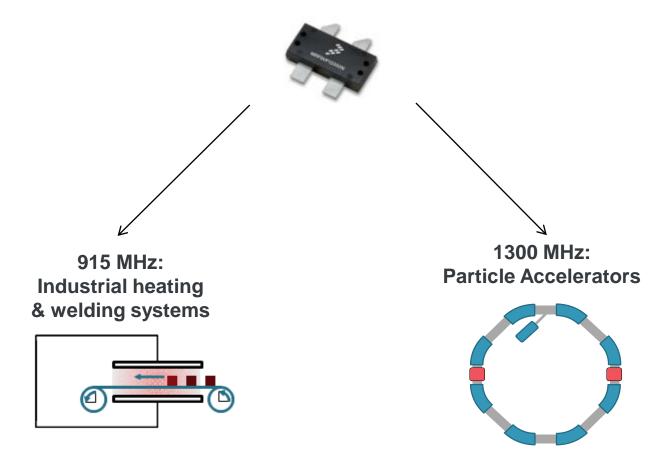


New Freescale RF Industrial Transistor

Freescale extends plastic packaging portfolio of RF LDMOS transistors to 915 and 1300 MHz for ISM applications

Announcing:


MRF8VP13350N

May 2015

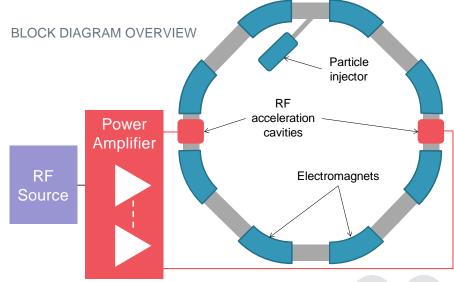
8VP13350N: 350 W for 915 and 1300 MHz Industrial, Scientific & Medical (ISM) applications

article Accelerators

What is this?

- •Cyclotron: charged particles are accelerated by an RF field and deviated along a spiral path by a static magnetic field
- •Synchrotron: charged particles are accelerated by RF fields and maintained in a circular ring by controlled magnetic fields.

- •Scientific: Cyclotron are used for nuclear physics experiments and synchrotron are used for crystallography, chemicals and nuclear physics
- •Medical: imaging, proton therapy for cancer treatment (better body penetration that radiotherapy)



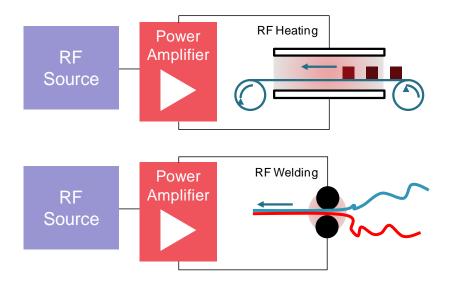
Cyclotron

Synchrotron

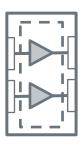
Industrial RF Heating & RF Welding

What is this?

RF can be used to send energy to various materials. If the material is a poor conductor of electricity, dielectric heating will occur.


For <u>RF heating</u>, the material to heat is placed into a high power RF field generated by two or more electrodes.

For <u>RF welding</u>, the sheets of plastic materials to solder are pressed between two electrodes. The most common materials used in RF welding are PVC and polyurethane.



MRF8VP13350N: 350 W LDMOS Transistor in Plastic

Designed for industrial heating/welding at 915 MHz and particle accelerators at 1300 MHz.

- Input pre-matched
- Housed in OM-780 over-molded plastic package
- High ruggedness: > 10:1 VSWR
- Product Longevity Program: warranted availability until 2030
- Recommended driver: MRFE6VS25N (25 W)

Board Frequency (MHz)	Schedule	Power (W P1dB)	Gain (dB)	Drain Eff. (%)	Size (inch)
915 MHz	Available	350 CW	20.7	6	5x4" (13x 10 cm)
1300 MHz	Planned	350 CW			

NIP wore Information

From the Product Summary Pages

- Data sheets
- Simulation models ADS and AWR
- MTTF calculators
- S-parameters

MRF8VP13350N: 👆

From www.freescale.com/RFpower

- Product Selector Guide 🖢
- Parametric search
- App notes − > 30 available
- White papers & webinars 🖢
- Freescale Product Longevity Program

On the web

- Blogs & Twitter @RFLeonard
- YouTube.com/Freescale
- RF Engineering Tools App for Android & iOS
- On eTailers & Freescale Approved Distributors

www.Freescale.com