
PUBLIC 

MICHAL HANAK

JANUARY 2020

TO DEBUG, TUNE, CONTROL AND DEMONSTRATE

EMBEDDED APPLICATIONS

USING NXP FREEMASTER



PUBLIC 1

AGENDA

• What is FreeMASTER?

• FreeMASTER as a Real-time Monitor 

• FreeMASTER as a Control GUI

• FreeMASTER vs. Debugger

• FreeMASTER Replacing Custom GUI Apps

• FreeMASTER Lite

• Inside FreeMASTER



PUBLIC 2

What is FreeMASTER?

• Real-time Monitor

• Graphical Control Panel

• Demonstration Platform

FOR YOUR 

EMBEDDED 

APPLICATION



PUBLIC 3

FreeMASTER as a Real Time Monitor

of

Internal variables

Processes & algorithms 

Application states



PUBLIC 4

• FreeMASTER connects to target embedded application over

▪ UART serial communication (SCI, LPUART, UART, USART, …)

▪ USB-CDC – virtual serial line

▪ CAN – msCAN, FlexCAN, MCAN

▪ SWD/JTAG/BDM – non-intrusive access using debugger interface

▪ JTAG/EOnCE – real time data exchange port of 56F8xxx family

− Any of the above remotely over the network using 
FreeMASTER Remote Server or JSON-RPC API

− Any of the above from 3rd party application using ActiveX

− Any of the above using unified Communication DLL

• …and enables access to application memory

▪ Parses ELF file and extracts DWARF debugging and symbolic information 

▪ Reads symbolic information from runtime Target-Side Address (TSA) tables

▪ Knows global and static variables address, type and size

▪ Knows complex data types (structures and arrays)

FreeMASTER as a Real-time Monitor

Communication DLL Library

MCU Memory Access

Share any connection

over the internet

Direct memory access using

j-Link, CMSIS-DAP or P&E

Connect over UART, 

USB-CDC or CAN



PUBLIC 5

FreeMASTER as a Real-time Monitor

Display the variable values in various formats:

▪ Table View

• variable values updated at specified rate

▪ Real-Time Chart 

• values read in real time and plotted
in oscilloscope-like waveform

▪ High-Speed Recorded Graph

• values recorded by on-board memory
transient recorder and plotted all at once

▪ Custom ActiveX/HTML Controls 

• values displayed ActiveX/HTML controls (sliders, gauges, etc.)

Real-Time or Recorded Graph

Variable Watch

Custom HTML/ActiveX Controls



PUBLIC 6

FreeMASTER as a Real-time Monitor

Variable Transformations

▪ Value can be transformed to custom units

▪ Transformations may reference other variable values

▪ Inverse-transformation applied when writing 
a new value to the variable

Ability to Protect Memory Regions (TSA)

▪ User TSA tables describing variables visible to FreeMASTER

▪ Declaring variables as read-write to read-only for FreeMASTER 
- the access is guarded by the embedded-side driver

Application Commands

▪ Command code and parameters are delivered to an application for arbitrary processing

▪ After processed (asynchronously to a command delivery) the command result code is returned to the PC

▪ Legacy feature, not used in today’s applications as it requires target-side driver. Does not work over direct 
SWD/JTAG/BDM.



PUBLIC 7

FreeMASTER as a Real-time Monitor

Anatomy of the desktop window Main tabbed pane:

• Custom control UI page in HTML

• Selected tree item description in HTML

• Runtime graph views or Pipe view

Variable watch:

• Values in text grid 

• Variables assigned to 
selected “block” tree item

Docked views

• Graphs and Pipe views

• Docked to window side

• Auto-hide option

• Overlap with other views 
in a tabbed pane

Floating views

• Graphs and Pipe views

Project tree:

• Custom project hierarchy

• Folder-like block items

• Oscilloscope graph items

• Recorder graph items

• Pipe console items

Variable stimulus

• Stimulator time tables

Application Commands

• User-defined commands



PUBLIC 8

FreeMASTER as a Real-time Monitor

Highlights

− Access to target variables, symbols and data types

− Safe access over UART, CAN or USB with target-side driver

− Direct memory access with J-Link, P&E Multilink or CMSIS-DAP, no target-side driver needed

− Addresses are parsed from ELF file or provided by user-defined TSA tables

− Enables fine tuning parameters or direct application control via variable modifications

− Oscilloscope graphs with real time data in [ms] resolution

− On-board Recorder visualization of transitions in [μs] resolution



PUBLIC 9

FreeMASTER as a Control GUI

Rendering HTML-encoded GUI

Native JavaScript scripting

ActiveX or JSON-RPC interface

3rd party applications and scripts



PUBLIC 10

FreeMASTER as a Control GUI

• Control Application by Variable Modification

▪ Manually in the Variable Watch table view

▪ Time-tables & stimuli modification

▪ Script-based variable access directly from custom GUI

• Handle mouse-clicks and keyboard control

• Custom graphics, push buttons and forms

• Sliders, gauges or other ActiveX/HTML5 widgets

• Custom intelligence and control algorithms

▪ ActiveX clients external to FreeMASTER

• Excel or Matlab – typical programmable clients

• Ideal for Hardware-in-the-loop simulations

▪ JSON-RPC clients using WebSocket or TCP

• Standalone web apps running in Chrome

• Node.js, Python and other scripts

▪ Works over UART, CAN and also with non-intrusive

SWD/JTAG/BDM direct memory access.

