h -

L |

CodeWarrior
Development Studio for
Power Architecture®
Processors
Build Tools Reference

freescale

y
A

Freescale, the Freescale logo and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.
Off. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are
trademarks and service marks licensed by Power.org. All other product or service names are the property of their re-
spective owners.

© 2005-2012 Freescale Semiconductor, Inc. All rights reserved.

Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typ-
icals”, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.
6501 William Cannon Drive West
Austin, Texas 78735

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Introduction 29
Compiler Architecturettt 29

Linker Architecture.ot e e 31

2 Using Build Tools with the CodeWarrior IDE 33
Choosing Tools and Files i 33

IDE Options and Pragmas.ot e 33

IDE Settings Panels. 34

C/C++ Language Settings Panel 34

C/C++ Preprocessor Panel i, 42

C/C++ Warnings Panel 44

3 Using Build Tools on the Command Line 49
Configuring Command-Line Tools. 49

Setting CodeWarrior Environment Variables 49

Setting the PATH Environment Variable. 50

Invoking Command-Line Tools iia... 51

Getting Helpo 51

Parameter Formats. 52

Option Formats 52

Common Terms. e 52

File Name EXtensions. 53

4 Command-Line Options for Standard C Conformance 55
SANISL. « v et e e 55

SStAKEYWOIdS . .o 55

13 11 P 56

5 Command-Line Options for Standard C++ Conformance 57
SARM L 57

e 07070) 57
SCPP_EXCEPLIONS .« . ettt et et e e e e e 57

CodeWarrior Build Tools Reference for Power Architecture® Processors 3

Table of Contents

sdIaleCt . L e 58
fOr_SCOPING. . . oottt 58
AINSEMET oot e 59
S1SO_templates 59
R T L. . 60
Y0 '+ P 60
-som_env_check ... 60
SWChar b, . 60
6 Command-Line Options for Language Translation 61
sChar. 61
sdefaults . ..o 61
SeNCOAING . o . ot 62
Alag . 63
011 PP 63
SECC_EXIENSIONS .« o vttt ettt e e e e 63
L 64
TNAKE . L e 64
e V0.1 13 64
MM 65
VD . 65
MDD . 65
e 1011« 66
) 11 66
e 0 T4 1 0 66
STelaX_POINLETS. . o\ttt e 67
STEQUITEPIOLOS. « & o v vt ettt e e e e e e e e 67
SSeATCh L L 67
SGIAPRS .« o 68
7 Command-Line Options for Diagnostic Messages 69
-disassemble. 69
Shelp. 69
SINAXETTOTS &+ v v vt vt et e e et et e e e e et e e e e e 70
SMAXWATTIIZS © o ot vttt e et et et e ettt e e e e 71

4 CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

-nofail ...

SVETSION & oottt et e e e e
SHMING . oo
SWATNEZS . - ¢ v ettt et e e e e e e
SWIAPHINES . .o

8 Command-Line Options for Preprocessing

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

9 Command-Line Options for Library and Linking 91
Skeepobjects. . . o 91

SNONNK L 91

B0 e e e e e e 92

10 Command-Line Options for Object Code 93
PP 93

10 [3 s e 93

L 110140 U 93
SIMIN_ENUINL_SIZE. « .« v v v v et e e e e e e e e e e e e e e e e 94

. L 94

SSHIINES « ¢ ettt e 95

11 Command-Line Options for Optimization 97
SINHNE. .o 97

S | o PP 98

SO 99

SO 99

) 100

12 Command-Line for Power Architecture Processors 103
Naming COnventions.vu ettt ettt 103

Specifying Source File Locations 103

Licensing Command-Line Options.t 104
-fullLicenseSearch. i 104

SHCenSe. L . 105

Diagnostic Command-Line Options, 105
O 105

—gdwarf-2 L 105

It 106

format. ... 106

SHStClOSUTE . . o 106

Alistdwarf L. 107

e V0 1 o P 107

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

Library and Linking Command-Line Options
-codeaddr. il

1107115 P
SNOMAIN . ¢ vttt
—opt_partial
spartial . ..o

-resolved_partial i
ssdataaddr ...
ssdataaddr ...
-sdatathreshold
-sdata2threshold

SSTECEOL . vt
-sreclength. o
sstackaddr ...
SStACKSIZE . o vt
strip_partial

CodeWarrior Build Tools Reference for Power Architecture® Processors

StUNE_TElOCALIONS v vttt ettt e e e e e e e e 123
SXEADIES. i 123
SStAlID . L 124
S I P 124
S 124
L 125
Code Generation Command-Line Options 125
210 P 125
LAlIgN L 126
-altivec_move_block 126
o) P 127
L o70) 141 1410 o 127
S 11 127
S o 128
fp_contract 130
func_align. ... 130
mgen-fsel. .o 131
e 111 (< 131
S 10 1 131
-ordered-fp-compares i 132
P00l e 132
SPTOCESSOT. & . vttt e e e e e e e e 132
Sprofile . .. 133
SPPC_aSM_tO_VIE . . .ot 133
-rambuffer ... 134
S1eadonlyStrings . . .o .v e 134
TElAX _1EEE . o oot 135
romaddr .. 135
S (0] 5 P 135
sschedule ... 135
SSPE_VECIOT. & o vttt et e e e e e e e e 136
SSPE2_VECHOT. « . v vt vt e e e e 136
sspe_addl_VeCtOrot 137
)1 (o1 A (S =P 137
SUSE_IMW_SHMW. . oottt e e 137

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

SuSe_fSel ..
SUSE_ISEl. . e

Optimization Command-Line Options
-code_MEerging.oovi ittt
-far_near_addressing. i
Svle bl opt .o
-vle_enhance_merging
-volatileasm L L

13 Assembler

Statement SYntax.vn i
Symbols. . ..o e
CONSEANES . . . o oottt e
EXPressionsttt
CommMEentSottt e
Data Alignment.o i
DIrectivesottt

CodeWarrior Build Tools Reference for Power Architecture® Processors

Compatibility Conditional Directives 161
.ifeq ifequal 162
.ifne ifnotequal 162
Aflt iflessthan 162
.ifle iflessthanorequal 163
.ifgt ifgreaterthan 163
.ifge if greater thanorequal 164
Section Control Directives. 164
17 A 165
data. . .o e 165
TOAAtA. . . oot e 165
DSt e 165
SAAA. . .o e 165
SAAtaZ . . o 165
] 0] 166
Xt VIe .« 166
debUug . .o 166
PIEVIOUS .« . o ettt et ettt e e e e e e e e e 166
OffSet ..o 166
SECLIOM . o . vttt ettt 167
Scope Control Directives.covt it 171
global. ..o 172
BXEBIIL . o ottt ettt et e e e e 172
PUBLIC . . .o 172
Symbol Definition Directivest .. 173
] P 173
equal SN (). . oot e 173
0 L PP 174
1.4 | P 174
Data Declaration Directives. it i 175
DY e e 175
B 176
INCDIN . .o e 176
LONg .o e 177
SOt . . .o e 177

10

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

SPACE .« ¢ vttt e e e e e 177
ASCIL . ¢ ettt 178
ASCIZ. .« v vttt e e e 179
float . . .o 179
double 180
Assembler Control Directives. 180

Al gN. . 180
endian 181

1 () 181
include.o 181
02T 4 T N 182

103 ¥ PP 182
10301510) VU 183
Debugging DIrectivesooon i e 184
fIle . o 185
fUNCtiono 186
Hine. .o 186
SIZB. . e e e e 186

1517 51 187
MACTOS . . ettt e e e e 187
Defining Macrosottt 187
Invoking Macroso vt 192
GNU Compatibility.ot e e 193
GNU Compatible Syntax option.c..coiiiniinninnen... 194
Supported EXtensionst 194
Unsupported EXtensionsttt 197
14 Linker 199
Specifying Link Orderinthe IDE. 199
Dead-Strippingot 200
Defining the Target’'s Memory Map 201
Defining Sections in the Output File 201
Associating Input Sections With Output Sections 202
Controlling AZNMENtottt e e e 204
Specifying Memory Area Locations and Sizes. 204

CodeWarrior Build Tools Reference for Power Architecture® Processors 11

Table of Contents

Creating Memory Gaps. . . .« .o vttt et 205
Creating Symbols 206
Linker Command File Syntax. 206
Commands, Directives, and Keywords 211
. (Jocation COUNLET) . . .\ttt e e 211
ADDR . . 212
ALIGN . . 213
BIND ..o 213
BIN_FILE_TYPE e 213
BYTE. . . 215
EXCEPTION. . . . o e e e e e 215
EXCLUDEFILES e e 216
EXPORTSTRTAB i 216
EXPORTSYMTABo e e 217
EXTERNAL_SYMBOL i 218
FORCEACTIVE o e e e 218
GROUP . .o 218
IMPORTSTRTAB e 219
IMPORTSYMTAB e 220
INCLUDEDWAREF i 221
INTERNAL_LOAD e e e e 222
INTERNAL_SYMBOL. i 222
KEEP . . 222
LOAD . . 223
LONG .. 223
MEMORY . . .o 224
MAX BIN_GAP. .. 225
NEX T . o 225
NO_TRAILING_BSS_IN_BIN_FILES i, 225
OBJECT . . . o 226
REF_INCLUDE e e e 227
REGISTER e e e 227
ROMADDR. .. . 228
SECTIONS . . e 229
SHORT . . e 230

