Vision Toolbox for MATLAB

Manual

Embedded Target for the S32V234 Family of
Automotive Vision Processors

Version 1.1.0

Target Based Automatic Code Generation Tools
For MATLAB™ working with Mathworks Image Processing and Computer Vision Toolboxes

Vision Toolbox 1.1.0 1-1
Manual for S32v234 Automotive Vision Processors

Summary

R | 01 oo [3Tox 1 o] ISP PRPRRRRP 1-5
L1 PUIPOSE .ttt 1-5
O N E (o [=] oo USROS 1-5
1.3 RETBIENCES. ...ttt bbbttt b e nneas 1-6
1.4 Definitions, Acronyms and ABDIeviationsccccceiieriiieiienice e 1-6

2 VISION TOOIDOX....ctiiiiiiiiieieieie ettt sttt 2-7
2.1 Programming MOUESccueieieieiertentesiesie ettt b e bbb se e 2-7
Y - U (T = LN =TSSR 2-8
2.3 ProCESSOIS SUPPOITE.....ueiuiiiieiieieieite sttt nb et 2-12
2.4 MATLAB Required and Recommended Products.............ccceveieienineninenieceen 2-12
2.5 BUIIA TOOIS ..o bbb 2-13
2.6 INSTAHALION ... 2-13

2.6.1 SyStem REQUITEIMENTSccveiiiiiiiieiee et 2-13
2.6.2 Vision ToolboxX INStallation............cceceieiiiiniiiiicseeee e 2-13
2.6.3 License Generation and ACIVALIONcccoceriiiriiinieeeee e 2-17
2.6.4 Vision SDK and Build TOOIS.........ccuiuiieiiiiieiisiceseeie e 2-18
2.6.5 Setting up the ENVIFONMENT.........cooiiiiiiiiee e 2-20
2.6.6 Setting the MATLAB Path........cccooiiiiiieeee e 2-21
2.7 Connecting to the DOArd...........c.coiiiiiicicc e 2-22
2.7.1 Using the MIPI-CSI attached Camera............cccocvveveeiiiieie e 2-23
2.8 EXAMPIES....oei e et sre e re e 2-25
2.8.1 APPHCALIONS......iiieiicce et 2-26
2.8.2 Convolutional Neural NEtWOIKS........c.ccviueieerieiiereee e se e sie e nee e e 2-28

3 KBINEIS. .. ettt e e 3-32

T8 A N 11 4= oSSR 3-34
3 L1 NXPVEAPU.AOD .o e 3-34
312 nXPVLAPUAITT oo 3-34
3.1.3 nXPVL.APU.AOT_AIVISION ..outiriiiiiiiieiieeee e 3-34
314 NXPVEAPU.AOT_10Q2.....ciiiiiiiiieiieeeeee e 3-35
315 nXPVLAPU.AOT_ISNTL ..o 3-35
3.1.6 nxpvtapu.dot_ MUIt_SCAArccoviiiiieie e 3-35
317 nxpvt.apu.dot_MUIIPIC.......cccoiiiiiic e 3-35
3.1.8 NXPVEAPU.AOL SO .teeiieiieitieieeie ettt sttt sbe e nneas 3-36
319 nXpvt.apu.deft Shift........ccooiiii 3-36
3.1.10 NXPVEAPUIMIEX .ottt ettt ste e sse et ie e et e sseeebeesbeeenbeenneeenbeeanneas 3-36
3. 111 nXPVE.apu.FIgNt_SNITE ..o 3-36

T o] 4]0 = {0] o H OSSPSR PRPRPRPRRPIN 3-37
321 NXPVEAPU.BDSIOWET ...t 3-37
3.2.2 NXPVELAPU.ANG .o e bbb nre s 3-37

Vision Toolbox 1.1.0 1-2

Manual for $32v234 Automotive Vision Processors

3.2.3 NXPVEAPUJOWEN ..o 3-37

3.24 nXPVLAPUIOWErEQUALcveeiecie e 3-37
3.2.5 NXPVEAPUMALCK .o 3-38
TR B O] 1171 £ o] [T 3-38
3.3.1 nNXPVLAPUIOWLE 10 8...eeiiiiiiiiiiiieceee e e 3-38
3.3.2 nXpvt.apu.rgb_to_graySCale........ccueieiiieiiiiiisese e 3-38
34 DEIINITIONS Lttt bbb e e ne e 3-39
3.4.1 nxpvtapu.accumulation_defS..........ccooeiiiiiiiiiie e 3-39
3.4.2 NXPVEAPU.COLAETS ... 3-39
3.4.3 NXPVLAPU.CU_AETS.. ..ottt 3-39
3.4.4 nXPVLAPU.NAITIS_0efSoooiiiee s 3-39
3.4.5 nxpvtapu.histogram _defs ... 3-39
3.4.6 NXPVEAPUIDP_AETFS ..o 3-39
3.4.7 nXpvtapu.matCh_defS.........cccoviiiiieiicc e 3-39
3.4.8 nxpvtapu.rotate 180 _defScceviriiiiiiieie e 3-40
3.4.9 NXPVLAPU.FOW _ETS ..cviiieiiiicece e 3-40
3.4.10 nxpvt.apu.sat_boxX_filter defS........cccooiiieiiiiiiiie e 3-40
3.5 DISPIAY .. 3-40
351 NXPVEAPUMAIKeiiiiiiieiesee et 3-40
3.5.2 NXPVLAPU.MAIK_COION......ciuiiiiicicciie et 3-40
3.6 FRALUIE DEECLIONiitiiiiiiieiieieie ettt b e 3-41
3.6.1 NXPVLAPU.TASED ..o 3-41
3.6.2 NXPVEAPU.NAITIS ... 3-41
3.6.3 NXPVLAPU.SAA.....cviiiieiicic ettt sttt te e nre s 3-41
T A 11] T TSRS 3-42
371 COrTElatiIONSIZEecvieeieiee e 3-42
3.7.2 nXPVEAPU.COL_TIITEN ..o 3-42
3.7.3 NXPVLAPU.COMTEIAtiONc..iiviiiicic e 3-42
3.7.4 nxpvtapu.filter_median_3X3.......ccooii 3-42
3.7.5 nxpvtapu.filtering_SObel _3X3........coovoiiiieiicece e 3-43
3.7.6 NXPVLAPU.QAUSS_3X3 ..oiiiiiieiieiieiiienie sttt sttt nn e nn e nne s 3-43
377 NXPVELAPU.QAUSS _5X5 .eiiiiiiiieiiiie ittt nne e 3-43
3.7.8 NXPVEAPU.GrAdIENT ... e 3-43
3.7.9 NXPVLAPU.GIAAIENT X ..oioiiiiiiiiecie ettt sre e s sae e sne s 3-43
3.7.10 NXPVE.APU.GradIENT_Y ..c.eiiiiiieiieieieseeee e 3-44
3711 NXPVEAPUNIMS Lottt sttt e e ssb e e e snb e e s bae e s beeeanbeeeanneas 3-44
3.7.12 nXPVEAPU.FOW_TIIET ..o 3-44
3.7.13 NXPVL.aPU.SALUIate _NONZEIO......ceiiiieieiiiee it e st siee et e e e s e bre e e 3-44
3.7. 14 NXPVEAPU.SCRAIT X .oouiiiiiiiieitesie ettt 3-45
3.7.15 NXPVLAPU.SCRAIT Y oo 3-45
IR T € T=To] 0= { YRR STPR 3-45
3.8.1 nXPVLAPU.FOtAtE 180cciiieiiiieiiiie et 3-45
NS |10 1] €= R UPTRRTRPPR 3-45
3.9.1 NXPVLAPUANGITECT.....viiiiiciee e e e 3-45
3,10 MOTPROIOQY ..ovieeieiie et 3-46
3.10.1 nxpvt.apu.dilate_diamondcccouiiiiiiiiiii 3-46
Vision Toolbox 1.1.0 1-3

Manual for $32v234 Automotive Vision Processors

3. 11 ODJECE DELECTION ...ttt bbbt 3-46

3.11.1 NXPVLAPU.NAIT_CASCAURveeeeeiieciieieeie ettt st nneas 3-46
3.11.2 nXPVL.APU.IDP_CASCATE........cccuieieciieieee e 3-46
T8 7 @0 11 141 [0 o OSSPSR 3-47
312,10 NXPVEAPUSAL.....eeiiiiie ettt nes 3-47
3.12.2 nxpvt.apu.sat_DOX FIIEr.......ccooiiiieiie e 3-47
T8 G T TSy 4|4V RSP 3-47
3.13.1 nXpVt.apu.dOWNSAMPIEcoiiiieiieee e 3-47
3.13.2 nXpvt.apu.downSampPle QAUSScccveueiiereiie e se e 3-47
3.13.3 NXPVLAPU.UPSAMPIE... .ottt st nneas 3-48
TN - 51 1 o3PS ROPOUPPRS 3-48
3.14.1 nXPVE.apuU.aCCUMUIATION.iitiiiiiiiiieiie e 3-48
3.14.2 NXPVLAPUNISTOGIAMoveeiiciecc et nae e nne s 3-48
3.14.3 NXPVEAPU.FEAUCTION ...t 3-49

O U T [TR UPPPSRTIN 4-50
Ot R @0 To [©1-T 1T - U1 o] ISR STUSPRSR 4-50
g R)4) V7 A oo o (=T 1= o OSSR 4-50
4.2 Target ConfIGUIALIONcc.ooviiiiiiiiiesi e 4-50
421 NXPVE_CIEALE_TAITET ...cveiueiiieiieeceie et 4-50
4.2.2 nXpvt_deploy 0N target........ccooiiiiiiiiie i 4-50
4.3 T0o0IDOX ManNAgEMENL......cc.cciiiieeie ettt et reente e nneas 4-51
4.3.1 nxXpvt_install_toolDOX.........ccoiiiiiiiiice e 4-51
4.4 Core fUNCLIONALILYcoeieeeie et enreas 4-51
AL UMAL..ciiiiieec ettt ettt bbbt 4-51
4411 ODJECt CrEALIONccueiuiiieieeie sttt 4-51
4412 MEINOUS.. ..o e 4-51

T O - 11 1 =1 £SO TSOSPRRIN 4-51
45.1 Cascade ODJECt AELECIONccuiiiiiieciece et 4-51
4511 ODBJECt CrEALIONocueiuieiiiiiee sttt e 4-52
N o (0] oL 4 (=TSSR 4-52
4.5.1.3 MEINOU STEP....iieiieiiiicieee e 4-53
4514 EXAMPIE oo 4-54
4.5.2 Convolutional Neural NetWOrKS..........cccooveiiereiieieee e 4-54
A R O o] [-ox a ot =Y L1 o] [ST PS 4-54
4522 Method 10adCIlasSNAMES.........c.cccvereiiieriere e seee et enes 4-54
4523 Method PrediCt........ccocvieiieiiciece e 4-54

4.6 OPENCV WIAPPELS ..uvveeeitiieeitteeasiteesteeessteeeabeeesteesanbeeessbeesssbeesaseeeasseeeaseeeaseeeanseeeanes 4-54
4.6.1 ODJECt traCKING .ooovveeiii et s 4-54
4.6.1.1 Kalman fIIEr c..ccveiiii e s 4-54

O I O O | o] [Tot A O - [0] PSPPI 4-54
4.6.1.3 MEINOUS......oo i 4-55
4.6.1.4 EXAMPIE oo s 4-55
Vision Toolbox 1.1.0 1-4

Manual for $32v234 Automotive Vision Processors

1 Introduction

In this document, the NXP Vision Toolbox for S32\VV234 is described. The NXP Vision Toolbox
can be used only in conjunction with the NXP S32V234 Vision SDK that support the Linux OS
runtime environment.

The first part of this document covers the Vision Toolbox overview, installation and setup of
required prerequisites. This includes necessary software packages and any collateral parts of the
SW.

The second part then describes the main functionalities which are part of this Vision Toolbox for
MATLAB. This part aims to provide an understanding of the basic functionality, such as using
MATLAB toolbox wrappers with the Vision SDK.

1.1 Purpose

The purpose of this document is to present the NXP Vision Toolbox for S32V234 and help users
to bring up examples quickly.

1.2 Audience

This document is intended to:

e MATLAB Computer Vision System users that wish to evaluate the NXP HW&SW
solutions starting from existing applications written in m-scripts;

e S32V234 Vision SDK users that may wish to simulate the kernels in MATLAB for a
better understanding and visualization capabilities;

e NXP S32V234 buyers that need to have a quick start-up into vision applications and ready
to run examples;

Vision Toolbox 1.1.0 1-5
Manual for $32v234 Automotive Vision Processors

1.3 References

This document does not cover the computer vision theory nor subjects related with how specific
kernels and functions work. For more details about these please refer to:

ID Title Location
[1] OpenCV Library https://opencv.org/
[2] The Modern History of Object | https://medium.com/@nikasal889/the-modern-
Recognition— Infographic history-of-object-recognition-infographic-
aeal8517c318

[3] MATLAB Computer Vision | https://www.mathworks.com/help/vision/
Documentation

[4] NXP S32V234 Vision Processor | https://www.nxp.com/products/processors-and-
microcontrollers/arm-based-processors-and-
mcus/s32-automotive-platform/vision-
processor-for-front-and-surround-view-camera-
machine-learning-and-sensor-fusion-
applications:S32V234

1.4 Definitions, Acronyms and Abbreviations

Acronym Description

ACF APEX Core Framework

APEX A parallel image processing accelerator HW block part of NXP
S32V234 SoC.

