytes for source surface, U stride=V stride = ½ Y stride.
• G2D_ROTATION_0/G2D_FLIP_H/G2D_FLIP_V shall be set in source surface, and the clockwise rotation

degree shall be set in destination surface.
• Application should calculate the rotated position and set it for destination surface.
• The geometry definition of surface structure is described as follows.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
6 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 2. g2d_surface structure

2.2.8 g2d_buf structure

This structure describes the buffer used as G2D interfaces.

g2d_buf Members Type Description

buf_handle void * The handle associated with buffer

buf_vaddr void * Virtual address of the buffer

buf_paddr int Physical address of the buffer

buf_size int The actual size of the buffer

Table 8. g2d_buf structure

2.2.9 g2d_surface_pair structure

This structure binds one source g2d_surface and one destination g2d_surface as a pair. When doing multi-
source blit, they are one-to-one correspondent.

g2d_surface_pair Members Type Description

s g2d_surface Source g2d_surface

d g2d_surface Destination g2d_surface

Table 9. g2d_surface_pair structure

2.2.10 g2d_feature enumeration

This enumeration describes the features in G2D BLT.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
7 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Name Numeric Description

G2D_SCALING 0 Scaling

G2D_ROTATION 1 Rotation

G2D_SRC_YUV 2 Source YUV format

G2D_DST_YUV 3 Destination YUV format

G2D_MULTI_SOURCE_BLT 4 Multisource blit

G2D_FAST_CLEAR 5 Support fast clear blit

Table 10. g2d_feature enumeration

2.3 G2D function description

2.3.1 g2d_open

Description Open a G2D device and return a handle.
Syntax

int g2d_open (void **handle);

Parameters handle: Pointer to receive G2D device handle
Returns Success with 0, fail with -1

2.3.2 g2d_close

Description Close G2D device with the handle.
Syntax

int g2d_close (void *handle);

Parameters
handle: G2D device handle

Returns Success with 0, fail with -1

2.3.3 g2d_make_current

Description Set the specific hardware type for current context, and the default is
G2D_HARDWARE_2D.

Syntax
int g2d_make_current (void *handle, enum g2d_hardware_type
 type);

Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.4 g2d_clear

Description Clear a specific area.
Syntax

int g2d_clear (void *handle, struct g2d_surface *area);

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
8 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Parameters
handle: G2D device handle

area: The area to be cleared

Returns Success with 0, fail with -1

2.3.5 g2d_blit

Description G2D blit from source to destination with alternative operation (Blend, Dither, etc.).
Syntax

int g2d_blit (void *handle, struct g2d_surface *src, struct
 g2d_surface *dst);

Parameters
handle: G2D device handle

src: source surface

dst: destination surface

Returns Success with 0, fail with -1

2.3.6 g2d_copy

Description G2D copy with specified size.
Syntax

int g2d_copy (void *handle, struct g2d_buf *d, struct
 g2d_buf* s, int size);

Parameters
handle: G2D device handle

d: destination buffer

s: source buffer

size: copy bytes

Limitations If the destination buffer is cacheable, it must be invalidated before g2d_copy due to
the alignment limitation of G2D driver.

Returns Success with 0, fail with -1

2.3.7 g2d_query_cap

Description Query the alternative capability enablement.
Syntax

int g2d_query_cap (void *handle, enum g2d_cap_mode cap, int
 *enable);

Parameters handle: G2D device handle

cap: G2D capability to query

enable: Pointer to receive G2D capability enablement

Returns Success with 0, fail with -1

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
9 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

2.3.8 g2d_enable

Description Enable G2D capability with the specific mode.
Syntax

int g2d_enable (void *handle, enum g2d_cap_mode cap);

Parameters
handle: G2D device handle

cap: G2D capability to enable

Returns Success with 0, fail with -1

2.3.9 g2d_disable

Description Disable G2D capability with the specific mode.
Syntax

int g2d_disable (void *handle, enum g2d_cap_mode cap);

Parameters
handle: G2D device handle

cap: G2D capability to disable

Returns Success with 0, fail with -1

2.3.10 g2d_cache_op

Description Perform cache operations for the cacheable buffer allocated through the G2D driver.
Syntax

int g2d_cache_op (struct g2d_buf *buf, enum g2d_cache_mode
 op);

Parameters
buf: the buffer to be handled with cache operations

op: cache operation type

Returns Success with 0, fail with -1

2.3.11 g2d_alloc

Description Allocate a buffer through G2D device
Syntax

struct g2d_buf *g2d_alloc (int size, int cacheable);

Parameters
size: allocated bytes

cacheable: 0, non-cacheable; 1, cacheable attribute defined by system

Returns Success with valid G2D buffer pointer, fail with 0

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
10 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

2.3.12 g2d_free

Description Free the buffer through G2D device.
Syntax

int g2d_free (struct g2d_buf *buf);

Parameters buf: G2D buffer to free
Returns Success with 0, fail with -1

2.3.13 g2d_flush

Description Flush G2D command and return without completing pipeline.
Syntax

int g2d_flush (void *handle);

Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.14 g2d_finish

Description Flush G2D command and then return when pipeline is finished.
Syntax

int g2d_finish (void *handle);

Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.15 g2d_multi_blit

Description Blit multiple sources to one destination.
Syntax

int g2d_multi_blit (void *handle, struct g2d_surface_pair
 *sp[], int layers);

Parameters handle: G2D device handle

sp: array in which elements point to g2d_surface_pair

layers: number of the source layers that need to be blited

Returns Success with 0, fail with -1

Note:

There are some restrictions for this API that we should be aware of.

• This API only works on the i.MX 6DualPlus/QuadPlus platform.
• The maximum number of the source layers that can be blited one time is 8.
• Although g2d_surface_pair binds one source g2d_surface and one destination g2d_surface as a pair, it only

supports one destination surface. The relationship between the source and destination is many to one, but
each source surface can be set separately and differently, and its dimension, stride, rotation, and format can
differ with that of the destination surface.

• The rotation of the destination surface is set to 0 degrees by default, and cannot be changed.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
11 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• The key restriction is that the destination rectangle cannot be set, which means that the destination rectangle
must be the same as the source rectangle. Therefore, if the source rectangle is set to (l, t, r, b), the destination
rectangle should also be set to (l, t, r, b) by hardware. In the chapter on multi source blit (Section 2.5.4), as
it makes no sense to set the destination rectangles, we just set all of them to (0, 0, width, height) for future
extension.

2.3.16 g2d_query_hardware

Description Query whether 2D and VG hardware are available in the current G2D.
Syntax

int g2d_query_hardware (void *handle, enum g2d_hardware_type
 type, int *available);

Parameters handle: G2D device handle

type: G2D hardware type

available: Pointer to receive G2D hardware type availability

Returns Success with 0, fail with -1

2.3.17 g2d_query_feature

Description Query if the features are available in G2D BLT.
Syntax

int g2d_query_feature (void *handle, enum g2d_feature
 feature, int *available);

Parameters handle: G2D device handle

feature: G2D feature in g2d_blit

available: Pointer to receive G2D feature availability

Returns Success with 0, fail with -1

2.4 Support of new operating system in G2D
G2D code is independent on operating system (OS) except of buffer allocation. Allocating the memory for
buffer is made by mechanism that is offered by each OS differently. The code for allocation is located in [G2D
repository copy]/source/os/[OS name]. Therefore, supporting new OS includes the following steps:

1. Create a new folder in [G2D repository copy]/source/os/ with the name of the new OS and update
implementation in the included source code according to the new OS allocation mechanism.

2. When creating new makefiles for the OS, include the files from the new folder.
3. The test named overlay_test contains the OS dependent code. For supporting the new OS in this test,

create new folder in [G2D repository copy]/test/overlay_test/os and update the code according to the
new OS mechanism for display initialization. Also update makefiles to include code from the new folder.

2.5 Sample code for G2D API usage
This chapter provides the brief prototype code with G2D API.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
12 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

2.5.1 Color space conversion from YUV to RGB

g2d_open(&handle);
src.planes[0] = buf_y;
src.planes[1] = buf_u;
src.planes[2] = buf_v;
src.left = crop.left;
src.top = crop.top;
src.right = crop.right;
src.bottom = crop.bottom;
src.stride = y_stride;
 src.width = y_width;
 src.height = y_height;
src.rot = G2D_ROTATION_0;
src.format = G2D_I420;
dst.planes[0] = buf_rgba;
dst.left = 0;
dst.top = 0;
dst.right = disp_width;
dst.bottom = disp_height;
dst.stride = disp_width;
 dst.width = disp_width;
 dst.height = disp_height;
dst.rot = G2D_ROTATION_0;
dst.format = G2D_RGBA8888;
g2d_blit(handle, &src, &dst);
 g2d_finish(handle);
g2d_close(handle);

2.5.2 Alpha blend in source over mode

g2d_open(&handle);
src.planes[0] = src_buf;
src.left = 0;
src.top = 0;
src.right = test_width;
src.bottom = test_height;
src.stride = test_width;
src.width = test_width;
src.height = test_height;
src.rot = G2D_ROTATION_0;
src.format = G2D_RGBA8888;
src.blendfunc = G2D_ONE;
dst.planes[0] = dst_buf;
dst.left = 0;
dst.top = 0;
dst.right = test_width;
dst.bottom = test_height;
dst.stride = test_width;
dst.width = test_width;
dst.height = test_height;
dst.format = G2D_RGBA8888;
dst.rot = G2D_ROTATION_0;
dst.blendfunc = G2D_ONE_MINUS_SRC_ALPHA;
g2d_enable(handle,G2D_BLEND);
g2d_blit(handle, &src, &dst);

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
13 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

g2d_finish(handle);
g2d_disable(handle,G2D_BLEND);
g2d_close(handle);

2.5.3 Source cropping and destination rotation

g2d_open(&handle);
src.planes[0] = src_buf;
src.left = crop.left;
src.top = crop.left;
src.right = crop.right;
src.bottom = crop.bottom;
src.stride = src_stride;
src.width = src_width;
src.height = src_height;
src.format = G2D_RGBA8888;
src.rot = G2D_ROTATION_0;//G2D_FLIP_H or G2D_FLIP_V
dst.planes[0] = dst_buf;
dst.left = 0;
dst.top = 0;
dst.right = dst_width;
dst.bottom = dst_height;
dst.stride = dst_width;
dst.width = dst_width;
dst.height = dst_height;
dst.format = G2D_RGBA8888;
dst.rot = G2D_ROTATION_90;
g2d_blit(handle, &src, &dst);
g2d_finish(handle);
g2d_close(handle)

2.5.4 Multi source blit

const int layers = 8;
struct g2d_buf *d_buf;
struct g2d_buf *mul_s_buf[layers];
struct g2d_surface_pair *sp[layers];
g2d_open(&handle)
for(n = 0; n < layers; n++) {
sp[n] = (struct g2d_surface_pair *)malloc(sizeof(struct g2d_surface_pair));
}
d_buf = g2d_alloc(test_width * test_height * 4, 0);
for(n = 0; n < layers; n++) {
 mul_s_buf[n] = g2d_alloc(test_width * test_height * 4, 0);
}
for(n = 0; n < layers; n++) {
sp[n]->s.left = img_info_ptr[n]->img_left;
 sp[n]->s.top = img_info_ptr[n]->img_top;
 sp[n]->s.right = img_info_ptr[n]->img_right;
 sp[n]->s.bottom = img_info_ptr[n]->img_bottom;
 sp[n]->s.stride = img_info_ptr[n]->img_width;
 sp[n]->s.width = img_info_ptr[n]->img_width;
 sp[n]->s.height = img_info_ptr[n]->img_height;
 sp[n]->s.rot = img_info_ptr[n]->img_rot;
 sp[n]->s.format = img_info_ptr[n]->img_format;
 sp[n]->s.planes[0] = mul_s_buf[n]->buf_paddr;
}

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
14 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

sp[0]->d.left = 0;
sp[0]->d.top = 0;
sp[0]->d.right = test_width;
sp[0]->d.bottom = test_height;
sp[0]->d.stride = test_width;
sp[0]->d.width = test_width;
sp[0]->d.height = test_height;
sp[0]->d.format = G2D_RGBA8888;
sp[0]->d.rot = G2D_ROTATION_0;
sp[0]->d.planes[0] = d_buf->buf_paddr;
for(n = 1; n < layers; n++) {
 sp[n]->d = sp[0]->d;
}
g2d_multi_blit(handle, sp, layers);
 g2d_finish(handle);
 for(n = 0; n < layers; n++)
 g2d_free(mul_s_buf[n]);
 g2d_free(d_buf);
 g2d_close(handle);

2.5.5 Sharing Buffers between APIs using G2D Buffers:

The G2D buffers can be used to avoid memory copies between APIs. Create a buffer using g2d_alloc and then
map it as an OpenGL ES texture or as an OpenVX buffer or an OpenCV Mat:

Allocate your buffer with:

struct g2d_buf * buffer0;
buffer0 = g2d_alloc(WIDTH*HEIGHT*4, 0);

For OpenCV, you map the buffer to the data field of the cv::Mat

cv::Mat buffer0Mat;
buffer0Mat.create (WIDTH, HEIGHT, CV_8UC4);
buffer0Mat.data = (uchar *) ((unsigned long) buffer0->buf_vaddr);

For OpenGL ES, you can make use of the DirectVIV extensions:

glGenTextures(1, &textureHandle[0]);
glBindTexture(GL_TEXTURE_2D, textureHandle[0]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexDirectVIVMap(GL_TEXTURE_2D, WIDTH, HEIGHT, GL_RGBA,
 &buffer0->buf_vaddr, (uint *)&buffer0-
>buf_paddr);
glTexDirectInvalidateVIV (GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);

For OpenVX you create vxImages from the buffer ranges:

vx_imagepatch_addressing_t patch0 = { (vx_uint32)WIDTH, (vx_uint32)HEIGHT,
(vx_int32)4, (vx_int32)HEIGHT*4, VX_SCALE_UNITY, VX_SCALE_UNITY, 1, 1 };
 void *ptr0 = buffer0->buf_vaddr;
vxInputImage = vxCreateImageFromHandle(contextVX,
VX_DF_IMAGE_RGBX, &patch0, (void **)&ptr0, VX_MEMORY_TYPE_HOST);

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
15 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

With this scheme you can create a multi API pipeline, where you can post-process your OpenGL ES render
result with CV or VX without the need of copying data.

2.6 Feature list on multiple platforms
This user guide is for multiple platforms, such as i.MX 6 and i.MX 8, and the hardware for the G2D
implementation are different on those platforms, so some G2D features are also different.

For example, the G2D_YVYU and G2D_VYUY formats are not supported on the i.MX 8, and the g2d_multi_blit
function only works on the i.MX 6DualPlus/QuadPlus. Therefore, we list those differences in the following
feature table.

i.MX 6 i.MX 7 i.MX 8Feature

6Solo/6Dual/
6Quad

6DualPlus/
6QuadPlus

7ULP 8M Mini/ 8M
Plus

8QuadMax/8Quad
XPlus

G2D_YVYU Yes Yes Yes Yes No

G2D_VYUY Yes Yes Yes Yes No

G2D_HARDWARE_VG Yes Yes No No No

G2D_MULTI_SOURCE_BLT No Yes Yes Yes No

g2d_cache_op Yes Yes Yes Yes No

Table 11. Feature list on multiple platforms

3 Vivante EGL and OGL Extension Support

3.1 Introduction
The following tables list the level of support for EGL and OES extensions available with i.MX hardware and
software. Support levels are current as of the date of the document and subject to change.

Two tables are provided. The first table lists the EGL interface extensions. The second table lists extensions for
OpenGL ES 1.1, OpenGL ES 2.0, and OpenGL ES 3.0.

Key:

• Extension Name and Number: Each listed extension is derived from the relevant khronos.org webpage list
and includes the extension number as well as a hyperlink to the khronos description of the extension.

• Yes: Support is currently available.
• No: Support is not available. (Reasons for lack of support may vary: the extension may be proprietary or

obsolete, or not applicable to the specified OES version.)
• N/A: Support is not provided as the extension is not applicable in this and subsequent versions of the

specification.

3.2 EGL extension support
The following table includes the list of all current EGL Extensions and indicates their support level.

(list from www.khronos.org/registry/egl/ as of 1/24/2020)

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

1. EGL_KHR_config_attribs

Table 12. EGL extension support

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
16 / 140

http://www.khronos.org/registry/egl/
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_config_attribs.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

2. EGL_KHR_lock_surface YES YES YES

3. EGL_KHR_image YES YES YES

4. EGL_KHR_vg_parent_image

5. EGL_KHR_gl_texture_2D_image YES YES YES

EGL_KHR_gl_texture_cubemap_image YES YES YES

EGL_KHR_gl_texture_3D_image

EGL_KHR_gl_renderbuffer_image YES YES YES

6. EGL_KHR_reusable_sync YES YES YES

7. EGL_KHR_image_base YES YES YES

8. EGL_KHR_image_pixmap YES YES YES

9. EGL_IMG_context_priority YES YES

10. EGL_NOK_texture_from_pixmap

11. EGL_KHR_lock_surface2

12. EGL_NV_coverage_sample

13. EGL_NV_depth_nonlinear

14. EGL_NV_sync

15. EGL_KHR_fence_sync YES YES YES

16. EGL_NOK_swap_region2

17. EGL_HI_clientpixmap

18. EGL_HI_colorformats

19. EGL_MESA_drm_image

20. EGL_NV_post_sub_buffer

21. EGL_ANGLE_query_surface_pointer

22. EGL_ANGLE_surface_d3d_texture_2d_share_handle

23. EGL_NV_coverage_sample_resolve

24. EGL_NV_system_time

25. EGL_KHR_stream

EGL_KHR_stream_attrib

26. EGL_KHR_stream_consumer_gltexture

27. EGL_KHR_stream_producer_eglsurface

28. EGL_KHR_stream_producer_aldatalocator

29. EGL_KHR_stream_fifo

30. EGL_EXT_create_context_robustness

31. EGL_ANGLE_d3d_share_handle_client_buffer

32. EGL_KHR_create_context YES YES YES

33. EGL_KHR_surfaceless_context YES YES YES

Table 12. EGL extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
17 / 140

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_vg_parent_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_reusable_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_pixmap.txt
https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_context_priority.txt
https://www.khronos.org/registry/EGL/extensions/NOK/EGL_NOK_texture_from_pixmap.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface2.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_depth_nonlinear.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/NOK/EGL_NOK_swap_region2.txt
https://www.khronos.org/registry/EGL/extensions/HI/EGL_HI_clientpixmap.txt
https://www.khronos.org/registry/EGL/extensions/HI/EGL_HI_colorformats.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_drm_image.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_post_sub_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_query_surface_pointer.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_surface_d3d_texture_2d_share_handle.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample_resolve.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_system_time.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_producer_eglsurface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_producer_aldatalocator.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_fifo.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_create_context_robustness.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_d3d_share_handle_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_create_context.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_surfaceless_context.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

34. EGL_KHR_stream_cross_process_fd

35. EGL_EXT_multiview_window

36. EGL_KHR_wait_sync YES YES YES

37. EGL_NV_post_convert_rounding

38. EGL_NV_native_query

39. EGL_NV_3dvision_surface

40. EGL_ANDROID_framebuffer_target YES

41. EGL_ANDROID_blob_cache YES

42. EGL_ANDROID_image_native_buffer YES

43. EGL_ANDROID_native_fence_sync YES

44. EGL_ANDROID_recordable YES

45. EGL_EXT_buffer_age YES YES YES

46. EGL_EXT_image_dma_buf_import YES YES

47. EGL_ARM_pixmap_multisample_discard

48. EGL_EXT_swap_buffers_with_damage YES YES YES

49. EGL_NV_stream_sync

50. EGL_EXT_platform_base YES YES YES

51. EGL_EXT_client_extensions YES YES YES

52. EGL_EXT_platform_x11 YES YES YES

53. EGL_KHR_cl_event

54. EGL_KHR_get_all_proc_addresses YES YES YES

EGL_KHR_client_get_all_proc_addresses YES YES YES

55. EGL_MESA_platform_gbm

56. EGL_EXT_platform_wayland YES

57. EGL_KHR_lock_surface3

58. EGL_KHR_cl_event2

59. EGL_KHR_gl_colorspace

60. EGL_EXT_protected_surface YES YES YES

61. EGL_KHR_platform_android YES

62. EGL_KHR_platform_gbm YES YES YES

63. EGL_KHR_platform_wayland YES

64. EGL_KHR_platform_x11 YES

65. EGL_EXT_device_base

66. EGL_EXT_platform_device

67. EGL_NV_device_cuda

68. EGL_NV_cuda_event

Table 12. EGL extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
18 / 140

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_cross_process_fd.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_multiview_window.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_wait_sync.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_post_convert_rounding.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_native_query.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_3dvision_surface.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_framebuffer_target.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_blob_cache.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_image_native_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_native_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_recordable.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_buffer_age.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://www.khronos.org/registry/EGL/extensions/ARM/EGL_ARM_pixmap_multisample_discard.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_swap_buffers_with_damage.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_sync.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_client_extensions.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_x11.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_cl_event.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_platform_gbm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_wayland.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface3.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_cl_event2.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_colorspace.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_surface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_android.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_gbm.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_wayland.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_x11.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_device.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_device_cuda.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_cuda_event.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

69. EGL_TIZEN_image_native_buffer

70. EGL_TIZEN_image_native_surface

71. EGL_EXT_output_base

72. EGL_EXT_device_drm

EGL_EXT_output_drm

73. EGL_EXT_device_openwf

EGL_EXT_output_openwf

74. EGL_EXT_stream_consumer_egloutput

75. EGL_KHR_partial_update YES YES YES

76. EGL_KHR_swap_buffers_with_damage YES YES YES

77. EGL_ANGLE_window_fixed_size

78. EGL_EXT_yuv_surface

79. EGL_MESA_image_dma_buf_export

80. EGL_EXT_device_enumeration

81. EGL_EXT_device_query

82. EGL_ANGLE_device_d3d

83. EGL_KHR_create_context_no_error

84. EGL_KHR_debug

85. EGL_NV_stream_metadata

86. EGL_NV_stream_consumer_gltexture_yuv

87. EGL_IMG_image_plane_attribs

88. EGL_KHR_mutable_render_buffer

89. EGL_EXT_protected_content

90. EGL_ANDROID_presentation_time

91. EGL_ANDROID_create_native_client_buffer

92. EGL_ANDROID_front_buffer_auto_refresh

93. EGL_KHR_no_config_context YES YES YES

94. EGL_KHR_context_flush_control

95. EGL_ARM_implicit_external_sync

96. EGL_MESA_platform_surfaceless

97. EGL_EXT_image_dma_buf_import_modifiers YES YES

98. EGL_EXT_pixel_format_float

99. EGL_EXT_gl_colorspace_bt2020_linear

EGL_EXT_gl_colorspace_bt2020_pq

100. EGL_EXT_gl_colorspace_scrgb_linear

101. EGL_EXT_surface_SMPTE2086_metadata

Table 12. EGL extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
19 / 140

https://www.khronos.org/registry/EGL/extensions/TIZEN/EGL_TIZEN_image_native_buffer.txt
https://www.khronos.org/registry/EGL/extensions/TIZEN/EGL_TIZEN_image_native_surface.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_output_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_stream_consumer_egloutput.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_partial_update.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_swap_buffers_with_damage.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_window_fixed_size.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_yuv_surface.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_image_dma_buf_export.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_enumeration.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_query.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_device_d3d.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_create_context_no_error.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_debug.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_metadata.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_consumer_gltexture_yuv.txt
https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_image_plane_attribs.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_mutable_render_buffer.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_presentation_time.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_create_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_front_buffer_auto_refresh.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_no_config_context.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/EGL/extensions/ARM/EGL_ARM_implicit_external_sync.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_platform_surfaceless.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_pixel_format_float.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_scrgb_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_surface_SMPTE2086_metadata.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

102. EGL_NV_stream_fifo_next

103. EGL_NV_stream_fifo_synchronous

104. EGL_NV_stream_reset

105. EGL_NV_stream_frame_limits

106. EGL_NV_stream_remote

EGL_NV_stream_cross_object

EGL_NV_stream_cross_display

EGL_NV_stream_cross_process

EGL_NV_stream_cross_partition

EGL_NV_stream_cross_system

107. EGL_NV_stream_socket

EGL_NV_stream_socket_unix

EGL_NV_stream_socket_inet

108. EGL_EXT_compositor

109. EGL_EXT_surface_CTA861_3_metadata

110. EGL_EXT_gl_colorspace_display_p3

111. EGL_EXT_gl_colorspace_display_p3_linear

112. EGL_EXT_gl_colorspace_scrgb (non-linear)

113. EGL_EXT_image_implicit_sync_control

114. EGL_EXT_bind_to_front

115. EGL_ANDROID_get_frame_timestamps

116. EGL_ANDROID_get_native_client_buffer

117. EGL_NV_context_priority_realtime

118. EGL_EXT_image_gl_colorspace

119. EGL_KHR_display_reference

120. EGL_NV_stream_flush

121. EGL_EXT_sync_reuse

122. EGL_EXT_client_sync

123. EGL_EXT_gl_colorspace_display_p3_passthrough

124. EGL_MESA_query_driver

125. EGL_ANDROID_GLES_layers

126. EGL_NV_n_buffer

127. EGL_NV_stream_origin

128. EGL_NV_stream_dma

129. EGL_WL_bind_wayland_display YES

130. EGL_WL_create_wayland_buffer_from_image YES

Table 12. EGL extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
20 / 140

https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_fifo_next.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_fifo_synchronous.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_reset.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_frame_limits.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_compositor.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_surface_CTA861_3_metadata.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_scrgb.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_implicit_sync_control.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_bind_to_front.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_frame_timestamps.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_context_priority_realtime.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_gl_colorspace.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_display_reference.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_flush.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_sync_reuse.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_client_sync.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3_passthrough.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_query_driver.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_GLES_layers.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_n_buffer.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_origin.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_dma.txt
https://www.khronos.org/registry/EGL/extensions/WL/EGL_WL_bind_wayland_display.txt
https://www.khronos.org/registry/EGL/extensions/WL/EGL_WL_create_wayland_buffer_from_image.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

3.3 OpenGL ES extension support
The following table includes the list of all current OpenGL ES Extensions and indicates their support level.

