

NXP Semiconductors Document Number: MQXRN
Release Notes Rev. 5.2, 5/2022

NXP MQX™ RTOS 5.2 Release Notes
(May 2022)

1 Introduction

This document is the Release Notes for the MQX™
RTOS version 5.2. The software is built based on the
MQX RTOS version 5.1. It includes the full set of RTOS
services and a standard set of peripheral drivers.

NXP MQX™ RTOS is released for specific i.MX RT,
i.MX, Kinetis, Vybrid, ColdFire, and Power Architecture
processors. Support for other NXP processors is available
upon request.

1.1 Development

Tools
Requirements

NXP MQX RTOS was compiled and tested with these
development tools, though not with all tools for every
release:

• MCUXpresso IDE from NXP
• IAR Embedded Workbench for ARM®
• DS-5 Development Studio from ARM
• CodeWarrior Development Studio from NXP

Contents

1 Introduction ... 1

2 What Is New ... 3

3 Release Content 5

4 MQX RTOS Release Overview 7

NXP Semiconductors MQX RTOS Release Notes

1.2 System Requirements

System requirements are based on the requirements for the development tools. There are no special host system requirements
for hosting the NXP MQX RTOS distribution itself.

Minimum PC configuration:

• As required by Development and Build Tools

Recommended PC configuration:

• 2 GHz processor – 2 GB RAM - 2 GB free disk space

Software requirements:

• OS: Windows® 7 or later

1.3 Supported Processors

Below is a summary of the processors supported by MQXv5 and the evaluation board that is supported for each release. MQX
can be easily ported to your custom hardware. Details are available by contacting mqxsales@nxp.com. The evaluation boards
in the table below are all available from NXP or one of their distributors, except where otherwise noted. There are no special
requirements for the target hardware other than what each board requires for its operation (power supply, cabling, jumper
settings, etc.).

Support Processor Evaluation Board
Kinetis K26 TWR-K65F180M
Kinetis K60 100 MHz TWR-K60N512
Kinetis K60 120 MHz TWR-K60F120M
Kinetis K64 FRDM-K64F
Kinetis K65 TWR-K65F180M
Kinetis K66 FRDM-K66F
Kinetis K70 TWR-K70F120M
Kinetis K81 TWR-K80F150M
Kinetis KV58 TWR-KV58F220M
i.MX6SX M4 core MCIMX6SX-SDB
i.MX6ULL A7 core Phytec i.MX6ULL SOM
i.MX7S / i.MX7D M4 core MCIMX7SABRE
i.MX7S / i.MX7D A7 core MCIMX7SABRE
i.MX8M M4 core MCIMX8M-EVK
i.MX RT 1020 MIMXRT1020-EVK
i.MX RT 1024 MIMXRT1024-EVK
i.MX RT 1050 IMXRT1050-EVKB
i.MX RT 1060 MIMXRT1060-EVK
i.MX RT 1064 MIMXRT1064-EVK
i.MX RT 1160 (coming soon) MIMXRT1160-EVK
i.MX RT 1170 M7 (+ support for the M4 core
coming soon)

MIMXRT1170-EVK

NXP Semiconductors MQX RTOS Release Notes

1.4 Set up installation instructions and technical support

Unzip the provided package to your hard drive. There is no prescribed folder to install that package to, but it is recommended
to install MQX RTOS to a path without spaces to avoid build problems with certain tools, and it is recommended to not install
MQX to the C:\ root directory.

NOTE
Since version 4.0, the pre-built libraries are not distributed in the MQX RTOS release
package, which makes it necessary to compile MQX RTOS libraries for a particular
board before the first use. For detailed build instructions, reference the release specific
documentation providing installation instructions that was shipped with your release.

For a description of available support including commercial support options, click here or contact mqxsales@nxp.com

2 What Is New

This section describes the changes and new features implemented in this release.

