=~ freescale’

TWR-LCD

Demo Projects Walk-Through

Rev. 1.0

Freescale Semiconductor Inc.

Z “freescale"

semiconductor
Contents

Lab 1: Getting starting With the TWR-LCDcccoiiiiii e 3
1.0 DBIMO SEEUP ...oooverseeiseesseessseess s8R 3
1.2 Freescale EMDEdded GUI DEIMOooiiiiiisiissisessissessessssssesssssssss s sssssss s ssssssssssssssssssness 3
1.3 TWR-LCD BOOTIOAEcoourrvviiiiierieissiseessisssssssssss s sssss s 4
1.4 Embedded Component Ul (ECUI) DEMO........ccc.oovrnieisiessssssssssssssissses 4
1.5 Precompile Applications for the TWR-LCD USB BOOtIOAUEccouvvrremmrerinrennrriinseissssnesessssssssseenns 5
1.6 Example Applications for the 0Nboard JIML28 ... 6
1.7 Example Applications for the TWR-MCFS5LCN........ccccimrriississssessssssesssssssssssssssssssssssnes 7
Lab 2: TWR-LCD BOOTIOAUENccooiiiiiiiieiieie st 8
2.1 Installing Processor Expert TWR-LCD Embedded COMPONENTS..........ccoorerreiseeisessesssesessseseens 8
2.2 Building the MCF51IM128 BOOIOAUET ... s ssssssssssssssssssssssssssssssssessssssesns 9
2.3 Using the MCF51IM128 BOOLIOAUETcoccvvirvicrisesississssss s ssssssssssss s ssssssssssssnses 13
2.4 Debugging your application With the DOOTIOAAET ... 15
2.5 Memory Map for Bootloader and APPHCALION. ... sessssessessessesses 19
2.5.1 BOOH0AdEr BUIIA OPTIONS ...ttt 20
2.5.2 ApPlIcatioN BUITA OPLIONSouiiiiiiiiiiceiei ettt 24
Lab 3: TWR-LCD Freescale Embedded GUI DEMO..........cccceiiiiiiiiiiciieee e 27
3.1 SeleCtiNg CONFIGUIATIONovvuiriiriseiessesesesessssess s st 27
.2 INSPECTING CPUciorviiieieisessssesesssssssssssssssssssssessssassssssssssssssssssssssssesssssssssssssssssasssssasssssssssssasssssssssssnsssssnsssssasssssnssssnssssas 29
3.3 Inspecting Low Level Display Driver COMPONENTccouiriiriiereisssssssssssessssssessssssssssssssssssessess 31
3.4 Building the ProjeCt S-RECOIA FIlE............coocviiiiieriiseiisessssssssisssssssssssss s sssssssssss s ssssssssssssssssssssnns 33
Lab 4: TWR-LCD Processor Expert Embedded Ul DEMOcccccoviiviieiiiinccc e 34
4.1 Configuring the dEMO AMOUNTcocuuiieieisseseesseess s ses bbb 34
Lab 5: Freescale Embedded GUI with ACCEIErOMETLErccviiiiiiiiiiiieie e 35
5.1 SeleCtiNg CONFIGUIATIONuiviriiriesesessesessseesssssss s s8R 36
5.2 Installing Hardware INSpecting JUMPET SETLINGScciirisessssssssssssessssssessssssessssssssssseseens 37
5.3 POWET TNE SYSTEIM.......coiiieriiiiiiiie s8R0 38
5.4 InSpecting MiNi-FIEXBUS SELLINGS ..ot ssssssssssssss s sssssssssssssssssssssssssssssnns 39
5.5 Building and downloading the dEMIO ... s ssssses 41
5.6 Using the switches on the TWR-MCFSLCNIL28...........ccccccmiirsisisssssssssssssssssssssssssssssssssssssns 42
5.7 Using the navigation switch with the TWR-MCF51CNIL28............ccccocimmirmrsessssesssssssssessens 42
5.8 Using the TWR-MCF51CN128 ACCEIErOMELEr SENSOKcocvvvvcriissisessisssssssisssssssssssssssssssssssssssssssnns 44
Lab 6: TWR-LCD Display Orientation...............ccoiiiiiiiiiiiie e 44

TWR-LCD Demo Projects Walk-Through Page 2 of 45

h o
g |

&

Z “freescale*

semiconductor

Lab 1. Getting starting with the TWR-LCD

The following lab will guide the user through the pre-flashed Freescale Embedded GUI application,
entering and using the built-in bootloader, and use of an additional pre-compiled GUI application
based on the Freescale Embedded GUI Drivers and CodeWarrior Processor Expert components.

1.1 Demo Setup

Following is assumed

- CodeWarrior for MCU V6.3

- TWR-LCD Rev A board

- TWR-LCD has pre-flashed bootloader plus Freescale Embedded GUI application on it (factory
default): ‘JM128 Bootloader.S19’ plus ‘JM128 BL _EGUI_SPI.S19’

- Factory default switches (DIP SW 1: 1:0FF, 2: ON, 3:0FF, 4: OFF, 5:0N, 6: ON, 7:0N, 8:0FF),
SWH5: all OFF

- S19 files for Freescale Embedded GUI (EGUI), ECUI (Embedded Component Ul) and 12C demo
installed/available

1.2 Freescale Embedded GUI Demo

- Connect the TWR-LCD with your host PC to power up the board

- If the touch screen has not been calibrated, it will show a blue calibration screen the first time.
Touch the 3 crosses as accurate as possible. Then the calibration values will be stored in FLASH
memory of the JIM128.

Touch the cross by stylus.

Figure 1: Touchscreen Calibration

- The Freescale Embedded GUI demo screen will show up. Use the touch screen to select demos.
Alternatively you can use the navigation switch: left/right to move forward and backward,
center to select/focus and up to deselect focus.

TWR-LCD Demo Projects Walk-Through Page 3 of 45

&

Z “freescale"

semiconductor

Figure2: Freescale Embedded GUI Demo

For more information about the Freescale Embedded GUI, see the additional documentation.

1.3 TWR-LCD Bootloader

The TWR-LCD features a bootloader to facilitate the loading of applications without the need for an
external debugger.

To enter the bootloader hold the ‘BTLD’ button while momentarily pressing the ‘JMRST’ button
and finally releasing ‘BTLD’.

In bootloader mode, you will hear a beep from the sounder and the screen will write a welcome
message.

The bootloader will enumerate the TWR-LCD JM128 as a MSD (Mass Storage Device). Windows
will recognize your board and appear as a removable storage drive labeled “BOOTLOADER”.
The device will show an empty file named ‘READY.TXT’ on it.

Now drag&drop/copy a bootloader compatible S19 file to the device. The installation comes
with the *JM128 BL_ECUI_SPI.S19’ file in the precompiled project folder. Drag this file to the
bootloader device on your windows machine

After bootloading the new file is finished, you will hear two beeps from the sounder, the LCD
will show the progress and status, and the bootloader USB MSD device will show the empty file
‘SUCCESS.TXT’ on it.

Press the ‘JMRST’ button to reset the board. The bootloader will recognize that a valid
application has been loaded to the device and launch it

1.4 Embedded Component Ul (ECUI) Demo

This launches the ECUI demo. As the application flash has been erased, it will ask for a
calibration first as well like in the previous demo.

TWR-LCD Demo Projects Walk-Through Page 4 of 45

h

&

Z “freescale*

semiconductor

- This demo is using the same low level drivers as the previous demo, but using a different Ul
based on Processor Expert components.

- You can use the touch screen to select demos, or alternatively use the navigation switch
(up/down and left/right to navigate, enter to select/execute items)

- For more information about the Embedded Component Ul, see the online documentation
provided with the Processor Expert Embedded Components.

Figure 3: Processor Expert Embedded Component GUI Demo

1.5 Precompile Applications for the TWR-LCD USB Bootloader

The included CodeWarrior demo project folder included with the TWR-LCD contains the following
precompiled applications that can be loaded to the MCF51JM128 on the TWR-LCD using the USB
Bootloader:

- JM128 BL_EGUI_SPI
This is the default application which comes pre-flashed onto MCF51JM128 of the TWR-LCD.
The TWR-LCD display is driven using the SPI interface of the MCF51JM128. The application
features the Freescale Embedded GUI demo based on the Freescale Embedded GUI Drivers.

This application includes the TWR-LCD bootloader to enable flashing of the device via the
USB cable.

- JM128_BL_ECUI_SPI
The application features an alternative GUI based on the same Freescale Embedded GUI
Drivers, but implemented using Processor Expert components. The TWR-LCD display is
driven using the SPI interface of the MCF51JM128. This application also includes the TWR-
LCD bootloader to enable flashing of the device via the USB cable.

- JM128 Bootloader
This application includes only the TWR-LCD bootloader. This purpose of the application is to
enable flashing of the MCF51JM128 device via the USB cable and to initialize the
MCF51JM128 pins to ensure that, if required, they are properly driven to enable

TWR-LCD Demo Projects Walk-Through Page 5 of 45

Z “freescale"

semiconductor

communication of an additional Freescale Tower Controller Module to the TWR-LCD display
and peripherals, such as the SD Card slot.

- JM128 BL_TWR_I2C
This application includes the TWR-LCD bootloader and is a basic application to send 12C
messages to the Freescale Tower Controller Module. The purpose of the application is to
send 12C messages regarding the state of the Navigation Switch, and to initialize the
MCF51JM128 pins to ensure that, if required, they are properly driven to enable
communication of an additional Freescale Tower Controller Module to the TWR-LCD display
and peripherals, such as the SD Card slot.