APEX COMPILER | Set of tools (NXP APU compiler) that allow compilation of code for
APEX subsystem

ARM Family of RISC architectures

ISP Image Signal Processor subsystem of the S32VV234 SoC

OpenCL Open Computing Language

OpenCV Open Source Computer Vision

SDK Software Development Kit

Vision Toolbox 1.1.0 1-6

Manual for $32v234 Automotive Vision Processors

https://opencv.org/
https://medium.com/@nikasa1889/the-modern-history-of-object-recognition-infographic-aea18517c318
https://medium.com/@nikasa1889/the-modern-history-of-object-recognition-infographic-aea18517c318
https://medium.com/@nikasa1889/the-modern-history-of-object-recognition-infographic-aea18517c318
https://www.mathworks.com/help/vision/
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion-applications:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion-applications:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion-applications:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion-applications:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion-applications:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion-applications:S32V234

2 Vision Toolbox

This chapter describes the main NXP Vision Toolbox features. Note that everything needed to
run and build the demos is installed with the help of an additional toolbox created for this purpose
called NXP Support Package for S32Vv234.

The majority of applications included in NXP Vision Toolbox are demos, which demonstrates all
possible uses of the toolbox and how to use MATLAB scripting to program and test applications
on NXP S32V234 Vision Processor.

2.1 Programming modes

The NXP Vision Toolbox is targeted mainly for the vision processing algorithms on S32Vv234,
which is aimed for fast, massively parallel image operations (APEX) and Image Signal Processing
of the camera input (ISP).

Within the NXP Vision Toolbox there are two ways of programming the APEX cores available
from MATLAB scripting:

e APEX Core Framework (ACF): this method consists in writing special m-functions
called graphs that are using dedicated APEX Kernels m-script wrappers which calls
special routines from NXP Vision SDK optimized for performance. The following code
snippet shows a simple rotate graph. The functions highlighted in bold are called APEX
Kernels

function outImg = rotate graph(inImg, inOffset) %#codegen
nxpvt set chunk(l, 8, 8);
outIndir = nxpvt.apu.indirect(inImg, inOffset);
outImg = nxpvt.apu.rotate 180 (outIndir);

end

The code generated upon the call of rotate graph () runs exclusively on the APEX
core.

e APEX Computer Vision: this method consists in writing applications using special
functions supported by the Vision SDK that mimics the OpenCV functionalities. These
functions are special wrappers on top of Vision SDK classes that implement complex
algorithms.

function rgb2gray image main ()
inImgPath = 'data/sobel.jpg';
inImgUMat = nxpvt.imread(inImgPath) ;
outImgUMatGray = nxpvt.apexcv.rgb2gray (inImgUMat) ;
nxpvt.imshow (outImgUMatGray) ;

end

The code generated upon the call of APEXCV functions may have code that is executed on
both ARM and APEX cores.

Vision Toolbox 1.1.0 2-7
Manual for $32v234 Automotive Vision Processors

The scope of this manual is to enable users to understand the existing examples, build and
download the application to NXP target and not to describe the programming methods. In case
you wish to become familiar with the APEX programming, please consult the Vision SDK
documentation.

However, it’s necessary to mention that all demos and examples provided as part of the NXP
Vision Toolbox can be run as out-of-the-box software since the user is not forced to build any
Vision SDK components. The NXP Vision Toolbox takes care of all setup necessary to run the
applications shipped with the toolbox.

2.2 Main Features

The NXP Vision Toolbox for S32V234 is a prototype tool that helps you:

Test vision algorithms using NXP Vision SDK functions in the MATLAB environment
for a complete development, simulation and execution on the NXP targets by generating
the C++ code directly from m-scripts using nxpvt codegen ()

Use various 1/O functions to control the NXP Evaluation Boards supported cameras and
displays

Program the NXP APEX cores directly from MATLAB environment using Apex Core
Framework graphs

Configure the NXP S32V Targets to enable code deployment directly from MATLAB
environment and execute vision algorithm on NXP S32V Evaluation Boards

Fast evaluation of NXP solutions using ready-to-run examples derived from MATLAB
Computer Vision System Toolbox

The NXP Vision Toolbox for S32V234 is designed to handle code generation based on NXP
Vision Software Development Kit for CPU Platform (ARM A53 cores) and Image Processing
Platform (APEX cores)

.3 i 2
100 6

|
e | 2xCAN-FDB4Msg || DualCh.FlexRay128Msg | | Gigabit Ethomet Control |
oy | 5GD/SPClellane | | 2xLinFlexControl&3xFC | | 4x dSPI (4 cs) |
| 2x eTimers | | 1xsarapcizbits,18v | | 1x SD-HC |
Vision Toolbox 1.1.0 2-8

Manual for $32v234 Automotive Vision Processors

After the code generation, the NXP Vision Toolbox can be configured to download the application
to the NXP target via TCP/IP. This mechanism requires to have a bootable SD-CARD configured
with NXP u-boot and Linux images compatibles with the Vision SDK version used for code
generation.

The NXP Vision Toolbox development flow is shown in the figure below. On the host-PC,
running under MATLAB environment, one can start testing various algorithms using MATLAB
simulation capabilities. Once the results satisfy the requirements, the MATLAB Coder can be
employed to generate C++ code from m-scripts.

The C++ code is then cross-compiled on the host PC using the NXP build tools and Vision SDK
libraries. The final application can then be loaded on the Target using dedicated MATLAB scripts
available in NXP Vision Toolbox.

MATLAB

‘\ Application
m-files

MATLAB MATLAB
Coder™ Simulation
|
Vision SDK

GCC Libraries
Compiler Base/Pro

S32DS for
Vision IDE

Ethernet JTAG

v
Target
532V234

ARM Core APEX Core

NXP offers additional tools like S32 Design Studio for Vision that can be used to import and
debug the MATLAB generated code directly on the target.

For more information please check the Vision Toolbox quick start guide or watch this webinar

Vision Toolbox 1.1.0 2-9
Manual for $32v234 Automotive Vision Processors

https://www.mathworks.com/videos/building-embedded-vision-applications-with-matlab-and-nxp-vision-toolbox-for-s32v-1539372353360.html

The NXP Vision Toolbox for S32V234 package contains:

Optimized APEX kernel wrappers for the APEX image cognition processor and support
for target code generation. For code generation the NXP Vision Toolbox works in
conjunction with the NXP Vision SDK. It provides a mechanism to move from MATLAB
to APEX quickly and easily. The user can prove their vision algorithm within MATLAB
environment first, before moving to the target APEX processor. The toolbox eliminates
lot of time consuming tasks like development of graph, process description, data
descriptors etc. since they are automatically generated by the tool based on m-scripts.

Below is an example of Sobel Graph written in MATLAB using the Vision SDK Kernels
highlighted in bold.

function [out, imgEdge] = sobel graph(img) S%#codegen
coder.inline('never');
nxpvt set chunk(l, 8, 2);
% Convert RGB image to grayscale
imgGray = nxpvt.apu.rgb_ to_grayscale (img) ;
% Sobel edge detection method
imgEdge = nxpvt.apu.filtering sobel 3x3 (imgGray) ;
% Add two images
out = nxpvt.apu.add(imgEdge, imgGray):;
end

During simulation these kernels act as any other MATLAB function allowing users to
speed up the software development by checking the data at each processing step. To next
code snipped shows how one can call such graph function to check the outcome.

function sobel main() S%#codegen
inImgPath = 'data/sobel.jpg';
inImgUMat = nxpvt.imread(inImgPath);
%% Sobel filter
[~, imgEdgeUMat] = sobel graph (inImgUMat) ;
%% Output
nxpvt.imshow (imgEdgeUMat) ;
end

After running the sobel main () you can simply check for results (input vs. output):

4 Figure 1 — O X 4 Figure 1 = O X
File Edit View |Insert Tools Desktop Window Help Eile Edit View |Insert Tools Desktop Window Help ™~
NDEdS B RRODEL-1E/0 7 DEde | | RRODEL- &0

Vision Toolbox 1.1.0 2-10
Manual for $32v234 Automotive Vision Processors

e Optimized APEX CV functions for the APEX image cognition processor and support for
target code generation. These functions implement complex algorithm that can be used
AS-IS from MATLAB m-scripts.

e Code generation utilities for transform m-scripts into C++ code that can be executed on
ARM A53 or APEX cores depending on the type of data and kernels invoked in m-script
files. By default, generic m-script code is converted into the C++ counterpart that is
executed on the ARM core. In case you wish to take the full benefits of using the NXP
Vision Accelerator, then you should use the available kernels exposed by the NXP Vision
Toolbox to write your application.

e Target support utilities designed to configure the SD-Card with a bootable Linux OS
image and capabilities to download and run the vision applications directly from
MATLAB

e Ready-to-run examples that exercises various functionalities based on:
o MATLAB Computer Vision System Toolbox demos

o NXP Vision SDK examples

Vision Toolbox 1.1.0 2-11
Manual for $32v234 Automotive Vision Processors

2.3 Processors Supported

The NXP Vision Toolbox 1.1.0 supports the NXP S32V234 Vision Processor. Testing and
validation has been completed on production qualified parts mounted on:

e S32V234 Evaluation Board equipped with S32V-SonyCam

e SBC-S32V234 Evaluation Board equipped with S32V-SonyCam

2.4 MATLAB Required and Recommended Products

The NXP Vision Toolbox requires the following MathWorks products:

Version Required

Product Compatibility Recommended
MATLAB R2018a/b Required
MATLAB Coder R2018a/b Required
Embedded Coder R2018a/b Required
Image Processing Toolbox R2018a/b Required
Computer Vision System Toolbox R2018a/b Required
Embedded Coder Support Package for ARM Cortex- R2018a/b Required

A Processors

Computer Vision System Toolbox OpenCV R2018a/b Required
Interface

MATLAB Support Package for USB Webcams R2018a/b Recommended
Image Acquisition Toolbox Support Package for OS R2018a/b Recommended

Generic Video Interface

Due to code generation performance issues the NXP Vision Toolbox uses a special feature row-
major that has been introduces in MATLAB Coder 2018a. This feature allows better code
generation that is compatible with embedded systems designed to store the arrays in row-major
format avoiding this way unnecessary copies or transposes between MATLAB and Vision SDK
APIs.

Vision Toolbox 1.1.0 2-12
Manual for $32v234 Automotive Vision Processors

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/vision-processor-for-front-and-surround-view-camera-machine-learning-and-sensor-fusion-applications:S32V234
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/s32v-vision-and-sensor-fusion-evaluation-board:S32V234EVB
https://www.nxp.com/part/S32V-SONYCAM
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/s32v234-vision-and-sensor-fusion-evaluation-board-for-prototyping-and-development:SBC-S32V234
https://www.nxp.com/part/S32V-SONYCAM
https://www.mathworks.com/products/matlab-coder/features.html

2.5 Build Tools

The NXP Vision Toolbox supports code generation for the NXP ARM GNU and NXP APU
compilers.

Compiler Versions Tested

NXP ARM GNU Compiler NXP GCC 6.3.1

NXP APU Compiler V1.0 build 530

The target compilers used for NXP Vision Toolbox needs to be configured. Use the notation below
to setup these compiler environment or user variables. Ensure that such variables are defined to
compiler path value as shown below:

APU_TOOLS= C:/NXP/APU Compiler v1.0
S32v234 SDK ROOT = C:/NXP/VisionSDK S32V2xx RTM 1 2 0 HF1/s32v234 sdk

2.6 Installation

Installing the NXP Vision Toolbox is your first step to getting up and running on the NXP
S32Vv234 Automotive Vision Processor. Please follow the installation steps below, and then
explore the examples.

2.6.1 System Requirements

The NXP Vision Toolbox is supported only on PC with Windows OS. For a flowless development
experience the minimum recommended PC platform is:
e Windows® 7/10 64bit Operating System
At least 2 GHz CPU Speed
At least 4 GB of RAM
At least 20 GB of free disk space.
Internet connectivity for web downloads.

2.6.2 Vision Toolbox Installation

The complete installation procedure with detailed step-by-step screenshots is described in the
Vision Toolbox Quick Start.pdf located in docs folder or available via MATLAB
Help. In this manual only, the summary of the installation steps is shown with details on specific
dependencies.

The NXP Vision Toolbox was designed to be installed as a MATLAB Add-on using Mathwork’s
Toolbox Installer technology. For this purpose, the NXP Vision Toolbox is delivered asa MLTBX
file which is automatically recognized by MATLAB.