2.1 Added in version 5.2

New Features:
• Task Aware Debugging for IAR Embedded Work bench ver 8.x and 9.x
• Performance Monitoring Code to monitor cpu loading by task
• Mbedtls 3.0
• Integration of mBedTLS and WolfSSL/SSH (optional components – extra fees may apply)

New Ports:
• i.MX RT 1170 M7 core (M4 core support coming soon)
• i.MX RT 1060
• i.MX RT 1064
• i.MX RT 1020
• i.MX RT 1024
• i.MX7 Colibri BSP
• KV58
• K81

General Clean up and Enhancements:
• Re-organization of some i.MX RT related files to accommodate the growing list of supported i.MX RT processors
• Updates to the Task Aware Debugging plug-in for MCUXpresso
• Added support for mbedTLS 3.0
• Updates to address reported vulnerabilities:

o Updates to address 3 cases in MQX where allocating memory with a size that exceeds the size of the signed
integer will cause a wrap-around of the integer. This results in the allocation of a smaller buffer and potentially
a heap overflow.

o Updates to address a vulnerability that affects the Link-Local Multicast Name Resolution (LLMNR) Server
and in the TFTP Server. The vulnerability exists in the code that processes the host name for an LLMNR
request, and the filename for a TFTP request. A host name or filename that is not null terminated may result in
data corruption that could lead to a hard fault of the application.

NXP Semiconductors MQX RTOS Release Notes

• Added new processor specific SDKs
• Ported in new USB stack
• MQX

o Added Timed Task Queues
o Added a schedule rotate function
o Added time related functions to get elapsed time and busy wait (in microseconds)
o Added interrupt enter and exit functions
o Added functions: io_strtok_r, io_strdup()
o Updates to SD Card driver initialization
o Update to dispatch.s for M7 and M4 cores

• RTCS:
o Added functions to load and execute S Record images over TFTP
o Added a function to load and execute a boot image from a server
o Added TFTP functions (open, read, eof, timeout_restart, timeout_update, and close).
o Updates to socket management
o Updates to DHCP pad size handling
o Added IP interface socket release function

• Web Server:

o Updated handling of https scripts

• MFS:

o added ioctl for device identify

• Shell:
o added new shell commands:

§ Performance monitoring data
§ Load and execute an executable file
§ Load an executable file
§ Monitor ADC inputs
§ Display GIC interrupts
§ Print memory blocks from a NOR flash
§ TFTP client commands

o Updates to existing shell commands such as the Task Aware Debugging (TAD) command

Updates to Address Indentified Vulnerabilities

• Implemented updates to address potential vulnerabilities with memory allocation functions as well as a host name
length issue. Copies of the relevant bulletin are available by contacting us at mqxsales@nxp.com

Bug Fixes

• Various updates for general consistency and modernization of the code.

Deprecated Features Removed:

• None

NXP Semiconductors MQX RTOS Release Notes

3 Release Content

Table 1 lists the contents of this release. Note that not every sub-folder is included with each release since only supported and
relevant libraries are included with each release of MQXv5.

Table 1. Release Contents

Deliverable Location

Configuration Files

<install_dir>/config/...

MQX PSP, BSP Source Code, Project Files, and Examples <install_dir>/mqx/...

MQX PSP source code for i.MX RT, Kinetis, Vybrid ARM Cortex-M core .../mqx/source/psp/cortex_m
MQX PSP source code for i.MX, Vybrid ARM Cortex-A core .../mqx/source/psp/cortex_a

MQX PSP build projects .../mqx/build/<compiler>/psp_<board>

MQX BSP source code .../mqx/source/bsp/<board>

MQX BSP build projects .../mqx/build/<compiler>/bsp_<board>

RTCS source code and examples <install_dir>/rtcs/...

RTCS source code .../rtcs/source

RTCS build projects .../rtcs/build/<compiler>/rtcs_<board>

RTCS example applications .../rtcs/examples

MFS source code and examples <install_dir>/mfs/...

MFS source code .../mfs/source

MFS build projects .../mfs/build/<compiler>/mfs_<board>

MFS example applications .../mfs/examples

USB Host driver source code and examples <install_dir>/usb/host/...