1.6 Example Applications for the onboard JM128

The included CodeWarrior demo project folder included with the TWR-LCD also contains the following
applications that can be loaded to the MCF51JM128 on the TWR-LCD using the BDM cable (no
Bootloader required):

IM128_noBL_EGUI_SPI
This application is similar to the IM128 BL_EGUI_SPI application, with the exception of the
bootloader. Once install the TWR-LCD flash will no longer contain the USB bootloader and
must be reprogrammed use a BDM cable.

JM128_noBL_ECUI_SPI
This application is similar to the IM128 BL_ECUI_SPI application, with the exception of the
bootloader. Once install the TWR-LCD flash will no longer contain the USB bootloader and
must be reprogrammed use a BDM cable.

Demo_MCF51JM_SPI
This application features the Freescale Embedded GUI demo. This demo is similar to the
JM128 BL_EGUI_SPI demo, but was not build using Processor Expert. It provides an
example of using the Freescale Embedded GUI drivers directly. Once install the TWR-LCD
flash will no longer contain the USB bootloader and must be reprogrammed use a BDM
cable.

Helloworld_ MCF51JM_SPI
This application is a very simple “Hello World” demo build using the Freescale Embedded
GUI driver. This demo can be used as a beginning reference is using the Freescale
Embedded GUI drivers. Once install the TWR-LCD flash will no longer contain the USB
bootloader and must be reprogrammed use a BDM cable.

TWR-LCD Demo Projects Walk-Through Page 6 of 45

Z “freescale"

semiconductor

1.7 Example Applications for the TWR-MCF51CN

The included CodeWarrior demo project folder included with the TWR-LCD also contains the following
applications that can be loaded to the TWR-MCF51CN Tower Controller Module using OSBDM:

Demo_MCF51CN_Flex
This application features the Freescale Embedded GUI demo. This demo is similar to the
CN128 EGUI_Flexbus_Accel demo, but was not build using Processor Expert. It provides an
example of using the Freescale Embedded GUI drivers directly.

- Demo_MCF51CN_SPI
This application features the Freescale Embedded GUI demo. This demo is similar to the
Demo_MCF51CN_Flex demo, but uses the SPI interface to drive the LDC display. It provides
an example of using the Freescale Embedded GUI drivers directly.

- Helloworld_MCF51CN_Flex
This application is a very simple “Hello World” demo build using the Freescale Embedded
GUI driver. This demo can be used as a beginning reference is using the Freescale
Embedded GUI drivers. The demo uses the TWR-MCF51CN to drive the LCD display using
the SPI.

- Helloworld_MCF51CN_SPI
This application is a very simple “Hello World” demo build using the Freescale Embedded
GUI driver. This demo can be used as a beginning reference is using the Freescale
Embedded GUI drivers. The demo uses the TWR-MCF51CN to drive the LCD display using
the SPI.

- CN128 EGUI _Flexbus_Accel
This application features the Freescale Embedded GUI demo based on the Freescale
Embedded GUI Drivers, similar to the JIM128 noBL_EGUI_SPI but targeted to run on the
TWR-MCF51CN Tower Controller Module. This application interfaces to the TWR-LCD
display using Flexbus, an External Bus Interface (EBI). Additionally this application utilizes
the TWR-MCF51CN accelerometer.

- CN128 ECUI_Flexbus_Accel
The application features an alternative GUI based on the same Freescale Embedded GUI
Drivers, but implemented using Processor Expert components, similar to the
JM128 noBL_ECUI_SPI but targeted to run on the TWR-MCF51CN Tower Controller
Module. This application interfaces to the TWR-LCD display using Flexbus, an External Bus
Interface (EBI). Additionally this application also utilizes the TWR-MCF51CN accelerometer.

TWR-LCD Demo Projects Walk-Through Page 7 of 45

PR 4

&

Z “freescale"

semiconductor

- CN128_ECUI_Flexbus_SD
The application features the alternative GUI based on the same Freescale Embedded GUI
Drivers, but implemented using Processor Expert components, similar to the
CN128 ECUI_Flexbus_Accel application. This application interfaces to the TWR-LCD display
using Flexbus, an External Bus Interface (EBI). Additionally this application features the
ability to access the TWR-LCD SD Card slot from the TWR-MCF51CN.

Lab 2: TWR-LCD Bootloader

This document describes the CodeWarrior projects for the TWR-LCD board. It is assumed that
CodeWarrior for MCU 6.3 is used.

2.1 Installing Processor Expert TWR-LCD Embedded Components

The TWR-LCD CodeWarrior project is using Processor Expert components. In a first step you need to
install the components using the .PEupd file provided.

- Launch CodeWarrior IDE

- Select the menu ‘Processor Expert’ > ‘Update’ > ‘Update Processor Expert from Package’

;4 Freescale CodeWarrion

File Edit ‘iew Search Project NE S Device Initialization Window Help

uspend Processor Expert for "TWR-LCD-IM128, mep!

Generate Code TWR-LCD-JMLZE, mop'
Freeze Generated Code

Wiew
Tools
Options

Undo
Redo

Bring PE Windows ko Fronk
Arrange PE Windows

Figure4: Updating Pr ocessor Expert fr om Package

- Browse to the ‘TWR-LCD_Components.PEupd’ file located in the root of your Code Warrior
demo project folder and import all the components
- Close CodeWarrior IDE and restart CodeWarrior: this will ensure the new components are

recognized
- Load now the CodeWarrior project ‘TWR-LCD-JM128.mcp’ from the Processor Expert folder.

TWR-LCD Demo Projects Walk-Through Page 8 of 45

&

Z “freescale*

semiconductor

;i Freescale CodeWarrior

File Edit = Miew Search Project Processor Expert Device Initializ:

= < BB

a4,

TWE-LCD-JM128 mcp

[V PAE Mullink/Cyclone o ~ | {iik |B 7 B 1,

Files | Link Order | Targets Processor Expert |

A

b

= = Configurations
¥ Zw JM128_Rewd BL EGUI_SPI
¥ Zw JM128 Rewd BL ECUI_SFI
Zm JM128_Rews_BL_TwWR_IZC
N 14128 Revd, Bootloader
Za CW128_Rewd EGUI_FlexBus_dccel
% Zw CM128_Rewt ECUI_FlerBus_Accel
Zm CM128 Rewd ECUI_FlesBus SD
(= Operating System
B = CPUs
* @ Cpu:MCFE1JM128VLH
* @ Cpu:MCFE1JM128VILH
@ Cpu:MCFE1JM128VLILH
e @ Cpu:MCFE1JM128VLH
® @ Cpu:MCF51CH128CLE
* @ Cpu:MCFE1CH128CLE
B = Components
B &= TwWR-LCD-Ik128
< @@ PSZEIHD
« @9 EusDEitOD
< @9 JM_ELE:EHD
< @ TP_SELEQO
¢ (@) BuzzerPPG:PFG S
"-'ﬂ-x_h“q-J‘E!‘_E___w_..----a-!\'x _" -\‘h\u.x-_____”--h.

T N T e NS

s

Figure5: CodeWarrior project open

2.2 Building the MCF51JM128 Bootloader

The bootloader allows you to download new applications to the MCF51JM128, without the need for a
debug cable. However, you need first to program the bootloader to the TWR-LCD (if it does not already
have the bootloader on it). To program the bootloader you need a BDM cable (e.g. P&E USB Multilink)
to flash the bootloader. Additionally you need to connect the TWR-LCD board USB connector with your
host system, as the bootloader is getting the S19 files from the host through a USB connection.

TWR-LCD Demo Projects Walk-Through Page 9 of 45

g |

&

Z “freescale*

semiconductor

To build the boot loader, make sure your current CPU is the JM128:

Fro -%5@’@5

stz Processor §Change MCUfConnection., . |

Figure 6: Change MCU/ Connection

‘Change MCU/Connections...” opens the following dialog:

Verify that your target CPU is the MCF51JM128:

Device and Connection

X

Select the derivative you would like ta use: Choaoze your default connection:
+- HCOS Connections
+-HCS0g Full Chip Simulation
+-RS0G P2E Multilink/Cyclone Pro
= coldFire W1 SofTec ColdFire
+ MCFS1AC Family CFwl Open Source EDM

+- MCFS1CN Farnily
+|- MZFS1EM Family
= MZFS13M Family

MCFS1IM32

MCFS1IMG4

MCFS1IM128
+ MCFS1QE Family
+- Flexis

[v Backup project before changes.

| Firnish | Cancel |

Figure 7: Change MCU/ Connection

Verify that your current configuration is the bootloader one. If not, select it as active configuration:

Bl & Configurations
¥ JM128_Rewd BL EGUI_SPI
¥ Zaw JM128_Rewa_BL _ECUI_SFI
¥ Ja JM125_Rewd BL TWH_IZC
N |1128_Fevd Bootloader
+ Zm CN128_He: Configuration Inspector
Ea- NN R Sclect Configuration as Active
Za CH123 Re Dedte Configuration

(= Operating System Add Mew Configurakion

E = CPUs Renarne Configuration

@ CpuMCFS] Help
Y

b r———

Figureé: MaEing the bootloader the acti ve configur ati on

TWR-LCD Demo Projects Walk-Through

Page 10 of 45

&

Z “freescale"

semiconductor

Using the Configuration inspector, each configuration provides additional information. If you hover
over a configuration, it will show up with a pop-up window:

T T TR T T T e e T T -
Zm JMT128_Revd_Bootloader ‘ P
< S . FINTHS f ;
% % CN1 Project configuration. D/

CHA This conficuration implements the boof

* ::’" ; It iz using the LCD if enabled in platy
(= Operating © 1 5
& CPUs TEW-LCDI SWl settings: ,

OFF (P22}

b4 @ Cpu:
* g Cpu:
b4 @ Cpu:
b4 s Cpu:

ON (PEL1) 1{'

OFF {(JM_ELE} and have PL_EOOTLOADEEH.

