Freescale USB Stack Host

API| Reference Manual

Document Number: USBHOSTAPIRM
Rev. 5
03/2012

frees,calpm

semicon ductor

P

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the bodly,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

freescale"

semiconductor

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© 1994-2008 ARC™ International. All rights reserved.

© Freescale Semiconductor, Inc. 2010-2012. All rights reserved.

Document Number: USBHOSTAPIRM
Rev. 5
03/2012

Revision history

To provide the most up-to-date information, the version of this doucment that is available on the World
Wide Web will be the most current. Your printed copy may be an earlier version. To verify you have the
latest information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Revision Revision -
Nuvr:ﬂ;er I;elat:a Description of Changes
Rev. 1 04/2010 Launch release.
Rev. 2 06/2010 Rebranded Medical Applications USB Stack Host to Freescale USB Stack with
PHDC Host.
Rev. 3 01/2011 Added Audio Class API functions and data structures
Rev. 4 07/2011 Updated document name to USBHOSTAPIRM
Rev.5 03/2012 ggils?ed the term "Freescale USB Stack with PHDC" with "Freescale USB

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
© Freescale Semiconductor, Inc., 2010—2012. All rights reserved.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

http://www.freescale.com

Chapter 1
Before Beginning

— — — —
Nwh o

Chapter 2
USB Host APl Overview

21 Introduction
2.2 USBHOSt ...
2.3 APl OVEeIVIEW
2.4 Using APl ...
2.4.1 Usingthe HostLayer APl
2.4.2 Transaction Scheduling

Chapter 3
USB Host Layer API

3.1 USB Host Layer API function listing
3.1.1 _usb _host bus control()
3.1.2 _usb host cancel transfer()
3.1.3 _usb_host close _all pipes()
3.1.4 _usb _host close pipe()c
3.1.5 _usb_host driver_info register()
3.1.6 _usb_host get frame number()
3.1.7 _usb_host _get micro_frame number()
3.1.8 _usb _host get transfer status()
3.1.9 _usb host init()
3.1.10 _usb_host open_pipe()c i
3.111 usb host recv.data(),
3.1.12 usb_host _register_service()
3.1.13 usb host send data()
3.1.14 usb host send setup()
3.1.15 usb_host shutdown()
3.1.16 _usb_host_unregister_service(),
3.1.17 _usb_hostdev find pipe handle()
3.1.18 _usb_hostdev_get buffer()
3.1.19 _usb_hostdev_get _descriptor()
3.1.20 _usb_hostdev_select config()
3.1.21 _usb_hostdev_select interface()

Chapter 4
USB Device Framework

4.1 USB Device Framework function listing

USBHOST API Reference Manual, Rev. 4

About thisbook
Reference material
Acronyms and abbreviations
Function listingformat

Freescale Semiconductor

g |

41.1 _usb host ch9 clear feature() 29
4.1.2 _usb_host ch9 get configuration() 30
4.1.3 _usb _host ch9 get descriptor() i 30
414 usb host ch9 get interface() 31
415 _usb host ch9 get status() L 31
41.6 _usb host ch9 set address() 32
4.1.7 _usb _host ch9 set configuration() 33
4.1.8 _usb_host ch9 set descriptor() 33
41.9 _usb host ch9 set feature() 34
4.1.10 _usb_host ch9 set interface() 35
4.1.11 _usb_host ch9 synch frame() 35
4.1.12 usb_hostdev_cntrl_request() 36
4.1.13 usb_host _register ch9 callback() 37
Chapter 5
USB Host Class API
5.1 CDC Class API Function Listing 38
51.1 usb class cdc_acm_init() 38
5.1.2 usb_class cdc _bind_acm _interface() 38
5.1.3 usb_class cdc bind data_interfaces() 39
51.4 usb class cdc data_init() 39
5.1.5 usb_class cdc_get acm _descriptors() 40
5.1.6 usb _class cdc _get acm line coding() 41
5.1.7 usb_class_cdc_get ctrl_descriptor() 41
5.1.8 usb _class cdc get ctrl _interface() L. 42
5.1.9 usb class cdc get data interface() 42
5.1.10usb_class_cdc_init_ipipe()« 43
5.1.11 usb_class_cdc _install_driver() 43
5.1.12usb _class cdc set acm ctrl_state() L. 44
5.1.13 usb_class _cdc_set acm _descriptors() i 44
5.1.14 usb_class_cdc_set acm_line coding() 45
5.1.15usb_class _cdc _unbind_acm _interface() 46
5.1.16 usb_class_cdc_unbind_data_interfaces() 46
5.1.17 usb_class_cdc_uninstall_driver() 47
5.2 HID Class APl Function Listing 47
521 usb class hid_get idle() 47
5.2.2 usb _class _hid_get protocol() 48
5.2.3 usb _class hid get report() 48
524 wusb class hid_init() 49
5.2.5 usb class hid_set idle() 49
5.2.6 usb class hid _set protocol() 50
5.2.7 usb_class _hid_set report() 50
5.3 MSD Class APl Function Listing 51
5.3.1 usb_class_mass_getmaxlun_bulkonly() 51
5.3.2 usb _class mass init() 52

USBHOST API Reference Manual, Rev. 4

vi Freescale Semiconductor

h o
g |

4
5.3.3 usb_class _mass reset recovery on usb() 52
5.3.4 usb_class_mass_storage_device_ command() 53
5.3.5 usb_class_mass_storage_device command _cancel() 53
5.3.6 usb class mass cancelq() 54
5.3.7 usb_class_mass _deleteq() 54
5.3.8 usb_class _mass _get pending request() 55
5.3.9 usb class mass q_init() 55
5.3.10usb_class mass _q_insert() 56
53.11usb _mass ufi cancel() 56
5.3.12usb_mass_ufi_generic() 56

5.4 HUB Class APl Function Listing e 57
5.4.1 usb _class hub _clear port feature(), 57
5.4.2 usb class hub _cntrl_callback() 58
5.4.3 usb _class hub_cntrl_common() 58
5.4.4 usb class hub_get descriptor() 59
5.4.5 usb class hub _get port status().............. 59
54.6 usb class hub_ init() 60
5.4.7 usb _class hub_set port feature() 61
5.4.8 usb_host hub device event() 61

5.5 PHDC Class APl Function Listing e 62
55.1 usb class phdc init() 62
5.5.2 usb _class phdc set callbacks() 62
5.5.3 usb_class _phdc_send _control_request() 64
554 usb class phdc recv_ data() 66
555 usb class phdc send data() 68

5.6 Audio Class APl Function Listing e 70
5.6.1 usb_class _audio_control_Init() 70
5.6.2 usb class audio stream Init() 71
5.6.3 usb_class_audio_control_get descriptors() 72
5.6.4 usb_class_audio_control_set descriptors() 73
5.6.5 usb_class_audio_stream_get descriptors() 74
5.6.6 usb_class_audio_stream_set descriptors() 75
5.6.7 usb_class_audio_init_ipipe() 76
5.6.8 usb class audio recv data() 77
5.6.9 usb class audio_send data() 78
5.6.10 usb_class_audio_send_specific requests() 79

5.7 IntrodUCtion e 79

5.8 APl OVEIVIEW . .. 80

5.9 USiNg APl . .. 81

5.10 81

511 FATFS APl Function Listingo e 81
ST 1T mount() 81
5.1 21 0PeN() - oot 83
5131 CloSe() .. oo v 85
BATAT read()o o 86

USBHOST API Reference Manual, Rev. 4

Freescale Semiconductor Vii

h o
g |

BB Write() . . o 87
5116 T USEEK() . ot 88
SA1.7F truncate() 89
BT 8 SYNC() . .. oot 90
5.11.91 0pendir()o 91
5.11.10f readdir() 92
5111 getfree() 93
5.A112f stat() ... 94
513 MKAir() . .. 95
5.A114F UNliNK() ..o 96
5.11.15f chmod()o 97
BB Utime() . . . e 98
B A1 A7 rename() e 99
5118 MKIS() .. 100
54110 forward()o 101
5.11.20f chdir() ...t 102
511.21F chdrive()o 103
5.11.22f getewd()o 104
5.11.23f gets() . . oo 105
5.A1.24F pULC() . . oo 106
511 25F PUES() . . oo 107
5.11.26F printf() 108
Chapter 6
Data Structures
Data Structure Listings 110
6.1.1 CLASS CALL STRUCT PTR e 110
6.1.2 COMMAND_OBJECT _PTR e e 110
6.1.3 HID_COMMAND PTR e e e 111
6.1.4 HUB _COMMAND PTR e e 111
6.1.5 INTERFACE_DESCRIPTOR_PTR i 112
6.1.6 PIPE_BUNDLE_STRUCT_PTR i 112
6.1.7 PIPE_INIT_PARAM STRUCT i 113
6.1.8 TR_INIT_PARAM_STRUCT e 114
6.1.9 USB _CDC _DESC _ACM PTR e e 115
6.1.10USB_CDC DESC CM PTR e e 116
6.1.11 USB_CDC_DESC_HEADER _PTR i 116
6.1.12USB_CDC_DESC _UNION_PTR e 117
6.1.13USB_CDC UART CODING PTR i 117
6.1.14 USB_HOST _DRIVER_INFO e 118
6.1.15USB_MASS_CLASS INTF_STRUCT PTR 118
6.1.16 USB_PHDC PARAM e 119
6.1.17 AUDIO_COMMAND _PTR e e 120
6.1.18 CLASS _CALL STRUCT PTR e 120
6.1.19 PIPE_BUNDLE_STRUCT PTR i 121

USBHOST API Reference Manual, Rev. 4

Freescale Semiconductor viii

6.1.20 USB_AUDIO_CTRL_DESC_HEADER PTR ...\ttt 121

6.1.21 USB_AUDIO_CTRL_DESC_IT_PTR e 122
6.1.22USB_AUDIO_CTRL_DESC_OT_PTR e 122
6.1.23USB_AUDIO_CTRL_DESC_FU_PTR e 123
6.1.24 USB_AUDIO_STREAM_DESC_SPECIFIC_AS IF_ PTR 123
6.1.25 USB_AUDIO_STREAM_DESC_FORMAT_TYPE_PTR 124
6.1.26 USB_AUDIO_STREAM_DESC_SPECIFIC_ISO_ENDP_PTR 125
B.1.27 FATFS . . 125
6.1, 28 FIL . . 127
B.1.29 DIR .. 128
B6.1.30 FILINFO 129
6.1.31 DATE . o 130
B.1.32 TIME . .. 130
Chapter 7
Reference Data Types
7.1 Data Types for Compiler Portability 131

USBHOST API Reference Manual, Rev. 4

Freescale Semiconductor ix

Chapter 1
Before Beginning

1.1 About this book

This book describes the Freescale USB Stack host and class API functions for Freescale Kinetis and
ColdFire v1/v2 microcontrollers. It describes in detail the API functions that can be used to program the
USB host controller at various levels. The following table shows the summary of chapters included in this
book.

Table 1-1. USBHOSTAPIRM summary

Chapter Title Description

Before Beginning This chapter provides the prerequisites for reading this book.

USB Host API Overview This chapter gives an overview of the API functions and how to use them for
developing new class and applications.

USB Host Layer API This chapter discusses the USB host layer API functions.

USB Device Framework This chapter describes the set of functions that are used to support device requests
that are common for all USB devices.

USB Host Class API This chapter discusses the USB device class API functions of the various classes
provided in the software suite.

Data Structures This chapter discusses the various data structures used in the USB host class API
functions.

Reference Data Types This chapter discusses the data types used to write USB host class API functions.

1.2 Reference material

Use this book in conjunction with:
» Freescale USB Stack Host User's Guide (document USBHOSTUG)
* ColdFire V1 USB Host Source Code
* ColdFire V2 USB Host Source Code

For better understanding, refer to the following documents:
» USB Specification Revision 1.1
» USB Specification Revision 2.0
* USB Common Class Specification Revision 1.0
» USB Device Class Definition for Communication Devices Version 1.2
* USB Device Class Definition for Human interface Devices Versionl.11
» USB Mass Storage Class Specification Overview Revision 1.3

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 1

Before Beginning

* Freescale MOX™ USB Host API Reference Manual (document MQXUSBHOSTAPIRM)

1.3 Acronyms and abbreviations

ACM Abstract Control Model

API Application Programming Interface
CDC Communication Device Class

HID Human Interface Device

KHCI Host Control Interface

MSC Mass Storage Class

MSD Mass Storage Device

USB Universal Serial Bus

1.4 Function listing format

This is the general format of an entry for a function, compiler intrinsic, or macro.
function_name()

A short description of what function function_name() does.

Synopsis

Provides a prototype for function function_name().

<return type> function name (
<type 1> parameter 1,
<type 2> parameter 2,

<type n> parameter n)
Parameters

parameter 1 [in] — Pointer to x

parameter 2 [out] — Handle for y

parameter_n [in/out] — Pointer to z
Parameter passing is categorized as follows:

* in— Means the function uses one or more values in the parameter you give it without storing any
changes.

» out — Means the function saves one or more values in the parameter you give it. You can examine
the saved values to find out useful information about your application.

* in/out — Means the function changes one or more values in the parameter you give it and saves
the result. You can examine the saved values to find out useful information about your application.

Description

USBHOST API Reference Manual, Rev. 5

2 Freescale Semiconductor

Before Beginning

Describes the function function_name(). This section also describes any special characteristics or
restrictions that might apply:

+ function blocks or might block under certain conditions
+ function must be started as a task

» function creates a task

» function has pre-conditions that might not be obvious

» function has restrictions or special behavior

Return Value

Specifies any value or values returned by function function _name().
See Also

Lists other functions or data types related to function function_name().
Example

Provides an example (or a reference to an example) that illustrates the use of function function_name().

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 3

Chapter 2
USB Host API Overview

2.1 Introduction

The Freescale USB Stack host software consists of the:

* Class Layer API

* Device Framework

* Host Layer API
Class layer API (USB host class API) consists of the functions that can be used at the class level. This
enables you to implement new classes. This document describes four generic class implementations:
Communication Device Class (CDC), Human Interface Device (HID), Mass Storage Class (MSD), Hub

Class, and Audio Class API functions that are provided as part of the software suite. The API functions
defined for these classes can be used to make applications.

Device Framework consists of functions that are used to support device requests that are common for all
USB devices.

Host Layer API consists of the functions that can be used at the host level and support implementation on
class level.

For better understanding, see the Freescale USB Stack Host Users Guide (document USBHOSTUG).

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 4

USB Host API Overview

2.2

USB Host

The following figure shows the USB host layers.

Host application

!

Class driver library

Y

Common class

'

Ch9 API

Host API

KHCI host controller interface

Figure 2-1. USB Host layers

The purpose of the USB host stack is to provide an abstraction of the USB hardware controller core. A
software application written using the host API can run on full-speed or low-speed core with no
information about the hardware.

The host application layer contains the host embedded application software that is implemented for
a target device or a class of device.

The class driver library is a set of wrapper routines that can be linked into the application. These
routines implement standard functionality of the class of device, defined by USB class
specifications.

Common class is a layer of routines that implements the common-class specification of the USB
and an operating system level abstraction of the USB. This layer interacts with the host API layer
functions.

Ch9 API is dedicated to the standard command protocol implemented by all USB devices. USB
devices are all required to respond to a certain set of requests from the host. This API is a low-level
API that implements all USB Chapter 9 commands.

The host API is a hardware abstraction layer of the USB host stack. This layer implements routines
independent of underlying USB controllers.

KHCT is a completely hardware-dependent set of routines that are responsible for queuing and
processing USB transfers and searching for hardware events.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

2.3

API overview

USB Host API Overview

This section describes the list of USB host class API functions and their use. The following table
summarizes the host layer API functions.

Table 2-1. Summary of Host Layer API functions

No. API Function Description
1 | _usb_host_bus_control() Controls the operation of the bus
2 | _usb_host_cancel_transfer() Cancels a specific transfer on a pipe
3 | _usb_host_close_all_pipes() Closes all pipes
4 | _usb_host_close_pipe() Closes a pipe
5 |_usb_host_driver_info_register() Registers driver information
6 |_usb_host_get_frame_number() Gets the current frame number
7 |_usb_host_get_micro_frame_number() Gets the current microframe number
8 |_usb_host_get_transfer_status() Gets the status of a specific transfer on a pipe
9 | _usb_host_init() Initializes the USB host controller interface
10 | _usb_host_open_pipe() Opens the pipe between a host and a device endpoint
11 | _usb_host_recv_data() Receives data on a pipe
12 | _usb_host_register_service() Registers a service for a pipe or specific event
13 | _usb_host_send_data() Sends data on a pipe
14 | _usb_host_send_setup() Sends a setup packet on a control pipe
15 | _usb_host_shutdown() Shuts down the USB host controller interface
16 | _usb_host_unregister_service() Unregisters a service for a pipe or specific event
17 | _usb_hostdev_find_pipe_handle() Finds a pipe for the specified interface
18 | _usb_hostdev_get_buffer() Gets a buffer for a particular device operation
19 | _usb_hostdev_get_descriptor() Gets the specified USB descriptor that exists in device specific data
structure
20 |_usb_hostdev_select_config() Selects a new configuration of the device
21 | _usb_hostdev_select_interface() Selects a new interface on the device

The following table summarizes the USB device framework functions.

Table 2-2. Summary of Host Layer API functions

No. API Function Description
1 |_usb_host_ch9_clear_feature Clears a specific feature
2 |_usb_host_ch9_get_configuration | Gets device's current configuration value

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

USB Host API Overview

Table 2-2. Summary of Host Layer API functions (continued)

No. API Function Description
3 |_usb_host_ch9_get_descriptor() Gets specified descriptor
4 | _usb_host_ch9_get_interface() Gets currently selected alternate setting for interface
5 |_usb_host_ch9_get_status() Gets status of the specified recipient
6 |_usb_host_ch9_set_address() Sets device address
7 | _usb_host_ch9_set_configuration() |Sets device configuration
8 | _usb_host_ch9_set_descriptor() Sets or updates descriptors
9 |_usb_host_ch9_set_feature() Sets specific feature
10 | _usb_host_ch9_set_interface() Sets alternate interface settings
11 | _usb_host_ch9_synch_frame() Sets an endpoint’s synchronization frame
12 | _usb_hostdev_cntrl_request() Issues a class or vendor specific control request
13 | _usb_host_register_ch9_callback() | Registers a callback function for a chapter 9 command

The following table summarizes the CDC class API functions.

Table 2-3. Summary of CDC Class API functions

No.

API Function

Description

usb_class_cdc_acm_init()

Initializes the class driver for AbstractClassControl

2 |usb_class_cdc_bind_acm_interface() Data interface (specified by ccs_ptr) will be bound to appropriate control
interface

3 |usb_class_cdc_bind_data_interfaces() All data interfaces belonging to ACM control instance (specified by ccs_ptr) will
be bound to this interface

4 |usb_class_cdc_data_init() Initializes the class driver for AbstractClassControl

5 |usb_class_cdc_get_acm_descriptors() Hunts for descriptors in the device configuration and fills back fields if the
descriptor was found

6 |usb_class_cdc_get_acm_line_coding() | Gets parameters of current line (baud rate, hardware control...)

7 |usb_class_cdc_get_ctrl_descriptor() Hunts for descriptor of control interface, which controls data interface identified
by descriptor (intf_handle)

8 |usb_class_cdc_get_ctrl_interface() Finds registered control interface in the chain

9 |usb_class_cdc_get_data_interface() Finds registered data interface in the chain

10 | usb_class_cdc_init_ipipe() Starts interrupt endpoint to poll for interrupt on specified device

11 | usb_class_cdc_install_driver() Adds/installs USB serial device driver

12 |usb_class_cdc_set_acm_ctrl_state() Sets parameters of current line (baud rate, hardware control, and so on)

13 |usb_class_cdc_set_acm_descriptors() Sets descriptors for ACM interface

14 |usb_class_cdc_set_acm_line_coding() | Sets parameters of current line (baud rate, hardware control, and so on)

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

USB Host API Overview

Table 2-3. Summary of CDC Class API functions (continued)

No. API Function Description

15 |usb_class_cdc_unbind_acm_interface() |Data interface (specified by ccs_ptr) will be unbound from appropriate control
interface

16 | usb_class_cdc_unbind_data_interfaces() | All data interfaces bound to ACM control instance will be unbound from this
interface

17 | usb_class_cdc_uninstall_driver() Removes USB serial device driver

The following table summarizes the HID class API functions.

Table 2-4. Summary of HIDClass API functions

No. API Function Description
1 |usb_class_hid_get_idle() Reads the idle rate of a particular HID device report
2 |usb_class_hid_get_protocol() | Reads the active protocol (boot protocol or report protocol)
3 |usb_class_hid_get_report() |Gets a report from the HID device
4 | usb_class_hid_init() Initializes the class driver
5 |usb_class_hid_set_idle() Silences a particular report on interrupt in pipe until a new event occurs or specified time
elapses
6 |usb_class_hid_set_protocol() | Switches between the boot protocol and the report protocol (or vice versa)
7 |usb_class_hid_set_report() |Sends a report to the HID device

The following table summarizes the MSD class API functions.

Table 2-5. Summary of MSD Class API functions

No. API Function Description
1 |usb_class_mass_getmaxlun_bulkonly() Gets the number of logical units on the device
2 |usb_class_mass_init() Initializes the mass storage class
3 |usb_class_mass_reset_recovery_on_usb() Gets the pending request from class driver queue and sends the
RESET command on control pipe
4 |usb_class_mass_storage_device_command() Executes the command defined in protocol API
5 |usb_class_mass_storage_device_command_cancel() | Dequeues the command in class driver queue
6 |usb_class_mass_cancelq() Cancels the given request in the queue
7 |usb_class_mass_deleteq() Deletes the pending request in the queue
8 |usb_class_mass_get_pending_request() Fetches the pointer to the first (pending) request in the queue, or
NULL if there is no pending request
9 |usb_class_mass_q_init() Initializes a mass storage class queue
10 |usb_class_mass_g_insert() Inserts a command in the queue

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

USB Host API Overview

Table 2-5. Summary of MSD Class API functions (continued)

No.

API Function

Description

11

usb_mass_ufi_cancel()

Cancels the given request in the queue

12

usb_mass_ufi_generic()

Initializes the mass storage class

The following table summarizes the HUB class API functions.

Table

2-6. Summary of HUB class API functions

No.

API Function

Description

usb_class_hub_clear_port_feature()

Clears feature of selected hub port

usb_class_hub_cntrl_callback()

Is the callback used when hub information is sent or received

usb_class_hub_cntrl_common()

Sends a control request

usb_class_hub_get_descriptor()

Reads the descriptor of hub device

usb_class_hub_get_port_status()

Gets the status of specified port

usb_class_hub_init()

Initializes the class driver

usb_class_hub_set_port_feature()

Sets feature of specified hub port

0| N0l bl WOW|DN

usb_host_hub_device_event()

Is called when a hub has been attached, detached, and so on

The following table summarizes the Audio Host class API functions.
Table 2-7. Summary of Audio Class API functions

No. API Function Description
1 | usb_class_audio_control_init() Initializes the class driver for audio control interface
2 |usb_class_audio_stream_init() Initializes the class driver for audio stream interface
3 |usb_class_audio_control_get_descriptors() Hunts for descriptor of control interface
4 | usb_class_audio_control_set_descriptor() Set descriptors into audio control structure
5 |usb_class_audio_stream_get_descriptors() Hunts for descriptor of stream interface
6 |usb_class_audio_stream_set_descriptors() Set descriptors into audio stream structure
7 |usb_class_audio_init_ipipe() Initializes the class driver for interrupt pipe
8 |usb_class_audio_recv_data() Receive audio data from audio device
9 |usb_class_audio_send_data() Send audio data to audio devices
10 |usb_class_audio_<send_specific_requests> | This group of functions used for sending specific requests such as
get/set mute request, get/set volume request...