12

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

SIZEOF . . .o 230
SIZEOF_ROM e 231
WRITESOCOMMENT e 231

15 Linker for Power Architecture Processors 233
Predefined Sections.ttt e 233
Linking Binary Files i 234
Additional Small Data Sections i 237
Linker Map File e 240
CIOSUIE . . ottt e 240
Section Layout. 242
Memory Map. 243
Linker Generated Symbols, 244
Deadstrippingo oo 245
Linker Command Files i 245
Setting up CodeWarrior IDE to accept LCFfiles 245
Linker Command File Commands 246
AGGRESSIVE_MERGE i 246
AGGRESSIVE_MERGE _FILES i, 246
AGGRESSIVE_MERGE_SECTIONS. it 247
DO_NOT_MERGE. e 247
DO_NOT_MERGE_FILES i 247
DO_NOT_MERGE_SECTIONS i 248
INTT . . 248
FORCEFILESo e e e e 248
SHORTEN_NAMES_FOR_TOR_101......... ..., 249

16 C Compiler 251
Extensionsto Standard C i 251
Controlling Standard C Conformance. 251
CH+-style COMMENLS . ..o vv vttt 252
Unnamed ATGUMENLS.o vttt ettt e et ie e 252
Extensions to the Preprocessor 252
Non-Standard Keywords. i 253
Declaring Variables by Address, 253

CodeWarrior Build Tools Reference for Power Architecture® Processors 13

Table of Contents

CO9 EXIENSIONS .+« o ettt ettt e e e e e e e e e 254
Controlling C99 EXtensions.ttt 254
Trailing Commas in Enumerations 255
Compound Literal Values 255
Designated Initializers.t 255
Predefined Symbol __func__ 256
Implicit Return Frommain() i 256
Non-constant Static Data Initialization 256
Variable Argument Macrosottt 256
Extra C99 Keywordsoi i e 257
CH+-Style COMMENLS . . .ottt et e 257
C++-Style Digraphs. 258
Empty Arrays in Structuresot 258
Hexadecimal Floating-Point Constants. 258
Variable-Length Arrays i 259
Unsuffixed Decimal Literal Values 260
C99 Complex Data TYpes oov vttt 260

GCC EXIENSIONS . . o vttt ettt ettt e e e e e e e et e et 260
Controlling GCC EXtensions.uutntnt it 261
Initializing Automatic Arrays and Structures 261
The sizeof() Operator.t e 262
Statements in EXpressions.ttt 262
Redefining Macros.o v it 263
The typeof() Operator ittt 263
Void and Function Pointer Arithmetic. 263
The __builtin_constant_p() Operatorc.vuiienenen... 264
Forward Declarations of Static Arraysc.oiiuiunenan.. 264
Omitted Operands in Conditional Expressions 264
The __builtin_expect() Operatort ennenan.. 264
Void Return Statementsttt 265
Minimum and Maximum Operatorscuvuevuenenenn.. 265
Local Labels.o 266

17 C++ Compiler 267

C++ Compiler Performance il 267

14 CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

Precompiling C++ Source Code i 267
Using the Instance Managert 267
Extensions to Standard C++ i 268
__PRETTY_FUNCTION__ Identifier................ ..., 268
Standard and Non-Standard Template Parsing 268
Implementation-Defined Behavior. 271
GCC EXIENSIONS . . o\ vt ottt ettt e e e e et e e e 274
18 Precompiling 275
What Can be Precompiled i 275
Using a Precompiled File i 276
Creating a Precompiled File 276
Precompiling a File in the CodeWarrior IDE 276
Precompiling a File on the Command Line 277
Updating a Precompiled File Automatically........................ 277
Preprocessor Scope in Precompiled Files. 278
19 Intermediate Optimizations 281
Interprocedural Analysis. 281
Invoking Interprocedural Analysis i, 282
Function-Level Optimization c.c.oiiiiinaon... 282
File-Level Optimizationttt 282
Intermediate Optimizations.ttt 282
Dead Code Elimination., 283
Expression Simplification. i 284
Common Subexpression Elimination 285
Copy Propagation i 286
Dead Store Elimination. i 287
Live Range Splittingot e 288
Loop-Invariant Code Motion., 290
Strength Reduction i 291
Loop Unrollingt e 292
Inliningo 294
Choosing Which Functions toInline. 294
Inlining Techniques.t i 296

CodeWarrior Build Tools Reference for Power Architecture® Processors 15

Table of Contents

20 Power Architecture Optimizations 299
Code MEIgINg . . . oottt e 299
21 Inline-Assembly for Power Architecture Build Tools 301
Assembly Syntax. 301
Specifying Inline Assembly Statements 302
Function-Level Inline Assembly 302
Statement-Level Inline Assembly 303
GCC-Style Inline Assemblyot 303
Branch Prediction 304
PC-Relative Addressing. . ..ottt 304
Normal, Record, and Overflow Forms 305
Creating Statement Labels. i 305
Using COMMENES . . . oottt ettt e e et e 306
Using the Preprocessorcouii it 306
Referring to Assembly, C, and C++ Variables 307
Using Local Variables and Arguments 307
Creatinga Stack Frame i 308
Referring to Variables in Instruction Operands. 309
Referring to Variablesin Memory. 309
Referring to Registers 310
ReferringtoLabels 311
Using Variable Names as Memory Locations 311
Using Immediate Operands.ttt 312
Assembler Directivest 313
BIITY .« ot vttt e e e e e e e e 314
fralloc. . ..o 314
frfree . 315
Machinet e 315
nofralloc.o e 316
OPWOId .« et 316
Intrinsic Functions. 316
Low-Level Processor Synchronization 317
Absolute Value Functionso i 317

16 CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

Byte-Reversing Functions. i 317
Setting the Floating-Point Environment 317
Manipulating the Contents of a Variable or Register 318
Data Cache Manipulationottt 319
Math Functionsot e 319
Buffer Manipulation 320
22 Power Architecture Code Generation 321
ABIConformance.ot 321
Data Representationoo ittt 321
Boolean Type.o oot 322
Character TYPes. . . oottt e 322
Integer TYPeS . . v vttt e e 323
Floating-Pointt 324
AltIVecT™ Data TYPeS . . o v ov ettt et e 324
Data Addressingottt e 325
Aligning Data e 326
Alignment Attribute Syntaxc.iiiiii i 327
Aligning a Variable Declaration 327
Alignment in a Structure Definition 327
Structure Member 328
Typedef Declarationt 328
Bitfleldsot 328
Small Data Area PIC/PID Support., 329
Internal and External Segments and References..................... 330
PIC/PID Linker Command File Directives 330
Linker-defined Symbols i 330
Uses for SDAPIC/PID 332
Building an SDA PIC/PID Application.covuinin... 332
Internal and External Addressing Modes 334
Variable Length Encoding i, 335
Processors With VLE Capability 336
Compiling VLE Instructions.t 336
Assembling VLE Instructions., 336
Linking VLE Object Codettt 338

CodeWarrior Build Tools Reference for Power Architecture® Processors 17

Table of Contents

BuildingaROM Image..........o i 339
Linkinga ROM Image.ottt 339
ROM Image Addressesouenen it 340
Specifying A Single ROM Block, 341
Specifying Several ROM Blocks. i, 342
Specifying Jump Table Location. it 344
Specifying Constant Data Location. 344

Embedded CH+ . ..o oo o 345
Activating ECH+o o 345
Differences Between ISO C++and EC++. 345
EC++ Specificationsco i 346

23 Libraries and Support Code 349

Main Standard Libraries i i 349
Using the Main Standard Libraries, 349
Choosing an MSL Library. 350
Using Console /Oo 352
Allocating Additional Heap Space, 352

Third Party Standard Libraries 352

Embedded Warrior Library i 352
Using the Embedded Warrior Libraries. 353
EWL Naming Conventionuuuutntinininenennenenen. 353
How to Rebuild the EWL Libraries. 355

Runtime Libraries 357
Required Libraries and Source Code Files 357
Allocating Additional Heap Space i, 358
Choosing a Runtime Library 358

Board Initialization Code i 360

24 Declaration Specifications 363

Syntax for Declaration Specifications., 363

Declaration Specifications.ttt e 363
__declspec(never_inling).c.uuitninini i 363

Syntax for Attribute Specifications. i 364

Attribute Specifications. 364

18 CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

__attribute__((deprecated)).
__attribute__((force_export))t
_attribute__((malloc))
__ attribute__((noalias)).
__attribute__ ((returns_twice)).o
_attribute__((unused)).
_attribute__((used)).

25 Declaration Specifications for Power Architecture Code

Syntax for Declaration Specifications
Declaration Specificationsc.couitinininnnn...
__declspec(do_not_merge)ovuiii i
_declspec(final)...........c. i
__declspec(force_export)couiriiiiiiii
__declspec(interrupt).oi it
__declspec(no_linker_opts)c.i ...
__declspec(sectionname)ot
_declspec(vle_off).
_declspec(vle_on) ...