OFF {EusD) b

ON (SPI_SEL) ,’

+ g Cpu:6: ON (TP_SEL) .
K@Epu:

ON (EL_CHTEL)
: OFF (ELE_PWHO
=1 = Componen (ELE_ J I~ ,/(
: "_.f""" L RN L Y “'\ﬁr""__.’ bt "'-\..ﬂ.--"._\.f =

Figure9: Configuration details pop-up window

0 -1 Mo R W

If you build the bootloader, you might get a linker error about multiply defined flash registers:

i@ Errors & Warnings

h'l.
WRE NE 0 Ernors and warmings for " TwWR-LCD-IM128 m._ @ ﬂ ﬂ

Loyl
lu»"El.I.I.II. .
Cpu.c line

iply-defined: "NVOPT_INIT” in

OError ¢ Previously defined in
Bootloader.c line 142
@ Error : Mulviply-defined: "NVFROT_INIT™ in

Cpu.c line 390

OError : Previously defined in
Bootloader.c line 141

@ Link failed.

| |

=

b -{}-m- - ' = Path: | C:\Documents and Settingz\Erich Stygeriky DocumentzhData.. WCpu.

<% Initialization of the CPU registers in FLASH *-

|>|j£z tl;

~% NYFROT: FPSe=1,FPSG=1 FPS4=1 FP53=1 FP52=1,FP51=1 FPS0=1, FPOPEN-
unsigned char HVPROT _INIT @0x0000040D = O=xFF;

<% NYOFT: KEYEN1=0 KEYEWNO=1, 6 7?7=1, 7%=1,7%7=1,7%=1 5SEC1=1 5EC0=1 =%~
un=igned char HVOPT INIT @0xz0000040F = 0=x7F:
<% END Cpu. *

S

o R R

*E -
Line 330 Cal1 4| | v [

Figure 10: Linker error for NVPROT_INIT and NVOPT_INIT

The reason is that the generated code for the bootloader by Processor Expert and the bootloader code
itself are initializing the NVPROT _INIT and the NVOPT _INIT registers. Future versions of Processor
Expert will have an option to prevent initializing NVPROT _INIT and NVOPT _INIT.

TWR-LCD Demo Projects Walk-Through Page 11 of 45

&

Z “freescale"

semiconductor

Solution: comment/disable the above two initializations in Cpu.c and recompile/relink:

b-{}-m- - o'~ Path: | C:vDocuments and SettingzhErich StygerMy DocumentstData., \Cpu.c Q’

% Initialization of the CPU register=s in FLASH #*- Q.

Y
<% HNYPROT: FPS6=1 FPS5=1 FP54=1 FPS53=1 FP5Z=1,FP51=1 FP50=1, FPCFEN-
Souns=igned char HYPREOT INIT @0=x00000400 = 0O=xFF:
<% NVOFT: KEVEN1=0 EEYEWNO=1,677%=1,77=1,7%7=1,77=15EC1=1 SEC0=1 %~
Sounszigned char HVOPT_INIT @0=0000040F = 0x7F;
<% END Cpm. %7

£
LIRS EEE SR SR SR S SR EE SRR SR RS SRR Sl S R R R fg £ S SR

k= 3 -
Line 333 Col3 [4] | LlJa

Figure11l: Workaround for linker error for NVPROT_INIT and NVOPT_INIT
After successful build, you can download/flash the bootloader to the MCF51JM128:

1
[[D¥ PLE Mulink/Cyclone o~ | 5k 1B & <38 _'%J
Files I Link: EIru:IerI Targets Frocessor Expert | Debug

Figure 12: Pr ogram the bootloader to the target
Using ‘Start/Continue (F5)’ you can launch the bootloader:

rue-Time Simulator & Real-Time Debugger C:\Documents and Settings\Erich Styger\My Documents\Data_M65... [
File Wiew Run CRMultilinkCyclonePro Component Memory Window Help

O || &2 2xe| =|=|2|-#e]-] @
8 [econiners)]

|C:\Documents and Settings\Erich Stygertty DocumentshD ata_METYHTANSY [Line: 53

| Assembly

void main{void)] 0& MOV3Q
{F
A% Write your local wariable definition here #/ #2,D0
#if PL_HAS HW TP_3EL && 'PL_APP _MODE_IZC_LCD /% if we are not D0, 0xFFFF3001
/% HOTE: the JM1Z5 on the TWR-LCD needs at least to pull-up = 0xFFFF3000,D1
detection pin, otherwise the signal is floating for the - #4,D0
PTGPE PTGPE3 = 1:; /% pull up enahle for card detection line
TP_SEL_ZetInput():
<)

[CaldFire |
[Procedure DO | FFFFFFFR o

[ASRSASLS ASASRSAS
i} AZE0

main [

=tartim

DEIEH

|Twh_LCD_JM128.¢ Ao | Spmb | Global

Data:2

main Auta Spmb | Local done .\omd\CFV1_BDHM_PsE_Multilink_Cyelas®™
Postload command file correctly execute;
i Paemac ™ b
£ ||||] >
StartfContinue program |.ﬁ.ut0matic {Hw Breakpoints, Watchpoints and Trace possible) MCFS1IM128 /A

Figure 13: Ready tolaunch the bootloader

TWR-LCD Demo Projects Walk-Through Page 12 of 45

PR 4

&

Z “freescale"

semiconductor

2.3 Using the MCF51IJM 128 Bootloader

Your TWR-LCD shall come with the bootloader already flashed. The bootloader allows you to load
applications to the target without the need for an external debugger.
The bootloader is entering bootloader mode in following cases
- if there is no application loaded, the bootloader will recognize this and automatically enter the
bootloader mode
- if an application is already loaded, then you need to reset the board (press the JMRST button)
while holding down the BTLD button.

Once the bootloader has been started, it will you will hear a ‘beep’, the LCD will show message:

Figure 14: Bootloa _' message
The windows host will recognize the bootloader as FAT16 mass storage device:

Tools Help #;.

Mame Size Twpe Dake Modified -
File and Folder Tasks &] READY. T5T OKE TextDocument 15.04,2008 05:20

File Edit Fawarites

Wi

[*

E‘j Make a new Falder

@ Publish this Folder to
the Web

& Share this Folder

I | ¥
Figure 15: Bootloader recognized as mass stor age device

TWR-LCD Demo Projects Walk-Through Page 13 of 45

) 4

&

Z “freescale"

semiconductor

Now you can drag&drop / copy S19 (Motorola S-Records) files to the bootloader:

File Edit Miew Fawarites

Tools Help #

. | Mame Size Type Date Modified =
File and Folder Tasks & E] READY. THT OKE TextDocument 18.04.2008 05:20

[

Eﬂ Make a new Folder

@ Publish this Folder o
the Web

& Share this Folder

' My Application, 519

w4 iijf

Figure 16: Drag& Drop S19 file to bootloader

The bootloader will load the file, parse it and flash the application to the target. Progress of this is
shown on the LCD display.
If the downloading is successful, you see this indicated on the LCD, plus you will hear two ‘beeps’.

] igure 17: ooloa ” Sl file
Additionally the MSD (Mass storage device will show ‘SUCCESS.TXT’):

File Edit \Wiew Favorites Tools Help
UBack |,'. } @ pSearch [E"‘ Folders v
Address | D) v| o
| Mame Size | Twpe Date Modified
File and Folder Tasks = | [£] succEss. THT OKB Text Document 15.04,2008 05:20
i Make a new Folder
@ Publish this Falder to
the Web
[£™7 ok aes bhic Ealdar |5 i | >
0 bytes j My Cornpuker

Figure 18: Bootloader successful MSD messagefile

Now you can reset the board (pressing JMRST), and this will launch your new application.

TWR-LCD Demo Projects Walk-Through Page 14 of 45

&

Z “freescale"

semiconductor

2.4 Debugging your application with the bootloader

In order to debug your application, you will need a BDM cable (e.g. P&E USB Multilink) connected to
the JMBDM connector.

As with a bootloader there are two binaries (the bootloader plus your application) running on the
target, the debugger needs to be aware of it.

In order to have complete visibility, do the following:

Create a copy of your bootloader CodeWarrior project

Build your bootloader. Download and flash it to the target with the BDM cable.

Make copies of your bootloader binaries (e.g. name it IM128_Bootloader.abs,

JM128 Bootloader.xMAP and JM128 Bootloader.S19) for later use

Switch to your application project.