(list from www.khronos.org/registry/gles/ as of 6/14/2020)

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

1. GL_OES_blend_equation_separate YES

2. GL_OES_blend_func_separate YES

3. GL_OES_blend_subtract YES

4. GL_OES_byte_coordinates YES

5. GL_OES_compressed_ETC1_RGB8_texture YES YES

6. GL_OES_compressed_paletted_texture YES YES

7. GL_OES_draw_texture YES

8. GL_OES_extended_matrix_palette YES

9. GL_OES_fixed_point YES

10. GL_OES_framebuffer_object YES

11. GL_OES_matrix_get YES

12. GL_OES_matrix_palette YES

13. GL_OES_point_size_array YES

14. GL_OES_point_sprite YES

15. GL_OES_query_matrix YES

16. GL_OES_read_format YES

17. GL_OES_single_precision YES

18. GL_OES_stencil_wrap YES

19. GL_OES_texture_cube_map YES

20. GL_OES_texture_env_crossbar

21. GL_OES_texture_mirrored_repeat YES

22. GL_OES_EGL_image YES YES

23. GL_OES_depth24 YES YES

24. GL_OES_depth32 YES

25. GL_OES_element_index_uint YES YES

26. GL_OES_fbo_render_mipmap YES YES

27. GL_OES_fragment_precision_high YES

28. GL_OES_mapbuffer YES YES

29. GL_OES_rgb8_rgba8 YES YES

30. GL_OES_stencil1

31. GL_OES_stencil4

32. GL_OES_stencil8 YES

Table 13. OpenGL ES extension support

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
21 / 140

http://www.khronos.org/registry/gles/
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_equation_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_func_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_subtract.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_byte_coordinates.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_compressed_paletted_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_extended_matrix_palette.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fixed_point.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_framebuffer_object.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_matrix_get.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_matrix_palette.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_point_size_array.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_point_sprite.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_query_matrix.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_read_format.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_single_precision.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil_wrap.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_cube_map.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_env_crossbar.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_mirrored_repeat.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth24.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth32.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_element_index_uint.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fbo_render_mipmap.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fragment_precision_high.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_mapbuffer.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_rgb8_rgba8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil1.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil4.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil8.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

33. GL_OES_texture_3D

34. GL_OES_texture_float_linear

GL_OES_texture_half_float_linear CORE

35. GL_OES_texture_float CORE

GL_OES_texture_half_float CORE

36. GL_OES_texture_npot YES YES

37. GL_OES_vertex_half_float YES YES

38. GL_AMD_compressed_3DC_texture

39. GL_AMD_compressed_ATC_texture

40. GL_EXT_texture_filter_anisotropic CORE CORE

41. GL_EXT_texture_type_2_10_10_10_REV CORE

42. GL_OES_depth_texture YES

43. GL_OES_packed_depth_stencil YES YES

44. GL_OES_standard_derivatives YES

45. GL_OES_vertex_type_10_10_10_2 CORE

46. GL_OES_get_program_binary YES

47. GL_AMD_program_binary_Z400

48. GL_EXT_texture_compression_dxt1 YES

49. GL_AMD_performance_monitor

50. GL_EXT_texture_format_BGRA8888 YES YES

51. GL_NV_fence

52. GL_IMG_read_format

53. GL_IMG_texture_compression_pvrtc

54. GL_QCOM_driver_control

55. GL_QCOM_performance_monitor_global_mode

56. GL_IMG_user_clip_plane

57. GL_IMG_texture_env_enhanced_fixed_function

58. GL_APPLE_texture_2D_limited_npot

59. GL_EXT_texture_lod_bias YES

60. GL_QCOM_writeonly_rendering

61. GL_QCOM_extended_get

62. GL_QCOM_extended_get2

63. GL_EXT_discard_framebuffer YES

64. GL_EXT_blend_minmax YES YES

65. GL_EXT_read_format_bgra YES YES

66. GL_IMG_program_binary

Table 13. OpenGL ES extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
22 / 140

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_3D.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_npot.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_half_float.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_compressed_3DC_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_compressed_ATC_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_filter_anisotropic.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_type_2_10_10_10_REV.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_packed_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_standard_derivatives.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_type_10_10_10_2.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_get_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_program_binary_Z400.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_dxt1.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_performance_monitor.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_format_BGRA8888.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fence.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_read_format.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_driver_control.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_performance_monitor_global_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_user_clip_plane.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_env_enhanced_fixed_function.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_2D_limited_npot.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_lod_bias.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_writeonly_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_extended_get.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_extended_get2.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_discard_framebuffer.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_blend_minmax.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_read_format_bgra.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_program_binary.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

67. GL_IMG_shader_binary

68. GL_EXT_multi_draw_arrays YES YES

GL_SUN_multi_draw_arrays NO

69. GL_QCOM_tiled_rendering

70. GL_OES_vertex_array_object YES

71. GL_NV_coverage_sample

72. GL_NV_depth_nonlinear

73. GL_IMG_multisampled_render_to_texture

74. GL_OES_EGL_sync YES YES

75. GL_APPLE_rgb_422

76. GL_EXT_shader_texture_lod

77. GL_APPLE_framebuffer_multisample

78. GL_APPLE_texture_format_BGRA8888

79. GL_APPLE_texture_max_level

80. GL_ARM_mali_shader_binary

81. GL_ARM_rgba8

82. GL_ANGLE_framebuffer_blit

83. GL_ANGLE_framebuffer_multisample

84. GL_VIV_shader_binary

85. GL_EXT_frag_depth YES

86. GL_OES_EGL_image_external YES YES

87. GL_DMP_shader_binary

88. GL_QCOM_alpha_test

89. GL_EXT_unpack_subimage

90. GL_NV_draw_buffers

91. GL_NV_fbo_color_attachments

92. GL_NV_read_buffer

93. GL_NV_read_depth_stencil

94. GL_NV_texture_compression_s3tc_update

95. GL_NV_texture_npot_2D_mipmap

96. GL_EXT_color_buffer_half_float CORE

97. GL_EXT_debug_label

98. GL_EXT_debug_marker

99. GL_EXT_occlusion_query_boolean

100. GL_EXT_separate_shader_objects

101. GL_EXT_shadow_samplers

Table 13. OpenGL ES extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
23 / 140

https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_tiled_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_array_object.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_depth_nonlinear.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_multisampled_render_to_texture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_rgb_422.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_texture_lod.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_format_BGRA8888.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_max_level.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_mali_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_rgba8.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_framebuffer_blit.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/VIV/VIV_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_frag_depth.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external.txt
https://www.khronos.org/registry/OpenGL/extensions/DMP/DMP_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_alpha_test.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_unpack_subimage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fbo_color_attachments.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_read_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_read_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_s3tc_update.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_npot_2D_mipmap.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_color_buffer_half_float.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_debug_label.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_debug_marker.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_occlusion_query_boolean.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_separate_shader_objects.gles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shadow_samplers.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

102. GL_EXT_texture_rg YES

103. GL_NV_EGL_stream_consumer_external

104. GL_EXT_sRGB YES

105. GL_EXT_multisampled_render_to_texture YES

106. GL_EXT_robustness YES

107. GL_EXT_texture_storage

108. GL_ANGLE_instanced_arrays

109. GL_ANGLE_pack_reverse_row_order

110. GL_ANGLE_texture_compression_dxt3

GL_ANGLE_texture_compression_dxt1

GL_ANGLE_texture_compression_dxt5

111. GL_ANGLE_texture_usage

112. GL_ANGLE_translated_shader_source

113. GL_FJ_shader_binary_GCCSO

114. GL_OES_required_internalformat YES

115. GL_OES_surfaceless_context YES

116. GL_KHR_texture_compression_astc_hdr

GL_KHR_texture_compression_astc_ldr YES

117. GL_KHR_debug YES

118. GL_QCOM_binning_control

119. GL_ARM_mali_program_binary

120. GL_EXT_map_buffer_range

121. GL_EXT_shader_framebuffer_fetch CORE

GL_EXT_shader_framebuffer_fetch_non_coherent

122. GL_APPLE_copy_texture_levels

123. GL_APPLE_sync

124. GL_EXT_multiview_draw_buffers

125. GL_NV_draw_texture

126. GL_NV_packed_float

127. GL_NV_texture_compression_s3tc

128. GL_NV_3dvision_settings

129. GL_NV_texture_compression_latc

130. GL_NV_platform_binary

131. GL_NV_pack_subimage

132. GL_NV_texture_array

133. GL_NV_pixel_buffer_object

Table 13. OpenGL ES extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
24 / 140

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_rg.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_EGL_stream_consumer_external.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_robustness.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_pack_reverse_row_order.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_usage.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_translated_shader_source.txt
https://www.khronos.org/registry/OpenGL/extensions/FJ/FJ_shader_binary_GCCSO.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_required_internalformat.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_surfaceless_context.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_debug.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_binning_control.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_mali_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_map_buffer_range.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_copy_texture_levels.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multiview_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_s3tc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_3dvision_settings.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_latc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_platform_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_pack_subimage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_array.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_pixel_buffer_object.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

134. GL_NV_bgr

135. GL_OES_depth_texture_cube_map YES

136. GL_EXT_color_buffer_float CORE

137. GL_ANGLE_depth_texture

138. GL_ANGLE_program_binary

139. GL_IMG_texture_compression_pvrtc2

140. GL_NV_draw_instanced

141. GL_NV_framebuffer_blit

142. GL_NV_framebuffer_multisample

143. GL_NV_generate_mipmap_sRGB

144. GL_NV_instanced_arrays

145. GL_NV_shadow_samplers_array

146. GL_NV_shadow_samplers_cube

147. GL_NV_sRGB_formats

148. GL_NV_texture_border_clamp

149. GL_EXT_disjoint_timer_query

150. GL_EXT_draw_buffers

151. GL_EXT_texture_sRGB_decode YES

152. GL_EXT_sRGB_write_control

153. GL_EXT_texture_compression_s3tc YES

154. GL_EXT_pvrtc_sRGB

155. GL_EXT_instanced_arrays

156. GL_EXT_draw_instanced

157. GL_NV_copy_buffer

158. GL_NV_explicit_attrib_location

159. GL_NV_non_square_matrices

160. GL_EXT_shader_integer_mix

161. GL_OES_texture_compression_astc

162. GL_NV_blend_equation_advanced

GL_NV_blend_equation_advanced_coherent

163. GL_INTEL_performance_query

164. GL_ARM_shader_framebuffer_fetch

165. GL_ARM_shader_framebuffer_fetch_depth_stencil

166. GL_EXT_shader_pixel_local_storage

167. GL_KHR_blend_equation_advanced CORE

GL_KHR_blend_equation_advanced_coherent

Table 13. OpenGL ES extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
25 / 140

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bgr.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth_texture_cube_map.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_color_buffer_float.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_depth_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_instanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_blit.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_generate_mipmap_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shadow_samplers_array.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shadow_samplers_cube.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sRGB_formats.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_decode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sRGB_write_control.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_pvrtc_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_instanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_copy_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_explicit_attrib_location.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_non_square_matrices.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_integer_mix.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_compression_astc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_performance_query.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_shader_framebuffer_fetch_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

168. GL_OES_sample_shading CORE

169. GL_OES_sample_variables CORE

170. GL_OES_shader_image_atomic CORE

171. GL_OES_shader_multisample_interpolation CORE

172. GL_OES_texture_stencil8 CORE

173. GL_OES_texture_storage_multisample_2d_array CORE

174. GL_EXT_copy_image CORE

175. GL_EXT_draw_buffers_indexed CORE

176. GL_EXT_geometry_shader CORE

GL_EXT_geometry_point_size CORE

177. GL_EXT_gpu_shader5 CORE

178. GL_EXT_shader_implicit_conversions CORE

179. GL_EXT_shader_io_blocks CORE

180. GL_EXT_tessellation_shader CORE

GL_EXT_tessellation_point_size CORE

181. GL_EXT_texture_border_clamp CORE

182. GL_EXT_texture_buffer CORE

183. GL_EXT_texture_cube_map_array CORE

184. GL_EXT_texture_view

185. GL_EXT_primitive_bounding_box CORE

186. GL_ANDROID_extension_pack_es31a CORE

187. GL_EXT_compressed_ETC1_RGB8_sub_texture

188. GL_KHR_robust_buffer_access_behavior YES

189. GL_KHR_robustness YES

190. GL_KHR_context_flush_control

GLX_ARB_context_flush_control

WGL_ARB_context_flush_control

191. GL_DMP_program_binary

192. GL_APPLE_clip_distance

193. GL_APPLE_color_buffer_packed_float

194. GL_APPLE_texture_packed_float

195. GL_NV_internalformat_sample_query

196. GL_NV_bindless_texture

197. GL_NV_conditional_render

198. GL_NV_path_rendering

199. GL_NV_image_formats

Table 13. OpenGL ES extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
26 / 140

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_sample_shading.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_sample_variables.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_image_atomic.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_multisample_interpolation.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_stencil8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_storage_multisample_2d_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_copy_image.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_buffers_indexed.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_implicit_conversions.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_io_blocks.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_cube_map_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_view.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_primitive_bounding_box.txt
https://www.khronos.org/registry/OpenGL/extensions/ANDROID/ANDROID_extension_pack_es31a.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_compressed_ETC1_RGB8_sub_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_robust_buffer_access_behavior.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_robustness.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/DMP/DMP_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_clip_distance.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_color_buffer_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_internalformat_sample_query.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bindless_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conditional_render.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_path_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_image_formats.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

200. GL_NV_shader_noperspective_interpolation

201. GL_NV_viewport_array

202. GL_EXT_base_instance

203. GL_EXT_draw_elements_base_vertex CORE

204. GL_EXT_multi_draw_indirect CORE

205. GL_EXT_render_snorm

206. GL_EXT_texture_norm16

207. GL_OES_copy_image CORE

208. GL_OES_draw_buffers_indexed CORE

209. GL_OES_geometry_shader CORE

210. GL_OES_gpu_shader5 CORE

211. GL_OES_primitive_bounding_box CORE

212. GL_OES_shader_io_blocks CORE

213. GL_OES_tessellation_shader CORE

GL_OES_tessellation_point_size CORE

214. GL_OES_texture_border_clamp CORE

215. GL_OES_texture_buffer CORE

216. GL_OES_texture_cube_map_array CORE

217. GL_OES_texture_view CORE

218. GL_OES_draw_elements_base_vertex CORE

219. GL_OES_EGL_image_external_essl3 CORE

220. GL_EXT_texture_sRGB_R8

221. GL_EXT_YUV_target

222. GL_EXT_texture_sRGB_RG8

223. GL_EXT_float_blend

224. GL_EXT_post_depth_coverage

225. GL_EXT_raster_multisample

226. GL_EXT_texture_filter_minmax

227. GL_NV_conservative_raster

228. GL_NV_fragment_coverage_to_color

229. GL_NV_fragment_shader_interlock

230. GL_NV_framebuffer_mixed_samples

231. GL_NV_fill_rectangle

232. GL_NV_geometry_shader_passthrough

233. GL_NV_path_rendering_shared_edge

234. GL_NV_sample_locations

Table 13. OpenGL ES extension support...continued

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
27 / 140

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_noperspective_interpolation.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_base_instance.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_elements_base_vertex.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_indirect.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_render_snorm.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_norm16.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_copy_image.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_buffers_indexed.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_primitive_bounding_box.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_io_blocks.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_cube_map_array.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_view.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_elements_base_vertex.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external_essl3.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_R8.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_YUV_target.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_RG8.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_float_blend.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_post_depth_coverage.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_raster_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_filter_minmax.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conservative_raster.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fragment_coverage_to_color.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fragment_shader_interlock.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_mixed_samples.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fill_rectangle.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_geometry_shader_passthrough.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_path_rendering_shared_edge.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sample_locations.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2

235. GL_NV_sample_mask_override_coverage

236. GL_NV_viewport_array2

237. GL_NV_polygon_mode

238. GL_EXT_buffer_storage

239. GL_EXT_sparse_texture

240. GL_OVR_multiview

241. GL_OVR_multiview2

242. GL_KHR_no_error

243. GL_INTEL_framebuffer_CMAA

244. GL_EXT_blend_func_extended

245. GL_EXT_multisample_compatibility

246. GL_KHR_texture_compression_astc_sliced_3d

247. GL_OVR_multiview_multisampled_render_to_texture

248. GL_IMG_texture_filter_cubic

249. GL_EXT_polygon_offset_clamp

250. GL_EXT_shader_pixel_local_storage2

251. GL_EXT_shader_group_vote

252. GL_IMG_framebuffer_downsample

253. GL_EXT_protected_textures

254. GL_EXT_clip_cull_distance

255. GL_NV_viewport_swizzle

256. GL_EXT_sparse_texture2

257. GL_NV_gpu_shader5

258. GL_NV_shader_atomic_fp16_vector

259. GL_NV_conservative_raster_pre_snap_triangles

260. GL_EXT_window_rectangles

261. GL_EXT_shader_non_constant_global_initializers

262. GL_INTEL_conservative_rasterization

263. GL_NVX_blend_equation_advanced_multi_draw_buffers

264. GL_OES_viewport_array

265. GL_EXT_conservative_depth

Table 13. OpenGL ES extension support...continued

3.4 Extension GL_VIV_direct_texture

Name VIV_direct_texture
Name strings GL_VIV_direct_texture
IPStatus Contact NXP Semiconductor regarding any intellectual property questions

associated with this extension.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
28 / 140

https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sample_mask_override_coverage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_array2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_polygon_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_buffer_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sparse_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview2.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_no_error.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_framebuffer_CMAA.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_blend_func_extended.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisample_compatibility.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_sliced_3d.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_filter_cubic.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_polygon_offset_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage2.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_group_vote.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_framebuffer_downsample.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_protected_textures.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_clip_cull_distance.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_swizzle.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sparse_texture2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_fp16_vector.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conservative_raster_pre_snap_triangles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_window_rectangles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_non_constant_global_initializers.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_conservative_rasterization.txt
https://www.khronos.org/registry/OpenGL/extensions/NVX/NVX_blend_equation_advanced_multi_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_viewport_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_conservative_depth.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Status Implemented: July, 2011
Version Last modified: 29 July, 2011

Revision: 2

Number Unassigned
Dependencies OpenGL ES 1.1 is required. OpenGL ES 2.0/3.x support is available.
Overview Create a texture with direct access support. This is useful when an application

desires to use the same texture over and over while frequently updating its content.
It could also be used for mapping live video to a texture. A video decoder could write
its result directly to the texture and then the texture could be directly rendered onto
a 3D shape. glTexDirectVIVMap is similar to glTexDirectVIV. The only difference is
that it has two inputs, “Logical” and “Physical,” which support mapping a user space
memory or a physical address into the texture surface.

3.4.1 New Procedures and Functions

glTexDirectVIV

Syntax:

GL_API void GL_APIENTRY
glTexDirectVIV (
GLenum Target,
GLsizei Width,
GLsizei Height,
GLenum Format,
GLvoid ** Pixels
);

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width
Height

Size of LOD 0. Width must be 16 pixel aligned. The width and height of LOD 0 of the texture is
specified by the Width and Height parameters. The driver may auto-generate the rest of LODs if
the hardware supports high quality scaling (for non-power of 2 textures) and LOD generation. If the
hardware does not support high quality scaling and LOD generation, the texture remains a single-
LOD texture.

Format Choose the format of the pixel data from the following formats: GL_VIV_YV12, GL_VIV_NV12, GL_
VIV_NV21, GL_VIV_YUY2, GL_VIV_UYVY, GL_RGBA, and GL_BGRA_EXT.
• If the format is GL_VIV_YV12, glTexDirectVIV creates a planar YV12 4:2:0 texture and the format

of the Pixels array is as follows: Yplane, Vplane, Uplane.
• If the format is GL_VIV_NV12, glTexDirectVIV creates a planar NV12 4:2:0 texture and the format

of the Pixels array is as follows: Yplane, UVplane.
• If the format is GL_VIV_NV21, glTexDirectVIV creates a planar NV21 4:2:0 texture and the format

of the Pixels array is as follows: Yplane, VUplane.
• If the format is GL_VIV_YUY2 or GL_VIV_UYVY, glTexDirectVIV creates a packed 4:2:2 texture

and the Pixels array contains only one pointer to the packed YUV texture.
• If Format is GL_RGBA, glTexDirectVIV creates a pixel array with four GL_UNSIGNED_BYTE

components: the first byte for red pixels, the second byte for green pixels, the third byte for blue,
and the fourth byte for alpha.

• If Format is GL_BGRA_EXT, glTexDirectVIV creates a pixel array with four GL_UNSIGNED_BYTE
components: the first byte for blue pixels, the second byte for green pixels, the third byte for red,
and the fourth byte for alpha.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
29 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Pixels Stores the memory pointer created by the driver.

Output

If the function succeeds, it returns a pointer, or, for some YUV formats, it returns a set of pointers that directly
point to the texture. The pointer(s) are returned in the user-allocated array pointed to by the Pixels parameter.

GlTexDirectVIVMap

Syntax:

GL_API void GL_APIENTRY
glTexDirectVIVMap (
GLenum Target,
GLsizei Width,
GLsizei Height,
GLenum Format,
GLvoid ** Logical,
const GLuint * Physical
);

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width
Height

Size of LOD 0. Width must be 16 pixel aligned. See glTexDirectVIV.

Format Same as glTexDirectVIV Format.

Logical Pointer to the logical address of the application-defined texture buffer. Logical address must be 64 bit
(8 byte) aligned.

Physical Pointer to the physical address of the application-defined buffer to the texture, or ~0 if no physical
address has been provided.

GlTexDirectInvalidateVIV

Syntax:

GL_API void GL_APIENTRY
glTexDirectInvalidateVIV (
GLenum Target
);

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

New Tokens

GL_VIV_YV12 0x8FC0

GL_VIV_NV12 0x8FC1

GL_VIV_YUY2 0x8FC2

GL_VIV_UYVY 0x8FC3

GL_VIV_NV21 0x8FC4

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
30 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Error codes

GL_INVALID_ENUM Target is not GL_TEXTURE_2D, or format is not a valid format.

GL_INVALID_VALUE Width or Height parameter is less than 1.

GL_OUT_OF_MEMORY A memory allocation error occurred.

GL_INVALID_OPERATION Specified format is not supported by the hardware, or
no texture is bound to the active texture unit, or
some other error occurs during the call.

Example 1.

First, call glTexDirectVIV to get a pointer.

Second, copy the texture data to this memory address.

Then, call glTexDirectInvalidateVIV to apply the texture before drawing something with that texture.

… …
glTexDirectVIV(GL_TEXUTURE_2D, 512, 512, GL_VIV_YV12, &texels);
… …
GLTexDirectInvalidateVIV(GL_TEXTURE_2D);
…
glDrawArrays(…);
…

Example 2.

First, call glTexDirectVIVMap to map Logical and Physical address to the texture.

Second, modify Logical and Physical data.

Then, call glTexDirectInvalidateVIV to apply the texture before drawing something with that texture.

… …
char *Logical = (char*) malloc (sizeof(char)*size);
GLuint physical = ~0U;
glTexDirectVIVMap(GL_TEXUTURE_2D, 512, 512, GL_VIV_YV12, (void**)&Logical,
 &physical);
… …
GLTexDirectInvalidateVIV(GL_TEXTURE_2D);
…
glDrawArrays(…);

Issues

None

3.5 Extension GL_VIV_texture_border_clamp
Name

VIV_texture_border_clamp

Name Strings

GL_VIV_texture_border_clamp

Status

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
31 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Implemented September 2012.

Version

Last modified: 27 September 2012

Vivante revision: 1

Number

Unassigned

Dependencies

This extension is implemented for use with OpenGL ES 1.1 and OpenGL ES 2.0.

This extension is based on OpenGL ARB Extension #13: GL_ARB_texture_border_clamp: www.opengl.org/
registry/specs/ARB/texture_border_clamp.txt. See also vendor extension GL_SGIS_texture_border_clamp:
www.opengl.org/registry/specs/SGIS/texture_border_clamp.txt.

Overview

This extension was adapted from the OpenGL extension for use with OpenGL ES implementations. The
OpenGL ARB Extension 13 description applies here as well:

“The base OpenGL provides clamping such that the texture coordinates are limited to exactly the range [0,1].
When a texture coordinate is clamped using this algorithm, the texture sampling filter straddles the edge of the
texture image, taking 1/2 its sample values from within the texture image, and the other 1/2 from the texture
border. It is sometimes desirable for a texture to be clamped to the border color, rather than to an average of the
border and edge colors.

This extension defines an additional texture clamping algorithm. CLAMP_TO_BORDER_[VIV] clamps texture
coordinates at all mipmap levels such that NEAREST and LINEAR filters return only the color of the border
texels.”

The color returned is derived only from border texels and cannot be configured.

Issues

None

New Tokens

Accepted by the <param> parameter of TexParameteri and TexParameterf, and by the <params>
parameter of TexParameteriv and TexParameterfv, when their <pname> parameter is TEXTURE_WRAP_S,
TEXTURE_WRAP_T, or TEXTURE_WRAP_R:

CLAMP_TO_BORDER_VIV 0x812D

Errors

None.

New State

Only the type information changes for these parameters.

See OES 2.0 Specification Section 3.7.4, page 75-76, Table 3.10, “Texture parameters and their values.”

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
32 / 140

http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
https://www.opengl.org/registry/specs/SGIS/texture_border_clamp.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

4 Vivante Framebuffer API

4.1 Overview
The graphics software includes i.MX Framebuffer (FB) API which enables users to easily create and port
their graphics applications by using a framebuffer device without the need to expend additional effort handling
platform-related tasks. i.MX Framebuffer API focuses on providing mechanisms for controlling display, window,
and pixmap render surfaces.

The EGL Native Platform Graphics Interface provides mechanisms for creating rendering surfaces onto which
client APIs can draw, creating graphics contexts for client APIs, and synchronizing drawing by client APIs as
well as native platform rendering APIs. This enables seamless rendering using Khronos APIs such as OpenGL
ES and OpenVG for high-performance, accelerated, mixed-mode 2D, and 3D rendering. For further information
on EGL, see www.khronos.org/registry/egl. The API described in this document is compatible with EGL version
1.4 of the specification.

Note:

i.MX 8 and later on Linux OS supports Direct Rendering Manager (DRM) where the Linux framebuffer support is
limited, recommended to use the Graphics Buffer Manager (GBM).

4.2 API data types and environment variables

4.2.1 Data types

The GPU software provides platform independent member definitions for the following EGL types:

typedef struct _FBDisplay * EGLNativeDisplayType;
typedef struct _FBWindow * EGLNativeWindowType;
typedef struct _FBPixmap * EGLNativePixmapType;

Figure 3. Types as listed on EGL 1.4 API Quick Reference Card

(from www.khronos.org/files/egl-1-4-quick-reference-card.pdf)

4.2.2 Environment variables

Environment Variables Description

FB_MULTI_BUFFER To use multiple-buffer rendering, set the environment variable FB_MULTI_BUFFER
to an unsigned integer value, which indicates the number of buffers required. The
maximum is 8.

Table 14. i.MX FB API environment variables

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
33 / 140

http://www.khronos.org/registry/egl
http://www.khronos.org/files/egl-1-4-quick-reference-card.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Environment Variables Description
Recommended values: 4.
The FB_MULTI_BUFFER variable can be set to any positive integer value.
• If set to 1, the multiple-buffer function is not enabled, and the VSYNC is also

disabled, so there may be tearing on screen, but it is good for benchmark test.
• If set to 2 or 3, VSYNC is enabled and there are double or triple frame buffer.

Because of the hardware limitation of current IPU, there may be tearing on screen.
• If set to 4 or more, VSYNC is enabled and no screen tearing appears.
• If set to a value more than 8, the driver uses 8 as the buffer count.

FB_FRAMEBUFFER_0,
FB_FRAMEBUFFER_1,
FB_FRAMEBUFFER_2,
FB_FRAMEBUFFER_n

To open a specified framebuffer device, set the environment variable FB_
FRAMEBUFFER_n to a proper value (for example, FB_FRAMEBUFFER_0 = /dev/
fb0).
Allowed values for n: any positive integer.
Note: If there are no environment variables set, the driver tries to use the default
framebuffer devices (fb0 for index 0, fb1 for index 1, fb2 for index 2, fb3 for index 3,
and so on).

FB_IGNORE_DISPLAY_SIZE When set to a positive integer and a window’s initial size request is greater than the
display size, the window size is not reduced to fit within the display. Global.
Allowed values: any positive integer.
Note: The drivers read the value from this environment variable as a Boolean to check
if the user wants to ignore the display size when creating a window.
• If the variable is set to value 0, or this environment variable is not set, when creating

window, the driver uses display size to cut down the size of the window to ensure
that the entire window area is inside the display screen.

• If the user sets this variable to 1, or any positive integer value, then the window
area can be partly or entirely outside of the display screen area (see the image
below in which the ignore display size is equal to 1).

GPU_VIV_DISABLE_CLEAR_FB It turns off zero fill memory, so the content of FBDEV buffer is not cleared.

FB_LEGACY If the board supports drm-fb, the GPU will render though DRM by default. If the user
wants to render to framebuffer directly instead of through DRM, set this variable to 1.

Table 14. i.MX FB API environment variables...continued

Below are some usage syntax examples for environment variables:

To create a window with its size different from the display size, use the environment variable
FB_IGNORE_DISPLAY_SIZE. Example usage syntax:

export FB_IGNORE_DISPLAY_SIZE=1

To let the driver use multiple buffers to do swap work, use the environment variable FB_MULTI_BUFFER.
Example usage syntax:

export FB_MULTI_BUFFER=2

To specify the display device, use the environment variable FB_FRAMEBUFFER_n, where n = any positive
integer. Example usage syntax:

export FB_FRAMEBUFFER_0=/dev/fb0

export FB_FRAMEBUFFER_1=/dev/fb1

export FB_FRAMEBUFFER_2=/dev/fb2

export FB_FRAMEBUFFER_3=/dev/fb3

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
34 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

4.3 API description and syntax
fbGetDisplay:

Description This function is used to get the default display of the framebuffer device.

To open the framebuffer device, set an environment variable FB_FRAMEBUFFER_n to the
framebuffer location.

Syntax
EGLNativeDisplayType
fbGetDisplay (
void * context
);

Parameters context: Pointer to the native display instance.

Return Values The function returns a pointer to the EGL native display instance if successful; otherwise, it
returns a NULL pointer.

fbGetDisplayByIndex:

Description This function is used to get a specified display within a multiple framebuffer environment by
providing an index number.

To use multiple buffers when rendering, set the environment variable FB_MULTI_BUFFER
to an unsigned integer value, which indicates the number of buffers. Maximum is 3.

To open a specific Framebuffer device, set environment variables to their proper values
(e.g., set FB_FRAMEBUFFER_0 = /dev/fb0). If there are no environment variables set,
the driver tries to use the default fb devices (fb0 for index 0, fb1 for index 1, fb2 for index 2,
fb3 for index 3, and so on).

Syntax EGLNativeDisplayType
fbGetDisplayByIndex (
int DisplayIndex
);

Parameters DisplayIndex:

An integer value where the integer is associated with one of the following environment
variables for framebuffer devices:

FB_FRAMEBUFFER_0
FB_FRAMEBUFFER_1
FB_FRAMEBUFFER_2
FB_FRAMEBUFFER_n

Return Value The function returns a pointer to the EGL native display instance if successful; otherwise, it
returns a NULL pointer.

fbGetDisplayGeometry:

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
35 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Description This function is used to get display width and height information.

Syntax void
fbGetDisplayGeometry (
EGLNativeDisplayType Display,
int * Width,
int * Height
);

Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.

Width: [out] Pointer that receives the width of the display.

Height: [out] Pointer that receives the height of the display.

fbGetDisplayInfo:

Description This function is used to get display information.

Syntax
void
fbGetDisplayInfo (
EGLNativeDisplayType Display,
int * Width,
int * Height,
unsigned long * Physical,
int * Stride,
int * BitsPerPixel
);

Parameters Display: [in] A pointer to the EGL native display instance created by fbGetDisplay.

Width: [out] A pointer to the location that contains the width of the display.

Height: [out] A pointer to the location that contains the height of the display.

Physical: [out] A pointer to the location that contains the physical start address of the
display.

Stride: [out] A pointer to the location that contains the stride of the display.

BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the display.

fbDestroyDisplay：

Description This function is used to destroy a display.

Syntax
void
fbDestroyDisplay (
EGLNativeDisplayType Display
);

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
36 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.

fbCreateWindow：

Description This function is used to create a window for the framebuffer platform with the specified
position and size. If width/height is 0, it uses the display width/height as its value.

Note: When either window X + width or the Y + height is larger than the display’s width or
height respectively, the API reduces the window size to force the whole window inside the
display screen limits. To avoid reducing the window size in this scenario, users can set a
value of “1” to the environment variable FB_IGNORE_DISPLAY_SIZE.

Syntax
EGLNativeWindowType
fbCreateWindow (
EGLNativeDisplayType Display,
int X,
int Y,
int Width,
int Height
);

Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.

X: [in] Specifies the initial horizontal position of the window.

Y: [in] Specifies the initial vertical position of the window.

Width: [in] Specifies the width of the window.

Height: [in] Specifies the height of the window in device units.

Return Value The function returns a pointer to the EGL native window instance if successful; otherwise,
it returns a NULL pointer.

fbGetWindowGeometry:

Description This function is used to get window position and size information.

Syntax
void
fbGetWindowGeometry (
EGLNativeWindowType Window,
int * X,
int * Y,
int * Width,
int * Height
);

Parameters Window: [in] Pointer to EGL native window instance created by fbCreateWindow.

X: [out] Pointer that receives the horizontal position value of the window.

Y: [out] Pointer that receives the vertical position value of the window.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
37 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Width: [out] Pointer that receives the width value of the window.

Height: [out] Pointer that receives the height value of the window.

fbGetWindowInfo:

Description This function is used to get window position and size and address information.

Syntax
void
fbGetWindowInfo (
EGLNativeWindowType Window,
int * X,
int * Y,
int * Width,
int * Height
int * BitsPerPixel,
unsigned int * Offset
);

Parameters Window: [in] A pointer to the EGL native window instance created by fbCreateWindow.

X: [out] A pointer to the location that contains the horizontal position value of the window.

Y: [out] A pointer to the location that contains the vertical position value of the window.

Width: [out] A pointer to the location that contains the width of the window.

Height: [out] A pointer to the location that contains the height of the window.

BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the window.

Offset: [out] A pointer to the location that contains the offset of the window.

fbDestroyWindow:

Description This function is used to destroy a window.