• Control by Sending “Application Commands”

▪ “Traditional” control approach

▪ Scripts and 3rd party applications support

▪ Only works when target driver is used (UART, CAN, PDBDM)

▪ Does not work with direct-access SWD/JTAG/BDM



PUBLIC 11

FreeMASTER as a Control GUI

• HTML Content inside FreeMASTER

− HTML views embedded in the FreeMASTER window

− Dedicated “control page” view always accessible

− Optional “description” views showing HTML content 

based on project tree selection

− Internet Explorer or Chromium rendering engines

• Scripting in FreeMASTER 

▪ JavaScript may be natively embedded in HTML pages

▪ ActiveX for Internet Explorer JavaScript, VBA Excel, etc.

▪ JSON-RPC for Chrome JavaScript or 3rd party scripts 

Node.js, Python, Matlab, Octave, etc.

▪ JSON-RPC over WebSocket or direct TCP

▪ JSON-RPC also used with FreeMASTER Lite service

• FreeMASTER Scripting Methods

▪ Read/write access using existing variable objects

▪ Direct read/write memory access using C symbol names

▪ Retrieving symbol and data type information

▪ Project tree manipulation and navigation

▪ Oscilloscope or Recorder data handling

▪ Pipe communication

▪ Project file and communication port control 

▪ Local file read/write access

▪ Variable Stimulator control

▪ Sending Application Commands

Refer to FreeMASTER User Guide for full script API reference

and examples using JScript, VBScript, VBA Excel and Matlab



PUBLIC 12

FreeMASTER as a Control GUI

• Target-in-loop Simulations

▪ FreeMASTER ActiveX object or JSON-RPC interface 

is accessible by external standalone applications

▪ Standard C++ or VB applications

▪ Excel & Visual Basic for Applications

▪ Octave, Matlab & Simulink



PUBLIC 13

FreeMASTER vs. Compiler / Debugger

Write source code

Compile

Flash code to MCU

Debug code

Field-tune parameters

Logging data to file

Graphs & Visualization

Custom UI and Control Panel

Remote control

Plugins & custom communications & scripting

FreeMASTER

limited

functionality

MCUXpresso IDE, 

IAR, Keil MDK…



PUBLIC 14

FreeMASTER Replacing Custom GUI Applications

FreeMASTER vs. custom GUI development

Typical use cases



PUBLIC 15

From Custom GUI to FreeMASTER

• Pitfalls of developing custom GUI

− Requires PC Host programming tools and skills

− Never enough communication interfaces, communication issues 

− Time to develop a robust PC Host application

− Deploying GUI to host PC

− Single-purpose – typically bound to particular MCU demo app. firmware

• Benefits of FreeMASTER

− Uniform approach – application control by variable modification

− Works over UART/CAN but also over non-intrusive SWD/JTAG/BDM

− One tool used with variety of GUIs

− GUI easily extended by multimedia content (charts, documentation)

local, online or embedded

− Usable with user-modified applications (!)

− GUI project can be extended by user to cover more functionality



PUBLIC 16

From Custom GUI to FreeMASTER

• Typical custom GUI Approach

− Communication-driven data collection

− Typically custom serial protocol

− PC sends request, target processes and replies with data

▪ Pro: under full control of developer

▪ Pro: application and data processing logic done in native 

programming language

▪ Con: communication development just for sake of GUI, typically 

not used for any other purpose

▪ Con : migration to different communication media is typically hard

▪ Con : user modifications of target application not supported by 

single-purpose GUI.

▪ Con : user modifications of target application or firmware makes 

the GUI to stop working.

• FreeMASTER Approach

− Rich graphing and visualization features instantly available

− Control application by modifying variables 

− Use either artificial variables dedicated for GUI control or 

modify state variables used also by the general application 

algorithm

▪ Pro : works over standardized protocol or with SWD/JTAG/BDM 

direct memory access

▪ Pro : easy to protect or restrict functionality



PUBLIC 17

FreeMASTER as a Demonstration Tool



PUBLIC 18

FreeMASTER as a Demonstration Tool

• Project GUI is a native HTML page with all 

benefits of online Internet resources

• Embed multimedia content and online shop links 

directly in the control UI

• Project hierarchy enables to describe all aspects 

of target application accompanied with live data

• NXP customers use FreeMASTER 

to demonstrate their products

• Complimentary use with any NXP MCU system



PUBLIC 19

Inside FreeMASTER



PUBLIC 20

FreeMASTER 3.0



PUBLIC 21

Inside FreeMASTER – Communication Flow

FreeMASTER Executable

Communication DLL

Serial Plug-ins

Target Board

UART / USB

Target Board

phy iface

Custom Plug-in DLL

In-process calls

In-process calls

Custom connection 

(CAN, BDM, JTAG, ...)