Build your custom application. Best if you rename your application e.g. Application.abs,
Application.xMAP and Application.S19 for later reuse. Reset your TWR-LCD board and load the
application S19 file of it using the bootloader

Now we are going to connect to the target. Launch the debugger for your application:

[D¥ PAE Muliink/Cyclone e | {5k 1B & B T,
Ik

Filez] Lirk. Elrder] Targets Processor Expert l

= (= Configurations
G JM128_Rewd _DAD_SP
Wl 14128 Rewt ELI_SPI
2w JM128_Rewd Bootloader
Figure 19: Launching debugger for application

TWR-LCD Demo Projects Walk-Through Page 15 of 45

&

Z “freescale"

semiconductor

Instead of downloading, we are only to hotsync to the target, using the HotSync button:

PEE MCF51x0 Connection Manager - v3.52.00.04 X

Please select connection interface, port, and settings in order to connect to

target.
Connection part and Interface Type
Add LPT Port
Interface: |L|SB HCS08/HCS1240R Multilink, - USE Port - Refrach List
Port: |LISB‘I T USEL-12 Rev C [PEROTEE4Z) ﬂ
Interface Detected : Firrnvaare Yersion :

Target CPU Information
CPU: ColdFire Processor - Autodetect
MCU reset line: MCU Yoltage:

Feset Options
[~ Delay after Reset and before communicating to target for 0 milizeconds [decimal].

[v If & secure device is detected, perform flash erase to enter debug mode [will prompt before erasure]

Cyclone Pro Power Contral [Voltage > Power-Out Jack]

|v Provide power to target Regulator Output Yoltage Povver Down Delay 250 ms
[Power off target upon software exit B - Power Up Delay 250 ms
Trim Control

Default trim reference frequency is : 32768.00 Hz. [Valid Range: 31250.00 to 3906250 Hz)

[Use custorm tim reference frequency : Hz Click for trim details.

Connect (Reset) | | Hotsync | Abort

i
v Show this dialog before attemphing to contact target [Othenwize only dizplay on Error]

Figure 20: HotSync tothetar get

Reset the target:
Window Help
& %
v
Reset Targek (Chrl+R)

Figure 21: Reset thetar get

Now we need to load the debug information (or symbolics) for the two binaries: the bootloader and
your application: for this we made copies of the .abs file in the previous steps.

TWR-LCD Demo Projects Walk-Through Page 16 of 45

b -

&

Z “freescale*

semiconductor

To load the debug information for each: Use the Load command in the debugger:

i True-Time Simulator & Real-Time Debugger C:\Documents an

File Miew Run eEGE sy ==eN Component Memaory Sindow Help

—E‘E‘ — Reset I! Chrl+R F|-E'r| | -$|

L E Setup...
Comranication, ..

Select Derivative. ..
Command Files
Debugging Memory Map. ..

Trigger Module Settings. ..
Bus Trace
Flash...

Help

Figure 22: L cading in the debugger

Browse to the binaries (in the bin folder), select the bootloader .abs file and press the ‘Load Symbols’

button.

Load Executable File

Look in: |E} bin j o] cf E-

VS
5 m125 _Bootloader.abs
[t m1z6_E L. abs
@Project \abs

File narme: |JM1 28_Bootloader.abs
Filez of type: |Executables [*.abz; " elf] ﬂ Cancel

Advanced Commands

Load Code | Load SymEoIs Add Symbolg | Werify Code |

Open and Load Code Options
W Automatically eraze and program into FLASH and EEPROM

[Werify memorny image after loading code
{=
i

[Run after suscesshul laad

[+ Stop at Function: {main

Figure 23: L oading bootl cader symbols

TWR-LCD Demo Projects Walk-Through

Page 17 of 45

g |

&

Z “freescale*

semiconductor

With the same dialog, add the application symbols using the ‘Add Symbols’ of your application:

2.5

Load Executable File

Laok if: | 3 bin j

(]
EE" IM128_Eootloader. abs
[r128_Fun abs
E Project.abs

j Cancel

File narne; |F'rniec:t.abs

Files of type: |E:<ecutab|es [* absz; *.elf]
Advanced Commandz

Load Code | Load Symbnls| Add SyEbols Verity Code

Open and Load Code Options
Iv Autornatically eraze and prograr into FLASH and EEPROM

[Werify memory image after lnading code
s
i

[v Run after successful load

¥ Stop at Function: |main

Figure 24: Adding application symbols

TWR-LCD Demo Projects Walk-Through

Page 18 of 45

g |

&

Z “freescale*

semiconductor

Memory Map for Bootloader and Application

It is important to know the memory mapping both for the bootloader and the application on top of the

bootloader.

251

Bootloader

@—MIN_FLASH1_ADDRES six00004
x410—4@
@-FLASH_PROTECTED_ADDRESS x4 TFF—4@)

@—USER_ENTRY_ADDRESS 0x4A00—@)
NOP
IMP
SER_ENTRY_ADDRESS+4 0x4A04
@—usER. - QT -

@—MIN_RAM1_ADDRESS

0x800000—4)

0x803A00—)

@—USB_BUFFER_START
LISB Buffer
Size 0x500

@——MAX_RAM1_ADDRESS 0x803FFF—@)

Application

.—REDIRECT_VECTORSix4SDU—.

@ —USER_ENTRY_ADDRESS 0x4A00—()
NOP
IMP

@-USER_ENTRY_ADDRESS+4 s 0x4A04—()
_Startup

0x04CO0—@)

0x01FFEO—)
0x01FFFF—@)
0x800000—)

TCHS_Calibration
@—MAX_FLASH1_ADDRESS. —
@—MIN_RAM1_ADDRESS
RAM Vector Table
Size: 0x1BF
0x8001CO—)

@—MAX_RAM1_ADDRESS 0x803FFF—)

Figure 25: Bootloader and memory map
The application flash needs to be above FLASH_PROTECTED_ ADDRESS.

TWR-LCD Demo Projects Walk-Through

Page 19 of 45

&

Z “freescale*

semiconductor

Bootloader Build Options
The easiest way is to configure the bootloader memory configuration in Build Options:

S=1fE

Yiew Regs »

Component Inspector Cpu:MCF51JM128Y1LH

Component [kems Vizibility Help <
Ernperties] Methnds] Event: Build options l Uszed] Enmment]

«| Compiler Codewarmior ColdFiretd1
B Unhandled vectors One handler for &l |
Lo Unhandled int code [ztring lizt] o]
«'| Generate macros ves 2
B Uzer initialization

| Uzer data declarations [ztring lizt] |
v Uszer code before PE initialization | [ztring lizt] |
v | Uzer code after PE initialization | [ztring lizt] |
El| Generate LCF File e pa|
Fle | Stack size 0200 H|
| Heap zize 020 H|

- Bl Memory segments

t | Set default memony segments | Click to set default > .|
E AOM/BAM segments 2 +-

B Segmentd code
Fle| Mame
- E Access permissions i
Ml Address 410 H|EH|
“v| Size 43F0 H|
Ell Segment] LIZEITam
Fle| Mame
- H| Access permissions Fiadz
Fle| Address |000oo H|H|
-’ Size aa0n H|

BASIC ADVANCED EXPERT Compaotient Level: High
Figure 26: Bootloader Build Options

TWR-LCD Demo Projects Walk-Through Page 20 of 45

&

Z “freescale"

semiconductor

Memory Map [MCF51JM128V¥LH] Bbit access

ENTIRE ADDRESS SPACE
FFFFFF

FFa000

00000

d03FFF

00000

O1FFFF

0o0410
e FLASH_COMFIG
0003FE

000000

Figure 27: Bootloader memory map

Additionally, the bootloader needs to do an early check if the boot loader or application mode shall be
entered. This needs to be done as part of the _Startup(), just at the beginning of _initialize_hardware().

TWR-LCD Demo Projects Walk-Through Page 21 of 45

PR 4

&

Z “freescale"

semiconductor

As such, an include to “Bootloader.h” has been added to the ‘User data declarations’:

Component Inspector Cpu:MCF51.JM128VLH B@E|

Component [tems Vighility Help < > Yiew Regs »

Erupertiesl Methudsl Eventz Build options | Uzed | Enmmentl

«| Compiler Codewfarrior ColdFirei
B Unhandled vectors One handler for all -
I-|n-/| Inhandled int code [ztring lizt]
« | [Generate macroz yes
E Uszer initialization
v Uzer data declarations [=tring lizt] ..
v Uszer code before PE initialization | [ztring lizt) _I
i T Rr TR —
BT, - - String List Editor M=
i v‘} St a rr rr
TR #include "Eootloader.h
all =1 |
t «f
=
al=
|__- = Load E Savg ¢ ok x LCancel 1 lines

Fle| Mame LIZEMaM

- @ Access permissions Rt

-l Address 200000 H|H

| Size 3400 H

BASIC ADVARCED EXFERT Component Level: High ,yj

Figure 28: Bootloader User Data Declar ati ons

TWR-LCD Demo Projects Walk-Through Page 22 of 45

b -

&

Z “freescale*

semiconductor

And in order to call the Bootloader function which performs the check on the BTLD switch, a call to
BL_CheckForUserApp() has been added to ‘User ode before PE initialization’.