Syntax
void
fbDestroyWindow (
EGLNativeWindowType Window
);

Parameters Window: [in] Pointer to EGL native window instance created by fbCreateWindow.

fbCreatePixmap：

Description This function is used to create a pixmap of a specific size on the specified framebuffer
device. If either the width or height is 0, the function fails to create a pixmap and return
NULL.

Syntax
EGLNativePixmapType

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
38 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

fbCreatePixmap (
EGLNativeDisplayType Display,
int Width,
int Height
);

Parameters Display: [in] Pointer to the EGL native display instance created by fbGetDisplay.

Width: [in] Specifies the width of the pixmap.

Height: [in] Specifies the height of the pixmap.

Return Value The function returns a pointer to the EGL native pixmap instance if successful; otherwise,
it returns a NULL pointer.

fbCreatePixmapWithBpp:

Description This function is used to create a pixmap of a specific size and bit depth on the specified
framebuffer device. If either the width or height is 0, the function fails to create a pixmap
and return NULL.

Syntax
EGLNativePixmapType
fbCreatePixmapWithBpp (
EGLNativeDisplayType Display,
int Width,
int Height
int BitsPerPixel
);

Parameters Display: [in]A pointer to the EGL native display instance created by fbGetDisplay.

Width: [in] Specifies the width of the pixmap.

Height: [in] Specifies the height of the pixmap.

BitsPerPixel: [in] Specifies the bit depth of the pixmap.

Return Value The function returns a pointer to the EGL native pixmap instance if successful; otherwise,
it returns a NULL pointer.

fbGetPixmapGeometry:

Description This function is used to get pixmap size information.

Syntax
void
fbGetPixmapGeometry (
EGLNativePixmapType Pixmap,
int * Width,
int * Height
);

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
39 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Parameters Pixmap: [in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.

Width: [out] Pointer that receives a width value for pixmap.

Height: [out] Pointer that receives a height value for pixmap.

fbGetPixmapInfo:

Description This function is used to get pixmap size and depth information.

Syntax
void
fbGetPixmapInfo (
EGLNativePixmapType Pixmap,
int * Width,
int * Height
int * BitsPerPixel
int * Stride,
void ** Bits
);

Parameters Pixmap: [in] A pointer to the EGL native pixmap instance created by fbCreatePixmap.

Width: [out] A pointer to the location that contains a width value for pixmap.

Height: [out] A pointer to the location that contains a height value for pixmap.

BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the pixmap.

Stride: [out] A pointer to the location that contains the stride of the pixmap.

Bits: [out] A pointer to the location that contains the bit address of the pixmap.

fbDestroyPixmap:

Description This function is used to destroy a pixmap.

Syntax
void
fbDestroyPixmap (
EGLNativePixmapType Pixmap
);

Parameters Pixmap: [in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.

5 OpenCL

5.1 Overview

5.1.1 General description

Open Computing Language (OpenCL) is an open industry standard application programming interface (API)
used to program multiple devices including GPUs, CPUs, as well as other devices organized as part of a single
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
40 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

computational platform. The OpenCL standard targets a wide range of devices from mobile phones, tablets,
PCs, and consumer electronic (CE) devices, all the way to embedded applications such as automotive and
image processing functions. The API takes advantage of all resources in a platform to fully utilize all compute
capability and to efficiently process the growing complexity of incoming data streams from multiple I/O (input/
output) sources. I/O streams can be camera inputs, images, scientific or mathematical data, and any other form
of complex data that can make use of data or task parallelism.

OpenCL uses parallel execution SIMD (single instruction, multiple data) engines found in GPUs to enhance
data computational density by performing massively parallel data processing on multiple data items, across
multiple compute engines. Each compute unit has its own arithmetic logic units (ALUs), including pipelined
floating point (FP), integer (INT) units and a special function unit (SFU) that can perform computations as
well as transcendental operations. The parallel computations and associated series of operations are called a
kernel, and the GPU cores can execute a kernel on thousands of work-items in parallel at any given time.

At a high level, OpenCL provides both a programming language and a framework to enable parallel
programming. OpenCL includes APIs, libraries and a runtime system to assist and support software
development. With OpenCL, it is possible to write general purpose programs that can execute directly on
GPUs, without needing to know graphics architecture details or using 3D graphics APIs like OpenGL or DirectX.
OpenCL also provides a low-level Hardware Abstraction Layer (HAL) as well as a framework that exposes
many details of the underlying hardware layer and thus allows the programmer to take full advantage of the
hardware.

For more details on all the capabilities of OpenCL, see the following specifications from the Khronos Group:

• OpenCL 3.0 Specification

https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf

• OpenCL 3 C Language Specification

https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf

5.1.2 OpenCL framework

The OpenCL framework has two principal parts, similar to OpenGL, the host C API and the device C-based
language runtime. The host in OpenCL terminology corresponds to the client in OpenGL and the device
corresponds to the server. Device programs are called kernels. Execution of an OpenCL program is preceded
by a series of API calls that configure the system and Vivante OCL-compatible IP for execution.

OpenCL abstracts today's heterogeneous architectures using a hierarchical platform model. A host coordinates
the execution and data transfers on, to and from one or several compute devices. Compute devices are
comprised of compute units and each such unit contains an array of processing elements.

5.1.2.1 OpenCL execution model: kernels and work elements

The OpenCL execution model is defined by how the kernels are executed. When a kernel is submitted for
execution by the host, an index space is defined. An instance of the kernel executes for each point in this index
space. This kernel instance is called a work-item. Work-items are identified by their position in the index space
that provides the global ID for the work-item. Each work-item executes the same code but the specific pathway
through the code and the data operated upon varies by work-item.

Work-items are organized into work-groups. Work-groups provide a broader decomposition of the index space.
Work-groups are each assigned a unique work-group ID with the same dimensionality as the index space used
for the work-items. Work-items are assigned a unique local ID within a work-group so that a single work-item
can be uniquely identified by its global ID or by a combination of its local ID and work-group ID. The work-items
in a given work-group execute concurrently on the same compute device.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
41 / 140

https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

The index space supported in OpenCL is called an NDRange. An NDRange is an N-dimensional index space,
where N is one (1), two (2) or three (3). An NDRange is defined by an integer array of length N specifying the
extent of the index space in each dimension starting at an offset index F (zero by default). Each work-item’s
global ID and local ID are N-dimensional tuples. The global ID components are values in the range from F, to F
plus the number of elements in that dimension minus one.

Work-groups are assigned IDs using a similar approach to that used for work-item global IDs. An array of length
N defines the number of work-groups in each dimension. Work-items are assigned to a work-group and given
a local ID with components in the range from zero to the size of the work-group in that dimension minus one.
Hence, the combination of a work-group ID and the local-ID within a work-group uniquely defines a work-item.
Each work-item is identifiable in two ways; in terms of a global index, unique through the whole kernel index
space, and in terms of a local index, unique within a work group.

5.1.2.2 OpenCL command queues

OpenCL provides both task and data parallelism. Data movements are coordinated via command queues,
which provide a general means of specifying inter-task relationships and task execution orders that obey
the dependencies in the computation. OpenCL may execute several tasks in parallel, if they are not order
dependent. Tasks are composed of data-parallel kernels which, similarly to shaders, apply a single function to
a range of elements in parallel. Only restricted synchronization and communication is allowed during kernel
execution.

OpenCL kernels execute over a 1, 2 or 3 dimensional index space. All work-items execute the same program
(kernel) but their execution may diverge, with branching dependent on the data or their index. For details
regarding how many work groups are allowed within an index space see “Using clEnqueueNDRangeKernel”.

A kernel or a memory operation is first enqueued onto a command queue. Kernels are executed
asynchronously and the host application execution may proceed right after the enqueue operation. The
application may opt to wait for an operation to complete and an operation (kernel or memory) may be marked
with a list of events that must occur before it executes.

Events are kernel completion and memory operations. OpenCL traverses the dependence graph between the
kernels and memory transfers in a queue and ensures the correct execution order. Multiple command queues
may be constructed, further enhancing parallelism control across platforms and multiple compute devices.

• Command-queue barriers are used to control the commands within the command queue. The command-
queue barrier indicates which commands must be finished before proceeding. This allows for out-of-order
command processing. The command queue barrier ensures that all previously enqueued commands finish
execution before any following commands begin execution.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
42 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 4. Command queue barrier

The work-group barrier built-in function provides control of the work-item flow within work-groups. All work-items
must execute the barrier construct before any can continue execution beyond the barrier.

5.1.2.3 OpenCL memory model

The OpenCL memory model is divided into four different types of memory domains. These are:

• Global Memory: Each compute device has global memory space which can reside off-chip in system memory
(DRAM) or inside the chip at the L1 or temporary register level. Global memory is accessible to all work-items
executing in a context, as well as to the host (read, write, and map commands).

• Constant Memory: is also global memory, but it is read-only. Constant memory can be placed in any level of
memory that the application programmer decides, making it an implementation dependent decision. This is the
region for host-allocated and host-initialized objects that are not changed during kernel execution.

• Local Memory: Each compute unit has local memory which resides very near the processing elements.
Access to local memory is very fast and the size of local memory is much smaller than global memory, making
it a scarce resource that needs to be controlled for optimal communication of work-items inside a work-group.
Local memory is specific to a work-group, and is accessible only by work-items belonging to that work group.

• Private Memory: Each processing element has another level of memory called private memory, which is only
accessible to a single work-item. Private memory is specific to a work-item and is not visible to other work-
items.

During run-time, each processing element is assigned a set of on-chip registers that are used for data storage
of intermediate data. Data that cannot be stored in registers spills over to global memory which can be very
costly in terms of performance and constant data movement to/from temporary registers. Software may emulate
local and private memory using global memory. System Memory is often loaded to L1 cache, Temporary or

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
43 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Local Storage Registers and the GPGPU reads from those locations. At every level of the application program,
the programmer must be aware of the size and hierarchy of storage elements.

Khronos OpenCL
Memory Model Name

Vivante GPGPU OpenCL
Memory Structures Utilized

Definition

Private Memory Registers, System Memory Accessible only to an individual work-item; not
visible to any other work-items

Local Memory Local Storage Registers, System
Memory

Accessible to all work-items within a specific work-
group; accessible only by work-items belonging to
that work-group

Global Memory System Memory Accessible to all-work-items executing in a context,
as well as to the host (read, write, and map
commands).

Constant Memory Constant Registers, System
Memory

Read only global memory region for host-allocated
and initialized objects that are not changed during
kernel execution

Host (CPU) Memory Host Memory Region for a kernel application’s program data and
structures

Table 15. Vivante memory structures mapped to Khronos OpenCL memory types

The OpenCL concurrent-read /concurrent-write (CRCW) memory model has so-called relaxed consistency
which means that different work-items may see a different view of global memory as the computation proceeds.
Within individual work-items reads and writes to all memory spaces are ordered. Synchronization between
work-items in a work-group is necessary to ensure consistency. No mechanism for synchronization between
work-groups is provided. Such a model assures parallel scalability by requiring explicit synchronization and
communication.

For the highest throughput and computational speed, kernels should use high-speed on-chip memories and
registers as much as possible. Instruction control flow and memory operations, including data gathering /
scattering and direct memory access (DMA) should be automatically reorganized / re-ordered depending on
data dependencies detected by the optimized compiler. The Vivante OpenCL compiler automatically maps
dependencies and re-orders instructions for the best performance.

5.1.2.4 Host to Vivante compute device data transfers

The application running on the host uses the OpenCL API to create memory objects in global memory, and to
enqueue memory commands that operate on these memory objects. The host and OpenCL device memory
models are, for the most part, independent of each other. This is by necessity as the host is defined outside of
OpenCL. They do, however, at times need to interact. This interaction occurs in one of two ways: by explicitly
copying data from the host to the GPU compute device memory, or implicitly, by mapping and unmapping
regions of a memory object.

• Explicit using clEnqueueReadBuffer and clEnqueueWriteBuffer (clEnqueueReadImage,
clEnqueueWriteImage.)

To copy data explicitly, the host enqueues commands to transfer data between the memory object and host
memory. These memory transfer commands may be blocking or non-blocking. The OpenCL function call for
a blocking memory transfer returns once the associated memory resources on the host can be safely reused.
For a non-blocking memory transfer, the OpenCL function call returns as soon as the command is enqueued
regardless of whether host memory is safe to use.

• Implicit using clEnqueueMapBuffer and clEnqueueUnMapMemObject.

The mapping/unmapping method of interaction between the host and OpenCL memory objects allows the host
to map a region from the memory object into its address space. The memory map command may be blocking
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
44 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

or non-blocking. Once a region from the memory object has been mapped, the host can read or write to this
region. The host unmaps the region when accesses (reads and/or writes) to this mapped region by the host are
complete.

The OpenCL specification does not explicitly state where each memory space will be mapped to on individual
implementations. This provides great freedom for vendors on the one hand and some uncertainty for
programmers on the other. Fortunately, kernels may be compiled just-in-time and possible differences may be
tackled during run-time.

When using these interfaces, it is important to consider the amount of copying involved to/from system memory
and the various levels within the compute device(s). There is a two-copy process: between host and AXI (or
SoC internal bus), and between AXI (or SoC internal bus) and the Vivante GPGPU compute device. Double
copying lowers overall system memory bandwidth and lowers performance. Because of variations in system
architecture (both internal and external/memory), there is sometimes a large performance delta between
the system or calculated GFLOPS and the kernel or GPGPU GFLOPS. GPGPU GFLOPS are based on the
theoretical computational capability of the ALUs within the GPGPU, assuming the system architecture can
deliver full data to the GPGPU. OpenCL APIs for buffers and images aid in avoiding double copy by allowing
the mapping of host memory to device memory. With proper memory transfer management and the use of host/
CPU memory remapped to the GPGPU memory space, copying between host memory and GPGPU memory
can be skipped so data transfer becomes a one-copy process. The trade-off is that the programmer needs to be
mindful of page boundaries and memory alignment issues.

5.1.3 OpenCL profiles

In addition to Full Profile, the OpenCL specification also includes an Embedded Profile, which relaxes the
OpenCL compliance requirements for mobile and embedded devices. The main commons and differences
between OpenCL 1.1/1.2 EP (Embedded Profile) and FP (Full Profile) come down to:

Commons:

• Both EP and FP significantly offload the CPU of parallel, multi-threaded tasks.
• For both EP and FP double precision and half-precision floating point are optional.

Difference:

• Full Profile is for highly complex, accurate, and real time computations, while Embedded Profile is a small
subset targeting smaller devices (handheld, mobile, embedded) that perform GPGPU/OpenCL processing
with relaxed data type and precision requirements (image processing, augmented reality, gesture recognition,
and more).

• 64-bit integers are required for FP and optional for EP.
• EP requires either RTZ or RTE. FP requires both.
• Computational precision (units in the last place; i.e., ULP) requirements in EP are relaxed.
• Atomic instruction support is not required in EP.
• 3D Image support is not required in EP.
• Minimum requirements for constant buffer size, object allocation size, constant argument counts and local

memory sizes are scaled down in EP.
• And more (in general EP is a scaled down version of FP).
• Die size and power increase with FP because of the higher requirements, features and memory sizes.

5.1.4 Vivante OpenCL embedded compatible IP

As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Embedded Profile
version 1.1. The following table lists the hardware capability deltas.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
45 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Hardware and revision GC2000

Feature 5.1.0.rc8a

Compute Devices (GPGPU cores) 1

Compute Units per device (Shader cores) 4

Processing Elements per compute unit 4

Profile Embedded

Preferred work-group/thread group size 16

Max count global work-items each dim 64K

Max count of work-items each dim per work-group 1K

Local Storage Registers On-chip 64

Instruction Memory 512

Texture Samplers 8 PS + 4 VS

Texture Samplers available to OCL (HW, unlimited via SW) 4

L1 Cache Size 4 KB

L1 Cache Banks 1

L1 Cache Sets/Bank 4

L1 Cache Ways/Set 16

L1 Cache Line Size 64B

L1 Cache MC ports 1

Table 16. Vivante OpenCL embedded profile hardware

5.1.5 Vivante OpenCL full profile hardware model

As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Full Profile versions
1.1, 1.2, and 3.0. Hardware capability deltas are subject to change and includes:

Hardware and revision GC2000+ GC7000XSVX GC7000L GC7000UL

i.MX SoC i.MX 6QuadPlus,
i.MX 6DualPlus i.MX 8 QuadMax i.MX 8M Quad,

i.MX 8QuadXPlus
i.MX 8M Nano
i.MX 8M Plus

Compute Devices (GPGPU cores) 1 1 1 1

Compute Units per device (for sub-
device) 1 1 1 1

Processing Elements per device 16 32 16 8

Profile Full-Lite* Full Full Full

Preferred work-group/ thread group
size 16 32 16 8

Max count global work-items each
dim
(if 3D only 1 dim can be up to 4G,
the others 64K)

4 G/64 K 4 G/64 K 4G

4G

Max count of work-items each dim
per work-group 1 K 1 K 1K 1K

Table 17. Vivante OpenCL full profile hardware

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
46 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Local Storage Registers On-chip 0 2048 (32 K) 16 (KB)

Instruction Memory I$:512/1 M 8K 8K 8K

Texture Samplers 32 undefined 32 undefined 32 32

Texture Samplers available to OCL 32 32 32 32

L1 Cache Size 4 KB 64 KB 16KB 8 KB

L1 Cache Banks 2 4 2 1

L1 Cache Sets/Bank 2 8 N/A 8

L1 Cache Ways/Set 16 8 8 8

L1 Cache Line Size 64 B 64 B 64 B 64 B

L1 Cache MC ports per GPGPU
core 2 2 2 1

Table 17. Vivante OpenCL full profile hardware...continued

5.2 Vivante OpenCL implementation

5.2.1 OpenCL pipeline

Figure 5. Vivante OpenCL data pipeline for an OpenCL compute device
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
47 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 6. Vivante OpenCL compute device showing memory scheme

5.2.2 Front end

The front end passes the instructions and constant data as State Loads to the OpenCL Compute Unit
(Shader) block. State Loads program instructions and constant data and work groups initiate execution on the
instructions and the constants loaded.

5.2.3 OpenCL compute unit

All OpenCL executions occur in this block and all work-groups in a compute unit should belong to the same
kernel. Threads from a work-group are grouped into internal “Thread-groups”. All the threads in a thread-group
execute in parallel. Barrier instruction is supported to enforce synchronization within a work-group.

The compute unit contains Local Memory and the L1 Cache and is where the Load/Store instruction to access
global memory originates. The compute unit can accommodate multiple work-groups (based on the temporary
register and local memory usage) simultaneously.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
48 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

5.2.4 Memory hierarchy

Figure 7. OpenCL memory hierarchy

5.2.5 CL Extension support

5.2.5.1 CL_DEVICE_EXTENSION support

The following table provides a list of CL_DEVICE_EXTENSIONs referenced in the OpenCL 1.2 specification
(pp. 46-47). The support level for these device specific extensions is also indicated.

List from OpenCL 1.2 Specification https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf (version 1.2,
document revision 19, revision date 11/14/12)

CL_DEVICE_EXTENSIONS
OpenCL C 1.2 Extensions which must be returned (p. 47) SW 6.2.x/6.4.x

cl_khr_byte_addressable_store YES

cl_khr_fp64 (for backward compatibility if double precision is
supported)

cl_khr_global_int32_base_atomics CORE

Table 18. Support level for these device specific extensions (1)

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
49 / 140

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

CL_DEVICE_EXTENSIONS
OpenCL C 1.2 Extensions which must be returned (p. 47) SW 6.2.x/6.4.x

cl_khr_global_int32_extended_atomics CORE

cl_khr_local_int32_base_atomics CORE

cl_khr_local_int32_extended_atomics CORE

Table 18. Support level for these device specific extensions (1)...continued

CL_DEVICE_EXTENSIONS
Device specific support for Khronos approved extension names (p.46)
A number after the extension name indicates the extension is also listed in the
numbered extensions on the Khronos website.

SW 6.2.x/6.4.x

cl_khr_3d_image_writes

cl_khr_context_abort

cl_khr_d3d10_sharing (#6)

cl_khr_d3d11_sharing

cl_khr_depth_images

cl_khr_dx9_media_sharing

cl_khr_fp16

cl_khr_gl_depth_images

cl_khr_gl_event

cl_khr_gl_msaa_sharing

cl_khr_gl_sharing (#1) YES

cl_khr_image2d_from_buffer

cl_khr_initialize_memory

cl_khr_int64_base_atomics

cl_khr_int64_extended_atomics

cl_khr_spir

Table 19. Support level for these device specific extensions (2)

5.2.5.2 Vivante OpenCL extension support

The following table provides a list of all current OpenCL Extensions and indicates their support level in Vivante
software.

OpenCL Extension Number, Name and hyperlink SW 6.2.x

cl_khr_byte_addressable_store YES

cl_khr_external_memory_dma_buf YES (from 6.4.11)

cl_khr_command_buffer YES (from 6.4.11)

cl_khr_gl_sharing YES

cl_khr_icd YES

Table 20. CL extensions supported by Vivante with 6.2.x SW

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
50 / 140

https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_gl_sharing.txt
https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_icd.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

OpenCL Extension Number, Name and hyperlink SW 6.2.x

VIV_bitfield_extension YES (from 6.2.2, revised in 6.2.3)

VIV_cmplx_extension YES (from 6.2.3)

VIV_uncached_host_mem YES (from 6.2.2)

VIV_vx_extension YES, for VX/VIP hw (from 6.2.2)

cl_khr_fp16 YES (from 6.4.7)

cl_khr_il_program YES (from 6.4.8)

Table 20. CL extensions supported by Vivante with 6.2.x SW...continued

5.3 Optimization for OpenCL embedded profile
OpenCL EP (Embedded Profile) is basically a scaled down version of OpenCL FP(Full Profile) and thus may
require extra optimization. The guidelines below help with the optimization of Vivante OpenCL Embedded
Profile GPGPU cores.

When optimizing code on Vivante hardware, it is important to remember a few key points to get the best
performance from the hardware:

• Take advantage of algorithm and data parallelism

• Choose the correct execution configuration (more details below)

• Overlap memory transfer from different levels of the OpenCL memory hierarchy with simultaneous thread
execution

• Maximize memory bandwidth and minimize data transfers (large transfers are more beneficial than many
smaller transfers because of the impact of latency)

• Maximize instruction throughput and minimize instruction count

5.3.1 Using preferred multiple of work-group size

The work-group size should be a multiple of the thread group size. Otherwise, some threads remain idle and
the application does not fully utilize all the compute resources. For example, if the work-group size is 8 and
the Vivante core supports 16, only half the compute resources are used. For example, in some early Vivante
GPGPU revisions, the work-group size limit is 192 and the thread group size is 16. See the Overview section on
OpenCL Compatible IP for IP-specific capabilities.

5.3.2 Using multiple work-groups of reduced size

Multiple work groups need to be set to reduce synchronization penalties. To prevent stalls at barriers, it is
recommended to have at least four (4) work-groups to keep the cores busy or as long as the number of work-
groups is greater than or equal to two (2). One work-group is very inefficient; four or more is preferred and helps
avoid latency.

5.3.3 Packing work-item data

It is important to pack data to extract the optimal performance from the SIMD ALU hardware and align the data
into a format supported by the hardware. Efficient use of the Vivante GPGPU core requires that the kernel
contains enough parallelism to fill all four vector units. Work-items in the same thread group have the same
program counter and execute the same instruction for each cycle. Whenever possible, pack together work-
items that follow the same direction (e.g., on branches) since the granularity is very close and there may be

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
51 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

less divergence and higher performance. If each work-item handles less than or equal to 8 bytes, it is better to
combine two or more work-items into one to improve utilization of the SIMD ALU.

5.3.4 Improving locality

If the input data is an array-of-structs, and each work-item needs to access only a small part of the struct
across many array elements at different stages, it may be better to convert and use a struct-of-arrays or several
different arrays as input to improve data locality and avoid cache thrashing.

If each work-item needs to process a row of data without sharing any data with other work-items, it is better
to check if the algorithm can be converted to make each work-item process a column of data so that data
accessed by adjacent work-items can share the same cache lines.

5.3.5 Minimizing use of 1 KB local memory

The OpenCL Embedded Profile specification defines the minimum requirement for local memory to be
1KB to pass conformance testing. Based on algorithm analysis and profiling different image and computer
vision algorithms, we found that a 1KB local memory size was too small to benefit those algorithms. In most
instances, those algorithms actually slowed down when using 1KB local memory. To increase performance,
we recommend not using local memory since it is more efficient to transfer larger chunks of data from system
memory to keep the OpenCL pipeline full.

Note: If local memory type is CL_GLOBAL, the local memory is emulated using global memory, and the
performance is the same as global memory. There is extra overhead on data copy from global to local, which
slows down the performance.

5.3.6 Using 16 byte memory Read/Write size

When accessing memory, it is important to minimize the read/write count and to ensure L1 cache utilization is
high to reduce outstanding read/write requests. Since the internal GPGPU read-write-request queue has a limit,
if the queue and L1 cache are filled, then the GPGPU remains idle.

5.3.7 Using _RTZ rounding mode

Wherever possible, use _RTZ (round to zero) since it is natively supported in hardware with one instruction.
Support for _RTE (round to nearest even) is optional in OpenCL EP and is only supported in Vivante GPGPU
EP hardware from 2013. This function is handled in software for EP cores if necessary.

5.3.8 Using float4 for better performance on i.MX 8M Quad and i.MX 8QuadXPlus

Since both the i.MX 8M Quad and i.MX 8QuadXPlus boards have new RTL 6214, the CL kernel
compiler generates GPU instructions using more registers on RTL6214. Float4 is recommended for real
applications for better performance.

5.3.9 Using native functions

5.3.9.1 Using native_function() for increased performance

There are two types of runtime math libraries available to developers. Native_function() and regular function().

• Function(): slower, computationally expensive, higher instruction count, and greater accuracy

• Native_function(): faster, computationally inexpensive, lower instruction count (sometimes reduced to one
instruction), and lower accuracy.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
52 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• If accuracy is not important but speed/performance is, use native math functions that map directly to the
Vivante GPGPU hardware.

For image processing computations that do not require high accuracy, use native instructions to significantly
lower the instruction count and speed up performance. Based on actual analysis and performance profiling
with the Vivante GPGPU, we found that using native_function() instructions such as sin, cos, etc., reduces
the instruction count from many instructions to one or two instructions. Use of native functions also sped
performance by 3x-10x.

5.3.9.2 Using native_divide and native_reciprocal for faster floating point calculations

There are two use cases for floating point division which a user can select:

• Normal use of the division operator (/) in OpenCL has high precision and covers all corner use cases. This
operator generates more instructions and runs slower.

• Native Divide: this use case uses the built-in function native_divide or native_reciprocal, which uses what the
hardware supports. The Vivante OpenCL compiler generates one or two instructions for each native_divide or
native_reciprocal instruction. If there are no corner use cases in applications, such as NaN, INF, or (2^127) /
(2^127), it is better to use native_divide since it is faster.

5.3.9.3 Using compile option for native functions

Both the function() and native_function() methods are supported in the Vivante GPGPUs, so it is up to the
developer to use whichever method makes sense for their application. If the OpenCL program uses the
standard division operator and a developer wants to use native_divide or native_reciprocal without modifying
their program, the Vivante OpenCL compiler has a simple option “-cl-fast-relaxed-math” that uses native built-in
functions during compilation.

5.3.10 Using buffers instead of images

For the following image functions, it is better to use buffers instead of images.

• read_image{f/i/ui/h}

• write_image{f/i/ui/h}

Write_image* functions are implemented by software; it is better to use buffers to reduce the additional
overhead involved in checking for size, format, etc. Since a few formats are not supported by Vivante GPGPU
hardware, some built-in read_image() functions are implemented in software. The software implementation
uses more instructions with many steps of “condition” checking. To improve performance, we recommend using
buffers since it reduces instruction count.

5.4 OpenCL Debug messages
When writing OpenCL applications, it is important to check the code returned by the API. Since the return codes
specified in the OpenCL specification may not be descriptive enough to isolate where the problem is located,
the Vivante OpenCL driver provides an environment variable, VIV_DEBUG, to help debug problems. When
VIV_DEBUG is set to -MSG_LEVEL:ERROR, the Vivante OpenCL driver prints onscreen error messages and
returns the error code to the caller.

The following error code descriptions and suggested workarounds are provided.

5.4.1 OCL-007005: (clCreateKernel) cannot link kernel

One of the following “Not Enough” messages usually precedes this message. Issuer indicates the real reason
for the problem which may be:
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
53 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• Not Enough Register Memory (constant or temp)
• Not Enough Instruction Memory

5.4.2 Not enough register memory

Local variables, including arrays, are implemented using temp registers. If an array is larger than the number of
available temp registers, a link-time failure occurs.

Workarounds:

1. If the array size is more than 64, use an array address to force the compiler to use private memory instead of
temp registers.

2. If there are many variables, use variable addresses to force the compiler to use private memory to reduce
register usage.

Note that there is performance degradation when using private memory instead of registers. It is better to
change the algorithm to use a smaller array or less variables.

5.4.3 Not enough instruction memory

Workarounds:

1. Replace sin/cos/tan/divide/powr/exp/exp2/exp10/log/log2/log10/sqrt/rsqrt/recip with
native_sin/native_divide, etc.

2. Convert unrolled-loops back to loops.

3. Use buffer instead of image for write, and for reads which are not linear-filtered.

4. If the program is too long, it should be split into two or more programs with intermediate data saved from one
program to next.

5.4.4 GlobalWorkSize over hardware limit

WORKAROUND:

1. Split one clEnqueueNDRangeKernel into several instances. Change the kernel source to compute real
global/local/group ID using offset as a parameter.

2. Convert one dimension to two dimensions, or two dimensions to three. For example, one dimension of
1M work-items can be converted to a GlobalWorkSize of 64K x16 work-items. The kernel function needs
modification to reflect the change of dimension.

5.5 Zero copy
A buffer object can be created with clCreateBuffer(cl_context context, cl_mem_flags flags, size_t size, void*
host_ptr, cl_int* error_code_ret). If memory flags contain CL_MEM_USE_HOST_PTR, GPU will map the
memory pointed by host ptr for GPU to use to avoid copying data between CPU and GPU.

To make sure the results are correct, the size of buffer, the third parameter of clCreateBuffer(), needs to be
aligned with 64-byte since Arm data cache operations are performed line by line, the unaligned bits will be
cleared with cache line mask. A53, A57, A72 and A73 all have 64-byte cacheline size. If the size of the buffer
doesn’t meet this, GPU will use copy method instead.