USB Host source code and class drivers .../usb/host/source

USB Host build projects .../usb/host/build/<compiler>/
usbh_<board>

USB Host example applications (HID, MSD, HUB) .../usb/host/examples

USB Device drivers source code and examples <install_dir>/usb/device/...

USB Device source code .../usb/device/source

USB Device build projects .../usb/device/build/<compiler>/
usbh_<board>

USB Device example applications (HID, MSD, CDC, PHDC) .../usb/device/examples

Shell Library Source Code <install_dir>/shell/...

Shell source code .../shell/source

Shell build projects .../shell/build/<compiler>/
shell_<board>

Lua Library Source Code and examples <install_dir>/lua/...

Lua source code .../lua/src

Lua build projects .../lua/build/<compiler>/lua_<board>

Table continues on the next page…

NXP Semiconductors MQX RTOS Release Notes

Table 1. Release Contents (continued)

<compiler> represents the supported compiler

In addition to the above components, the following optional components may be included. Additional license fee may apply
to access these components, please contact mqxsales@nxp.com for further details.

• Amazon AWS Client
• Boot Loader
• FATFS File System
• LFS File System
• LVGL Graphics library
• Storyboard graphics integration
• Wolf SSL/SSH integration

Note that only the Debug build configurations for the provided libraries and examples are verified for each package. The
provided project files may contain a Release build configuration for reference, but this is typically not verified. Should you
prefer to release code to the field that is compiled with optimizations turned on, it is recommended to either clone the Debug
build configuration to create your own build configuration with the desired optimization settings, or to adjust the optimization
settings in the Debug build configuration. However, since code behavour can vary with different compiler optimization
settings, it is recommended that prior to releasing code to the field that full regression testing be done with the final
optimization settings that you intend to use.

3.1 Directory Structure

Figure 1 shows a typical directory structure for a release of NXP MQX RTOS directories installed to the user's host
computer (subdirectories not shown for clarity). Note that the layout of your release may differ since more than one USB
version is not normally available and there may be other components added that are required to support your specific
processor.

Configuration Files

Lua Scripting Language

MS-DOS File System

Middleware files such as inter-core communication software

MQX RTOS

RTCS TCP/IP Stack

Shell console interface

Tools – task aware debugging and boot loader code (if applicable)

USB –USB Host and Device (some releases use a different USB Stack)

Figure 1. NXP MQX RTOS Directories

Deliverable Location
Lua example projects .../lua/examples

TFS Make Utility …/tools/mktfs.exe

NXP Semiconductors MQX RTOS Release Notes

4 MQX RTOS Release Overview

The release consists of the following libraries:

• MQX RTOS real time kernel and system components
• TCP/IP networking stack (RTCS)
• FAT file system (MFS)
• Shell
• Lua
• USB Host and Device stacks
• Platform and Board support packages
• I/O drivers

This release contains the following components and I/O drivers; however drivers will only be supported for processors that
have the corresponding circuitry.

• Audio driver I2S or SAI
• Compact Flash Card driver
• DCU driver
• ESDHC driver
• Ethernet Driver
• FlashX Flash diver
• FlexCAN, msCAN
• I2C driver (polled and interrupt driven version)
• I2C driver (polled and interrupt driven version)
• LWADC – light weight ADC
• LWGPIO – light weight GPIO
• NAND Flash diver
• QuadSPI Driver
• RTC / IRTC Real Time Clock driver
• SD Card driver (SPI or SDHC based)
• SPI driver
• TSS Touch Sensing driver
• UART Serial driver (polled and interrupt driven version)

NXP Semiconductors MQX RTOS Release Notes

4.1 MQX RTOS PSP and BSP Directory Structure

RTOS files are located in the mqx subdirectory of the NXP MQX RTOS installation. The directory structure is shown in
Figure 2.