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

USB Host API Overview

24 Using API

241 Using the Host Layer API

To use the Freescale USB Stack host API, perform the following steps.
1. Initialize the USB host controller interface (_usb host init()).
2. Optionally register services for types of events (_usb_host register service()).

NOTE
Before transferring any packets, the application should determine that the
enumeration process has been completed. This can be done by registering a
callback function that notifies the application when the enumeration has
been completed.
Open the pipe for a connected device or devices (_usb_host _open_pipe()).
Send control packets to configure the device or devices (_usb_host send_setup()).
Send (_usb_host send data()) and receive (_usb_host recv_data()) data on pipes.
If required, cancel a transfer on a pipe (_usb_host cancel transfer()).

If applicable, unregister services for pipes or types of events (_usb_host unregister service()) and
close pipes for disconnected devices (_usb_host close pipe()).

8. Shut down the USB host controller interface (_usb_host shutdown()).

N nREW

Alternatively:

1. Define the table of driver capabilities that the application uses.

Example 2-1. Sample driver info table

/* Table of driver capabilities this application wants to use */
static USB_HOST DRIVER INFO DriverInfoTablel[] =
{

{
/* Vendor ID per USB-IF */

{0x00, 0x00},
/* Product ID per manufacturer */
{0x00, 0x00},

/* Class code */
USB_CLASS_HID,
/* Sub-Class code */
USB_SUBCLASS_HID BOOT,
/* Protocol */
USB_PROTOCOL_HID KEYBOARD,
/* Reserved */
Or
/* Application call back function */
usb host hid keyboard event
}I
/* USB 1.1 hub */
{
/* Vendor ID per USB-IF */
{0x00, 0x00},

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 10

USB Host API Overview

/* Product ID per manufacturer */
{0x00, 0x00},

/* Class code */

USB_CLASS HUB,

/* Sub-Class code */
USB_SUBCLASS_HUB_NONE,

/* Protocol */

USB_PROTOCOL HUB_LS,

/* Reserved */

O ’

/* Application call back function */
usb _host hub device event

/* All-zero entry terminates */
{0x00, 0x00},
/* driver info list. */
{0x00, 0x00},
0,
0,
0,
OI
NULL
}’

10.
I1.

12.
13.

Initialize the USB host controller interface (_usb_host_init()).

The application should then register this table with the host stack by calling the
_usb host driver info register() host API function.

Optionally register services for types of events (_usb_host register service()).
Wait for the callback function (specified in the driverinfo table) to be called.
Check for the events in the callback function: One of ATTACH, DETACH, CONFIG, or INTF.

— ATTACH: indicates a newly attached device was just enumerated and a default configuration
was selected

— DETACH: the device was detached
— CONFIG: A new configuration was selected on the device
— INTF: A new interface was selected on the device

If it is an attach event, then select an interface by calling the host API function
_usb _hostdev_select interface().

After the INTF event is notified in the callback function, issue class-specific commands by using
the class API.

Open the pipe for a connected device or devices (_usb_host _open_pipe()).
Get the pipe handle by calling the host API function usb hostdev_find pipe handle().

Transfer data by using the host API functions usb host send data() and/or
_usb_host recv_data().

If required, cancel a transfer on a pipe (_usb_host cancel transfer()).

If applicable, unregister services for types of events (_usb_host unregister service()) and close
pipes for disconnected devices (_usb_host close pipe()).

USBHOST API Reference Manual, Rev. 5

11

Freescale Semiconductor

USB Host API Overview

14. Shut down the USB host controller interface (_usb_host shutdown()).

24.2 Transaction Scheduling

For USB 1.1, transaction scheduling is managed by USB Host API. For USB 2.0, USB Host API manages
the bandwidth allocation and enqueuing the transfers. The enqueued transfer is then managed by the
hardware.

If using USB 2.0 hardware, the KHCI determines and allocates the required bandwidth over the whole
frame list when usb_host open pipe() is called (the size of the frame list is determined from the
parameter passed to _usb_host_init(). The pipe can then be used to queue a transfer (by calling
_usb_host send data() and usb host recv_data()) that is scheduled every INTERVAL units of time (the
value is defined in PIPE_INIT PARAM_ STRUCT). When the host is the data source, an application
should provide timely data by calling usb host send data(). When the application determines that the
transfer has been completed, it should relinquish the allocated bandwidth if the bandwidth is not required
further. This can be done by calling usb host close pipe().

Interrupt data transfers—provides the reliable, limited-latency delivery of data. If using USB 2.0
hardware, the KHCI determines and allocates the required bandwidth over the whole frame list when
_usb_host_open_pipe() is called (size of frame list is determined from the parameter passed to
_usb_host _init(). The pipe can then be used to queue a transfer (by calling usb _host send data() and
_usb_host _recv_data()) that is scheduled every INTERVAL units of time (the value is defined in

PIPE INIT PARAM_STRUCT). For USB1.1, the interval is in milliseconds. For USB 2.0, it is in terms
of 125-microsecond units. The NAK COUNT field in PIPE _INIT PARAM_ STRUCT is ignored for
interrupt data transfers.

Control data transfers—to configure devices when they are first attached, and control pipes on a device.
Bulk data transfers—for large amounts of data that can be delivered in sequential bursts.

Within pipes opened for the same type of data, scheduling is round robin, even if the packet is NAKed;
that is, the transaction has to be retried when bus time is available.

Control and bulk data transfers—for USB 1.1, after NAK COUNT NAK responses per frame, the
transaction is deferred to the next frame. For USB 2.0, the host controller does not execute a transaction if
NAK COUNT NAK responses are received on the pipe.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 12

Chapter 3
USB Host Layer API

3.1 USB Host Layer API function listing

3.11 _usb_host_bus_control()
Controls the operation of the bus.

Synopsis

void usb host bus control(
usb _host handle hci handle,
uint 8 bus control)

Parameters
hci_handle [in] — USB host controller handle
bus_control [in] — Operation to be performed on the bus; one of:
USB_ASSERT_BUS_RESET — Reset the bus
USB_ASSERT_RESUME — If the bus is suspended, resume operation
USB_DEASSERT_BUS_RESET — Bring the bus out of reset mode
USB_DEASSERT_RESUME — Bring the bus out of resume mode
USB_NO_OPERATION — Make the bus idle
USB_RESUME_SOF — Generate and transmit start-of-frame tokens
USB_SUSPEND_SOF — Do not generate start-of-frame tokens
Description

The function controls the bus operations such as asserting and deasserting the bus reset, asserting and
deasserting resume signalling, suspending and resuming the SOF generation.

Return Value

None

3.1.2 _usb_host_cancel_transfer()
Cancels the specified transfer on the pipe.

Synopsis
uint 32 usb host cancel transfer(
_usb_host_handle hci handle,
_usb_pipe_handle pipe handle,
uint_32 transfer number)

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 13

3
4

y
A

USB Host Layer API

Parameters
hci_handle [in] — USB host controller handle

pipe_handle [in] — Pipe handle

transfer_number [in] — Specific transfer to cancel should correspond the TR_INDEX field in the
transfer request (PIPE_INIT PARAM STRUCT) for the particular transfer when
~usb host send setup(), usb host send data(), or usb host recv data() functions were called.

Description

The function cancels the specified transfer on the pipe at the hardware level. It will then call the callback
function for that transaction (if there was one registered for that transfer by using the
TR _INIT PARAM STRUCT) with the status value as USBERR_SHUTDOWN indicating that the

transfer was cancelled.

Return Value

Status of the transfer prior to cancellation (see _usb_host get transfer status()) (success)
USBERR_INVALID_PIPE_HANDLE — Valid for USB 2.0 host API only (failure; pipe handle is not

valid)

See also
_usb_host get transfer status(),
_usb_host recv_data(),

_usb _host send data(),
_usb_host _send_setup(),

TR _INIT PARAM STRUCT

3.1.3 _usb_host_close_all_pipes()
Closes all pipes.
Synopsis

void usb host close all pipes(
_usb_host _handle hci handle)

Parameters
hci_handle [in] — USB host controller handle

Description

The function removes all pipes from the list of open pipes.
Return Value

None

See also
_usb_host_close_pipe(), _usb_host_open_pipe()

USBHOST API Reference Manual, Rev. 5

14

Freescale Semiconductor

3.14 _usb_host_close_pipe()
Closes the specified pipe functions.

Synopsis

uint 32 usb host close pipe(
_usb_host_handle hci handle,
_usb_pipe handle pipe handle)

Parameters
hci_handle [in] — USB host controller handle
pipe_handle [in] — Pipe handle

Description

The function removes the pipe from the list of open pipes.

Return Value
USB_OK (success)

USBERR_INVALID PIPE_HANDLE (failure; pipe_handle is not valid)

See also

_usb_host _close_all pipes(),
_usb_host open pipe()

3.1.5 _usb_host_driver_info_register()

Registers the driver information.
Synopsis

USB STATUS usb host driver info register (
_usb_host_handle host handle,
pointer info table ptr)

Parameters
host_handle [in] — USB host
info_table ptr [in] — Device info table

Description

USB Host Layer API

This function is used by the application to register a driver for a device with a particular vendor ID, product

ID, class, subclass and protocol code.

Return
USB_OK (success)

USBERR DEVICE_NOT_FOUND (failure; device not found)

See also

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

15

USB Host Layer API

USB_HOST DRIVER INFO

3.1.6 _usb_host_get_frame_number()
Gets the current frame number — for USB 2.0 Host API only.

Synopsis

uint 32 usb host get frame number (
_usb_host handle hci handle)

Parameters
hci_handle [in] — USB host controller handle

Description

An application can use the function to determine at which frame number a particular transaction should be
scheduled.

Return Value
Current frame number
See also

_usb_host get micro frame number()

3.1.7 _usb_host_get_micro_frame_number()
Gets the current microframe number — for USB 2.0 host API only.
Synopsis

uint 32 usb host get micro frame number (
_usb_host handle hci handle)

Parameters
hci_handle [in] — USB host controller handle

Description

An application can use the function to determine at which microframe number a particular transaction
should be scheduled.

Return Value
Current microframe number
See also

_usb_host get frame number()

USBHOST API Reference Manual, Rev. 5

16 Freescale Semiconductor

USB Host Layer API

3.1.8 _usb_host_get_transfer_status()
Gets the status of the specified transfer on the pipe.
Synopsis

uint 32 usb host get transfer status/(
usb_pipe handle pipe handle,
uint 32 transfer number)

Parameters
pipe _handle [in] — Pipe handle
transfer_number [in] — Specific transfer number on the pipe should correspond the TR_INDEX

field in the transfer request (TR _INIT PARAM STRUCT) for the particular transfer when
_usb_host send setup(), usb host send data(), or usb host recv_data() was called.

Description

The function gets the status of the specified transfer on the specified pipe. It reads the status of the transfer.
To determine whether a receive or send request has been completed, the application can call
_usb_host get transfer status() to check whether the status is USB_STATUS_IDLE.

Return Value

Status of the transfer; one of:
* USB_STATUS_IDLE (no transfer is queued or completed)
« USB_STATUS _TRANSFER QUEUED (transfer is queued, but is not in progress)

« USB_STATUS TRANSFER_IN PROGRESS (transfer is queued in the hardware and is in
progress) or

« USBERR_INVALID PIPE HANDLE (error; pipe_handle is not valid)
See also

_usb _host cancel transfer(),
_usb host get transfer status(),
_usb_host recv_data(),

_usb _host send data(),

_usb host send_setup(),

TR _INIT PARAM_STRUCT

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 17

USB Host Layer API

3.1.9 _usb_host_init()
Initializes the USB host controller interface data structures and the controller interface.

Synopsis

uint 32 usb host init(
uint 8 devnum,
uint 32 frame list size,
_usb_host handle PTR hci handle)

Parameters

devnum [in] — Device number of the USB host controller to initialize
frame_list_size [in] — Number of elements in the periodic frame list; one of:
256
512
1024 (default)
(ignored for USB 1.1)
hci_handle [out] — Pointer to a USB host controller handle

Description

The function calls a KHCI function to initialize the USB host hardware and install an ISR that services all
interrupt sources on the USB host hardware.

The function also allocates and initializes all internal host-specific data structures and USB host internal
data and returns a USB host controller handle for subsequent use with other USB host API functions.

If frame_list_size is not a valid value, 1024 is assumed and USB_OK is returned.
Errors

USBERR_ALLOC

Failed to allocate memory for internal data structures.

USBERR DRIVER NOT_INSTALLED

Driver for the host controller is not installed (reported only when using USB host API).

USBERR_INSTALL_ISR
Could not install the ISR (reported only when using USB host API).

Return Value
USB_OK (success)

Error code (failure; see errors)
See also

_usb_host_shutdown()

USBHOST API Reference Manual, Rev. 5

18 Freescale Semiconductor

3.1.10 _usb_host_open_pipe()
Opens a pipe between the host and the device endpoint.

Synopsis

uint 32 usb host open pipe (
_usb_host_handle hci handle,

PIPE INIT PARAM STRUCT PTR pipe init params ptr,
_usb_pipe handle PTR pipe handle)

Parameters
hci_handle [in] — USB Host controller handle

pipe_init_params_ptr [in] — Pointer to the pipe initialization parameters

pipe_handle [out] — Pipe handle

Description

USB Host Layer API

The function initializes a new pipe for the specified USB device address and endpoint, and returns a pipe

handle for subsequent use with other USB host API functions.

All bandwidth allocation for a pipe is done when this function is called. If the services of a pipe are not

required or the bandwidth requirements change, the pipe should be closed.

Errors

USBERR _BANDWIDTH_ALLOC_FAILED

Required bandwidth could not be allocated (valid for USB 2.0 stack only).

USBERR _OPEN_PIPE_FAILED
failure; open_pipe failed

Return Value

Pipe handle (success)

Error code (failure: see errors)

See also

_usb_host close all pipes(), usb_host close pipe(),
PIPE INIT PARAM STRUCT

3.1.11 _usb_host_recv_data()

Receives data on a pipe.

Synopsis

uint 32 usb host recv_data(
_usb_host _handle hci handle,
_usb_pipe handle pipe handle,

TR _INIT PARAM STRUCT PTR tr params ptr)

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

19

3
4

'
A

USB Host Layer API

Parameters
hci_handle [in] — USB host controller handle
pipe _handle [in] — Pipe handle
tr_ptr [in] — Pointer to the transfer request parameters

Description

The function calls a KHCI function to queue the receive request and then returns. Multiple receive requests
on the same endpoint can be queued.

The receive transfer completes when the host receives exactly RX LENGTH bytes (defined in

TR _INIT PARAM_STRUCT) on the specified pipe, or the last packet received on the pipe is less than
MAX PACKET SIZE (setthrough PIPE INIT PARAM STRUCT and calling usb_host open_pipe()).
For USB 1.1, if RX_LENGTH is greater than MAX PACKET SIZE, the transfer is set to

MAX PACKET SIZE bytes.

To check whether a transfer has been completed, the application can either:
» call usb host get transfer status() and confirm a return status of USB_STATUS IDLE

» provide a callback function (with parameters for length and transfer number) that can be used to
notify the application that the transfer has been completed (see _usb_host _open_pipe()).

For information on how transactions are scheduled, see Transaction Scheduling.
Errors

USBERR INVALID PIPE HANDLE

pipe_handle is not valid.

USB_STATUS_TRANSFER IN PROGRESS

A previously queued transfer on the pipe is still in progress, and the pipe cannot accept any more transfers
until the previous one has been completed.

Return Value

USB_STATUS_TRANSFER QUEUED (success)
Error code (failure; see errors)

See also

_usb_host get transfer status(),
_usb_host open pipe(),

_usb _host send data(),

PIPE INIT PARAM_ STRUCT,
TR_INIT PARAM_STRUCT

USBHOST API Reference Manual, Rev. 5

20 Freescale Semiconductor

USB Host Layer API

3.1.12 _usb_host_register_service()
Registers a service for a specific event.

Synopsis

uint 32 usb host register service(
_usb_host_handle hci handle,
uint 8 type,
void (_CODE PTR service) (pointer callbk ptr,
uint 32 event param)

Parameters
hci_handle [in] — USB Host controller handle
type [in] — Event to service; one of:
USB_SERVICE_ATTACH — device has been connected to the bus
USB_SERVICE_DETACH — device has been disconnected from the bus
USB_SERVICE_HOST_RESUME — resume the host

USB_SERVICE_SYSTEM_ERROR — system error occurred while processing USB
requests

service [in] — Pointer to the callback function
callbk _ptr [in] — Pointer to a USB host controller handle

Description

The function initializes a linked list of data structures with event and registers the callback function to
service that event.

When the specific event (such as a device attach event) occurs, required information is collected as
event_param, and service is called with event param as a parameter.

Errors

USBERR_ALLOC

Failed to allocate memory for internal data structure.
USBERR_OPEN_SERVICE

Service was already registered.

event_param [in] — Event-specific parameter

Return Value
USB_OK (success)

Error code (failure; see errors)
See also

_usb_host_unregister service()

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 21

USB Host Layer API

3.1.13 _usb_host_send_data()

Sends data on a pipe.

Synopsis

uint 32 usb host send data(
_usb_host_handle hci handle,
_usb_pipe handle pipe handle,
TR_INIT PARAM STRUCT PTR tr params ptr)

Parameters
hci_handle [in] — USB Host controller handle
pipe_handle [in] — Pipe handle
tr_ptr [in] — Pointer to the transfer request

Description

The function calls a KHCI function to queue the send request and then returns. Multiple send requests on
the same endpoint can be queued.

The send transfer completes when the host transmits exactly TX LENGTH bytes (defined in
TR_INIT PARAM STRUCT) on the specified pipe, or the last packet transmitted on the pipe is less than
MAX PACKET_ SIZE (set through PIPE INIT PARAM STRUCT and calling usb_host _open_pipe()).
For USB 1.1, for isochronous pipes, if TX_LENGTH is greater than MAX_PACKET_SIZE, the transfer is set to
MAX_PACKET_SIZE bytes.

For USB 1.1, the data is broken into packets before it is sent. If the transfer is for an integer multiple of
MAX_PACKET_SIZE bytes, a zero-length packet is sent after the actual data. For example, if MAX_PACKET SIZE
is 16 and the transfer is for 36 bytes, the following size packets are sent: 16, 16, 4. However, if the transfer
is for 32 bytes, the following size packets are sent: 16, 16, 0.

For USB 2.0, the hardware manages dividing the transfer into packets.

To check whether a transfer has been completed, the application can either:
» call usb host get transfer status() and confirm a return status of USB_STATUS_IDLE

» provide a callback function with a length and transfer number parameter that can be used to notify
the application that the transfer has been completed (see TR _INIT PARAM STRUCT)

Errors

USBERR_INVALID PIPE HANDLE
pipe_handle is not valid.
USB_STATUS_TRANSFER_IN_PROGRESS

A previously queued transfer on the pipe is still in progress and the pipe cannot accept any more transfers
until the previous one has been completed.

Return Value

USB_STATUS_TRANSFER QUEUED (success)

USBHOST API Reference Manual, Rev. 5

22 Freescale Semiconductor

USB Host Layer API

Error code (failure; see errors)
See also

_usb _host get transfer status(),
_usb_host recv_data(),

PIPE INIT PARAM_ STRUCT,
TR _INIT PARAM_STRUCT

3.1.14 _usb_host_send_setup()
Sends a setup packet on a control pipe.functions.

Synopsis

uint 32 usb host send setup(
_usb_host _handle hci handle,
_usb_pipe handle pipe handle,
TR_INIT PARAM STRUCT PTR tr params ptr)

Parameters
hci_handle [in] — USB host controller handle
pipe_handle [in] — Pipe handle
tr_ptr [in] — Pointer to the transfer request

Description

The function calls a KHCI function to queue the transfer and then returns. Once a control transfer request
is queued, the KHCI manages or queues all phases of a control transfer.

NOTE
Before the application calls _usb_host send_setup(), the control pipe must
be idle: to determine whether the control pipe is idle, calls

_usb _host get transfer status(), and confirms a return status of
USB_STATUS _IDLE.

Return Value

USB_STATUS TRANSFER_QUEUED (success)

USB_STATUS_TRANSFER_IN_PROGRESS (failure; a previously queued transfer is still in
progress)

USBERR_INVALID_PIPE_HANDLE (failure; pipe_handle is not valid)

See also

_usb _host get transfer status(), TR INIT PARAM STRUCT

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 23

USB Host Layer API

3.1.15 _usb_host_shutdown()

Shuts down the USB host controller interface.

Synopsis

void usb _host shutdown (
_usb_host_handle hci handle)

Parameters
hci_handle [in] — USB Host controller handle
Description

The function calls a KHCI function to stop the specified USB host controller. Call the function when the
services of the USB host controller are no longer required, or if the USB host controller needs to be
reconfigured.

The function additionally does the following:
1. terminates all transfers
2. unregisters all services
3. disconnects the host from the USB bus
4. frees all memory that the USB host allocated for its internal data

Return Value
None

See also
_usb _host_init()

3.1.16 _usb_host_unregister_service()
Unregisters a service for a type of event.

Synopsis

uint 32 usb host unregister service(
_usb_host _handle hci handle,
uint 8 event)

Parameters
hci_handle [in] — USB host controller handle
event [in] — Service to unregister (see _usb_host register service())

Description

The function unregisters the callback function that services the event As a result, the event can no longer
be serviced by a callback function.

Return Value
USB_OK (success)

USBHOST API Reference Manual, Rev. 5

24 Freescale Semiconductor

USB Host Layer API

USBERR_CLOSED_SERVICE (failure: the specified service was not previously registered)
See also

_usb host register service()

3.1.17 _usb_hostdev_find_pipe_handle()

Finds a specific pipe for the specified interface.

Synopsis

_usb _pipe handle usb hostdev_find pipe handle(
_usb device instance handle dev handle,
_usb_device descriptor handle intf handle,
_uint 8 pipe type,
_uint_8 pipe direction)

Parameters

dev_handle [in] — USB device
intf_handle [in] — Interface handle

pipe_type [in] — Pipe type; one of:
USB_ISOCHRONOUS PIPE
USB_INTERRUPT PIPE
USB_CONTROL_PIPE
USB BULK PIPE
pipe_direction [in] — Pipe direction (ignored for control pipe); one of:
USB _RECV
USB_SEND

Description
This is a function to find a pipe with specified type and direction on the specified device interface.

If the specified interface does not exist or is not selected by calling usb_hostdev_select interface(), then
NULL is returned.

Return Value

Pipe handle (success)
NULL

See also

_usb hostdev_select interface()

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 25

USB Host Layer API

3.1.18 _usb_hostdev_get_buffer()

Gets a buffer for the device operation.

Synopsis

USB_STATUS usb hostdev_get buffer(
_usb _device instance handle dev handle,
uint 32 buffer size,
uchar ptr PTR buff ptr)

Parameters
dev_handle [in] — USB device
buffer size [in] — Buffer size to get
buff ptr [out] — Pointer to the buffer

Description

Applications should use this function to get buffers and other work areas that stay allocated until the device
is detached. When the device is detached, these are all freed by the host system software.

Return Value
Pointer to the buffer (success)

USBERR DEVICE_NOT_FOUND (failure; device not found)

3.1.19 _usb_hostdev_get_descriptor()
Gets a descriptor.