Besides, the host_ptr should be aligned with 64-bit to meet the ARM cacheline mechanism.

At last, need to call clEnqueueReadBuffer() to make sure the data has been read back to CPU.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
54 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

5.6 Instruction cache availability for i.MX graphics
This section describes the instruction cache (iCache) available in the Vivante graphics IP included in the
selected i.MX products.

There is hardware support for iCache available for i.MX 6QuadPlus and all later IP including that used in i.MX 8
products. There is no SH (Shader) instruction limit for these newer chips beyond the ISA limitation of 2*20.

Only the older chips have a SH instruction limit.

i.MX Product GPU IP & rev Instruction Limit Description

i.MX 8 Series and later
various
(from rev 5450)

none HW supports iCache

i.MX 6QuadPlus
GC2000 Plus
rev FFFF5450

none HW supports iCache

S32V234
GC3000
rev 5451

none HW supports iCache

Table 21. i.MX products with graphics IP with iCache

The SH limitation for i.MX products is listed in the following table.

i.MX Product GPU IP & rev Instruction Limit Description

i.MX 6SoloX GC400
rev 4645

256 for VS,
256 for PS

Separate Instruction buffers for Vertex Shader
and for Pixel Shader

i.MX 7ULP GCNanoUltra
rev 4653a

256 for VS,
256 for PS

Separate Instruction buffers for Vertex Shader
and for Pixel Shader

i.MX 6DualLite GC880
rev 5106

512 Instruction buffer shared by Vertex and Pixel
Shaders

i.MX 6Quad GC2000
rev 5108

512 Instruction buffer shared by Vertex and Pixel
Shaders

Table 22. i.MX products with instruction limited graphics IP

6 OpenVX Introduction

6.1 Overview
OpenVX is a low-level programming framework domain to enable software developers to efficiently access
computer vision hardware acceleration with both functional and performance portability. OpenVX has been
designed to support modern hardware architectures, such as mobile and embedded SoCs as well as desktop
systems. Many of these systems are parallel and heterogeneous: containing multiple processor types
including multi-core CPUs, DSP subsystems, GPUs, dedicated vision computing fabrics as well as hardwired
functionality. Additionally, vision system memory hierarchies can often be complex, distributed, and not fully
coherent. OpenVX is designed to maximize functional and performance portability across these diverse
hardware platforms, providing a computer vision framework that efficiently addresses current and future
hardware architectures with minimal impact on applications.

OpenVX defines a C Application Programming Interface (API) for building, verifying, and coordinating graph
execution, as well as for accessing memory objects. The graph abstraction enables OpenVX implementers to
optimize the execution of the graph for the underlying acceleration architecture.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
55 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

OpenVX also defines the vxu utility library, which exposes each OpenVX predefined function as a directly
callable C function, without the need for first creating a graph. Applications built using the vxu library do not
benefit from the optimizations enabled by graphs; however, the vxu library can be useful as the simplest way to
use OpenVX and as first step in porting existing vision applications.

For more details of programming with OpenVX, see the following specification from Khronos Group,

OpenVX specification (https://www.khronos.org/registry/vx).

6.2 OpenVX extension implementation
VeriSilicon’s VX Extensions for Vision Imaging provide additional functionality for Vision Image processing
beyond the functions provided through the Khronos Group OpenVX API. These enhancements take
advantage of the enhanced Vision capabilities available in VeriSilicon’s Vision-capable hardware. VeriSilicon
software provides a set of extensions which interface with OpenCL 1.2 and support higher level C language
programming of VeriSilicon’s custom EVIS (Enhanced Vision Instruction Set).

The VeriSilicon VX extension and enhancements includes three major components:

• An API level interface to the EVIS (Enhanced Vision Instruction Set)
• Extended C language features for Vision Processing
• Supported for a subset of Vision-compatible OpenCL built-in functions

6.2.1 Hardware requirements

Vision Imaging hardware capabilities are required to support full OpenVX. The following configurations are
supported:

• GC7000XSVX (i.MX 8QuadMax)
• VIP8000NanoSI (i.MX 8M Plus)

6.2.2 EVIS instruction interface

Vivante’s Vision Imaging capable IP have an Enhanced Vision Instruction Set (EVIS), which enhances the
ability of the GPU or VIP (Vision Image Processor) to process complex vision operations. A single EVIS
instruction can do a task which may require tens or even hundreds of normal ISA instructions to finish.

The following table shows the instructions supported as Intrinsic calls.

6.2.3 Extended language features

Vivante’s OpenVX C programming Language corresponds closely to the OpenCL C programming language.

• Vivante’s C language extensions for OpenVX C share many language facilities with OpenCL C 1.2. However,
it can be considered a subset of OpenCL C 1.2, as it does not include OCL features which are useless for
OpenVX and other Vision Imaging applications.

• Vivante’s OpenVX C includes specific language facilities like Vision built-ins and data types specific for
OpenVX.

EVIS OP_CODE Description Supported by
Vivante VX

ABS_DIFF Absolute difference between two values Y

IADD Adds two or three integer values Y

IACC_SQ Squares a value and adds it to an accumulator Y

Table 23. OPCODE EVIS instructions supported as intrinsic calls

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
56 / 140

https://www.khronos.org/registry/vx
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

EVIS OP_CODE Description Supported by
Vivante VX

LERP Linear interpolation between two values Y

FILTER Performs a filter on a 3x3 block Y

MAG_PHASE Computes magnitude and phase of 2 packed data values Y

MUL_SHIFT Multiplies two 8-or 16-bit integers and shifts Y

DP16X1 1 Dot Product from 2 16 component values Y

DP8X2 2 Dot Products from 2 8 component values Y

DP4X4 4 Dot Products from 2 4 component values Y

DP2X8 8 Dot Products from 2 2 component values Y

CLAMP Clamps up to 16 values to a max or min value Y

BI_LINEAR Computes a bilinear interpolation of 4 pixel values Y

SELECT_ADD Adds a pixel value or increments a counter inside bins Y

ATOMIC_ADD Adds a valid atomically to an address Y

BIT_EXTRACT Extracts up to 8 bitfields from a packed stream Y

BIT_REPLACE Replaces up to 8 bitfields from a packed stream Y

DP32X1 1 Dot Product from 2 32 component values Y

DP16X2 2 Dot Products from 2 16 component values Y

DP8X4 4 Dot Products from 2 8 component values Y

DP4X8 8 Dot Products from 2 4 component values Y

DP2X16 16 Dot Products from 2 2 component values Y

Table 23. OPCODE EVIS instructions supported as intrinsic calls...continued

6.2.4 Packed types

Vivante’s OpenCL compiler implements OpenCL C signed and unsigned char and short types in an unpacked
format, such that a normal char4 occupies 128 bits (4 32-bit registers). This is undesirable for Vision
applications, where packed data is the “natural” layout for almost all operations. To fully utilize the computing
power of EVIS instructions, Vivante VX includes additional packed types, which can be identified by their vxc_
prefix.

/* packed char2/4/8/16 */
typedef _viv_char2_packed vxc_char2;
typedef _viv_char4_packed vxc_char4;
typedef _viv_char8_packed vxc_char8;
typedef _viv_char16_packed vxc_char16;
/* packed uchar2/4/8/16 */
typedef _viv_uchar2_packed vxc_uchar2;
typedef _viv_uchar4_packed vxc_uchar4;
typedef _viv_uchar8_packed vxc_uchar8;
typedef _viv_uchar16_packed vxc_uchar16;
/* packed short2/4/8 */
typedef _viv_short2_packed vxc_short2;
typedef _viv_short4_packed vxc_short4;
typedef _viv_short8_packed vxc_short8;
/* packed ushort2/4/8 */
typedef _viv_ushort2_packed vxc_ushort2;

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
57 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

typedef _viv_ushort4_packed vxc_ushort4;
typedef _viv_ushort8_packed vxc_ushort8;

6.2.5 Initializing constants on load

Constant data in OpenCL requires compile-time initialization. There is also a need to initialize the data when
the kernel is loaded/run, so that the application can control the behavior of a program by changing its constants
at load-time. The VeriSilicon VX extended keyword _viv_uniform can be used to define load-time initialization
constant data,

_viv_uniform vxc_512bits u512;

An application using VeriSilicon VX needs to set the proper values for _viv_uniform before the kernel program is
run.

6.2.6 Inline assembly

A packed type cannot be used as an unpacked type in expressions or built-in functions. The programmer
needs to convert packed type data to unpacked type data in order to perform these operations. The conversion
negatively impacts performance in terms of both instruction count and register usage, so it is desirable to
perform operations directly on packed data whenever possible. The Vivante Vision compiler accepts inline
assembly for a wide range of operations to speed up packed data calculations.

For example, to add two packed char16 data, the programmer can use following inline assembly:

vxc_uchar16 a, b, c;
vxc_short8 b;
_viv_uniform vxc_512bits u512;
...
_viv_asm(ADD, c, a, b); /* c = a + b; */
where the syntax of inline assembly is:
_viv_asm(
OP_CODE,
dest,
source0,
source1
);

The following table lists the standard shader instructions that operate on packed data and are supported
through inline assembly, keyword _viv_asm.

IR OP_CODE Instruction Description Supported by Vivante VX

ABS Absolute value Y

ADD Add Y

ADD_SAT Integer add with saturation Y

AND_BITWISE Bitwise AND Y

BIT_REVERSAL Integer bit-wise reversal ES31

BITEXTRACT Extract Bits from src to dest ES31

BITINSERT Bit replacement ES31

BITSEL Bitwise Select Y

BYTE_REVERSAL Integer byte-wise reversal ES31

Table 24. OPCODES IR instructions supported by inline assembly

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
58 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

IR OP_CODE Instruction Description Supported by Vivante VX

CLAMP0MAX clamp0max dest, value, max Y

CMP Compare each component Y

CONV Convert Y

DIV Divide Y

FINDLSB Find least significant bit ES31

FINDMSB Find most significant bit ES31

LEADZERO Detect Leading Zero Y

LSHIFT Left Shifter Y

MADSAT Integer multiple and add with saturation Y

MOD Modulus Y

MOV Move Y

MUL Multiply Y

MULHI Integer only Y

MULSAT Integer multiply with saturation Y

NEG neg(a) is similar to (0 - (a)) Y

NOT_BITWISE Bitwise NOT Y

OR_BITWISE Bitwise OR Y

POPCOUNT Population Count ES31/OCL1.2

ROTATE Rotate Y

RSHIFT Right Shifter Y

SUB Substract Y

SUBSAT Integer subtraction with saturation Y

XOR_BITWISE Bitwise XOR Y

Table 24. OPCODES IR instructions supported by inline assembly...continued

Note: *ES31 = Supported by VivanteVX, but may not be needed for Vision processing

6.3 OpenCL functions compatible with Vivante vision
Vivante’s VX extensions for Vision Image processing support most of the OpenCL 1.2 built-in functions for
normal OCL data types. Packed types are not supported in these built-in functions.

For image read/write functions, only sample-less 1D/1D array/2D image read/write functions are supported.

6.3.1 Read_Imagef,i,ui

/* OCL image builtins can be used in VX kernel */
float4 read_imagef (image2d_t image, int2 coord);
int4 read_imagei (image2d_t image, int2 coord);
uint4 read_imageui (image2d_t image, int2 coord);
float4 read_imagef (image1d_t image, int coord);
int4 read_imagei (image1d_t image, int coord);
uint4 read_imageui (image1d_t image, int coord);
float4 read_imagef (image1d_array_t image, int2 coord);

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
59 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

int4 read_imagei (image1d_array_t image, int2 coord);
uint4 read_imageui (image1d_array_t image, int2 coord);

6.3.2 Write_Imagef,i,ui

void write_imagef (image2d_t image, int2 coord, float4 color);
void write_imagei (image2d_t image, int2 coord, int4 color);
void write_imageui (image2d_t image, int2 coord, uint4 color);
void write_imagef (image1d_t image, int coord, float4 color);
void write_imagei (image1d_t image, int coord, int4 color);
void write_imageui (image1d_t image, int coord, uint4 color);
void write_imagef (image1d_array_t image, int2 coord, float4 color);
void write_imagei (image1d_array_t image, int2 coord, int4 color);
void write_imageui (image1d_array_t image, int2 coord, uint4 color)

6.3.3 Query Image Dimensions

int2 get_image_dim (image2d_t image);
size_t get_image_array_size(image1d_array_t image);
/* Built-in Image Query Functions */
int get_image_width (image1d_t image);
int get_image_width (image2d_t image);
int get_image_width (image1d_array_t image);
int get_image_height (image2d_t image);

6.3.4 Channel Data Types Supported

/* Return the channel data type. Valid values are:
* CLK_SNORM_INT8
* CLK_SNORM_INT16
* CLK_UNORM_INT8
* CLK_UNORM_INT16
* CLK_UNORM_SHORT_565
* CLK_UNORM_SHORT_555
* CLK_UNORM_SHORT_101010
* CLK_SIGNED_INT8
* CLK_SIGNED_INT16
* CLK_SIGNED_INT32
* CLK_UNSIGNED_INT8
* CLK_UNSIGNED_INT16
* CLK_UNSIGNED_INT32
* CLK_HALF_FLOAT
* CLK_FLOAT
*/
int get_image_channel_data_type (image1d_t image);
int get_image_channel_data_type (image2d_t image);
int get_image_channel_data_type (image1d_array_t image);

6.3.5 Image Channel Orders Supported

/* Return the image channel order. Valid values are:
* CLK_A
* CLK_R
* CLK_Rx

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
60 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

* CLK_RG
* CLK_RGx
* CLK_RA
* CLK_RGB
* CLK_RGBx
* CLK_RGBA
* CLK_ARGB
* CLK_BGRA
* CLK_INTENSITY
* CLK_LUMINANCE
*/
int get_image_channel_order (image1d_t image);
int get_image_channel_order (image2d_t image);
int get_image_channel_order (image1d_array_t image);

7 Vulkan

7.1 Overview
Vulkan is a new generation graphics and compute API that provides high-efficiency, cross-platform access
to modern GPUs used in a wide variety of devices from PCs and consoles to mobile phones and embedded
platforms.

Vulkan defines as an API (Application Programming Interface) for graphics and compute hardware. The
API consists of many commands that allow a programmer to specify shader programs, compute kernels,
objects, and operations involved in producing high-quality graphical images, specifically color images of three-
dimensional objects.

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or shaders,
kernels, data used by kernels or shaders, and state controlling aspects of Vulkan outside the scope of shaders.
Typically, the data represents geometry in two or three dimensions and texture images, while the shaders
and kernels control the processing of the data, rasterization of the geometry, and the lighting and shading of
fragments generated by rasterization, resulting in the rendering of geometry into the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise prepare a display
device onto which the program will draw. Then, calls are made to open queues to which command buffers
are submitted. The command buffers contain lists of commands which will be executed by the underlying
hardware. The application can also allocate device memory, associate resources with memory and refer to
these resources from within command buffers. Drawing commands cause application-defined shader programs
to be invoked, which can then consume the data in the resources and use them to produce graphical images.
To display the resulting images, further platform-specific commands are made to transfer the resulting image to
a display device or window.

For more details of programming with Vulkan, refer to the following specification from Khronos Group.

https://www.khronos.org/registry/vulkan/

7.2 Vivante Extension Support for Vulkan
The following table includes a list of all current Vulkan extensions and indicates their support level in Vivante
software.

(list from https://www.khronos.org/registry/vulkan/ as of 6/1/2020)

Note: This list does not include unsupported vendor specific extensions.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
61 / 140

https://www.khronos.org/registry/vulkan/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Supported Vulkan 1.1 Extension Names SW 6.4.x for Vulkan 1.1

VK_KHR_16bit_storage YES

VK_KHR_bind_memory2 YES

VK_KHR_descriptor_update_template YES

VK_KHR_device_group YES

VK_KHR_external_memory YES

VK_KHR_get_memory_requirements2 YES

VK_KHR_maintenance1 YES

VK_KHR_maintenance2 YES

VK_KHR_maintenance3 YES

VK_KHR_variable_pointers YES

VK_KHR_dedicated_allocation YES

VK_EXT_queue_family_foreign YES

VK_KHR_external_semaphore_fd YES

VK_KHR_external_fence_fd YES

VK_KHR_external_semaphore_win32 YES

VK_KHR_external_fence_win32 YES

VK_ANDROID_native_buffer YES

VK_ANDROID_external_memory_android_hardware_buffer YES

VK_KHR_swapchain YES

VK_EXT_debug_report YES

VK_KHR_device_group_creation YES

VK_KHR_external_memory_capabilities YES

VK_KHR_external_semaphore_capabilities YES

VK_KHR_external_fence_capabilities YES

VK_KHR_get_physical_device_properties2 YES

VK_KHR_win32_surface YES

VK_KHR_android_surface YES

VK_KHR_wayland_surface YES

VK_KHR_surface YES

VK_KHR_display YES

Table 25. Vulkan extension

7.3 Vulkan Validation Layers
Vulkan is an explicit API, enabling direct control over how GPUs actually work. By design, minimal error
checking is done inside a Vulkan driver. Applications have full control and responsibility for correct operation.
Any errors in how Vulkan is used can result in a crash. Vulkan validation layers that can be enabled to assist
development by enabling developers to verify their applications correct use of the Vulkan API.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
62 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

7.4 Window System Integration
Vulkan relies on a new mechanism to interact with the native Windowing System and present the rendered
results to the user. This mechanism is called the Window System Integration and is provided via extensions
outside of the core API.

In the i.MX BSPs where Vulkan is enabled, the default window manager is Weston, a Wayland compositor
reference implementation.

When compiling a Vulkan application for Wayland make sure to define the
VK_USE_PLATFORM_WAYLAND_KHR symbol, so all the proper includes and code paths are enabled.

GLFW and SDL can manage the surface creation and proper extension initializations, but when an application
is newly developed without using any frameworks, require to enable the following instance extensions:

VK_KHR_SURFACE_EXTENSION_NAME

VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME

Once there is a display connection to the Wayland server and a surface created, then start to use the wl_display
and wl_surface pointers to populate the info structure required by vkCreateWaylandSurfaceKHR.

A word of advice, when querying the Physical Device Surface capabilities with vkGetPhysicalDeviceSurface
CapabilitiesKHR before having created the Swapchain, the current extent width and height will return a value of
0xFFFFFFFF, make sure to add checks for this in the code, when this happens, set the swapchain extent to the
actual size of the surface want to render to, or a fallback extent size.

8 Vivante Multiple GPUs and Virtualization

8.1 Overview
Vivante multi-GPU implementations provide a variety of capabilities which can be managed through hardware
and software controls. This chapter intends to summarize the software controls used for Vivante multi-GPU IP
implementations.

Multi-GPU feature can be enabled with dual GC7000XSVX on i.MX 8QuadMax and the derived devices.

8.2 Multi-GPU configurations
Vivante Multi-GPU IP may be configured into one of the following behavior model through software:

• Combined Mode where two (or more) GPU cores in the multi-GPU design behave in concert. Driver presents
multi-GPU to SW application as a single logical GPU. The multiple GPUs work in the same virtual address
space and share the same MMU page table. The multiple GPUs fetch and execute a shared Command
Buffer.

• Independent Mode where each GPU in the multi-GPU design performs independently. The multiple GPUs
work in different virtual address spaces but share the same MMU page table. Each GPU core fetches and
executes its own Command Buffer. This enables different SW applications to run simultaneously on different
GPU cores.

• OpenCL API allows application to handle the multi-GPU Independent Mode directly, as each GPU core in a
multi-GPU design represents an independent OpenCL Compute Device.

8.3 GPU affinity configuration
In the multi-GPU Independent Mode, application can specify to run on a specific GPU among the multiple GPUs
through an environment variable VIV_MGPU_AFFINITY. Once an application’s GPU affinity is specified, the
application will only run on the specified GPU and will not migrate to other GPUs even if those GPUs are idle.
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
63 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

VIV_MGPU_AFFINITY is the environment variable to control the application GPU affinity on multi-GPU platform.
The client drivers will assume they are using a standalone GPU through a gcoHARDWARE object no matter
how this variable is set. The possible values for the environment variable VIV_MGPU_AFFINITY include:

• Not defined or
• Defined as "0" gcoHARDWARE objects work in gcvMULTI_GPU_COMBINED mode (default)

– "1:0" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPU0 is used
– "1:1" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPU1 is used

On a single GPU device, setting VIV_MGPU_AFFINITY to 0 or 1 does not make any difference as all
application processes/threads are bound to GPU0. But the application will fail the GPU context initialization if
VIV_MGPU_AFFINITY is set to "1:1" (driver reports error).

8.4 OpenCL on multi-GPU device
OpenCL driver works in bridged mode as single logical compute device. In this configuration, multiple GPUs in
the device operate as individual OpenCL Compute Devices. The OpenCL application is responsible to assign
and dispatch the compute tasks to each GPU (Compute Device).

The following OpenCL APIs return the list of compute devices available on a platform, and the device
information.

cl_int clGetDeviceIDs (cl_platform_id platform, cl_device_type device_type,
 cl_uint num_entries,
cl_device_id *devices, cl_uint *num_devices)
cl_int clGetDeviceInfo (cl_device_id device, cl_device_info param_name, size_t
 param_value_size,
void *param_value, size_t *param_value_size_ret)

8.5 GPU virtualization configuration
Multi-GPU also can be used on different OS systems as independent mode separately, this can be configured
by overriding the irq availability n DTS entry for different OS implementation, in arch/arm64/boot/dts/
freescale/fsl-imx8qmxxx.dts.

Guest OS 1 (GPU0 only)

&gpu_3d1 {
 status = "disable";
};

Guest OS 2 (GPU1 only)

&gpu_3d0 {
 status = "disable";
};

9 GBM - Generic Buffer Management

The GBM (Graphic Buffer Management) API is a thin layer over DRM KMS (Linux Direct Rendering Manager
- Kernel ModeSetting API) that provides a mechanism for allocating buffers for graphics rendering. GBM is
intended to be used as a native platform for EGL on DRM. The handle it creates can be used to initialize EGL
and to create render target buffers. This can be resumed as a modern OpenGL ES FBDEV, because it permits
full usage of the DRM KMS API with OpenGL ES acceleration.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
64 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Starting from i.MX 8, the DRM is supported and recommended to use GBM. GBM provides options of allocating
modifier-abiding surfaces too, for Wayland compositors and the X11 server to render to.

9.1 Introduction to DRM Format Modifiers
A DRM format modifier is a 64-bit, vendor-prefixed, semi-opaque unsigned integer. Most modifiers represent a
concrete, vendor-specific tiling format for images. Some exceptions are DRM_FORMAT_MOD_LINEAR (which
is not vendor-specific); DRM_FORMAT_MOD_NONE (which is an alias of DRM_FORMAT_MOD_LINEAR
due to historical accident); and DRM_FORMAT_MOD_INVALID (which does not represent a tiling format).
The modifier’s vendor prefix consists of the 8 most significant bits. The canonical list of modifiers and vendor
prefixes is found in drm_fourcc.h in the Linux kernel source.

One goal of modifiers in the Linux ecosystem is to enumerate for each vendor a reasonably sized set of
tiling formats that are appropriate for images shared across processes, APIs, and/or devices, where each
participating component may possibly be from different vendors. A non-goal is to enumerate all tiling formats
supported by all vendors. Some tiling formats used internally by vendors are inappropriate for sharing; no
modifiers should be assigned to such tiling formats.

Modifier values typically do not describe memory layouts. More precisely, a modifier's lower 56 bits usually
have no structure. Instead, modifiers name memory layouts; they name a small set of vendor-preferred layouts
for image sharing. As a consequence, in each vendor namespace the modifier values are often sequentially
allocated starting at 1.

Each modifier is usually supported by a single vendor and its name matches the pattern
{VENDOR}_FORMAT_MOD_* or DRM_FORMAT_MOD_{VENDOR}_*. Examples are
DRM_FORMAT_MOD_VIVANTE_TILED and DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED. An
exception is DRM_FORMAT_MOD_LINEAR, which is supported by most vendors.

Many APIs in Linux use modifiers to negotiate and specify the memory layout of shared images. For
example, a Wayland compositor and Wayland client may, by relaying modifiers over the Wayland
protocol zwp_linux_dmabuf_v1, negotiate a vendor-specific tiling format for a shared wl_buffer. The
client may allocate the underlying memory for the wl_buffer with GBM, providing the chosen modifier to
gbm_bo_create_with_modifiers. The client may then import the wl_buffer into Vulkan for producing image
content, providing the resource’s dma_buf to VkImportMemoryFdInfoKHR and its modifier to VkImageDrm
FormatModifierExplicitCreateInfoEXT. The compositor may then import the wl_buffer into OpenGL for sampling,
providing the resource’s dma_buf and modifier to eglCreateImage. The compositor may also bypass OpenGL
and submit the wl_buffer directly to the kernel’s display API, providing the dma_buf and modifier through
drm_mode_fb_cmd2.

10 Wayland and Weston

10.1 Overview
Wayland is a protocol for a compositor to talk to its clients as well as a C library implementation of that protocol.
Wayland is intended as a simpler replacement for X, easier to develop and maintain. The compositor can be
a standalone display server running on Linux kernel mode setting and evdev input devices, an X application,
or a Wayland client itself. The clients can be traditional applications, X servers (rootless or full screen) or other
display servers.

10.2 Wayland EGL
Wayland-EGL is the client side implementation of the Wayland that binds the EGL stack and buffer sharing
mechanism to the generic Wayland API. Frontend of the wayland-egl is now part of the wayland and i.MX
graphics driver supports the implementation of buffer sharing mechanism.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
65 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

10.3 Weston Compositor
Weston is reference implementation of a Wayland compositor. The Weston compositor is minimal and
lightweight and is suitable for many embedded and mobile use cases. Weston support multiple renderers and
backends which need to be chosen appropriately based on the processor configurations. This is usually preset
in the i.MX image.

10.3.1 Weston Backends

Weston have implementation to support different display APIs, which is called backend. i.MX 8 support KMS/
DRM hence uses DRM backend while the i.MX 6/7 uses FBDEV backend. i.MX graphics continues to support
graphics acceleration with FBDEV backends.

10.3.2 Weston Renderer

10.3.2.1 GL Renderer

GL (GLES) renderer implementation is the default with Weston implementation. GL renderer takes the buffer
passed from clone and maps as a texture. After the initial setup, the client only needs to tell the compositor
which buffer to use and when and where it has rendered new content into it.

10.3.2.2 G2D Renderer

G2D is the 2D API refer to Chapter 2 for full details of G2D APIs. G2D renderer provides mechanism to
accelerate Weston with 2D GPU. The 2D Graphics Engine reduces the burden on 3D GPU and saves power as
well as integrates nicely with the video capabilities of the SoC. G2D compositor can increase system bandwidth
utilization, so the performance will be better than GL compositor in the complex usecase environment.

To enable the G2D compositor, open the file: /etc/xdg/weston/weston.ini in the Linux image.

use-g2d=1

10.3.3 Weston Shells

Weston supports multiple shells, each of these shells have its own public protocol interface for clients. This
means that a client must be specifically written for a shell protocol. Otherwise, it will not work. Below are the
currently supported shell.

Note: Weston 10 marked wl_shell as deprecated and has been removed by community since Weston 11,
recommending to covert to xdg-shell for Wayland application developing.

10.3.3.1 Desktop shell

Desktop shell is like a typical X desktop environment, concentrating on traditional keyboard and mouse user
interfaces and the familiar desktop-like window management. Desktop shell consists of the shell plugin desktop-
shell.so and the special client weston-desktop-shell which provides the wallpaper, panel, and screen locking
dialog.

10.3.3.2 Fullscreen shell

Fullscreen shell is intended for a client that needs to take over whole outputs, often all outputs. This is primarily
intended for running another compositor on Weston. The other compositor does not need to handle any
platform-specifics like DRM/KMS or evdev/libinput. The shell consists only of the shell plugin fullscreen-shell.so.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
66 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

10.3.3.3 IVI-shell

In-vehicle infotainment shell is a special purpose shell that exposes a GENIVI Layer Manager compatible API
to controller modules, and a very simple shell protocol towards clients. IVI-shell starts with loading ivi-shell.so,
and then a controller module which may launch helper clients. This shell provides option of setting windowing
position, which need to be programmed from the client application.

11 X Windowing Acceleration

X11 is accelerated on i.MX 8 through Xwayland. Support on i.MX 6 deprecated.

12 Advanced GPU Configuration

12.1 GPU Scaling Governor
i.MX 8QuadMax GPU design supports different running modes: overdrive, nominal, and underdrive. Nominal is
the default, the overdrive is supposed to be performance/benchmark mode, and underdrive mode is expected
as energy saving mode.

Switch among the 3 modes using command line without needing to recompile the GPU driver.

$ echo "overdrive" > /sys/bus/platform/drivers/galcore/gpu_govern
$ echo "nominal" > /sys/bus/platform/drivers/galcore/gpu_govern
$ echo "underdrive" > /sys/bus/platform/drivers/galcore/gpu_govern

To check the mode that is currently running, use the command line as follows:

$ cat /sys/bus/platform/drivers/galcore/gpu_govern

12.2 GPU Device Cooling
i.MX 6/7/8 devices support the thermal driver, which could signal the overheat event to the GPU driver. When
the GPU driver receives the event, it can enable the GPU DFS feature to reduce the GPU frequency as N/64 of
the original designated clock.

The default N factor is 1 in the original BSP release. The end-user can reconfigure it through the following
command:

echo N >/sys/bus/platform/drivers/galcore/gpu3DMinClock

The user also can check the existing configuration as follows:

cat /sys/bus/platform/drivers/galcore/gpu3DMinClock

13 Vivante IDE

13.1 VivanteIDE overview
The VivanteIDE provides a single interface to a set of applications designed to be used by graphics, compute,
vision and neural network application developers to rapidly develop and port applications either stand alone or
as part of an IDE. Vivante IDE is built on the top of Eclipse, CDT

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
67 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

VivanteIDE capabilities include the following key features.

• Project Management
The Project Manager supports individual compile options for each file. In addition, workspace options define
project dependencies, removing the need for manual management of file builds.

• Source code smart editing and analysis
The VivanteIDE Editor provides timesaving editing features such as type ahead for structures, word
completion and automatic code indentation for a readable, formatted code view.

• Automatic code generation
Kernel development wizard can automatically generate the kernel code basing on simple inputs.

• Performance and bandwidth profiling
The Profile tabbed window provides profiler information. Every time the profiler is suspected accumulated
statistical information is updated. For OGL applications the VPD Analyzer is provided.