Build Folder
Project files for ARM Design Studio Development Tools
Post-build batch files
Project files for IAR Embedded Work Bench Tools
Project files for MCUXpresso Development Tools
Example Folder (contents not shown)
Source Folder
Board Support Package (BSP) source code
Formatted IO source code
Include files
IO drivers source code
MQX kernel source code
Processor Support Package (PSP) source code
String conversion source code
Task Aware Debugging interface source code
xml / json / c_json / zlib compression files

Figure 2. MQX PSP and BSP Directory Structure

4.2 MQX RTOS PSP

This release of NXP MQX RTOS contains support for specific ARM Cortex-A, Cortex-M, ColdFire V4 Platform Support
Packages. Contact mqxsales@nxp.com for ports to other NXP platforms.

The platform-specific code from /mqx/source/psp/<platform> is built together with the generic MQX core files. These
two parts form a static library generally referred to as a Processor Support Packages (PSPs) which enables the target
application to access RTOS features.

4.3 MQX RTOS BSPs

NXP MQX RTOS release includes Board Support Packages (BSPs) for the boards mentioned in section 1.3.

The board-specific code from /mqx/source/bsp/<board> is built together with I/O driver files from /mqx/source/io.
These two parts form a static library generally referred as a BSP. The functions included in this library enable the board and
operating system to boot up and use the I/O driver functions.

Subsequent sections describe drivers supported by the MQX BSPs.

NXP Semiconductors MQX RTOS Release Notes

4.4 Changing the MQX RTOS source files

The NXP MQX RTOS is distributed in source code form. It is recommended to not modify any of the source files other than
the compile- time configuration files. This recommendation applies to all files under “source” and “build” sub-directories in
all MQX RTOS, RTCS, MFS, USB, and other core components folders.

If you are creating custom board support packages or adding additional I/O drivers, add the new files and subdirectories to
the following directories:

<install_dir>/mqx/source/bsp
<install_dir>/mqx/source/io

4.5 Building the MQX RTOS libraries

For more details about building MQX RTOS libraries and applications, reference the release specific documentation that was
provided with your package. When using MQX RTOS for the first time and making changes to the compile-time user
configuration file or MQX kernel source files, rebuild MQX RTOS libraries to ensure that the changes are propagated to the
user applications.

4.6 I/O drivers supported

The following list describes I/O drivers available in the latest MQX RTOS release. The drivers are an optional part of the
MQX RTOS and their installation can be enabled or disabled in the BSP startup code. To provide the optimal code and RAM
application size, most of the drivers are disabled by default in the /config/<board>/user_config.h file.

Note that not all drivers are supported by all releases. In some cases the required hardware, either on-chip or on the evaluation
board, is not available. In other cases a driver has been ported but not tested so some testing may be required. Table 2 at the
end of this section defines the drivers that are available for each release.

NOTE
When BSPCFG_ driver-enabling macros are missing in the /config/<board>/
user_config.h file, the default setting is taken from the BSP-specific header file
located in the /mqx/source/bsp/<board>/<board>.h. The user decides whether to
enable the automatic installation of the driver in the BSP startup code (by enabling the
appropriate BSPCFG_ENABLE_XXX macro in the user_config.h), or manually in
the application code.

TFS – Trivial Filesystem
Trivial Filesystem is used as a simple read-only file repository instead of the fully featured MFS. TFS is not installed in the
BSP startup code. Applications must initialize the TFS and pass a pointer to the filesystem data image. The mktfs tool is
available (both as executable and Perl script) to generate the image from the existing directory structure. The RTCS HTTP
example demonstrates the use of TFS.

I2C I/O Driver
This driver supports the I2C interface in both master and slave mode. If enabled in user configuration, the I2C driver is
installed during the BSP startup code as the "i2cx" in polled mode and as the "ii2cx" in interrupt mode where "x" stands for a
specified I2C channel number. Example applications are provided in the MQX RTOS source tree for both master and slave
mode.

NXP Semiconductors MQX RTOS Release Notes

I2S and SAI I/O Driver
This driver supports an I2S interface in a master mode. If enabled in user configuration, the I2S device driver is installed
during the BSP startup code as “i2s0:”. An example application is provided in the MQX RTOS source tree.

SPI I/O Driver
This driver supports the operation master mode. If enabled in user configuration, the SPI device drivers are installed during
the BSP startup code as “spi0:” (or “spiX:” where X is index of the SPI module used).