Synopsis
USB STATUS usb hostdev get descriptor (
_usb _device instance handle dev handle,
descriptor type desc type,
uint8 desc index,
uint8 intf alt,
pointer PTR descriptor)
Parameters
dev_handle [in] — USB device
desc_type [in] — The type of descriptor to get
desc_index [in] — The descriptor index
intf alt [in] — The interface alternate

_PTR descriptor [out] — Handle of the descriptor
Description

When the host detects a newly attached device, the host system software reads the device and configuration
(that includes interface and endpoint descriptors) descriptors and stores them in the internal

USBHOST API Reference Manual, Rev. 5

26 Freescale Semiconductor

USB Host Layer API
device-specific memory. The application can request these descriptors by calling this function instead of
issuing a device framework function request to get the descriptor from the device.

Return Value
handle of the descriptor (success)

USBERR DEVICE _NOT_FOUND (failure; device not found)

3.1.20 _usb_hostdev_select_config()
Selects the specified configuration for the device.

Synopsis

USB_STATUS usb _hostdev_select config(
_usb _device instance handle dev handle,
uint8 config no)

Parameters
dev_handle [in] — USB device
config no [in] — Configuration number

Description

This function is used to select a particular configuration on the device. If the host ,previously selected a
configuration for the device then it will delete that configuration and select the new one. The host system
sends a device framework command (_usb host ch9 get configuration()) to the device and then
initializes and saves the configuration specific information in its internal data structures.

Return Value
USB_OK (success)

USBERR_DEVICE_NOT_FOUND (failure; device not found)
See also

_usb_host ch9 get configuration()

3.1.21 _usb_hostdev_select_interface()
Selects a new interface on the device.

Synopsis

USB STATUS usb hostdev select interface(
_usb _device instance handle dev handle,
_usb_interface descriptor handle intf handle,
pointer class intf ptr)

Parameters
dev_handle [in] — USB device
intf_handle [in] — Interface to be selected

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 27

V¥ ¢
i

USB Host Layer API

class_intf ptr [out] — Initialized class-specific interface structure
Description

This function should be used to select an interface on the device. It will delete the previously selected
interface and setup the new one with same or different index/alternate settings. This function will allocate,
and initialize memory and data structures that are required to manage the specified interface. This includes
creating a pipe bundle after opening the pipes for that interface. If the class for this interface is supported
by the host stack then it will initialize that class. This function will also issue the device framework
command (_usb host ch9 set interface()) to set the new interface on the device. When the application is
notified of the completion of this command then the application/device-driver can issue class-specific
commands or directly transfer data on the pipe.

Return Value
USB_OK and class-interface handle (success)

USBERR DEVICE _NOT_FOUND (failure; device not found)
See also

_usb _host ch9 set interface()

USBHOST API Reference Manual, Rev. 5

28 Freescale Semiconductor

Chapter 4
USB Device Framework

4.1 USB Device Framework function listing

This section describes the set of functions that are used to support device requests that are common for all
USB devices.

For more information about USB Device Framework, refer to Chapter 9 of the USB 2.0 specification.

411 _usb_host_ch9_clear_feature()

Clears a specific feature.
Synopsis
USB _STATUS usb host ch9 clear feature (
_usb _device instance handle dev _handle,
uint 8 reg type,
uint 8 intf endpt,
uint 16 feature)
Parameters
dev_handle [in] — USB device handle
req_type [in] — Indicates the recipient of this command (one of: device, interface, or endpoint)
intf endpt [in] — The interface or endpoint number for this command

feature [in] — Feature selector such as device remote wakeup, endpoint halt, or test mode
Description

The function is used to clear or disable a specific feature on the specified device. Feature selector values
must be appropriate to the recipient. Only device feature selector values may be used when the recipient
is a device; only interface feature selector values may be used when the recipient is an interface, and only
endpoint feature selector values may be used when the recipient is an endpoint.
Return Value
USB_OK (success)
USBERR_INVALID BMREQ _TYPE (failure; req_type is not valid)
USBERR_DEVICE_NOT_FOUND (failure; device not found)
USBERR_INVALID_PIPE_HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb _host ch9 set feature()

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 29

USB Device Framework

41.2 _usb_host_ch9_get_configuration()
Gets current configuration value for this device.

Synopsis

USB_STATUS usb_host ch9 get configuration(
_usb _device instance handle dev handle,
uchar ptr buffer)

Parameters
dev_handle [in] — USB device handle
buffer [out] — Configuration value

Description

The function returns the device's current configuration value. If the returned configuration value is zero
then that means that the device is not configured.
Return Value
USB_OK (success)
USBERR_DEVICE_NOT_FOUND (failure; device not found)
USBERR_INVALID_PIPE_HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb_host ch9 set configuration()

41.3 _usb_host_ch9_get_descriptor()
Gets descriptor from this device.

Synopsis

USB_STATUS usb _host ch9 get descriptor(
_usb _device instance handle dev handle,
uint 16 type index,
uint 16 lang id,
uint 16 buflen,
uchar ptr buffer)

Parameters
dev_handle [in] — USB device handle
type_index [in] — Type of descriptor and index
lang id [in] — The language ID
buflen [in] — Buffer length
buffer [out] — Descriptor buffer

Description

USBHOST API Reference Manual, Rev. 5

30 Freescale Semiconductor

USB Device Framework

The device will return the specified descriptor if it exists. The descriptor index is used to select a specific
descriptor (only for configuration and string descriptors) when several descriptors of the same type are
implemented in a device.

Return Value
USB_OK (success)
USBERR DEVICE_NOT_FOUND (failure; device not found)
USBERR_INVALID_PIPE_HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb_host ch9 set descriptor()

4.1.4 _usb_host_ch9_get_interface()

Returns the currently selected alternate setting for the specified interface.

Synopsis

USB_STATUS usb_host ch9 get interface(
_usb _device instance handle dev handle,
uint 8 interface,
uchar ptr buffer)

Parameters
dev_handle [in] — USB device handle
interface [in] — interface index
buffer [out] — Alternate setting buffer

Description
The function allows the host to determine the currently selected alternate setting on the specified device.

Return Value

USB_OK (success)
USBERR DEVICE NOT_FOUND (failure; device not found)
USBERR_INVALID_ PIPE _HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb _host ch9 set interface()

41.5 _usb_host_ch9_get_status()

Returns status of the specified recipient.

Synopsis

USB_STATUS usb host ch9 get status(
_usb _device instance handle dev handle,
uint 8 req type,

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 31

USB Device Framework
uint 8 intf endpt,
uchar ptr buffer)

Parameters
dev_handle [in] — USB device handle
req_type [in] — Indicates the recipient of this command (one of: device, interface or endpoint)
intf _endpt [in] — The interface or endpoint number for this command
buffer [out] — Returned status

Description
The function returns the current status of the specified recipient.4vice framework

Return Value
USB_OK (success)
USBERR_INVALID BMREQ_TYPE (failure; req type is not valid)
USBERR DEVICE_NOT_FOUND (failure; device not found)
USBERR INVALID PIPE_HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb_host ch9 clear feature(),
_usb _host ch9 set feature()

4.1.6 _usb_host_ch9_set_address()

Sets the device address for device accesses.

Synopsis

USB STATUS usb host ch9 set address(
_usb device instance handle dev handle)

Parameters
dev_handle [in] — USB device handle

Description
The function sets the device address for all future device accesses

Return Value
USB_OK (success)
USBERR DEVICE NOT_FOUND (failure; device not found)
USBERR_INVALID_PIPE_HANDLE (failure; the internal control pipe handle is not valid)

USBHOST API Reference Manual, Rev. 5

32 Freescale Semiconductor

USB Device Framework

4.1.7 _usb_host_ch9_set_configuration()
Sets device configuration.

Synopsis

USB_STATUS usb_host ch9 set configuration(
_usb _device instance handle dev handle,
uint 16 config)

Parameters
dev_handle [in] — USB device handle
config [in] — Configuration value

Description

The function sets the device configuration. The lower byte of the configuration value specifies the desired
configuration. This configuration value must be zero or match a configuration value from a configuration
descriptor. If the configuration value is zero, the device is placed in its Address state. The upper byte of
the configuration value is reserved.
Return Value
USB_OK (success)
USBERR DEVICE NOT_FOUND (failure; device not found)
USBERR_INVALID_PIPE _HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb_host ch9 set configuration()

41.8 _usb_host_ch9_set_descriptor()

Updates existing descriptor, or add new descriptors.
Synopsis

USB_STATUS usb _host ch9 set descriptor(
_usb _device instance handle dev handle,
uint 16 type index,
uint 16 lang id,
uint 16 buflen,
uchar ptr buffer)

Parameters
dev_handle [in] — USB device handle
type_index [in] — Type of descriptor and index
lang id [in] — The language 1D
buflen [in] — Buffer length
buffer [out] — Descriptor buffer

Description

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 33

USB Device Framework

This optional function issues a command that updates existing descriptors or adds new descriptors. The
descriptor index is used to select a specific descriptor (only for configuration and string descriptors) when
several descriptors of the same type are implemented in a device.
Return Value
USB_OK (success)
USBERR_DEVICE_NOT_FOUND (failure; device not found)
USBERR_INVALID_PIPE_HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb_host ch9 get descriptor()

41.9 _usb_host_ch9_set_feature()

Sets specified feature.

Synopsis
USB_STATUS usb _host ch9 set feature(
_usb _device instance handle dev handle,
uint 8 req type,
uint 8 intf endpt,
uint 16 feature)
Parameters
dev_handle [in] — USB device handle
req_type [in] — Indicates the recipient of this command (one of: device, interface, or endpoint)
intf endpt [in] — The interface or endpoint number for this command

feature [in] — Feature selector such as device remote wakeup, endpoint halt, or test mode
Description

This function will issue a command to set or enable a specified feature. Feature selector values must be
appropriate to the recipient. Only device feature selector values may be used when the recipient is a device;
only interface feature selector values may be used when the recipient is an interface, and only endpoint
feature selector values may be used when the recipient is an endpoint.
Return Value
USB_OK (success)
USBERR_INVALID BMREQ_TYPE (failure; req_type is not valid)
USBERR_DEVICE_NOT_FOUND (failure; device not found)
USBERR_INVALID_PIPE_HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb _host ch9 clear feature()

USBHOST API Reference Manual, Rev. 5

34 Freescale Semiconductor

USB Device Framework

4110 _usb_host_ch9_set_interface()

Selects an alternate setting for interface.

Synopsis

USB_STATUS usb_host ch9 set interface(
_usb _device instance handle dev handle,
uint 8 alternate,
uint 8 intf)

Parameters
dev_handle[in] — USB device handle
alternate [in] — Alternate setting
intf [in] — interface

Description
This function allows the host to select an alternate setting for the specified interface.

Return Value
USB_OK (success)
USBERR DEVICE NOT_FOUND (failure; device not found)
USBERR_INVALID_PIPE _HANDLE (failure; the internal control pipe handle is not valid)

See also

_usb _host ch9 get interface()

4111 _usb_host_ch9_synch_frame()
Sets and report an endpoint’s synchronization frame.

Synopsis

USB STATUS usb host ch9 synch frame (
_usb device instance handle dev handle,
uint 8 intf,
uchar ptr buffer)

Parameters
dev_handle [in] — USB device handle
intf [in] — Interface
buffer [out] — Synch frame buffer

Description

This function is used to set and then report the endpoint’s synchronization frame. This command is relevant
for isochronous endpoints only.

Returns
USB_OK (success)

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 35

V¥ ¢
i

USB Device Framework

USBERR DEVICE_NOT_FOUND (failure; device not found)
USBERR INVALID PIPE _HANDLE (failure; the internal control pipe handle is not valid)

4112 _usb_hostdev_cntrl_request()
Issues a class or vendor specific control request.

Synopsis
USB _STATUS usb hostdev_cntrl request (
_usb _device instance handle dev _handle,
USB_SETUP PTR devregq,
uchar ptr buff ptr,
tr callback callback,
pointer callback param)
Parameters
dev_handle [in] — USB device
devreq [in] — Device request to send
buff ptr [in] — Buffer to send/receive
callback [in] — Callback upon completion

callback param [in] — The parameter to pass back to the callback function

Description

This function is used to issue class- or vendor-specific control commands.

Return Value

USB_OK (success)
USBERR_DEVICE_NOT_FOUND (failure; device not found)

USBHOST API Reference Manual, Rev. 5

36 Freescale Semiconductor

USB Device Framework

4113 _usb_host_register_ch9_callback()

Register a callback function for notification of standard device framework (chapter 9) command
completion.
Synopsis

USB STATUS usb host register ch9 callback(
_usb device instance handle dev handle,
tr callback callback,
pointer callback param)

Parameters
dev_handle [in] — USB device
callback [in] — Callback upon completion
callback param [in] — The parameter to pass back to the callback function

Description

This function registers a callback function that will be called to notify the user of a standard device
framework request completion. This should be used only after enumeration is completed.

Return Value
USB_OK (success)
USBERR_DEVICE_NOT_FOUND (failure; device not found)

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 37

Chapter 5
USB Host Class API

5.1 CDC Class API Function Listing

This section defines the API functions used for the Communication Device Class (CDC). The application

can use these API functions to make CDC applications.

51.1 usb_class_cdc_acm_init()
Initializes the class driver for AbstractClassControl.

Synopsis

void usb class cdc acm init(
PIPE BUNDLE STRUCT PTR pbs ptr,
CLASS CALL STRUCT PTR ccs ptr)

Parameters
pbs_ptr [in] — Structure with USB pipe information on the interface.
ces_ptr [in] — The communication device data instance structure.

Description

This function is called by common class to initialize the class driver for AbstractClassControl. It is called

in response to a select interface call by application.
Return Value

None

See also

CLASS_CALL STRUCT PTR,
PIPE BUNDLE STRUCT PTR

5.1.2 usb_class_cdc_bind_acm_interface()
Binds data interface to appropriate control interface.

Synopsis

USB_STATUS usb _class_cdc _bind acm interface (
CLASS CALL STRUCT PTR ccs ptr,
INTERFACE DESCRIPTOR PTR if desc)

Parameters

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

38

3
4

'
A

USB Host Class API

ces_ptr [in] — The communication device data instance structure.
if desc [in] — Interface descriptor pointer.

Description

Data interface (specified by ccs_ptr) will be bound to appropriate control interface. It must be run in locked
state and validated USB device or directly from attach event.

Return Value
USB_OK
See also

usb class cdc unbind acm_interface(),
CLASS CALL STRUCT PTR,
INTERFACE DESCRIPTOR PTR

51.3 usb_class_cdc_bind_data_interfaces()
Binds all data interfaces belonging to ACM control instance.

Synopsis

USB_STATUS usb class_cdc _bind data interfaces(
_usb _device instance handle dev handle,
CLASS CALL STRUCT PTR ccs ptr)

Parameters
dev_handle [in] — Pointer to device instance.
ces_ptr [in] — The communication device data instance structure.

Description

All data interfaces belonging to ACM control instance (specified by ccs_ptr) will be bound to this
interface. Union functional descriptor describes which data interfaces should be bound. It must be run in
locked state and validated USB device or directly from attach event.

Return Value
USB_ OK if found

See also

usb class cdc unbind data interfaces(),
CLASS CALL STRUCT PTR

5.1.4 usb_class_cdc_data_init()
Initializes the class driver for AbstractClassControl.

Synopsis

void usb class _cdc_data init(

USBHOST API Reference Manual, Rev. 5

39 Freescale Semiconductor

USB Host Class API

PIPE BUNDLE STRUCT PTR pbs ptr,
CLASS CALL STRUCT PTR ccs ptr)

Parameters
pbs_ptr [in] — Structure with USB pipe information on the interface.
ces_ptr [in] — The communication device data instance structure.

Description

This function is called by common class to initialize the class driver for AbstractClassControl. It is called
in response to a select interface call by application.

Return Value
None
See also

CLASS_CALL STRUCT PTR,
PIPE_ BUNDLE STRUCT PTR

5.1.5 usb_class_cdc_get_acm_descriptors()
Hunts for descriptors in the device configuration and fills back fields if the descriptor was found.

Synopsis

USB_STATUS usb_class_cdc _get acm descriptors(
_usb _device instance handle dev _handle,
_usb_interface descriptor handle intf handle,
USB CDC_DESC ACM PTR PTR acm desc,
USB CDC_DESC CM PTR PTR cm desc,
USB CDC _DESC HEADER PTR PTR header desc,
USB_CDC_DESC UNION PTR PTR union_desc)

Parameters
dev_handle [in] — Pointer to device instance
intf_handle [in] — Pointer to interface descriptor
acm_desc [in] — ACM functional descriptor pointer
cm_desc [in] — CM functional descriptor pointer
header desc [in] — Header functional descriptor pointer
union_desc [in] — Union functional descriptor pointer

Description

This function searches for descriptors in the device configuration and fills back fields if the descriptor was
found. It must be run in locked state and validated USB device or directly from attach event.

Return Value
USB_OK

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 40

USB Host Class API

See also

usb_class cdc_set acm_descriptors(),
USB CDC DESC_ACM PTR,
USB_CDC _DESC CM PTR,
USB_CDC_DESC _HEADER PTR,
USB_CDC_DESC UNION PTR

5.1.6 usb_class_cdc_get_acm_line_coding()
Gets parameters of current line.

Synopsis

USB_STATUS usb_class_cdc _get acm line coding(
CLASS CALL STRUCT PTR ccs ptr,
USB_CDC_UART CODING PTR uart coding ptr)

Parameters

ccs_ptr [in] — The communication device data instance structure.
uart _coding ptr [in] — Location to store coding into.

Description
This function is used to get parameters of current line (baud rate, HW control, and so on).

NOTE

Data instance communication structure is passed here as parameter, not
control interface.

Return Value
Success as USB_OK
See also

usb class cdc set acm line coding(),
CLASS CALL STRUCT PTR,
USB _CDC UART CODING PTR

5.1.7 usb_class_cdc_get_ctrl_descriptor()

Hunts for descriptor of control interface, which controls data interface identified by descriptor
(intf_handle).
Synopsis

USB_STATUS usb_class_cdc _get ctrl descriptor(
_usb _device instance handle dev _handle,
_usb _interface descriptor handle intf handle,
INTERFACE DESCRIPTOR PTR PTR if desc ptr)

Parameters

USBHOST API Reference Manual, Rev. 5

41 Freescale Semiconductor

USB Host Class API

dev_handle [in] — Pointer to device instance
intf_handle [in] — Pointer to interface descriptor
if desc ptr [in] — Pointer to control interface descriptor

Description

This functionsearches for descriptor of control interface, which controls data interface identified by
descriptor (intf handle). The found control interface descriptor is written to if desc_ptr. It must be run in
locked state and validated USB device or directly from attach event.

Return Value
USB_ OK if found
See also

INTERFACE DESCRIPTOR PTR

5.1.8 usb_class_cdc_get_ctrl_interface()
Finds registered control interface in the chain.

Synopsis

CLASS CALL STRUCT PTR usb class cdc _get ctrl interface(
pointer intf handle)

Parameters
intf_handle [in] — Pointer to interface handle

Description

This function is used to find registered control interface in the chain. It must be run with interrupts disabled
to have interfaces validated.

Return Value

Control interface instance

5.1.9 usb_class_cdc_get_data_interface()
Finds registered data interface in the chain.

Synopsis

CLASS CALL STRUCT_ PTR usb class cdc_get data interface(
pointer intf handle)

Parameters
intf_handle [in] — Pointer to interface handle

Description

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 42

USB Host Class API

This function is used to find registered data interface in the chain. It must be run with interrupts disabled
to have interfaces validated.

Return Value

Data interface instance

5.1.10 usb_class_cdc_init_ipipe()
Starts interrupt endpoint to poll for interrupt on specified device.

Synopsis

USB_STATUS usb class _cdc_init ipipe(
CLASS CALL STRUCT_ PTR acm_instance)

Parameters

acm_instance [in] — ACM interface instance.
Description
This function starts interrupt endpoint to poll for interrupt on specified device.
Return Value
Success as USB_OK
See also

CLASS_CALL STRUCT PTR

5.1.11 usb_class_cdc_install_driver()
Adds/installs USB serial device driver.

Synopsis

USB STATUS usb _class cdc_install driver(
CLASS CALL STRUCT PTR data instance,
char ptr device name)

Parameters
data_instance [in] — Data instance.
device name [in] — Device name.

Description

This function adds/installs USB serial device driver.
Return Value

Success as USB_OK

See also

usb _class_cdc_uninstall_driver(),

USBHOST API Reference Manual, Rev. 5

43 Freescale Semiconductor

USB Host Class API

CLASS_CALL STRUCT PTR

5.1.12 usb_class_cdc_set_acm_ctrl_state()

Synopsis

USB STATUS usb _class _cdc_set acm ctrl state(
CLASS CALL STRUCT PTR ccs ptr,
uint 8 dtr,
uint 8 rts)

Parameters

ccs_ptr [in] — The communication device data instance structure
dtr [in] — DTR state to set
rts [in]— RTS state to set

Description

This function is used to set parameters of current line (baud rate, HW control, and so on).

NOTE

Data instance communication structure is passed here as parameter, not
control interface.

Return Value
Success as USB_OK
See also

CLASS CALL STRUCT_PTR

5.1.13 usb_class_cdc_set_acm_descriptors()
Sets descriptors for ACM interface.

Synopsis

USB_STATUS usb_class_cdc_set acm descriptors(
CLASS CALL STRUCT PTR ccs ptr,
USB _CDC_DESC ACM PTR acm desc,
USB _CDC _DESC CM PTR cm desc,
USB _CDC_DESC HEADER PTR header desc,
USB_CDC_DESC _UNION PTR union desc)

Parameters
ccs_ptr [in] — The communication device data instance structure
acm_desc [in] — ACM functional descriptor pointer
cm_desc [in] — CM (call management) functional descriptor pointer
header desc [in] — Header functional descriptor pointer
union_desc [in] — Union functional descriptor pointer

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 44

USB Host Class API

Description

This function is used to set descriptors for ACM interface. Descriptors can be used afterwards by
application or by driver.

Return Value
USB_OK if validation passed
See also

usb class cdc get acm_descriptors(),
CLASS CALL STRUCT PTR,

USB CDC DESC _ACM_PTR,

USB _CDC DESC CM PTR,
USB_CDC DESC HEADER PTR,
USB_CDC _DESC UNION PTR

5.1.14 usb_class_cdc_set_acm_line_coding()
Sets parameters of current line.

Synopsis

USB_STATUS usb_class_cdc_set acm line coding(
CLASS CALL STRUCT PTR ccs ptr,
USB_CDC_UART CODING PTR uart coding ptr)

Parameters
ccs_ptr [in] — The communication device data instance structure
uart _coding ptr [in] — Location to store coding

Description
This function is used to set parameters of current line (baud rate, HW control, and so on)

NOTE

Data instance communication structure is passed here as parameter, not
control interface.

Return Value
Success as USB_OK
See also

usb class cdc get acm line coding(),
CLASS CALL STRUCT PTR,
USB _CDC UART CODING PTR

USBHOST API Reference Manual, Rev. 5

45 Freescale Semiconductor

USB Host Class API

5.1.15 usb_class_cdc_unbind_acm_interface()

Unbinds data interface to appropriate control interface.
Synopsis

USB_STATUS usb _class_cdc_unbind acm interface (
CLASS CALL STRUCT PTR ccs ptr)

Parameters

ccs_ptr [in] — The communication device data instance structure
Description

Data interface (specified by ccs_ptr) will be unbound from appropriate control interface. It must be run in
locked state and validated USB device.