252

Component [kems Vizibility Help <

Eruperties] Methuds] Event: Build options l Uszed] Enmment]

Yiew Regs »

«| Compiler
El Unhandled vectors
Lw| Urhandied int code

Codeiwfarrior ColdFiret
One handler for &l |

" String List Editor

[ztring lizt] el
«'| Generate macros ves L]
B User initialization
| Uzer data declarations [=tring lizt] |
| Uszer code before PE initialization | [ztring lizt) [...
v Uszer code after PE initialization | [ztring lizt] |
B Geperats ile = F

L= BL_CheckForTaerdpp () /% check if we shall directly c

< | >
(= Load | Hsad 0K X Cancel | 1 lines
AcCcess permissions EP»-'-.-'X
v | Addreszs a000oo H|E|
v’ Size aa0n H|
BASIC ADVANCED EXPERT Compaonent Level: High

Figure 29: Bootloader Use code before PE initialization

TWR-LCD Demo Projects Walk-Through

Page 23 of 45

&

Z “freescale*

semiconductor

Application Build Options
In a similar way you can configure the memory map for the user application:

Component Inspector Cpu:MCFE51JM128V1LH Q@]g|

Wiew Reags »

Component Items Vizibility Help <

Eruperties] Methuds] Events Build options] Uszed] El:umment]

« | Compiler
E| Unhandled vectors
Lo Unhandled int code
+"| Generate macros
E| Uszer initialization
-+ Uger data declarations
F v User code before PE initialization
- o ger code after PE initialization
El| Generate LCF file
Fle| Stack gsize
| Heap zize
- Bl Memory segments
t «| Set default memary segments
E AOM/BAM segments
E| Segment0
- Mame
- H Access permissions
- e Addreszs
-|+| Size
El| Segmentl
- | M ame
- [Access permiszsions
- Address
- Size

BASIC ADVANCED ExPERT

Codei armor ColdFiret
Own handler for even - |

[=tring list] e

nes 2

[string lizt] |

[ztring lizt] |

[ztring lizt] |

125 o]

o100 H|

0020 H|

Click to set default > .|

2 ol el
code
Fi=

400 H|H|

1B3EN H|
LIZEMNam
Rt

a00ico H|H|

3E40 H|

Companent Lesel High

Figure 30: Application Build Options

TWR-LCD Demo Projects Walk-Through

Page 24 of 45

&

Z “freescale*

semiconductor

> - [B]x]
EMTIRE ADDRESS SPACE
FFFFFF

FFa000

00000

d03FFF

00000

O1FFFF

0o0410

FLASH_COMFIG

0o03FC
0003FE

000000

Figure 31: Application memory map

TWR-LCD Demo Projects Walk-Through Page 25 of 45

&

Z “freescale*

semiconductor

The application needs to use its own vector table. For this you need to allocate the vector table at
REDIRECT_VECTORS address:

Component Inspector Cpu:MCF51JM128VILH g@]g|

Wiew Reags »

Component Items Vizibility Help <
Properties]Methuds] Events] Build u:uptiu:uns] Uszed] Eu:umment]

+| Component name Cpu -
«"| CPU type MCFE1Jk 1280 1LH
E| Clock settings
- & Internal clock
«| Internal ozcillator frequ) 32, 768 32,768 kHz
« | Internal ref. clock for plEnabled
Initialize trim value no
- Bl External clock Enabled
L= Clock source External crostal
Clock frequency [kMH12.0 12.0mMHz
Clock input pin
Clock output pin
Clack range <1 MHz, 16 &
Dzcillator operating 1 High gain
Euternal ref. clock fc|Enabled
- Bl Low-power modes se
- STOP instruction € no
- ®| Force exit on inten Dizabled
E| Internal resource mapy
L3 Exception vector tak
Flw| Fetch vectars from Ba ves)| waming: Exc

KRv]v]y] KB

S5 S H|E| S

iv]v 1 VKN

|_ | Address _H| 8|+ arming: Exc
| Size H|
« | |nitialization priarity minimal pricrity |0
1 Intarmal nerinharale W’
BASIC ADANCED EXFPERT Companent Lesel High
Figure 32: Application vector table settings
Then the application needs to copy the FLASH vector table to RAM:
#if PL_HAS BOCTLOADER
wold BL RedirectUserVectors(woid) {
<% || Thiz section neeseds to be here to redirect interrupt vectors |1 #-
dword *pd=st ., *psrc:
word 1)

asm (mowe.l #BL APP RAM VECTOR ADDRESS, dOd:
asm {movec di,wbr:

pd=st={dword=*)EL_APP RAM VECTORE ADDREESS: ~# copy to RAM -
perc=({dvord=*)REDIRECT VECTORS, ~%* The wector table has been placed here =7

for (i=0:;1<111;:i++.pdst++. p=roc++d |
*pd=t=%¥pz=rC;

F

T
#endif -+ PL_HAS BOOTLOADER =~
Figure 33: Applicati on vector table copy and redirection

TWR-LCD Demo Projects Walk-Through Page 26 of 45

h -

g |

&

Z “freescale*

semiconductor

Lab 3: TWR-LCD Freescale Embedded GUI Demo

In order to build the Freescale Embedded GUI Demo, load the CodeWarrior project with the Embedded

Components (see Lab 2/Bootloader).
The demos in this and the next lab sessions are using many embedded components. The following

block diagram gives an overview of the system:

I

Keyboard Solomon Systech
SSD1289 LCD

GDisplay
Figure 34: System Bl ock Diagr am

D4D
Demo/User Application

ETS

Utility

‘ Trigger

|
Menu ‘ Label‘ Icon ‘Slider‘

D4D Library

SimpleEvents

BootLdr TouchScreen

SSD1289

TScrSensor
A/D BitIO

Flex
Bus

3.1 Selecting Configuration
Make sure your current CPU is set correctly:

Pri -

ﬁi@f@@

ity Processor thange MU/ Connection.., |

Figure 35: Change M CU/Connection

‘Change MCU/Connections...” opens the following dialog:

TWR-LCD Demo Projects Walk-Through Page 27 of 45

g |

&

Z “freescale*

semiconductor

Verify that your target CPU is the MCF51JM128:

X

Device and Connection

Select the derivative you would like to use: Choose your default connection:
+- HCOG Connections
+- HCS08 Full Chip Simulation
+- RS0G PRE Multilink/Cyclone Pro
= ColdFire Y1 SofTec ColdFire
- MCFS1AC Family Fwl Open Source BDM
) MCFSLCH Family
+|- MCFS1EM Family
= MCFS1IM Family

MCF51IM32
MCFS1IME4

MCF51IM1258
+|- MZFS10E Family
+- Flexis

[v¥ Backup project before changes.

| Firizh | Cancel |

Figure 36: Change M CU/Connection

Verify that your current configuration is the ‘JM128 RevA BL_EGUI_SPI’ one. If not, selectit as the
active configuration:

| [Dv FiE Mutiink/Cycone o ~| {5k 1B & B 15

Files | Link Order | Targets Processor Expert |

[= Configurations ~
W |11125_Fevds BL_EGLI_SP
% JM128_Revs_BL_ECUI_SPI
% JM128_Revd BL_TWwR_IZC
< L JM128_Revd_Bootloader
% CH128 Revd EGUI_FlexBy Add Mew Configuration
% % CH128_Revs ECUI_FlexBy Rename Configuration
% % CN128_Revs ECUI_FlexBu Help

Figure 37: Selecting the Freescale Embedded GUI Demo

As the Configuration name indicates, the demo is for the JM128 and the RevA TWR-LCD board. The ‘BL’
indicates that the application needs to be loaded by the bootloader. ‘EGUI’ indicates that the Freescale
Embedded GUI is used, and ‘SPI’ indicates that the serial SPI communication protocol is used to
communicate with the display.

Configuration Inspector

Delett Configuration

TWR-LCD Demo Projects Walk-Through Page 28 of 45

g |

&

Z “freescale*

semiconductor

3.2 Inspecting CPU

= & CPUs
7 (@ CpuMCF51IM128VLH
(@ CpuMCFE1IM128VLH
(@ CpuMCFS1IM128VLH
* (@ CpuMCFE1IM128VLH
» (@ CpuMCF51CN1280LK
s (@ CpuMCF51CN1280LK

Figure 38: CPU components

Each configuration has a CPU component associated with it. The CPU component defines, which CPU
has to be used, and configures things like stack usage memory map.

As we are using aspecial memory map and exception vector table for the bootloader, this is indicated
with a “?” mark sign and a message from the Processor Expert system:

- Errors: 0, warnings: 1, hints: 0 |Z E'E'

Figure 39: Infor mation about vector relocati on

This means that this application will only run successfully with the bootloader, loaded by the
bootloader.
You can verify the settings in the CPU Inspector:

= = CPUs

SRl 1o MOFE1IMI 28I H

(=M CPU Inspector
b
=

= [Rename CPU
B [E CPUPeripherals Mames
B®E ewTarget CPU Package
Figure 40: Launching CPU inspector

TWR-LCD Demo Projects Walk-Through Page 29 of 45

&

Z “freescale*

semiconductor

In the ‘Properties’ of the CPU you can see that the vectors are allocated at address 0x4800 and will be
fetched from RAM. Make sure that you have the viewer in ‘EXPERT’ mode to see all details.