QuadSPI I/O Driver
This driver provides a C language API to the QuadSPI peripheral module. If enabled in user configuration, the QuadSPI
device drivers are installed during BSP startup code as "qspi0:" (or "qspiX:" where X is index of QSPI module used).

FlexCAN Driver
This driver provides a C language API to the FlexCAN peripheral module. An example application is provided in the MQX
RTOS source tree.

RTC Driver
This driver provides a C language API to the Real Time Clock peripheral module and functions, and synchronizes the clock
time between RTC and MQX RTOS systems. If enabled in user configuration, the RTC module is initialized and MQX
RTOS time is renewed automatically during BSP startup.

Serial I/O Driver
The standard SCI (UART) driver supports both polled and interrupt-driven modes. If enabled in user configuration, the serial
devices are installed as “ttya:”, “ttyb:” and “ttyc:” (polled mode) and “ittya:”, “ittyb:” and “ittyc:” (interrupt mode)
automatically during BSP startup.

LWGPIO I/O Driver
This the light weight GPIO driver which provides a C language API to all GPIO ports available on a particular device.

LWADC I/O Driver
This driver provides a C language API to ensure a uniform access to ADC peripheral basic features.

Flash I/O Driver
This I/O driver provides a standard interface to either internal or external Flash memory. If enabled in user configuration, the
Flash driver (called FlashX) is installed as “flashx:” device automatically by the BSP startup code. Note that “flash0”,
“flash1” etc. device names are used for FlashX devices installed for external Flash memory. For devices with internal Flash
memory, the FlashX driver depends on several parameters passed in a form of global symbols from an application or from a
Linker Command File. For more information, see driver installation code in the BSP and an example application provided in
the MQX RTOS source tree.

ENET Driver
The low-level Ethernet driver is used by the RTCS TCP/IP software stack. The driver is initialized directly by the application
before RTCS is used for the first time. The RTCS Shell and HTTP examples demonstrate the use of this driver.

SD Card I/O Driver
This I/O driver implements a subset of the SD protocol v2.0 (SDHC). The driver can use either the MQX RTOS SPI driver or
the MQX RTOS (e)SDHC driver to communicate with the SD Card device. Install the driver at the application level, and pass
a lower-layer driver handle to it. The MFS file system can be installed on top of this device.

(E)SDHC I/O Driver
This I/O driver covers the (e)SDHC peripheral module and provides low-level communication interface for various types of
cards including SD, SDHC, SDIO, SDCOMBO, SDHCCOMBO, MMC, and CE-ATA.

NXP Semiconductors MQX RTOS Release Notes

Resistive Touch-Screen Driver
This I/O driver accesses the ADC and GPIO modules to detect touch events and acquire touch coordinates on a resistive
touch-screen unit.

HWTimer Driver
This driver provides a C language API for uniform access to the features of various HW timer modules such as PIT and
SysTick.

DMA Driver
This driver provides the C language API and essential functionality to control the DMA peripheral module.

I/O Expander Driver
This driver controls an off-chip I/O expander device and provides a convenient interface for individual pin handling.
Currently, it only supports the MAX7310 device.

NXP Semiconductors MQX RTOS Release Notes

Table 2. Driver Availability

NXP Semiconductors MQX RTOS Release Notes

4.7 Default I/O Channel

An I/O communication device installed by MQX BSP can be used as the standard I/O channel

4.8 MFS for MQX RTOS

MFS files from the /mfs/source directory are built into a static library. When linked to the user application, the MFS
library enables the application to access FAT12, FAT16, or FAT32-formatted drives.

4.9 RTCS for MQX RTOS with IPv4 and IPv6 support

RTCS files from the /rtcs/source directory are built into a static library. When linked to the user application, the RTCS
library enables the application to provide and consume network services of the TCP/IP protocol family.

The MQX RTOS RTCS stack is IPv6 ready with respect to IPv6 Ready Logo certification and has passed all required tests.
The IPv6 protocols for RTCS were previously separately licensed for a fee. However, starting with MQXv5 they are included
with the MQX package.