Vision Toolbox 1.1.0 2-13
Manual for $32v234 Automotive Vision Processors

To install the NXP Vision Toolbox for S32V234, the following steps are required:

1. Go to NXP website and log-in into your account;
2. Use this link to access the NXP Vision Toolbox for S32Vv2334 MLTBX file;

NXP Software & Support * Vision Toolbox ~ NXP Vision Toolbox for MATLAB version 2018.R1 : Files

Software & Support
Product List
Product Search
Order History
Recent Product Releases

Recent Updates

Licensing
License Lists

Offline Activation

FAQ
Download Help
Table of Contents
FAQs

Product Download

NXP Vision Toolbox for MATLAB version 2018.R1

J Files

The Vision Toolbox is delivered as a MATLAB MLTBX file. To avoid any kind of file corruption during download
process, make sure you select the file you wish to download using the checkbox and then click on "Download
Selected Files" button

[Show au Fnesa 6 Files

License Keys Notes @ Download Help

(] + File Description % FileSize % FileName :
+ NXP Support Package for $32V234 version 1.1MB & NXP_Suppori_Package_S32V234_20181119.mitbx
2018R1.RFP
[+ NXP Vision Toolbox for S32V234 Release Notes 1MB & Vision_Toolbox_Release_Notes pdf
D + NXP Vision Toolbox for $32V234 version 2018 R1.RFP 1126 MB & NXP_Vision_Toolbox_S$32V234_2018 R1.RFP_20181119 mitbx
0 + $32v234-EVB SD-CARD Image 468.6 MB ¥ S32V234-EVB_29285_image.gz
[+ $32V234-SBC SD-CARD Image 5123MB & S32V234-SBC_image gz
[+ Software Content Register for NXP Vision Toolbox 17 KB & Software_Content_Register txt

Download Selected Files

3. Make sure you download the NXP Vision Toolbox in MLTBX file format
Download Selected Files option.

4. Openthe MLTBX file in MATLAB.

Install NXP_Vision_Toolbox_for_S32V234 X

NXP_Vision_Toolbox_for_§32V234 by NXP Model-Based Design Toolbox Team Updated on 18 Nov 2018
Version: 2.0.0

Generate code optimized for NXP's $32V234 Automotive Vision Microcontrollers

Cancel

using

5. Indicate acceptance of the NXP Software License Agreement by selecting “I agree to
the terms of the license” to proceed

Vision Toolbox 1.1.0

Manual for $32v234 Automotive Vision Processors

2-14

https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=SW32V23-VSDK001E
http://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=VISION-MATLAB_v2018.R1

4\ License Agreement: NXP_Vision_Toolbox_for_532V234 X

LA_OPT_NXP_Software_License v2 October 2018

IMPORTANT. Read the following NXP Software License Agreement ("Agreement”) completely. By selecting
the "l Accept” button at the end of this page, or by downloading, installing, or using the Licensed Software,
you indicate that you accept the terms of the Agreement and you acknowledge that you have the authority, for
yourself or on behalf of your company, to bind your company to these terms. You may then download or
install the file. In the event of a conflict between the terms of this Agreement and any license terms and
conditions for NXP&€™s proprietary software embedded anywhere in the Licensed Software file, the terms of
this Agreement shall control. If a separate license agreement for the Licensed Software has been signed by
you and NXP, then that agreement shall govern your use of the Licensed Software and shall supersede this
Agreement.

NXP SOFTWARE LICENSE AGREEMENT

This is a legal agreement between your employer, of which you are an authorized representative, or, if you
have no employer, you as an individual ("you" or "Licensee"), and NXP B.V. ("NXP"). It concerns your rights
to use the software provided to you in binary or source code form and any accompanying written materials
ithe "l icensed Software™ The | icensed Software mav include anv undates or error correctinons or

Ol agree to the terms of the license.

oK Cancel

6. Click “OK” to start the MATLAB installation process. The rest of the process is silent and
under MATLAB control. All the files will be automatically copied into default Add-Ons
folder within the MATLAB. The default location can be changed prior to installation by
changing the Add-Ons path from MATLAB Preferences

4\ Preferences - O X
4 MATLAB “~ | MATLAB Add-Ons Preferences
Add-Ons, !
App Designer Installation Folder
Code Analyzer This is where MATLAB puts installed Add-Ons. MATLAB always searches this folder for installed Add-Ons.
Colors CAUsers\nxa14941\Documents\MATLAB\Add-Ons

Command History
Command Window
Comparison

Current Folder
Editor/Debugger
Figure Copy Template

Fonts
General v
Cancel Apply Help
Vision Toolbox 1.1.0 2-15

Manual for $32v234 Automotive Vision Processors

7. After a couple of seconds, the NXP’s Vision Toolbox should be visible as a new Add-ons.

EREE=TOME

@ [",:j Community

3 Request Support

Help
- Q Learn MATLAB

| ENVIRONMENT -
E% Get Add-Ons

a Manage Add-Ons
E Package Toolbox
E Package App

- Get Hardware Support Packages

Check for Updates >
4\ Add-On Manager - [m] X
Get Add-Ons | Import
Installed (25) [al
Name Type Author Install Date -
g NXP Model-Based -
s NXP_Vision_Toolbox_for_S$32V234 version 2.0.0 Toolbox Design Toolbox 19 November 2018
= Team,
= NXP Model-Based
W NXP_Support_Package_$32V234 version 2.0.0 Toolbox Design Toolbox 19 November 2018
Team

8. More details about the NXP’s Vision Toolbox can be found by clicking on View

Details

4\ Add-On Manager

< Back

Generate code optimized for NXP's S32V234 Automotive Vision Microcontrollers

Toolbex

Description

MATLAB enables editing, simulation, compiling and deployment of designs from MATLAB environment.

comprehensive enablement environment that reduces development time.
Features:

- Generate code for Linux™ based applications with direct download to target support
- Built-in support for 10 functions to control onboard camera and display

Compiler/Arm® Compiler
- Support A53 and APEX programming directly from MATLAB m-scripting

» View File List

NXP_Vision_Toolbox_for_S32V234 version 2.0.0 by NXP Model-Based Design Toolbox Team Installed on 19 November 2018

| Open Folder| |

Learn More ¥| | Uninstall... |

- Includes collaterals providing convenient access to manuals, tool guides, how-to videos and application notes
- Example projects demonstrating ISP and APEX functionalities based on Mathworks Computer Vision System Toolbox examples

The NXP Vision Toolbox for MATLAB is a complimentary integrated development environment for $32V234 processor which is a high-performance
automotive processor designed to support safe computation-intensive applications in the area of vision and sensor fusion. The NXP Vision Toolbox for

Based on Mathworks® software including Image Processing and Computer Vision System Toolboxes the NXP Vision Toolbox offers designers a
straightforward development tool that makes vision accelerators programming easy. NXP software, along with the NXP Vision Toolbox provides a

- Seamless integration with MATLAB environment for easy vision application development, simulations and target running support

- Integrated NXP Software: Vision SDK — includes ISP and APEX kernels/Linux board support package for A53 core development/NXP APU

Vision Toolbox 1.1.0
Manual for $32v234 Automotive Vision Processors

2-16

2.6.3 License Generation and Activation

The NXP Vision Toolbox for S32V234 is available free of charge, however, a valid license is
required to activate the Vision Toolbox.

The license can be generated for free. For more details and step-by-step guide please check the
dedicated manual on this subject Vision Toolbox License Activation.pdf

Log-in into your NXP Software Account and Generate the license using this link

NXP Software & Support » Vision Toolbox » NXP Vision Toolbox for MATLAB version 2018.R1 : Files

software & Support Product Download
Product List
Product Search NXP Vision Toolbox for MATLAB version 2018.R1
Order History

Recent Product Releases J Files

| License Keys | Notes © Download Help

The Vision Toolbox is delivered as a MATLAB MLTBX file. To avoid any kind of file corruption during download
Licensing process, make sure you select the file you wish to download using the checkbox and then click on "Download
Selected Files" button

Recent Updates

License Lists

Offline Activation
[show ai Fies) 6 Files

FAQ

+ Flile Description + Filesize < FileName =]
Download Help + NXP Support Package for $32V234 version 11MB & NXP_Support_Package_S32V234_20181119 mitbx
Table of Contents 2018 RIRFP
FAQs + NXP Vision Toolbox for 532V234 Release Notes 11MB 3§ Vision_Toolbox_Release_Notes.pdf
+ NXP Vision Toolbox for S32V234 version 2018 R1.RFP 1126 MB & NXP_Vision_Toolbox_$32V234_2018 R1.RFP_20181119.miibx
+ $32v234-EVB SD-CARD Image 468.6 MB & S32V234-EVB_29288_image.gz
+ $32v234-SBC SD-CARD Image 5123MB & $32V234-SBC_image.gz
+ Software Content Register for NXP Vision Toolbox 1.3 KB & Software_Content_Register.txt

Download Selected Files

To validate the license activation, run the command nxpvt license check. If there are
issues with the license, this command will return the root-cause.

Command Window

>> nxpvt_license check

Error using nxpvt license check

License Error: -9, Invalid host. The hostid of this system does not match
the hostid specified in the license file.

In case you do not have a license, please go to The NXP Vision Toolbox Web
Site to get a free license or request a demo. Provide the following HostID:

o
66B7-2EBD

Jrx >> |

Vision Toolbox 1.1.0 2-17
Manual for $32v234 Automotive Vision Processors

http://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=VISION-MATLAB_v2018.R1

2.6.4 Vision SDK and Build Tools

All the code generated by NXP Vision Toolbox is based on S32V234 Vision SDK package. This
software package is also free of charge and apart of optimized kernels and libraries for the S32V
automotive vision processors, it also contains the build tools to cross-compile the MATLAB
generated code to ARM A53 and APEX cores.

You can obtain the S32V234 Vision SDK free of charge directly from NXP website. Perform the
following steps to obtain and install the S32V234 Vision SDK and NXP Build Tools:

1. Download the Vision SDK RTM v1.2.0 (with all HotFixes) on your PC. Due the size of
the package this might take a while.

NXP Software & Support » Product Information : Automotive SW - Vision Software

Software & Support Product Information

Product List
Product Search Automotive SW - Vision Software

Order History

Recent Product Releases

Recent Updates To register a New Product please click on the button below
Licensing Rediztal

License Lists

Offline Activation Current Previous
FAQ Version Description
Download Help 0.8.0 SW32V23-VSDKANX-EAR-0.8.0
Table of Contents 120
FAQs

Vision Software Development Kit for $32v2

The Vision Software Development Kit (VisionSDK) for $32V2 provides a comprenensive SW enablement
environment for NXP/AMPs 2nd generation of vision processors, S32v2xx. The S32v2xx family of devices is
designed to suppert computation intensive for image pr

The VisionSDK provides comprehensive abstraction of the powerlull accelerators for image signal processing|
(ISP) and massive parallel computing (APEX). Well documented APIs help to fully exploit the HW capabilities
and create applications easily.

Users of the VisionSDK can be inspired by the broad offering of demo applications bundied with the package
coming with full source code

The VisionSDK is topped with its sophisticated build system which makes it easy to create new projects. For
convenient code development NXP offers the eclipse based Design Studio for Vision.

2. Open the exe file and wait for the Vision SDK Install Anywhere to start.

w SDEK — x
Introduction

@ Intraduction InstallAmawhere will guide you through the installation of
) License Agreement WisionSDk_S32v2_RTM_1_2_0_HF1.

O Choose Install Folder Itis strongly recommended that vou guit all programs hefare
() Choose Install Set continuing with this installation.

O Choose Link Folder

O Pre-Installation Summary Click the Mext' button to proceed to the next screen. Ifyou want to

change something on a previous screen, click the 'Previous' buttan.

() Installing...
() Install Complete fou may cancel this installation at any time by clicking the 'Cancel’
button.
InstallAnywhere
Cancel Previous
Vision Toolbox 1.1.0 2-18

Manual for $32v234 Automotive Vision Processors

https://www.nxp.com/webapp/swlicensing/sso/downloadSoftware.sp?catid=SW32V23-VSDK001E

3. Make sure you follow all the steps and install the:

e NXP APU Compiler v1.0 — used to compile the generated code for APEX Vision
Accelerator

e NXP ARM GNU Compilers — used to compile the generated code for ARM A53

e MSYS2 — used to configure the bootable Linux image and to download the actual
vision application to the S32VV234 Evaluation Board

w VSDK

& Introduction

& License Agreement

& Choose Install Folder

& Choose Install Set

() Choose Link Folder

O Pre-Installation Summary
() Installing...

() Install Complete

A\ 4
A\

- s
Choose Install Set

Install Set | Typical s

~[v|532v234 SDK ~
v nxP APU Compiler v1.0

~[v| NP ARM GNU Compilers

[w]mMsYs2

< >
Description
This installs the S32V234 Vision ADAS SDK.

Installamewhere

Cancel

Previous

Vision Toolbox 1.1.0

Manual for $32v234 Automotive Vision Processors

2-19

2.6.,5 Setting up the Environment

The last step required for software configuration is to set two system or user environmental

variables APU_TOOLS and S32v234_SDK_ROOT that points to:

APU _TOOLS= C:/NXP/APU Compiler v1.0

S32v234 SDK ROOT = C:/NXP/VisionSDK S32V2xx RTM 1 2 0 HF1/s32v234 sdk

Ensure system or user environment variables, corresponding to the compiler(s) you have installed,

are defined to compiler path value as shown below:

Edit User Variable

Variable name: ‘ APU_TOOLS
Variable value: ‘ C./NXP/APU_Compiler v1.0
Browse Directory... Browse File... OK Cancel
Edit System Variable
Variable name: ‘ 532v234 SDK_ROOT
Variable value; ‘ C./NXP/VisionSDK_S32V2_ RTM_1_2 0 HF1/s32v234 sdk
Browse Directory... Browse File... OK Cancel

Note: Paths shown are for illustration, your installation path may be different. Once environmental

variables are setup you will need to restart MATLAB to use these variables.