• Post-mortem performance analysis
VPD Analyzer visualized the hardware data recorded at GPU application runtime.

• Texture browse and conversion
Texture browser and converter support texture file preview and format conversion.

• Command line tools for OGL, OCL and OVX compile.
• Command line tools for Vulkan application development.
• Command line tools for Texture compression/decompression and tile/de-tiling.

13.1.1 VivanteIDE component overview

VivanteIDE provides both command line tools and GUI “Perspective” views for performing different activities.
Some functionality is available through both GUI and command line, while tools such as vCompiler and
vcCompiler are available only using command line syntax.

Perspective/Tool Key Functionality GUI Command Line

Debug Debug projects Yes

Profile Configure projects Yes

vCompiler Offline OGL compiler No Yes, vCompiler

vcCompiler Offline OCL compiler No Yes, vcCompiler

VPD Analyzer Performance analysis Yes No

vTexture,
vTextureTools

Texture manipulations and viewing;
Compress, Decompress, Tile, De-Tile

Yes
Texture Viewer
Texture Browser

Yes
vTextureTools

SPIR-V Disassembly Debug Vulkan apps Yes No

Shader Assistant Shader programming Yes No

Table 26. VivanteIDE tool overview

13.2 VivanteIDE Requirements

13.2.1 Operating system compatibility

VivanteIDE is available for both Linux and Windows environments. VivanteIDE has been verified to work in
Windows 7, Windows 10, Ubuntu 18.04, and Ubuntu 16.04. It might work in other Windows or Linux systems
but has not been verified for alternate environments.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
68 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Components Linux Windows

VivanteIDE GUI and command GUI and command

Tools

vCompiler, vcCompiler command command

vProfiler Built part of i.MX
unified driver (target)

Built part of i.MX
unified in driver(target)

VPD Analyzer GUI GUI

Shader Assistant GUI GUI

Texture Viewer GUI GUI

Texture Browser GUI GUI

vTextureTools GUI and command GUI and command

Table 27. Operating System Tool Compatibility Summary

13.2.2 Hardware requirements

VivanteIDE can be used in either a simulation environment or on i.MX processors supporting OpenGL ES,
OpenCL, OpenVX, and Neural Networks capabilities in the tools assume compatible hardware capability in the
running environment, which must be correctly profiled in the tool for accurate results.

13.2.3 VivanteIDE license

i.MX supported VivanteIDE release package contains with preloaded license and restricted only to use with
NXP processors. For more information, read NXP EULA.

13.3 VivanteIDE installation

13.3.1 VivanteIDE package

Each release of VivanteIDE will be compatible with its companion driver version. Forward and backward
compatibility is not tested and use of VivanteIDE with any different driver version other than its companion
version is NOT RECOMMENDED.

The package is delivered as a compressed file from nxp.com as
Verisilicon_Tool__IDE_<version>.tgz.

Top level Directory and exe file Description

VivanteIDE-<version>-Linux-x86_
64-**-Install

Installation wizard for Linux 64-bit.

VivanteIDE-<version>-Windows-**-
Setup.exe

Installation wizard for Windows 64-bit/32-bit

README README with basic installation notes

Table 28. VivanteIDE package contents

After installation the following directories will be created in the installation directory

Files and Directories Description

ide/ Directory containing IDE executables and plugins

Table 29. VivanteIDE tools directory

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
69 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Files and Directories Description

examples/ Directory containing examples (just for Windows)

cmdtools/ Directory containing Vivante command line tools: vCompiler, vcCompiler, v
TextureTools

doc/ Directory containing documents

license/ Directory containing license tools and license files

jre/ Directory containing JRE binaries

mingw32/ Directory containing MinGW (just for Windows)

uninstall.exe Uninstaller of VivanteIDE

Table 29. VivanteIDE tools directory...continued

13.3.2 Installation

Install the package to run both the GUI and command line tools. You must install the package even if you are
only going to use the command line tools.

13.3.2.1 Linux GUI

Run Vivante-<version>-Linux-x86_64-**-Install to launch the installation wizard. Follow the
installation steps guided by the installation wizard to finish the installation.

13.3.2.2 Windows GUI

Run Vivante-<version>-Windows-**-Setup.exe to launch the installation wizard. Follow the installation
steps guided by the installation wizard to finish the installation.

13.3.2.3 Installation from command line

The VivanteIDE installer can also be launched from the command line. Options can be specified as follows:

installer [option1] [option2] [option3]

Example Usage for Windows:

installer /mode silent /prefix destination_location /license license_file_path

Example Usage for Linux:

installer --mode silent --prefix destination_location --license
 license_file_path

Option for Windows Option for Linux Description

/mode silent --mode silent Silent mode (without GUI, without prompting)

/license license_file_path --license license_file_path Specify a license file to be installed

/prefix destination_location --prefix destination_location Specify the folder where VivanteIDE will be installed

Table 30. Command line installer options

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
70 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

13.3.3 VivanteIDE launch

13.3.3.1 Linux launch of GUI tool

To launch the GUI tool,

• Double-click the desktop shortcut VivanteIDE<version>.
• Run installation_dir/ide/vivanteide<version> in a BASH.

13.3.3.2 Windows launch of GUI tool

To launch the GUI tool:

• Click Start Menu->VeriSilicon->VivanteIDE <version>->VivanteIDE <version>.
• Double-click the desktop shortcut VivanteIDE <version>.
• Run installation_dir/ide/vivanteide<version>.bat.

13.3.3.3 Command line tool launch

To launch the command line tools, use the following paths. For Linux OS, launch in a BASH.

Run installation_dir/cmdtools/vCompiler, vcCompiler, vTextureTools.

13.3.3.4 Basic launch path summary

Tool Linux Basic Launch Instruction Windows Basic Launch Instruction

VivanteIDE GUI Run installation_dir/ide/
vivanteide<version>
in a BASH.

Run installation_dir/ide/
vivanteide<version>.bat

vcCompiler Run installation_dir/cmdtools/bin/vc
Compiler in a BASH.

Run installation_dir/cmdtools/bin/vc
Compiler.exe

vCompiler Run installation_dir/cmdtools/bin/
vcompiler in a BASH.

Run installation_dir/cmdtools/bin/v
Compiler.exe

vTextureTools Run installation_dir/cmdtools/bin/
vtexturetools in a BASH.

Run installation_dir/cmdtools/bin/v
TextureTools.exe

Table 31. Basic launch instruction summary

13.4 VivanteIDE GUI
The desktop development environment for VivanteIDE is referred to as the Workbench. The Workbench
contains panes that may change depending on the current activity. Some key panes are indicated in the figure
below.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
71 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 8. VivanteIDE Workbench Key Panes

The following examples provide users with basic simple steps to get started using VivanteIDE. The GUI is
similar but not identical for each tool GUI: VPD Analyzer, Shader Assistant, Texture Browser, Texture Viewer.

13.4.1 Selecting a workspace

When VivanteIDE is opened, the Workspace Launcher - Select a workspace dialog box pops up by default.

Click the OK button.

If the workspace is a new empty workspace, the Welcome dialog box is displayed.

If the workspace is not a new empty workspace, the workbench is displayed.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
72 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 9. Figure 21. Workspace Launcher

13.4.2 Switching perspective

Click the pull-down menu items or click directly on the visible perspective name to switch perspective views.

Switch to the C/C++ perspective to manage projects and write source code. VivanteIDE will switch to the Debug
perspective by default after a program is launched successfully in Debug mode.

Figure 10. Switching perspective

13.4.3 Creating a new project

This section describes how to create an OpenVX project as an example.

New project creation is available from the main menu. Choose File-->New-->Project...

In the New Project - Select a wizard dialog box, open the C/C++ folder in the Wizards list box and select
OpenVX C Project.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
73 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 11. Creating a new project

13.4.4 Creating an OpenVX kernel wizard

1. To create an OpenVX C(C++) project, in the OpenVX C(C++) Project dialog box, enter the Project name,
select OpenVX Kernel Project(1.1) under Static Library or Shared Library.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
74 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 12. Creating a new project (1)
2. Press Next to input Author and Copyright notice, Kernel ENUM offset and Kernel Name prefix

information in the following dialogs, and then add arguments for the kernel.

Figure 13. Creating a new project (2)
3. Click the Finish button, and the new kernel project will be created.

Refer to the VivanteIDE User Guide for detailed information.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
75 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 14. Creating a new project (3)

13.4.5 Source code smart editing for OpenVX and OpenCL

When a user edits a source file in VivanteIDE, the OpenVX/OpenCL keywords and predefined structure will be
automatically highlighted. The Editor also supports keyword completion using keyboard combination "alt"+"/".

In addition, the Outline view tab will provide structured information and quick navigation for the source file
currently being edited.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
76 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 15. Source code smart editing for OpenVX and OpenCL (1)

Figure 16. Source code smart editing for OpenVX and OpenCL (2)

13.4.6 Creating a Neural Network Inference Project from a model file

New project creation is available from the main menu.

1. Choose File-->New-->Project...

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
77 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 17. Creating a Neural Network Inference Project from a model file (1)

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
78 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 18. Creating a Neural Network Inference Project from a model file (2)
2. In the New Project - Select a wizard dialog box, open the C/C++ folder in the Wizards list box and select

OpenVX C Project.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
79 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 19. Creating a Neural Network Inference Project from a model file (3)
3. Click Next to continue.
4. In the OpenVX C Project dialog box, enter the Project name. Check the Use default location checkbox.

This will cause our new directory to be created in our workspace. The directory path is displayed.
5. Select the Project type: Executable -> OVX NN Inference C Project.
6. Once the project name is entered, click Next to continue. The OpenVX C Project - Basic Settings dialog

box is displayed.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
80 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 20. Figure 31. Creating a Neural Network Inference Project from a model file (4)
7. Browse or input the information to select a Model file and a Data file.
8. Click Next to continue. The OpenVX C Project - Conversion Settings dialog box is displayed. Make sure

the Add reference main.c checkbox is checked.
Note:
If Add reference main.c is checked, a main.c would be created by this wizard. If it is unchecked, main.c
would not be created.
Function main() locates in main.c, which is just an application for testing the model.
Usually the NN model is a part of an OpenVX application, so writing function main to use the NN model is
still necessary to execute the project if Add reference main.c is not checked.

9. Click Next to continue. The OpenVX C Project - Select Configurations dialog box is now displayed.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
81 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 21. Creating a Neural Network Inference Project from a model file (5)
10. Click the Finish button. The new project is now created. The new Project is viewable in the Project

Explorer pane.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
82 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 22. Creating a Neural Network Inference Project from a model file (6)

13.4.7 Building a sample project

1. On the Project tab, select Properties to open the Properties Setting dialog to modify the build settings.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
83 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 23. Building a sample project (1)
2. There are build tools available that can be set for C or C++ projects.

Figure 24. Building a sample project (2)
3. The sample project 'vx_tutorial3' is ready to build after the build settings are saved.

You can build the 'vx_tutorial3' project by using one of following two methods, with the target project
selected in the left pane:
• Choose from the main menu Project->Build Project.
• Right-click the target project and select Build Project.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
84 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 25. Building a sample project (3)
4. The build results are displayed on the Console and Problems tabs of the lower right pane of the

application.

Figure 26. Building a sample project (4)
5. If No error occurs. build was successful, the executable file is displayed in the Project Explorer pane.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
85 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 27. Building a sample project (5)
6. Use the Build Steps tab on the Properties > C/C++ Build > Settings dialog to customize the selected

build configuration allowing for the specification of user defined build command steps, as well to enable
displaying of descriptive messages in the build output, immediately before and after, normal build
processing.

13.4.8 Debugging and profiling a project

1. To open the Debug Configurations dialog box, select Run->Debug Configurations... from the main
menu.

2. Set the dialog options, and then click Debug to debug your project.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
86 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 28. Debugging and profiling a project

13.5 VivanteIDE – Debug and Profiling

13.5.1 Fundamentals of performance optimization

Whenever an application runs on a computer, it makes use of one or more of the available resources. These
compute resources include the CPU, the graphics processor, caches and memory, hard disks, and possibly
even the network. Viewed simplistically, it is always true that one of these resources is the limiting factor in how
quickly the application can finish its tasks. This limiting resource is the performance bottleneck. Remove this
bottleneck, and application performance should be improved. Note, however, that removing one limiting factor
always promotes something else to become the new performance bottleneck.

The goal of optimizing, or tuning application performance is to balance the use of resources so that none of
them holds back the application more than any of the others. In practice, there is no single, simple way to
tune an application. The whole system needs to be considered, including the size and speed of individual
components as well as interactions and dependencies among components.

vProfiler collects information on GPU usage and on calls to Vivante functions within the graphics pipeline. It
provides an excellent view into what is happening on the GCCORE graphics processor at any point in time,
down to the individual frame. When the application performance is GPU-bound, vProfiler and VPD Analyser are
the right tools to help determine why.

Note that the initial determination regarding which component of the computer system is the performance
bottleneck – CPU, GPU, memory, and so on, which is the domain of system performance analyzers and is
outside the scope of the GPU tools. A list of such performance analysis tools can be found at Wikipedia:

en.wikipedia.org/wiki/List_of_performance_analysis_tools

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
87 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

13.5.2 VPD Analyzer for Analyzing Performance Data

vProfiler is a run-time environment for collecting performance statistics of an application and the graphics
pipeline. The VPD Analyzer perspective view is provided to facilitate graphically displaying the data gathered
by vProfiler and aiding in visual analysis of graphics performance. Used together, these tools assist software
developers in optimizing application performance on Vivante enabled platforms.

13.5.3 vProfiler

When building Vivante Graphics Drivers, the driver is built with vProfiler capability. vProfiler gathers data from
these counters during runtime and can track data for a range of frames or a single frame from any graphics,
compute application. vProfiler outputs performance data to binary files with a .vpd extension. These files
can be using the VivanteIDE VPD Analyzer both in text lists and as line graphs. VPD Analyzer gives the user
several ways to inspect any frame in a captured animation sequence.

13.5.4 Enabling vProfiler on Linux OS

When building Vivante Graphics Drivers in a Linux OS environment, the driver is built with vProfiler capability.

• vProfiler functionality can be enabled by export VIV_PROFILE=1.
• To enable OpenVX profile, use export VIV_VX_PROFILE=1.
• To enable OpenCL profile, use export VIV_CL_PROFILE=1.

Kernel module driver arguments are no longer needed.

13.5.4.1 Setting vProfiler property options for OpenGL ES

vProfiler property options are set using environment variables on Linux. The following table summarizes the
environment variables that vProfiler supports.

Environment Variable Description

 VIV_PROFILE [0] Disable vProfiler (default), [1] Enable vProfiler, [2] Control via application call, [3]
Allows control over which frames to profile with vProfiler

 VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

 VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.

 VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.

 VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

 VP_USE_GLFINISH

Enable [1] or disable [0] the use of glFinish()/glFlush() APIs as the frame delimiter
in addition to eglSwapBuffers() (default 0). This variable enables application thread
which does not use eglSwapBuffers() to generate useful GPU profiling data for
analysis.

 VP_PERDRAW_MODE Enable [1] or disable [0] (default). When enabled, vProfiler will collect a counter for
each draw call.

 VP_DISABLE_PROBE Disables PROBE mode and makes vProfiler to use AHB counters for profiling.

 VP_ENABLE_PRINT Enable vProfiler to print out the counter information to the console.

Table 32. vProfiler property options

13.5.5 Setting vProfiler property options for Vision, OpenVX Profiling

vProfiler for OpenVX Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that
fewer environment variables and fewer supported values for those variables are available.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
88 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Environment Variable Description

VIV_VX_PROFILE [0] Disable vProfiler for OpenVX(default), [1] Enable vProfiler for OpenVX

VIV_CL_PROFILE [0] Disable vProfiler for OpenCL(default), [1] Enable vProfiler for OpenCL

VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

Table 33. vProfiler property options

13.5.6 Enabling vProfiler Option for Android OS

i.MX Android release GPU drivers are built with vProfiler capability. To enable the vProfiler feature, boot the
Android image, and then stop U-Boot by pressing a key on the serial terminal.

setenv append_bootargs galcore.powerManagement=0 galcore.gpuProfiler=1
boota

Perform the following steps to capture the VPD file using vProfiler on Android OS.

Note: For Android versions earlier than 11.0.0 2.x.y, remove the "vendor." prefix from the property name.

1. Set application name to be profiled, for example, nenamark2 application.

setprop vendor.VP_PROCESS_NAME se.nena.nenamark2

2. Set the profile output file path, for example, nenamark2 application.

setprop vendor.VP_OUTPUT /data/data/se.nena.nenamark2/

For Android Automotive, a path to the current user storage has to be used (default user ID is 10): /data/
user/<user_id>/se.nena.nenamark2/.

3. Start profiling.

setprop vendor.VIV_PROFILE 1

4. Run application and check if the *.vpd file is generated in the path indicated by vendor.VP_OUTPUT, for
example, nenamark2 application.

ls -l /data/data/se.nena.nenamark2/*.vpd

5. Stop profiling.

setprop vendor.VIV_PROFILE 0

13.5.7 Setting vProfiler property options for OpenGL ES Profiling with Android

The following table summarizes the property options that vProfiler supports through running the command adb
shell setprop [OPTIONS]. These options are similar to the environment variables available for Linux.

adb shell setprop OPTIONS Description

setprop vendor.VIV_PROFILE 0 Run this command in adb shell to disable vProfiler in the drivers

setprop vendor.VIV_PROFILE 1 Run this command in adb shell to enable vProfiler in the drivers

setprop vendor.VIV_PROFILE 2
Run this command in adb shell to have vProfiler enable/disable controlled
in the application by glEnable(GL_PROFILE_VIV) and glDisable(GL_
PROFILE_VIV) calls.

setprop vendor.VIV_PROFILE 3
Run these commands in adb shell to have vProfiler start-stop at frames
specified in vendor.VP_FRAME_START and vendor.VP_FRAME_END.

Table 34. vProfiler property options

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
89 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

adb shell setprop OPTIONS Description
setprop vendor.VIV_FRAME_START
xxx
setprop vendor.VP_FRAME_END xxx

setprop vendor.VP_PROCESS_NAME
appname

Run this command in adb shell to specify the application you need to profile.
Change the app name as needed to profile another application.
Note: There may be different sub-case names used by an app. Be sure
to accurately specify a case name to match the name that you saw on the
command line when using ps command. This option is only available for
Android, not available for Linux.

setprop vendor.VP_OUTPUT
newpath

Run this command in adb shell to specify a new location for vProfiler output.
By default, the vpd file will created under /sdcard/. If an application has no
access to the SD card, you can specify another path where the application
does have write permission.
Note: For applications which initialize during Android system boot startup,
such as launcher, you need to kill the process after you change to a new path.
When the application automatically restarts, then your vpd will be accessible
where you want it.

setprop vendor.VP_FRAME_NUM xxx

Run this command in adb shell to limit the number of frames to analyze. For
example, to make vProfiler dump performance data for the first 100 frames:
setprop vendor.VP_FRAME_NUM 100.
Note: Only use when vendor.VIV_PROFILER is set to 1. When this option
is not used, the profile file generated when running an application for a
long time can be very large. This takes up a large amount of disk space
and also makes it hard to view the data in vAnalyzer.

setprop vendor.VP_USE_GLFINISH
0
setprop vendor.VP_USE_GLFINISH
1

Run this command in adb shell to enable or disable use of glFinish()/
glFlush() as the frame delimiter in addition to eglSwapBuffers()
(default 0). By default, eglSwapBuffers() is used as the frame delimiter.
This command will make application thread which does not use eglSwap
Buffers() to generate useful GPU profiling data for analysis.

setprop vendor.VP_PERDRAW_MODE
0
setprop vendor.VP_PERDRAW_MODE
1

Run this command in adb shell to enable or disable per draw mode. When
enabled, vProfiler will collect a counter for each draw call.

setprop vendor.VP_DISABLE_PROBE
1

Run this command in adb shell to disable PROBE mode and make vProfiler
use AHB counters for profiling.

setprop vendor.VP_ENABLE_PRINT
1

Run this command in adb shell to enable vProfiler to print out the counter
information to the console.

Table 34. vProfiler property options...continued

13.5.8 vProfiler Set Property Options for Vision/OVX Profiling with Android

vProfiler for Vision Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that fewer
property options and fewer supported values are available.

adb shell setprop
OPTIONS for VIP/VX/OVX Description

 setprop vendor.VIV_VX_PROFILE
0

Run this command in adb shell to disable vProfiler in the drivers

Table 35. vProfiler Set Property Options

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
90 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

adb shell setprop
OPTIONS for VIP/VX/OVX Description

 setprop vendor.VIV_VX_PROFILE
1

Run this command in adb shell to enable vProfiler in the drivers

 setprop vendor.VP_PROCESS_NAME
appname

Run this command in adb shell to specify the application you need to profile.
Change the app name as needed to profile another application.
Note: There may be different sub-case names used by an app. Be sure
to accurately specify a case name to match the name that you saw on the
command line when using ps command. This option is only available for
Android, not available for Linux.

 setprop vendor.VP_OUTPUT
newpath

Run this command in adb shell to specify a new location for vProfiler output.
By default, the vpd file will be created under /sdcard/. If an application has
no access to the SD card, you can specify another path where the application
does have write permission.
Note: For applications that initialize during Android system boot startup, such
as launcher, you need to kill the process after you change to a new path. When
the application automatically restarts, then your vpd will be accessible where
you want it.

Table 35. vProfiler Set Property Options...continued

13.5.9 Enabling vProfiler Option for QNX

When building the Vivante Graphics Drivers for QNX environment, build the driver with the vProfiler capability.

The graphics.conf file contains the configuration information for Screen and is found under the following
directory:

SCREEN-DIR/usr/lib/graphics/TARGET-SPECIFIC

To activate the vProfiler functionality, add the gpu-gpuProfiler=1 option into the khronos section of the

corresponding graphics.conf file:

begin khronos
...
begin wfd device 1
...
gpu-gpuProfiler=1
...
end wfd device
...
end khronos

13.5.9.1 Setting vProfiler Environment Variables for OGL/OES Profiling

The following table summarizes the environment variables that vProfiler supports.

Environment Variable Description

 VIV_PROFILE [0] Disable vProfiler (default), [1] Enable vProfiler, [2] Control via application call, [3]
Allows control over which frames to profile with vProfiler

 VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

 VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.

 VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.

Table 36. vProfiler Environment Variables

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
91 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Environment Variable Description

 VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

 VP_USE_GLFINISH

Enable [1] or disable [0] the use of glFinish()/glFlush() APIs as the frame delimiter
in addition to eglSwapBuffers() (default 0). This variable enables application thread
which does not use eglSwapBuffers() to generate useful GPU profiling data for
analysis.

 VP_PERDRAW_MODE Enable [1] or disable [0] (default). When enabled, vProfiler will collect a counter for
each draw call.

 VP_DISABLE_PROBE Disables PROBE mode and makes vProfiler to use AHB counters for profiling.

 VP_ENABLE_PRINT Enable vProfiler to print out the counter information to the console.

Table 36. vProfiler Environment Variables...continued

13.5.9.2 Setting vProfiler Environment Variables for Vision, OpenVX Profiling

vProfiler for OpenVX Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that
fewer environment variables and fewer supported values for those variables are available.

Environment Variable Description

VIV_VX_PROFILE [0] Disable vProfiler for OpenVX(default), [1] Enable vProfiler for OpenVX

VIV_CL_PROFILE [0] Disable vProfiler for OpenCL(default), [1] Enable vProfiler for OpenCL

 VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

Table 37. vProfiler Environment Variables

13.5.10 Environment Variable Details

13.5.10.1 VIV_PROFILE

The environment variable VIV_PROFILE can be used to control enable/disable and set profiling modes for
vProfiler.

• VIV_PROFILE=0
By default, vProfiler is disabled in the driver. If vProfiler has been enabled and you wish to disable it, set
VIV_PROFILE to 0:

export VIV_PROFILE=0

• VIV_PROFILE=1
To enable vProfiler, set VIV_PROFILE to 1:

export VIV_PROFILE=1

To limit the number of frames to analyze, use the environment variable VP_FRAME_NUM. (This option is
available only when VIV_PROFILE=1.) For example, this setting will make vProfiler dump performance data
for the first 100 frames.

export VP_FRAME_NUM=100

• VIV_PROFILE=2
Mode VIV_PROFILE=2 provides support for glEnable(GL_PROFILE_VIV) and glDisable(GL_PROFILE_VIV),
which are used to choose which frames are to be profiled. In this mode, vProfiler is disabled by default.
It begins to do profiling only after a glEnable(GL_PROFILE_VIV) call from the application. And it will stop

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
92 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

profiling when glDisable (GL_PROFILE_VIV) is called. Note that the flag is only checked at every frame end,
i.e., in eglSwapBuffers(). To use this mode, set VIV_PROFILE to 2:

export VIV_PROFILE=2

• VIV_PROFILE=3
Setting VIV_PROFILE to 3 provides support for two environment variables VP_FRAME_START and
VP_FRAME_END, which are used to choose which frames are to be profiled. In this mode, vProfiler is
disabled by default. It begins to do profiling starting at the frame number specified by VP_FRAME_START,
and it ends the profiling after the frame number specified by VP_FRAME_END. For example to use this mode,
set VIV_PROFILE to 3:

export VIV_PROFILE=3 export VP_FRAME_START=10 export VP_FRAME_END=90

Note:
To get precise profiling data, the IP's Power Management (PM) functions need to be disabled. When kernel
module galcore is inserted with gpuProfiler=1, the PM functions in the driver are not disabled. The PM
functions are disabled when VIV_PROFILE is set to 1, 2, or 3, and the application starts. The PM functions
are enabled when VIV_PROFILE is set to 0, and the application starts again.

13.5.10.2 VP_OUTPUT

The output file of vProfiler is vprofiler.vpd by default. To specify an alternate filename use the environment
variable VP_OUTPUT. For example,

export VP_OUTPUT=sample.vpd

13.5.10.3 VP_USE_GLFINISH

glFinish()/glFlush() will be treated as the frame delimiter in addition to eglSwapBuffers(). By default, vProfiler
only uses eglSwapBuffers() as the delimiter to check hardware counters. The command below will enable
vProfiler to use glFinish()/glFlush() as additional delimiters so an application thread which does not use
eglSwapBuffers() can generate useful profiling data for analysis.

export VP_USE_GLFINISH=1

13.5.10.4 VP_DISABLE_PROBE

This variable only applies to IP with the PROBE feature support. It disables PROBE mode and makes vProfiler
use AHB counters for profiling. This variable has no affect on hardware that only supports the AHB counter. The
default value is off.

13.5.10.5 VP_ENABLE_PRINT

This variable provides a convenient way to check some critical profiling information without using the off-line
vAnalyzer to open a VPD file. Once it is enabled, vProfiler prints out the counter information to the console. For
the OpenVX and OpenCL drivers, the default value is on; for GLES and GL drivers, the default value is off.

13.6 VPD Analyzer
VPD Analyzer provides graphic displays of the data gathered by vProfiler and aids in the visual analysis of
graphics, compute and vision performance. vProfiler outputs performance data to binary files with a .vpd
extension. These files can be opened using the VivanteIDE VPD Analyzer both in text lists and as line graphs.
VPD Analyzer gives the user several ways to inspect any frame in a captured animation sequence.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
93 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

13.6.1 Loading a VPD File

To open the VPD Analyzer perspective based on a VPD file, click the icon from the toolbar or select Tools-
>VPD Analyzer->Load VPD File ...

The Load a VPD file dialog box appears. Select a VPD (.vpd) file, and click Open.

Or, in the Project Explorer view, right-click on a VPD file and select Load VPD.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
94 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

13.6.2 VPD Analyzer Perspective

Once the VPD file is loaded, the VivanteIDE workbench switches to the VPD Analyzer perspective view, and
analyze data from the selected VPD file will be displayed on a series of tabs in chart or text format.

Available tabs (left to right) are:

VPD Analyzer Tab Description

System Info Shows hardware and software version information and Average Frame Rate

Project Explorer Shows project files

Chart Shows customizable graph views of various counters

Function Call Three panes shows a table of functions called, a graph of Top 5 calls and properties of the
selected call.

Analysis Summary Shows data for the current frame

Analysis Detail Shows analysis detail for the current frame

Program Shows program counters and their value

Table 38. Available tabs

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
95 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

13.6.3 System Info View

The left most System Info tab shows the system information related to the VPD data under analysis, such as
hardware, driver and vProfiler versions. The Average Frame Rate is also reported on this tab.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
96 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

13.6.4 Program Counters View

The rightmost tab in the rightmost pane is the Program tab which shows program counter information, such as
Instruction counts and attribute counts.

13.6.5 Closing the VPD File

Click the icon from the toolbar or select Tools->VPD Analyzer->Close VPD File to close the current VPD
file. The analysis data associated with the closed file will be cleared from all views.

13.7 SPIR-V Disassembler
A SPIR-V Disassembler tool is provided as an aid in debugging Vulkan applications. If a SPIR_V file is already
located in a project, simply double click on it to disassemble. Otherwise use the main menu File -> Open File…
to locate the SPIR-V. Options can be set via the Window->Preferences dialog box.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
97 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 29. SPIR-V Disassembler

13.7.1 Shader Assistant

Shader Assistant perspective is provided for Shader program development for OpenGL, OpenCL and Vulkan
projects. Shader Assistant provides an environment for editing, previewing, analyzing, and optimizing shader
programs. Shader Assistant includes samples of shader programs, a number of standard meshes (sphere,
cube, tea pot, pyramid, etc.) and a text editor. These extra features will help programmers get a quick start on
creating their shader programs.

There are two ways to switch to the Shader Assistant perspective view. From the main menu, choose Window -
> Open Perspective -> Shader Assistant, or in the C/C++ Project Explorer pane, right click and select Develop
Shader. Using the table in the left pane Preview Settings tab, select items in the Setting column and configure
project as well as header, shaders, attributes, etc.

Figure 30. Shader Assistant

13.7.2 vTexture

Texture manipulation and viewing is available in four different areas of VivanteIDE:

• Texture Editor dialog boxes accessible from the Shader Assistant Preview Settings tab provides for texture
customization, q.v. preceding Section 13.7.1 for launching Shader Assistant.

• vTexture Browser and Viewer panes are available from the main menu Window -> Open Perspective ->
VTexture. It provides thumbnail and detail view of textures as well as the basic properties of the textures,
such as image size and color depth.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
98 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 31. vTexture (1)
• Convert Texture provides a GUI for texture compression/decompression and tiling/de-tiling. It is accessible

by clicking on the main menu Tools->Convert Texture. Note that vTextureTools is the command line tool
version of this tool. Refer to Section 13.8.4 for details.