4.10 USB Host for MQX RTOS

NXP MQX RTOS release includes a USB Host stack and a set of class drivers. The Mass Storage Device (MSD) class driver
is typically supported with an example for releases that require USB Host support. This example utilizes the MFS File
System to mount and to access a USB Mass Storage Device such as a memory stick or flash storage device. The following is
a complete list of the class drivers provided that you can utilize:

• Audio
• Communication Devices Class (CDC)
• Communication Devices RNDIS
• Human Interfaces Device (HID)
• Hub
• Mass Storage Device (MSD)
• Personal Healthcare Devices Class (PHDC)
• Printer
• video

4.11 USB Device for MQX RTOS

NXP MQX RTOS release includes a USB Device stack and a set of class drivers. The RNDIS (virtual NIC) class driver is
typically provided with ports that require USB Device support. The following is a complete list of the class drivers provided
that you can utilize:

• Audio
• Composite
• Human Interface Device (HID)
• Mass Storage Device (MSD)
• Personal Healthcare Devices Class (PHDC)
• Printer
• Virtual Comm
• Virtual NIC

NXP Semiconductors MQX RTOS Release Notes

4.12 MQX RTOS Shell

The shell and command-line handling code is implemented as a separate library called Shell.

4.13 Lua
The Lua Scripting Language is a powerful mechanism to interface to your application remotely to automate testing or to run a
series of commands conveniently. It can also be called locally by an application task to run a number of commands sequentially
and consistently. Lua is built as a separate library.

4.14 Example applications

Example applications are available in MQX RTOS, RTCS, MFS, and USB directories. Note that only a subset of these
examples will have project files created for your specific set of tools and processor. Typically, the following examples are
provided with project files for your environment, plus possibly others that are required to verify peripheral interfaces that are
supported with your specific release:
• mqx\examples\hello
• mfs\examples\ramdisk
• rtcs\examples\shell

Tables 3 through 7 summarize the example applications that are provided in source code that are more commonly leveraged as
examples on how to interface to MQX kernel objects and in some cases external peripherals. Some of these may be provided
with project files for your compiler / debugger tools, but that should not be expected. However, you can create project files for
any of these which can be done by cloning one of the provided example application project files (such as the hello example)
and pulling in the associated source code.

Table 8 summarizes other examples that are provided in source code but project files will not be provided for. However,
similar to the other examples, this source code can be a good reference for accessing MQX features and external peripherals.

Table 3. MQX Examples

Name Description

Accel Shows accessing the accelerometer via the I2C bus
can/flexcan Shows usage of FlexCAN API functions to transmit and receive CAN frames.
demo Shows MQX RTOS multitasking and inter-process communication using standard objects like

semaphores, events, or messages. See lwdemo for the same example using the lightweight
objects.

event Simple demonstration of MQX RTOS events.

flashx Demonstration of FlashX driver functionality.

flashx_swap A demonstration of FlashX driver’s swap and reset functionality.
hello A trivial Hello World application using a single task.

hwtimer Shows usage of HW timer driver abstraction. Demonstrates how to initialize HW timer for
various modules, set frequency, callback, start, and stop the timer.

i2c Shows how to read/write data from/to external EEPROM. Additional HW setup is needed.

lwadc Shows usage of the ADC driver, sampling analog values from the two ADC channels.

NXP Semiconductors MQX RTOS Release Notes

qspi Demonstrates basic operation of QuadSPI driver, interfacing to QSPI flash.
rtc Shows the Real Time Clock module API. Demonstrates how to synchronize RTC and MQX

RTOS time and how to use RTC alarm interrupts.
spi Demonstrates the use of the spi channel to access a memory device

Table 4. RTCS Examples

Name Description

httpsrv Simple web server with CGI-like scripts and web pages stored in internal flash.
shell Shell command line providing commands for network management.

snmp SNMP protocol example providing microprocessor state information.

Table 5. MFS Examples

Name Description

mfs_usb Console shell-based example showing how to access MFS filesystem mounted on the USB
mass storage.

ramdisk Shows use of MFS accessing the external RAM (or MRAM).
sdcard Shows use of MFS accessing the SDHC or SPI-connect SD Card.