An alternative for settings the system paths manually is the “Set the environment variables” option

from the NXP Vision Toolbox support package installer:

Vision Toolbox 1.1.0
Manual for $32v234 Automotive Vision Processors

2-20

4 Set environment variables - x
APU_TOOLS

Path to NXP APU compiler install folder:

C:/MXP/APU_Compiler_v1.0_530 Choose

532234 _SDK_ROOT

Path to 532V234 Vision SDK install folder:

C:/MXP/VisionSDK_S32V2_RTM_1_2_0_HF1/s32v234_sdk Choose

Set system wide Set user wide

Note: If the MATLAB is open with Administrator rights, then the “Set system wide” can be used
to set the system variables. Othervise (most of the cases) use “Set user wide” to setup the
environment variables.

2.6.6 Setting the MATLAB Path

By default, the MATLAB environment is configured during the NXP Vision Toolbox Add-On
installation process. In special cases (for other MATLAB installations, Add-on Management,
Restore to default Paths) the NXP Vision Toolbox might need to be re-added to the MATLAB
path.

In case you need to add the toolbox to the MATLAB path, navigate to the Vision Toolbox
installation directory and run the “nxpvt install toolbox” script.

>> nxpvt install toolbox

NXP Vision Toolbox: (c¢) 2018 NXP https://www.nxp.com/visiontoolbox
Successful.

>>

Vision Toolbox 1.1.0 2-21
Manual for $32v234 Automotive Vision Processors

2.7 Connecting to the board

In order to provide an easy-to-use interface, the NXP Vision Toolbox supports a direct connection
to an S32V234-SBC/S32V234-EVB board which gives the user a way to effortlessly interact with
the board. The connection object only needs the IP address of the board:

>> s320bj = nxpvt.s32v234('134.27.168.171")

s32v234.elf | 4 kB | 4.0 kB/s | ETA: 00:06:35 | 0%
s32v234.elf | 1586 kB | 1586.6 kB/s | ETA: 00:00:00 | 100%
s320bj =

s32v234 with properties:

CONNECTED: 1
NOTCONNECTED: 0
status: 1
ipAddress: '134.27.168.171"
port: 9898
connection: [1x1 tcpclient]

cameralnUse: 0

After the creation of the object there are a series of commands that can be issued to complete
different tasks and operations as described below.

Syntax:

s320bj.shell () - opens a shell in the Matlab Command Window tothe
s32v234 board

s320bj.system (command) - runs the command on the s32v234 connected
board
s320bj.getFile (remoteFilename, localFilename) - copies the remote

file from the s32v234 connected board

s320bj.putFile (localFilename, remoteFilename) - copies the local
file to the s32v234 connected board

s320bj.disconnect () - disconnects from the s32v234 connected board
Examples of usage:
s320bj = nxpvt.s32v234('192.168.1.1");
s320bj.system('ls -1");

s320bj.getFile('/a.out', 'C:\a.out'); - copies /a.out from the
s32v234 connected board to the local file

s320bj.putFile('C:\a.out", '/a.out'); - copies C:\a.out to the
s32v234 connected board remote file

Vision Toolbox 1.1.0 2-22
Manual for $32v234 Automotive Vision Processors

s32.disconnect () - disconnects from the board.

2.7.1 Using the MIPI-CSI attached camera

The NXP Vision Toolbox contains a way to get the input from the MIPI-CSI cameras attached to
either one of the S32V234-EVB or S32V234-SBC boards, directly in MATLAB. The way to do
that is by creating a connection object and a cameraboard object on top of it. Then you can simply
get a stream or a single image which can then be handled as a normal MATLAB image. The
syntax for doing this is straightforward.

To create the cameraboard object the following syntax should be used:
camObj = nxpvt.cameraboard(s32, cameralndex, 'Resolution’, supportedResolution)
>> cam = nxpvt.cameraboard(s320bj, 1, 'Resolution', '720x1280")
cam =
cameraboard with properties:
height: 720
width: 1280

cameraldx: O
s32v2340bj: [1x]1 nxpvt.s32v234]

The cameralndex parameter should be either 1 (MIPI-CSI A port) or 2 (MIPI-CSI B port)
depending on the MIPI-CSI port used. The only supported resolution at this moment is
“720x1280°’. Also, at the moment, we are supporting just one camera at a time. After creating the
cameraboard object, it can be used in the following way:

>> pic = cam.snapshot ()
pic =
UMat uint8 with properties:
ptr: 903011312
type: O
height: 720
width: 1280

channels: 3

>> nxpvt.imshow (pic)

Vision Toolbox 1.1.0 2-23
Manual for $32v234 Automotive Vision Processors

Command Window

>> pic = cam.snapshot ()
pic =
UMat_uint8 with properties:

ptr: 903011312
type: 0
height: 720
width: 1280
channels: 3

¥ Editor - C:\repo\adast_vdascau\vision_toolbox\internals\build\nxpvt_codegen.m IBIX)| Workspace ®
[
1 s 4\ Figure 1 = m} X
2 % File Edit View |Insert Tools Desktop Window Help ~
3 B > =
4 = ij a ﬁ‘ 2 k Y S &ﬁ’i@ sg p{ - El D [] |0
5 %
6 %
7 %
8 %
9 %
10 %
akak %
12 % E -> the paf
13 % If left empty {
14 % pa 1d be an absol
15 % T tIpAddress -> Th
16 % - RemoteFilename -> Thy

f% >> nxpvt.imshow (pic) v

The cameraboard object also supports streaming from the camera. This can be achieved by
running the following command:

>> cam.stream /()

The NXP Vision Toolbox also contains an example of face recognition using the onboard camera
in MATLAB. This can be found in the ‘/examples/apps/face detection’ folder. To run you need
to specify the board’s IP address as an input:

>> face detection s32v234 camera main('134.27.168.171")

s32v234.elf | 4 kB | 4.0 kB/s | ETA: 00:06:35 | 0%
s32v234.elf | 1586 kB | 1586.6 kB/s | ETA: 00:00:00 | 100%

[1] FPS: 1, Faces detected: 1,
[2] FPS: 2, Faces detected: O,

< M
ile fert Joos Desktop Window Help o
Ddde k| \SOPEL-2A 08 mD

Vision Toolbox 1.1.0 2-24
Manual for $32v234 Automotive Vision Processors

2.8 Examples

The NXP Vision Toolbox includes many demonstration models showing many different uses of
the kernel functions. To access these examples, go to “examples” folder at your Vision Toolbox
install path.

NXP’s Vision Toolbox comes with an Examples Library that let you test and run multiple
applications. To open the library, go to MATLAB Help (or simply press F1) and select the NxP
Vision Toolbox for S32V234 Supplemental Software link as shown below:

4 Help - a X
L N] MATLAB Documentation | + BOEO|~

Documentation

= NTENTS Close ® Explore Examples & Explore Add-Ons
My Products MATLAB Getting Started with MATLAB
MATLAB MATLAB® is the high-level language and interactive environment used by millions of engineers and Functions in MATLAB
) scientists worldwide The mairix-based language is a natural way to express computational
Simulink mathematics Release Notes

Computer Vision System Toolbox Installation

DSP System Toolbox
Embedded Coder

Fixed-Point Designer My Products Fdit Preferences
Image Acquisition Toolbeox
Image Processing Toolbox MATLAB® Family Simulink® Family Hardware Support
MATLAB Coder
MATLAB Report Generator MATLAB Simulink For a complete list of hardware solutions, see
e T Hardware Support
Neural Network Tool
euralEtvork Toolbox Math, Statistics, and Optimization Event-Based Modeling
Phased Array System Toolbox
Neural Network Teolbox Stateflow
Signal Processing Toolbox S . .
Statistics and Machine Leaming Toolbox . . .
Simulink Check Signal Processing and Wircless 5upp|emema| Software
Simulink Coder Signal Processing and Wireless Communications
Simulink Coverage Communications Computer Vision System Toolbox NXP's Model-Based Design Toolbox for

DSP System Toolbax DSP System Toolbox 532K 1xx Toolbox

Phased Amay System Toolbox Phased Amray System Toolbox NXP's Vision Toolbox for

Simulink Report Generator

Simulink Requirements

S32V2xx Toolbox

Signal Processing Toolbox

Stateflow Code Generation
Statistics and Machine Leamning Toolbox Image Processing and Computer Vision Embedded Coder
s I tal Softw Computer Vision System Toolbox Fixed-Point Designer
upplemen oftware Image Acquisition Toolbox Simulink Coder
NXP's Model-Based Design Toolbox for Image P ina T
ge Processing Toolbox - .
S32K1xx Toolbox - \J Verification, Validation, and Test
Test and Measurement Simulink Check
Image Acquisition Toolbox Simulink Coverage

Simulink Requirements
Code Generation . w

Fixed-Point Designer Simulation Graphics and Reporting
MATLAB Coder Simulink Report Generator

The S32V234 Examples Library represents a collection of MATLAB models that let you test and
run complex applications in simulation and on real hardware.

There are four groups of examples that highlight four different types of functionalities supported
by NXP Vision Toolbox for S32V234:

e Vision Applications;

e APEX Kernels;

e APEX Computer Vision Examples;
e S32V234 10 Examples;

Vision Toolbox 1.1.0 2-25
Manual for $32v234 Automotive Vision Processors

2.8.1 Applications

The toolbox contains a series of application examples in the ‘examples/apps’ folder. All
application examples can be ran using the simple run_*.m provided in each application folder.
The only prerequisite to wusing these examples is the setting of the global
TARGET _IP_ADDRESS variable to the IP address of the board.

>> global TARGET IP ADDRESS
>> TARGET IP ADDRESS= '134.27.168.171"

TARGET IP ADDRESS =

'134.27.168.171"

e Face detection examples

= face_detection

codegen
’EI face_detection_camera_main.m

’3] face_detection_image_main.m
" face_detection_s32v234_camera_main.m

’EI face_detection_video_main.m
B
‘._hl

run_face_detection_camera_main.m
run_face_detection_image_main.m
ﬂ run_face_detection_video_main.m
‘E face_detection_image_main_ls.mlx

After setting the global variable mentioned above, all of the run scripts will deploy the
application onto the board. The only notable running method exceptions are the .m scripts that
require continuous communication with the S32V234-EVB / S32VV234-SBC hardware boards,
those being ‘face_detection_s32v234 camera_main.m’ described above and the
‘examples/io/ $32v234_camera_main.m’ which should get the IP address as an input
parameter.

e Lane detection examples
= lane_detection
codegen

’ﬂ findlanes.m
’lﬂ getlLaneVertices.m
fﬂ laneDetection_camera.m
’(ﬂ laneDetection_image.m
’ﬂ laneDetection_video.m
’ﬂ lanemarking_Algorithm.m
‘j run_laneDetection_camera.m
‘j run_laneDetection_image.m
‘j run_laneDetection_video.m
‘E laneDetection_image_ls.mlx

Vision Toolbox 1.1.0 2-26
Manual for $32v234 Automotive Vision Processors

e Pedestrian detection examples

=] pedestrian_detection
codegen

’a pedestrian_detection_camera_main.m
’a pedestrian_detection_sdk_img_main.m
’a pedestrian_detection_video_main.m
ﬂ run_pedestrian_detection_camera_main.m
ﬂ run_pedestrian_detection_sdk_img_main.m
ﬂ run_pedestrian_detection_video_main.m
EE svm_double.mat
*,1'_ pedestrian_detection_sdk_img_main_ls.mlx

Vision Toolbox 1.1.0 2-27
Manual for $32v234 Automotive Vision Processors

2.8.2 Convolutional Neural Networks

MATLAB provides a series of pretrained neural networks with its Deep Learning
Toolbox™. Inturn the NXP Vision Toolbox also provides functionality to deploy these networks
to the S32V234 board. The user can simply use the provided wrappers to classify objects using
one of the pretrained networks or using a custom MATLAB network. To be able to do this, the
arm-compute library should be installed on the computer and the ARM_COMPUTELIB
environmental variable should be set to point to the root of this installation. To showcase the ease-
of-use of this procedure, the toolbox provides a few examples using AlexNet, GoogLeNet and
SqueezeNet. These examples classify objects in an image and using frames taken from the MIPI-

CSI attached.