Figure 32. vTexture (2)

Figure 33. vTexture (3)

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
99 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

13.8 VivanteIDE command line tools
For easy reference, the syntax for the VivanteIDE command line tools are provided on the following pages. You
can also refer to the VivanteIDE User Guide or inline -h (help) for syntax for these command line tools.

13.8.1 Preparing the environment

Before running command line tools, prepare the environment as in the examples below.

For Linux OS

• Launch a BASH
• $ source installation_dir/ide/setenv-vivanteide<version> # initialize the environment

For Windows OS

• Launch a Command Shell
• > installation_dir/ide/setenv-vivanteide<version>.bat # initialize the environment

13.8.2 vCompiler Command Line Syntax for OGL and OGLES

Open a Command prompt. Navigate to the folder, which contains the vTextureTools files (for example,
installation_dir/cmdtools/vCompiler, and launch the vCompiler application executable using the
command line syntax described below.

Make sure the configuration file is customized for your target environment.

13.8.2.1 Syntax

Windows and Linux command line syntax is the same.

Optional inputs are indicated by brackets. A fixed order for options in the command is not required.

vCompiler [-f <gpuConfigurationFile>] <shaderInputFileName>
 [shaderInputFileName_2]
[-c] [-h] [-l] [-o <outputFileName>] [-On] [-v] [-x <shaderType>]

13.8.2.2 Input parameters (required)

shaderInoutFileName shader input file name, which must contain one of the following file
extensions:

• vert: vertex shader source file
• frag: fragment shader source file
• vgcSL: previously compiled vertex shader input/output file
• pgcSL: previously compiled pixel shader input/output file

13.8.2.3 Input parameters (optional)

shaderInputFileName_2 Up to two shader files can be specified. The second shader file is optional
but must have one of the file extensions described above for shader
InputFileName. If the first shader is a vertex shader, this second shader
should be a fragment shader; conversely if the first shader is a fragment
shader, the second should be a vertex shader.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
100 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Note: Pre-compiled and compiled shaders may be mixed, as long as one is
a vertex shader and the other a fragment shader.

-c Compile each vertex .vert file into a vgcSL file and/or fragment shader .frag
file into a pgcSL only, with no merged result file of type .gcPGM.

If the –c option is not specified:

• When only one shader is specified, that shader will be compiled into a .
[v/p]gcSL file.

• When two shaders are specified, one is assumed to be a vertex shader
and the other a fragment shader. Each shader can be either a previously
compiled .vgcSL or .pgcSL. file or a .vert or .frag still to be compiled. The
two will be merged into a .gcPGM file after successful compilation.

-f <gpuConfigurationFile> Specifies a configuration file (from VTK 1.6.2). If –f is not specified, the
file viv_gpu.config in the vCompiler working directory will be used as the
default configuration file. Example syntax:

vCompiler –f viv_gpu_880.config foo.vert bar.frag

Note: vCompiler will not work correctly if the GPU configuration file cannot
be found or contains incorrect content.

-h Shows a help message on all the command options.

-l Create a log file. The log file name is created by taking the first input file
name, then replacing its file extension with “.log”. If the input file name does
not have a file extension, .log is appended, e.g.,

myvert.vert => myvert.log
inputfrag => inputfrag.log

-o <outputFileName> Specify the output file name. If the path is other than the current directory, it
must also be specified. Any extension can be specified. If the extension is
not specified, the outputFileName supported default types are as follows:

• vgcSL: compiled vertex shader output file, usually compiled from a .vert
input source file (default result for single file compile)

• pgcSL: compiled pixel shader output file, usually compiled from a .frag
source input file.

• gcPGM: compiled file merging vertex shader and fragment/pixel shader
into a single output file

-O<n> Optimization level. Default is –O2:

• -O0: Disable optimizations
• -O1: Some optimizations are enabled.
• -O2 All optimization levels are on (default).

-v Verbose; prints compiler version and diagnostic messages to STDOUT.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
101 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

-x<shaderType> Explicitly specifies the type of shader instead of relying on the file extension.
This option applies to all following input files until the next -x option.

ShaderType: supported values for Shader type include:

• vert: vertex shader source file
• frag: fragment shader source file
• vgcSL: compiled vertex shader input/output file
• pgcSL: compiled pixel shader input/output file

-x none Revert back to recognizing shader type according to the file name extension.

13.8.2.4 vCompilerOutput

Output files are placed in the current directory, unless another directory is specified with the -o option. The files
can be of the three types described above under outputFileName value of the -o option.

13.8.2.5 vCompiler Syntax examples

vCompiler foo.vert produces foo. vgcSL.

vCompiler bar.frag produces bar.pgcSL.

vCompiler foo.vert bar.frag produces foo.gcPGM.

vCompiler –v –l –O1 foo.ver tbar.frag produces foo.gcPGM and foo.log.

vCompiler –v –l –O1 –o foo_bar foo.vert bar.frag produces foo_bar.gcPGM and
foo_bar.log.

13.8.3 vcCompiler Command Line Syntax for OCL

Open a Command prompt. Navigate to the folder which contains the vTextureTools files (for example,
installation_dir/cmdtools/vCompiler, and launch the vCompiler application executable using the
command line syntax described below.

Make sure the configuration file is customized for your target environment.

13.8.3.1 Syntax

Windows and Linux command line syntax is the same.

Optional inputs are indicated by brackets. A fixed order for options in the command is not required.

vcCompiler [-f <gpuConfigurationFile>] [-v] [-l] [-O0] [-D <MacroDefinition>] [-
I <IncludeDirectory>]
[-K <KernelName>] [-M] [-B] <OpenCLOrOpenVXFileName>
 <OpenCLOrOpenVXFileName_2> . . . [-allkernel]

13.8.3.2 Input parameters (required)

OpenCLOrOpenVXFileName Input file name, which must contain one of the following file
extensions:

• cl: OpenCL source file

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
102 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• vx: OpenVX Vision source file
If an input file extension is not specified, vcCompiler will report a
“wrong file extension” error.

13.8.3.3 Input parameters (optional)

OpenCLOrOpenVXFileName_2, _n Multiple input files can be specified. The second and additional
files are optional but must have the appropriate file extension as
described above. All files must be of the same type (.cl or .vx).

-allkernel Allows VX applications to create all kernels in one program and
save them into one package.

-B Support source level intrinsic built-in functions.

-D <MacroDefinition> Predefined inline macro, as referenced in the input file.

-f <gpuConfigurationFile> Specifies a configuration file. If –f is not specified, the file
viv_gpu.config in the vcCompiler working directory will be used as
the default configuration file. Syntax example:

vcCompiler –f viv_gpu_gc7000.config foo.cl

Note: vcCompiler will not work correctly if the GPU configuration
file cannot be found or contains incorrect content.

-h Shows a help message on all the command options.

-I <IncludeDirectory> Specify the directory path for include files.

-K <KernelName> Link with kernel name. Default is main.

-l Create a log file. The log file name is created by taking the input
file name, then replacing its file extension with “.log”. If there are
multiple input files, the filename of the first input file will be used,

inputcl.cl => inputcl.log
myvx1.vx myvx2.vx => myvx1.log

-M Merge all compiled output from each file into one file. The
combined output will have the name of the last input file combined
with the output extension .gcPGM.

-O<n> Optimization level. Default is –O2:

• -O0: Disable optimizations
• -O1: Some optimizations are enabled.
• -O2 All optimization levels are on (default).

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
103 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

-v Verbose; prints compiler version and diagnostic messages to
STDOUT

13.8.3.4 vcCompiler Output

Output files are placed in the current directory. When compiled successfully, the supported output file extensions
for vcCompiler are:

• .clgcSL: compiled CL output file, compiled from a .cl input source file.
• .vxgcSL: compiled VX output file, compiled from a .vx input source file.

13.8.3.5 vcCompiler Syntax Examples

vcCompiler [-f <gpuConfigurationFile>] [-v] [-l] [-O0] [-D <MacroDefinition>] [-
I <IncludeDirectory>]
[-K <KernelName>] [-M] [-B] <OpenCLOrOpenVXFileName> <OpenCLOrOpenVXFileName_2>
 [-allkernel] . . .

vcCompiler -v -O1 foo.cl: produces foo.clgcSL.

vcCompiler -v -l foo.vx: produces foo.vxgcSL and foo.log.

13.8.4 vTextureTools command line tool

Open a Command prompt. Navigate to the folder which contains the vTextureTools files, for example,
installation_dir/cmdtools/vTextureTools, and launch the vTextureTools application executable
using the command line syntax described below.

13.8.4.1 Syntax

The usage of the command line tool is as follows for compression/decompression:

vTextureTools -c TYPE [-s SPEED] –src FILE [–dest FILE]

or

vTextureTools -d TYPE –src FILE [–dest FILE]

The usage of the command line tool is as follows for tiling/de-tiling:

vTextureTools -t|-st [-2] [–r|--raw=FORMAT] [–m LAYOUT] –src FILE [–dest FILE]

or

vTextureTools -dt -t|-st [-2] [–r|--raw=FORMAT] [–m LAYOUT] –src FILE [–dest
 FILE]

13.8.4.2 General parameters

General parameters:

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
104 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• -h show help
• -src [FILE] source file - input image path and filename. vTexture will use the file extension type as image

type.
– For option –c compress, the application expects an input filename with a .TGA extension.
– For –d decompression, the application expects .DDS, .KTX or .PKM.
– For –t tile, the application expects .BMP or .TGA.
– For –dt detile, the application expects .BMP or .TGA.

• -dest [FILE] destination file - image path and filename.
– The application expects a filename with a .TGA, .DDS, .KTX or .PKM extension for compress/uncompress

or .BMP or .RAW for tile/detile.
– If the -dest parameter is not set, vTexture will auto generate a name for the newly generated file, using the

source file name as the prefix appending critical parameters and file type information.

13.8.4.3 Compression/Decompression parameters

These parameters are used for compression and decompression:

• -c compress a source image of format uncompressed TGA
• [TYPE] specify the target output compression format:
• -DXT1 compress image to DXT1 format (default format).
• -DXT3 compress image to DXT3 format.
• -DXT5 compress image to DXT5 format.
• -ETC1 compress image to ETC1 format
• -ETC2 compress image to ETC2 format
• -d decompress a source image of format specified by the value [TYPE].

The resulting file type will be uncompressed TGA.
This option decompresses DXT1, DXT3, DXT5, ECT1 or ETC2 format image to TGA format.

• -s compression [SPEED] mode for ETCn images:
– slow
– medium
– fast (default)

13.8.4.4 Tile/De-Tile parameters

The parameters listed in the following table are used for tiling and de-tiling between linear and tiled formats.

-t Convert linear data to tiled texture output.

-st Enable supertile format. This option is an alternate to -t. If -st and -t are used together, -st will be
set.

-dt De-tile: Convert tiled texture to linear texture output.

-2 Tile/de-tile in multi-format. Tile format is multi-tiled (when used with -t) or multi-supertiled (with -st).

-m [LAYOUT]: layout mode for supertiled or multi-supertiled textures:
• 0: Legacy supertile mode (default).
• 1: Supertile mode when hardware has HZ.
• 2: Supertile mode when hardware has NEW_HZ or FAST_MSAA.

Table 39. Tile/De-Tile parameters

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
105 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

-r Specify output data as raw pixel output instead of BMP. Use --raw=rgb565 to specify raw pixel
[FORMAT]. Supported raw formats (8) are:

rgba8888, bgra8888, rgb888, bgr888, rgb565, bgr565, argb1555, yuy2

Table 39. Tile/De-Tile parameters...continued

13.8.4.5 vTexture Syntax Examples

COMPRESS:

vTextureTools -c dxt1 -src d:\myfile.png -dest c:\compress.dds
vTextureTools -c dxt1 -src d:\myfile.tga -dest c:\compress.dds
vTextureTools -c etc1 -s slow -src d:\myfile.png -dest c:\compress.pkm
vTextureTools -c etc1 -s slow -src d:\myfile.tga -dest c:\compress.pkm
vTextureTools -c etc2 -s slow -src d:\myfile.bmp -dest c:\compress.ktx
vTextureTools -c etc2 -s slow -src d:\myfile.tga -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.bmp -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.pkm

DECOMPRESS:

vTextureTools -d etc1 –src c:/vtexin/myfile2.pkm –dest c:/vtextout/myfile2.tga
vTextureTools -d –src c:/vtexin/myfile3.dds –dest c:/vtextout/myfile3.tga
 (assumes DXT1)
vTextureTools -d tga -src d:\myfile.dds -dest c:\decompress.tga
vTextureTools –d tga -src d:\myfile.ktx -dest c:\decompress.tga

TILE: LINEAR TO TILE CONVERSION:

• Tile linear texture to standard tile texturev

TextureTools.exe -t -src 123.bmp

• Tile linear texture to multi-tiled texture

vTextureTools.exe -t -2 -src 123.bmp

• Tile linear texture to supertiled texture

vTextureTools.exe -st -src 123.bmp

• Tile linear texture to multi-supertiled texture

vTextureTools.exe -2 –st -src 123.bmp

• Tile linear texture to multi-supertiled texture and output rgb565

vTextureTools.exe -2 --raw=rgb565 -src 123.bmp

• Tile linear texture to multi-supertiled texture with layout mode 2

vTextureTools.exe -st -2 -m 2 -src 123.bmp

DE-TILE: TILED TO LINEAR CONVERSION:

• De-tile tiled texture to linear texture

vTextureTools.exe –dt -t -src 123-tiled.bmp

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
106 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• De-tile supertiled texture to linear texture

vTextureTools.exe -dt -st -src 123-supertiled.bmp

• De-tile multi-supertiled texture to linear texture

vTextureTools.exe –dt -t -2 -src 123-tiled-multi-tiled.bmp

• De-tile multi-Super-tiled texture with layout mode 2 to linear texture

vTextureTools.exe -dt -st -2 -m 2 -src 123-multi-supertiled-2.bmp

14 GPU Tools

Note: All SoCs support this tool if not specified.

14.1 gpuinfo tool

14.1.1 Introduction

gpuinfo is a script to gather GPU runtime status through debugfs interface. It exports the following information:

• GPU hardware information.
• GPU total memory usage.
• GPU memory usage of certain process or all processes (user space only).
• GPU idle percentage.

14.1.2 Usage

The script is located at Yocto rootfs /unit_tests/. There are three ways to run it.

• Normal run to get all GPU-related processes information:

>/unit_tests/GPU/gpuinfo.sh

• Get GPU information for certain process by clarifying the process id.
The process ID (pid) can be found using commands ps or top. Take the process 1035 as an example.

>/unit_tests/GPU/gpuinfo.sh 1035

• Get the GPU information for certain process by clarifying part of process name.
Take the process sample_test_fbo as an example.

>/unit_tests/GPU/gpuinfo.sh sample_test_fbo

or

>/unit_tests/GPU/gpuinfo.sh sample

or

>/unit_tests/GPU/gpuinfo.sh test

14.1.3 Sample log information

14.1.3.1 GPU hardware information

This section shows all GPU cores model name and revision information with index in the SoC.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
107 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

The sample information:

GPU Info
gpu : 0
model : 2000
revision : 5108
gpu : 1
model : 320
revision : 5007
gpu : 2
model : 355

14.1.3.2 Total memory information

This part shows total GPU memory information.

gcvPOOL_SYSTEM: GPU reserved system memory.

gcvPOOL_CONTIGUOUS: contiguous memory allocated from CMA pool, low memory zone and high
memory zone.

gcvPOOL_VIRTUAL: non-contigous memory allocated from low memory zone and high memory
zone.

NON PAGED MEMORY: Allocated from CMA pool(mainly for command buffer)

Table 40. Total memory information

The sample information:

VIDEO MEMORY:
 gcvPOOL_SYSTEM:
 Free : 124170474 B
 Used : 10047254 B
 Total : 134217728 B
 gcvPOOL_CONTIGUOUS:
 Used : 0 B
 gcvPOOL_VIRTUAL:
 Used : 0 B
NON PAGED MEMORY:
 Used : 0 B
Paged memory Info
low: 892928 bytes
high: 0 bytes
CMA memory info
cma: 0 bytes

14.1.3.3 Process user space GPU memory usage information

This part shows detail user space GPU memory usage per process.

Index memory for index buffer.

Vertex memory for vertex data buffer.

Texture memory for texture buffer.

RT memory for render target buffer.

Table 41. User space GPU memory usage

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
108 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Depth memory for depth buffer.

Bitmap memory for bitmap buffer.

TS memory for tile status buffer.

Image memory for vg image buffer.

Mask memory for vg mask buffer.

Scissor memory for vg scissor buffer.

HZDepth memory for hierarchical Z depth buffer.

Table 41. User space GPU memory usage...continued

The sample information:

VidMem Usage (Process 1106):
Counter: vidMem (for each surface type)
All Index Vertex Texture RT Depth Bitmap TS Image
 Mask Scissor HZDepth
Current 10047254 489362 1213248 435200 3866624 3727360 0 36352
 0 0 0 245760
Maximum 10047254 489362 1213248 435200 3866624 3727360 0 36352
 0 0 0 245760
Total 10047254 489362 1213248 435200 3866624 3727360 0 36352
 0 0 0 245760
Counter: vidMem (for each pool) All 1 2 3 4 5 6 7
 8 9
Current 10047254 0 0 0 0 0 10047254 0
 0 0
Maximum 10047254 0 0 0 0 0 10047254 0
 0 0
Total 10047254 0 0 0 0 0 10047254 0
 0 0
Counter: nonPaged
 All
Current 0
Maximum 0
Total 0
Counter: contiguous
 All
Current 0
Maximum 0
Total 0
Counter: mapUserMemory
 All
Current 0
Maximum 0
Total 0
Counter: mapMemory
 All
Current 134217728
Maximum 134217728
Total 134217728

14.1.3.4 GPU idle percentage

This part shows GPU idle percentage in past 1s.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
109 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

The sample information:

>>>
Idle percentage:0.00%
>>>

14.2 gputop tool
gputop -- Monitor GPU clients memory, hardware counters, occupancy state load on DMA engines, video
memory and and DDR memory bandwidth (only under Linux).

• The gputop tool is developed to trace the overall memory utilization in classification of memory pools.
• The available memory size is reported for the reserved pool.
• GPU idle time is reported from the last capture.

14.2.1 Synopsis

gputop [options]

gputop -m [mode] -- Where mode can be: mem, counter_1, counter_2, occupancy, dma, vidmem and ddr (under
Linux/Android). Use this option to start gputop directly in a mode that you're interested on. For counter_1 and
counter_2 a context will be needed. See NOTES section why this is necessary.

gputop -c ctx_no -- specify a context to attach when display context-aware hardware counters.

gputop -b -- display in batch mode. For other modes than memory, this will only take an instantaneous sample.
See -f

gputop -f -- Use this when using gputop from a script.

gputop -x -- useful to display contexts when used with ``-b''

gputop -i -- ignore warnings about kernel mismatch

gputop -h -- display usage and help

14.2.2 Interactive mode

Normally, when starting up, gputop, starts in interactive mode. The following are a list of useful commands:

• 'h' -- display help page
• '0-6'/Left-Right arrows -- switch between viewing pages
• 'x' -- display application contexts
• 'SPACE' -- select a context that you want to track. Useful for reading counter_1 and counter_2 values.
• 'r' -- useful for hardware-counter pages to display different viewing modes (switches between different modes

of aggregation: MIN/MAX/AVERAGE/TIME)
• 'q'/ESC -- exits gputop.
• 'p' -- stops reading counter values and displays only current values. Useful to get a instantaneous values of

the counters.

14.2.3 Description

gputop can be used to determine the memory usage your application is using, or to read the hardware counters
exposed by the GPU in real-time. Additionally, DMA engines and Occupancy states are displayed. gputop
has multiple viewing pages: a memory usage page, two hardware counter pages, a DMA engine page and an

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
110 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Occupancy page. When normally started, gputop will be in interactive mode. Type 'h' to get a list of the current
keybindings.

14.2.4 Requirements

14.2.4.1 Linux OS

gputop requires access to debugfs sub-system on Linux to display memory usage, used by clients submitting
commands to the GPU. gputop will try to mount the debugfs pseudo-filesystem if it is not already mounted. In
order to read hardware counters the profiler must be activated in the driver. Usually this can be set by setting
the environment variable export VIV_PROFILE=1.

14.2.4.2 QNX

Just like in Linux OS, to read the hardware counter values, gpu-gpuProfiler has to be set to 1 in
graphics.conf file under $GRAPHICS_ROOT directory. Other views like occupancy and DMA will require gpu-
powerManagement to be set to 0 (disabled).

14.2.5 Notes

14.2.5.1 Sampling hardware-counters

GPUTop samples the driver for hardware counter values. Internally the driver updates the values of the counters
whenever the application submits a special type of command to the GPU. Depending on how fast that happens,
GPUTop cannot foresee/adjust the values of the counters. Therefore, tweaking the amount of sample taken or
the delay time does not really help. For dealing with situations where the application submits either too fast or
too low commands to the GPU, several modes of viewing counters have been added. Cycle between them to
understand or get a bird-eye view of the counter values. Empirically MAX/AVERAGE displays the closest values
to the truth.

14.2.5.2 Context-aware counters

counter_1 and counter_2 are context-aware counters (i.e.: tied to an application).

Internally the driver assigns various context IDs to the application submitting commands to the GPU. These
contexts IDs are currently required to read those hardware counter values. Either use -x on the command line
(together with -b option and choosing -m mem viewing mode), or for interactive mode use 'x' and then 'SPACE'
to show and select a context ID.

In case you are getting zero'ed out values for counter_1 and/or counter_2 values, cycle through the available
counter IDs.

Due to the way the driver is built, single-GPU core applications will have two context-ids. Empirically the largest
integer values holds the real context-id.

14.2.5.3 Unsupported GPUs

For GCV600 (i.MX 7ULP and i.MX 8M Mini), the IDLE/LOAD register is not available, so gputop will display
incorrect (inversed) values.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
111 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

14.2.6 Pages

14.2.6.1 Client attached page

When viewing client attached page, the following head columns are displayed:

PID RES (KB) CONT (KB) VIRT (KB) Non-PGD (KB) Total (KB) CMD

• PID -- process ID
• RES -- reserved memory
• CONT -- contiguous memory
• VIRT -- virtual memory
• Non-PGD -- Non-paged memory
• Total -- the sum of all above
• CMD -- the name of the application (trimmed)

These memory items correspond to memory pools in the driver.

14.2.6.2 Vidmem page

When viewing vidmem page, the following head columns are displayed for each process.

PID IN VE TE RT DE BM TS IM MA SC HZ IC TD FE TFB

• IN -- index
• VE -- vertex
• TE -- texture
• RT -- render target
• DE -- depth
• BM -- bitmap
• TS -- tile status
• IM -- image
• MA -- mask
• SC -- scissor
• HZ -- hz
• IC -- i_cache
• TD -- tx_desc
• FE -- fence
• TFB -- tfb header

14.2.7 Examples

When using -b option, gputop will start in interactive mode and execute just once its main loop. This is useful
for various reason, either to get an instantaneous view of a different viewing page, or scripting.

• Get a list of processes attached to the GPU.

$ gputop -m mem -b

• Get a list of processes attached to the GPU, but also display the contexts IDs.

$ gputop -m mem -bx

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
112 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• Display counters (counter_1) using context_id.

$ gputop -m counter_1 -b -c <context_id>

• Display counters (counter_2) using context_id.

$ gputop -m counter_2 -b -c <context_id>

• Get IDLE/USAGE

$ gputop -m occupancy -b | grep IDLE

14.2.8 See Also

• Under QNX, see graphics.conf for disabling powerManagement and enabling gpuProfiler.
• Under Linux, see /sys/module/galcore/parameters/powerManagement.

14.3 GPU clock information and debugging
GPU driver supports dynamic frequency scaling. Users can perform the following steps to query and update the
GPU clock information, which is useful for GPU debugging.

1. Get the GPU clock. This is affected by the system RTC timer. Sometimes it varies between different boards.

root@imx8mpevk:/# mount -t debugfs none /sys/kernel/debug (optional, exec it
 only if there is no gc dir)
root@imx8mpevk:/# cat /sys/kernel/debug/gc/clk
gpu0 mc clock: 1000018036 HZ.
gpu0 sh clock: 1000021374 HZ.
gpu1 mc clock: 1000002214 HZ.
gpu1 sh clock: 999986723 HZ.
gpu8 mc clock: 499991523 HZ.

2. Change the GPU clock.
Read the gpu3DClockScale as the denominator using the following command:

root@imx8mpevk:/# cat /sys/bus/platform/drivers/galcore/gpu3DClockScale
64

The GPU frequency can be changed to numerator/gpu3DClockScale * clock for different GPU
instances. For example, the gpu0's mc and sh clock can be change to 1/2 and 1/4 of the original frequency.

root@imx8mpevk:/# echo 0 32 16 > /sys/kernel/debug/gc/clk
[2625.977856] Change core:0 MC scale:32 SH scale:16
[2625.982610] Warning: Power management status will be changed forever!
root@imx8mpevk:/# cat /sys/kernel/debug/gc/clk
gpu0 mc clock: 499997481 HZ.
gpu0 sh clock: 249997541 HZ.
gpu1 mc clock: 999995540 HZ.
gpu1 sh clock: 999992141 HZ.
gpu8 mc clock: 499998453 HZ.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
113 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

14.4 Apitrace user guide

14.4.1 Introduction

Apitrace is a set of tools enhanced from open source project apitrace, supported by i.MX 6, i.MX 7, and i.MX 8
with Vivante GPU IP. This tool can dump OpenGL/GLES1.1/GLES2.0/GLES3.0 API calls and replay on a wide
range of other devices.

For more information, see apitrace.github.io/.

14.4.2 Install

14.4.2.1 Yocto

Apitrace source code release is part of the i.MX Yocto Project Linux BSP release. The source code have more
patches added on top of official Apitrace release. The Yocto Project recipes pull the Apitrace source package
and install as needed for supported backend.

14.4.2.2 PC

Apitrace have set of PC tools. Prebuilt binary packages can be directly downloaded from the Apitrace website.

Currently supports Ubuntu 14.04 LTS, 64-bit.

sudo apt-get install libgles1-mesa libgles2-mesa libqt4-dev

14.4.3 Usage

14.4.3.1 Trace OpenGL ES1.1/2.0/3.0 application

apitrace trace --api=egl <app name and arguments>

e.g., apitrace trace --api=egl es2gears_x11

It generates trace file (.trace) under the current directory. To specify a new path, use --
output=<path_name>.

14.4.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java application on the Android platform

On the Android platform, a GLES application can be native (e.g., frameworks/native/opengl/angeles). This type
of application can be traced as normal Linux application. Some other applications involving the Java virtual
machine cannot run in this way. A script apitrace_dalvik.sh is provided to run this type of application. This
is an example to trace com.android.settings:

sh /data/apitrace/bin/apitrace_dalvik.sh com.android.settings start

To stop tracing, run:

sh /data/apitrace/bin/apitrace_dalvik.sh com.android.settings stop

Because there is no “current” directory for a Java application, the trace file is stored under /sdcard/.

If Apitrace is installed in a different directory, update apitrace_dalvik.sh manually.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
114 / 140

https://apitrace.github.io/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

14.4.3.3 Trace OpenGL application

apitrace trace --api=glx <app name and arguments>

Only the X11 backend supports this feature.

14.4.3.4 Replay

This utility is also called retrace. It reads in the trace file and executes OpenGL (ES) APIs one by one. Each
OpenGL (ES) API call is processed by a callback function. In that callback function, a hook can be inserted for
debug or analysis purposes.

Figure 34. Replay

OpenGL ES 1.1/2.0/3.0 applications can be replayed with eglretrace; OpenGL applications can be replayed with
glretrace:

eglretrace <trace file>
glretrace <trace file>

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
115 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

14.4.3.4.1 Analysis

qapitrace provides a detailed look at the trace file. It can only run on a PC. It was verified on Ubuntu 14.04 LTS
64-bit. The command is:

qapitrace <trace file name>

Figure 35. Checking state of every API call

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
116 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 36. Checking Framebuffer

Figure 37. Checking Texture

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
117 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 38. Checking performance

14.4.4 Reference

1. Apitrace introduction: apitrace.github.io/

2. More uses: github.com/apitrace/apitrace/blob/master/README.markdown

14.5 Renderdoc
Renderdoc is a frame-capture based graphics debugger, generally support for Vulkan, D3D11, D3D12,
OpenGL, and OpenGL ES development. On i.MX, support is available only for Vulkan. RenderDoc provides
tools for deep analysis and graphics inspection, as well as detailed examination of API usage - allowing
developers to locate bugs and problems in their programs.

14.5.1 Renderdoc components

Renderdoc source code release is part of the i.MX Yocto Project Linux BSP release. The source code has more
patches added on top of the official Renderdoc release. The Yocto Project recipes pull the renderdoccmd tool
source package and install it as needed for the supported backend. The version of renderdoccmd currently
available for the user is 1.7.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
118 / 140

http://apitrace.github.io/
https://github.com/apitrace/apitrace/blob/master/README.markdown
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Renderdoc has a set of PC tools. Prebuilt binary packages can be directly downloaded from Renderdoc
website.

The renderdoccmd tool will be available on the i.MX board for capturing frames and replaying locally, as for
debugging purposes qrenderdoc needs to be used remotely on a host machine.

14.5.2 Running renderdoccmd on i.MX

renderdoccmd capture <options> <app_name> <arguments>

Renderdoccmd usage example:

• For capturing a frame from a graphics application available in the SDK, run

renderdoccmd capture /opt/imx-gpu-sdk/Vulkan/Some_example/Some_example_Wayland

• Press F12 to capture frames:

Frames will be written in /tmp/Renderdoc/ (run renderdoccmd capture to see all the options)

• For replaying a capture run

renderdoccmd replay /path/to/capture/file

(Run renderdoccmd replay for more options).

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
119 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• Press F for full screen. Press F again to come back to the default window dimensions. Press ESC to quit
replaying.