Return Value
USB_ OK
See also

usb class cdc bind acm_interface(),
CLASS CALL STRUCT PTR

5.1.16 usb_class_cdc_unbind_data_interfaces()
Unbinds all data interfaces bound to ACM control instance.

Synopsis

USB_STATUS usb_ class_cdc_unbind data interfaces(
CLASS CALL STRUCT PTR ccs ptr)

Parameters

ces_ptr [in] — The communication device data instance structure
Description
All data interfaces bound to ACM control instance will be unbound from this interface.
Return Value
USB_ OK if found
See also

usb class cdc bind data interfaces(),
CLASS CALL STRUCT PTR

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 46

USB Host Class API

5.1.17 usb_class_cdc_uninstall_driver()
Removes USB serial device driver.

Synopsis

USB_STATUS usb_class_cdc_uninstall driver (
CLASS CALL STRUCT_PTR data instance)

Parameters

data_instance [in] — Data instance
Description
This function removes USB serial device driver.
Return Value
Success as USB_OK
See also

usb_class_cdc_install driver(),
CLASS CALL STRUCT PTR

5.2 HID Class API Function Listing

This section defines the API functions used for the Human interface Device (HID) class. The application
can use these API functions to make HID applications using a USB transport.

5.2.1 usb_class_hid_get_idle()
Reads the idle rate of a particular HID device report.

Synopsis

USB_STATUS usb class_hid get idle(
HID COMMAND PTR com ptr,
uint 8 rid,
uint 8 ptr idle rate)

Parameters

com_ptr [in] — Class interface structure pointer
rid [in] — Report ID (see HID specification)
idle_rate [out] — Idle rate of this report

Description
This function is called by the application to read the idle rate of a particular HID device report.
Return Value

USB_OK if command has been passed on USB

USBHOST API Reference Manual, Rev. 5

47 Freescale Semiconductor

See also

usb_class_hid_set idle(),
HID COMMAND PTR

5.2.2 usb_class_hid_get_protocol()
Reads the active protocol.

Synopsis

USB STATUS usb _class_hid get protocol(
HID COMMAND PTR com ptr,
uchar ptr protocol)

Parameters
com_ptr [in] — Class interface structure pointer.
protocol [in] — Protocol (1 byte, 0 = Boot Protocol or 1 = Report Protocol).
Description
This function reads the active protocol (boot protocol or report protocol).
Return Value
USB_OK if command has been passed on USB
See also
usb class_hid set protocol(), HID COMMAND PTR

5.2.3 usb_class_hid_get_report()
Gets a report from the HID device.

Synopsis

USB_STATUS usb_class_hid get report (
HID COMMAND PTR com ptr,
uint 8 rid,
uint 8 rtype,
pointer buf,
uint 16 blen)

Parameters
com_ptr [in] — Class interface structure pointer
rid [in] — Report ID (see HID specification)
rtype [in] — Report type (see HID specification)
buf [in] — Buffer to receive report data
blen [in] — Length of the Buffer

Description

USBHOST API Reference Manual, Rev. 5

USB Host Class API

Freescale Semiconductor

48

USB Host Class API

This function is called by the application to get a report from the HID device.
Return Value

USB_OK if command has been passed on USB

See also

usb class hid set report(),
HID COMMAND PTR

5.24 usb_class_hid_init()

Initializes the class driver.

Synopsis

void usb class hid init(
PIPE BUNDLE STRUCT PTR pbs ptr,
CLASS CALL STRUCT PTR ccs ptr)

Parameters
pbs_ptr [in] — Structure with USB pipe information on the interface
ces_ptr [in] — The communication device data instance structure

Description

This function is called by common class to initialize the class driver. It is called in response to a select
interface call by application.

Return Value
None
See also

CLASS_CALL STRUCT PTR,
PIPE BUNDLE STRUCT PTR

5.2.5 usb_class_hid_set_idle()

Silences a particular report on interrupt in pipe until a new event occurs or specified time elapses.

Synopsis

USB_STATUS usb class_hid set idle(
HID COMMAND PTR com ptr,
uint 8 rid)

Parameters

com_ptr [in] — Class interface structure pointer
rid [in] — Report ID (see HID specification)

Description

USBHOST API Reference Manual, Rev. 5

49 Freescale Semiconductor

USB Host Class API

This function is called by the application to silence a particular report on interrupt in pipe until a new event

occurs or specified time elapses.

Return Value

USB_OK if command has been passed on USB
See also

usb class hid get idle(),
HID COMMAND PTR

5.2.6 usb_class_hid_set_protocol()
Switches between the boot protocol and the report protocol (or vice versa).

Synopsis

USB_STATUS usb class_hid set protocol (
HID COMMAND PTR com ptr,
uint 8 protocol)

Parameters
com_ptr [in] — Class interface structure pointer
protocol [in] — The protocol (0 = Boot, 1 = Report)

Description

This function switches between the boot protocol and the report protocol (or vice versa).

Return Value
USB_OK if command has been passed on USB
See also

usb_class_hid get protocol(),
HID COMMAND PTR

5.2.7 usb_class_hid_set_report()
Sends a report to the HID device.

Synopsis

USB_STATUS usb_class_hid set report(
HID COMMAND PTR com ptr,
uint 8 rid,
uint 8 rtype,
pointer buf,
uint 16 blen)

Parameters

com_ptr [in] — Class interface structure pointer

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

50

|
y

'
A

USB Host Class API

rid [in] — Report ID (see HID specification)
rtype [in] — Report type (see HID specification)
buf [in] — Buffer to receive report data

blen [in] — Length of the buffer

Description

This function is called by the application to send a report to the HID device.
Return Value

USB_OK if command has been passed on USB

See also

usb_class_hid get report(),
HID COMMAND PTR

5.3 MSD Class API Function Listing

This section defines the API functions used for the Mass Storage Class (MSD). The application can use
these API functions to make MSD applications.

5.3.1 usb_class_mass_getmaxlun_bulkonly()
Gets the number of logical units on the device.

Synopsis

USB STATUS usb class mass getmaxlun bulkonly (
CLASS CALL STRUCT PTR ccs ptr,
uint 8 ptr pLUN,
tr callback callback)

Parameters

ces_ptr [in] — The communication device data instance structure
pLUN [in] — Pointer to Logical Unit Number (LUN)
callback [in] — Callback upon completion

Description

This is a class specific command. See the documentation of the USB mass storage specifictaion to learn
how this command works. This command is used the get the number of logical units on the device. Caller
will use the LUN number to direct the commands (as a part of CBW).

Return Value
ERROR STATUS of the command
See also

CLASS _CALL STRUCT PTR

USBHOST API Reference Manual, Rev. 5

51 Freescale Semiconductor

USB Host Class API

5.3.2 usb_class_mass_init()
Initializes the mass storage class.

Synopsis

void usb class mass_init(
PIPE BUNDLE STRUCT PTR pbs ptr,
CLASS CALL STRUCT PTR ccs ptr)

Parameters
pbs_ptr [in] — Structure with USB pipe information on the interface
ces_ptr [in] — The communication device data instance structure

Description

This function initializes the mass storage class.
Return Value

None

See also

CLASS_CALL STRUCT PTR,
PIPE_ BUNDLE STRUCT PTR

5.3.3 usb_class_mass_reset_recovery_on_usb()
Gets the pending request from class driver queue and sends the RESET command on control pipe.

Synopsis

USB STATUS usb class mass_reset recovery on_usb(
USB_MASS CLASS INTF STRUCT PTR intf ptr)

Parameters
intf ptr [in] — Interface structure pointer
Description

This routine gets the pending request from class driver queue and sends the RESET command on control
pipe. This routine is called when a phase of the pending command fails and class driver decides to reset
the device. If there is no pending request in the queue, it will just return. This routine registers a call back
for control pipe commands to ensure that pending command is queued again.

NOTE

This functions should only be called by a callback or within a USB_lock()
block.

Return Value
ERROR STATUS of the command

See also

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 52

USB Host Class API

USB_MASS CLASS INTF STRUCT PTR

5.3.4 usb_class_mass_storage_device_command()
Executes the command defined in protocol APIL.

Synopsis

USB_STATUS usb class mass_ storage device command (
CLASS CALL STRUCT PTR ccs ptr,
COMMAND OBJECT PTR cmd ptr)

Parameters
ces_ptr [in] — The communication device data instance structure
cmd_ptr [in] — Command

Description

This routine is called by the protocol layer to execute the command defined in protocol API. It can also be
directly called by users application if they wish to make their own commands (vendor specific) for sending
to a mass storage device.

Return Value

USB_OK — Command has been successfully queued in class driver queue (or has been passed to USB,
if there is no other command pending)

See also
CLASS CALL STRUCT PTR,
COMMAND OBIJECT_PTR

5.3.5 usb_class_mass_storage_device_command_cancel()
Dequeues the command in class driver queue.

Synopsis

boolean usb class mass storage device command cancel (
CLASS CALL STRUCT PTR ccs ptr,
COMMAND OBJECT PTR cmd ptr)

Parameters
ces_ptr [in] — The communication device data instance structure
cmd_ptr [in] — Command

Description
This function dequeues the command in class driver queue.
Return Value

ERROR STATUS error code

USBHOST API Reference Manual, Rev. 5

53 Freescale Semiconductor

USB_OK — Command has been successfully dequeued in class driver queue
See also

CLASS CALL STRUCT PTR,
COMMAND OBJECT PTR

5.3.6 usb_class_mass_cancelq()
Cancels the given request in the queue.

Synopsis

boolean usb _class mass cancelq(
USB_MASS CLASS INTF STRUCT PTR intf ptr,
COMMAND OBJECT_ PTR pCmd)

Parameters
intf ptr [in] — Interface structure pointer
pCmd [in] — Command object to be inserted in the queue

Description

This routine cancels the given request in the queue.
Return Value

None

See also

COMMAND OBIJECT PTR,
USB_MASS CLASS INTF STRUCT PTR

5.3.7 usb_class_mass_deleteq()
Deletes the pending request in the queue.

Synopsis

void usb class mass_deleteq(
USB_MASS CLASS INTF STRUCT PTR intf ptr)

Parameters

intf ptr [in] — Interface structure pointer
Description
This routine deletes the pending request in the queue.
Return Value
None

See also

USBHOST API Reference Manual, Rev. 5

USB Host Class API

Freescale Semiconductor

54

USB Host Class API

USB_MASS CLASS_INTF STRUCT PTR

5.3.8 usb_class_mass_get_pending_request()
Fetches the pointer to the first (pending) request in the queue, or NULL if there is no pending requests.

Synopsis

void usb class mass_get pending request (
USB_MASS CLASS_ INTF STRUCT PTR intf ptr,
COMMAND OBJECT PTR PTR cmd ptr ptr)

Parameters
intf ptr [in] — Interface structure pointer
cmd_ptr_ptr [in] — Pointer to pointer that will hold the pending request

Description

This routine fetches the pointer to the first (pending) request in the queue, or NULL if there is no pending
requests.

Return Value
None
See also

COMMAND OBIJECT PTR,
USB_MASS CLASS INTF STRUCT PTR

5.3.9 usb_class_mass_q_init()
Initializes a mass storage class queue.

Synopsis

void usb class mass g init(
USB_MASS CLASS INTF STRUCT PTR intf ptr)

Parameters

intf ptr [in] — Interface structure pointer
Description
This function initializes a mass storage class queue.
Return Value
None
See also
USB_MASS CLASS INTF STRUCT PTR

USBHOST API Reference Manual, Rev. 5

55 Freescale Semiconductor

5.3.10 usb_class_mass_q_insert()
Inserts a command in the queue.

Synopsis

int 32 usb _class mass_g_insert(
USB_MASS CLASS INTF STRUCT PTR intf ptr,
COMMAND OBJECT PTR pCmd)

Parameters

intf ptr [in] — Interface structure pointer
pCmd [in] — Command object to be inserted in the queue

Description

This function is called by class driver for inserting a command in the queue.
Return Value

Position at which insertion took place in the queue

See also

COMMAND OBIJECT PTR,
USB_MASS CLASS INTF STRUCT PTR

5.3.11 usb_mass_ufi_cancel()

Synopsis

boolean usb mass ufi cancel (
COMMAND OBJECT PTR cmd ptr)

Parameters

cmd_ptr [in] — Command object pointer
Description
This function cancels the given request in the queue.
Return Value
None

See also
COMMAND OBJECT PTR

5.3.12 usb_mass_ufi_generic()

Synopsis

USB_STATUS usb mass ufi generic(
/* [in] command object allocated by application*/
COMMAND OBJECT PTR cmd ptr,

USBHOST API Reference Manual, Rev. 5

USB Host Class API

Freescale Semiconductor

56

USB Host Class API

uint 8 opcode,
uint 8 Iun,

uint 32 Ibaddr,
uint 32 blen,
uint 8 cbwflags,
uchar ptr buf,
uint 32 buf len)

Parameters
cmd_ptr [in] — Command object pointer
opcode [in] — Opcode of command block
lun [in] — Logical unit number of command block
Ibaddr [in] — Logical block address
blen [in] — Allocation length
cbwflags [in] — Command block wrapper flags
buf [in] — Command data buffer
buf len [in] — Command data buffer length

Description

This function initializes the mass storage class.
Return Value

None

See also
COMMAND OBIJECT_PTR

5.4 HUB Class API Function Listing

This section defines the API functions used for the hub. The application can use these API functions to

make hub applications.

541 usb_class_hub_clear_port_feature()
Clears feature of selected hub port.

Synopsis
USB STATUS usb _class _hub clear port feature
HUB COMMAND PTR com ptr,
uint 8 port nr,
uint 8 feature)
Parameters
com_ptr [in] — Class interface structure pointer
port_nr [in] — Port number

feature [in] — Feature ID

USBHOST API Reference Manual, Rev. 5

57

Freescale Semiconductor

Description

This function clears feature of selected hub port.
Return Value

USB_OK if command has been passed on USB

See also
HUB COMMAND PTR

5.4.2 usb_class_hub_cntrl_callback()

The callback used when hub information is sent or received.

Synopsis

void usb class hub cntrl callback(
pointer pipe,
pointer param,
uchar ptr buffer,
uint 32 Ien,
USB_STATUS status)

Parameters
pipe [in] — Unused
param [in] — Pointer to the class interface instance
buffer [in] — Data buffer
len [in] — Length of buffer
status [in] — Error code (if any)

Description

This function is the callback used when hub information is sent or received.

Return Value

USB_OK if command has been passed on USB

54.3 usb_class_hub_cntrl_common()
Sends a control request.

Synopsis

USB STATUS usb class hub cntrl common (
HUB_COMMAND PTR com ptr,
uint 8 bmrequesttype,
uint 8 brequest,
uint 16 wvalue,
uint 16 windex,
uint 16 wlength,
uchar ptr data)

USBHOST API Reference Manual, Rev. 5

USB Host Class API

Freescale Semiconductor

58

|
y

'
A

USB Host Class API

Parameters

com_ptr [in] — The communication device common command structure.

bmrequesttype [in] — Bitmask of the request type

brequest [in] — Request code

wvalue [in] — Value to copy into WVALUE field of the REQUEST
windex [in] — Length of the data associated with REQUEST
wlength [in] — Index field of CTRL packet

data [in] — Pointer to data buffer used to send/receive

Description

This function is used to send a control request.
Return Value

USB_OK if command has been passed on USB

See also
HUB_COMMAND PTR

544 usb_class_hub_get_descriptor()
Reads the descriptor of hub device.

Synopsis

USB_STATUS usb_class_hub get descriptor (
HUB COMMAND PTR com ptr,
uchar ptr buffer,
uchar len)

Parameters

com_ptr [in] — The communication device common command structure
buffer [in] — Descriptor buffer
len [in] — Buffer length (how many bytes to read)

Description

This function is called by the application to read the descriptor of hub device.
Return Value

USB_OK if command has been passed on USB

See also
HUB_COMMAND PTR

5.4.5 usb_class_hub_get_port_status()

Gets the status of specified port.

USBHOST API Reference Manual, Rev. 5

59

Freescale Semiconductor

Synopsis

USB STATUS usb class _hub get port status(
HUB COMMAND PTR com ptr,
uint 8 port nr,
uchar ptr buffer,
uchar len)

Parameters
com_ptr [in] — Class interface structure pointer
port_nr [in] — Port number
buffer [in] — Status buffer
len [in] —Buffer length (or, better said, how many bytes to read)

Description

This function gets the status of specified port.
Return Value

USB_OK if command has been passed on USB

See also
HUB _COMMAND_ PTR

5.4.6 usb_class_hub_init()

Initializes the class driver.

Synopsis

void usb class hub init(
PIPE BUNDLE STRUCT PTR pbs ptr,
CLASS CALL STRUCT PTR ccs ptr)

Parameters

pbs_ptr [in] — Structure with USB pipe information on the interface

ces_ptr [in] — Hub call structure pointer

Description

USB Host Class API

This function is called by common class to initialize the class driver. It is called in response to a select

interface call by application.
Return Value
None

See also

CLASS CALL STRUCT PTR,
PIPE BUNDLE STRUCT PTR

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

60

USB Host Class API

5.4.7 usb_class_hub_set_port_feature()
Sets feature of specified hub port.

Synopsis

USB _STATUS usb_class_hub set port feature (
HUB COMMAND PTR com ptr,
uint 8 port nr,
uint 8 feature)

Parameters
com_ptr [in] — Class interface structure pointer
port_nr [in] — Port number
feature [in] — Feature ID

Description

This function sets feature of specified hub port.
Return Value

USB_OK if command has been passed on USB

See also
HUB COMMAND PTR

5.4.8 usb_host_hub_device_event()
Handles hub events (hub attachment, detachment, and so on).

Synopsis

void usb _host hub device event(
_usb _device instance handle dev handle,
_usb_interface descriptor handle intf handle,
uint 32 event code)

Parameters
dev_handle [in] — Pointer to device instance
intf fandle [in] — Pointer to interface descriptor
event_code [in] — Code number for event causing callback

Description
This function is called when a hub has been attached, detached, and so on.
Return Value

None

USBHOST API Reference Manual, Rev. 5

61

Freescale Semiconductor

USB Host Class API

5.5 PHDC Class API Function Listing

This section defines the API functions used for the Personal Healthcare (PHDC) class. The application can
use these API functions to make PHDC applications using the USB transport.

5.5.1 usb_class_phdc_init()
Synopsis

void usb class phdc init(
/* [IN] structure with USB pipe information on the interface */
PIPE BUNDLE STRUCT PTR pbs ptr,
/* [IN] phdc call struct pointer */
CLASS CALL STRUCT PTR ccs ptr
)
Parameters

pbs_ptr [IN] — Pointer to the pipe bundle structure containing USB pipe information for the
attached device.

ces_ptr [IN] — PHDC call structure pointer. This structure contains a class validity-check code
and a pointer to the current interface handle.

Description

This function serves the main purpose of initializing the PHDC interface structure with the attached device
specific information containing descriptors and communication pipes handles.

The usb_class_phdc_init() function is usually called by the common-class layer services as the result of
an interface select function call from the Application / IEEE 11073 Manager. The application will select
the interface after receiving the USB_ATTACH indication event from the USB host API.

Return Value

None

See also

CLASS CALL STRUCT PTR,
PIPE BUNDLE STRUCT PTR

5.5.2 usb_class_phdc_set_callbacks()

Synopsis
USB_STATUS usb_class phdc_set callbacks(
CLASS CALL STRUCT PTR ccs ptr,
phdc_callback sendCallback,
phdc_callback recvCallback,
phdc _callback ctrlCallback
)

Parameters

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 62

USB Host Class API

ccs_ptr [IN] — Pointer to the current PHDC interface instance for which the callbacks are set
sendCallback [IN] — Function pointer for the send Callback function

recvCallback [IN] — Function pointer for the receive Callback function

ctrlCallback [IN] —Function pointer for the send Control Callback function

Description

Theusb class phdc set callbacks() function is used to register the application defined callback functions
for the PHDC send, receive, and control request actions. Providing a non-NULL pointer to a callback
function (phdc_callback type) will register the provided function to be called when the corresponding
action is completed, while providing a NULL pointer will invalidate the callback for the corresponding
action.

The applications registered callbacks are unique for each selected PHDC interface. Only one Send
callback and one Receive callback can be registered for each PHDC interface. Because the PHDC class
supports multiple send/receive actions to be queued in the lower layers at the same time, the application
can identify the action for which the callback function was called by using the call_param pointer that can
point to a different location for each Send/Receive/Ctrl function call. The call param pointer is transmitted
as parameter to the PHDC Send/Receive/Ctrl functions and it is returned to the application when the
Send/Receive/Ctrl callback function is called. Before saving the callback pointers in the PHDC interface
structure, the usb_class phdc set callbacks() function verifies all the transfer pipes for pending
transactions. The callbacks for send/receive actions cannot be changed while there are pending
transactions on the pipes. In this case, the function will deny the set callbacks request and will return
USBERR TRANSFER IN PROGRESS.

If the pipes have no pending transactions, the usb_class phdc_set callbacks() function will save the
callbacks pointers in the current interface structure and will return USB_OK.

At USB transfer completion, the user registered callbacks (sendCallback, recvCallback, or
controlCallback) will be called from the PHDC class after the internal processing of the transfer status and
using the provided callback param at the action start.
Return Value
USB_OK (success)
USBERR_NO_INTERFACE (the provided interface is not valid)
USBERR_TRANSFER_IN_PROGRESS (As there are still pending transfers on the data pipes,
the request to register the callbacks was denied. No previously registered callback was affected)
See also

CLASS _CALL STRUCT PTR

USBHOST API Reference Manual, Rev. 5

63 Freescale Semiconductor

USB Host Class API

5.5.3 usb_class_phdc_send_control_request()

Synopsis
USB_STATUS usb _class phdc send control request

(
USB_PHDC PARAM *call param

)

Parameters
call param [IN] — Pointer to a USB_ PHDC PARAM structure

Description

The usb _class phdc send control request() function is used to send PHDC class specific request to the
attached device. As defined by the PHDC class specification, the request must be one of the following
types: SET FEATURE, CLEAR FEATURE, GET STATUS.

SET_FEATURE, CLEAR_FEATURE requests:

In order not to stall the device endpoint, the usb class phdc send control request() function will first
verify if the attached device supports metadata preamble transfer feature for the SET FEATURE and
CLEAR FEATURE request. If the preamble capability is not supported, this function will return
USBERR _INVALID REQ TYPE and exit. Only one SET FEATURE/CLEAR FEATURE control
requests to the device can be queued on the control pipe at the time. In case there is another request
pending, this function will deny the request by returning USBERR_ TRANSFER IN PROGRESS. Also
for the SET FEATURE and CLEAR FEATURE requests, this function will verify the pending transfers
on the data pipes. To avoid synchronization issues with preamble, the PHDC will not transmit the control
request if the data pipes have transfers queued for the device. In this case, the function will return
USBERR TRANSFER IN PROGRESS and exit. The application is also responsible for checking the
device endpoint (by issuing a GET STATUS request) before sending a SET FEATURE or
CLEAR_FEATURE to the device.

GET_STATUS requests:

For this request, there are no restrictions in terms of pending requests on the control pipe as the
GET STATUS request will not interfere with the other PHDC send/receive function nor will cause sync
issues on the device.