Requirements:
- Deep Learning
- Deep Learning
- Deep Learning
- Deep Learning

Toolbox™
Toolbox™
Toolbox™
Toolbox™

- MATLAB Coder Interface

- arm compute library
ARM COMPUTELIB environmental variable

arm compute library

Model for GoogLeNet Network
Model for AlexNet Network.
Model for SqueezeNet Network.
for Deep Learning Libraries

(v18.03)

set to point to the

To download arm_compute library, one should download it from https://github.com/ARM-

software/ComputeL.ibrary . The version that was used for running these examples is v18.03:

Q GitHub - ARM-software/Comput X +

< C “Whttps://github.com/ARM-software/ComputeLibraf

T TY

* v17.09
* v17.06
* v17.05
* v17.04
* v17.03.1

Binaries available here:

® v19.02-linux
e v19.02-android

* v18.11-linux

¢ v18.11-android
* v18.08-linux

¢ v18.08-android
® v18.05-linux

* v18.05-android
* v18.03-linux

* v18.03-android
* v18.02-linux

* v18.02-android
* v18.01

Vision Toolbox 1.1.0

Manual for $32v234 Automotive Vision Processors

2-28

https://github.com/ARM-software/ComputeLibrary
https://github.com/ARM-software/ComputeLibrary

Set the ARM_COMPUTELIB variable to point to the installation folder:

= | arm_compute-v18.03-bin-linux

Home Share View

“— v » NXL71242 » OSDisk(C) » repo * Complib > arm_compute-v18.03-bin-linux
Name - Date modified Type Size
o Quick access
2 Documents * arm_compute 3/2/2018 2:33 PM File folder
B Downioads » documentation 3/2/2018 2:38 PM File folder
examples 3272018 2:38 PM File folder
= Fictiires . include 3/2/2016 233PM File folder
auvsi-cv-lineDetection-master »* lib 3/2/2018 431 PM File folder
CNN scripts 3/2/2018 2:37 PM File folder
m Desktop support 3/2/2018 2:33 PM File folder
o private utils 322018 2:33 PM File folder
B s 2 documentationaxhtmi 3/2/2018 2:37 PM XHTML Document 1KB
|] LICENSE 3/2/2018 233 PM File 2KB
€& OneDrive - NXP 2/ READMEmd 3/2/2018233PM MD File 4KB
= NXLT1242
m Desktop
Documents
Downloads
J Music

= Pictures
| Videos
. OSDisk (C)

W) Nework
= NXL71242

MATLAB R2013b - trial use
¥ y EDITOR
E.E = H [ammm g insent (=1 fx] v E E ;ﬁ {3 P Section

Compare v)| GoTo v Comment % -
New Open Sawe 2 % Breakpoits Run Runand g Adance Runand

ALE

= EBIE | » o orepo » adastvdascau » vision toolbox P examples * cnn b
Current Folder ® | (& Editor - C vdascaulvision_ nn\cnn_alexnetm ® %
Name = | conalexnetm + |
B backup 1 Clfunction cnn_alexnet () ~
W codegen 2
B 53234 . -
B 3 training set 3- height = int32(720) =
B alexnetmat = width = int32(1280);
(H alexnet_classes mat 5
& Gl= input = nxpvt.webcam(1);
) cnn_alexnet_image.m 5
) enn_googlenetm
) cnn_googlenet imagem 8- alxNet = nxpvt.CNN('alexnet.mat', 227, 227);:
%) enn_squeezenetm O classNames = alxNet.loadClassNames('alexnet classes.mat');
) cnn_squeezenet image.m 10
[H googlenetmat 1
[H googlenet_classesmat .
o README Xt 12 while true
) run_cnn_alexnetm 13- inImg = input.snapshot();
run_cnn_alexnet image.m 14
‘j’““-c"“-ﬂ"f’g‘e"e"f" 15 % Predict with AlexNet
tun_cnn_googlenet_jimage.m 16— [perc, classIdx] = alxNet.predict(inImg);
#) tun_cnn_squeezenetm
#) run_cnn_squeezenet image:m = topl = sprintf('%s %.2f', classNames{classIdx(l)}, single(perc(l) * 100)):
1) save_alexnet_to_filem)= top2 = sprintf('$s %.2f', classNames{classIdx(2)}, single(perc(2) * 100));
?ﬂswe_gﬂcglmeuojll_tm 19— top3 = sprintf('%s %.2f', classNames{classIdx(3)}, single(perc(3) * 100)):
éji“"ef‘”“:’e"i‘—“’f"e-’“ 20— topd = sprintf('%s %.2f', classNames{classIdx(4)}, single(perc(4) * 100)):
squeezenet ma
] sopmeseret assesmat 21 - top5 = sprintf('ss %.2f', classNames(classIdx(5)), single(perc(5) * 100)):
22
&ali= nxpvt.cv.putText (inImg, nxpvt_to_cstring(topl), ...
24 [10, 40], 'FONT_HERSHEY SIMPLEX', 1, [255, 0, 0], 2):
25/ nxpvt.cv.putText (inImg, nxpvt_to_cstring(top2),
26 [10, 70], 'FONT_HERSHEY SIMPLEX', 1, [255, 0, 0], 2);
2= nxpvt.cv.putText (inImg, nxpvt_to_cstring(top3),
28 [10, 100], 'FONT HERSHEY SIMPLEX', 1, [255, 0, 0], 2)7 v

>> getenv ('ARM COMPUTELIB')

ans =
'¢:\repo\CompLib\arm_compute-v13.03-bin-linux'

fr> |

cnn_alexnetm (Function) ~

Vision Toolbox 1.1.0 2-29
Manual for $32v234 Automotive Vision Processors

Running the examples in simulation is straightforward and one should be able to do it out of the
box, provided that the correct MATLAB toolboxes are installed. However, deploying a network
on the hardware is a 2-step procedure. In order to do that, the network and the associated class
names should be first saved as .mat files:

A\ MATLAE R2012b - trial use
EDITOR

‘1|:| - H [Find Fites s oo msent (= fx [g] v 5] |2 % [Fameees ‘J_L?

(L/Compare v GfGoTo v Commemt % g5 %3

New Open Save : - Breckpoints Run Runand L Advance Runand
Yoy v Py (Fd v edem] g frg v v e Time
| v | eor BREAKPONTS. | [T

b C: % repo b adastvdascau » vision toolbox » examples ¥ cn ¥
(&l (A Eaitor - ¢ dast_vdascau\vision_ nn\cnn_alexnet.m ® x

enn_alexnetm + |
1 function onn_alexnet () |
[alexnet mat 2
EH alexnet classesmat g
) cnm aleetm 3- height = int32(720); o
1) enn_alexnet_image.m = width = int32(1280);
] con_googlenetm 5
1) enn_googlenet_imagem 6- input = nxpvt.webcam(l):
7] enn_squeezenetm B
1) enn_squeezenet image.m
£ googlenetmat o 8- alxNet = nxpvt.CNN('alexnet.mat', 227, 227);:
[googlenet_classesmat 2= classNames = alxNet.loadClassNames ('alexnet_classes.mat');
& README.xt 10
) run_enn_slexnetm 11
& .
) run_cnn_alexnet imagem T while true
) run_can_googlenetm
) run_cnn_googlenet_imagem 13- inImg = input.snapshot();
#) tun_can_squeezenetm 14
3’""—‘""—‘0“5?1?"&"“595““ 15 % Predict with AlexNet
S p—— 16— [perc, classldx] = alxNet.predict(inlmg);
@me:wu&mn,;’h;’m;m a7 topl = sprintf(’ ', classNames{classIdx (1)}, single (perc(l) * 100)):
[squeezenetmat 18 — top2 = sprintf(’' ', classNames{classIdx(2)}, single(perc(2) * 100));
[H squeezenet_classesmat 19— top3 = sprintf(' ', classNames{classIdx(3)}, single(perc(3) * 100));:
20— topd = sprintf(’ ', classNames{classIdx(4)}, single(perc(4) * 100)):
21 - top5 = sprintf (' 26, classNames{classIdx(5)}, single(perc(5) * 100});:
22
23 - nxpvt.cv.putText (inImg, nxpvt_to_cstring(topl), ...
24 [10, 40], 'FONT HERSHEY SIMPLEX', 1, [255, 0, 0], 2):
25— nxpvt.cv.putText (inImg, nxpvt_to_cstring(top2), ...
26 [10, 70], 'FONT_HERSHEY SIMPLEX', 1, [255, 0, 0], 2):
27— nxpvt.cv.putText (inImg, nxpvt_to_cstring(top3), ...
28 (10, 100], 'FONT HERSHEY SIMPLEX', 1, [255, 0, 0], 2); v
Command Window @
>> nxpvt.save_cnn_to_file('alexnet', 'alexnet classes')
X >>
s32v234 (Folder) ~

Simulation uses the webcam to acquire the video frames on which the classification is taking
place:

4 Figure 1 - [m] X

File Edit View |Insert Tools Desktop Window Help »

Deds @ 08| K E

Vision Toolbox 1.1.0 2-30
Manual for $32v234 Automotive Vision Processors

Deploying the CNN to the board is done using the same nxpvt_codegen command as for the
regular scripts or by wusing the run_[cnn_name].m script after configuring the
TARGET_IP_ADDRESS global variable.

4\ MATLAB R2018b - trial use

PUBLISH VIEW [~ R

|=_J [} [‘"—‘__.a (2] Ren Section ‘Q)’

Runand L Adance Runand
Advance Time

EDITOR

insen = fx [v

colry H () Find Files &

|L)Compare v) GoTo w Comment % g ©J
New Open Save - Breakpoints Run
- - -

v v 4Pt v \ Find =

indent |- | w2 |t
ne NavioaTe e BREAPONTS R

Ll gt sl ¥ C ¥ repo ¥ adast vdascau ¥ vision toolbox ¥ examples ¥ cnn ¥

[G F. Editor - C\repohadast_vdascau\vision_100lbox\examples\cnn\run_cnn_squeezenetm

Current Folder

Name | cnn_alexnetm | hxpvt_codegen.m run_cnn_squeezenetm +
codegen 1- c% Clear config structure g
s320234 a= clear config
H alexnet.mat -
[alexnet classesmat g
) cnn_alexnetm 4 % Enables —03 when you build the application. The application should ru
cnn_alexnet_image.m 5= config.Optimize = true;
“j cnn_googlenetm 6
ﬂ:::f;ji::;':“m 7 % Uses 8 make jobs when building the application. The build is faster.
] can_squeezenet imagem 8= config.Makedobs = 8:
[t googlenetmat)
[t googlenet_classes.mat 10 — global TARGE IP ADDRESS;
i .
groons | A
run_cnn_googlenetm 13- warning ("Target IP Ac i e case se e I ET 1P _ADDRE. the addre e
#1 run_cnn_googlenet_image.m 14— config.Deploy = fals:
Py yepe—— =y =
- 16 % Enables the deployment of the elf on the board.

1] save_alexnet_to_filem :
) save_googlenet_to_filem 17 = config.Deploy = true;
1] save_squeezenet_to_filem 18

EL squeezenetmat 19 % The IP of the $S32v234 board.
£l squeezenet_classes.mat 20— config.TargetIpAddress = TARGE!
21
22 % Where it should copy the elf.
23 - config.DeployPath = '/home/root/';
24— end
25
26— nxpvt_codegen('cnn_squeezenet.m', config);

>> clear
>> TARGET_IP_ADDRESS = '10

TARGET_IP_ADDRESS =
'10.171.74.60"

fx >> run_cnn_squeszenet]

run_cnn_squeezenetm (Script) ~

There is also the possibility of using the S32VV234 camera to classify the images in MATLAB
using the script inside the s32v234 folder. This way the classification algorithm and the neural
network will be ran in MATLAB and the images will be taken from the MIPI-CSI S32V234
attached camera.

Usage:

>> S32V234_Camera_Squeezenet('10.171.74.60")

s32v234.elf
s32v234.elf

|4kB| 4.0KB/s|ETA: 00:06:36| 0%
| 1590 kB | 1590.0 kB/s | ETA: 00:00:00 | 100%

Starting camera server on port 50000

Vision Toolbox 1.1.0
Manual for $32v234 Automotive Vision Processors

2-31

i

3 Kernels
This chapter describes the main

This section is meant as a starting point for the implementation of computing kernels for the
S32V234 using the NXP Vision Toolbox.

The NXP Vision Toolbox for S32V234 kernels organization follows the Vision SDK
implementation and supports several component libraries:

Arithmetic kernels - provide basic operators for element-wise addition, subtraction,
multiplication, division and arithmetic shifting

Comparison kernels - provide basic element-wise comparison operators like less than,
less-than-or-equal, binary AND operator and binary descriptor matches

Conversion kernels - support conversion from 16 to 8 bit and from RGB format to
grayscale

Display kernels - provide examples of marking an image at certain points as overlay or in
a certain color channel.

Feature detection - provides two corner detection algorithms FAST9 and Harris corner
detection

Filtering - offers kernels for general purpose filtering, and also the most used filters like
Gaussian filtering, gradient computation, non-maximum suppression and saturation

Geometry - provides geometric transformations, like rotations and bilinear interpolation
and also a replacement for indirect inputs, called offset selection

Morphology - example of a morphological dilation operator.

Vision Toolbox 1.1.0 3-32
Manual for $32v234 Automotive Vision Processors

e Object detection - two object detection algorithms: Haar cascade and LBP (local binary
pattern) cascade

e Optimization - implementation of the Integral Image (SAT) kernel and a SAT-based box
filter.

e Resizing - provides downsampling and upsampling kernels (gives examples of size
changes inside a filter)

e Statistics - provides kernels for statistics computations, such as a Histogram kernel, a
vector-to-scalar reduction kernel and an accumulation kernel.

To use any of these kernels in the MATLAB m-script functions use:

nxpvt.apu.<kernel name>(argsl, ..)