26 Predefined Macros

_COUNTER__ ... e
o eplusplus .o
_CWBUILD__ .. e

_FILE

_MWERKS__ ..
_PRETTY FUNCTION__...............ccooiin...
_profile ...

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

27 Predefined Macros for Power Architecture Compiler

_ALTIVEC ..o
__PPCBROADWAY _
_PPCGECKO__......

28 Using Pragmas

Checking Pragma Settings,
Saving and Restoring Pragma Settings
Determining Which Settings Are Saved and Restored
Invalid Pragmas.
Pragma Scope

29 Pragmas for Standard C Conformance

ignore_oldstyle
only_std_keywords i
TEQUITE_PIOtOLYPES .+« v o v et ettt et et e e et ee et

30 Pragmas for C++

ACCESS_CITOTS &« & vt vttt et ettt e ettt e et e et e
always_inline.t e
arg_dep_lookup
ARM_conform.
ARM_SCOPING . . ot ottt e
array_new_delete.
auto_inline.

20 CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

debuginline i 404
def_inheritedo 405
defer_codegen. 405
defer_defarg_parsing. 405
direct_destructionuiti e 406
AIFECE_TO_SOML & o o e e e e e e e e e e e e e 406
dont_inline. e 406
eCPIUSPIUS . . oo 407
EXCEPLIONS .« . v e vt ettt e e e e e e e 407
ININE_DOtOM_UP . ..ottt e 408
inline_bottOm_UP_ONCE. . .. oottt eee 409
inline_depth. 409
Inline_max_auto_SiZ€ v vttt it 410
INHNE_MAX_SIZE. . . o o vttt ettt e e e e e 410
inline_max_total_SiZe 411
internal. 411
ISO_tEMPIAteS. . . oottt e e 412
NEW_MANGIer.ot 413
NO_CONSESIINGCONY & . o\t vttt ettt ettt eeens 413
NO_StAtiC_dtOTS . . .ottt e 414
nosyminline. 414
old_friend_lookup.o 414
Old_pods . .ottt e 415
old_vtable oo 415
OPL_ClassTesultsot 416
parse_func_templ 416
parse_mfunc_templ. 417
RTT .. 417
SUPPIesS_init_codettt 418
template_depth 418
thread_safe_init............. . i 418
warn_hidevirtual 420
warn_no_explicit_virtual. L 421
WAIN_NO_LYPENAIME . . o v vt et ettt et et e et e e e e e eeae 421
warn_notinlined. 422

CodeWarrior Build Tools Reference for Power Architecture® Processors 21

Table of Contents

WaIn_StruCtClass. oot e 422
WChAT _tYPe. .« .ttt 423
31 Pragmas for Language Translation 425
asmMPOUNdCOMMENLo\ttt ettt ettt e 425
ASMSEMICOICOMMENTt v ettt et ie e e e 425
CONSE_SITINES .« o v vt ettt et e e e e et et et e et 426
dollar_identifiersottt e 426
BCC_CXLENSIONS . « . o v v et et ettt ettt e e e e e 427
mMark. ..o 428
MPWC_NEWIINE. . . . ottt 428
MPWC_TCIAX . o .ottt e 429
MUltibyteaware.t e 429
multibyteaware_preserve_literals 430
teXt_eNCOAING. . . . vttt e 430
IraPRhS . . o o 431
unsigned_char e 432
32 Pragmas for Diagnostic Messages 433
extended_errorcheck 433
MAXEITOTCOUNE .« + o\ vttt ettt e et e e e e et e et eeen 434
TESSAZE « v v v e v et e et et e e e e e e e 435
Showmessagenumber.ot 435
show_error_filestack 436
SUPPIESS_WATTHIIZS .« « v v et ettt et ettt et e et e e et et 436
072 11 P 436
UNUSEA .« o ottt et e et e e 437
WATTINE © o o ov et e et et e et e e et e e e e e e 438
WATNINZ_EITOTS . & ¢ o v vt ettt ettt e et e e e e et e et ea 439
Warn_any_ptr_int_CONVttt ettt e e 439
warn_emptydecl. 440
WArN_EXTACOMIMNA .+« v v vttt te e et e e et e e e e e e e e eeees 441
warn_filenamecaps 442
warn_filenamecaps_System. 442
warn_hiddenlocals. 443

22 CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

warn_illpragma 444
warn_illtokenpasting.ot 444
warn_illunionmembers 444
warn_impl_f2i_conv........ .. 445
warn_impl_i2f_conv...... 446
Wwarn_impl_s2U_CONVttt 446
Warn_impliCitCONV.ot t e 447
WAN_largeargs . .. oottt e e e e 448
WAIN_MISSINGIETUIT . .« . ottt et et et e e et e e e e e 448
warn_no_side_effect. 449
warn_padding e 450
warn_pch_portability 450
WATN_POSSUNWANL .+ . ottt ettt ettt ettt e ettt e e eaen 450
WarN_PU_INE_CONV. . . oottt ettt e e et e et et eae 452
warn_resultnotused 452
warn_undefmacro 453
warn_uninitializedvar 454
WAIN_UNUSCAArE. oottt e e e e 454
WArN_UNUSEAVAT. . . o .ottt et et e et et e e et 455
33 Pragmas for Preprocessing 457
check_header_flags.......... 457
faster_pch_gen i 457
flat_include 458
fullpath_file. 458
fullpath_prepdump 458
Keepcomments.ouut ittt 459
line_prepdump.ot e 459
MACTO_PIePAUIMIP. .« . ot vttt ettt et e e et 460
msg_show_lineref. 460
msg_show_realref. 460
01010417 PP 461
old_pragma_onceunin it 461
103117 461
POD, PUSh . o 462

CodeWarrior Build Tools Reference for Power Architecture® Processors 23

Table of Contents

pragma_prepdump. 463
precompile_target 463
simple_prepdump 464
space_prepdump 464
srerelincludes. e 465
SYSPAth_OMNCE . . . o\ttt e 465
34 Pragmas for Library and Linking 467
AlWays_IMPOrtottt 467
BXPOTE e & e ot et e e e e e e 467
1101002 PP 468
LD @XPOIt. . . oottt 469
35 Pragmas for Code Generation 471
aggressive_inline 471
dont_TeUSE_SIIINES. « . oottt ettt e e 471
enUMSAIWAYSING . .. oo 472
EITNO_NAIME . . o ottt et et e e e e e e e e e e e e e e e e e 473
explicit_zero_datat 474
float_CONStANES.ttt e 474
instmgr_file 475
longlong. . ..o e 475
longlong_enums.t e 476
MIN_ENUIM_SIZE « o o o e e e e e e e e e e e e e e 476
POOL_SIIINGS . . o ottt e 476
readonly_Strings.v ittt e 477
reverse_bitfields. 477
store_object_files. 478
36 Pragmas for Optimization 479
global_OptmizZerot 479
TP ottt e 479
ipa_inline_max_auto_SIZ€.c.uuitninunnenen e 480
OPt_COMMON_SUDS .« . e ottt ettt et e et e et 480
opt_dead_asSignments.ouuirintntnten i 481

24

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

opt_dead_code.
opt_lifetimes
opt_loop_invariants.
OPt_Propagation.vu vttt

37 Pragmas for Power Architecture Compiler

Diagnostic Pragmas i
incompatible_return_small_structs.......................
incompatible_sfpe_double_params.

Debugging Information Pragmas
dwarf2typedefchains L
dwarf2lexblockcodeaddrcalc.

Library and Linking Pragmas
force_active.ot
PIEPAIE_COMPIESS .« . e e ettt e ettt e e e e e e e
SECHIOM « v v vttt e e e e e e e e

Code Generation Pragmas
alignment_metrowerks i
altivec_codegen. . ..o
altivec_model
altivec_pim_warningsoeuereenenennnnenan .
AltIVEC_VISAVE . o vttt et e e

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

e500_floatingpoint.ot e 502
e500v2_floatingpoint.t 503
function_align 503
gen_fSel 503
gen_isel 504
gPIfloatcopy . .« . o oo 504
has8bytebitfields 504
INEEITUDPL . . v vttt ettt e e e e e e e e e 505
legacy_struct_alignmentuininiunenenennunenan.. 505
merge_float_Conststtt 505
min_struct_align 506
misaligned_mem_accessottt e 506
no_register_save_helpers.t 507
OPLIOMIS .« ¢ vt ettt e e e e e e e e e e e e 507
pooldata 508
ppc_lvxI_stvxl_errata 509
profile. . .o 509
read_only_switch_tables i 509
Strict_ieee_fPo 510
switch_tables 511
uchar_bool. 511
USe_IMW_StMW . ..o 512
ushort_wehar_t 512
vec2x32float_align_4 512
z4_16bit_cond_branch_errata_S116......... 513
z4_mtlr_se_rfi_errata_26553. 513
Optimization Pragmas. 514
aggressive_hoistingt 514
COX_alias_ by _tYPe . . oot 514
epilogue_helper_functions. i 514
fP_CONtract.o e 515
fp_contract_ag@resSiVeo.v it e 515
ipa_rescopes_globals. 516
peephole. . .. e 517
peephole_enable_16bit_load_store_inst 518

26

CodeWarrior Build Tools Reference for Power Architecture® Processors

Table of Contents

ppe_opt_defuse_mem_limit 519
ppc_unroll_instructions_limit. i i 520
ppe_unroll_speculative 520
PIOCESSOT . . o et et et e e e e e e e e e e e e e e 521
prologue_helper_functions i 521
remove_frsSp_aggressiveo vttt e 522
schedule. 522
scheduling i 522
SPILL_tO_SPe . . oo 523
volatileasm. 523
SWItCh_Op . .o 524

CodeWarrior Build Tools Reference for Power Architecture® Processors 27

Table of Contents

28 CodeWarrior Build Tools Reference for Power Architecture® Processors

Introduction

This reference explains how to use CodeWarrior tools to build programs. CodeWarrior
build tools translate source code into object code then organize that object code to create a
program that is ready to execute. CodeWarrior build tools run on the host system to
generate software that runs on the rarget system. Sometimes the host and target are the
same system. Usually, these systems are different.

