FreeMASTER & S32 Design Studio

Iulian Stan
Software Engineer, AP System Tools
APRIL 2020

SECURE CONNECTIONS FOR A SMARTER WORLD

EXTERNAL

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2020 NXP B.V.

EASY TO USE AND FLEXIBLE

HOST PC

FreeMASTER 3.0

- Communication library & plug-ins
- Windows native charts, table views
- Integrated IE 11 and Chromium
- Light weight service with JSON-RPC API

COMMUNICATION LAYER

UART / USB-CDC

Plain serial line or on board USB port

USB to CAN

USB to CAN convertor

JTAG / SWD

Debug probes

NXP OR CUSTOMER BOARD

Embedded application

FreeMASTER Communication Driver (minimal changes to application)

NXP TOOLS ECOSYSTEM

DEVELOP DEPLOY VISUALIZE

Code Generation From Model Based Design Toolbox

> Generate Simple Models

Based on

SDK

Mode Based Design Toolbox

MCUXpresso / S32 Design Studio

EDGE / AP Evaluation Kits

S32K144

General Purpose Arm Cortex-M based MCUs

FreeMASTER

Load FreeMASTER project for demo, fine tuning or validation of the embedded application

NXP TOOLS ECOSYSTEM (AUTOMOTIVE PROCESSING)

DEVELOP DEPLOY VISUALIZE

Code Generation From Model Based Design Toolbox

Simple

SDK

Mode Based Design Toolbox

MCUXpresso / S32 Design Studio

EDGE / AP Evaluation Kits

General Purpose Arm Cortex-M based MCUs

FreeMASTER

Load FreeMASTER project for demo, fine tuning or validation of the embedded application

FREEMASTER & S32DS INTEGRATION OPTIONS

- 1. Create S32DS Project from Examples
 - ✓ Ready to build C application
 - ✓ FreeMASTER project included
- 2. Add FreeMASTER Driver to an Existing Project via SDK Configuration
 - ✓ Automatically adds driver source files and configures target project structure
 - Requires manual communication & library initialization

CREATE FREEMASTER PROJECT FROM EXAMPLE STEP1

File→New →S32DS Project from Example

Filter: freemaster

CREATE FREEMASTER PROJECT FROM EXAMPLE STEP2

Open: freemaster_s32k144.pmp

FreeMASTER is launched automatically based on file extension

ADDING FREEMASTER SDK TO EXISTING PROJECT STEP1

Project→Properties

Select: FreeMASTER_S32xx→Press: Attach/Detach

FREEMASTER DRIVER IMPLEMENTATION & RUN-TIME

ADDING FREEMASTER SDK TO EXISTING PROJECT STEP2

- 1. #include "freemaster.h" ← include single header file
- 2. LPUART_DRV_Init(INST_LPUART1, &lpuart1_State, &lpuart1_InitConfig0); INT_SYS_InstallHandler(LPUART1_RxTx_IRQn, FMSTR_Isr, NULL); ← initialize communication interface and attach FreeMASTER handler (FMSTR_Isr)
- 3. FMSTR_Init(); ← initialize FreeMASTER driver (see freemaster_cfg.h)
- 4. FMSTR_Poll(); ← call polling function whenever target board is free to or should process FreeMASTER commands (in polling mode)

SECURE CONNECTIONS FOR A SMARTER WORLD

MBDT

Tips for Enhancing Embedded Applications with FreeMASTER UI from MATLAB/Simulink

Daniel Popa

MBDT Product Manager & Architect **APRIL 30,2020** SECURE CONNECTIONS FOR A SMARTER WORLD **EXTERNAL**

Contents

- Model-Based Design General Concepts
- Benefits of FreeMASTER Simulink Blocks
- Embedded Application Examples
 - Simulink Modelling and Automatic Code Generation for Applications with FreeMASTER Simulink Blocks
 - o Data Logger in MATLAB with FreeMASTER ActiveX Controls

Model-Based Design "at a glance"

SECURE CONNECTIONS FOR A SMARTER WORLD

14

EXTERNAL

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2020 NXP B.V.

Model-Based Design - Concept

How Is That Possible?