Vision Toolbox 1.1.0 3-33
Manual for $32v234 Automotive Vision Processors

3.1 Arithmetic

3.1.1 nxpvt.apu.add

Description : add two values.
Prototype : [outlmg, varargout] = nxpvt.apu.add(inlmgl, inImg2, varargin)
Inputs/Outputs . Inputs: unsigned 8bit, unsigned 8bit

Output: unsigned 16bit

Inputs: signed 16bit, signed 16bit
Output: signed 32bit

Inputs: signed 32bit, signed 32bit
Output: signed 32bit

Inputs: signed 32bit(high) unsigned 32bit(low), signed 32bit(high)
unsigned 32bit(low)
Output signed 32bit(high), unsigned 32bit(low)

3.1.2 nxpvt.apu.diff

Description : minus two values.
Prototype : [out, varargout] = nxpvt.apu.diff(inl, in2, varargin)
Inputs/Outputs - Inputs: unsigned 8bit, unsigned 8bit

Output: unsigned 16bit

Inputs: signed 16bit, signed 16bit
Output: signed 16bit

Inputs: signed 16bit, signed 16bit
Output: signed 32bit

Inputs: signed 32bit, signed 32bit
Output: signed 32bit

Inputs: signed 32bit(high), unsigned 32bit(low), signed 32bit(high),
unsigned 32bit(low)
Outputs: signed 32bit(high), unsigned 32bit(low)

3.1.3 nxpvt.apu.dot_division

Description - divide two values
Prototype - [out] = nxpvt.apu.dot_division(inl, in2)
Inputs/Outputs > Input: signed 32bit

Output: signed 32bit

Vision Toolbox 1.1.0 3-34
Manual for $32v234 Automotive Vision Processors

3.14 nxpvt.apu.dot_log2

Description
Prototype
Inputs/Outputs

: base 2 log
: [out] = nxpvt.apu.dot_log2(in1)
. Input: signed 32bit

Output: unsigned 8bit

3.1.5 nxpvt.apu.dot_Ishl

Description
Prototype
Inputs/Outputs

: Multiply by 2
: [out, varargout] = nxpvt.apu.dot_Ish1(inl, varargin)
- Input: signed 32bit

Output: signed 32bit multiple result: nxpvt.apu.lshl(value)

Input: signed 32bit
Output: signed 64bit multiple result: nxpvt.apu.lshl(value, 'int64")

3.1.6 nxpvt.apu.dot_mult_scalar

Description
Prototype
Inputs/Outputs

: Multiplies pixelwise with scalar. Does not check out of range
. [out] = nxpvt.apu.dot_mult_scalar(inl, scalar)
. Inputs: unsigned 8bit, Scalar signed 32bit

Output: signed 16bit

Inputs: signed 32bit, Scalar signed 32bit
Output: signed 32bit

3.1.7 nxpvt.apu.dot_multiplic

Description
Prototype
Inputs/Outputs

Vision Toolbox 1.1.0

: Multiplies pixelwise two images. Doesn't check out of range
. [out, varargout] = nxpvt.apu.dot_multiplic(in1, in2, varargin)
. Inputs: signed 16bit

Output: signed 32bit

Inputs: signed 32bit
Outputs: signed 32bit(High) unsigned 32bit(low)

Inputs: signed 32bit
Output: signed 32bit

Inputs: signed 32bit, signed 16bit
Output: signed 32bit

Manual for $32v234 Automotive Vision Processors

3-35

3.1.8 nxpvt.apu.dot_sqr

Description
Prototype
Inputs/Outputs

: Computes pixelwise the square of an input
: [out, varargout] = nxpvt.apu.dot_sqr(inl, varargin)
- Input: signed 16bit

Output: signed 32bit

Input: signed 32bit
Output: unsigned 32bit

Input: signed 32bit
Output: unsigned 64bit

3.1.9 nxpvt.apu.left_shift

Description

Prototype
Inputs/Outputs

. Shifts to the left each pixel of an unsigned 16bit image by a scalar shift

value

: out = nxpvt.apu.left_shift(inl, scalar)
- Inputs: unsigned 16bit, scalar signed 32bit

Output: signed 16bit

3.1.10 nxpvt.apu.max

Description
Prototype
Inputs/Outputs

: Largest element from the both arrays
: out = nxpvt.apu.max(inl, in2)
- Inputs: unsigned 8bit

Output: unsigned 8bit

3.1.11 nxpvt.apu.right_shift

Description

Prototype
Inputs/Outputs

- Shifts to the right each pixel of a signed 64bit image by a scalar shift

value

: [out, varargout] = nxpvt.apu.right_shift(inl, in2, shiftFact, varargin)
. Inputs: signed 32bit(Hight), unsigned 32bit(Low)

Outputs: signed 32bit(High), unsigned 32bit(Low)

Inputs: signed 32bit(Hight), unsigned 32bit(Low)
Outputs: signed 32bit : nxpvt.apu.right_shift(inl, in2, shiftFact) or
nxpvt.apu.right_shift(inl, in2, shiftFact, 'int32")

Notes: shiftFact internally typecasts into the uint8 value and checks on 0.

Vision Toolbox 1.1.0

3-36

Manual for $32v234 Automotive Vision Processors

3.2 Comparison

3.2.1 nxpvt.apu.abslower

Description : Compares pixelwise two images. Outputs unsigned 8bit comparison
result.

Prototype : outlmg = nxpvt.apu.abslower(inimgl, inimg2)

Inputs/Outputs : param "inlmg1" - Input image.
param "inlmg2" - Input image or scalar value.
param "outlmg" - Output image.

3.2.2 nxpvt.apu.and

Description : Pixelwise "AND™" operator between two images. Outputs unsigned 16bit
comparison result. Is true if (INPUTA 1= 0) && (INPUTB !=0)
Prototype : outlmg = nxpvt.apu.and(inimgl, inimg2, varargin)
Inputs/Outputs : param "inlmg1" - Input image.
param "inlmg2" - Input image.
param "outimg" - Output image.

3.2.3 nxpvt.apu.lower

Description : Compares pixelwise two images. Outputs unsigned 8bit comparison
result. Is true if inimgl < inlmg2
Prototype : outlmg = nxpvt.apu.lower(inlmgl, inlmg2, varargin)
Inputs/Outputs : param "inlmg1" - Input image.
param "inlmg2" - Input image.
param "outlmg" - Output image.

3.24 nxpvt.apu.lowerequal

Description : Compares pixelwise two images. Outputs unsigned 8bit comparison
result. Is true if inImgl <= inimg2

Prototype : outlmg = nxpvt.apu.lowerequal(inimgl, inImg2)

Inputs/Outputs : param "inlmg1" - Input image.
param "inlmg2" - Input image.
param "outlmg" - Output image.

Vision Toolbox 1.1.0 3-37

Manual for $32v234 Automotive Vision Processors

3.25 nxpvt.apu.match

Description

Prototype
Inputs/Outputs

3.3 Conversion

: Matches binary descriptors from group A to binary descriptors from

group B. Matches with hamming distance greater than provided
threshold is rejected.

: [matchA, matchB] = nxpvt.apu.match(binDataA, binDataB, config)

: param "binDataA" - Input array A of binary descriptors
param "binDataB" - Input array B of binary descriptors
param "config" - Input Configuration:

number of descriptors in binDataA (signed 16-bit)

number of descriptors in binDataB (signed 16-bit)

uint8 - matching threshold (max Hamming distance) (unsigned 8-bit)
uint8 - range check (min Hamming distance between the closest and the
second closest descriptors found) (unsigned 8-bit)

param "matchA" - Output First elements of match pairs array. Must
be preassigned array of 512 values;
param "matchB" - Output Second elements of match pairs array.

Must be preassigned array of 512 values;

3.3.1 nxpvt.apu.lowl6 to 8

Description

Prototype
Inputs/Outputs

: Extracts lower parts of the 16-bit image pixels. Extracts lower parts of

the 16-bit image pixels into 8-bit image.

: outlmg = nxpvt.apu.16low_to 8(inImg)
: param "inlmg" - Input image.

param "outimg" - Output image.

3.3.2 nxpvt.apu.rgb_to_grayscale

Description

Prototype
Inputs/Outputs

Vision Toolbox 1.1.0

: Convert RGB image to grayscale. Converts the truecolor image to the

grayscale intensity image.

: outlmg = nxpvt.apu.rgb_to_grayscale(inimg)
: param "inlmg" - Input image.

param "outlmg" - Output image.

3-38

Manual for $32v234 Automotive Vision Processors

3.4 Definitions
The following functions are available to be modified.

3.4.1 nxpvt.apu.accumulation_defs

Definitions for nxpvt.apu.accumulation_defs.
return "chunkWidth" - Chunk width.
return “"chunkHeight" - Chunk height.

3.4.2 nxpvt.apu.col_defs

Definitions for nxpvt.apu.col_filter.
return "filterCols" - The number of columns of the column filter.
return "filterQ" - The number of fractional bits for the fixed point coefficients.

3.4.3 nxpvt.apu.cu_defs

Definitions for CU count.
return "nCU" - CU count.

3.4.4 nxpvt.apu.harris_defs

Definitions for nxpvt.apu.harris.
return "window" - window size.

3.45 nxpvt.apu.histogram_defs

Definitions for nxpvt.apu.histogram.
return “"chunkWidth" - Chunk width.

3.4.6 nxpvt.apu.lbp_defs

Definitions for nxpvt.apu.lbp_defs
return "lbp_window" - Size of window used by LBP
return "chunkw" - Chunk width

3.4.7 nxpvt.apu.match_defs

Definitions for nxpvt.apu.match.

return "chunkX" - Chunk width.

return "chunkY" - Chunk height.

return "cuCounts” - Number of Computation Units or APEX CU.

return "matches" - Number of matches.

Vision Toolbox 1.1.0 3-39

Manual for $32v234 Automotive Vision Processors

3.4.8 nxpvt.apu.rotate_180 defs

Definitions for nxpvt.apu.rotate_180.

return "chunkWidth"
return “"chunkHeight"

- Chunk width,
- Chunk height.

3.4.9 nxpvt.apu.row_defs

Definitions for nxpvt.apu.row_filter.

return "filterRows"

return "filterQ"

- The number of rows of the row filter.
- The number of fractional bits for the fixed point coefficients.

3.4.10 nxpvt.apu.sat_box_filter_defs

Defines constant for the nxpvt.apu.sat_box_filter function.

3.5 Display

3.5.1 nxpvt.apu.mark

Description
Prototype
Inputs/Outputs

: Marking with greyscale
: [outlmg] = nxpvt.apu.mark(imgln, imgMap)

: param “imgIn” - greyscale image
param “imgMap” - markers map
param “outlmg” - output image

3.5.2 nxpvt.apu.mark_color

Description
Prototype
Inputs/Outputs

Vision Toolbox 1.1.0

: Marking with color on image
: [outimg] = nxpvt.apu.mark_color(imgln, imgMap, channel)

: param “imgIn” - color image
param “imgMap” - markers map, channel - color
param “channel” - to mark (0-Red 1-Green 2-Blue)
param “outlmg” - output image

3-40

Manual for $32v234 Automotive Vision Processors

3.6 Feature Detection
3.6.1 nxpvt.apu.fast9

Description : FAST9 feature point detection. Finds the corners in the input data using
the FAST9 algorithm. Outputs corner scores or 0 if not a corner. For each
input pixel a 16-pixel circle centered at the processed pixel is considered.
The circle pixels are classified as darker, brighter or similar to the central
pixel depending on the provided threshold. The central pixel is considered
as a corner if and only if there is a contiguous segment of 9 pixels which
are all classified as brighter or darker in the circle.

See http://www.edwardrosten.com/work/fast.htm

Prototype : [outlmg] = nxpvt.apu.fast9(inimg, threshold)

Inputs/Outputs : param "inlmg" - Input image.
param "threshold” - Threshold used for classifying ring pixels
(brighter/darker/similar).
param "outImg" - Output image.

3.6.2 nxpvt.apu.harris

Description : Harris Corner Detector. Finds the corners in the input data using the Harris
algorithm. Outputs a Harris response value for each pixel.
Prototype : outResponse = nxpvt.apu.harris(inGrX, inGrY, inKRbsWin)
Inputs/Outputs : param "inGrX" - Image gradient X component (int16).
param "inGrY" - Image gradient Y component (int16).
param "inKRbswWin" - Harris detector free parameter (uint16).

- Harris detector window size (uint16).
- Bit shift for output response (uint16).
param "outResponse” - output Harris response image (uint16).

3.6.3 nxpvt.apu.sad

Description : Sum of Absolute Differences. Calculate minimum SAD & location given
a 4x4 template in an 8x8 window.
Prototype : [out] = nxpvt.apu.sad(inimgl, inimg2)
Inputs/Outputs : param "inlmg1" - First input image (template 4x4 uint8).
param "inlmg2" - Second input image (window 8x8 uint8).
param "out" - Minimum SAD & location given:

0 - Low byte Minimum SAD
1 - High byte Minimum SAD
2 - Location X
3 - Location Y

Vision Toolbox 1.1.0 3-41
Manual for $32v234 Automotive Vision Processors

3.7 Filtering

3.7.1 CorrelationSize
Description : Filter size to select correlation type.

3.7.2 nxpvt.apu.col_filter

Description : 1 dimensional column filter. A column filter is a 1-dimension filter
applied to an image where each pixel becomes a weighted sum of itself and
neighboring pixels in the same row. The weighted sum is determined by a
set of filter coefficients. The filter are pixel-centered. The filter has 3
columns and a single row of coefficients.

Prototype : [outimg] = nxpvt.apu.col_filter(inlmg, coeffs)

Inputs/Outputs : param "inlmg" - The padded source image.
param "coeffs" - The column filter coefficients.
param "outlmg" - The destination image.