14.5.3 Capturing and replaying remotely

Usage:

1. Download a Renderdoc build from the website on your Windows/Linux host machine.
2. Set up a connection between the host and the board.
3. On the i.MX board, run renderdoccmd remoteserver.
4. On your machine, run qrenderdoc. Go to File -> Attach to running instance.
5. In the Remote Host Manager Window, add the target's IP address. Then qrenderdoc on your local

machine should establish a connection with the renderdoccmd server instance.
6. In the left down corner of the screen, select Replay Context and change it from Local to the target’s IP

address.
7. Select File -> Launch Application. On Executable Path, insert the path of your Vulkan example from the

target: /opt/imx-gpu-sdk/Vulkan/Some_example/Some_example_Wayland.
8. Press Launch and then capture. A new capture preview should appear.
9. You can save it by right clicking Save on the preview.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
120 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

10. If you close the Vulkan application from the board, qrenderdoc will open the capture file.
11. To debug the capture, check the documentation available on the Renderdoc site.
12. To replay remotely, just use renderdoccmd on your local machine. Run renderdoccmd replay --

remote-host <target ip> <capture_file_on_you_local_machine> and you should see exactly
the same thing as when running on the target locally.

Notes for Android:

• Before starting the remote server and Vukan application, Android HWUI renderer must be set to Vulkan
renderer. In Android console: setprop debug.hwui.renderer skiavk.

• Remote server on the Android platform is started from qrenderdoc application. Connect the board to PC
through the USB-C port. In qrenderdoc, go to Tools -> Manages Remote Servers, and select the connected
board. For example, “nxp MEK-MX8Q”, and press the Run Server button.

• On the Android platform, add permission "Allow access to manage all files" to RenderDocCmd when it is
launched for the first time.

• Launch an application from qrenderdoc. Be sure the correct Replay Context is selected in the left bottom
corner. Select a Vulkan application in the Executable path field from the Launch Application tab. Click the
Launch button.

• Capture frame from qrenderdoc.
• Capture is replayed automatically on the Android platform when the Vulkan application is closed.

14.5.4 Reference

https://renderdoc.org/

https://github.com/baldurk/renderdoc/blob/v1.x/README.md

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
121 / 140

https://github.com/baldurk/renderdoc/blob/v1.x/README.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

15 GPU Memory Introduction

15.1 GPU memory overview
• OpenGL-ES

– Texture buffer
– Vertex buffer
– Index buffer
– PBuffer surface
– Color buffer
– Z/Stencil buffer
– HZ depth buffer
– Tiled status buffer
– 3D Command buffer
– 3D Context buffer

• OpenVG
– Image buffer
– Tessellation buffer
– VG command buffer
– VG context buffer

• 2D buffers
– 2D command buffer
– 2D temporary buffer

15.2 GPU memory pools
• Reserved memory

In the Linux 6.6.y kernel, the memory is reserved from CMA implemented in the GPU kernel driver, the size
can be changed through U-Boot args with galcore.contiguousSize =xxx.
The memory allocation and lock very fast, but cannot support cacheable attribute.

• Contiguous memory
The contiguous memory is from CMA or Normal or Highmem with alloc_pages_exact.
The GPU driver tries the CMA allocator for non-cacheable request first. If CMA memory is used up, it goes to
system allocator.
The CMA allocator does not support the cacheable attribute, the system allocator supports cacheable
attribute, but the memory performance is slow with the additional cache flush operations.

• Virtual memory pool
The virtual memory is from Normal or Highmem with multiple page_alloc.
The memory support cacheable attribute, but slow with GPU MMU and cache flush.
The GPU virtual command buffer is allocated from virtual memory pool directly.

• Nonpaged memory pool
In the 5.x GPU driver, this pool is not used any more.

15.3 GPU memory allocators
Two kinds of allocators are implemented in i.MX GPU kernel driver, see drivers/mxc/gpu-viv/.

• The video memory allocator implementation is very complicated. The memory is from the reserved pool,
system contiguous pool (supports CMA), or system virtual pool (enables GPU MMU).

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
122 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• The CMA allocator supports non-cacheable contiguous memory. It is implemented as a part of contiguous
pool. When the system requests contiguous memory, the allocator tries CMA first. If CMA is used up, it goes
to allocate the system contiguous pages.

• GPU memory-killer is implemented for special requirement of force contiguous GPU memory.

Figure 39. GPU memory allocators

15.4 GPU reserved memory
• The reserved memory is managed by two dual linked lists, one is free list, and another is node list.
• When allocate the reserved memory, the free list is scanned from head to tail until a available node is

selected, it is very fast but makes more memory fragments, under test, 10~20M of 128M is not available to
use after a lot of allocate/free operations.

• When the available node is selected, it is removed from the free list, but it always keeps the dual linked nodes
to merge the conjoint available memory when freed.

• The reserved memory is mapped once when application process is attached, during 3D application running,
the memory map/un-map operations are very fast, the virtual address is just calculated with logical base and
offset.

15.5 GPU memory base address
• GPU support contiguous physical memory within (0-2G) address directly:

– GPU address = CPU Physical address – GPU BaseAddress
• GPU MMU is enabled for two kinds of memory type as below:

– Separated page memory from Virtual memory pool
– Contiguous page memory with address out of (0-2G)

• BaseAddress should be set to RAM start address to achieve the better performance by reducing GPU MMU
mapping.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
123 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Figure 40. GPU memory base address

16 Mali Valhall GPU

i.MX 95 integrates the Mali Vale V2 GPU, a significant change in the graphics from previous i.MX. It performs 32
FP32 FMAs, reads four bilinear filtered texture samples, blends two fragments, and writes two pixels per clock.
For more details about Mali Vale shader core, see https://developer.arm.com/documentation/102203/0100/?
lang=en.

The Vale GPU has a module named Command Stream Front (CSF), which replaces the job management in the
Midgard and Bifrost architecture, and offloads some operation from CPU to GPU, so that the CPU can focus on
general operations to increase the rendering FPS. It is more friendly to the newer graphics API vulkan.

16.1 Features
• Tile-Based Deferred Rendering (TBDR)
• OpenGLES 1.1/2.0/3.0/3.1/3.2
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
124 / 140

https://developer.arm.com/documentation/102203/0100/?lang=en
https://developer.arm.com/documentation/102203/0100/?lang=en
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

• Vulkan 1.3
• OpenCL 3.0
• AFBC/AFRC

16.2 Mali Shader offline Compiler
malisc is a Mali offline shader compiler to compile the vertex shader and fragment shader. It is only for syntax
checking when you are developping the shader. Its output is not ELF binaries. It is a specific Mali version called
Mali Binaries Specification version2 (MBS2).

#version 320 es
//test.vert to show malisc usage
in vec4 position;
out vec4 color;

void main (void)
{
 gl_Position = position;
 color = vec4(1.0f, 0.0f, 0.0f, 1.0f);
}

You can modify the shader source above to learn the Malisc usage.

Usage: malisc --util [options] <a.vert> [<a.frag> <b.vert> ...]
local@imx95-19x19-lpddr5-evk:~# malisc test.vert --core=Mali-G310 --
revision=r0p0

More options can be found when the following command is executed:

local@imx95-19x19-lpddr5-evk:~# malisc --help

16.3 Mali OpenCL Offline Compiler
mali_clcc is Mali OpenCL C offline compiler. It can be used for syntax checking, and its output program
binary can be used with clCreateProgramWithBinary().

//test.cl
__kernel void vector_add(__global float* a, __global float* b, __global float*
 c)
{
 //get the global ID
 const int i = get_global_id(0);

 //run the vector add
 c[i] = a[i] + b[i];
}

The kernel source file above can be compiled with the following command:

local@imx95-19x19-lpddr5-evk:~# mali_clcc test.cl -o test.bin

More options can be found when the following command is executed:

local@imx95-19x19-lpddr5-evk:~# mali_clcc -help

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
125 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

16.4 References and Useful links
• Tile-Based Rendering: https://developer.arm.com/documentation/102662/0100/?lang=en
• The Valhall shader core: https://developer.arm.com/documentation/102203/0100/?lang=en
• Arm Mali Offline Compiler User Guide: https://developer.arm.com/documentation/101863/0803/?lang=en

17 Application Programming Recommendations

The recommendations listed below take a holistic approach centered on overall system level optimizations that
balance graphics and system resources.

17.1 Understanding the system configuration and target application
Knowing details about the application and use case allows developers to correctly utilize the hardware
resources in an ideal access pattern. For example, an implementation for a 2D or 3D GUI could be rendered in
a single pass instead of multiple passes if the draw call sequence is correctly ordered. In addition, knowing the
most common graphics function calls allow developers to parallelize rendering to maximize performance.

Using Vivante and vendor-specific SoC profiling tools, you can determine bottlenecks in the GPU and CPU and
make changes as needed. For example, in a 3D game, most CPU cycles may be spent on audio processing, AI,
and physics and less on rendering or scene setup for the GPU. In this instance, the application is CPU-bound
and configurations dealing with non-graphics tasks need to be reviewed and modified. If the system is GPU-
bound, the profiler can point out where the GPU programming code bottlenecks are located and which sections
to optimize to remove restrictions.

17.2 Optimizing off-chip data transfer such as accessing off-chip DDR memory/mobile
DDR memory
Any data transfer off-chip takes bandwidth and resources from other functional blocks in the SoC, increases
power, and causes additional cycles of latency and delay as the GPU pipeline needs to wait for data to
return from memory. Using on-chip cache and writing the application to better take advantage of cache
locality and coherency increase performance. In addition, accessing the GPU frame buffer from the CPU (not
recommended) cause the driver to flush all queued render commands in the command buffer, slowing down
performance as the GPU has to wait since the command queue is partially empty (inefficient use of resources)
and CPU-GPU synchronization is not parallelized.

17.3 Avoiding W-clipping issue in the application program
The w-clipping overflow issue typically occurs with these three factors:

• Objects with very large primitives.
In a 3D scene, this is usually the sky, the outer world or a long road that expands far behind the camera and
far in front of the camera. At the same time, the object may also expand far in either the x or y direction.

• Near-plane with a very small value
Usually this value is very close to zero. An example would be 10-4.

• Large screen resolution

These three factors can cause the final window coordinate to overflow the 24-bit mantissa precision in IEEE
single precision floating point format.

The following are suggested ways to modify an application to avoid overflow:

1. For draw calls with very large primitives such as sky or world, set the near-plane to 0.99 as an initial value.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
126 / 140

https://developer.arm.com/documentation/102662/0100/?lang=en
https://developer.arm.com/documentation/102203/0100/?lang=en
https://developer.arm.com/documentation/101863/0803/?lang=en
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

2. If this removes the rendering error and the entire scene is rendered correctly, the issue can be considered
resolved.

3. If the rendering error is still there and no desired objects are being culled (or there are no missing objects),
increase the near-plane value until the rendering error disappears.

4. If the near-plane value is large (>10.0) already, the issue persists and some desired objects are being
culled, reduce the near-plane value until the desired objects appear again then go to the next step.

5. Tessellate the large objects into smaller primitives until the rendering error disappears.

Please note that the suggested near plane adjustment can be done on a per draw call basis, and only needs to
be modified for objects with very large primitives. Some applications scale the object by reducing the w value in
vertex shader, as changing w value will finally affect the near plane, which is not recommended. A better way to
scale the object is scale the x, y, z coordinate, not w.

17.4 Avoiding GPU hanging and data corruption when using occlusion query
Description:

On i.MX 6Dual/Quad GPU IP, both Hierarchical Depth (Hz) write and Occlusion Query (OQ) write share the
same port. If HZ Fast Clear (FC) is enabled, and OQ uses the HZ port to perform a write, the HZ FC data may
become corrupted, even leading to GPU hanging unexpectedly.

Software Workaround:

A software workaround is recommended for this issue and is available from L4.9 bsp release. Because the
issue occurs very infrequently, a per-application work around is most efficient. Software will disable HZ with a
per-app detection and also provide a new environment variable control (VIV_DISABLE_HZ).

17.5 Avoiding random cache or memory access
Cache thrashing, misses, and the need to access data in external memory causes performance hits. An
example would be random texture cache access since it is expensive when performing per-pixel texture reads if
the texture units need to access the cache randomly and go off-chip if there is a cache miss.

17.6 Optimizing your use of system memory
Memory is a valuable resource that needs to be shared between the GPU (frame buffer), CPU, system, and
other applications. If you allocate too much memory for your OpenGL ES application, less memory is available
for the rest of the system, which may impact system performance. Claim enough memory as needed for your
application then deallocate it as soon as your application no longer needs it. For example, you can allocate a
depth buffer only when needed or if your application only needs partial resources, load the necessary items
initially and load the rest later.

17.7 Targeting a fixed frame rate that is visibly smooth
Smooth frame rate is achieved from a combination of a constant FPS and the lowest FPS (frames per second)
that is visually acceptable. There is a trade-off between power and frame rates since the graphics engine
loading increases with higher FPS. If the application is smooth at 30 FPS and no visual differences for the
application are perceived at 50 FPS, then the developer should cap the FPS at 30 since the extra 20 FPS do
not make a visual difference. The FPS limit also guarantees an achievable frame rate at all times. The savings
in FPS help lower GPU and system power consumption.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
127 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

17.8 Minimizing GL state changes
Setting up state values between draw calls adds significant overhead to application performance so they must
be minimized. Most of these call setups are redundant since you are saving / restoring states prior to drawing.
Try to avoid setting up multiple state calls between draw calls or setting the same values for multiple calls.
Sometimes when a specific texture is used, it is better to sort draw calls around that texture to avoid texture
thrashing which inhibits performance. Application developers should also try to group state changes.

17.9 Batch primitives to minimize the number of draw calls
When your application submits primitives to be processed by OpenGL ES, the CPU spends time preparing
commands for the GPU hardware to execute. If you batch your draw calls into fewer calls, you reduce the
CPU overhead and increase draw call efficiency. Batch processing allows a group of draw calls to be quickly
executed without any intervention from the CPU (driver or application) in a fire-and-forget method.

Some examples of batching primitives are:

• Branching in shaders may allow better batching since each branch can be grouped together for execution.
• For primitives like triangle strips, the developer can combine multiple strips that share the same state to save

successive draw calls (and state changes) into a single batch call that uses the same state (single setup) for
many triangles.

• Developers can also consolidate primitives that are drawn in close proximity to take advantage of spatial
relationships. If the batched primitives are too far apart, it is more difficult for the application to effectively cull if
they are not visible in the frame.

17.10 Performing calculations per vertex instead of per fragment/pixel
Since the number of vertices is usually much less than the number of fragments/pixels, it is cheaper to do per
vertex calculations to save processing power.

17.11 Enabling early-Z, hierarchical-Z, and back face culling
Hardware support of depth testing to determine if objects are in the user’s field of view are used to save
workload and processing on vertex and pixel processing. If the object is in view, then the vertices are sent
down the pipeline for processing. If the object is hidden or not viewable, the triangles are culled and not sent to
the pipeline. This improves graphics performance since computations are only spent on visible objects. If the
application already knows details about the contents and relative position of objects in the scene or screen, the
developer can use that information to automatically bound areas that never need to be touched (for example
an automotive application that has multiple layers of dials where parts of the underlying dials are occluded can
have the application avoid occluded areas from the beginning). Another optimization is to perform basic culling
on the CPU since the CPU has first-hand information about the scene details and object positions so it knows
what scene data to send to the GPU.

17.12 Using branching carefully
Static branches perform well since states are known but they tend to use many general purpose registers. An
example is a long shader that combines multiple shaders into a single, large shader that reduces state changes
and batch draw calls. Dynamic branching has non-constant overhead since it processes multiple pixels as one
and everything executes whether a branch is taken or not. In other words, dynamic branching goes through
different permutations/branches in parallel to reach the correct results. If all pixels take the same path, then
performance is good. The more pixels processed translates to higher overhead and lower performance. For
dynamic branching, smaller pixel sizes/groups are optimal for throughput. Developers need to be aware of
branching in their code to make sure excessive calculations and branches are efficient. Profiling tools can help
determine if certain parts of code are optimized or not.
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
128 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

17.13 Using VBOs instead of static or stack data as vertex data
A vertex buffer object (VBO) is a buffer object that provides the benefits of vertex array and display list
and allows a substantial performance gain for uploading data (vertex position, color, normals, and texture
coordinates) to the GPU. VBOs create buffer objects in memory and allow the GPU to directly access memory
without CPU intervention (DMA). The memory manager can optimize buffer placement using feedback from the
application. VBOs can also handle static and dynamic data sets and are managed by the Vivante driver. The
benefits of each are:

• A vertex array reduces the number of function calls and allows redundant data to be shared between related
vertices, instead of re-sending all the data each time. Access to data can be referenced by the array index.

• The display list allows commands to be stored for later execution and can be used repeatedly over multiple
frames without re-transmitting data, thus minimizing CPU cycles to transfer data. The display list can also be
shared by multiple OpenGL / OpenGL ES clients so they can access the same buffer with the corresponding
identifier. If you put computationally expensive operations (ex. lighting or material calculations) inside display
lists, then these computations are processed once when the list is created and the final result can be re-used
multiple times without needing to re-calculate again.

If you combine the benefits of both by using VBO, the performance is enhanced over static or stack data sets.

17.14 Using dynamic VBO when the data is changing frame by frame
Locking a static vertex buffer while the GPU is using it can create a performance penalty since the GPU needs
to finish reading the vertex data from the buffer before it can return to the calling application. Locking and
rendering from a static buffer many times per frame also prevents the GPU buffering render commands since it
must finish commands before returning the lock pointer. Without buffered commands the GPU remains idle until
the application finishes filling the vertex buffer and issues the draw commands.

If the scene data never changes from frame to frame then a static buffer may be sufficient. With newer
applications (ex. games, maps) that have dynamic viewports where vertex data changes multiple times per
frame or frame-to-frame, then a dynamic VBO is required to ensure performance is still met. If the current buffer
is being used by the GPU when a lock is called, a pointer to a new buffer location is returned to the application
to ensure updated data is written to the new buffer. The GPU can still access the old data (current buffer)
while the application puts updated data into the new buffer. The Vivante memory management unit and driver
automatically take care of allocating, re-allocating, or destroying buffers.

You can implement dynamic VBO depending on your preference, but one recommendation is to allocate a 1 MB
dynamic VBO block and upload data to using different offsets for each dynamic buffer. If the buffer overflows
you can loop back and use location offset 0 again.

17.15 Tessellating your data to make Hierarchical Z (HZ) work
We can break this into how OpenGL and OpenGL ES handle this use case.

OpenGL only renders simple convex polygons (edges only intersect at vertices with no duplicate vertices and
only two edges meet at any vertex), in addition to points, lines, and triangles. If the application requires concave
polygons (polygons with holes or intersecting edges), those polygons need to be subdivided into simple convex
polygons, which is called tessellation (subdividing a polygon mesh into a bunch of smaller meshes). Once you
have all the meshes in place our HZ hardware can automatically cull hidden polygons to efficiently process the
frame, effectively breaking the frame into smaller chunks that can be processed very fast.

OpenGL ES only renders triangles, lines, and points. The same concepts apply as in OpenGL, which is to
avoid very large polygons by breaking them down into smaller polygons where our internal GPU scheduler can
distribute them into multiple threads to fully parallelize the process and remove hidden polygons.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
129 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

17.16 Using dynamic textures as a texture cache (texture atlas)
The main reason for using dynamic textures as a cache is the application developer can create one larger
texture that is subdivided into different regions (texture atlas). The application can upload data into each region
and use an application side texture atlas to access the data. Each dynamic texture and sub-region can be
locked, written to, and unlocked each frame, as needed. This method of allocating once is more efficient than
using multiple smaller textures that need to be allocated, generated, and then destroyed each time.

17.17 Stiching small triangle strips together
It is better to combine several small, spatially related triangle strips together into a larger triangle stip to
minimize overhead and increase performance. For each triangle strip, there are overhead and start up costs
that are required by the CPU and GPU, including state loads. If there are too many small triangle strips that
need to be loaded, this impacts performance. An application developer can combine multiple triangle strips
by adding a degenerate triangle to join the strips together. The overhead to restart multiple new strips is much
higher than adding the degenerate triangle.

17.18 Specifying EGL configuration attributes precisely
To obtain a 16 bit/pixel window buffer for rendering, the EGL config attributes need to be specified precisely
according to the EGL spec. Specifying inaccurate EGL attributes may result in getting a 32-bit bit/pixel window
buffer which doubles the bandwidth requirement for rendering which in turn leads to lower performance.

17.19 Using aligned texture/render buffers
The GPUs work on buffers with hardware-specific width/height alignment for better efficiency. Use the available
API to query the GPU buffer alignment and allocate the texture / render buffers to satisfy these requirements, to
avoid the cost of copies to aligned shadow memory.

17.20 Disabling MSAA rendering unless high quality is needed
Although MSAA rendering can achieve higher image quality with smoother lines and triangle edges, it requires
much higher (4x, 8x) bandwidth because it has to render a single pixel 4x/8x times. So, if high rendering quality
is not required, MSAA should be disabled.

17.21 Avoiding partial clears
Most GPUs have special hardware logic to do a fast clear of an entire buffer. So it is better to utilize the fast
clear function to clear the entire buffer then render graphics again, instead of doing a partial clear to preserve a
graphics region. If a partial clear is required by the application, make sure the clear area is aligned according to
the GPU-specific requirements. Unaligned partial clears are expensive and should be avoided.

17.22 Avoiding mask operations
Do not use mask unless the mask is 0 (other than when you need a specific render quality). Clearing a surface
with mask (color/depth stencil mask) could have a performance penalty.Pixel mask operations are normally
pretty expensive on some GPUs as the mask operation has to be done on every single pixel.

17.23 Using MIPMAP textures
MIPMAP textures enable the application to sample a lower resolution texture image (1/2, 1/4, 1/8, 1/16, ...
size of the original texture image) when the triangle is rendering further away from the view point. Thus, the
bandwidth required to read the texture image is reduced which leads to better performance.
UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
130 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

17.24 Using compressed textures if constricted by RAM/ROM budget
Compressed textures are normally only a fraction (up to 1/8) of the original texture size. Using compressed
textures reduces the storage requirements in memory and can also reduce the required texture upload
bandwidth, when using a format that is supported natively by the hardware.

Compressed textures should not be chosen, if only for the purposes of reducing the memory bandwidth required
for sampling of the texture during rendering. This is because due to a fixed read request size from the GPU, the
memory controller load is the same as for an uncompressed texture.

17.25 Drawing objects from near to far if possible
Drawing objects from near to far normally has better performance because the objects in the near foreground
can block entire or partial objects in the background. Most GPUs have early Z rejection logic to reject the pixels
that fail a Z compare. The GPU can skip fragment shader computations on these rejected pixels.

17.26 Avoiding indexed triangle strips
Index triangle strips can usually maximize the vertex cache utilization as each set of vertex data can be used in
two triangles. There is however an errata in the GC2000 and GC880 GPUs which requires a SW conversion of
indexed triangle strips to triangle lists in the driver. For small strips the conversion overhead is negligible, but for
large geometries a different primitive type should be used.

17.27 Limiting vertex attribute stride within 256 bytes
Most Vivante GPUs provide native support for a 256 byte vertex attribute stride. If the vertex attribute stride is
larger than 256 bytes, then the driver has to copy the vertex data around. Hardware versions v55 and higher
(such as the GC7000L v55) support a 2048 byte vertex attribute stride as required in the OES3.1 spec.

17.28 Avoiding binding buffers to mixed index/vertex array
Most of Vivante GPUs do not natively support mixed index/vertex arrays. So the Vivante driver must copy the
index and vertex data around to form separate vertex data streams for the GPU. Avoid mixing index and vertex
data so the driver does not have to incur a performance hit while performing this task.

17.29 Avoiding using CPU to update texture/buffer contexts during render
Do not use the CPU to update texture/buffer contexts in the middle of rendering. Using the CPU to update
texture/buffer causes the rendering pipeline to flush and stall, so that CPU can safely update the buffer
contents. The pipeline flush/stall/resume causes significant performance impact.

17.30 Avoiding frequent context switching
Context switch is an inherently expensive operation as many GPU states need to be reset to start a new
rendering context. Thus, frequent context switching has a negative impact on application performance.

17.31 Optimizing resources within a shader
Most GPUs have optimal support for a limited amount of resources (uniforms, varying, etc.). Using resources
beyond the optimal working set causes the GPU to fetch/store resources from a lower performance memory
pool and shader performance is negatively impacted.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
131 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

17.32 Avoiding using glScissor Clear for small regions
glScissor Clear for small regions (less than 16x8 aligned window) fall back to CPU so the performance is not
optimal.

17.33 Using PRE to accelerate data transfer
PRE is an optimized hardware that can transform tiled format image to linear framebuffer. With PRE, GPU can
only output tiled render target and has no need to resolve it. To enable the PRE feature, set the environment
GPU_VIV_EXT_RESOLVE variable to 1; otherwise, set it to 0. Its default value on the FB backend is 1, which
means PRE is enabled by default on FB.

Warning:

VG use cases can only output the linear format image. It is impossible to render linear and tiled format target
to the same framebuffer at the same time. Therefore, when running 3D use cases with PRE and VG use cases
together, there is garbage on the display. Besides, when running 3D use cases with PRE, the framebuffer
format is changed from linear to tiled. It is the user’s responsibility to convert the format back after the use cases
end, or the display is abnormal when showing the FB console.

17.34 i.MX 8QuadMax dual-GPU performance
For some legacy applications with small texture/rendering size and less shader complex, dual-GPU
performance may become worse than single GPU mode, because the driver needs to take more CPU effort for
dual-GPU programming, and the driver overhead is more significant than GPU load in the hardware pipeline.

For such kind of legacy case, the users can single-GPU to achieve better performance on the i.MX 8QuadMax.

18 Demo Framework

For detailed information, see the following links.

Introduction: https://github.com/nxp-imx/gtec-demo-framework/tree/6.3.1

Build guides:

• Yocto: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_yocto.md
• Ubuntu: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_ubuntu22.04.md
• Windows: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_windows.md
• Android https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_android_sdk

+ndk_on_windows.md
• Contributing: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/CONTRIBUTING.md
• Known issues: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/KnownIssues.md
• Additional documentation: https://github.com/nxp-imx/gtec-demo-framework/tree/6.3.1/Doc

19 Environment Variables Summary

The table below lists the environment variables (ENV) available in the GPU drivers.

The use of most environment variables remains static from driver version to driver version, but sometimes these
variables need refinements to meet new, advanced conditions not present with the ENV initially introduced.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
132 / 140

https://github.com/nxp-imx/gtec-demo-framework/tree/6.3.1
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_yocto.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_ubuntu22.04.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_windows.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_android_sdk+ndk_on_windows.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_android_sdk+ndk_on_windows.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/CONTRIBUTING.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/KnownIssues.md
https://github.com/nxp-imx/gtec-demo-framework/tree/6.3.1/Doc
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

19.1 Environment variable for drivers and HAL

ENV name Backends supported Note

FB_IGNORE_DISPLAY_
SIZE

FB/WLD 0: Clip window to device display size. 1: Do not clip window
to the device limits for width and height.

FB_MULTI_BUFFER FB/WLD Number of backend buffers of the framebuffer device. For
WLD, define the multibuffer number of Weston.

FB_FRAMEBUFFER_N FB/WLD Define the Nth framebuffer device.

FB_LEGACY FB If board doesn’t support drm-fb, ignore this variable.
0: GPU render through drm
1: GPU directly render to framebuffer.

VG_APITIME FB/WLD/X11 Enable VG API function execution time print.

VIV_MGPU_AFFINITY FB/WLD/X11 Control the multiple GPUs affinity configuration.
Possible value:
• Not defined or defined as "0" GPUs work in GPU_

COMBINED mode.
• 1:0 GPUs work in GPU_INDEPEDNENT mode, GPU0 is

used.
• 1:1 GPUs work in GPU_INDEPEDNENT mode, GPU1 is

used.

VIV_DEBUG FB/WLD/X11 Define the user debug message level
(-MSG_LEVEL: ERROR/WARNING).

VIV_FBO_PREFER_MEM FB/WLD/X11 Renderbuffer is not freed after colorbuffer detaches from
FBO (GL ES 2.0)

VIV_DISABLE_HZ FB/WLD/X11 This variable can be specifically enabled for i.mx6d/q to
avoid gpu hang with occlusion query in ES30, because of
gpu hardware problem HBN1246

GPU_VIV_EXT_RESOLVE FB/WLD/X11 Enable the external resolve mode (1 by default for FB).

GPU_VIV_DISABLE_
SUPERTILED_TEXTURE

FB/WLD/X11 Disable supertiled texture (64x64 tiled texture is not used).

GPU_VIV_DISABLE_
CLEAR_FB

FB/WLD/X11 Enable clear buffer when a new Window surface is created.

GPU_VIV_WL_MULTI_
BUFFER

WLD Define the client multibuffer number.

WL_EGL_SYNC_SWAP WLD 0: Use asynchronous swap for better performance by
default.
1: Enable synchronous swap with some performance
impact.

DRI_IGNORE_DISPLAY_
SIZE/
X_IGNORE_DISPLAY_SIZE

X11 0: Clip window to device display size. 1: Do not clip window
to the device limits for width and height.

__GL_DEV_FB X11 Set the path for framebuffer device like /dev/fb0.

LIBGL_ALWAYS_INDIRECT X11 Make OGL go into indirect mode. All rendering is done by
XserverSet.

Table 42. Environment variables for drivers and HAL

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
133 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

ENV name Backends supported Note

LIBGL_DEBUG X11 Print error messages to stderr if LIBGL_DEBUG env var is
set. Print information messages to stderr if LIBGL_DEBUG
env var is set to “verbose”.

VIV_PROFILE vProfiler Enable profiler. Different level results generate different
results.

VP_COUNTER_FILTER vProfiler Used to control profile different system resource like
memory/CPU time usage.

VP_FRAME_END vProfiler When VIV_PROFILE=3, specify the frame to end profiling
with vProfiler.

VP_FRAME_NUM vProfiler When VIV_PROFILE=1, used to specify the number of
frames dumped by vProfiler.

VP_FRAME_START vProfiler When VIV_PROFILE=3, specify the frame to start profiling
with vProfiler.

VP_OUTPUT vProfiler Specify the output file name of vProfiler (default is
vprofiler.vpd).

VP_PROCESS_NAME vProfiler Choose profiler enable process (This option is only available
for Android platform, not available for Linux OS).

VP_SYNC_MODE vProfiler Enable [1] or disable [0] the synchronous mode of vProfiler
(default is synchronous enabled).

VP_USE_GLFINISH vProfiler Use glFinish as the frameEnd.

VIV_TRACE vTracer Enable tracer. Different levels could generate different logs.