This reference covers the CodeWarrior compiler and its linker, versions 4.0 and higher.
This chapter explains the processes that CodeWarrior build tools use to create software:

¢ Compiler Architecture
¢ Linker Architecture

Compiler Architecture

From a programmer’s point of view, the CodeWarrior compiler translates source code into
object code. Internally, however, the CodeWarrior compiler organizes its work between its
front-end and back-end, each end taking several steps. Figure 1.1 shows the steps the
compiler takes.

CodeWarrior Build Tools Reference for Power Architecture® Processors 29

y
A

Introduction
Compiler Architecture

Figure 1.1 CodeWarrior compiler steps

settings from the IDE or
command line

read and

| |
| |
| |
! |
: front-end source code file and :
| |
! |
| |
| |
| |

preprocess source . .
code included files
\ 4
translate to optimize
intermediate intermediate
representation representation
e e e e e 2
translate to
processor object optimize object code
code

output object code and
debugging data

object code and debugging

|

|

|

| back-end
|

| data files
|

Front-end steps:

» read settings: retrieves your settings from the host’s integrated development
environment (IDE) or the command line to configure how to perform subsequent
steps

» read and preprocess source code: reads your program’s source code files and applies
preprocessor directives

 translate to intermediate representation: translates your program’s preprocessed
source code into a platform-independent intermediate representation

* optimize intermediate representation: rearranges the intermediate representation to
reduce your program’s size, improve its performance, or both

Back-end steps:

« translate to processor object code: converts the optimized intermediate representation
into native object code, containing data and instructions, for the target processor

30 CodeWarrior Build Tools Reference for Power Architecture® Processors

Introduction
Linker Architecture

¢ optimize object code: rearranges the native object code to reduce its size, improve
performance, or both

* output object code and diagnostic data: writes output files on the host system, ready
for the linker and diagnostic tools such as a debugger or profiler

Linker Architecture

A linker combines and arranges data and instructions from one or more object code files
into a single file, or image. This image is ready to execute on the target platform. The
CodeWarrior linker uses settings from the host’s integrated development environment
(IDE) or command line to determine how to generate the image file.

The linker also optionally reads a linker command file. A linker command file allows you
to specify precise details of how data and instructions should be arranged in the image file.

Figure 1.2 shows the steps the CodeWarrior linker takes to build an executable image.

Figure 1.2 CodeWarrior linker steps

read settings settings from the IDE or

command line
\ 4
read linker command file linker command file
\ 4
read object code object code files

resolve references
among objects

delete unused objects
(“deadstripping”)

output link map and
image files

link map and
executable image files

CodeWarrior Build Tools Reference for Power Architecture® Processors 31

3
4

y
A

Introduction

Linker Architecture

read settings: retrieves your settings from the IDE or the command line to determine
how to perform subsequent steps

read linker command file: retrieves commands to determine how to arrange object
code in the final image

read object code: retrieves data and executable objects that are the result of
compilation or assembly

delete unused objects (“deadstripping”): deletes objects that are not referred to by the
rest of the program

resolve references among objects: arranges objects to compose the image then
computes the addresses of the objects

output link map and image files: writes files on the host system, ready to load onto
the target system

32

CodeWarrior Build Tools Reference for Power Architecture® Processors

2

Using Build Tools with the
CodeWarrior IDE

The CodeWarrior Integrated Development Environment (IDE) uses settings in a project’s
build target to choose which compilers and linkers to invoke, which files those compilers
and linkers will process, and which options the compilers and linkers will use.

This chapter explains how to use CodeWarrior compilers and linkers with the
CodeWarrior IDE:

* Choosing Tools and Files
¢ IDE Options and Pragmas
* IDE Settings Panels

Choosing Tools and Files

The IDE uses settings in the Target Settings panel to determine which compilers and
linkers to use. This panel is in the build-target Settings window, where build-target is the
name of the current build target. The Linker option in this settings panel specifies the
platform or processor to build for. From this option, the IDE also determines which
compilers, pre-linkers, and post-linkers to use.

The IDE uses the settings in the File Mappings panel of the build-target Settings window
to determine which types of files may be added to a project’s build target and which
compiler should be invoked to process each file. The menu of compilers in the Compiler
option of this panel is determined by the Linker setting in the Target Settings panel.

The IDE uses the settings in a build target’s Access Paths and Source Trees panels to
choose the source code and object code files to dispatch to the CodeWarrior build tools.
See the IDE User’s Guide for more information on these panels.

IDE Options and Pragmas

Use IDE settings and directives in source code to configure the build tools.

The CodeWarrior compiler follows these steps to determine the settings to apply to each
file that the compiler translates under the IDE:

CodeWarrior Build Tools Reference for Power Architecture® Processors 33

V¥ ¢
i

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

» before translating the source code file, the compiler gets option settings from the
IDE’s settings panels in the current build target

 the compiler updates the settings for pragmas that correspond to panel settings

« the compiler translates the source code in the Prefix Text field of the build target’s
C/C++ Preprocessor panel

The compiler applies pragma directives and updates their settings as pragma
directives are encountered in this source code.

 the compiler translates the source code file and the files that it includes

The compiler applies pragma settings as it encounters them.

IDE Settings Panels

These CodeWarrior IDE settings panels control compiler and linker behavior:

¢ C/C++ Language Settings Panel
¢ C/C++ Preprocessor Panel

¢ C/C++ Warnings Panel

C/C++ Language Settings Panel

This settings panel controls compiler language features and some object code storage
features for the current build target.

Table 2.1 C/C++ Language Settings Panel

This item... controls this behavior and is equivalent to
these options

Force C++ Checked—translates all C source pragma cplusplus and
Compilation files as C++ source code. the command-line option
-lang c++

Clear—uses the filename’s extension
to determine whether to use the C or
C++ compiler. The entries in the
IDE’s File Mappings settings panel
specify the suffixes that the compiler
assigns to each compiler.

34 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

This item...

controls this behavior

and is equivalent to
these options

ISO C++

Template Parser

Checked—follows the ISO/IEC
14882-1998 standard for C++ to
translate templates, enforcing more
careful use of the typename and
template keywords. The compiler
also follows stricter rules for resolving
names during declaration and
instantiation.

Clear—the C+++ compiler does not
expect template source code to
follow the ISO C++ standard as
closely.

pragma
parse_func_templ and
the command-line option -
iso_templates

Use Instance
Manager

Checked—reduces compile time by
generating any instance of a C++
template (or non-inlined inline)
function only once.

Clear—generates a new instance of
a template or non-inlined function
each time it appears in source code.

Control where the instance database
is stored using #pragma
instmgr_file.

command-line option
-instmgr

Enable C++
Exceptions

Checked—generates executable
code for C++ exceptions.

Clear—generates smaller, faster
executable code.

Enable the Enable C++ Exceptions
setting if you use the try, throw,
and catch statements specified in
the ISO/IEC 14882-1998 C++
standard. Otherwise, disable this
setting to generate smaller and faster
code.

pragma exceptions and
the command-line option

—cpp_exceptions

CodeWarrior Build Tools Reference for Power Architecture® Processors 35

'
A

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

true and false values specified in
the ISO/IEC 14882-1998 C++
standard.

Clear—the compiler does not
recognize this type or its values.

This item... controls this behavior and is equivalent to
these options
Enable RTTI Checked—allows the use of the C++ | pragma RTTTI and the
runtime type information (RTTI) command-line option
capabilities, including the -RTTI
dynamic_cast and typeid
operators.
Clear—the compiler generates
smaller, faster object code but does
not allow runtime type information
operations.
Enable bool Checked—the C++ compiler pragma bool and the
Support recognizes the bool type and its command-line option

-bool

Enable wchar_t

Checked—the C++ compiler

pragma wchar_type and

Clear—the compiler expects regular

C++ source code in C++ source files.

Support recognizes the wchar_t data type the command-line option

specified in the ISO/IEC 14882-1998 -wchar_t

C++ standard.

Clear—the compiler does not

recognize this type.

Turn off this option when compiling

source code that defines its own

wchar_t type.
EC++ Checked—expects C++ source code | pragma ecplusplus and
Compatibility files to contain Embedded C++ the command-line option
Mode source code. -dialect ec++

36 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

Analysis (IPA) policy.

Off—No interprocedural analysis, but
still performs function-level
optimization. Equivalent to the “no
deferred inlining” compilation policy
of older compilers.