PHDC Send Control Callback:

The completion of the PHDC control request is managed internally by the PHDC class for handling also
the device endpoint stall situation. If the PHDC is informed by the USB host API that the device control
endpoint is stalled, then the PHDC will attempt to clear the endpoint STALL by issuing a standard
CLEAR_FEATURE command request to the device. In the end, the PHDC calls the application registered
callback for the control request function, using the USB provided status code, and the PHDC class status
code (through the call param >usb_status pointer). If the PHDC fails to clear the endpoint stall, it will call
the application send control callback with the PHDC status of

USB _PHDC ERR ENDP CLEAR STALL.

Return Value

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 64

PR 4

USB Host Class API

USB_OK /USB_STATUS_TRANSFER_QUEUED (success)
USBERR NO _INTERFACE (the provided interface is not valid)
USBERR_ERROR (parameter error)
USBERR_INVALID_REQ_TYPE (invalid type for the request)
USBERR_TRANSFER_IN_PROGRESS (a control request SET / CLEAR_FEATURE is
already in progress)

See also

USB_PHDC PARAM

USBHOST API Reference Manual, Rev. 5

65 Freescale Semiconductor

USB Host Class API

5.5.4 usb_class_phdc_recv_data()

Synopsis

USB_STATUS usb_ class_phdc recv _data

(
USB_PHDC PARAM *call param
)

Parameters
call param [IN] — Pointer to a USB_ PHDC PARAM structure

Description

The usb_class phdc recv_data() function is used for receiving PHDC class specific data or metadata
packets. It schedules a USB receive on the QoS — selected pipe for the lower host API. The receive
transfer will end when the host has received the specified amount of bytes or if the last packet received is
less than pipe maximum packet size (MAX PACKET SIZE) indicating that the device does not have
more data to send. Before scheduling the receive action, this function will first validate the provided

call param pointer and Rx relevant fields, by checking the call param->ccs_ptr (class interface),

call param->qos (QoS bitmap used to identify the pipe for receive), the call param->buff ptr (buffer for
storing the data received — cannot be NULL) and call param->buff size (number of bytes to receive —
cannot be 0). If all the parameters are valid, the function checks if a SET FEATURE or
CLEAR_FEATURE control request is pending. If it is, the function returns
USBERR_TRANSFER IN PROGRESS and the transaction is refused (the PHDC does not know if the
device has metadata feature enabled or not in order to decode the received packet).

NOTE

To prevent memory alignment issues on certain platforms, it is
recommended that the provided receive size (call param->buff size) to be
always multiple of 4 bytes.

If all checks are passing, this function initiates a USB host receive action on the designated pipe and
registers a PHDC internal callback to handle the finishing of the Tx action.

PHDC Receive Callback:

The PHDC internal Receive Callback will be called when the USB Host API reception completes. The
callback will parse the received data, populate the PHDC status codes in the USB_ PHDC PARAM
structure and call the user defined receive callback (the function registered by the user using the
usb class phdc set callbacks()).
The parameters passed to the user registered callback are:

« USB PHDC PARAM structure.

— Through usb_phdc_status, this structure will inform the user if data received are metadata
preamble or regular data and if metadata preamble or regular data were expected.

— Through usb_status, this informs the user callback about the status of the USB transfer.

The PHDC receive callback also checks the type of data received (plain data or metadata) and compares
it with the type of data that was expected. In case if the host was expecting for a metadata but only plain

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 66

USB Host Class API

data was received, then according to the health care standard, the host will issue a SET FEATURE
(ENDPOINT HALT) followed by a CLEAR FEATURE (ENDPOINT HALT) on the receiving pipe.
Return Value
USB_OK /USB_STATUS_TRANSFER_QUEUED (success)
USBERR NO _INTERFACE (the provided interface is not valid)
USBERR_ERROR (parameter error)
USBERR_TRANSFER_IN_PROGRESS (a control request SET / CLEAR_FEATURE is in
progress)
See also

USB PHDC PARAM

USBHOST API Reference Manual, Rev. 5

67 Freescale Semiconductor

USB Host Class API

5.5.5 usb_class_phdc_send_data()

Synopsis
USB_STATUS usb_ class_ phdc_send data

(
USB_PHDC PARAM *call param

)

Parameters
call param [IN] — Pointer to a USB_ PHDC PARAM structure

Description

Theusb class phdc send data function is used for sending PHDC class specific data or metadata packets.
It schedules a USB send transfer on the bulk-out pipe for the lower host API. Before scheduling the send
action, this function will first validate the provided call param pointer and Tx relevant fields, by checking
the call param->ccs_ptr (class interface), the call param->buff ptr (buffer for taking the data to be sent-
cannot be NULL) and call param->buff size (number of bytes to send - cannot be 0). If the parameters
are valid, this function validates the data buffer provided by the application for transmission. The
usb_class phdc_send function expects that application provides the data buffer constructed accordingly
with the metadata preamble feature. The application is responsible for forming the data packet to be sent
including the metadata preamble (USB_ PHDC METADATA PREAMBLE), if it is used.

If metadata is included in the packet (call param ptr->metadata is TRUE), the attached device supports
metadata and the metadata feature was already set on the device using the

usb_class phdc send control request() function. This function will then validate the QoS in the transmit
packet by checking its bitmap fields and also using the QoS descriptor for the PHDC Bulk-Out pipe. If the
requested QoS is not supported in the descriptor, this function denies the transfer and returns

USBERR _ERROR.

Before actually sending the data, this function also checks if there are pending SET / CLEAR_FEATURE
requests types to the device. Until those are completed, the send function does not know if the device has
the metadata preamble feature activated. Therefore, it will deny the requested transfer and will return
USBERR _TRANSFER IN PROGRESS. If all the checks are passing, this function initiates a USB host
send action on the Bulk-Out pipe and registers a PHDC internal callback to handle the finishing of the Tx
action.

PHDC Send Callback:

The PHDC internal Send Callback will be called when the USB host API send transfer completes. The
callback will populate the PHDC status codes in the USB_ PHDC PARAM structure and call the user
defined receive callback (the function registered by the user using the usb _class phdc set callbacks). The
parameters passed to the user registered callback are:
« USB PHDC PARAM structure
— The usb_phdc_status is set to USB_ PHDC TX OK when the received status code from USB
host APl is USB_OK, or USB_ PHDC ERR otherwise.

— Through the usb_status, this structure pointer informs the user callback about the status of the
USB transfer.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 68

USB Host Class API

The device endpoint stall situation is handled also by the internal send callback. If the PHDC is informed
by the USB host API that the device endpoint is stalled, then the PHDC will attempt to clear the endpoint
STALL by issuing a standard CLEAR FEATURE command request to the device. If the PHDC fails to
clear the endpoint stall, it will call the application send control callback with the PHDC status of
USB PHDC ERR ENDP CLEAR STALL.
Return Value
USB_OK /USB_STATUS_TRANSFER_QUEUED (success)
USBERR NO _INTERFACE (the provided interface is not valid)
USBERR_INVALID BMREQ_TYPE (invalid qos bitmap fields in the sending packet)
USBERR_ERROR (parameter error / metadata checking error)
USBERR_TRANSFER_IN_PROGRESS (a control request SET / CLEAR_FEATURE is in
progress)
See also

USB_PHDC PARAM

USBHOST API Reference Manual, Rev. 5

69 Freescale Semiconductor

USB Host Class API

5.6 Audio Class API Function Listing

5.6.1 usb_class_audio_control_Init()
Initializes the class driver for audio control interface.

Synopsis

void usb class _audio_control init (PIPE _BUNDLE STRUCT PTR pbs ptr,
CLASS CALL STRUCT PTR ccs_ptr)

Parameters
pbs_ptr [IN] — Structure with USB pipe information on the interface
ces_ptr [IN] — The communication device data instance structure

Description

This function is called by common class to initialize the class driver for audio control interface. It is called
in response to a select interface called by application.

Return Value

None

See Also:

CLASS CALL STRUCT PTR
PIPE BUNDLE STRUCT_ PTR

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 70

pRd

4]
USB Host Class API
5.6.2 usb_class_audio_stream_lInit()
Initializes the class driver for audio stream interface.

Synopsis

void usb class audio_stream init (PIPE BUNDLE STRUCT PTR pbs ptr,
CLASS CALL STRUCT PTR ccs_ptr)

Parameters
pbs_ptr [IN] — Structure with USB pipe information on the interface
ces_ptr [IN] — The communication device data instance structure

Description

This function is called by common class to initialize the class driver for audio stream interface. It is called
in response to a select interface called by application.

Return Value

None

See Also:

CLASS CALL STRUCT PTR
PIPE BUNDLE STRUCT PTR

USBHOST API Reference Manual, Rev. 5

71 Freescale Semiconductor

5.6.3 usb_class_audio_control_get_descriptors()
The function searches for descriptors of audio control interface.

Synopsis

uint 8 usb class_audio_control get descriptors (
_usb _device instance_handle dev_handle,
_usb_interface descriptor handle intf handle,
USB_AUDIO CTRL DESC HEADER PTR PTR header desc,
USB_AUDIO CTRL DESC IT PTR PTR it desc,
USB_AUDIO CTRL DESC OT PTR PTR ot desc,
USB_AUDIO CTRL DESC FU PTR PTR fu desc)

typedef unit 32 USB_STATUS;

Parameters
dev_handle [IN] — Pointer to device instance
intf_handle [IN] — Pointer to interface descriptor
header desc [OUT] — Pointer to header functional descriptor
it desc [OUT] — Pointer to input terminal descriptor
ot _desc [OUT] — Pointer to output terminal descriptor
fu_desc [OUT] — Pointer to feature unit descriptor

Description

USB Host Class API

This function searches for descriptors of audio control interface and fills back fields if the descriptor was

found.

Return Value
USB_OK (success)
USBERR_EP_INIT_FAILED (failure: device initialization failed)

See Also:

usb_class audio control set descriptors()
USB_AUDIO CTRL _DESC_HEADER PTR
USB_AUDIO CTRL DESC IT PTR
USB_AUDIO CTRL _DESC_OT PTR
USB_AUDIO CTRL DESC_FU PTR

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

72

USB Host Class API

5.6.4 usb_class_audio_control_set_descriptors()
Set descriptors for audio control interface.

Synopsis

USB_STATUS usb_class_audio_control set descriptors (
CLASS_CALL STRUCT PTR ccs_ptr,
USB_AUDIO CTRL DESC HEADER PTR header desc,
USB_AUDIO CTRL DESC IT PTR it desc,
USB_AUDIO CTRL DESC OT PTR ot desc,
USB_AUDIO CTRL DESC FU PTR fu desc)

Parameters
ces_ptr [OUT] — The communication device data instance structure
header desc [IN] — Pointer to header functional descriptor
it_desc [IN] — Pointer to input terminal descriptor
ot _desc [IN] — Pointer to output terminal descriptor
fu_desc [IN] — Pointer to unit descriptor

Description
Set descriptors for audio control interface. Descriptors can be used afterwards by application or by driver.

Return Value
USB_OK if validation passed

See Also:

usb_class audio control get descriptors()
CLASS_CALL STRUCT PTR
USB_AUDIO CTRL DESC_HEADER PTR
USB_AUDIO_CTRL_DESC_IT PTR
USB_AUDIO CTRL DESC OT PTR
USB_AUDIO_CTRL_DESC_FU PTR

USBHOST API Reference Manual, Rev. 5

73 Freescale Semiconductor

USB Host Class API

5.6.5 usb_class_audio_stream_get_descriptors()
This function searches for descriptors of audio stream interface.

Synopsis

uint 8 usb class_audio_stream get descriptors
(
_usb_device instance_handle dev_handle,
_usb_interface descriptor handle intf handle,
USB_AUDIO STREAM DESC SPECIFIC AS IF PTR PTR as itf desc,
USB_AUDIO STREAM DESC FORMAT TYPE PTR PTR_ frm type desc,
USB_AUDIO_ STREAM DESC SPECIFIC ISO _ENDP PTR PTR 1iso_endp spec desc,

)
typedef unit 32 USB_STATUS;

Parameters
dev_handle [IN] — Pointer to device instance
intf_handle [IN] — Pointer to interface descriptor
as_itf desc [OUT] — Pointer to specific audio stream interface descriptor
frm_type desc [OUT] — Pointer to format type descriptor
iso_endp _spec_desc [OUT] — Pointer to specific isochronous endpoint descriptor

Description

This function searches for descriptors of audio stream interface and fills back fields if the descriptor was
found.

Return Value

USB_OK (success)
USBERR_INIT_FAILED (failure: device initialization failed)

See Also:

usb_class audio stream_set descriptors()
USB_AUDIO_STREAM DESC_SPECIFIC_AS_IF PTR
USB_AUDIO STREAM DESC_FORMAT TYPE PTR
USB_AUDIO_STREAM DESC_SPECIFIC ISO_ENDP_PTR

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 74

USB Host Class API

5.6.6 usb_class_audio_stream_set_descriptors()
Set descriptors for audio stream interface.

Synopsis

USB_STATUS usb_class_audio_stream set descriptors (
CLASS_CALL STRUCT PTR ccs_ptr,
USB_AUDIO STREAM DESC SPECIFIC AS IF PTR as_itf desc,
USB_AUDIO STREAM DESC_ FORMAT TYPE PTR frm type desc,
USB_AUDIO_ STREAM DESC SPECIFIC ISO _PTR iso_endp spec_desc)

Parameters
ces_ptr [OUT] — The communication device data instance structure
as_itf desc [IN] — Pointer to audio stream specific interface descriptor
frm_type_desc [IN] — Pointer to format type descriptor
iso_endp spec_desc [IN] — Pointer to isochronous endpoint specific descriptor

Description

Set descriptors for audio stream interface. Descriptors can be used afterwards by application or by driver.
Return Value

USB_OK if successful

See Also:

usb_class_audio_control get descriptors()

CLASS CALL STRUCT PTR

USB AUDIO STREAM DESC SPECIFIC AS IF PTR

USB_AUDIO STREAM_DESC FORMAT TYPE PTR

USB AUDIO STREAM DESC SPECIFIC ISO ENDP PTR

USBHOST API Reference Manual, Rev. 5

75 Freescale Semiconductor

5.6.7 usb_class_audio_init_ipipe()

Starts interrupt endpoint to poll for interrupt on specified device.

Synopsis

USB_STATUS usb_class_audio_init ipipe (
CLASS CALL STRUCT PTR audio_instance,
tr callback user callback,
pointer user callback param)

Parameters

audio_instance [IN] — Audio control interface instance
user_callback [IN] — User callback function
user_callback param [IN] — User callback parameter

Description

The function starts interrupt endpoint to poll for interrupt on specified device.

Return Value
USB_OK (success)

USBERR _OPEN_PIPE_FAILED (failure: interrupt pipe is NOT found)

See Also:
CLASS CALL STRUCT PTR

USBHOST API Reference Manual, Rev. 5

USB Host Class API

Freescale Semiconductor

76

V¥ ¢
i

USB Host Class API

5.6.8 usb_class_audio_recv_data()
Receives audio data from the isochronous IN pipe

Synopsis

USB_STATUS usb_audio_recv_data (
CLASS CALL STRUCT PTR control ptr,
CLASS CALL STRUCT PTR stream ptr,
tr callback callback,
pointer call param,
uint 32 buf size,
uchar ptr buffer)
typedef void PTR_pointer;
typedef unsigned char uchar, PTR uchar ptr;

Parameters
control_ptr [IN] — Class-interface control pointer
stream_ptr [IN] — Class-interface stream pointer
callback [IN] — Callback upon completion
call param [IN] — User parameter returned by callback
buf size [IN] — Data length
buffer [IN] — Buffer pointer

Description

This function is used for receiving audio data from isochronous IN pipe. Before scheduling the receive
action, this function will first validate the provided class-interface control pointer then checking
isochronous IN pipe. If all checks pass, the function initiates a USB host receive action on the designated
pipe and registers a callback function to application.
Return Value

USB_OK/USB_STATUS_TRANSFER_QUEUED (success)

USBERR_NO_INTERFACE (the provided interface is not valid)

USBERR_OPEN_PIPE_FAILED (isochronous pipe is NULL)

USBERR_INVALID PIPE_HANDLE (pipe ID is invalid)

See Also:
CLASS CALL STRUCT PTR

USBHOST API Reference Manual, Rev. 5

77 Freescale Semiconductor

USB Host Class API

5.6.9 usb_class_audio_send_data()
Sends audio data to the isochronous OUT pipe

Synopsis
USB_STATUS usb_audio_send data (
CLASS CALL STRUCT PTR control ptr,
CLASS CALL STRUCT PTR stream ptr,
tr callback callback,
pointer call param,
uint 32 buf size,
uchar ptr buffer)
typedef void PTR_pointer;
typedef unsigned char uchar, PTR uchar ptr;
Parameters
control_ptr [IN] — Class-interface control pointer
stream_ptr [IN] — Class-interface stream pointer
callback [IN] — Callback upon completion
call param [IN] — User parameter returned by callback
buf size [IN] — Data length

buffer [IN] — Buffer pointer
Description

This function is used for sending audio data from isochronous OUT pipe. Before scheduling the send
action, this function will first validate the provided class-interface control pointer then checking
isochronous OUT pipe. If all checks pass, the function initiates a USB host send action on the designated
pipe and registers a callback function to application.
Return Value

USB_OK/USB_STATUS_TRANSFER_QUEUED (success)

USBERR_NO_INTERFACE (the provided interface is not valid)

USBERR_OPEN_PIPE_FAILED (isochronous pipe is NULL)

USBERR_INVALID PIPE_HANDLE (pipe ID is invalid)

See Also:
CLASS CALL STRUCT PTR

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 78

USB Host Class API

5.6.10 usb_class_audio_send_specific_requests()
USB host class driver provides to send following specific requests:

Copy Protect Control, Mute Control, Volume Control (CUR, MIN, MAX, RES), Bass Control (CUR,
MIN, MAX, RES), Mid Control (CUR, MIN, MAX, RES), Treble Control (CUR, MIN, MAX, RES),
Graphic Eq Control (CUR, MIN, MAX, RES), Automatic Gain Control, Delay Control (CUR, MIN,
MAX, RES), Bass Boost Control, Sampling Frequency Control (CUR, MIN, MAX, RES), Pitch Control,
and Memory.

Each request includes two Get/Set individual functions. General format of almost these functions (except:
Get/Set Graphic Eq Control and Get/Set Memory) is described below.

Synopsis

USB_STATUS usb_class audio <request name>
(
AUDIO COMMAND PTR command ptr,
pointer buf,

)
Parameters

command_ptr [IN] — Class interface structure pointer
buf [IN] — Buffer to receive data

Description
The function is used for sending specific request to attached device.

Return Value
USB_OK if command has been passed on the USB bus

See Also:
AUDIO COMMAND_ PTR
NOTE

usb_class audio_get/set _graphic_eq and

usb_class audio get/set mem_endpoint functions have more input
parameters than general form. A blen (buffer length) parameter needs to be
added in usb_class_audio_get/set _graphic_eq functions, blen and offset
(zero-offset) parameters needs to be added in

usb_class audio get/set mem_endpoint functions.

5.7 Introduction

The FATFS API consists of the functions that can be used at the application level. These enable you to
implement file system application.

USBHOST API Reference Manual, Rev. 5

79 Freescale Semiconductor

5.8

API overview

This section describes the list of API functions and their use.

Table 5-1 summarizes the FATFS API functions.
Table 5-1. Summary of Host Layer API Functions

USB Host Class API

No. API function Description
1 |f_mount Register/Unregister a work area
2 |f_open Open/Create a file
3 |f_close Closes a file
4 |f_read Read data from file
5 |f_write Write data to file
6 |f_lseek Move read/write file pointer, Expand file size
7 |f_truncate Truncate file
8 |f_sync Flush cached data of a write file
9 |f_opendir Open a directory
10 |f_readdir Read a directory item
11 |f_getfree Get free cluster
12 |f_stat Get status of a file or a directory
13 | f_mkdir Create a directory
14 | f_unlink Remove a file or directory
15 |f_chmod Change attribute of a file or directory
16 |f_utime Change timestamp of a file or directory
17 |f_rename Rename/Move a file or directory
18 |f_mkfs Create a file system on the drive
19 |f_forward Forward file data to the stream directly
20 |f_chdir Change current directory
21 |f_chdrive Change current drive
22 |f_getcwd Retrieve the current directory
23 |f_gets Read a data string from a file
24 |f_putc Write a character to file
25 |f_puts Write a data string to file
26 |f_printf Write a formatted string to file
27 |f_eof Check whether file pointer is the end of a file

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

80

USB Host Class API

No. API function Description
28 |f_error Check whether file has error
29 |f_tell Return the current position of file pointer
30 |f_size Return the size of file
NOTE
+ f eof, f error, f tell, f size are implemented as macros instead of
functions.

» FATFS module is very flexible. It provides many module configuration
options. User can select options that are best suitable for his device. For
the further information, refer to Section 4.2 Configuration Options of
MSDFATFS User Guide document.

5.9 Using API

Steps to use FATFS APIs similar to the second method to use the Host Layer API of Freescale USB Stack
Host API Reference Manual. The only thing needs change that is in Step 8. After the INTF event is notified
in the callback function, issue FATFS API instead of class-specific API.

5.10 FAT File System API Function Listing

5.10.1 f_mount()

The function registers/unregisters a work area to the FAT File System module.
Synopsis
FRESULT £ mount (
BYTE Drive,
FATFS* FileSystemObject)
Parameters
Driver [IN] — Interface Logical drive number (0-9) to register/unregister the work area
FileSystemObject [IN] — Points to the work area (file system object) to be registered
Description
The f mount() function registers/unregisters a work area to the FATFS module. The work area must be
given to the each volume with this function prior to use any other file function. To unregister a work area,
specify a NULL to the FileSystemObject, and then the work area can be discarded.
This function always succeeds regardless of the drive status. No media access is occurred in this function
and it only initializes the given work area and registers its address to the internal table. The volume mount
process is performed on first file access after f mount() function or media change.

Return Value

* FR_OK: The function succeeded
* FR_INVALID_ DRIV: The drive number is invalid

USBHOST API Reference Manual, Rev. 5

81 Freescale Semiconductor

USB Host Class API

See also

FATFS

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 82

USB Host Class API

5.10.2 f_open()

The function creates a file object to be used to access the file.
Synopsis

FRESULT f open (
FIL* FileObject,
const TCHAR* FileName,
BYTE ModeFlags)

Parameters

FileObject [OUT] — Pointer to the file object structure to be created

FileName [IN] — Pointer to a null-terminated string that specifies the file name to create or open

ModeFlags [IN] — Specifies the type of access and open method for the file. It is specified by a
combination of the flags in Table 2-1.

Table 5-2. File Access Types

Value Description

FA_READ Specifies read access to the object. Data can be read from the file. For read - write access,

combine with FA_WRITE.

FA_WRITE Specifies write access to the object. Data can be written to the file. For read - write access,

combine with FA_READ.

FA_OPEN_EXISTING Open an existing file. The function fails if the file does not exist.
FA_OPEN_ALWAYS Open the file if it exists. If not, a new file is created. To append data to the file, use f_Iseek
function after file open in this method.
FA_CREATE_NEW Create a new file. The function fails with FR_EXIST if the file has already existed.
FA_CREATE_ALWAYS Create a new file. If the file has already existed, it is truncated and overwritten.
Description

A file object is created when the function succeeded. The file object is used for subsequent read/write
functions to refer to the file. When close an open file object, use f close() function. If the modified file is
not closed, the file data can be collapsed.

Before using any file function, a work area (file system object) must be given to the logical drive with
f mount() function. All file functions can work after this procedure.