3.7.3 nxpvt.apu.correlation

Description : General correlation. Correlation of input image with a filter.
Prototype : outlmg = nxpvt.apu.correlation(inlmg, filterCoefs, scale, corrSize,
corrType)
Inputs/Outputs : param "inlmg" - Input image.
param "filterCoefs" - Signed 16 bit filter coefficients.
param "scale" - The scalar value of the normalization
factor used for the filter.
param "corrSize" - Filter size to select correlation type.
param "corrType" - Flags for the different possible shapes of a filter.

param "outlmg" - Output image, signed 16bit correlation result.

3.7.4 nxpvt.apu.filter_median_3x3

Description : 2-D median filtering. Performs median filtering of the image inlmg in two
dimensions. Each output pixel contains the median value in the 3-by-3
neighborhood around the corresponding pixel in the input image.

Prototype : outlmg = nxpvt.apu.filter_median_3x3(inlmg)
Inputs/Outputs : param "inlmg" - Input image.
param "outImg" - Output image.
Vision Toolbox 1.1.0 3-42

Manual for $32v234 Automotive Vision Processors

3.7.5 nxpvt.apu.filtering_sobel 3x3

Description . Sobel filter. Performs Sobel filtering of the image inlmg in two
dimensions.
Prototype : outlmg = nxpvt.apu. filtering_sobel 3x3(inimg)
Inputs/Outputs : param "inlmg" - Input image.
param "outimg" - Output image.

3.7.6 nxpvt.apu.gauss_3x3

Description : Blurs an image using a Gaussian filter. Convolves the image with the
3x3 Gaussian kernel

Prototype : outlmg = nxpvt.apu.gauss_3x3(inlmg)

Inputs/Outputs : param "inlmg" - Input image.
param "outlmg" - Output image.

3.7.7 nxpvt.apu.gauss_5x5

Description : Blurs an image using a Gaussian filter. Convolves the image with the
5x5 Gaussian kernel

Prototype : outlmg = nxpvt.apu.gauss_5x5(inImg)

Inputs/Outputs : param "inlmg" - Input image.
param "outImg" - Output image.

3.7.8 nxpvt.apu.gradient

Description : Directional gradients of an image. Returns the directional gradients
using the Sobel method.
Prototype : [outGx, outGy] = nxpvt.apu.gradient(inimg)
Inputs/Outputs : param "inlmg" - Input image (8-bit)
param "outGx" - Gradient X component output image (16-bit)
param "outGy" - Gradient Y component output image (16-bit)

3.7.9 nxpvt.apu.gradient_x

Description : Gradient in X direction. Convolution of input unsigned 8bit image with
a [-1 0 1] row-filter. Outputs signed 16bit convolution result.
Prototype > outlmg = nxpvt.apu.gradient_x(inlmg)
Inputs/Outputs : param "inlmg" - Input image.
param "outlmg" - Output image.
Vision Toolbox 1.1.0 3-43

Manual for $32v234 Automotive Vision Processors

3.7.10 nxpvt.apu.gradient_y

Description : Gradient in Y direction. Convolution of input unsigned 8bit image with
a [-1 0 1] column-filter. Outputs signed 16bit convolution result.
Prototype : outlmg = nxpvt.apu.gradient_y(inImg)
Inputs/Outputs : param "inlmg" - Input image.
param "outimg" - Output image.

3.7.11 nxpvt.apu.nms

Description : Non-maximum suppression. Sets values which are not maximal in their
3x3 neighborhood (8 pixels) to 0. 8-bit/16-bit version.
Prototype : [outimg] = nxpvt.apu.nms(inimg)
Inputs/Outputs : param "inlmg" - Input image.
param "outlmg" - Output image.

3.7.12 nxpvt.apu.row_filter

Description : 1 dimensional row filter. A row filter is a 1-dimension filter applied to an
image where each pixel becomes a weighted sum of itself and neighboring
pixels in the same column. The weighted sum is determined by a set of
filter coefficients. The filter are pixel-centered. The filter has 5 rows and a
single columns of coefficients.

Prototype : [outimg] = nxpvt.apu.row_filter(inimg, coeffs)

Inputs/Outputs : param "inlmg" - The padded source image.
param "coeffs" - The row filter coefficients.
param "outlmg" - The destination image.

3.7.13 nxpvt.apu.saturate_nonzero

Description : Non-zero pixel saturation. Changes non-zero pixel values to maximal
values.
Prototype : outlmg = nxpvt.apu.saturate_nonzero(inlmg)
Inputs/Outputs : param "inlmg" - Input image.
param "outlmg" - Output image.
Vision Toolbox 1.1.0 3-44

Manual for $32v234 Automotive Vision Processors

3.7.14 nxpvt.apu.scharr_x

Description : Gradient in X direction for Scharr_X filter. Convolution of input image
with a scharr_x filter. Outputs signed 16bit convolution result.
Prototype : outlmg = nxpvt.apu.scharr_x(inlmg)
Inputs/Outputs : param "inlmg" - Input image.
param "outimg" - Output image.

3.7.15 nxpvt.apu.scharr_y

Description : Gradient in Y direction for Scharr_Y filter. Convolution of input image
with a scharr_y filter. Outputs signed 16bit convolution result.
Prototype : outlmg = nxpvt.apu.scharr_y(inlmg)
Inputs/Outputs : param "inlmg" - Input image.
param "outlmg" - Output image.

3.8 Geometry

3.8.1 nxpvt.apu.rotate 180

Description : Rotates image by 180 degrees. Rotates image inlmg by 180 degrees in a
counterclockwise direction around its center point.
Prototype : outlmg = nxpvt.apu.rotate_180(inlmg)
Inputs/Outputs : param "inlmg" - Input image.
param "outlmg" - Output image.
3.9 Indirect

3.9.1 nxpvt.apu.indirect

Description - Indirect Inputs. Kernel for Indirect Inputs emulation.

Prototype : outlmg = nxpvt.apu.indirect(inmg, inOffset)

Inputs/Outputs : param "inlmg" - input Image (uint8).
param "inOffset" - offset array (byte offsets relative to the source
data region starting point) (uint32).
param "outlmg" - output Image (uint8).

Vision Toolbox 1.1.0 3-45

Manual for $32v234 Automotive Vision Processors

3.10 Morphology

3.10.1 nxpvt.apu.dilate_diamond

Description

Prototype
Inputs/Outputs

: Diamond dilation. Dilates the image using 5x5 diamond structure
element.

: outlmg = nxpvt.apu.dilate_diamond(inlmg)

: param "inlmg" - Input image (uint8).
param "outlmg" - Output image (uint8).

3.11 Object Detection

3.11.1 nxpvt.apu.harr_cascade

Description

Prototype

Inputs/Outputs

: Detects objects using Haar-like feature cascades. This algorithm searches
for 20x20-pixel objects using a Haar-like classifier provided by the user.
For each input pixel, it outputs 255 if the pixel is a lower left corner of an
object and 0 otherwise.

: [out] = nxpvt.apu.haar_cascade(sat, satSquared, stageSize, features,
stages, pixelShift, pixelOffsets)

: sat - summed area table - usigned 32bit
satSquared - squared summed area table - unsigned 32bit
cascadeFeatures - feature structure

stageSize - number of cascades - unsigned 16bit
cascadeStages - cascade structure

pixelShifts - Required for code generation only - unsigned 8bit array

pixelOffsets - Required for code generation only - unsigned 8bit array

3.11.2 nxpvt.apu.lbp_cascade

Description
Prototype

Inputs/Outputs

Vision Toolbox 1.1.0

This function is detects faces uses LBP cascade algorithm.
LBP_WINDOWS_SIZE constant defined in the lbp_definitions.m file.

: outlmg = nxpvt.apu.lbp_cascade(sat, cascadeSize, cascadeFeatures,
cascadeStages, pixelShift, pixelOffsets)

: sat - summed area table - uint32

cascadeSize - [cascade_feature size, cascade_stages size, 0] - uint16
cascadeFeatures - feature structure

cascadeStages - cascade structure

pixelShifts - Required for code generation only - uint8 array
pixelOffsets - Required for code generation only - uint8 array
imgOut - uint8

3-46

Manual for $32v234 Automotive Vision Processors

3.12 Optimization

3.12.1 nxpvt.apu.sat

Description : Summed area table.
Prototype : [outlmg, varargout] = nxpvt.apu.sat(inimg)
Inputs/Outputs . Input unsigned 8bit - Output unsigned 32bit

Input signed 8bit - Output signed 32bit, unsigned 32bit
Input signed 32 bit - Output signed 32bit(high) unsigned
32bit(low)

3.12.2 nxpvt.apu.sat_box_filter
Description . Applies a box filter (== sum over that patch) to the image using its

summed area table (integral 1image). Constants defined in
sat_box_filter_definitions function.

Prototype : outlmg = nxpvt.apu.sat_box_filter(inlmg)
Inputs/Outputs : param "inlmg" - Input image.

param "outimg" - Output image.
3.13 Resizing

3.13.1 nxpvt.apu.downsample

Description : X2 downsampling. Downsamples the image by two.

Prototype : outlmg = nxpvt.apu.downsample(inimg)

Inputs/Outputs : param "inlmg" - Input image (uint8/uint16).
param "outlmg" - Output image (uint8/uint16).

3.13.2 nxpvt.apu.downsample_gauss

Description : X2 downsampling using Gaussian blur. Downsamples the image by two
using Gaussian blur.
Prototype - outlmg = nxpvt.apu.downsample_gauss(inimg)
Inputs/Outputs : param "inlmg" - Input image (uint8).
param "outlmg" - Output image (uint8).
Vision Toolbox 1.1.0 3-47

Manual for $32v234 Automotive Vision Processors

3.13.3 nxpvt.apu.upsample

Description : X2 upsampling. Upsamples the image by two.

Prototype : outlmg = nxpvt.apu.upsample(inimg)

Inputs/Outputs : param "inlmg" - Input image (uint8).
param "outlmg" - Output image (uint8).

3.14 Statistics

3.14.1 nxpvt.apu.accumulation

Description : Accumulates all values in a chunk. Builds the sum of all elements of a
chunk and writes out a vector of sum values.
Prototype . OoutAccum = nxpvt.apu.accumulation(inimg, inOffsX, inOffsY,
inWidthX, inHeightY)
Inputs/Outputs : param "inlmg" - Input image (int32).
param "inOffsX" - X Offset where to start accumulation (int16).
param "inOffsY" -Y Offset where to start accumulation (int16).

param "inWidthX" - Width inside block for which accumulation has to
be performed (int16).

param "inHeightY" - Height inside block for which accumulation has
to be performed (int16).

param "outAccum" - Output accumulation value (int32).
(inlImgWidth/chunkWidth) columns X

(inlimgHeight/chunkHeight) rows.

3.14.2 nxpvt.apu.histogram

Description : Histogram implementation for APEX. Histogram computation of an input
image.
Prototype - outHist = nxpvt.apu.histogram(inimg)
Inputs/Outputs : param "inlmg" - Input image (uint8).
param "outHist" - Histogram row vector output, CU count X 256
(uint32).
Vision Toolbox 1.1.0 3-48

Manual for $32v234 Automotive Vision Processors

3.14.3 nxpvt.apu.reduction

Description : Reduction from 256 vectors on each CU to 256 scalars. Reduce an input

vector/image by summing up the corresponding elements. ! Use this kernel
only with nxpvt.apu.histogram.

Prototype - outSclrHist = nxpvt.apu.reduction(inVVecHist)

Inputs/Outputs : param "inVecHist" - Histogram row vector, CU count X 256 (uint32).
param "outSclrHist" - Histogram scalar, row 1 columns 256 (uint32).

Vision Toolbox 1.1.0 3-49
Manual for $32v234 Automotive Vision Processors

4 Functions

4.1 Code Generation

411 nxpvt_codegen

Description : Generate executable based on m-script passed as input
Prototype : nxpvt_codegen(entryFunc, config)
Inputs/Outputs : param "entryFunc" - the function for which to generate the executable.

param "config" - structure holding various configurations (e.g.
optimization level, number of make jobs, deployment on target).

The options that can be specified in a config are:

- MakeJobs -> number of CPU jobs

- Optimize -> When set to true it will be using O3 optimization

- Deploy -> When set to true it deploys the application on to the
target. For the deployment to work the user needs to configure
config.TargetlpAddress as well. If this is not set explicitly to
true it will default to false

- DeployPath -> the path where the executable will be copied on the
target. If left empty the /examples/' folders will be used. This
path should be an absolute path.

- TargetlpAddress -> The ip address for the target

- RemoteFilename -> The name of the executable on the target. If
left empty it will default to the entryFunc name with the elf
extension instead of the .m extension

- ExtraFiles -> Files that are used by the elf (e.g videos,images).
If left empty no extra files will be copied on the target. The
paths for this file should be relative to the DeployPath.