File—Completely parse each
translation unit before generating any
code or data. Equivalent to the
“deferred inlining” option of older
compilers. Also performs an early
dead code and dead data analysis in
this mode. Objects with unreferenced
internal linkages will be dead-
stripped in the compiler rather than in
the linker.

Program—completely parse the
entire program before optimizing and
generating code, providing many
optimization benefits. For example,
the compiler can auto-inline functions
that are defined in another translation
unit.

This item... controls this behavior and is equivalent to
these options
Inline Depth Don’t Inline—Inlines no functions, not | The Don’t Inline item
even C or C++ functions declared corresponds to the pragma
inline. dont_inline and the
command-line option
Smart—Inlines small functions to a —inline off.The Smart
depth of 2 to 4 inline functions deep. and 1 to 8 items
1 to 8—lInlines to the depth specified | correspondtothe pragma
by the numerical selection. inline_depthand the
command-line option
—inline level=n,
where nis 1 to 8.
IPA Specifies the Interprocedural command line option -ipa

CodeWarrior Build Tools Reference for Power Architecture® Processors

37

'
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options
Auto-Inline Checked—the compiler chooses pragma auto_inline
which functions to inline. Also inlines and the command-line
C++ functions declared inline and option -inline auto
member functions defined within a
class declaration.
Clear—the compiler only considers
functions declared with inline.
Bottom-up Checked—performs inline analysis pragma
Inlining from the last function to the first inline_bottom_up and

function in a chain of function calls.

Clear—inline analysis begins at the
first function in a chain of function
calls.

the command-line option
-inline bottomup

38

CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

code that conforms to the ISO/IEC
9899-1990 standard for C.

Clear—recognize several
CodeWarrior extensions to the C
language:

* unnamed arguments in
function definitions

e a# not followed by a
macro directive

* using an identifier after a
#endif directive

* using typecasted pointers
as Ivalues

* converting points to type of
the same size

* arrays of zero length in
structures

¢ the D constant suffix

* enumeration constant
definitions that cannot be
represented as signed
integers when the Enums
Always Int option is on in
the IDE’s C/C++
Language settings panel
or the enumsalwaysint
pragma is on

e aC++main() function
that does not return an
integer value

This item... controls this behavior and is equivalent to
these options
ANSI Strict Checked—Only recognizes source pragma ANSI_strict

and the command-line
option -ansi strict

ANSI Keywords
Only

Checked—(ISO/IEC 9899-1990 C,
§6.4.1) generates an error message
for all non-standard keywords. If you
must write source code that strictly
adheres to the ISO standard, enable
this setting.

Clear—the compiler recognizes only
these non-standard keywords: far,
inline, _ _inline_ ,__inline

and pascal.

pragma

only_std_keywords
and the command-line
option -stdkeywords

CodeWarrior Build Tools Reference for Power Architecture® Processors

39

'
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options
Expand Checked—recognizes trigraph pragma trigraphs and
Trigraphs sequences (ISO/IEC 9899-1990 C, the command-line option
§5.2.1.1). -trigraphs

Clear—ignores trigraph characters.
Many common character constants
look like trigraph sequences, and this
extension lets you use them without
including escape characters.

Legacy for- Checked—generates an error pragma ARM_scoping
scoping message when the compiler and the command-line
encounters a variable scope usage option -for_scoping

that the ISO/IEC 14882-1998 C++
standard disallows, but is allowed in
the C++ language specified in The
Annotated C++ Reference Manual

(“ARM").
Clear—allows scope rules specified
in ARM.

Require Checked—enforces the requirement pragma

Function of function prototypes. the compiler require_prototypes

Prototypes generates an error message if you and the command-line
define a previously referenced option -requireprotos

function that does not have a
prototype. If you define the function
before it is referenced but do not give
it a prototype, this setting causes the
compiler to issue a warning
message.

Clear—do not require prototypes.

Enable C99 Checked—recognizes ISO/IEC 9899- | pragma c99 and the
Extensions 1999 (“C99”) language features. command-line option

Clear—recognizes only ISO/IEC -dialect c99

9899-1990 (“C90”) language
features.

40 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.1 C/C++ Language Settings Panel (continued)

This item... controls this behavior and is equivalent to
these options

Enable GCC Checked—recognizes language pragma

Extensions features of the GNU Compiler gce_extensions andthe

Collection (GCC) C compiler that are

supported by CodeWarrior compilers.

Clear—do not recognize GCC
extensions

command-line option -
gcc_extensions

Enums Always
Int

Checked—uses signed integers to
represent enumerated constants.

Clear—uses smallest possible
integer type to represent enumerated
constants.

pragma
enumsalwaysint andthe
command-line option
-enum

Use Unsigned

Checked—treats char declarations

pragma unsigned_char

Chars as unsigned char declarations. and the command-line
. option -char unsigned
Clear—char declarations are P 9
signed char declarations
Pool Strings Checked—collects all string pragma pool_strings

constants into a single data section in
the object code it generates.

Clear—creates a unique section for
each string constant.

and the command-line
option -strings pool

Reuse Strings

Checked—stores only one copy of
identical string literals.

Clear—stores each string literal
separately.

opposite of the pragma
dont_reuse_strings
and the command-line
option -string reuse

CodeWarrior Build Tools Reference for Power Architecture® Processors 41

'
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

C/C++ Preprocessor Panel

The C/C++ Preprocessor settings panel controls the operation of the CodeWarrior
compiler’s preprocessor.

Table 2.2 C/C++ Preprocessor Panel

This item... controls this behavior

Prefix Text Contains source code that the compiler
inserts at the beginning of each translation
unit. A translation unit is the combination of a
source code file and all the files that it
includes.

Source encoding Allows you to specify the default encoding of
source files. The compiler recognizes
Multibyte and Unicode source text. To
replicate the obsolete option Multi-Byte
Aware, set this option to System or
Autodetect. Additionally, options that affect
the preprocess request appear in this panel.

Use prefix text in precompiled header Checked—inserts the source code in the
Prefix Text field at the beginning of a
precompiled header file.

Clear—does not insert Prefix Text contents
in a precompiled header file.

Defaults to clear to correspond with previous
versions of the compiler that ignore the prefix
file when building precompiled headers. If
any pragmas are imported from old C/C++
Language Panel settings, this option is
enabled.

Emit file changes Checked—notification of file changes (or
#line changes) appear in the output.

Clear—no file changes appear in output.

Emit #pragmas Checked—pragma directives appear in the
preprocessor output. Essential for producing
reproducible test cases for bug reports.

Clear—pragma directives do not appear in
preprocessor output.

42 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels
Table 2.2 C/C++ Preprocessor Panel (continued)
This item... controls this behavior
Show Full Paths Checked—show the full path of a file’s name.

Clear—show the base filename.

Keep comments Checked—comments appear in the
preprocessor output.

Clear—comments do not appear in
preprocessor output.

Use #line Checked—file changes appear in comments
(as before) or in #line directives.

Clear—file changes do not appear in
comments or in #line directives.

Keep whitespace Checked—whitespace is copied to
preprocessor output. This is useful for
keeping the starting column aligned with the
original source, though the compiler attempts
to preserve space within the line. This does
not apply when macros are expanded.

Clear—whitespace is stripped in
preprocessor output.

CodeWarrior Build Tools Reference for Power Architecture® Processors 43

y
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

C/C++ Warnings Panel

The C/C++ Warnings settings panel contains options that control which warning
messages the CodeWarrior C/C++ compiler issues as it translates source code:

Table 2.3 C/C++ Warnings Panel

message if the compiler
encounters an unrecognized
pragma.

Clear—no action for
unrecognized pragma
directives.

This item controls this behavior and is equivalent to
these options
lllegal Pragmas Checked—issues a warning pragma warn_illpragma

pragma and the command-
line option ~-warnings
illpragmas

Possible Errors Checked—issues warning
messages for common, usually-
unintended logical errors: in
conditional statements, using
the assignment (=) operator
instead of the equality
comparison (==) operator, in
expression statements, using
the == operator instead of the =
operator, placing a semicolon
(;) immediately after a do,
while, if, or for statement.

pragma warn_possunwant
and the command-line option
-warnings possible

Extended Error Checked—issues warning
Checking messages for common
programming errors: mis-
matched return type in a
function’s definition and the
return statement in the
function’s body, mismatched
assignments to variables of
enumerated types.

pragma
extended_errorcheck
and the command-line option
-warnings extended

Hidden Virtual Checked—generates a warning
Functions message if you declare a non-
virtual member function that
prevents a virtual function, that
was defined in a superclass,
from being called.

pragma
warn_hidevirtual and
the command-line option
-warnings hidevirtual

44 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.3 C/C++ Warnings Panel

This item

controls this behavior

and is equivalent to
these options

Implicit Arithmetic
Conversions

Checked—issues a warning
message when the compiler
applies implicit conversions that
may not give results you intend:
assignments where the
destination is not large enough
to hold the result of the
conversion, a signed value
converted to an unsigned value,
an integer or floating-point value
is converted to a floating-point
or integer value, respectively.

pragma
warn_implicitconv and
the command-line option -

warnings implicitconv

Float To Integer

Checked—issues a warning
message for implicit
conversions from floating point
values to integer values.