Return Value

FR_OK: The function succeeded and the file object is valid

FR_NO_FILE: Could not find the file

FR_NO_PATH: Could not find the path

FR_INVALID NAME: The file name is invalid

FR_INVALID DRIVE: The drive number is invalid

FR_EXIST: The file has already existed

FR_DENIED: The required access was denied due to one of the following reasons:
— Write mode open against a read-only file

USBHOST API Reference Manual, Rev. 5

83

Freescale Semiconductor

USB Host Class API

— File cannot be created due to a directory or read-only file is existing

— File cannot be created due to the directory table is full
FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
FR_DISK_ERR: The function failed due to an error in the disk function
FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
FR_NOT_ENABLED: The logical drive has no work area
FR_NO_FILESYSTEM: There is no valid FAT volume on the drive
FR_LOCKED: The function was rejected due to file sharing policy

See also
f read(), f write(), f close(), FIL, FATFS

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 84

USB Host Class API

5.10.3 f _close()

The function closes an opening file.
Synopsis

FRESULT f close (
FIL* FileObject)

Parameters

FileObject [IN] — Points to the open file objects structure to be closed.

Description

The f_close() function closes an open file object. If any data has been written to the file, the cached
information of the file is written back to the disk. After the function succeeded, the file object is no longer
valid and it can be discarded.

Return Value

FR_OK: The file object has been closed successfully

FR_DISK_ ERR: The function failed due to an error in the disk function

FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
FR_INVALID_OBJECT: The file object is invalid

See also
f open(), f read(), f write(), FATFS.

USBHOST API Reference Manual, Rev. 5

85

Freescale Semiconductor

USB Host Class API

5.104 f_read()

This function reads data from a file.
Synopsis

FRESULT £ read(
FIL* FileObject,
void* Buffer,
UINT ByteToRead,
UINT* ByteRead)

Parameters

FileObject [IN] — Pointer to the open file object

Buffer [OUT] — Pointer to the buffer to store read data

ByteToRead [IN] — Number of bytes to read in range of integer

ByteRead [OUT] — Pointer to the UINT variable to return number of bytes read. The value is
always valid after the function call regardless of the result.

Description

The file pointer of the file object increases in number of bytes read. After the function succeeded,
*ByteRead should be checked to detect the end of file. In case of *ByteRead < ByteToRead, it means the
read pointer reached end of the file during read operation.

Return Value

FR_OK: The function succeeded

FR_DENIED: The function denied due to the file has been opened in non-read mode
FR_DISK_ERR: The function failed due to an error in the disk function

FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
FR_INVALID OBJECT: The file object is invalid

See also
f open(), f gets(), f write(), f close(), FIL

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 86

USB Host Class API

5.10.5 f_write()

The function writes data to a file.
Synopsis

FRESULT f_write(
FIL* FileObject,
const void* Buffer,
UINT ByteToWrite,
UINT* ByteWritten)

Parameters

FileObject [IN] — Pointer to the open file object structure

Buffer [IN] — Pointer to the data to be written

ByteToWrite [IN] — Specifies number of bytes to write in range of UINT

ByteWritten [OUT] — Pointer to the UINT variable to return the number of bytes written. The
value is always valid after the function call regardless of the result

Description

The write pointer in the file object is increased in number of bytes written. After the function succeeded,
*ByteWritten should be checked to detect the disk full. In case of *ByteWritten < ByteToWrite, it means
the volume got full during the writing operation. The function can take a time when the volume is full or
close to full.

Return

FR_OK: The function succeeded

FR_DENIED: The function denied due to the file has been opened in non-write mode
FR_DISK_ERR: The function failed due to an error in the disk function

FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
FR_INVALID_OBJECT: The file object is invalid

See also
f open(), f read(), f putc(), f puts(), f printf(), f close(), FIL.

USBHOST API Reference Manual, Rev. 5

87

Freescale Semiconductor

USB Host Class API

5.10.6 f_lIseek()

The function moves the file read/write pointer of an open file object.
Synopsis
FRESULT f lseek(
FIL* FileObject,
DWORD Offset)
Parameters
FileObject [IN] — Pointer to the open file object
Offest [IN] — Number of bytes from the start of file
Description
The f Iseek() function moves the file read/write pointer of an open file. The offset can be specified in
only origin from top of the file. When an offset above the file size is specified in write mode, the file size
is increased and the data in the expanded area is undefined. This is suitable to create a large file quickly,
for fast writing operation. After the f_Iseek() function succeeded, member fptr in the file object should be
checked in order to make sure the read/write pointer has been moved correctly. In case of fptr is not the

expected value, either of followings has been occurred.
* End of file. The specified Offset was clipped at the file size because the file has been opened in

read-only mode.
» Disk full. There is insufficient free space on the volume to expand the file size.

When USE_FASTSEEK is set to 1 and cltbl member in the file object is not NULL, the fast seek
feature is enabled. This feature enables fast backward/long seek operations without FAT access by cluster
link information stored on the user defined table. The cluster link information must be created prior to do
the fast seek. The required size of the table is (number of fragments + 1) * 2 items. For example, when the
file is fragmented in 5, 12 items will be required to store the cluster link information. The file size cannot
be expanded when the fast seek feature is enabled.

Return Value
* FR_OK: The function succeeded

* FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

« FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
 FR_INVALID_ OBJECT: The file object is invalid

* FR_NOT_ENOUGH_CORE: Insufficient size of link map table for the file

See also
f open(), f truncate(), FIL.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 88

USB Host Class API

5.10.7 f_truncate()

The function trancates the file size
Synopsis
FRESULT f truncate(
FIL* FileObject)

Parameters
FileObject [IN] — Pointer to the open file object
Description
The f truncate() function truncates the file size to the current file read/write point. This function has no
effect if the file read/write pointer is already pointing end of the file.

Return Value
* FR_OK: The function succeeded

* FR_DENIED: The function denied due to the file has been opened in non-write mode

* FR_DISK_ERR: The function failed due to an error in the disk function

 FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

+ FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
« FR_INVALID OBJECT: The file object is invalid

See also
f open(), f lseek(), FIL.

USBHOST API Reference Manual, Rev. 5

89 Freescale Semiconductor

USB Host Class API

5.10.8 f_sync()

The function flushes cached data of a written file.
Synopsis
FRESULT £ sync(
FIL* FileObject)

Parameters
FileObject [IN] — Pointer to the open file objects to be flushed.

Description

The f_sync() function performs the same process as f close() function but the file is left opened and can
continue read/write/seek operations to the file. This is suitable for the applications that open files for a
long time in write mode, such as data logger. Performing f sync() of periodic or immediately after
f write() can minimize the risk of data loss due to a sudden blackout or an unintentional disk removal.
However, f sync() immediately before f close() has no advantage because f close() performs f_sync()
in it. In other words, the difference between those functions is that the file object is invalidated or not

Return Value
* FR_OK: The function succeeded

* FR_DISK_ERR: The function failed due to an error in the disk function

* FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

* FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
« FR _INVALID OBJECT: The file object is invalid

See also
f close()

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 90

USB Host Class API

5.10.9 f_opendir()

The function opens a directory.
Synopsis
FRESULT f opendir (
DIR* DirObject,
const TCHAR* DirName)

Parameters
DirObject [OUT] — Pointer to the blank directory objects to be created
DirName [IN] — Pointer to the null-terminated string that specifies the directory name to be
opened
Description
The f opendir() function opens an existing directory and creates the directory object for subsequent calls.
The directory object structure can be discarded at any time without any procedure.

Return Value
* FR_OK: The function succeeded and the directory object is created. It is used for subsequent calls

to read the directory entries
« FR _NO_PATH: Could not find the path
* FR_INVALID NAME: The path name is invalid
* FR_INVALID DRIVE: The drive number is invalid
+ FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
* FR_DISK_ERR: The function failed due to an error in the disk function
« FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
* FR_NOT_ENABLED: The logical drive has no work area
« FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

See also
f readdir(), DIR

USBHOST API Reference Manual, Rev. 5

91 Freescale Semiconductor

USB Host Class API

5.10.10 f_readdir()

The function reads a directory item.
Synopsis
FRESULT f readdir(
DIR* DirObject,
FILINFO* FileInfo)
Parameters
DirObject [IN] — Pointer to the open directory object
Filelnfo [OUT] — Pointer to the file information structure to store the read item
Description
The function reads directory entries in sequence. All items in the directory can be read by calling this
function repeatedly. When all directory entries have been read and no item to read, the function returns a
null string into f name/] member of Filenfo without any error. When a null pointer is given to the
Filelnfo, the read index of the directory object will be rewinded.
If LFN feature is enabled, /fname and [fsize fields of FileInfo must be initialized with valid value prior to
use the f readdir function. The /fname is a pointer to the string buffer to return the long file name. The
[fsize is the size of the string buffer in unit of character. If either the size of read buffer or LFN working
buffer is insufficient for the LFN or the object has no LFN, a null string will be returned to the LFN read
buffer. If the LFN contains any character that cannot be converted to OEM code, a null string will be
returned but this is not the case on Unicode API configuration. When /fname is a NULL, nothing of the
LFN is returned. When the object has no LFN, any small capitals can be contained in the SFN.
When relative path feature is enabled (_FS_RPATH == 1), "." and ".." entries are not filtered out and it
will appear in the read entries
Return Value
* FR_OK: The function succeeded
« FR _NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
« FR_DISK _ERR: The function failed due to an error in the disk function
* FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

FR_INVALID_ OBJECT: The directory object is invalid

See also
f opendir(), f stat(), FILINFO, DIR.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 92

USB Host Class API

5.10.11 f_getfree()

This function gets number of free clusters of logical volume.
Synopsis
FRESULT f getfree(
const TCHAR* Path,
DWORD* Clusters,
FATFS** FileSystemObject)
Parameters
Path [IN] — Pointer to the null-terminated string that specifies the logical drive
Clusters [OUT] — Pointer to the DWORD variable to store number of free clusters
FileSystemObject [OUT] — Pointer to pointer that to store a pointer to the corresponding file
system object
Description
The function gets number of free clusters on the drive. The member FileSystemObject->csize reflects
number of sectors per cluster, so that the free space in unit of sector can be calculated with this. When
FSInfo structure on FAT32 volume is not in sync, this function can return an incorrect free cluster count.

Return Value
* FR_OK: The function succeeded. The *Clusters has number of free clusters and

*FileSystemObject points the file system object
 FR_INVALID DRIVE: The drive number is invalid
« FR _NOT _READY: The disk drive cannot work due to no medium in the drive or any other reason
« FR_DISK _ERR: The function failed due to an error in the disk function
* FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
* FR_NOT_ENABLED: The logical drive has no work area
FR_NO_FILESYSTEM: There is no valid FAT partition on the drive

See also
FATFS

USBHOST API Reference Manual, Rev. 5

93 Freescale Semiconductor

USB Host Class API

5.10.12 f_stat()

The function get information of a file or directory.
Synopsis
FRESULT f stat (
const TCHAR* FileName,
FILINFO* FileInfo)
Parameters
FileName [IN] — Pointer to the null-terminated string that specifies the file or directory to get its
information
Filelnfo [OUT] — Pointer to the blank FILINFO structure to store the information

Description
The function gets the information of a file or directory. For details of the information, refer to the
FILINFO structure and f readdir() function. This function is not supported in minimization level of >= 1.

Return Value
* FR_OK: The function succeeded

« FR _NO_FILE: Could not find the file or directory

* FR _NO_PATH: Could not find the path

* FR_INVALID NAME: The file name is invalid

* FR_INVALID DRIVE: The drive number is invalid

* FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
* FR_DISK_ERR: The function failed due to an error in the disk function

« FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

* FR_NOT_ENABLED: The logical drive has no work area

« FR_NO_FILESYSTEM; There is no valid FAT volume on the drive

See also
f opendir(), f readdir(), FILINFO.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 94

USB Host Class API

5.10.13 f_mkdir()

The function creates a new driectory.
Synopsis

FRESULT f mkdir (
const TCHAR* DirName)

Parameters

DirName [IN] — Pointer to the null-terminated string that specifies the directory name to create

Description
The function creates a new directory.
Return Value

FR_OK: The function succeeded

FR_NO_PATH: Could not find the path

FR_INVALID NAME: The path name is invalid

FR_INVALID DRIVE: The drive number is invalid

FR_DENIED: The directory cannot be created due to directory table or disk is full
FR_EXIST: A file or directory that has same name is already existing
FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
FR_DISK_ERR: The function failed due to an error in the disk function

FR_INT _ERR: The function failed due to a wrong FAT structure or an internal error
FR_NOT_ENABLED: The logical drive has no work area
FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

USBHOST API Reference Manual, Rev. 5

95

Freescale Semiconductor

USB Host Class API

5.10.14 f_unlink()

The function removes a file or directory.
Synopsis

FRESULT f unlink (

const TCHAR* FileName)

Parameters

FileName [IN] — Pointer to the null-terminated string that specifies an object to be removed
Description
The function removes a file or directory object. It can not remove opened objects.

Return Value
* FR_OK: The function succeeded

* FR_NO_FILE: Could not find the file or directory
« FR _NO_PATH: Could not find the path
* FR_INVALID NAME: The path name is invalid
* FR_INVALID DRIVE: The drive number is invalid
* FR_DENIED: The function was denied due to either of following reasons:
— The object has read-only attribute
— Not empty directory
— Current directory
« FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
* FR_WRITE_PROTECTED: The medium is write-protected
* FR_DISK_ERR: The function failed due to an error in the disk function
 FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
* FR_NOT_ENABLED: The logical drive has no work area
* FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 96

USB Host Class API

5.10.15 f_chmod()

The function changes the attribute of file or directory.
Synopsis
FRESULT £ chmod (
const TCHAR* FileName,
BYTE Attribute,
BYTE AttributeMask)
Parameters
FileName [IN] — Pointer to the null-terminated string that specifies a file or directory to be
changed
Attribute[IN] — Attribute flags to be set in one or more combination of the following flags. The
specified flags are set and others are cleared.

Table 5-3. File and Directory Attribute Flags

Attribute Description

AM_RDO Read Only
AM_ARC Archive

AM_SYS | System
AM_HID Hidden

AttributeMask [IN] — Attribute mask that specifies which attribute is changed. The specified
attributes are set or cleared

Description
The f chmod() function changes the attribute of a file or directory

Return Value
* FR_OK: The function succeeded

* FR_NO_FILE: Could not find the file

« FR_NO_PATH: Could not find the path

* FR_INVALID NAME: The file name is invalid

« FR_INVALID DRIVE: The drive number is invalid

* FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
« FR _DISK ERR: The function failed due to an error in the disk function

* FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

* FR_NOT_ENABLED: The logical drive has no work area

* FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

USBHOST API Reference Manual, Rev. 5

97 Freescale Semiconductor

USB Host Class API

5.10.16 f_utime()

The function changes the timestamp of file and directory.
Synopsis
FRESULT f utime (
const TCHAR* FileName,
const FILINFO* TimeDate)

Parameters
FileName [IN] — Pointer to the null-terminated string that specifies a file or directory to be
changed
TimeDate [OUT] — Pointer to the file information structure that has a timestamp to be set in
TimeDate -> fdate and TimeDate -> ftime. Do not care any other members

Description
The f utime() function changes the timestamp of a file or directory.

Return Value
* FR_OK: The function succeeded

* FR_NO_FILE: Could not find the file

« FR_NO_PATH: Could not find the path

* FR_INVALID NAME: The file name is invalid

* FR_INVALID DRIVE: The drive number is invalid

* FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
« FR _DISK ERR: The function failed due to an error in the disk function

« FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

* R NOT_ENABLED: The logical drive has no work area

* FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

See also
f stat(), FILINFO.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 98

USB Host Class API

5.10.17 f_rename()

The function renames/moves a file or directory.
Synopsis

FRESULT f rename (
const TCHAR* OldName,
const TCHAR* NewName)

Parameters

OldName [IN] — Pointer to a null-terminated string specifies the old object name to be renamed

NewName [IN] — Pointer to a null-terminated string specifies the new object name without drive

number

Description

The function renames a object (file or directory). The logical drive number is determined by old name;
new name must not contain a logical drive number. It can also move object to other directory, in this case,
new name contain a logical drive number. Do not rename an opened object.

Return Value

FR_OK: The function succeeded

FR_NO_FILE: Could not find the old name

FR_NO_PATH: Could not find the path

FR_INVALID NAME: The file name is invalid

FR_INVALID DRIVE: The drive number is invalid

FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
FR_EXIST: The new name is colliding with an existing name

FR_DENIED: The new name could not be created due to any reason
FR_DISK_ERR: The function failed due to an error in the disk function
FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
FR _NOT_ENABLED: The logical drive has no work area

FR _NO_FILESYSTEM: There is no valid FAT volume on the drive

USBHOST API Reference Manual, Rev. 5

99

Freescale Semiconductor

USB Host Class API

5.10.18 f_mkfs()

The function creates a file system on the drive.
Synopsis
FRESULT f mkfs (
BYTE Drive,
BYTE PartitioningRule,
UINT AllocSize)
Parameters
Drive [IN] — Logical drive number (0-9) to be formatted.
PartitioningRule [IN] — When 0 is given, a partition table is created into the master boot record
and a primary DOS partition is created and then an FAT volume is created on the partition.
This is called FDISK format, used for hard disk and memory cards. When 1 is given, the
FAT volume starts from the first sector on the drive without partition table. This is called
SFD format, used for floppy disk and most optical disk.
AllocSize [IN] — Force the allocation unit (cluster) size in unit of byte. The value must be power
of 2 and between the sector size and 128 times sector size. When invalid value is
specified, the cluster size is determined depends on the volume size

Description

The function creates an FAT volume on the drive. There are two partitioning rules, FDISK and SFD, for
removable media. The FDISK format is recommended for the most case. This function currently does
not support multiple partition, so that existing partitions on the physical drive will be deleted and
re-created a new partition occupies entire disk space.

The FAT sub-type, FAT12/FAT16/FAT32, is determined by number of clusters on the volume and nothing
else, according to the FAT specification issued by Microsoft. Thus which FAT sub-type is selected, is
depends on the volume size and the specified cluster size. The cluster size affects performance of the file
system and large cluster increases the performance.

When the number of clusters gets near the FAT sub-type boundaries, the function can fail with
FR_MKFS ABORTED

Return Value
* FR_OK: The function succeeded

* FR_INVALID DRIVE: The drive number is invalid

* FR_NOT_READY: The drive cannot work due to any reason

* FR_NOT_ENABLED: The logical drive has no work area

* FR_DISK_ERR: The function failed due to an error in the disk function

« FR_MKFS ABORTED; The function aborted before start in format due to one of following
reasons:

— The disk size is too small.
— Invalid parameter was given to any parameter.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 100

|
y

'
A

USB Host Class API

— Not allowable cluster size for this drive. This can occur when number of clusters gets near the
O0xFF7 and OxFFF7.

5.10.19 f_forward()

The function forwards file data to the stream directly.
Synopsis
FRESULT f forward (
FIL* FileObject,
UINT (*Func) (const BYTE*,UINT),
UINT ByteToFwd,
UINT* ByteFwd)
Parameters
FileObject [IN] — Pointer to the open file object
Func [IN] — Pointer to the user-defined data streaming function
ByteToFwd [IN] — Number of bytes to forward in range of integer
ByteFwd [OUT] — Pointer to the integer variable to return number of bytes forwarded
Description
The function reads the data from the file and forwards it to the outgoing stream without data buffer. This
is suitable for small memory system because it does not require any data buffer at application module.
The file pointer of the file object increases in number of bytes forwarded. In case of *ByteFwd <
ByteToFwd without error, it means the requested bytes could not be transferred due to end of file or
stream goes busy during data transfer.
Return Value
* FR_OK: The function succeeded
* FR_DENIED: The function denied due to the file has been opened in non-read mode
* FR_DISK_ERR: The function failed due to an error in the disk function
 FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error
* FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

« FR_INVALID OBJECT: The file object is invalid

See also
f open(), f gets(), f write(), f close(), FIL.

USBHOST API Reference Manual, Rev. 5

101 Freescale Semiconductor

USB Host Class API

5.10.20 f_chdir()

The function changes current directory of a drive.
Synopsis

FRESULT £ chdir (

const TCHAR* Path)

Parameters

Path [IN] — Pointer to the null-terminated string that specifies a directory to go
Description
The function changes the current directory of the logical drive. The current directory of a drive is
initialized to the root directory when the drive is auto-mounted. Note that the current directory is retained
in the each file system object so that it also affects other tasks that using the drive.

Return Value
* FR_OK: The function succeeded

FR_NO_PATH: Could not find the path

* FR_INVALID NAME: The path name is invalid

« FR_INVALID DRIVE: The drive number is invalid

« FR _NOT _READY: The disk drive cannot work due to no medium in the drive or any other reason
* FR_DISK _ERR: The function failed due to an error in the disk function

* FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

* FR_NOT_ENABLED: The logical drive has no work area

* FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

See also
f chdrive(), f getcwd().

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 102

USB Host Class API

5.10.21 f_chdrive()

The function changes the current drive.
Synopsis
FRESULT f chdrive(
BYTE Drive)

Parameters
Drive [IN] — Specifies the logical drive number to be set as the current drive
Description
The function changes the current drive. The initial value of the current drive number is 0. Note that the
current drive is retained in a static variable so that it also affects other tasks that using the file functions.

Return Value
* FR_OK: The function succeeded

« FR_INVALID DRIVE: The drive number is invalid

See also
f chdir(), f getcwd().

USBHOST API Reference Manual, Rev. 5

103 Freescale Semiconductor

USB Host Class API

5.10.22 f_getcwd()

The function retrieves the current directory.
Synopsis
FRESULT f getcwd (
TCHAR* Buffer,
UINT BufferLen)
Parameters
Buffer [OUT] — Pointer to the buffer to receive the current directory string.
BufferLen [IN] — Size of the buffer in unit of TCHAR
Description
The function retrieves the current directory of the current drive in full path string including drive number.

Return Value
* FR_OK: The function succeeded

« FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason
* FR_DISK_ERR: The function failed due to an error in the disk function

 FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

* FR_NOT_ENABLED: The logical drive has no work area

* FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

« FR _NOT_ENOUGH_CORE: Insufficient size of Buffer

See also
f chdrive(), f chdir()

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 104

USB Host Class API

5.10.23 f_gets()

The function reads a string from the file.
Synopsis
TCHAR* f gets(
TCHAR* Str,
int Size,
FIL*)

Parameters
Str [OUT] — Pointer to read buffer to store the read string
Size [IN] — Size of the read buffer in unit of character
FileObject [IN] — Pointer to the open file object structure

Description

f gets() is a wrapper function of f read(). The read operation continues until a \n' is stored, reached end
of the file or the buffer is filled with Size - 1 (characters). The read string is terminated with a "\0'. When
no character to read or any error occurred during read operation, f gets() returns a null pointer. The end

of file and error status can be examined with f_eof() and f_error() macros.

When the FATFS is configured to Unicode API (LFN_UNICODE == 1), the file is read in UTF-8
encoding and stored it to the buffer in UCS-2. If not the case, the file will be read in one byte per

character without any code conversion.

Return Value

When the function succeeded, Str will be returned
See also

f open(), f read(), f putc(), f puts(), f printf(), f close(), FIL.

USBHOST API Reference Manual, Rev. 5

105

Freescale Semiconductor

USB Host Class API

5.10.24 f_putc()

The function puts a character to the file.