Component Inspector Cpu:MCF51JM128Y1LH
Component Items Wizibility Help <

Wiew Fegs »
Properties lMethDdsl Events] Build u:uptiu:uns] Uszed] Eu:umment]

+| Component name Cpu s
«| CPU type MCFETIMIZEVLH |
E| Clock settings

- & Internal clock
+ | Internal ozcillator frequency [kHz] 32768 32768 kHz
« | Internal ref. clock for peripherals Enabled po|
Initialize trim value o o]
- Bl External clock Enabled po|
L= Clock source E wternal cryztal |
v | Clock frequency [MHz] 120 12.0mMHz
Clock input pin
Clock output pin
«| Clack range <1 MHz, 16 MHz> - High gain
+" | Ozcillator operating mode High gain |
+" | External ref. clock for penipheral: | Enabled o
- Bl Low-power modes setlings
- STOP instruction enabled o j&
- [Force exit on interrupt Dizabled 2
E| Internal resource mapping
U3 Exception vector table
Flw| Fetch wectars from Fékd (= £ Waming: Exception vectar table iz re
Fle| Address 4300 H| B|" amning: Exception vectar table iz m
-l Size H|
« | |nitialization priarity rninirnal pricrity hdll w

BASIC AGAMNCED | E<FERT | Compaonent Level High
Figure4l: Application Vector Redirection table

3.3

TWR-LCD Demo Projects Walk-Through Page 30 of 45

&

Z “freescale"

semiconductor

Inspecting Low Level Display Driver Component

The Processor Expert tab shows as well a list of components used. The components have a checkmark
if they are enabled for a given configuration.

= Components

= & TWwWR-LCD-JM128
< @@ FS2EiO
< @ EusD:BitlO
« @@ JM_ELE:EO
< @@ TP_SELEHD
+ (@) BuzzerPPG:PFG

m & USE

+ @ Helv12n:GFont
y @ FDizp1:FontDizplay
+) GDisp1:GDisplay
< @ 1201 Intermall 2C
< [®] KEYT:Kep
-+ @ Sh1:5501 289N HWSPI[Synchrobd aster]
< @) LCD:5501289
-+ 0 TCHS1: TouchScreen
- @ ADT:TouchSecreenSenzoraDCADC]
- @ DAD_Timer25mz: Timerlnt
k= JM128_BL_ECUI_SPI
(= JM128_BL_TWR_IZC
(= JM128_Bootloader
(= TwWR-CMN128
(= CHN128_EGUI
k= CH128_ECUI
« (g UTIL1:Utility
< Bl WA T it
o« @ TRG:Trigger
@ EVNT1:SimpleEvents
< (39 IFshT:IntFLASH
Figure 42: Embedded Components

The subfolder “TWR-LCD-JM128’ contains common components used for the TWR-LCD board. The
‘JM128 BL_EGUI_SPI’ contains components configured for the Freescale Embedded GUI, and at the
end there are components shared for all configurations.

=

HEEHEE

TWR-LCD Demo Projects Walk-Through Page 31 of 45

&

Z “freescale*

semiconductor

You can hover over a component to show details about the component. If you unfold it, you get a list
of inherited components (like BitlO) and Methods Methods provided by that component.

B e CD:550 |
o RESpin3: By
v @ C_CpinZ:B Dizplay driver for the Solarmon Systech 55071283 display
< @ SCEpin2B E:Eiiﬁi;ﬁiﬂnl_n:jr Hardware S5PI and Freescale Ewbedded GUI

& [Gefwidth

B[] GetHeight

¥ M GetLongerSide

& M GetShorterSide

B M) SetDizplayOrientation
B M) GetDisplayOrientation
® [M] FeadDataword

BT [A] “writel atavw'ord

BT [H] “writeCommandword
BT [M] *#riteComrnandD ata

B [M] Opertafindow

B [M] Closetwindow

BT [H] Clear

& [H] UpdateFull

& M) UpdateRegion

B [M] Init

Figure 43: Embedded Component Details
To inspect the settings of a component, double click on it or use the ‘Component Inspector’ menu:

= e rm:m
~a
7 a W (Component Er.naI:nIed
v a Code Generation *
7 M Rename Cormponent
=l
W [H]
o [H]
o M

o A Save Component Settings as Templake

=M Disconnect Component From CPU
& [l Remove Component From Project

& [Hl Zopy to Clipboard
& [l
& [H Help
Figure 44: Embedded Component Inspector Menu

TWR-LCD Demo Projects Walk-Through Page 32 of 45

&

Z “freescale*

semiconductor

If you inspect the RES (Reset pin) component of the SSD1289 display driver, you see it is connected to

the PTE3 pin.

" Component Inspector LCD(Reset) - RESpin3:Bitlo[Bitio] [= |[B]X]

Component [tems Yizibility Help < Yiew Regs »
Froperties l Methuds] Ewents] Comrment]
+'| Component name
«| Pinfar 140 [FTEZ_TPMICHT | |PTE3 TPMICH1
«| Pin zignal LCD_RES
« | Pull resiztor autoselected pull | no pull resistor
+’| Open drain puzh-pull | push-pul
+| Slew rate control for PTE3 o pa|
« | Dnive ztrength for FTES High jo|
« | |nput filker for PTE 3 Dizabled jo|
« | Direction Cukput | Dutput
=l Initialization
I:i/ Irit. direction
« | |nit. value 1 L
+| Safe mode
«"| Optimization for speed L4
BASIC ADvAMCED EXFERT Component Level: High

Figure 45: Display Reset Pin Properties

3.4 Building the Project S-Record File
To build the project, press the ‘Make’ button:

BRay

i Expert l

Figure 46: Make Button

This generates the source code and creates the S19 File we want to load with the bootloader.
The S-Record file has extension .S19 and will be generated in the ‘bin’ folder of your example project.

Marne: Size | Type
IM125_BL_ECUI_SPIS19 Z73KE 3519 File
1125 _Bootloader, 519 41 KB 519 File
Project.abs. xMAP 24 KB XMAP File
Project.abs.519 41 KE 519File
Project.abs S3KE ABS File
IM125_BL_EGUI_SFPIS19 Z31 KE 319 File
JM125_BL_TWR_IZC.519 Z4KE S19File

Figure47: Generated S19 File

Enter now the bootloader mode on your board as shown in the previous Lab and load your application

to the target to run it.

TWR-LCD Demo Projects Walk-Through

Page 33 of 45

g |

“freescale*

semiconductor

Lab 4: TWR-LCD Processor Expert Embedded Ul Demo

Exactly as in the previous demo, you can build and load the demo using Processor Expert Ul
components. This demo is using the same low level drivers, but has implemented a different demo
completely written with Processor Expert Embedded Components.

In order to switch to this demo, select the ‘JM128_RevA BL_ECUI_SPI’ Configuration:

El = Configurations
+ G JM'IEE Fiev.-“—‘-. EL EEUI SF'I

® S JM128 Hev.-’-‘-. f Configuration Inspector
Za JM128 Rewh [Select h_ln_nnhn:lur::hun as Ackive
% S CN128_Rewd, | Ceelete Configuration
Za CN128_Rews | AddMew Configuration
Za CN128 Rewa, | Rename Configuration
(= Operating Syztem Help
Figure 48: Selecting the Embedded Component Ul Demo

Then you can build and load the demo in the same way as in the previous demo.

4.1 Configuring the demo amount
In order to configure the demos and the amount of demos, the file ‘platform.h’ is used:

B = User Maodules

vy T R_LCD_JIM123.c:main
vy Events.cevent
v nlatform, b: header
vy RTOS5.ciuser
vy App.cuser
vy Cube.ciuser
vy D40 Lo PE.ciuser]

Figure49: platfor m.h header file

In order to enable a demo, place a ‘1’ in front of the #define condition. To disable a demo, place a ‘0’ in
front of it. Then recompile your project.

<% demo configuration for Embedded Component TI 7 y
#define FIL_HAS TOUCHSCREEW DEMO && FPL_TSE UI_EUI && PL_HAS HW_TOUCHSCEEEN) =% if we inclih
#define PI_HAS CATIERATIOH_ DEMO && PL_USE UI_EUI && PL_HAS HU TOTCHSCEEEH) % if we inclp

#define PI_HAS CUEE_DEHO && PL_USE_UI_EUI) »%* if we include the 3D rotating cube de
#define FL HAS TETRIS DEHO &b PL_TTSE UL _EUIY % 1f we inclused the tetris gamne demo %

!
!
(
#define FL_HAS_FONT_DEMO [
(
!
!
!

PL_USE_UI_EUI && |FL_TETRIS_USES BMF) % if we hawve t
&b PL_TISE _TI_EDIY) = if we have the calendar demo =~

b PL_USE UI_EUI && PL_USE RTOS) % if we show a list of R
&b PL_USE_UI_EUI && PL_HAS HW_ACCELEROMETER) ~% if we demao
&& PL_USE_UI_EUI && PL_HAS_HU_SD CARD) % if we demo the
& Tl ._jﬁ-k\E::S \1910_)%{3’\f\h,j“,_%l“""ﬂ'""'lav_l:_'yg,ﬂf i Lgh clg-snboamtenms,

#define FI_HAS CALENDAR_DEMO
#defins PL_HAS TASKLIST

#defins PI_HAS_ACCEL_DEMO

#define FL_HAS SD_DEHO

#dgfine PL_HAS PU-msieeses, {

iy g ST, e

FPHEHEESOR -
o
=

Figure50: platfor m.h demo configuration

Keep in mind that depending on your target you may not have enough RAM and ROM space to run all
demos at the same time.

TWR-LCD Demo Projects Walk-Through Page 34 of 45

g |

&

Z “freescale*

semiconductor

Lab 5: Freescale Embedded GUI with Accelerometer

In this Lab we are going to use the TWR-LCD board together with the TWR-MCF51CN128 board.