pragma
warn_impl_f2i_conv and
the command-line option -
warnings
impl_float2int

Signed/Unsigned

Checked—issues a warning
message for implicit
conversions from a signed or
unsigned integer value to an

pragma
warn_impl_s2u_conv and
the command-line option -
warnings

unsigned or signed value, signedunsigned
respectively.
Integer To Float Checked—issues a warning pragma

message for implicit
conversions from integer to
floating-point values.

warn_impl_i2f_conv and
the command-line option -
warnings
impl_int2float

Pointer/Integral
Conversions

Checked—issues a warning
message for implicit
conversions from pointer values
to integer values and from
integer values to pointer values.

pragmas
warn_any_ptr_int_conv
and warn_ptr_int_conv

and the command-line option
-warnings

ptrintconv, anyptrinvc
onv

Unused Variables

Checked—issues a warning
message for local variables that
are not referred to in a function.

pragma warn_unusedvar
and the command-line option
-warnings unusedvar

CodeWarrior Build Tools Reference for Power Architecture® Processors 45

y
A

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

Table 2.3 C/C++ Warnings Panel

This item

controls this behavior

and is equivalent to
these options

Unused Arguments

Checked—issues a warning
message for function arguments
that are not referred to in a
function.

pragma warn_unusedarg
and the command-line option
-warnings unusedarg

Missing ‘return’
Statements

Checked—issues a warning
message if a function that is
defined to return a value has no
return statement.

pragma
warn_missingreturn and
the command-line option -
warnings
missingreturn

Expression Has No

Checked—issues a warning

pragma

Side Effect message if a statement does warn_no_side_effect
not change the program’s state. | and the command-line option
-warnings unusedexpr
Enable All Checked—turns on all warning
options.
Disable All Checked—turns off all warning

options.

Extra Commas

Checked—issues a warning
message if a list in an
enumeration terminates with a
comma. The compiler ignores
terminating commas in
enumerations when compiling
source code that conforms to
the ISO/IEC 9899-1999 (“C99”)
standard.

pragma warn_extracomma
and the command-line option
-warnings extracomma

Inconsistent ‘class’/
‘struct’ Usage

Checked—issues a warning
message if the class and struct
keywords are used
interchangeably in the definition
and declaration of the same
identifier in C++ source code.

pragma

warn_structclass and
the command-line option -
warnings structclass

Empty
Declarations

Checked—issues a warning
message if a declaration has no
variable name.

pragma warn_emptydecl
and the command-line option
-warnings emptydecl

46

CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools with the CodeWarrior IDE

IDE Settings Panels

Table 2.3 C/C++ Warnings Panel

This item controls this behavior and is equivalent to
these options
Include File Checked—issues a warning pragma

Capitalization

message if the name of the file
specified in a #include

v file" directive uses different
letter case from a file on disk.

warn_filenamecaps and
the command-line option -
warnings filecaps

Check System Checked—issues a warning pragma

Includes message if the name of the file warn_filenamecaps_sys
specified in a #include tem and the command-line
<file> directive uses different option -warnings
letter case from a file on disk. sysfilecaps

Pad Bytes Added Checked—issues a warning pragma warn_padding and

message when the compiler
adjusts the alignment of
components in a data structure.

the command-line option -
warnings padding

Undefined Macro in
#if

Checked—issues a warning
message if an undefined macro
appears in #if and #elif
directives.

pragma warn_undefmacro
and the command-line option
-warnings undefmacro

Non-Inlined
Functions

Checked—issues a warning
message if a call to a function
defined with the inline,

_ _inline_ ,or__inline
keywords could not be replaced
with the function body.

pragma warn_notinlined
and the command-line option
-warnings notinlined

Treat All Warnings
As Errors

Checked—issues warning
messages as error messages.

pragma warning_errors
pragma and the command-
line option ~-warnings
error

CodeWarrior Build Tools Reference for Power Architecture® Processors 47

A 4
4\

Using Build Tools with the CodeWarrior IDE
IDE Settings Panels

48 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools on the
Command Line

CodeWarrior build tools may be invoked from the command-line. These command-line
tools operate almost identically to their counterparts in an integrated development
environment (IDE). CodeWarrior command-line compilers and assemblers translate
source code files into object code files. CodeWarrior command-line linkers then combine
one or more object code files to produce an executable image file, ready to load and
execute on the target platform. Each command-line tool has options that you configure
when you invoke the tool.

¢ Configuring Command-Line Tools
¢ Invoking Command-Line Tools
¢ Getting Help

¢ File Name Extensions

Configuring Command-Line Tools

* Setting CodeWarrior Environment Variables
¢ Setting the PATH Environment Variable

Setting CodeWarrior Environment
Variables

Use environment variables on the host system to specity to the CodeWarrior command
line tools where to find CodeWarrior files for compiling and linking. Table 3.1 describes
these environment variables.

CodeWarrior Build Tools Reference for Power Architecture® Processors 49

'
A

Using Build Tools on the Command Line
Configuring Command-Line Tools

Table 3.1 Environment variables for CodeWarrior command-line tools

This environment variable... specifies this information

MWCIncludes Directories on the host system for system
header files for the CodeWarrior compiler.

MWLibraries Directories on the host system for system
libraries for the CodeWarrior linker.

A system header file is a header file that is enclosed with the “<* and “>” characters in
include directives. For example

#include <stdlib.h> /* stdlib.h system header. */

Typically, you define the MWCIncludes and MWLibraries environment variables to
refer to the header files and libraries in the subdirectories of your CodeWarrior software.

To specify more than one directory for the MWCIncludes and MWLibraries

variables, use the conventional separator for your host operating system command-line
shell.

Listing 3.1 Setting environment variables in Microsoft® Windows® operating systems

rem Use ; to separate directory paths
set CWFolder=C:\Program Files\Freescale\CodeWarrior
set MWCIncludes=%CWFolder%$\MSL_Common\Include

set MWCIncludes=%MWCIncludes%; %$CWFolder%\\Include
set MWLibraries=%CWFolder%\Support)\;$CWFolder%\\Runtime

Setting the PATH Environment Variable

The PATH variable should include the paths for your CodeWarrior tools, shown in Listing
3.2. Toolset represents the name of the folder that contains the command line tools for
your build target.

Listing 3.2 Example of setting PATH

set CWFolder=C:\Program Files\Freescale\CodeWarrior
set PATH=%PATH%\%CWFolder%\Bin; $CWFolder%\Toolset

50 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools on the Command Line
Invoking Command-Line Tools

Invoking Command-Line Tools

To compile, assemble, link, or perform some other programming task with the
CodeWarrior command-line tools, you type a command at a command line’s prompt. This
command specifies the tool you want to run, what options to use while the tool runs, and
what files the tool should operate on.

The form of a command to run a command-line tool is
tool options files

where tool is the name of the CodeWarrior command-line tool to invoke, optionsis a
list of zero or more options that specify to the tool what operation it should perform and
how it should be performed, and files is a list of files zero or more files that the tool
should operate on.

Which options and files you should specify depend on what operation you want the tool to
perform.

The tool then performs the operation on the files you specify. If the tool is successful it
simply finishes its operation and a new prompt appears at the command line. If the tool
encounters problems it reports these problems as text messages on the command-line
before a new prompt appears.

Scripts that automate the process to build a piece of software contain commands to invoke
command-line tools. For example, the make tool, a common software development tool,
uses scripts to manage dependencies among source code files and invoke command-line
compilers, assemblers and linkers as needed, much like the CodeWarrior IDE’s project
manager.

Getting Help

To show short descriptions of a tool’s options, type this command at the command line:
tool -help
where fool is the name of the CodeWarrior build tool.

To show only a few lines of help information at a time, pipe the tool’s output to a pager
program. For example,

tool -help | more
will use the more pager program to display the help information.

Enter the following command in a Command Prompt window to see a list of
specifications that describe how options are formatted:

tool -help usage

where fool is the name of the CodeWarrior build tool.

CodeWarrior Build Tools Reference for Power Architecture® Processors 51

3
4

y
A

Using Build Tools on the Command Line

Getting Help

Parameter Formats

Parameters in an option are formatted as follows:
¢ A parameter included in brackets “[]” is optional.

* Use of the ellipsis “. . .” character indicates that the previous type of parameter may
be repeated as a list.

Option Formats

Options are formatted as follows:

* For most options, the option and the parameters are separated by a space as in
“-xxx param’.

When the option’s name is “-xxx+", however, the parameter must directly follow

[TEL)

the option, without the “+” character (as in “-xxx45”") and with no space separator.
* Anoption given as “- [no]xxx” may be issued as “-xxx” or “-noxxx”.
The use of “-noxxx” reverses the meaning of the option.

* When an option is specified as “-xxx | yyly] | zzz”, then either “-xxx”,

9

“—yy”, “~yyy”, or “~zzz” matches the option.

* The symbols ““,” and “=" separate options and parameters unconditionally; to
include one of these symbols in a parameter or filename, escape it (e.g., as “\ ,” in
mwce file.c\,v).

Common Terms

These common terms appear in many option descriptions:

* A “cased” option is considered case-sensitive. By default, no options are case-
sensitive.

* “compatibility” indicates that the option is borrowed from another vendor’s tool and
its behavior may only approximate its counterpart.