Synopsis
int £ putc(
TCHAR Chr,
FIL* FileObject)
Parameters

Chr [IN] — A character to be put.
FileObject [IN] — Pointer to the open file objects structure
Description
The f_putce() is a wrapper function of f write() .
Return Value
When the character was written successfully, the function returns 1. When the function failed due to disk
full or any error, an EOF (-1) will be returned.
When the FATFS is configured to Unicode API (_LFN_UNICODE = 1), the UCS-2 character is written
to the file in UTF-8 encoding. If not this case, the byte will be written directly.
See also
f open(), f puts(), f printf(), f gets(), f close(), FIL.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 106

USB Host Class API

5.10.25 f_puts()

The function writes a string to the file.

Synopsis
int £ puts(
const TCHAR* Str,
FIL* FileObject)
Parameters

Str [IN] — Pointer to the null terminated string to be written. The null character will not be
written.

FileObject [IN] — Pointer to the open file objects structure
Description
The f_puts() is a wrapper function of f putc().
Return Value
When the function succeeded, number of characters written that is not minus value is returned. When the
function failed due to disk full or any error, an EOF (-1) will be returned. When the FATFS is configured
to Unicode API (_LFN_UNICODE = 1), the UCS-2 string is written to the file in UTF-8 encoding. If not
the case, the byte stream will be written directly.
See also
f open(), f putc(), f printf(), f gets(), f close(), FIL.

USBHOST API Reference Manual, Rev. 5

107 Freescale Semiconductor

USB Host Class API

5.10.26 f_printf()

The function writes formatted string to the file.
Synopsis
int £ printf (
FIL* FileObject,
const TCHAR* Format,
)
Parameters
FileObject [IN] — Pointers to the open file object structure
Format [IN] — Pointer to the null terminated format string
Description
The function is a wrapper function of f putc() and f puts(). The format tags follow this prototype:
%l[flags][width][.precision][length] specifier
The specifier is a sub-set of standard library shown as following:

Table 5-4. Specifier in format string

Specifier Description Example
c Character ‘@
s String of characters “sample”
d Signed decimal integer 392
u Unsigned decimal integer 7235
X Unsigned hexadecimal integer 7fa
b Binary number 111

The tag can also contain flags, width, .precision and modifiers sub-specifiers, which are optional and
follow these specifications:

Table 5-5. Flags in format string

Flags Description

0 Left-pads the number with zeroes (0) instead of spaces, where padding is specified (see
width sub-specifier).

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 108

USB Host Class API

Table 5-6. Width in format string

Width Description

(number) | Minimum number of characters to be printed. If the value to be printed is shorter than
this number, the result is padded with blank spaces. The value is not truncated even if
the result is larger.

Table 5-7. Precision in format string

.precision Description

-number | Bor integer specifiers (d, u, X): precision specifies the minimum number of digits to be

written. If the value to be written is shorter than this number, the result is padded with
leading zeros. The value is not truncated even if the result is longer. A precision of 0
means that no character is written for the value 0.

For s: this is the maximum number of characters to be printed. By default, all
characters are printed until the ending null character is encountered.

For c type: it has no effect.
When no precision is specified, the default is 1. If the period is specified without an
explicit value for precision, 0 is assumed.

Table 5-8. Length in format string

length Description

1 The argument is interpreted as a long int or unsigned long int for integer specifiers (d,
u, x), and as a wide character or wide character string for specifiers ¢ and s.

L The argument is interpreted as a long double.

Return Value

When the function succeeded, number of characters written is returned. When the function failed due to
disk full or any error, an EOF (-1) will be returned.

See also

f open(), f putc(), f puts(), f gets(), f close(), FIL.

USBHOST API Reference Manual, Rev. 5

109 Freescale Semiconductor

Chapter 6
Data Structures

6.1 Data Structure Listings

6.1.1 CLASS_CALL_STRUCT PTR

This structure stores a class's validity-check code with the pointer to the data. The address of one such
structure is passed as a pointer to select-interface calls, where values for that interface get initialized.
Then, the structure should be passed to class calls using the interface.

Synopsis

typedef struct class call struct

{
_usb _class_intf handle class_intf handle;
uint 32 code key;
pointer next;
pointer anchor;

}CLASS CALL STRUCT, PTR CLASS CALL STRUCT PTR;

Fields
class_intf handle — Class interface handle
code_key — Code key
next — Pointer to the next CLASS CALL_STRUCT
anchor — Pointer to the first CLASS CALL STRUCT

6.1.2 COMMAND_OBJECT_PTR

This function is used for MSD class. There is one single command object for all protocols.

Synopsis
typedef struct COMMAND OBJECT {
CLASS CALL STRUCT PTR CALL PTR;
uint 32 LUN;
CBW_STRUCT PTR CBW_PTR;
CSW_STRUCT PTR CSW_PTR;
void (_CODE_PTR CALLBACK)
(USB_STATUS,
pointer,
pointer,
uint 32
)i
pointer DATA BUFFER;

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 110

Data Structures

uint 32 BUFFER_LEN;
USB_CLASS_MASS COMMAND STATUS STATUS;
USB_CLASS_MASS COMMAND STATUS PREV_STATUS;
uint 32 TR _BUF_LEN;
uint 8 RETRY COUNT;
uint 8 TR_INDEX;

} COMMAND OBJECT STRUCT, PTR COMMAND OBJECT PTR;

Fields

CALL PTR — Class intf data pointer and key

LUN — Logical unit number on device

CBW _PTR — Current CBW being constructed

CSW_PTR — CSW for this command

CALLBACK — Command callback
USB_STATUS — Status of this command

pointer — Pointer to USB_MASS BULK_ONLY REQUEST STRUCT

pointer — Pointer to the command object

unit_32 — Length of the data transfered if any

DATA BUFFER — Bufter for IN/OUT for the command
BUFFER_LEN — Length of data buffer
STATUS — Current status of this command
PREV STATUS — Previous status of this command
TR BUF LEN —Length of the buffer received in currently executed TR
RETRY COUNT — Number of tries of this commad
TR INDEX — TR _INDEX of the TR used for search

6.1.3 HID_COMMAND_PTR

The HID command structure.

Synopsis

typedef struct {
CLASS CALL STRUCT PTR CLASS PTR;
tr callback CALLBACK FN;
pointer CALLBACK PARAM;

} HID COMMAND, PTR HID COMMAND PTR;

Fields
CLASS PTR — Pointer to class call structure
CALLBACK FN — Callback function
CALLBACK PARAM — Callback function parameter

6.1.4 HUB_COMMAND_PTR

The HUB command structure.

Synopsis
typedef struct {

USBHOST API Reference Manual, Rev. 5

1M

Freescale Semiconductor

Data Structures

CLASS CALL STRUCT PTR CLASS_PTR;
tr callback CALLBACK FN;
pointer CALLBACK PARAM;

} HUB COMMAND, PTR_HUB COMMAND PTR;

Fields
CLASS PTR — Pointer to class call structure
CALLBACK FN — Callback function
CALLBACK PARAM — Callback function parameter

6.1.5 INTERFACE_DESCRIPTOR_PTR

The Communications Interface Class (CIC) uses the standard interface descriptor as defined in chapter 9
of the USB Specification.

Synopsis

typedef struct usb_ interface descriptor
{

uint 8 bLength;

uint:8 bDescriptorType;

uint 8 bInterfaceNumber;

uint 8 bAlternateSetting;

uint 8 bNumEndpoints;

uint 8 bInterfaceClass;

uint 8 bInterfaceSubClass;

uint 8 bInterfaceProtocol;

uint 8 ilnterface;
} INTERFACEiiDESCRIPTOR, _PTR_ INTERFACE DESCRIPTOR PTR;

Fields

bLength — Descriptor size in bytes = 9
bDescriptorType — INTERFACE descriptor type = 4
bInterfaceNumber — Interface number
bAlternateSetting — Value to select this IF
bNumEndpoints — Number of endpoints excluding 0
binterfaceClass — Class code, 0xFF = vendor
binterfaceSubClass — Sub-Class code, 0 if class =0
bInterfaceProtocol — Protocol, OxFF = vendor
ilnterface — Index to interface string

6.1.6 PIPE_BUNDLE_STRUCT_PTR

Pipe bundle = device handle + interface handle + 1..N pipe handles.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 112

Data Structures

NOTE

The pipe handles are for non-control pipes only, that is the pipes belonging
strictly to this interface. The control pipe belongs to the device, even if it is
being used by the device's interfaces. Hence a pointer to the device instance
is provided. Closing pipes for the interface does not close the control pipe

that may still be required to set new configurations/interfaces and so on.

Synopsis

typedef struct pipe bundle struct

{
_usb device instance handle dev handle;
_usb _interface descriptor handle intf handle;
_usb pipe handle pipe handle[4];

} PIPE BUNDLE STRUCT, PTR PIPE BUNDLE STRUCT PTR;

Fields
dev_handle — Device handle
intf_handle — Interface handle
pipe_handle[4] — Pipe handle

6.1.7 PIPE_INIT_PARAM_STRUCT

This structure defines the initialization parameters for a pipe; used by usb _host open_ pipe().
Synopsis
typedef struct
{
pointer DEV_ INSTANCE;
uint 32 INTERVAL;
uint 32 MAX PACKET SIZE;
uint 32 NAK COUNT;
uint 32 FIRST FRAME;
uint 32 FIRST UFRAME;
uint 32 FLAGS;
uint 8 DEVICE ADDRESS;
uint 8 ENDPOINT NUMBER;
uint 8 DIRECTION;
uint 8 PIPETYPE;
uint 8 SPEED;
uint 8 TRS PER UFRAME;
} PIPE INIT PARAM STRUCT, PTR PIPE INIT PARAM STRUCT PTR;

Fields
DEV INSTANCE — Instance of the device that owns this pipe
INTERVAL — Interval for scheduling the data transfer on the pipe. For USB1.1, the value is in
milliseconds. For USB 2.0, it is in 125-microsecond units.
MAX PACKET SIZE — Maximum packet size (in bytes) that the pipe is capable of sending or
receiving.

USBHOST API Reference Manual, Rev. 5

113 Freescale Semiconductor

Data Structures

NAK COUNT — Maximum number of NAK responses per frame that are tolerated for the pipe.
It is ignored for interrupt and isochronous pipes.
USB 1.1 — After NAK_COUNT (NAK responses per frame), the transaction is deferred to the
next frame.
USB 2.0 — The host controller does not execute a transaction if NAK COUNT NAK responses
are received on the pipe.
FIRST FRAME — Frame number at which to start the transfer. If FIRST FRAME equals 0, host
API schedules the transfer at the appropriate frame.
FIRST UFRAME — Microframe number at which to start the transfer. If FIRST FRAME equals
0, host API schedules the transfer at the appropriate microframe.
FLAGS — One of:
* 0 — (default) If the last data packet transferred is MAX_PACKET_SIZE bytes, terminate the
transfer with a zero-length packet.
* 1 — If the last data packet transferred is MAX_PACKET_SIZE bytes, do not terminate the
transfer with a zero-length packet.

DEVICE ADDRESS — Address of the USB device
DEVICE ENDPOINT — Endpoint number of the device
DIRECTION — Direction of transfer; one of:
« USB RECV
+ USB SEND
PIPE TYPE — Type of transfer to make on the pipe; one of:
+ USB BULK PIPE
+ USB CONTROL PIPE
« USB _INTERRUPT PIPE
+ USB ISOCHRONOUS PIPE
SPEED — Speed of transfer; one of:
* 0—full-speed transfer
* l—low-speed transfer
* 2—high-speed transfer
TRS PER UFRAME — Number of transactions per microframe; one of:
* 1 (default)
e 2
e 3
If the field is 0, 1 is assumed. Applies to high-speed, high-bandwidth (USB 2.0) pipes only.

TR_INIT_PARAM_STRUCT

Transfer request; used as parameters to _usb_host recv_data(), usb host send data(), and
_usb _host send_setup().

Synopsis
typedef struct

{
uint 32 TR INDEX;

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

114

Data Structures

uchar ptr TX BUFFER;
uchar ptr RX BUFFER;
uint 32 TX LENGTH;
uint 32 RX_ LENGTH;
tr callback CALLBACK;
pointer CALLBACK PARAM;
uchar ptr DEV_REQ PTR;
} TR _INIT PARAM STRUCT, TR INIT PARAM STRUCT PTR;

Fields

TR INDEX — Transfer number on the pipe

CONTROL TX BUFFER — Address of the buffer containing the data to be transmitted

RX BUFFER — Address of the buffer into which to receive data during the data phase

TX LENGTH — Length (in bytes) of data to be transmitted. For control transfers, it is the length
of data for the data phase.

RX LENGTH — Length (in bytes) of data to be received. For control transfers, it is the length of
data for the data phase.

CALLBACK — The callback function to be invoked when a transfer is completed or an error is to
be reported

CALLBACK PARAM — The parameter to be passed back when the callback function is invoked.
DEV _REQ PTR — Address of the setup packet to send. Applied to control pipes only.

6.1.9 USB_CDC_DESC_ACM_PTR

Abstract control management functional descriptor.
Synopsis
typedef struct {
uint 8 bFunctionLength;
uint 8 bDescriptorType;
uint 8 bDescriptorSubtype;
#define USB_ACM CAP COMM FEATURE 0x01
#define USB_ACM CAP LINE CODING 0x02
#define USB_ACM CAP SEND BREAK 0x04
#define USB_ACM CAP NET NOTIFY 0x08
uint 8 bmCapabilities;
} USB_CDC_DESC_ACM, PTR_ USB_CDC_DESC_ACM PTR;
Fields
bFunctionLength — Size of descriptor in bytes
bDescriptorType — CS_INTERFACE
bDescriptorSubtype — Abstract control management functional descriptor subtype as defined in
[USBCDC1.2]
bmCapabilities — Specifies the capabilities that this data/fax function supports. A bit value of zero
means that the capability is not supported.
D[7:4] — RESERVED (Reset to zero)
D3 — Function generates the notification NetworkConnect ION

USBHOST API Reference Manual, Rev. 5

115 Freescale Semiconductor

Data Structures

D2 — Function supports the management element SendBreak

D1 — Function supports the management elements GetLineCoding, SetControlLineState,
GetLineCoding. Function will generate the notification SerialState.

DO — Function supports management elements GetCommFeature, SetCommFeature, and

ClearCommFeature.

6.1.10 USB_CDC_DESC_CM_PTR

Call management functional descriptor.

Synopsis

typedef struct {
uint 8 bFunctionLength;
uint 8 bDescriptorType;
uint 8 bDescriptorSubtype;
#define USB_ACM CM CAP HANDLE MANAGEMENT 0x01
#define USB ACM CM CAP DATA CLASS 0x02
uint 8 bmCapabilities;
uint 8 bDatalnterface;
} USB_CDC_DESC _CM, PTR_USB CDC_DESC CM PTR;

Fields
bFunctionLength — Size of descriptor in bytes
bDescriptorType — CS_INTERFACE
bDescriptorSubtype — Call management functional descriptor subtype as defined in

[USBCDC1.2]
bmCapabilities — Specifies the capabilities that this data/fax function supports. A bit value of zero

means that the capability is not supported.
D[7:2] — RESERVED (Reset to zero)

DI:
0 — Function sends/receives call management information only over this Communications
Class interface
1 — Function can send/receive call management information over the Data Class interface.
DO:
0 — Function does not perform call management
1 — Function does perform call management
bDatalnterface — blnterfaceNumber of the Data Class interface.

6.1.11 USB_CDC_DESC_HEADER_PTR

The class-specific descriptor shall start with a header. The bcdCDC field identifies the release of the USB
Class Definitions for Communications Devices Specification with which this interface and its descriptors

comply.
Synopsis

typedef struct {
uint 8 bFunctionLength;

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 116

Data Structures

uint 8 DbDescriptorType;
uint 8 DbDescriptorSubtype;
uint 8 bcdCDC[2];
} USB_CDC_DESC HEADER, PTR USB CDC DESC HEADER PTR;

Fields

bFunctionLength — Size of descriptor in bytes

bDescriptorType — CS_INTERFACE

bDescriptorSubtype — Header functional descriptor subtype as defined in [USBCDC1.2]
bcdCDC[2] — Release number of [USBCDCI1.2] in BCD, with implied decimal point between
bits 7 and 8 (0x0120=1.20=1.2)

6.1.12 USB_CDC_DESC_UNION_PTR

The Union Functional Descriptor describes the relationship between a group of interfaces that can be
considered to form a functional unit. It can only occur within the class-specific portion of an Interface
descriptor. One of the interfaces in the group is designated as a master or controlling interface. Similarly,
notifications for the entire group can be sent from this interface, but they apply to the entire group of
interfaces. Interfaces in this group can include Communications, Data, or any other valid USB interface
class (including, but not limited to Audio, HID, and Monitor).

Synopsis
typedef struct {
uint 8 bFunctionLength;
uint 8 bDescriptorType;
uint 8 bDescriptorSubtype;

uint 8 bMasterInterface;
uint 8 bSlaveInterfacel[];
} USB _CDC_DESC UNION, PTR USB_CDC DESC_UNION PTR;

Fields
bFunctionLength — Size of descriptor in bytes
bDescriptorType — CS_INTERFACE
bDescriptorSubtype — Union functional descriptor subtype as defined in [USBCDC1.2]
bMasterInterface — The interface number of the ACM interface
bSlavelnterface — The interface number of the Data Class interface

6.1.13 USB_CDC_UART CODING_PTR
This structure configurates the UART.

Synopsis
typedef struct {
uint 32 baudrate;
uint 8 stopbits;
uint 8 parity;
uint 8 databits;
} USB_CDC_UART CODING, PTR_ USB_CDC UART CODING PTR;

Fields
baudrate — Baud rate

USBHOST API Reference Manual, Rev. 5

117 Freescale Semiconductor

Data Structures

stopbits — Stop bits (1 ~ 1bit, 2 ~ 2bits, 3 ~ 1.5 bit)
parity — Parity (1 ~ even, -1 ~ odd, 0 ~ no parity)
databits — Data bits

6.1.14 USB_HOST_DRIVER_INFO

Information for one class or device driver, used by usb host driver info register().
Synopsis
typedef struct driver info
{
uint 8 IDVENDOR[2];
uint 8 IDPRODUCT[2];
uint 8 BDEVICECLASS;
uint 8 BDEVICESUBCLASS;
uint 8 BDEVICEPROTOCOL;
uint 8 RESERVED;
event callback ATTACH CALL;
} USB_HOST DRIVER INFO, PTR USB HOST DRIVER INFO PTR;

Fields
IDVENDOR[2] — Vendor ID per USB-IF
IDPRODUCT][2] — Product ID per manufacturer
BDEVICECLASS — Class code, if 0 see interface
BDEVICESUBCLASS — Sub-Class code, 0 if class = 0
BDEVICEPROTOCOL — Protocol, if 0 see interface
RESERVED — Alignment padding
ATTACH CALL — The function to call when above information matches the one in device's
descriptors occurs

6.1.15 USB_MASS_CLASS_INTF_STRUCT_PTR

USB Mass Class Interface structure. This structure will be passed to all commands to this class driver. The
structure holds all information pertaining to an interface on storage device. This allows the class driver to
know which interface the command is directed for.

Synopsis
typedef struct Usb Mass Intf Struct {
GENERAL CLASS G;
_usb _pipe handle CONTROL PIPE;
_usb _pipe handle BULK IN PIPE;
_usb_pipe handle BULK OUT PIPE;
MASS QUEUE STRUCT QUEUE;
uint 8 INTERFACE NUM;
uint 8 ALTERNATE SETTING;
} USB_MASS CLASS INTF STRUCT, PTR USB MASS CLASS INTF STRUCT PTR;
Fields

G — This is a general class containing the following.

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 118

Data Structures

CONTROL PIPE — Control pipe handle
BULK IN PIPE — Bulk in pipe handle
BULK OUT PIPE — Bulk out pipe handle
QUEUE — Structure that queues requests
INTERFACE NUM — Interface number
ALTERNATE SETTING — Alternate setting

6.1.16 USB_PHDC_PARAM

PHDC required type for the parameter passing to the PHDC transfer functions (Send / Receive/ Ctrl). A
pointer to this type is required when those functions are called, pointer which will also be transmitted back
to the application when the corresponding callback function is called by the PHDC through the

callback param_ptr.

The application can maintain a linked list of transfer requests pointers, knowing at any moment what the
pending transactions with the PHDC are.

Synopsis

Fields

typedef struct usb_ phdc param type ({
CLASS CALL STRUCT PTR ccs_ptr;
uint 8 classRequestType;
boolean metadata;
uint 8 gos;
uint 8* buff ptr;
uint 32 buff size;
uint 32 tr index;
_usb pipe handle tr pipe handle;
uint 8 usb status;
uint 8 usb phdc_ status;
} USB_PHDC PARAM;

ccs_ptr — Pointer to CLASS CALL STRUCT which identifies the interface.

class Request type — The type of the PHDC request (SET_FEATURE / CLEAR FEATURE /
GET_STATUS). This parameter is only used by the usb_class phdc _send control request
function.

metadata — Boolean indicating a metadata send transfer. This parameter is only used by the
usb_class _phdc _send_data function.

QoS — The qos for receive transfers. Used only by the usb class phdc recv_data function.

buffer ptr — Pointer to the buffer used in the transfer. This parameter is only used by the send and
receive functions (usb_class phdc send data /usb_class phdc recv_data).

buff size — The size of the buffer used for transfer. This parameter is only used by the send and
receive functions (usb_class _phdc _send data /usb_class phdc recv_data).

tr_index — Unique index which identifies the transfer after is queued in the USB host API lower
layers. This parameter is written by PHDC in case of a Send / Receive transfer (only if
USB_STATUS is USB_OK).

USBHOST API Reference Manual, Rev. 5

119

Freescale Semiconductor

Data Structures

tr_pipe handle — The handle on which the transfer was queued. This parameter is written by
PHDC in case of a Send / Receive transfer (only if USB_STATUS is USB_OK).

usb_status — Standard USB_STATUS when the transfer is finished (the application callback is
called). This parameter is written by the PHDC when a Send / Recv / Ctrl transfer is finished. It is
not valid until the corresponding callback is called.

usb_phdc status — The PHDC specific status code for the current transaction. This parameter can
take the following values: PHDC specific status codes. This parameter is written by the PHDC
when a Send / Recv / Ctrl transfer is finished. It is not valid until the corresponding callback is
called.

6.1.17 AUDIO_COMMAND_PTR

The Audio command structure.

Synopsis
typedef struct({
CLASS_CALL STRUCT PTR CLASS_ PTR;
tr callback CALLBACK FN;
pointer CALLBACK PARAM;
} AUDIO COMMAND, PTR AUDIO COMMAND PTR;
Fields
CLASS PTR — Pointer to class call structure
CALLBACK FN — Callback function

CALLBACK PARAM — Callback function parameter

6.1.18 CLASS_CALL_STRUCT_PTR

This structure stores a class’s validity-check code with the pointer to the data. The address of one such
structure is passed as a pointer to select-interface calls, where values for that interface get initialized. Then,
the structure should be passed to class calls using the interface.

Synopsis

typedef struct class call struct {
_usb _class_intf handle class_intf handle;
uint 32 code key,
pointer next,
pointer anchor,
}USB_SETUP STRUCT, PTR CLASS CALL STRUCT PTR;

Fields
class_intf handle — Class interface handle
code_key — Code key
next — Pointer to the next CLASS CALL_STRUCT
anchor — Pointer to the first CLASS CALL STRUCT

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 120

|
y

'
A

Data Structures

6.1.19 PIPE_BUNDLE_STRUCT_PTR
Pipe bundle = device handle + interface handle + 1...N pipe handles.

NOTE

The pipe handles are for non-control pipes only, that are the pipes belonging
strictly to this interface. The control pipe belongs to the device, even if it is
being used by the device’s interfaces. Hence, a pointer to the device instance
is provided. Closing pipes for the interface dose not close the control pipe

that may still be required to set new configurations/interfaces and so on.