Nav Switch

TWR-LCD Rev A TWR System
___:

320x240 Peripherals

CPU TouchSensor
MCF51 CPU
JM128
microSD |
Card Peripherals

Figure51: System Configur ation with a TW R System

Through the Tower Elevator the TWR CPU has access to most peripherals on the TWR-LCD board.

In this lab example we run the same demos as from previous example on the TWR-MCF51CN128. Note
that there is no bootloader in this example for the CN128, but the TWR-LCD JM128 is running the
bootloader. The reason to have a minimal application (in our case the bootloader) on the TWR-LCD
JM128 is the need to tristate some lines and signals to the LCD module in order to have them operating
correctly.

Important Note: The MCF51CN128 needs to configure the Reset pin as output pin to drive the LCD
reset. As such, if you press the Reset/SW4 switch on the TWR-MCF51CN128 board,
this will as well reset the LCD and put it into an initialized state. Same happens if you
press the JMRST button on the TWR-LCD board if the display is controlled by the
CN128. As you cannot reset the CN128 that way using the reset/SW4 switch, you
need to do a power cycle using the Elevator Power On/Off switch.

5.1

TWR-LCD Demo Projects Walk-Through Page 35 of 45

g |

&

Z “freescale*

semiconductor

Selecting Configuration
Make sure your current CPU is set correctly to the CN128:

Pra 'ﬁi@’@"&

stz Processor fChange MCU{Connection,.. |

Figure 52: Change M CU/Connection

‘Change MCU/Connections...” opens the following dialog:

Verify that your target CPU is the MCF51CN128:

Device and Connection

X]

+

+- Flexis

+|- MCFS1AC Family
MCFS1CH Farmily

MCFS1EM Family &

MCFS130M Family

MCF31IM32
MCFS1IME+
MCFS1IM12

+- MCFS10E Family

Select the denvative you would like to use: Choose your default connechion:
+-HC03 Connections
+- HCS03 Full Chip Simulation
+-RS05 P&E MultilinkCyclone Pro
2 CaldFire YW1 SofTec ColdFire

CFY1 FaL Open Source BDM

Connect to PEE BDM Multilink [USE and
parallel] or PLE Cyclone Pro [USE, Senal

g and TCPAP).

[v Backup project before changes.

| Finizh | Cancel

Figure53: Change MCU/Connection

TWR-LCD Demo Projects Walk-Through

Page 36 of 45

&

Z “freescale*

semiconductor

Verify that your current configuration is the ‘CN128_RevA EGUI_FlexBus_Accel’ one. If not, selectit as
active configuration:

= Configurations
Zw JM128 Rews BL EGUI_SFI
Zw JM128 Rewt BL_ECUI_SPI
Sa JM128_Rewt BL_TWR_IZC
Za JM128_Rewd Bootloader
o128 Rewd EGLI_FlerBus Accel
s 2 CM128_Rewd _ECUI_Flex] Configuration Inspector
e e AN TR Select Configuration as Active

(= Operating Spstern Delete wRinfiguration
Bl = CPUs Add Mew Configuration
% (@ CpuMCFE1JM1 28V LH Rename Configuration

B @ Cpu:MCFE1M1 281 H Help
i S P kA CCEA A1 2000 L

Figure 54: Selecting the Freescale Embedded GUI Demo for CN128

5.2 Installing Hardware Inspecting Jumper Settings

For the demo you need to attach the TWR-LCD to the TWR-ELEVATOR board. Make sure you move all
switches of the TWR-LCD SW5 DIP switches to the ON position, as the DIP switch will be hardly
accessible after attaching the TWR-LCD board to the TWR-ELEVATOR.

The demo requires that you set up the jumpers both on the TWR-LCD and TWR-CN128 board correctly.

TWR-LCD Demo Projects Walk-Through Page 37 of 45

&

Z “freescale*

semiconductor

The configuration Inspector gives you a list of required settings.

Configuration Inspector - CN128_RevA EGUI_Flex... g@]g|
Items Vizibility Help <

Properties Comment

Thiz configuration iz uzing the TWH-CR128 CPU to drive the TWwWH-LCD.

The CH128 iz controlling the LCD with 16bit parallel [mini-FlexBuz] connection.

&g I the Freezcale Embedded GUI iz used.

& demo features uzing the accelerometer bo change the dizplay orientation. Howewver,
az the ping are shared with the micro5SD card connechion, the S0 card demo iz not
available.

THWw-LCD 5w settings:
1: 0N [P52)

2 OFF [P51)

3 OM [JM_ELE]

4: OFF [EusD]

5 OM [SPI_SEL]

B OFF [TP_SEL]

7 OM [BL_CMTRL]

8 ON [ELE_Pwihd)

TRWwW-LCD 5w all OM

TwHR-CM128:
-TwD_SEL: 1-2
-R=D_SEL: 1-2
-LATCH_SEL: 23
- AMNA-SD: all removed
-ADP3_SEL: 1-2
-J5
*1-2 & 34 inztalled
*LEDZ_ISO, LEDT_ISO rermoved
=2 150, ¥_150 and ¥_150 inztalled [Accelerometer uged CH123)

BASIC a0VANCED || ExPERT
Figure55: Configur ation Inspector Comment section for CN128 Demo

5.3 Power the system
With the TWR-LCD attached to the TWR-ELEVATOR, there are now two mini-USB connectors which can

be used:
a) use the TWR-ELEVATOR as the power source for the TWR-LCD and the rest of the TWR-System
b) optionally, the mini-USB connector on the TWR-LCD can also be connected in case you need
access to the USB bus of the JIM128 (e.qg. to flash an application with the bootloader)

5.4

TWR-LCD Demo Projects Walk-Through Page 38 of 45

&

Z “freescale"

semiconductor

Inspecting mini-FlexBus Settings

If you inspect the CPU properties, then you can see how the mini-Flexbus is configured to access the
TWR-LCD module:

Component Inspector Cpu:MCF51CN128CLK

Wiew Regs »

Component [tems Yigibilitp Help < >
Properties |Methnds| Eventsl Build u:uptiu:unsl Uszed | Eummentl

= ExternalBus @ -
- B Chip selects N
- = C50 Enabled
-« Baze address 00400000 H
-« Baze address mask 00070000 H
- | WTike protect Dizabled
-l Wit states 1] 1]
- | Address setup FB_CSn on firgt rizing clock «
- w"| Read addrezs hald ¢/ Zera cucles after FE_CSn -
- | Wite address hold €| One cucle after FB_CSn -
- v’ Mulbiplexed mode |Enabled
- Part zize 16-bit port size
-’ LS50 pin PTEY_KBIZPY_FB_CS0_R: «|PTE7_KBIZP?_FB_CS0_R=D3
- S0 pin signal FlexBusCS0_LCD_DC
@ C51 Dizabled
|E|| Address pins Enabled
- = AD pin Enabled
- v | Pin PTJ5_FE_A0 FBE_ADD »|PTJ5_FE_AD_FE_ADO =
- | Plin zignal LCO_DE1
- E A1 pin Enabled
-+ Pin PTJ4_FE_A1_FB_AD1 »|PTJ4_FBE_A1_FB_AD1
- | Plin zignal LCO_DE2 ™
- Bl A2 pin Enhahled
-+ Plin PTJ3_FBE_AZ FB_ADZ2 = |PTJ3_FE_AZ_FB_AD2
- | Pin zignal LCO_DEZ
- El A3 pin Enahled
-+ Plin PTJ2 FBE_A3 FB_AD3 = |PTJZ_FBE_A3 FB_AD3
- v Pin zignal LCO_DE4
- = Ad pin Enabled
-+ Fin PTJ1_FE_&4 FB_AD4 »|FTJ1_FE_A4_FE_AD4
- | Plin zignal LCO_DER
- = A5 pin Enabled
- v Pin PTG3_KENFP3_FE_AR FB - |PTG3_KBITF3_FBE_AR FE_ADS S0AT
- | Plin zignal LCO_DEE
- =l AB pin Enahled)

L

ADVANCED EXFERT Component Level: High
Figure 56: mini-Flexbus configurationin CN128 CPU

TWR-LCD Demo Projects Walk-Through Page 39 of 45

&

Z “freescale"

semiconductor

Inspect the display driver settings for the low level LCD driver: The components for the Freescale
Embedded GUI drivers are located in the ‘TWR-CN128’ folder:

B & TwR-CN128

< @ 1201 Intermal 2C
< @ LEDILED

< @ LED&LED

v @ BuzzeiPPG:PPG

< [®] KEY1 Ke_l,l
+ (g ACCELT:MMAT2E00
o+ @ ADT:TouchScreenSenzorADC[ADC)
CH128 EGLI
- @ FDizp :FontDizplay
+ (&) GDisp1:GDisplay
o @ Helv12n:GFont
o+ 0 TCHS1:TouchScreen
o+ @ DAD_Timer2amz: Timerlnt
(= CH128_ECLI
< (@ UTIL1: Utiity
< B WAIT1 W it
< @ TRG1: Trigger
<+ @) EVNT1:SimpleE verts
« (g9 IFshl:IntFLASH
Figure57: CN128 Freescale Embedded GUI low level drivers

=

HEHEEPEHEEEEEEE

HEHEHEE

TWR-LCD Demo Projects Walk-Through Page 40 of 45

&

Z “freescale*

semiconductor

In the SSD1289 driver you can see how the driver is using the parallel communication mode to the
display using the ColdFire CN128 mini-Flexbus.