* A “global” option has an effect over the entire command line and is parsed before
any other options. When several global options are specified, they are interpreted in
order.

* A “deprecated” option will be eliminated in the future and should no longer be used.
An alternative form is supplied.

* An “ignored” option is accepted by the tool but has no effect.

* A “meaningless” option is accepted by the tool but probably has no meaning for the
target operating system.

* An “obsolete” option indicates a deprecated option that is no longer available.

52

CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Build Tools on the Command Line
File Name Extensions

* A “substituted” option has the same effect as another option. This points out a
preferred form and prevents confusion when similar options appear in the help.

e Use of “default” in the help text indicates that the given value or variation of an
option is used unless otherwise overridden.

This tool calls the linker (unless a compiler option such as —c prevents it) and understands
linker options — use “~help tool=other” to see them. Options marked “passed to
linker” are used by the compiler and the linker; options marked “for linker” are used only
by the linker. When using the compiler and linker separately, you must pass the common
options to both.

File Name Extensions

Files specified on the command line are identified by contents and file extension, as in the
CodeWarrior IDE.

The command-line version of the CodeWarrior C/C++ compiler accepts non-standard file
extensions as source code but also emits a warning message. By default, the compiler
assumes that a file with any extensions besides . c, .h, .pch is C++ source code. The
linker ignores all files that it can not identify as object code, libraries, or command files.

Linker command files must end in . 1c£. They may be simply added to the link line, for
example (Listing 3.3).

Listing 3.3 Example of using linker command files

mwldtarget file.o lib.a commandfile.lcf

CodeWarrior Build Tools Reference for Power Architecture® Processors 53

A 4
4\

Using Build Tools on the Command Line
File Name Extensions

54 CodeWarrior Build Tools Reference for Power Architecture® Processors

4

Command-Line Options for
Standard C Conformance

-ansi
Controls the ISO/IEC 9899-1990 (“C90”) conformance options, overriding the given
settings.
Syntax
-ansi keyword
The arguments for keyword are:
off
Turns ISO conformance off. Same as
-stdkeywords off -enum min -strict off.
on | relaxed
Turns ISO conformance on in relaxed mode. Same as
-stdkeywords on -enum min -strict on
strict
Turns ISO conformance on in strict mode. Same as
-stdkeywords on -enum int -strict on
-stdkeywords

Controls the use of ISO/IEC 9899-1990 (“C90”) keywords.

Syntax
-stdkeywords on | off

CodeWarrior Build Tools Reference for Power Architecture® Processors 55

Command-Line Options for Standard C Conformance

Remarks
Default setting is of £.

-strict

Controls the use of non-standard ISO/IEC 9899-1990 (“C90”) language features.

Syntax

-strict on | off

Remarks

If this option is on, the compiler generates an error message if it encounters some
CodeWarrior extensions to the C language defined by the ISO/IEC 9899-1990
(“C90”) standard:

¢ C++-style comments
* unnamed arguments in function definitions
¢ non-standard keywords

The default setting is of £.

56

CodeWarrior Build Tools Reference for Power Architecture® Processors

S

Command-Line Options for
Standard C++ Conformance

-ARM

Deprecated. Use -for_scoping instead.

-bool

Controls the use of true and false keywords for the C++ bool data type.

Syntax
-bool on | off

Remarks

When on, the compiler recognizes the true and false keywords in expressions
of type bool. When off, the compiler does recognizes the keywords, forcing the
source code to provide definitions for these names. The default is on.

-Cpp_exceptions
Controls the use of C++ exceptions.

Syntax

-cpp_exceptions on | off

CodeWarrior Build Tools Reference for Power Architecture® Processors 57

Command-Line Options for Standard C++ Conformance

Remarks

When on, the compiler recognizes the try, catch, and throw keywords and
generates extra executable code and data to handle exception throwing and
catching. The default is on.

-dialect

Specifies the source language.

Syntax

-dialect keyword

-lang keyword

The arguments for keyword are:
c

Expect source code to conform to the language specified by the ISO/IEC 9899-1990
(“C90”) standard.

c99

Expect source code to conform to the language specified by the ISO/IEC 9899-1999
(“C99”) standard.

c++ | cplus
Always treat source as the C++ language.
ec++

Generate error messages for use of C++ features outside the Embedded C++ subset.
Implies ~-dialect cplus.

objc

Always treat source as the Objective-C language.

-for_scoping

Controls legacy scope behavior in for loops.

Syntax

-for_scoping

58

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Standard C++ Conformance

Remarks

When enabled, variables declared in for loops are visible to the enclosing scope;
when disabled, such variables are scoped to the loop only. The defaultis of £.

-instmgr

Controls whether the instance manager for templates is active.

Syntax

-inst[mgr] keyword [,...]

The options for keyword are:

off

Turn off the C++ instance manager. This is the default.
on

Turn on the C++ instance manager.

file=path

Specify the path to the database used for the C++ instance manager. Unless specified the
default database is cwinst . db.

Remarks
This command is global. The default setting is of £.

NOTE The instance manager feature is not supported by the DSi compiler.

-iso_templates

Controls whether the ISO/IEC 14882-1998 standard C++ template parser is active.

Syntax

-iso_templates on | off

Remarks

Default setting is on.

CodeWarrior Build Tools Reference for Power Architecture® Processors 59

Command-Line Options for Standard C++ Conformance

-RTTI
Controls the availability of runtime type information (RTTI).
Syntax
-RTTI on | off
Remarks
Default setting is on.
-som

Obsolete. This option is no longer available.

-som_env_check

Obsolete. This option is no longer available.

-wchar_t
Controls the use of the wchar_t data type in C++ source code.

Syntax

-wchar_t on | off

Remarks

The -wchar on option tells the C++ compiler to recognize the wchar_t type as
a built-in type for wide characters. The ~-wchar of £ option tells the compiler not

to allow this built-in type, forcing the user to provide a definition for this type.
Default setting is on.

60 CodeWarrior Build Tools Reference for Power Architecture® Processors

6

Command-Line Options for
Language Translation

-char

Controls the default sign of the char data type.

Syntax

-char keyword

The arguments for keyword are:
signed

char data items are signed.
unsigned

char data items are unsigned.

Remarks
The default is signed.

-defaults

Controls whether the compiler uses additional environment variables to provide default
settings.

Syntax

-defaults

-nodefaults

CodeWarrior Build Tools Reference for Power Architecture® Processors 61

Command-Line Options for Language Translation

Remarks

This option is global. To tell the command-line compiler to use the same set of
default settings as the CodeWarrior IDE, use -defaults. For example, in the
IDE, all access paths and libraries are explicit. defaults is the default setting.

Use -nodefaults to disable the use of additional environment variables.

-encoding

Specifies the default source encoding used by the compiler.

Syntax

-enc[oding] keyword

The options for keyword are:

ascii

American Standard Code for Information Interchange (ASCII) format. This is the default.
autodetect | multibyte | mb

Scan file for multibyet encoding.

system

Uses local system format.

UTF[8 | -8]

Unicode Transformation Format (UTF).

SJIS | Shift-JIS | ShiftJISs

Shift Japanese Industrial Standard (Shift-JIS) format.f

EUC[JP | -JP]
Japanese Extended UNIX Code (EUCJP) format.
IS0[2022JP | -2022-JP]

International Organization of Standards (ISO) Japanese format.

Remarks

The compiler automatically detects UTF-8 (Unicode Transformation Format)
header or UCS-2/UCS-4 (Uniform Communications Standard) encodings
regardless of setting. The default setting is ascii.

62 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Language Translation

-flag
Specifies compiler #pragma as either on or of .

Syntax
-fllag] [no-]pragma

Remarks
For example, this option setting
-flag require_prototypes
is equivalent to
#pragma require_prototypes on
This option setting
-flag no-require_prototypes
is the same as

#pragma require_prototypes off

-gccext
Enables GCC (Gnu Compiler Collection) C language extensions.

Syntax

-gcclext] on | off

Remarks

See “GCC Extensions” on page 260 for a list of language extensions that the
compiler recognizes when this option is on.

The default setting is of £.

-gcc_extensions

Equivalent to the ~-gccext option.

CodeWarrior Build Tools Reference for Power Architecture® Processors 63

Command-Line Options for Language Translation

Syntax

-gcc[_extensions] on | off

-M
Scans source files for dependencies and emit a Makefile, without generating object code.
Syntax
-M
Remarks
This command is global and case-sensitive.
-make
Scans source files for dependencies and emit a Makefile, without generating object code.
Syntax
-make
Remarks
This command is global.
-mapcr
Swaps the values of the \n and \ r escape characters.
Syntax
-mapcr
-nomapcr
Remarks
The -mapcr option tells the compiler to treat the ' \n' character as ASCII 13 and
the ' \xr ' character as ASCII 10. The -nomapcx option tells the compiler to treat
these characters as ASCII 10 and 13, respectively.
64 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Language Translation

Scans source files for dependencies and emit a Makefile, without generating object code
or listing system #include files.

Syntax
-MM

Remarks

This command is global and case-sensitive.

Scans source files for dependencies and emit a Makefile, generate object code, and write a
dependency map.

Syntax

-MD

Remarks

This command is global and case-sensitive.