Table 6. USB Examples

Name Description

USB Host with Mass Storage
Class Driver

Executes the standard "mass storage device" commands to a USB connected mass storage
device.

USB Device with VNIC Acts as a USB Device connected to a computer for implement USB over ethernet (virtual
NIC)

Table 7. Lua Examples

Name Description

shell show the general use of Lua

NXP Semiconductors MQX RTOS Release Notes

Table 8. Additional Examples
The following examples are also provided for reference in source code. Project files are not included, but
the examples are helpful demonstrations of how to access MQX features and peripherals

Name Description

MQX Examples

benchmrk Contains benchmarks codes for timing and code size for different components.

cplus Shows simple C++ application.

fp Shows creation of a floating point task

ftm Demonstrates how to use the FTM Quaddec driver on the Vybrid A5 processor

ftm_pwm Demonstrates the use of the FTM in PWM mode for controlling an LCD backlight

hello2 A trivial Hello World application spread across two tasks.

i2c_scan Scans for active peripherals on the i2c bus across the entire address range

imx7 Contains some lwgpio examples for the i.MX7 processor

ipc Demonstrates the use of the inter-processor communications link on a multi-core processor

isr Shows how to install an interrupt service routine and how to chain it with the previous handler.

klog Shows kernel events being logged and later the log entries dumped on the console.

lcdifv2 Demonstrates the use of the LCDIFv2 interface on some i.MX RT processors

log Shows the application-specific logging feature.

lwbrsem Shows the use of the light weight binary recursive semaphore

lwdemo Same as the "demo" application, but implemented using lightweight components only.

lwevent Simple demonstration of MQX RTOS lightweight events.

lwgpio Demonstrates use of the light weight GPIO driver

lwlog Simple demonstration of MQX RTOS lightweight log feature.

lwmsgq Simple demonstration of MQX RTOS lightweight inter-process messaging.

lwsem Simple demonstration of MQX RTOS task synchronization using the lightweight semaphore
object.

lwtimer Demonstrates the use of the light weight timer

msg Simple demonstration of MQX RTOS inter-process message passing.

multicore Demonstrates the use of core mutexes and shared memory for a multi-core processor

mutex Simple demonstration of MQX RTOS task synchronization using the mutex object.

nandflash Shows the use of the NAND flash driver included with MQX for some Kinetis processors

perf_mon Performance monitoring code that illustrates the CPU loading by task

qspi Illustrates the interface of quad SPI serial flash memory modules found on Vybrid boards

rpmsg_pingpong Demonstration of the RP message interface between MQX and Linux on a i.MX multi-core
processor

rtc Illustrates the use of the real time clock and interrupts for creating alarms

sem Simple demonstration of MQX RTOS task synchronization using the semaphore object.

serial_test Illustrates the use of accessing the serial port and changing the communication parameters

shell Demonstrates the use of the shell to support a set of commands

spi_master Demonstrates the use of a SPI channel between two boards and operating as the master

spi_slave Demonstrates the use of a SPI channel between two boards and operating as the slave

taskat Shows how task can be created within statically allocated memory buffer (avoid heap
allocation for task stack and context).

NXP Semiconductors MQX RTOS Release Notes

taskq Shows custom task queue and how the queue can be suspended and resumed.

test Shows the self-testing feature of each MQX RTOS component.

tfs Shows the usage of ROM-based Trivial File System in an MQX RTOS application.

time Prints out the current time in seconds and milliseconds

timedelay Illustrates the use of the _time_delay() function

timer Simple demonstration of MQX RTOS timer component.

watchdog Simple demonstration of the MQX RTOS task timeout detection using the kernel (not to be
confused with watchdog) component.

wifi_module Illustrates a connection to a wifi module over a serial connection

zlib Demonstrates the use of the zlib compression/decompression function

RTCS Example
eth_to_serial Simple character passing between the UART console and the telnet session. Shows custom

"lightweight" telnet.