Idea incubation

Automatic Code Generation

Code Validation

To MCU

Final Product

Real Electric Motor

PC Environment

Step 1 – System Requirements:

Model-in-the-Loop

- Software requirements
- Control system requirements
- Overall application control strategy

PC Environment

Step 2 – Modeling/Simulation:

Software-in-the-Loop

- · Control algorithm design
- Code generation preparation
- Control system design
- Start testing implementation

PC Environment

MCU with Embedded **Control Module (ECM)**

Prototype: Step 3 –

Proces n-n-Controller cod generation

- Determine execution time on MCU
- Verify algorithm on MCU
- See memory/stack usage on MCU

- Controller code generation
- Test system in target environment using tools for data logging and parameter tuning

NXP Model-Based Design Solutions

- Collection of Tools & Libraries designed to Assist customers with prototyping and accelerate algorithm development on NXP MCUs
- MCU Peripherals Initialization & Configuration through GUI from a Model-Based Design environment like Simulink[®]
- Supported Platforms for automatic Code Generation:
 - Arm®-based S32K
 - E200®-based MPC57xx/MPC56xx
 - MagniV S12ZVMx/S12ZVC
- Customer Support and Training: https://community.nxp.com/community/mbdt

Benefits of FreeMASTER Integration with MATLAB/Simulink

No need to write any c-code: just drag&drop FreeMASTER Simulink blocks anywhere in the Model

- 2. Real Time debugging of Simulink Models with minimal intrusiveness
- 3. Use FreeMASTER as "a bridge" to upload/download data from/to embedded MCU from MATLAB

Embedded Applications Examples

SECURE CONNECTIONS FOR A SMARTER WORLD

EXTERNAL

Example#1: Modelling & Verification with Simulink & FreeMASTER

Simulink:

- ✓ Modelling & Simulations
- ✓ FreeMASTER configuration
- ✓ Automatic Code Generation
- ✓ Automatic Target Deployment

S32K144 EVB:

✓ Embedded Application Execution

FreeMASTER 3.0.2

- ✓ Real-Time data inspection
- ✓ Variable Watch
- ✓ Oscilloscope monitoring

Example#2: MATLAB Data Logger with FreeMASTER

S32K144 EVB:

✓ Embedded Application Execution

FreeMASTER 3.0.2

- ✓ Real-Time data inspection
- ✓ Variable Watch
- ✓ Oscilloscope monitoring

MATLAB:

- ✓ Read/Write Data via ACTXSERVER
- ✓ Plot Data
- ✓ Manipulate Data

Bonus Example: Optimize Data Throughput

- Use Simulink FreeMASTER Configuration Block to optimize the data exchange throughput
 - ✓ Change the communication protocol
 - √ Change ISR priorities

GETTING HELP

MBDT Online Community Examples & Help

MBDT home page www.nxp.com/mbdt

SHARE YOUR FREEMASTER DASHBOARD DESIGNS WITH THE NXP COMMUNITY GET A FREE BOARD!

Why?

To build a robust community of support for FreeMASTER with idea share.

How to participate?

- 1. **Submit your idea** through June 19, 2020 to the NXP Community, request your board of choice (one of the following: <u>i.MX RT1020 EVK</u>, <u>LPC55S28 development board</u> and <u>S32K144EVB</u>), available on first come, first served basis until quantities are depleted.
- Once you've created your code example, post a brief description and a screenshot
 of your dashboard along with a ZIPped code to the original blog comment thread.

Click here for complete details!

HOW TO CONTROL AND VISUALIZE DATA FROM YOUR EMBEDDED APPLICATION WITH FREEMASTER | A FOUR-PART WEBINAR SERIES

- Part 1: Now Available On-Demand | <u>Watch Now ></u> Get to Know the Easy-to-Use FreeMASTER Runtime Debugging Tool – Now Part of MCUXpresso SDK
- Part 2: Today
 Tips for Enhancing Embedded Applications with FreeMASTER UI from Various Development Environments like S32DS and Matlab/Simulink
- Part 3: Tuesday, May 5 | 10 AM CDT | Register Here >> Introduction to FreeMASTER Dashboard Coding Using HTML, JavaScript, ActiveX and JSON-RPC
- Part 4: Tuesday, May 12 | 10 AM CDT | Register Here >>
 Getting Started with FreeMASTER Lite and JSON-RPC Protocol: From Scripting to Visual Dashboards with Python and JavaScript

SECURE CONNECTIONS FOR A SMARTER WORLD