4.2 Target Configuration

4.2.1 nxpvt_create_target

Description : Creates SD card bootable image.
Prototype : nxpvt_deploy_on_target(sourcelmg, dstimgWin)
Inputs/Outputs : param "sourcelmg" - the SD Card image to be written

param "dstimgWin" - the Windows drive letter for the SD card

4.2.2 nxpvt_deploy_on_target

Description : Copy and run the executable on the target.
Prototype : nxpvt_deploy_on_target(entry_name, config)
Inputs/Outputs . param "entry_name" - executable to be copied on the target
param "config" - config structure used in nxpvt_codegen
Vision Toolbox 1.1.0 4-50

Manual for $32v234 Automotive Vision Processors

4.3 Toolbox Management

4.3.1 nxpvt_install_toolbox

Description - Install or uninstall the toolbox by setting the MATLAB paths.
Prototype : nxpvt_install_toolbox(varargin)
Inputs/Outputs : param "varargin” - if varargin is empty the function will add the toolbox

into MATLAB path. If varargin is “remove” the function is going to
remove the toolbox from MATLAB path

4.4 Core functionality

441 UMat

The nxpvt.UMat image container is the data structure used in the whole toolbox to wrap data
buffers. This is a virtual data container allowing for manipulating data which can be used by the
host ARM core as well as by the hardware accelerators.

4.4.1.1 Obiject Creation

dataUMat = nxpvt.UMat (data) creates an UMat object which holds the data array. Type
of data can be: int8, uint8, int16, uint16, int32, uint32, single, and double. Dimension of data array
can be maximum 3.

dataUMatRoi = nxpvt.UMat (dataUMat, [x y w h]) creates an UMat object from
a bigger one. A region of interest (often abbreviated ROI), are samples within a data set identified
for a particular purpose. The data array of dataUMatRoi is data(y:y+h-1, x:x+w-1).

4.4.1.2 Methods

data = dataUMat.data () returnsdata array.

m = dataUMat.rows () returns number of rows.
n = dataUMat.cols () returns number of columns.
k = dataUMat.channels_ () returns number of channels.

dataUMat.isempty () checks if empty.

dataUMat.release () releases UMat object.

4.5 Classifiers

451 Cascade object detector

The cascade object detector uses Haar-like features and LBP features to detect people's faces,
noses, eyes, and mouth. To detect facial features or faces in an image:

1. Create the nxpvt.CascadeObjectDetector object and set its properties.

Vision Toolbox 1.1.0 4-51
Manual for $32v234 Automotive Vision Processors

https://en.wikipedia.org/wiki/Data_set

2. Call the object with arguments, as if it were a function.

4.5.1.1 Obiject Creation

detector = nxpvt.CascadeObjectDetector (model) creates a detector configured
to detect objects defined by the input model name.

detector = nxpvt.CascadeObjectDetector (XMLFILE) creates a detector and
configures it to use the custom classification model specified with the XMLFILE input.

detector = nxpvt.CascadeObjectDetector (PropName, PropValue) Sets
properties using one or more name-value pairs. Enclose each property name in quotes. For
example:

detector = nxpvt.CascadeObjectDetector ('ClassificationModel', 'FrontalFacelBP"') ;

4.5.1.2 Properties

Properties are non-tunable, which means you cannot change their values after calling the object.
Objects lock when you call them, and the release function unlocks them.

Classification Model
Classification model can be:

e 'FrontalFaceLBP' - Detects faces that are upright and forward facing. This model is
composed of weak classifiers, based on a decision stump. These classifiers use local binary
patterns (LBP) to encode facial features. LBP features can provide robustness against
variation in illumination. Image size used to train model iS Training Size =
[height width] = [24 24]

e 'EyePairBig' - Detects a pair of eyes. It was trained on larger image than 'EyePairSmall’
model. This model is composed of weak classifiers, based on a decision stump. This

classifier uses Haar features to encode details. Image size used to train model is
Training Size = [height width] = [11 45]

e 'EyePairSmall' - Detects a pair of eyes. This model is composed of weak classifiers, based
on a decision stump. This classifier uses Haar features to encode details. Image size used
to train model is Training Size = [height width] = [5 11]

e 'LeftEye' - Detects the left eye separately. This model is composed of weak classifiers,
based on a decision stump. This classifier uses Haar features to encode details. Image size
used to train the model is Training Size = [height width] = [12 18]

e 'RightEye' - Detects the right eye separately. This model is similar to 'LeftEye' model.
Image size used to train the model is Training Size = [height width] = [12
18]

e 'Mouth' - Detects the mouth. This model is composed of weak classifiers, based on a
decision stump, which use Haar features to encode mouth details. Image size used to train
the model is Training Size = [height width] = [15 25]

Vision Toolbox 1.1.0 4-52
Manual for $32v234 Automotive Vision Processors

e 'Nose' - This model is composed of weak classifiers, based on a decision stump, which use
Haar features to encode nose details. Image size used to train the model is
Training Size = [height width] = [15 18]

Size of smallest detectable object

Size of smallest detectable object, specified as a two-element vector MinSize = [width height].
Set this property in pixels for the minimum size region containing an object. The value must be
greater than or equal to the image size used to train the model. Use this property to reduce
computation time when you know the minimum object size prior to processing the image. When
you do not specify a value for this property, the detector sets it to the size of the image used to
train the classification model.

Size of largest detectable object

Size of largest detectable object, specified as a two-element vector MaxSize = [width
height]. Specify the size in pixels of the largest object to detect. Use this property to reduce
computation time when you know the maximum object size prior to processing the image. When
you do not specify a value for this property, the detector sets it to size(l).

Scaling for multiscale object detection

Scaling for multiscale object detection, specified as a value greater than 1.0001. The scale factor
incrementally scales the detection resolution between MinSize and MaxSize. The detector scales
the search region at increments between MinSize and MaxSize using the following relationship:
search_region = round((Training_Size)*(ScaleFactor)"N). N is the current increment, an integer
greater than zero, and Training_Size is the image size used to train the classification model.

Skip odd

Skipping the odd rows and columns forces the application to not apply the algorithm if the current
row index or the current column index is odd, which means that the search is done only on one
quarter of all possibilities. By setting this option a speedup is done, but also the search can miss
easily.

Detection threshold

Detection threshold, specified as an integer. The threshold defines the criteria needed to declare a
final detection in an area where there are multiple detections around an object. Groups of
collocated detections that meet the threshold are merged to produce one bounding box around the
target object. Increasing this threshold may help suppress false detections by requiring that the
target object be detected multiple times during the multiscale detection phase. When you set this
property to 0, all detections are returned without performing thresholding or merging operation.

4.5.1.3 Method step
bbox = detector (img)

e img is the input image, specified as true-color (RGB)

e Dbbox contains the detections, returned as an M-by-4 element matrix. Each row of the
output matrix contains a four-element vector, [x y width height], that specifies in pixels,
the upper-left corner and size of a bounding box

Vision Toolbox 1.1.0 4-53
Manual for $32v234 Automotive Vision Processors

45.1.4 Example

% Create a face detector object.

faceDetector = nxpvt.CascadeObjectDetector ('FrontalFacelLBP', 'ScaleFactor',1.1,
'MinSize', [40 40], 'MaxSize',[70 70], 'SkipOdd',1l, 'MergeThreshold',61l);

% Read the input image.

img = nxpvt.imread('visionteam.jpg');

% Detect faces.

bboxes = step (faceDetector, img);

% Annotate detected faces.

IFaces = nxpvt.cv.rectangle (img, bboxes, [255 0 0], 2);

nxpvt.imshow (IFaces) ;

45.2 Convolutional Neural Networks

4.5.2.1 Object creation
obj = CNN(cnnMatFileName, imgHeight, imgWidth) - createsa CNN from the
.mat saved network cnnMatFileName that is trained on images with imgHeight and imgWidth.

For example:
alxNet = nxpvt.CNN('alexnet.mat', 227, 227);

45.2.2 Method loadClassNames

classNames = alxNet.loadClassNames (cnnClassNamesFile) - loads saved
.mat containing class names.

For example:

classNames = alxNet.loadClassNames ('alexnet classes.mat');

4.5.2.3 Method predict
[percentages, classes] = cnnObj.predict (inputImage) - returnsthe classes

detected and the associated percentages.

For example:
[percentage, classIdx] = alxNet.predict(inlImg);

4.6 OpenCV wrappers
46.1 Object tracking

4.6.1.1 Kalman filter

The Kalman filter is an algorithm that uses a noisy state-space representation and a series of noisy
observation to estimate unknown variables.
The algorithm works in a two-step process:

1. Predict - Uses the old state and the model to predict the new state.

2. Correct - Uses the current observation to correct the predicted state.

4.6.1.2 Object Creation
kf = KalmanFilter (dynamParams, measureParams, controlParams,
datatype) creates a Kalman filter object that has a state with dynamParams variables,

Vision Toolbox 1.1.0 4-54
Manual for $32v234 Automotive Vision Processors

measureParams measured variables, controlParams control variables, and data type determined
by datatype.

4.6.1.3 Methods

kf.setControlMatrix (B) sets control matrix, where B is the control matrix, specified as
a UMat.

kf.setMeasurementMatrix (H) sets measurement matrix, where H is the measurement
matrix, specified as a UMat.

kf.setProcessNoiseCov (Q) Setsprocess noise covariance matrix, where Q is the process
noise covariance matrix, specified as a UMat.

kf.setMeasurementNoiseCov (R) Sets measurement noise covariance matrix, where R
is the measurement noise covariance matrix, specified as a UMat.

kf.setErrorCovPre (P) Sets priori error covariance matrix, where P is the priori error
covariance matrix, specified as a UMat.

kf.setErrorCovPost (P) Setsposteriori error covariance matrix, where P is the posteriori
error covariance matrix, specified as a UMat.

kf.setStatePre (x) sets priori state, where X is the priori state, specified as a UMat.

kf.setStatePost (x) Sets posteriori state, where X is the posteriori state, specified as a
UMat.

kf.getErrorCovPre (P) gets priori error covariance matrix, where P is the priori error
covariance matrix, specified as a UMat.

kf.getErrorCovPost (P) gets posteriori error covariance matrix, where P is the posteriori
error covariance matrix, specified as a UMat.

kf.setStatePre (x) gets priori state, where x is the priori state, specified as a UMat.

kf.setStatePost (x) gets posteriori state, where x is the posteriori state, specified as a
UMat.

kf.predict () predicts state having no control.

kf.predict (u) predicts state having control, where u is the control vector, specified as a
UMat.

kf.correct (x) corrects state, where X is the measured vector, specified as a UMat.

4.6.1.4 Example

% Create a Kalman filter object
kf = nxpvt.cv.KalmanFilter (int32(2), int32(1l), int32(0), int32(0));

Vision Toolbox 1.1.0 4-55
Manual for $32v234 Automotive Vision Processors

% Initialize state with position 1 and speed 0
initialState = [1; 0];

initialStateUMat = nxpvt.UMat (single(initialState));
kf.setStatePost (initialStateUMat) ;

Time elapsed between observations
= 0.1;

H o°

Set transition matrix

= [1 T; 0 1];

FUMat = nxpvt.UMat (single(F));
kf.setTransitionMatrix (FUMat) ;

o

|

% Set process noise covariance matrix
sd2 = 1472;

Q = [0.25*T"4*sd2 0.5*T"3*sd2; 0.5*T"3*sd2 T"2*sd2];

QUMat = nxpvt.UMat (single(Q)) ;
kf.setProcessNoiseCov (QUMat) ;

% Set error covariance posteriori matrix
P = [0.050; 0 0.05];

PUMat = nxpvt.UMat (single(P));
kf.setErrorCovPost (PUMat) ;

% Set measurement matrix

H= [01];

HUMat = nxpvt.UMat (single(H)) ;
kf.setMeasurementMatrix (HUMat) ;

% Set measurement noise covariance
R = [1];

RUMat = nxpvt.UMat (single(R));
kf.setMeasurementNoiseCov (RUMat) ;

o\

s Use other 10 observations of position
for i = 1:10

% Predict the new state
estimPriTransUMat = kf.predict();

% Correct the new state
measurement = i+1;

measurementUMat = nxpvt.UMat (single (measurement)) ;
estimPostTransUMat = kf.correct (measurementUMat) ;

end

% Estimated speed
estimPostTrans = estimPostTransUMat.data;
speed = estimPostTrans (2)

Vision Toolbox 1.1.0
Manual for $32v234 Automotive Vision Processors

4-56

How to Reach Us:
Home Page:
WWW.NXp.com

Web Support:
WWW.NXP.COm/support

Information in this document is provided solely to enable system and software implementers to use
NXP Semiconductor products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits or integrated circuits based on the information in this
document.

NXP Semiconductor reserves the right to make changes without further notice to any products herein.
NXP Semiconductor makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out
of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including
“Typicals”, must be validated for each customer application by customer’s technical experts. NXP
Semiconductor does not convey any license under its patent rights nor the rights of others. NXP
Semiconductor products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the NXP Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use NXP
Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify
and hold NXP Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that NXP Semiconductor was negligent regarding the
design or manufacture of the part.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks,
and TargetBox is a trademark of The MathWorks, Inc.

Microsoft and .NET Framework are trademarks of Microsoft Corporation.

Flexera Software, Flexlm, and FlexNet Publisher are registered trademarks or trademarks of Flexera
Software, Inc. and/or InstallShield Co. Inc. in the United States of America and/or other countries.
NXP, the NXP logo, CodeWarrior and ColdFire are trademarks of NXP Semiconductor, Inc., Reg. U.S.
Pat. & Tm. Off. Flexis and Processor Expert are trademarks of NXP Semiconductor, Inc. All other
product or service names are the property of their respective owners

©2019 NXP Semiconductors. All rights reserved.

© 2019 NXP Semiconductors. All rights reserved

|

P