So-called “in-process calls” are simple calls to 

functions located in dynamically loaded libraries 

(DLLs). The calls are fast just like if the function 

would be located inside the executable itself.

FreeMASTER enables to use custom plug-in 

modules to implement the communication layer.

NXP delivers several plug-ins in the standard 

FreeMASTER distribution. CAN, BDM and other 

connections are possible. Plug-ins are not always 

fully featured; for example a direct memory 

SWD/JTAG/BDM plug-in allows memory reads and 

writes, not the recorder or TSA feature.

FreeMASTER plug-ins use Microsoft COM+ 

procedure call standard. Both in-process DLL 

(typical) and out-of-process EXE plug-ins are 

supported.



PUBLIC 22

Inside FreeMASTER – Embedded Web Browser

FreeMASTER Executable

Communication DLL

Serial Plug-ins

ActiveX & JSON-RPC 

Servers

Target Board

UART / USB

Target Board

phy iface

Custom Plug-in DLL

In-process calls

Custom connection 

(CAN, BDM, JTAG, ...)

Embedded web browser engine communicates 

with FreeMASTER using out-of-process calls.

There are two kinds of out-of-process calls 

supported by FreeMASTER. ActiveX uses 

Windows messaging system and JSON-RPC use 

networking TCP and WebSocket technologies.

Due to communication overhead, the out-of-

process calls are slower. Typically up to 500 calls 

per seconds can be achieved.

IE or Chromium view
embedded in FreeMASTER

HTML / JavaScript

In-process calls
Out-of-process calls



PUBLIC 23

Inside FreeMASTER – Standalone Web Browser

FreeMASTER Executable

Communication DLL

Serial Plug-ins

ActiveX & JSON-RPC 

Servers

Target Board

UART / USB

Target Board

phy iface

Custom Plug-in DLL

In-process calls

Custom connection 

(CAN, BDM, JTAG, ...)

It makes no difference if Internet Explorer or 

Chrome browsers run inside or outside the 

FreeMASTER application window. From the data 

exchange point of view, this is still out-of-process 

ActiveX or JSON-RPC procedure calls.

Standalone IE or Chrome
browser

HTML / JavaScript

In-process calls
Out-of-process calls



PUBLIC 24

Inside FreeMASTER – Other Client Applications

FreeMASTER Executable

Communication DLL

Serial Plug-ins

ActiveX & JSON-RPC 

Servers

Target Board

UART / USB

Target Board

phy iface

Custom Plug-in DLL

In-process calls

Custom connection 

(CAN, BDM, JTAG, ...)

ActiveX and JSON-RPC communication is 

supported by many scriptable environments. All 

of them may also connect to FreeMASTER and 

access the target board.

Python, node.js, ..

JSON-RPC

In-process calls
Matlab

m-script / ActiveX

Microsoft Excel

VBA / ActiveX

Octave

script / JSON-RPC



PUBLIC 25

Inside FreeMASTER – Interfacing to Communication DLL

FreeMASTER Executable

Communication DLL

Serial Plug-ins

ActiveX & JSON-RPC 

Servers

Target Board

UART / USB

Target Board

phy iface

Custom Plug-in DLL

In-process calls

Custom connection 

(CAN, BDM, JTAG, ...)

Any Windows-based application which is capable of 

direct C-like calls into a native DLL may reuse the 

communication library and make use of the 

FreeMASTER communication.

As FreeMASTER desktop application is out of the 

game here, the term “variable” makes no more sense 

in this scenario. Users' applications need to use 

numeric memory addresses and sizes when accessing 

the board (see FM protocol for more details)

Custom C/C++/.NET or other

application

In-process direct DLL calls



PUBLIC 26

FreeMASTER Lite



PUBLIC 27

FreeMASTER Lite – Service without User Interface

FreeMASTER 

Lite Service

Communication DLL

Serial Plug-ins

JSON-RPC Server

Target Board

UART / USB

Target Board

phy iface

Custom Plug-in DLL

In-process calls

Custom connection 

(CAN, BDM, JTAG, ...)

FreeMASTER Lite service enables the JSON-RPC 

clients to access the target board without the full 

FreeMASTER desktop application running.

This may be ideal for automated test scripting and 

similar use cases.

Also, the FreeMASTER Lite runs the web server, so the 

standalone Chrome application content may be loaded 

from this server.

Standalone Chrome

JSON-RPC

In-process calls
Python

JSON-RPC

node.js

JSON-RPC

Octave

JSON-RPC

Web server

JSON config. 

file



NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.


