

Motorola's e500 Integrated Host Processor

Dan Bouvier

Motorola Semiconductor Products Sector Somerset Architecture Manager

MPC85xx Family Design Goals

- Integration of RapidIO with a high performance, low power, 1 GHz e500 processor
- Address the processing needs for:
 - Network control plane workloads such as route exception processing and high touch services
 - Enterprise Storage Channel Processing
 - High Density Distributed Computing Platforms
- Optimize an SoC platform for performance and flexibility
 - Focus on MIPs / Watt / Packet / \$
 - Balance processor performance with I/O system throughput
 - Include necessary Integration to enable multiple applications
 - Define a flexible architecture for easy integration of value added IP
 - Conform to Motorola's Semiconductor Reuse Standards SRS 3.0
- Provide a platform for a family of Motorola ASSPs for Communications, Automotive, and Consumer applications

Motorola's MPC8540

Features

- e500 "Book E" Processor600Mhz 1GHz
- 256k On-chip L2
- High Performance On Chip Fabric
- DDR Memory Controller
- Advanced I/O ports
 - RapidIO
 - PCI-X
 - 10/100/Gbit Ethernet
 - General PurposeChipSelect Machine
- 4-Channel DMA
- Interrupt Controller
- DUART Serial Interface

e500 Core Features

- 600MHz 1GHz "Book E" Microprocessor
- 2-way Superscalar
- Out-of-Order Issue and Execution with multiple execution units
- Support for Auxiliary Processor Units (APU)s
 - Context Management APU
 - isel APU
 - Signal Processing APU
- Book E MMU
 - Variable page sizes (4KB to 256MB)
 - Big/Little-Endian Support by page
- 32KB L1 I-Cache and D-Cache
 - Line by Line Locking
 - MESI cache coherency

e500

Branch Unit Completion Unit Unit Simple Units Ld/St Unit Unit Simple Units I-Cache/ SRAM (32KB)	I-Fetcher		patch nit			
Ld/St Unit Simple Units I-Cache/ SRAM D-Cache/ SRAM				GPR		CS
SRAM SRAM						AP
	SRAM				SRA	AM

e500 APUs

- Context Management APU
 - Fast and Deterministic Context switching for lower interrupt latency
 - Registers for two contexts
- isel APU
 - Conditional MOVE Operation
 - Improves performance of code through simple predication to remove branches
 - isel instruction: rd = crN ? rs1:rs2;
- Signal Processing APU
 - Aimed at convergent Integer and DSP applications
 - SIMD unit with 222 new instructions
 - 64-bit GPRs overlaid on existing GPRs
 - Accumulator for single-cycle MAC

e500

I-Fetcher	Dispatch	isel	Pυ	
Branch Unit	Unit Completion Unit	GPR	Mgmt AP	GPR ext.
Ld/St Unit	Complex Unit	Simple Units	Confext	SP APU

Core Complex

- Core Complex Bus (CCB)
 - SMP MESI protocol, 32-bit address, Three 128b data busses
 - Split, out-of-order and multiple outstanding transactions
- Coherency Module
 - Manages 3 Concurrent Coherent Addresses
 - Entry point for non-coherent traffic
 - Speculative Fetches
- L2 Cache
 - 256kB 8-way set associative
 - Line by Line Locking
 - Memory-Mappable in 128k granules (externally writeable)
 - Allocate and Lock on DMA
- Memory Controller
 - 64-bit, 333MHz DDR SDRAM
 - 16 Outstanding Transactions
 - 4 chip selects each supporting up to 1 Gbyte

OCeaN (On Chip Network)

- Required an on-chip connection medium for multiple processors and peripherals
- On-chip peripheral busses don't scale well!
 - Needed scalability in numbers of ports and frequency
 - While maintaining chip route-ability
 - Needed a high level of transaction concurrency
- OCeaN (On Chip Network)
 - Scalable Non-Blocking Switch Fabric
 - Leverages RapidIO concepts
 - Full Duplex port connections 128Gb/s concurrent throughput
 - Independent Per Port Transaction
 Queuing and Flow Control
 - Latch to Latch protocol