S=1ES

Yiew Regs »

Component Inspector LCD:5501289

Component [tems Yizibility Help <
Froperties l Methuds] Events] Comrment]

+'| Bean name LCD

«| Onentation landzcape |

« | wiidth

«"| Height

«| Buytes in rows

« | Bytes in & direction

« | MSE first

« | Bitz per pixel

« | Wwindowv capability

« | Dligplay b ermory YWrite

« | Digplay Memory Aead

« | Clear dizplay in init o L]

«| Initialize on [nit no 2

B Hw

- *| Rezet RES | =|

- El| Parallel Enabled 2

LB mini-FlexBus Enabled 2

> ALE ALE x| =]
+'| Baze Address 400000 H|H|
« | D/C Maszk 10000 H|
«"| Configured in CPU c|pez 3

- E| Serial

El| Spztem

L'> wiait Wit T had P

BASIC ADVAMCED EXFERT Component Level: Lo
Figure 58: CN128 Freescale Embedded GUI mini-FlexBus settings

5.5 Building and downloading the demo
To build the project, press the ‘Make’ button:

BRyY

i Expert l

Figure59: Make Button

This builds the project.
Make sure you have the bootloader present on the TWR-LCD JM128.

TWR-LCD Demo Projects Walk-Through Page 41 of 45

g |

&

Z “freescale*

semiconductor

Press the debug button to download the application to the target:

OBy @ '::b
ar Expert l

Figure 60: Debug Button

In the debugger, start the application with F5 or the Start button.

i True-Time Simulator & Real-Time Debugger C:\Documents an

File Wiew FRun CFMultlinkZwclonePro Component Source Window Help

S| (B[] 2| ofx[2[e|x|] 9
B Source

Figure 61: Start the application in the debugger
This let you use the Freescale Embedded GUI demo from the CN128 CPU.

5.6 Using the switches on the TWR-MCF51CN128

The demo is using the switches on the TWR-MCF51CN128 board to navigate through the menus. You
can press SW2 and SW3 on the TWR-MCF51CN128 to navigate back and forward. Pressing SW3 for

more than 500ms uses the key as ‘enter’ key.

5.7 Using the navigation switch with the TWR-MCF51CN128

The 5-way navigation switch on the TWR-LCD board is not directly accessible through the TWR-
ELEVATOR to the MCF51CN128. We are using the JM128 on the TWR-LCD board to send 12C messages

to the MCF51CN128.

For this, you load an application to the TWR-LCD JM128 which captures the navigation switch

interrupts and sends the events over 12C to the CN128.
You can select/build this 12C application like the previous lab examples.

Bl & Configurations
¥ JM128 Rewd BL EGUI_SPI
¥ Zm JM128 Rewa BL _ECUI_SFI
W 1123 Revd BL T'WHE_IZC
¥ Zaw JM128_Rewd_Bootloader W3
" Zm CM128_Rewd EGUI_FlexBus_fccel
¥ Zm CM128_Fewd_ECUI_FlexBus_Accel
¥ Zm CH125_Fews ECUI_FlexBus 5D
Figure 62: JM128 12C Application

TWR-LCD Demo Projects Walk-Through

Page 42 of 45

&

Z “freescale"

semiconductor

There is both an 12C component on the JM128 and the CN128. You can identify the I12C component in

each of the configurations.

=& Twh-CH128

HEHFEEHBMNBEBRBBG

< () EnHEEE
< @ LEDILED

< @ LED4LED

<+ (@) BuzzerPPG:PFG

< @) LCD:55D1289

< [®] KEY1:key

<+ Qg ACCELT:MMAT2E00

vy @ ADT: TouchScreenSenzorADCIADC)

Figure 63: 12C component on the CN128 side
You can either build the JIM128_RevA BL_TWR_I2C configuration, or simply use the provided .S19 file:

Marme Size | Tvpe
JM128 BL_ECUI_SPIS19 273KE 519 File
1125 _Bootloader,519 41 KE 519 File
Project.abs . <MAP 24KBE XMAP File
Project.abs.519 41 KB 519 File
Project.abs 83KB AES File
JM128 BL_EGUI_SPIS19 231 KB S19File
IM1z25 BL_TWR_I2C, 519 24KE 519 File

Figure 64: 12C application to send navigati on switch messages

You need to load this .S19 file using the bootloader: for this plug in an additional USB cable to the TWR-
LCD and press ‘JMRST’ and ‘BTLD’ on the TWR-LCD. This will launch the bootloader. Note that the
bootloader will detect from the SW1 switch settings that the TWR CPU is controlling the LCD, so you

will not see messages on the LCD.

Copy the above .519 file to the bootloader device to flash the application.

Then power cycle the TWR-ELEVATOR (on/off switch) to reset the whole system properly. Now the
same demo as before appears on the LCD.

Now you can use the navigation switch SW2 on the TWR-LCD to navigate through the demo as well.

5.8

TWR-LCD Demo Projects Walk-Through

Page 43 of 45

&

Z “freescale"

semiconductor

Using the TWR-MCF51CN128 Accelerometer Sensor

The demo is using as well the accelerometer on the TWR-CN128 board. Check your jumper settings as
specified in the configuration. Running the graph demo visualizes the accelerometer values

Figure 65: Graph Demo with Accelerometer

Lab 6: TWR-LCD Display Orientation

Using the TWR-CN128 acceleration sensor, it is possible to change the display orientation on the fly.
For this select the configuration below:

B = Configurations

e JM128 Revs_BL_EGUI_SP

3 J JM128 Rewd BL_ECUI_SPI

3 Je JM128_Rewd BL_TWHR_IZC

e JM128_Revh_Bootloader

Za CM128 Revd EGUI_FlexBus_Accel

Wl 128 Revd ECUI_FlexBus_Accel

3 Jw CM128 Rewd ECUI_FlesBus SD
Figure 66: Accelerometer Display Orientation Configuration

Make sure that your jumper settings match the configuration comment.

TWR-LCD Demo Projects Walk-Through Page 44 of 45

PR 4

&

Z “freescale"

semiconductor

In ‘platform.h’, verify that you have enabled the ‘PL_HAS_ACCELEROMETER_DEMO’ enabled:

% deno
#define
fdefine
#define
tdefine
#define
tdefine
fdefine
tdefine
fdefine
tdefine
fdefine

configuration for Embedded Component UI *-

FT_HAS TOUCHSCREEH DEWO (1 && PI_USE UT_EUT && PL_HAS HW TOUCHSCREEN)
PL_HAS CALIBEATION_DEMO (1 && PL_USE_UI_EUI &é& PL_HAS HU TOUCHSCREEN)
FT_HAS_CUBE_DEMO {1 && PL_USE_UI_EUT} % if we include the 3D rd
FL_HAS TETRIS_DEMO (1 && PL_USE_TI_EUI} »#*® if we inclused the tetri
FT_HAS_FONT _DEMO {0 && PL_USE_UI_EUT) % if we show the font den
FL_HAS CALENDAR DEMO (0 && PL_USE_TI_EUI} »#*® 1f we show the calendar
FPL HAS TASKLIST 1 &4 FL USE UL EUI && PL ISE RTOS) <% if we =shd
(1 &b fobe)
PL _HAS SDr DEMO (1 && PL_TSE_TI_EUI &é& PL_HAS HU SD CARD) ~% if
FPL_HAS PHG_DEMO (1 && PL_HAS SD DEMO) % 1f we have the PHG filg
PL_HAS HID DEMO (0 && PL_HAS HU USE) ~# if we include the HID (myf

Figure 67: Platfor m.h with Accelerometer demo enabled

Build and download with the debugger your application to the CN128 and start it.

Figure 68: Demo main menu

Using the ‘Configuration’ button you open the configuration dialog:

Enable the checkbox to change the display orientation according to the accelerometer. Press OK and

Figure 69: Configur ation using Accelerometer Orientation

watch the display changing depending on the Accelerometer orientation.

TWR-LCD Demo Projects Walk-Through Page 45 of 45

	Getting starting with the TWR-LCD
	Demo Setup
	Freescale Embedded GUI Demo
	TWR-LCD Bootloader
	Embedded Component UI (ECUI) Demo
	Precompile Applications for the TWR-LCD USB Bootloader
	Example Applications for the onboard JM128
	Example Applications for the TWR-MCF51CN

	TWR-LCD Bootloader
	Installing Processor Expert TWR-LCD Embedded Components
	Building the MCF51JM128 Bootloader
	Using the MCF51JM128 Bootloader
	Debugging your application with the bootloader
	Memory Map for Bootloader and Application
	Bootloader Build Options
	Application Build Options

	TWR-LCD Freescale Embedded GUI Demo
	Selecting Configuration
	Inspecting CPU
	Inspecting Low Level Display Driver Component
	Building the Project S-Record File

	TWR-LCD Processor Expert Embedded UI Demo
	Configuring the demo amount

	Freescale Embedded GUI with Accelerometer
	Selecting Configuration
	Installing Hardware Inspecting Jumper Settings
	Power the system
	Inspecting mini-FlexBus Settings
	Building and downloading the demo
	Using the switches on the TWR-MCF51CN128
	Using the navigation switch with the TWR-MCF51CN128
	Using the TWR-MCF51CN128 Accelerometer Sensor

	TWR-LCD Display Orientation