Synopsis
typedef struct pipe bundle struct{
_usb _device instance handle dev_handle;
_usb _interface descriptor intf handle,
_usb pipe handle pipe handle[4],
}PIPE BUNDLE STRUCT, PTR PIPE BUNDLE STRUCT PTR;
Fields
dev_handle — Device handle
intf_handle — Interface handle

pipe_handle[4] — Pointer to the buffer to be returned with data Pipe handle

6.1.20 USB_AUDIO_CTRL_DESC_HEADER_PTR

The class-specific descriptor shall start with a header. The bcdCDC field identifies the release of the USB
Class Definitions for Audio Devices Specification with which this interface and its descriptors comply.

Synopsis

typedef struct {
uint 8 bFunctionLength;
uint 8 bDescriptorType;
uint 8 bcdCDC[2];
uint 8 wTotalLength[2];
uint 8 bInCollection;
} USB_AUDIO DESC_HEADER, PTR USB AUDIO DESC HEADER PTR;

Fields
bFunctionLength — Size of descriptor in bytes
bDescriptorType — CS_INTERFACE
bDescriptorSubtype — Header functional descriptor subtype as defined in [USBCDC 1.2]
bcdCDC[2] — Release number of [USBCDC 1.2] in BCD, with implied decimal point between
bits 7 and 8 (0x0120=1.20-1.2)
wTotalLength — Total number of bytes returned for the class-specific AudioControl interface
descriptor

bInCollection — The number of AudioStreaming and MIDIStream interfaces in the Audio
interface Collection to which this AudioControl interface belongs

USBHOST API Reference Manual, Rev. 5

121 Freescale Semiconductor

Data Structures

6.1.21 USB_AUDIO_CTRL_DESC_IT_PTR

Input Terminal Descriptor structure

Synopsis

typedef struct
uint 8
uint 8
uint 8
uint 8
uint 8
uint 8
uint 8
uint 8
uint 8
uint 8

{
bFunctionLength;
bDescriptorType;
bDescriptorSubType;
bTerminallID;
wTerminalType[2];
bAssocTerminal;
bNrChannels;
wChannelCofig[2];
iChannelNames;
iTerminal;

} USB_AUDIO CTRL DESC IT, PTR USB AUDIO CTRL DESC_IT PTR;

Fields

bFunctionLength — Size of this descriptor in bytes

bDescriptorType — CS_INTERFACE

bDescriptorSubtype — INPUT _TERMINAL

bTerminallD — Constant uniquely identifying the Terminal within the audio function

wlerminallype — Constant characterizing the type of Terminal

bAssocTerminal — 1D of the Output Terminal to which this Input Terminal is associated

bNrChannels — Number of logical output channels in the Terminal’s output audio channel cluster

wChannelCofig — Describes the spatial location of the logical channels

iChannelNames — Index of a string descriptor, describing the name of the first logical channel

iTerminal — Index of a string descriptor, describing the Input Terminal

6.1.22 USB_AUDIO_CTRL_DESC_OT PTR

Output Terminal Descriptor structure

Synopsis

typedef struct
uint 8
uint 8
uint 8
uint 8
uint 8
uint 8
uint 8
uint 8

{
bFunctionLength;
bDescriptorType;
bDescriptorSubType;
bTerminallID;
wTerminalType[2];
bAssocTerminal;
bSourcelD;
iTerminal;

} USB_AUDIO CTRL DESC OT, PTR_USB AUDIO CTRL DESC_OT PTR;

Fields

bFunctionLength — Size of this descriptor in bytes

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

122

Data Structures

bDescriptorType — CS_INTERFACE

bDescriptorSubtype — OUTPUT TERMINAL

bTerminallD — Constant uniquely identifying the Terminal within the audio function
wlerminalType — Constant characterizing the type of Terminal

bAssocTerminal — 1D of the Input Terminal to which this Output Terminal is associated
bSourcelD — 1D of the Unit or Terminal to which this Terminal is connected

iTerminal — Index of a string descriptor, describing the Input Terminal

6.1.23 USB_AUDIO_CTRL_DESC_FU_PTR

Pointer to Feature Unit Descriptor structure

Synopsis
typedef struct {

uint 8 bLength;
uint 8 bDescriptorType;
uint 8 bDescriptorSubType;
uint 8 bUnitID;
uint 8 bSourcelD;
uint 8 bControlSize;

uint 8 bmaControls([];
} USB_AUDIO CTRL DESC FU, PTR_USB AUDIO CTRL DESC_FU PTR;

Fields
bFunctionLength — Size of this descriptor in bytes
bDescriptorType — CS_INTERFACE
bDescriptorSubtype — FEATURE UNIT
bUnitID — Constant uniquely identifying the Unit within the audio function.
bSourcelD — 1D of the Unit or Terminal to which this Feature Unit is connected
bControlSize — Size in bytes of an element of the bmaControls array

6.1.24 USB_AUDIO_STREAM_DESC_SPECIFIC_AS_IF_PTR
Pointer to Class-specific Audio stream interface descriptor

Synopsis
typedef struct {

uint 8 bLength;
uint 8 bDescriptorType;
uint 8 bDescriptorSubType;
uint 8 bTerminalLink;
uint 8 bDelay;
uint 8 bFormatTag[2];
} USB_AUDIO STREAM DESC SPECIFIC AS IF,
_PTR_USB_AUDIO STREAM DESC_SPECIFIC AS IF PTR;

Fields

USBHOST API Reference Manual, Rev. 5

123 Freescale Semiconductor

Data Structures

bLength — Size of this descriptor in bytes
bDescriptorType — CS_INTERFACE
bDescriptorSubtype — AS GENERAL

bTerminalLink — The Terminal ID of the Terminal to which the endpoint of this interface is
connected

bDelay — introduced by the data path
wFormatTag — The Audio Data Format that has to be used to communicate with this interface

6.1.25 USB_AUDIO_STREAM_DESC_FORMAT_TYPE_PTR

Pointer to format type descriptor

Synopsis

typedef struct {
uint 8 bLength;
uint 8 bDescriptorType;
uint 8 bDescriptorSubType;
uint 8 bFormatType;
uint 8 bNrChannels;
uint 8 bSubFrameSize;
uint 8 bBitResolution;
uint 8 bSamFreqType;
uint 8 bSamFreq[3];
} USB_AUDIO STREAM DESC FORMAT TYPE,
_PTR USB_AUDIO STREAM DESC FORMAT TYPE PTR;

Fields
bLength — Size of this descriptor
bDescriptorType — CS_INTERFACE
bDescriptorSubtype — FORMAT TYPE
bFormatType — Constant identifying the Format Type the Audio Stream interface is using
bNrChannels — Indicates the number of physical channels in the audio data stream
bSubFrameSize — The number of bytes occupied by one audio subframe. Can be 1, 2, 3 or 4
bBitResolution — The number of effectively used bits from the available bits in an audio subframe.
bSamFreqType — Indicates how the sampling frequency can be programmed
bSamFreq[3] — Sampling frequency in Hz for this isochronous data endpoint

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 124

A 4
4\

Data Structures

6.1.26 USB_AUDIO_STREAM_DESC_SPECIFIC_ISO_ENDP_PTR

Pointer to Class-specific Isochronous Audio Data Endpoint descriptor

Synopsis
typedef struct {

uint 8 bLength;
uint 8 bDescriptorType;
uint 8 bDescriptorSubType;
uint 8 bmAttributes;
uint 8 bLockDelayUnits;
uint 8 bLockDelayl[2];
} USB_AUDIO STREAM DESC SPECIFIC ISO ENDP,
_PTR USB_AUDIO STREAM DESC SPECIFIC ISO ENDP PTR;

Fields
bLength — Size of this descriptor in bytes
bDescriptorType — CS_ENDPOINT
bDescriptorSubtype — EP_ GENERAL
bmAttributes — A bit in the range D6..0 set to 1 indicates that the mentioned Control is supported
by this endpoint.
bLockDelayUnits — Indicates the units used for the wLockDelay field

bLockDelay — Indicates the time it takes this endpoint to reliably lock its internal clock recovery
circuitry. Units used depend on the value of the bLockDelayUnits field

6.1.27 FATFS

This structure keeps information of a drive's file system.
Synopsis
typedef struct {

uint 8 fs type;

uint 8 drv;

uint 8 csize;

uint 8 n fats;

uint 8 wflag;

uint 8 fsi flag;

uint 16 1id;

uint 16 n rootdir;
#if MAX SS != 512

uint 16 ssize;
#endif

#if ! FS READONLY
uint 32 last clust;
uint 32 free clust;
uint 32 fsi sector;
#endif
#if FS RPATH
uint 32 cdir;
#endif

USBHOST API Reference Manual, Rev. 5

125 Freescale Semiconductor

Fields

Data Structures

uint 32 n fatent;
uint 32 fsize;

uint 32 fatbase;
uint 32 dirbase;
uint 32 database;
uint 32 winsect;
uint 8 win[MAX SS];
} FATFS;

fs_type — FAT sub-type (0: Not mounted)

drive — Physical drive number

csize — Sectors per cluster (1, 2, 4... 128)

n_fats — Number of FAT copies (1, 2)

wflag — win[] dirty flag (1:must be written back)

fsi_flag — file system information dirty flag (1: must be written back)
id — File system mount ID

n_rootdir — Number of root directory entries (FAT12/16)

ssize — Bytes per sector (512, 1024, 2048, 4096)

last _clust — Last allocated cluster

free_clust — Number of free clusters

fsi_sector — fsinfo sector (FAT32)

cdir — Current directory start cluster (0:root)

n_fatent — Number of FAT entries (= number of clusters + 2)

fsize — Sectors per FAT

fatbase — FAT start sector

dirbase — Root directory start sector (FAT32:Cluster#)

database — Data start sector

winsect — Current sector appearing in the win[]

win[MAX SS] — Disk access window for Directory, FAT (and Data on tiny configuration)

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor

126

A 4
4\

Data Structures

6.1.28 FIL

This structure keeps information of data file

Synopsis

Fields

typedef struct {
FATEFS* fs;
uint 16 id;
uint 8 flag;
uint 8 padil;
uint 32 fptr;
uint 32 fsize;
uint 32 org clust;
uint 32 curr clust;
uint 32 dsect;
#if | FS READONLY
uint 32 dir sect;
uint 8* dir ptr;
#endif
#if USE_FASTSEEK
uint 32* cltbl;
#endif
#if FS SHARE
uint 32 lockid;
#endif
#if | FS TINY
uint 8 buf[MAX SS];
#endif
} FIL;

fs — Pointer to the owner file system object

id — Owner file system mount ID

flag — File status flags

padl — Pad

fptr — File read/write pointer (0 on file open)

fsize — File size

org clust — File start cluster (0 when fsize==0)
curr_clust — Current cluster

dsect — Current data sector

dir_sect — Sector containing the directory entry

dir _ptr — Points to the directory entry in the window
cltb] — Pointer to the cluster link map table (null on file open)
lockid — File lock ID (index of file semaphore table)
buff MAX SS] — File data read/write buffer

USBHOST API Reference Manual, Rev. 5

127

Freescale Semiconductor

6.1.29 DIR

This structure keeps information of a directory.

Synopsis

typedef struct {

FATFS*
uint 16
uint 16
uint 32
uint 32
uint 32
uint 8%
uint 8*

#if USE LFN
uint 8%
uint 16

fendif

} DIR;

Fields

fs;

id;

index;

sclust;

clust;

sect;
dir;
fn;

1fn;
1fn idx;

fs — Pointer to the owner file system object

id — Owner file system mount ID

index — Current read/write index number

sclust — Table start cluster (0:Root dir)

clust — Current cluster

sect — Current sector

dir — Pointer to the current SFN (sort file name) entry in the win[]
fn — Pointer to the SFN (in/out) {file[8], ext[3], status[1]}

Ifn — Pointer to the LFN working buffer

Ifn_idx — Last matched LFN index number (OXFFFF: No LFN)

USBHOST API Reference Manual, Rev. 5

Data Structures

Freescale Semiconductor

128

Data Structures

6.1.30 FILINFO

This structure contains information of file and directory.

Synopsis

typedef struct {
uint 32 fsize;
DATE fdate;
TIME ftime;
uint 8 fattrib;
TCHAR fname[13];

#if USE LFN
TCHAR* 1fname;
uint 32 Ifsize;

#endif

} FILINFO;

Fields
fsize — File size
fdate — Last modified date
ftime — Last modified time
fattrib — Attribute
fname[13] — Short file name (8.3 format)
[fname — Pointer to the LFN (long file name) buffer
Ifsize — Size of LFN buffer in CHAR

USBHOST API Reference Manual, Rev. 5

129

Freescale Semiconductor

Data Structures

6.1.31 DATE
This structure contains date information

Synopsis
typedef union{
uint 16 Word;
struct{
uint 16 day:5; /* Day (1..31) */
uint 16 month:4; /* Month (1..12) */
uint 16 year:7; /* Year origin from 1980 (0..127) */

}Bits;
} DATE;

Fields
Word — 16-bits value contains date information

day — 5-bits value specifies last modified date
month — 4-bits value specifies last modified date
year — 7-bits value specifies last modified date

6.1.32 TIME
This structure contains time information.

Synopsis
typedef union/{
uint 16 Word;
struct{
uint 16 second:5; /* Second / 2 (0..29) */
uint 16 minute:6; /* Minute (0..59) */
uint 16 hour:5; /* Hour (0..23) */
}Bits;
}TIME;
Fields
Word — 16-bits value contains time information
second — 5-bits value specifies last modified time
minute — 6-bits value specifies last modified time
hour — 5-bits value specifies last modified time

USBHOST API Reference Manual, Rev. 5

Freescale Semiconductor 130

Chapter 7

Reference Data Types

7.1 Data Types for Compiler Portability
Table 7-1. ColdFire V1 and V2 Compiler Portability Data Types
Range
Name Bytes Description
From To
boolean 1 NOT 0 0 = False
Non-zero = True
uint_8 1 255 Unsigned character
uint_8 ptr 4 OxFFFFFFFF | Pointer to uint_8
uint_16 2 (2M6)-1 Unsigned 16-bit integer
uint_16_ptr 4 OxFFFFFFFF | Pointer to uint_16
uint_32 4 (2732)-1 Unsigned 32-bit integer
uint_32_ptr 4 OxFFFFFFFF | Pointer to unit_32
USBHOST API Reference Manual, Rev. 5
131 Freescale Semiconductor

	Freescale USB Stack Host
	Chapter 1 Before Beginning
	1.1 About this book
	1.2 Reference material
	1.3 Acronyms and abbreviations
	1.4 Function listing format

	Chapter 2 USB Host API Overview
	2.1 Introduction
	2.2 USB Host
	2.3 API overview
	2.4 Using API
	2.4.1 Using the Host Layer API
	2.4.2 Transaction Scheduling

	Chapter 3 USB Host Layer API
	3.1 USB Host Layer API function listing
	3.1.1 _usb_host_bus_control()
	3.1.2 _usb_host_cancel_transfer()
	3.1.3 _usb_host_close_all_pipes()
	3.1.4 _usb_host_close_pipe()
	3.1.5 _usb_host_driver_info_register()
	3.1.6 _usb_host_get_frame_number()
	3.1.7 _usb_host_get_micro_frame_number()
	3.1.8 _usb_host_get_transfer_status()
	3.1.9 _usb_host_init()
	3.1.10 _usb_host_open_pipe()
	3.1.11 _usb_host_recv_data()
	3.1.12 _usb_host_register_service()
	3.1.13 _usb_host_send_data()
	3.1.14 _usb_host_send_setup()
	3.1.15 _usb_host_shutdown()
	3.1.16 _usb_host_unregister_service()
	3.1.17 _usb_hostdev_find_pipe_handle()
	3.1.18 _usb_hostdev_get_buffer()
	3.1.19 _usb_hostdev_get_descriptor()
	3.1.20 _usb_hostdev_select_config()
	3.1.21 _usb_hostdev_select_interface()

	Chapter 4 USB Device Framework
	4.1 USB Device Framework function listing
	4.1.1 _usb_host_ch9_clear_feature()
	4.1.2 _usb_host_ch9_get_configuration()
	4.1.3 _usb_host_ch9_get_descriptor()
	4.1.4 _usb_host_ch9_get_interface()
	4.1.5 _usb_host_ch9_get_status()
	4.1.6 _usb_host_ch9_set_address()
	4.1.7 _usb_host_ch9_set_configuration()
	4.1.8 _usb_host_ch9_set_descriptor()
	4.1.9 _usb_host_ch9_set_feature()
	4.1.10 _usb_host_ch9_set_interface()
	4.1.11 _usb_host_ch9_synch_frame()
	4.1.12 _usb_hostdev_cntrl_request()
	4.1.13 _usb_host_register_ch9_callback()

	Chapter 5 USB Host Class API
	5.1 CDC Class API Function Listing
	5.1.1 usb_class_cdc_acm_init()
	5.1.2 usb_class_cdc_bind_acm_interface()
	5.1.3 usb_class_cdc_bind_data_interfaces()
	5.1.4 usb_class_cdc_data_init()
	5.1.5 usb_class_cdc_get_acm_descriptors()
	5.1.6 usb_class_cdc_get_acm_line_coding()
	5.1.7 usb_class_cdc_get_ctrl_descriptor()
	5.1.8 usb_class_cdc_get_ctrl_interface()
	5.1.9 usb_class_cdc_get_data_interface()
	5.1.10 usb_class_cdc_init_ipipe()
	5.1.11 usb_class_cdc_install_driver()
	5.1.12 usb_class_cdc_set_acm_ctrl_state()
	5.1.13 usb_class_cdc_set_acm_descriptors()
	5.1.14 usb_class_cdc_set_acm_line_coding()
	5.1.15 usb_class_cdc_unbind_acm_interface()
	5.1.16 usb_class_cdc_unbind_data_interfaces()
	5.1.17 usb_class_cdc_uninstall_driver()

	5.2 HID Class API Function Listing
	5.2.1 usb_class_hid_get_idle()
	5.2.2 usb_class_hid_get_protocol()
	5.2.3 usb_class_hid_get_report()
	5.2.4 usb_class_hid_init()
	5.2.5 usb_class_hid_set_idle()
	5.2.6 usb_class_hid_set_protocol()
	5.2.7 usb_class_hid_set_report()

	5.3 MSD Class API Function Listing
	5.3.1 usb_class_mass_getmaxlun_bulkonly()
	5.3.2 usb_class_mass_init()
	5.3.3 usb_class_mass_reset_recovery_on_usb()
	5.3.4 usb_class_mass_storage_device_command()
	5.3.5 usb_class_mass_storage_device_command_cancel()
	5.3.6 usb_class_mass_cancelq()
	5.3.7 usb_class_mass_deleteq()
	5.3.8 usb_class_mass_get_pending_request()
	5.3.9 usb_class_mass_q_init()
	5.3.10 usb_class_mass_q_insert()
	5.3.11 usb_mass_ufi_cancel()
	5.3.12 usb_mass_ufi_generic()

	5.4 HUB Class API Function Listing
	5.4.1 usb_class_hub_clear_port_feature()
	5.4.2 usb_class_hub_cntrl_callback()
	5.4.3 usb_class_hub_cntrl_common()
	5.4.4 usb_class_hub_get_descriptor()
	5.4.5 usb_class_hub_get_port_status()
	5.4.6 usb_class_hub_init()
	5.4.7 usb_class_hub_set_port_feature()
	5.4.8 usb_host_hub_device_event()

	5.5 PHDC Class API Function Listing
	5.5.1 usb_class_phdc_init()
	5.5.2 usb_class_phdc_set_callbacks()
	5.5.3 usb_class_phdc_send_control_request()
	5.5.4 usb_class_phdc_recv_data()
	5.5.5 usb_class_phdc_send_data()

	5.6 Audio Class API Function Listing
	5.6.1 usb_class_audio_control_Init()
	5.6.2 usb_class_audio_stream_Init()
	5.6.3 usb_class_audio_control_get_descriptors()
	5.6.4 usb_class_audio_control_set_descriptors()
	5.6.5 usb_class_audio_stream_get_descriptors()
	5.6.6 usb_class_audio_stream_set_descriptors()
	5.6.7 usb_class_audio_init_ipipe()
	5.6.8 usb_class_audio_recv_data()
	5.6.9 usb_class_audio_send_data()
	5.6.10 usb_class_audio_send_specific_requests()

	5.7 Introduction
	5.8 API overview
	5.9 Using API
	5.10 FAT File System API Function Listing
	5.10.1 f_mount()
	5.10.2 f_open()
	5.10.3 f_close()
	5.10.4 f_read()
	5.10.5 f_write()
	5.10.6 f_lseek()
	5.10.7 f_truncate()
	5.10.8 f_sync()
	5.10.9 f_opendir()
	5.10.10 f_readdir()
	5.10.11 f_getfree()
	5.10.12 f_stat()
	5.10.13 f_mkdir()
	5.10.14 f_unlink()
	5.10.15 f_chmod()
	5.10.16 f_utime()
	5.10.17 f_rename()
	5.10.18 f_mkfs()
	5.10.19 f_forward()
	5.10.20 f_chdir()
	5.10.21 f_chdrive()
	5.10.22 f_getcwd()
	5.10.23 f_gets()
	5.10.24 f_putc()
	5.10.25 f_puts()
	5.10.26 f_printf()

	Chapter 6 Data Structures
	6.1 Data Structure Listings
	6.1.1 CLASS_CALL_STRUCT_PTR
	6.1.2 COMMAND_OBJECT_PTR
	6.1.3 HID_COMMAND_PTR
	6.1.4 HUB_COMMAND_PTR
	6.1.5 INTERFACE_DESCRIPTOR_PTR
	6.1.6 PIPE_BUNDLE_STRUCT_PTR
	6.1.7 PIPE_INIT_PARAM_STRUCT
	6.1.8 TR_INIT_PARAM_STRUCT
	6.1.9 USB_CDC_DESC_ACM_PTR
	6.1.10 USB_CDC_DESC_CM_PTR
	6.1.11 USB_CDC_DESC_HEADER_PTR
	6.1.12 USB_CDC_DESC_UNION_PTR
	6.1.13 USB_CDC_UART_CODING_PTR
	6.1.14 USB_HOST_DRIVER_INFO
	6.1.15 USB_MASS_CLASS_INTF_STRUCT_PTR
	6.1.16 USB_PHDC_PARAM
	6.1.17 AUDIO_COMMAND_PTR
	6.1.18 CLASS_CALL_STRUCT_PTR
	6.1.19 PIPE_BUNDLE_STRUCT_PTR
	6.1.20 USB_AUDIO_CTRL_DESC_HEADER_PTR
	6.1.21 USB_AUDIO_CTRL_DESC_IT_PTR
	6.1.22 USB_AUDIO_CTRL_DESC_OT_PTR
	6.1.23 USB_AUDIO_CTRL_DESC_FU_PTR
	6.1.24 USB_AUDIO_STREAM_DESC_SPECIFIC_AS_IF_PTR
	6.1.25 USB_AUDIO_STREAM_DESC_FORMAT_TYPE_PTR
	6.1.26 USB_AUDIO_STREAM_DESC_SPECIFIC_ISO_ENDP_PTR
	6.1.27 FATFS
	6.1.28 FIL
	6.1.29 DIR
	6.1.30 FILINFO
	6.1.31 DATE
	6.1.32 TIME

	Chapter 7 Reference Data Types
	7.1 Data Types for Compiler Portability