High Performance Data Flow

- Address Translation and Mapping Unit ATMU
 - Flexible Address Mapping through Inbound and Outbound Windows
 - Port to port transaction routing
 - Provides all transaction attributes
- High Performance DMA Engine
 - 4 Channels with Independent control
 - OCeaN allows concurrent load and store any port to any port
 - Bandwidth Allocation
 - 2-Level Descriptor Chain
 - Scatter Gather, Stride,
 Source/Destination Hold
 - Data Payloads up to 256 Bytes

THE TOTAL THE TO

OCeaN Fabric

RapidIO

- Control Interconnect for High Performance Embedded Systems
- Open Standard backed by 46 companies
 led by: Alcatel, Cisco, EMC, Ericsson, IBM,
 Mercury Computer, Motorola, and Nortel
- Source addressed true switched control interconnect
 - Supports rich topologies and high level of concurrency
 - Scalable to 64k devices
- Highly Reliable
 - Automatic hardware error detection and recovery
- Software Transparent
- PCI bridge capable
- Parallel and soon to be released Serial Physical Layers

RapidIO on MPC8540

- Rev 1.1 Compliant 500MHz 16 Gb/s Bandwidth
- Interface Point for Network Processors, ASICs, FPGAs, Protocol Chips, Accelerators
- 8 to 256 Byte packet data payloads with 4 Transaction Priorities
- Source Addressing for up to 256 Devices in arbitrary topologies
- Support for I/O system and Message Passing
 - up to 4 KByte Messages

motorola digital dna

Ethernet Controllers

- Two High Performance 10/100/1G Controllers
 - IEEE 802.3, 802.3u, 820.3x, 802.3z, 802.3ac compliant
 - Consistent with Proven Programming Model (PowerQUICC)
 - Layer 2 Acceleration
 - 8 UniCast Address Matches
 - 512 entry hash for Broadcast and Multicast
 - Direct Queuing of 8 flows
 - Packet Field Extraction and Insertion
 - 9.6KB Jumbo Frame support
 - GMII and TBI SERDES interface
 - RMON statistics support
 - 2KB internal transmit and receive FIFOs
- One Maintenance 10/100 Controller
 - For console, debug, and maintenance interface

MPC8540 Peripheral Interfaces

- PCI-X Controller
 - 64b,133MHz
 - 64b Dual Address Cycle Support
 - Host and Agent Modes
 - PCI to RapidIO Bridge Support

Storage Subsystem Processor

PCI-X

- General Purpose Chip-select Machine (GPCM)
 - GPIO Port with 4 Chip Selects
 - Connect Flash, DSP Host Ports, FPGAs
- EPIC Interrupt Controller
 - 8 discrete or 16 serial IRQs
 - IPI Interface for up to 4 CPUs
 - Four 32b Message Registers
 - Four cascade-able Timers
 - Selectable CPU notification using standard or critical interrupt

Error Management and Debug

- Embedded Infrastructure Requires Robust Error Coverage
 - CPU Watchdog
 - L1 Caches Parity, L2 Cache ECC, Memory ECC
 - RapidIO transmission error detection and recovery, watchdog timers, diagnostic error injection logic
 - PCI, GPCM parity
 - All Interfaces include a variety of error recording registers
- Debug Facilities
 - "Book E" enhanced processor debug facilities
 - IEEE 1149.1 complaint, JTAG boundary scan
 - 2 COPs (1 on core complex and 1 for system logic)
 - System Access Port JTAG runtime access to system memory map
 - Memory interface attribute output pins
 - System logic watchpoint monitors with Input and output trigger pins

MPC8540 Applications

- Route Exception Processor
 - RapidIO for High Speed connection to forwarding plane
 - Gig-Ethernet for backplane control Communications (ex. SNMP)
 - PCI-X for legacy subsystem peripherals

MPC8540 Applications

Statistics

Architecture	PowerPC™ Book E Compatible
Performance (est.) (Dhrystone 2.1)	2315 MIPS @ 1 GHz 1385 MIPS @ 600MHz
Caches	L1:32KB I and D, L2: 256KB, 8-way
Power (est.)	6.5 W
Technology	0.13um Copper technology
Power Supply	1.5V
Package	575 pin PBGA

Summary

- Motorola's next generation e500 integrated processor provides a high performance control solution on an SoC platform optimized for MIPs / Watt / Packet / \$
- Provide a platform for a family of Motorola ASSPs for Communications, Automotive, and Consumer applications

Thank you!