Table 42. Environment variables for drivers and HAL...continued

19.2 Environment variable for compiler

ENV NAME Compiler Note

VC_DUMP_SHADER_SOURCE GLSLC/
VSC

Enable dumping the shader source code.

Table 43. Environment variables for compiler

20 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
134 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

21 Revision History

Document ID Release date Description

UG10159 v.9.1 9 August 2024 Removed the subsections from Section 18 and added with
reference links.
Updated the document ID.

IMXGRAPHICUG_9 28 June 2024 Updated the Document ID according to the new convention.

IMXGRAPHICUG v.9 29 March 2024 Added Section "Mali Valhall GPU" and updated some
section titles from "i.MX" to "Vivante".

IMXGRAPHICUG v.8.6 15 December 2023 Updated Figure 1 "GPU Scalability across i.MX processors".

IMXGRAPHICUG v.8.5.1 06/2023 Minor updates for the LF6.1.22_2.0.0 release.

IMXGRAPHICUG v.8.5 03/2023 Updated the OpenCL and Vivante IDE information.

IMXGRAPHICUG v.8.4.1 12/2022 Updated the VivanteIDE package name in Section 13.3.1.

IMXGRAPHICUG v.8.4 10/2022 Some minor updates for the android-12.1.0_1.0.0 release.

IMXGRAPHICUG v.8.3 09/2022 Updated Figure 1 and published the document in the new
template.

IMXGRAPHICUG v.8.2 03/2022 Updated the back page (Legal information).

IMXGRAPHICUG v.8.2 10/2021 Added the i.MX 8ULP information to Section 1.1.

IMXGRAPHICUG v.8.1 09/2021 Removed the Section "Designing framework of OpenVX",
and made minor updates for the Linux LF5.10.52_2.1.0
release.

IMXGRAPHICUG v.8 06/2021 Updated for the Linux LF5.10.35_2.0.0 and android-11.0.0_
1.2.1 releases.

IMXGRAPHICUG v.7.1 03/2021 Updated Section 13.5.4 “Enabling vProfiler on Linux” as v
Profiler no longer requires kernel module parameter, and
made abundant changes to context description.

IMXGRAPHICUG v.7 12/2020 Updated for the Linux L5.4.70_2.3.0, android-11.0.0_1.0.0,
and later release.

IMXGRAPHICUG v.6 06/2020 Updated for the Linux L5.4.24-2.1.0 and later release.

IMXGRAPHICUG v.5 04/2020 Updated for the Linux L5.4.3_2.0.0 and android-10.0.0_2.1.
0 releases.

IMXGRAPHICUG v.4 11/2019 Updated the Vivante IDE information.

IMXGRAPHICUG v.3 08/2019 Added the i.MX 8M Nano information.

IMXGRAPHICUG v.2 06/2019 Made some grammatical updates.

IMXGRAPHICUG v.1 11/2018 Updated Chapter "OpenCL" with more precise information
and also covered latest i.MX products.

Revision history

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
135 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
i.MX — is a trademark of NXP B.V.

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
136 / 140

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

Contents
1 Introduction .. 2
1.1 i.MX full GPU line ..2
2 i.MX G2D API ... 2
2.1 Overview ..2
2.2 Enumerations and structures3
2.2.1 g2d_format enumeration3
2.2.2 g2d_blend_func enumeration 4
2.2.3 g2d_cap_mode enumeration 4
2.2.4 g2d_rotation enumeration4
2.2.5 g2d_cache_mode enumeration 5
2.2.6 g2d_hardware_type enumeration 5
2.2.7 g2d_surface structure .. 5
2.2.8 g2d_buf structure ...7
2.2.9 g2d_surface_pair structure 7
2.2.10 g2d_feature enumeration7
2.3 G2D function description 8
2.3.1 g2d_open ...8
2.3.2 g2d_close ...8
2.3.3 g2d_make_current ... 8
2.3.4 g2d_clear ... 8
2.3.5 g2d_blit .. 9
2.3.6 g2d_copy ... 9
2.3.7 g2d_query_cap .. 9
2.3.8 g2d_enable .. 10
2.3.9 g2d_disable ..10
2.3.10 g2d_cache_op ... 10
2.3.11 g2d_alloc ..10
2.3.12 g2d_free ...11
2.3.13 g2d_flush ... 11
2.3.14 g2d_finish ...11
2.3.15 g2d_multi_blit ...11
2.3.16 g2d_query_hardware 12
2.3.17 g2d_query_feature ...12
2.4 Support of new operating system in G2D 12
2.5 Sample code for G2D API usage 12
2.5.1 Color space conversion from YUV to RGB 13
2.5.2 Alpha blend in source over mode13
2.5.3 Source cropping and destination rotation 14
2.5.4 Multi source blit ... 14
2.5.5 Sharing Buffers between APIs using G2D

Buffers: ...15
2.6 Feature list on multiple platforms16
3 Vivante EGL and OGL Extension

Support ... 16
3.1 Introduction .. 16
3.2 EGL extension support 16
3.3 OpenGL ES extension support21
3.4 Extension GL_VIV_direct_texture28
3.4.1 New Procedures and Functions 29
3.5 Extension GL_VIV_texture_border_clamp31
4 Vivante Framebuffer API 33
4.1 Overview ..33
4.2 API data types and environment variables33
4.2.1 Data types ... 33
4.2.2 Environment variables 33
4.3 API description and syntax35

5 OpenCL ... 40
5.1 Overview ..40
5.1.1 General description ..40
5.1.2 OpenCL framework ..41
5.1.2.1 OpenCL execution model: kernels and work

elements .. 41
5.1.2.2 OpenCL command queues42
5.1.2.3 OpenCL memory model 43
5.1.2.4 Host to Vivante compute device data

transfers ...44
5.1.3 OpenCL profiles ...45
5.1.4 Vivante OpenCL embedded compatible IP 45
5.1.5 Vivante OpenCL full profile hardware model46
5.2 Vivante OpenCL implementation 47
5.2.1 OpenCL pipeline ..47
5.2.2 Front end ... 48
5.2.3 OpenCL compute unit48
5.2.4 Memory hierarchy ..49
5.2.5 CL Extension support 49
5.2.5.1 CL_DEVICE_EXTENSION support 49
5.2.5.2 Vivante OpenCL extension support 50
5.3 Optimization for OpenCL embedded profile51
5.3.1 Using preferred multiple of work-group size51
5.3.2 Using multiple work-groups of reduced size 51
5.3.3 Packing work-item data 51
5.3.4 Improving locality ...52
5.3.5 Minimizing use of 1 KB local memory52
5.3.6 Using 16 byte memory Read/Write size52
5.3.7 Using _RTZ rounding mode 52
5.3.8 Using float4 for better performance on i.MX

8M Quad and i.MX 8QuadXPlus 52
5.3.9 Using native functions 52
5.3.9.1 Using native_function() for increased

performance ...52
5.3.9.2 Using native_divide and native_reciprocal

for faster floating point calculations 53
5.3.9.3 Using compile option for native functions 53
5.3.10 Using buffers instead of images 53
5.4 OpenCL Debug messages 53
5.4.1 OCL-007005: (clCreateKernel) cannot link

kernel ... 53
5.4.2 Not enough register memory 54
5.4.3 Not enough instruction memory54
5.4.4 GlobalWorkSize over hardware limit54
5.5 Zero copy ...54
5.6 Instruction cache availability for i.MX

graphics ... 55
6 OpenVX Introduction55
6.1 Overview ..55
6.2 OpenVX extension implementation56
6.2.1 Hardware requirements 56
6.2.2 EVIS instruction interface 56
6.2.3 Extended language features56
6.2.4 Packed types ... 57
6.2.5 Initializing constants on load58
6.2.6 Inline assembly ..58

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
137 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

6.3 OpenCL functions compatible with Vivante
vision ..59

6.3.1 Read_Imagef,i,ui ..59
6.3.2 Write_Imagef,i,ui .. 60
6.3.3 Query Image Dimensions 60
6.3.4 Channel Data Types Supported 60
6.3.5 Image Channel Orders Supported60
7 Vulkan ... 61
7.1 Overview ..61
7.2 Vivante Extension Support for Vulkan 61
7.3 Vulkan Validation Layers 62
7.4 Window System Integration63
8 Vivante Multiple GPUs and Virtualization 63
8.1 Overview ..63
8.2 Multi-GPU configurations63
8.3 GPU affinity configuration63
8.4 OpenCL on multi-GPU device 64
8.5 GPU virtualization configuration 64
9 GBM - Generic Buffer Management 64
9.1 Introduction to DRM Format Modifiers65
10 Wayland and Weston65
10.1 Overview ..65
10.2 Wayland EGL ...65
10.3 Weston Compositor ... 66
10.3.1 Weston Backends ..66
10.3.2 Weston Renderer ...66
10.3.2.1 GL Renderer ..66
10.3.2.2 G2D Renderer ... 66
10.3.3 Weston Shells ..66
10.3.3.1 Desktop shell ... 66
10.3.3.2 Fullscreen shell ..66
10.3.3.3 IVI-shell ..67
11 X Windowing Acceleration67
12 Advanced GPU Configuration 67
12.1 GPU Scaling Governor 67
12.2 GPU Device Cooling ..67
13 Vivante IDE ...67
13.1 VivanteIDE overview ..67
13.1.1 VivanteIDE component overview68
13.2 VivanteIDE Requirements68
13.2.1 Operating system compatibility68
13.2.2 Hardware requirements 69
13.2.3 VivanteIDE license ...69
13.3 VivanteIDE installation69
13.3.1 VivanteIDE package .. 69
13.3.2 Installation ..70
13.3.2.1 Linux GUI ...70
13.3.2.2 Windows GUI ...70
13.3.2.3 Installation from command line70
13.3.3 VivanteIDE launch ... 71
13.3.3.1 Linux launch of GUI tool71
13.3.3.2 Windows launch of GUI tool 71
13.3.3.3 Command line tool launch71
13.3.3.4 Basic launch path summary 71
13.4 VivanteIDE GUI ... 71
13.4.1 Selecting a workspace72
13.4.2 Switching perspective 73
13.4.3 Creating a new project 73
13.4.4 Creating an OpenVX kernel wizard 74

13.4.5 Source code smart editing for OpenVX and
OpenCL ..76

13.4.6 Creating a Neural Network Inference
Project from a model file 77

13.4.7 Building a sample project 83
13.4.8 Debugging and profiling a project86
13.5 VivanteIDE – Debug and Profiling 87
13.5.1 Fundamentals of performance optimization 87
13.5.2 VPD Analyzer for Analyzing Performance

Data ... 88
13.5.3 vProfiler ..88
13.5.4 Enabling vProfiler on Linux OS88
13.5.4.1 Setting vProfiler property options for

OpenGL ES ... 88
13.5.5 Setting vProfiler property options for Vision,

OpenVX Profiling ... 88
13.5.6 Enabling vProfiler Option for Android OS 89
13.5.7 Setting vProfiler property options for

OpenGL ES Profiling with Android89
13.5.8 vProfiler Set Property Options for Vision/

OVX Profiling with Android 90
13.5.9 Enabling vProfiler Option for QNX91
13.5.9.1 Setting vProfiler Environment Variables for

OGL/OES Profiling ...91
13.5.9.2 Setting vProfiler Environment Variables for

Vision, OpenVX Profiling 92
13.5.10 Environment Variable Details92
13.5.10.1 VIV_PROFILE ..92
13.5.10.2 VP_OUTPUT ... 93
13.5.10.3 VP_USE_GLFINISH .. 93
13.5.10.4 VP_DISABLE_PROBE 93
13.5.10.5 VP_ENABLE_PRINT 93
13.6 VPD Analyzer .. 93
13.6.1 Loading a VPD File ... 94
13.6.2 VPD Analyzer Perspective 95
13.6.3 System Info View ...96
13.6.4 Program Counters View 97
13.6.5 Closing the VPD File 97
13.7 SPIR-V Disassembler 97
13.7.1 Shader Assistant ... 98
13.7.2 vTexture ... 98
13.8 VivanteIDE command line tools100
13.8.1 Preparing the environment 100
13.8.2 vCompiler Command Line Syntax for OGL

and OGLES ... 100
13.8.2.1 Syntax ..100
13.8.2.2 Input parameters (required)100
13.8.2.3 Input parameters (optional)100
13.8.2.4 vCompilerOutput .. 102
13.8.2.5 vCompiler Syntax examples 102
13.8.3 vcCompiler Command Line Syntax for OCL .. 102
13.8.3.1 Syntax ..102
13.8.3.2 Input parameters (required)102
13.8.3.3 Input parameters (optional)103
13.8.3.4 vcCompiler Output ...104
13.8.3.5 vcCompiler Syntax Examples 104
13.8.4 vTextureTools command line tool104
13.8.4.1 Syntax ..104
13.8.4.2 General parameters104

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
138 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

13.8.4.3 Compression/Decompression parameters105
13.8.4.4 Tile/De-Tile parameters105
13.8.4.5 vTexture Syntax Examples 106
14 GPU Tools .. 107
14.1 gpuinfo tool .. 107
14.1.1 Introduction .. 107
14.1.2 Usage ...107
14.1.3 Sample log information107
14.1.3.1 GPU hardware information 107
14.1.3.2 Total memory information 108
14.1.3.3 Process user space GPU memory usage

information ... 108
14.1.3.4 GPU idle percentage 109
14.2 gputop tool ...110
14.2.1 Synopsis .. 110
14.2.2 Interactive mode .. 110
14.2.3 Description ... 110
14.2.4 Requirements ...111
14.2.4.1 Linux OS ..111
14.2.4.2 QNX ... 111
14.2.5 Notes ..111
14.2.5.1 Sampling hardware-counters111
14.2.5.2 Context-aware counters111
14.2.5.3 Unsupported GPUs ..111
14.2.6 Pages ...112
14.2.6.1 Client attached page112
14.2.6.2 Vidmem page ...112
14.2.7 Examples ... 112
14.2.8 See Also .. 113
14.3 GPU clock information and debugging 113
14.4 Apitrace user guide 114
14.4.1 Introduction .. 114
14.4.2 Install ..114
14.4.2.1 Yocto .. 114
14.4.2.2 PC ..114
14.4.3 Usage ...114
14.4.3.1 Trace OpenGL ES1.1/2.0/3.0 application 114
14.4.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java

application on the Android platform 114
14.4.3.3 Trace OpenGL application115
14.4.3.4 Replay ..115
14.4.4 Reference .. 118
14.5 Renderdoc ... 118
14.5.1 Renderdoc components118
14.5.2 Running renderdoccmd on i.MX 119
14.5.3 Capturing and replaying remotely120
14.5.4 Reference .. 121
15 GPU Memory Introduction 122
15.1 GPU memory overview122
15.2 GPU memory pools 122
15.3 GPU memory allocators 122
15.4 GPU reserved memory123
15.5 GPU memory base address 123
16 Mali Valhall GPU .. 124
16.1 Features ...124
16.2 Mali Shader offline Compiler 125
16.3 Mali OpenCL Offline Compiler 125
16.4 References and Useful links126

17 Application Programming
Recommendations126

17.1 Understanding the system configuration
and target application 126

17.2 Optimizing off-chip data transfer such as
accessing off-chip DDR memory/mobile
DDR memory ...126

17.3 Avoiding W-clipping issue in the application
program ..126

17.4 Avoiding GPU hanging and data corruption
when using occlusion query 127

17.5 Avoiding random cache or memory access ... 127
17.6 Optimizing your use of system memory127
17.7 Targeting a fixed frame rate that is visibly

smooth ... 127
17.8 Minimizing GL state changes 128
17.9 Batch primitives to minimize the number of

draw calls ...128
17.10 Performing calculations per vertex instead

of per fragment/pixel128
17.11 Enabling early-Z, hierarchical-Z, and back

face culling ...128
17.12 Using branching carefully 128
17.13 Using VBOs instead of static or stack data

as vertex data ..129
17.14 Using dynamic VBO when the data is

changing frame by frame129
17.15 Tessellating your data to make Hierarchical

Z (HZ) work ... 129
17.16 Using dynamic textures as a texture cache

(texture atlas) ...130
17.17 Stiching small triangle strips together 130
17.18 Specifying EGL configuration attributes

precisely ...130
17.19 Using aligned texture/render buffers130
17.20 Disabling MSAA rendering unless high

quality is needed ... 130
17.21 Avoiding partial clears 130
17.22 Avoiding mask operations130
17.23 Using MIPMAP textures 130
17.24 Using compressed textures if constricted by

RAM/ROM budget ... 131
17.25 Drawing objects from near to far if possible ... 131
17.26 Avoiding indexed triangle strips 131
17.27 Limiting vertex attribute stride within 256

bytes .. 131
17.28 Avoiding binding buffers to mixed index/

vertex array ..131
17.29 Avoiding using CPU to update texture/

buffer contexts during render131
17.30 Avoiding frequent context switching131
17.31 Optimizing resources within a shader131
17.32 Avoiding using glScissor Clear for small

regions ... 132
17.33 Using PRE to accelerate data transfer132
17.34 i.MX 8QuadMax dual-GPU performance 132
18 Demo Framework ...132
19 Environment Variables Summary132
19.1 Environment variable for drivers and HAL 133

UG10159 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 9.1 — 9 August 2024 Document feedback
139 / 140

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG10159
i.MX Graphics User's Guide

19.2 Environment variable for compiler 134
20 Note About the Source Code in the

Document ... 134
21 Revision History .. 135

Legal information ...136

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 9 August 2024
Document identifier: UG10159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

	1 Introduction
	1.1 i.MX full GPU line

	2 i.MX G2D API
	2.1 Overview
	2.2 Enumerations and structures
	2.2.1 g2d_format enumeration
	2.2.2 g2d_blend_func enumeration
	2.2.3 g2d_cap_mode enumeration
	2.2.4 g2d_rotation enumeration
	2.2.5 g2d_cache_mode enumeration
	2.2.6 g2d_hardware_type enumeration
	2.2.7 g2d_surface structure
	2.2.8 g2d_buf structure
	2.2.9 g2d_surface_pair structure
	2.2.10 g2d_feature enumeration

	2.3 G2D function description
	2.3.1 g2d_open
	2.3.2 g2d_close
	2.3.3 g2d_make_current
	2.3.4 g2d_clear
	2.3.5 g2d_blit
	2.3.6 g2d_copy
	2.3.7 g2d_query_cap
	2.3.8 g2d_enable
	2.3.9 g2d_disable
	2.3.10 g2d_cache_op
	2.3.11 g2d_alloc
	2.3.12 g2d_free
	2.3.13 g2d_flush
	2.3.14 g2d_finish
	2.3.15 g2d_multi_blit
	2.3.16 g2d_query_hardware
	2.3.17 g2d_query_feature

	2.4 Support of new operating system in G2D
	2.5 Sample code for G2D API usage
	2.5.1 Color space conversion from YUV to RGB
	2.5.2 Alpha blend in source over mode
	2.5.3 Source cropping and destination rotation
	2.5.4 Multi source blit
	2.5.5 Sharing Buffers between APIs using G2D Buffers:

	2.6 Feature list on multiple platforms

	3 Vivante EGL and OGL Extension Support
	3.1 Introduction
	3.2 EGL extension support
	3.3 OpenGL ES extension support
	3.4 Extension GL_VIV_direct_texture
	3.4.1 New Procedures and Functions

	3.5 Extension GL_VIV_texture_border_clamp

	4 Vivante Framebuffer API
	4.1 Overview
	4.2 API data types and environment variables
	4.2.1 Data types
	4.2.2 Environment variables

	4.3 API description and syntax

	5 OpenCL
	5.1 Overview
	5.1.1 General description
	5.1.2 OpenCL framework
	5.1.2.1 OpenCL execution model: kernels and work elements
	5.1.2.2 OpenCL command queues
	5.1.2.3 OpenCL memory model
	5.1.2.4 Host to Vivante compute device data transfers

	5.1.3 OpenCL profiles
	5.1.4 Vivante OpenCL embedded compatible IP
	5.1.5 Vivante OpenCL full profile hardware model

	5.2 Vivante OpenCL implementation
	5.2.1 OpenCL pipeline
	5.2.2 Front end
	5.2.3 OpenCL compute unit
	5.2.4 Memory hierarchy
	5.2.5 CL Extension support
	5.2.5.1 CL_DEVICE_EXTENSION support
	5.2.5.2 Vivante OpenCL extension support

	5.3 Optimization for OpenCL embedded profile
	5.3.1 Using preferred multiple of work-group size
	5.3.2 Using multiple work-groups of reduced size
	5.3.3 Packing work-item data
	5.3.4 Improving locality
	5.3.5 Minimizing use of 1 KB local memory
	5.3.6 Using 16 byte memory Read/Write size
	5.3.7 Using _RTZ rounding mode
	5.3.8 Using float4 for better performance on i.MX 8M Quad and i.MX 8QuadXPlus
	5.3.9 Using native functions
	5.3.9.1 Using native_function() for increased performance
	5.3.9.2 Using native_divide and native_reciprocal for faster floating point calculations
	5.3.9.3 Using compile option for native functions

	5.3.10 Using buffers instead of images

	5.4 OpenCL Debug messages
	5.4.1 OCL-007005: (clCreateKernel) cannot link kernel
	5.4.2 Not enough register memory
	5.4.3 Not enough instruction memory
	5.4.4 GlobalWorkSize over hardware limit

	5.5 Zero copy
	5.6 Instruction cache availability for i.MX graphics

	6 OpenVX Introduction
	6.1 Overview
	6.2 OpenVX extension implementation
	6.2.1 Hardware requirements
	6.2.2 EVIS instruction interface
	6.2.3 Extended language features
	6.2.4 Packed types
	6.2.5 Initializing constants on load
	6.2.6 Inline assembly

	6.3 OpenCL functions compatible with Vivante vision
	6.3.1 Read_Imagef,i,ui
	6.3.2 Write_Imagef,i,ui
	6.3.3 Query Image Dimensions
	6.3.4 Channel Data Types Supported
	6.3.5 Image Channel Orders Supported

	7 Vulkan
	7.1 Overview
	7.2 Vivante Extension Support for Vulkan
	7.3 Vulkan Validation Layers
	7.4 Window System Integration

	8 Vivante Multiple GPUs and Virtualization
	8.1 Overview
	8.2 Multi-GPU configurations
	8.3 GPU affinity configuration
	8.4 OpenCL on multi-GPU device
	8.5 GPU virtualization configuration

	9 GBM - Generic Buffer Management
	9.1 Introduction to DRM Format Modifiers

	10 Wayland and Weston
	10.1 Overview
	10.2 Wayland EGL
	10.3 Weston Compositor
	10.3.1 Weston Backends
	10.3.2 Weston Renderer
	10.3.2.1 GL Renderer
	10.3.2.2 G2D Renderer

	10.3.3 Weston Shells
	10.3.3.1 Desktop shell
	10.3.3.2 Fullscreen shell
	10.3.3.3 IVI-shell

	11 X Windowing Acceleration
	12 Advanced GPU Configuration
	12.1 GPU Scaling Governor
	12.2 GPU Device Cooling

	13 Vivante IDE
	13.1 VivanteIDE overview
	13.1.1 VivanteIDE component overview

	13.2 VivanteIDE Requirements
	13.2.1 Operating system compatibility
	13.2.2 Hardware requirements
	13.2.3 VivanteIDE license

	13.3 VivanteIDE installation
	13.3.1 VivanteIDE package
	13.3.2 Installation
	13.3.2.1 Linux GUI
	13.3.2.2 Windows GUI
	13.3.2.3 Installation from command line

	13.3.3 VivanteIDE launch
	13.3.3.1 Linux launch of GUI tool
	13.3.3.2 Windows launch of GUI tool
	13.3.3.3 Command line tool launch
	13.3.3.4 Basic launch path summary

	13.4 VivanteIDE GUI
	13.4.1 Selecting a workspace
	13.4.2 Switching perspective
	13.4.3 Creating a new project
	13.4.4 Creating an OpenVX kernel wizard
	13.4.5 Source code smart editing for OpenVX and OpenCL
	13.4.6 Creating a Neural Network Inference Project from a model file
	13.4.7 Building a sample project
	13.4.8 Debugging and profiling a project

	13.5 VivanteIDE – Debug and Profiling
	13.5.1 Fundamentals of performance optimization
	13.5.2 VPD Analyzer for Analyzing Performance Data
	13.5.3 vProfiler
	13.5.4 Enabling vProfiler on Linux OS
	13.5.4.1 Setting vProfiler property options for OpenGL ES

	13.5.5 Setting vProfiler property options for Vision, OpenVX Profiling
	13.5.6 Enabling vProfiler Option for Android OS
	13.5.7 Setting vProfiler property options for OpenGL ES Profiling with Android
	13.5.8 vProfiler Set Property Options for Vision/OVX Profiling with Android
	13.5.9 Enabling vProfiler Option for QNX
	13.5.9.1 Setting vProfiler Environment Variables for OGL/OES Profiling
	13.5.9.2 Setting vProfiler Environment Variables for Vision, OpenVX Profiling

	13.5.10 Environment Variable Details
	13.5.10.1 VIV_PROFILE
	13.5.10.2 VP_OUTPUT
	13.5.10.3 VP_USE_GLFINISH
	13.5.10.4 VP_DISABLE_PROBE
	13.5.10.5 VP_ENABLE_PRINT

	13.6 VPD Analyzer
	13.6.1 Loading a VPD File
	13.6.2 VPD Analyzer Perspective
	13.6.3 System Info View
	13.6.4 Program Counters View
	13.6.5 Closing the VPD File

	13.7 SPIR-V Disassembler
	13.7.1 Shader Assistant
	13.7.2 vTexture

	13.8 VivanteIDE command line tools
	13.8.1 Preparing the environment
	13.8.2 vCompiler Command Line Syntax for OGL and OGLES
	13.8.2.1 Syntax
	13.8.2.2 Input parameters (required)
	13.8.2.3 Input parameters (optional)
	13.8.2.4 vCompilerOutput
	13.8.2.5 vCompiler Syntax examples

	13.8.3 vcCompiler Command Line Syntax for OCL
	13.8.3.1 Syntax
	13.8.3.2 Input parameters (required)
	13.8.3.3 Input parameters (optional)
	13.8.3.4 vcCompiler Output
	13.8.3.5 vcCompiler Syntax Examples

	13.8.4 vTextureTools command line tool
	13.8.4.1 Syntax
	13.8.4.2 General parameters
	13.8.4.3 Compression/Decompression parameters
	13.8.4.4 Tile/De-Tile parameters
	13.8.4.5 vTexture Syntax Examples

	14 GPU Tools
	14.1 gpuinfo tool
	14.1.1 Introduction
	14.1.2 Usage
	14.1.3 Sample log information
	14.1.3.1 GPU hardware information
	14.1.3.2 Total memory information
	14.1.3.3 Process user space GPU memory usage information
	14.1.3.4 GPU idle percentage

	14.2 gputop tool
	14.2.1 Synopsis
	14.2.2 Interactive mode
	14.2.3 Description
	14.2.4 Requirements
	14.2.4.1 Linux OS
	14.2.4.2 QNX

	14.2.5 Notes
	14.2.5.1 Sampling hardware-counters
	14.2.5.2 Context-aware counters
	14.2.5.3 Unsupported GPUs

	14.2.6 Pages
	14.2.6.1 Client attached page
	14.2.6.2 Vidmem page

	14.2.7 Examples
	14.2.8 See Also

	14.3 GPU clock information and debugging
	14.4 Apitrace user guide
	14.4.1 Introduction
	14.4.2 Install
	14.4.2.1 Yocto
	14.4.2.2 PC

	14.4.3 Usage
	14.4.3.1 Trace OpenGL ES1.1/2.0/3.0 application
	14.4.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java application on the Android platform
	14.4.3.3 Trace OpenGL application
	14.4.3.4 Replay
	14.4.3.4.1 Analysis

	14.4.4 Reference

	14.5 Renderdoc
	14.5.1 Renderdoc components
	14.5.2 Running renderdoccmd on i.MX
	14.5.3 Capturing and replaying remotely
	14.5.4 Reference

	15 GPU Memory Introduction
	15.1 GPU memory overview
	15.2 GPU memory pools
	15.3 GPU memory allocators
	15.4 GPU reserved memory
	15.5 GPU memory base address

	16 Mali Valhall GPU
	16.1 Features
	16.2 Mali Shader offline Compiler
	16.3 Mali OpenCL Offline Compiler
	16.4 References and Useful links

	17 Application Programming Recommendations
	17.1 Understanding the system configuration and target application
	17.2 Optimizing off-chip data transfer such as accessing off-chip DDR memory/mobile DDR memory
	17.3 Avoiding W-clipping issue in the application program
	17.4 Avoiding GPU hanging and data corruption when using occlusion query
	17.5 Avoiding random cache or memory access
	17.6 Optimizing your use of system memory
	17.7 Targeting a fixed frame rate that is visibly smooth
	17.8 Minimizing GL state changes
	17.9 Batch primitives to minimize the number of draw calls
	17.10 Performing calculations per vertex instead of per fragment/pixel
	17.11 Enabling early-Z, hierarchical-Z, and back face culling
	17.12 Using branching carefully
	17.13 Using VBOs instead of static or stack data as vertex data
	17.14 Using dynamic VBO when the data is changing frame by frame
	17.15 Tessellating your data to make Hierarchical Z (HZ) work
	17.16 Using dynamic textures as a texture cache (texture atlas)
	17.17 Stiching small triangle strips together
	17.18 Specifying EGL configuration attributes precisely
	17.19 Using aligned texture/render buffers
	17.20 Disabling MSAA rendering unless high quality is needed
	17.21 Avoiding partial clears
	17.22 Avoiding mask operations
	17.23 Using MIPMAP textures
	17.24 Using compressed textures if constricted by RAM/ROM budget
	17.25 Drawing objects from near to far if possible
	17.26 Avoiding indexed triangle strips
	17.27 Limiting vertex attribute stride within 256 bytes
	17.28 Avoiding binding buffers to mixed index/vertex array
	17.29 Avoiding using CPU to update texture/buffer contexts during render
	17.30 Avoiding frequent context switching
	17.31 Optimizing resources within a shader
	17.32 Avoiding using glScissor Clear for small regions
	17.33 Using PRE to accelerate data transfer
	17.34 i.MX 8QuadMax dual-GPU performance

	18 Demo Framework
	19 Environment Variables Summary
	19.1 Environment variable for drivers and HAL
	19.2 Environment variable for compiler

	20 Note About the Source Code in the Document
	21 Revision History
	Legal information
	Contents