-MMD

Scans source files for dependencies and emit a Makefile, generate object code, write a
dependency map, without listing system #include files.

Syntax

-MMD

Remarks

This command is global and case-sensitive.

CodeWarrior Build Tools Reference for Power Architecture® Processors 65

Command-Line Options for Language Translation

-msext

Allows Microsoft® Visual C++ extensions.

Syntax

-msext on | off

Remarks
Turn on this option to allow Microsoft Visual C++ extensions:
* Redefinition of macros
e Allows XXX : : yyy syntax when declaring method yyy of class XXX
* Allows extra commas
» Ignores casts to the same type

¢ Treats function types with equivalent parameter lists but different return types as
equal

* Allows pointer-to-integer conversions, and various syntactical differences

-once

Prevents header files from being processed more than once.

Syntax

—once

Remarks

You can also add #pragma once on in a prefix file.

-pragma

Defines a pragma for the compiler.

Syntax
-pragma "name [setting]"

The arguments are:

66

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Language Translation

name
Name of the pragma.
setting

Arguments to give to the pragma

Remarks
For example, this command-line option
-pragma "c99 on"
is equivalent to inserting this directive in source code

#pragma c99 on

-relax_pointers
Relaxes the pointer type-checking rules in C.

Syntax

-relax_pointers

Remarks
This option is equivalent to

#pragma mpwc_relax on

-requireprotos
Controls whether or not the compiler should expect function prototypes.

Syntax

-r[equireprotos]

-search

Globally searches across paths for source files, object code, and libraries specified in the
command line.

CodeWarrior Build Tools Reference for Power Architecture® Processors 67

Command-Line Options for Language Translation

Syntax

-search

-trigraphs
Controls the use of trigraph sequences specified by the ISO/IEC standards for C and C++.

Syntax

-trigraphs on | off

Remarks
Default setting is of £.

68 CodeWarrior Build Tools Reference for Power Architecture® Processors

7

Command-Line Options for
Diagnostic Messages

-disassemble

Tells the command-line tool to disassemble files and send result to stdout.

Syntax

-dis[assemble]

Remarks
This option is global.

-help

Lists descriptions of the CodeWarrior tool’s command-line options.

Syntax
-help [keyword [,...]]
The options for keyword are:
all
Show all standard options
group=keyword
Show help for groups whose names contain keyword (case-sensitive).
[no]compatible

Use compatible to show options compatible with this compiler. Use
nocompatible to show options that do not work with this compiler.

CodeWarrior Build Tools Reference for Power Architecture® Processors 69

Command-Line Options for Diagnostic Messages

[no]deprecated

Shows deprecated options
[no] ignored

Shows ignored options
[no]lmeaningless

Shows options meaningless for this target
[no]lnormal

Shows only standard options
[no]obsolete

Shows obsolete options
[no] spaces

Inserts blank lines between options in printout.
opt [ion] =name

Shows help for a given option; for name, maximum length 63 chars
search=keyword

Shows help for an option whose name or help contains keyword (case-sensitive),
maximum length 63 chars

tool=keyword[all | this | other | skipped | both]
Categorizes groups of options by tool; default.
* all-show all options available in this tool
¢ this-show options executed by this tool; default
* other | skipped-show options passed to another tool
* both-show options used in all tools
usage

Displays usage information.

-maxerrors

Specifies the maximum number of errors messages to show.

Syntax

—maxerrors max

70 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Diagnostic Messages

max
Use max to specify the number of error messages. Common values are:
¢ 0 (zero) — disable maximum count, show all error messages (default).

¢ n - Maximum number of errors to show, such as -maxwarnings.

-maxwarnings

Specifies the maximum number of warning messages to show.

Syntax

-maxwarnings max

max
Specifies the number of warning messages. Common values are:
¢ 0 (zero) — Disable maximum count (default).

¢ n— Maximum number of warnings to show.

-msgstyle
Controls the style used to show error and warning messages.

Syntax

-msgstyle keyword
The options for keyword are:
gcc

Uses the message style that the Gnu Compiler Collection tools use.

ide

Uses CodeWarrior’s Integrated Development Environment (IDE) message style.
mpw

Uses Macintosh Programmer’s Workshop (MPW®) message style.
parseable

Uses context-free machine parseable message style.
std

Uses standard message style. This is the default.

CodeWarrior Build Tools Reference for Power Architecture® Processors 71

Command-Line Options for Diagnostic Messages

enterpriseIDE

Uses Enterprise-IDE message style.

-nofail

Continues processing after getting error messages in earlier files.

Syntax

-nofail

-progress

Shows progress and version information.

Syntax

-progress

Disassembles all files and send output to a file. This command is global and case-
sensitive.

Syntax
-5

-stderr

Uses the standard error stream to report error and warning messages.

Syntax

-stderr

72

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Diagnostic Messages

-nostderr

Remarks

The -stderr option specifies to the compiler, and other tools that it invokes, that
error and warning messages should be sent to the standard error stream.

The -nostderr option specifies that error and warning messages should be sent
to the standard output stream.

-verbose
Tells the compiler to provide extra, cumulative information in messages.

Syntax

-v[erbose]

Remarks

This option also gives progress and version information.

-version
Displays version, configuration, and build data.

Syntax

-v[ersion]

-timing
Shows the amount of time that the tool used to perform an action.

Syntax

-timing

CodeWarrior Build Tools Reference for Power Architecture® Processors 73

Command-Line Options for Diagnostic Messages

-warnings
Specifies which warning messages the command-line tool issues. This command is global.

Syntax
-wlarnings] keyword [,...]

The options for keyword are:

off
Turns off all warning messages. Passed to all tools. Equivalent to
#pragma warning off

on
Turns on most warning messages. Passed to all tools. Refer Table 7.1 for a list of
warning messages turned on by the -w[arnings] on command.
Equivalent to #pragma warning on

most
Turns on most warnings.

all
Turns on almost all warnings and require prototypes.

full

Turns on all warning messages and require prototypes. This option is likely to
generate spurious warnings.

NOTE -warnings full should be used before using any other options that affect
warnings. For example, use
-warnings full -warnings noanyptrintconv instead of
-warnings noanyptrintconv -warnings full.

[no]lcmdline
Passed to all tools.
[nolerr[or] | [no]iserr[or]
Treats warnings as errors. Passed to all tools. Equivalent to

#pragma warning_errors

74 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Diagnostic Messages

[no]lpragmas | [no]lillpragmas

Issues warning messages on invalid pragmas. Enabled when most is used.
Equivalent to

#pragma warn_illpragma
[nolempty [decl]

Issues warning messages on empty declarations. Enabled when most is used.
Equivalent to

#pragma warn_emptydecl
[no]lpossible | [no]lunwanted

Issues warning messages on possible unwanted effects. Enabled when most is
used. Equivalent to

#pragma warn_possunwanted
[no]unusedarg

Issues warning messages on unused arguments. Enabled when most is used.
Equivalent to

#pragma warn_unusedarg
[no]lunusedvar

Issues warning messages on unused variables. Enabled when most is used.
Equivalent to

#pragma warn_unusedvar
[no]lunused
Same as
-w [nolJunusedarg, [no]unusedvar
Enabled when most is used.
[no] extracomma | [no] comma

Issues warning messages on extra commas in enumerations. The compiler ignores
terminating commas in enumerations when compiling source code that conforms to
the ISO/IEC 9899-1999 (“C99”) standard. Enabled when most is used. Equivalent
to

#pragma warn_extracomma
[no]lextended
Extended error checking. Enabled when most is used. Equivalent to either:

#pragma extended_errorcheck

CodeWarrior Build Tools Reference for Power Architecture® Processors 75

Command-Line Options for Diagnostic Messages

[nolhidevirtual | [nolhidden[virtual]

Issues warning messages on hidden virtual functions. Enabled when most is used.
Equivalent to

#pragma warn_hidevirtual
[no]limplicit[conv]

Issues warning messages on implicit arithmetic conversions. Enabled when all is
used. Implies

-warn impl_float2int,impl_signedunsigned
[nolimpl_int2float

Issues warning messages on implicit integral to floating conversions. Enabled
when all is used. Equivalent to

#pragma warn_impl_i2f_ conv
[nolimpl_float2int

Issues warning messages on implicit floating to integral conversions. Enabled
when all is used. Equivalent to

#pragma warn_impl_f2i_conv
[no]impl_signedunsigned

Issues warning messages on implicit signed/unsigned conversions. Enabled when
all is used.

[nolnotinlined

Issues warning messages for functions declared with the inline qualifier that are
not inlined. Enabled when full is used. Equivalent to

#pragma warn_notinlined
[no]largeargs

Issues warning messages when passing large arguments to unprototyped functions.
Enabled when most is used. Equivalent to

#pragma warn_largeargs
[no]lstructclass

Issues warning messages on inconsistent use of class and struct. Enabled
when most is used. Equivalent to

#pragma warn_structclass
[no]padding

Issue warning messages when padding is added between struct members.
Enabled when full is used. Equivalent to

#pragma warn_padding

76 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Diagnostic Messages

[no]lnotused

Issues warning messages when the result of non-void-returning functions are not
used. Enabled when full is used. Equivalent to

#pragma warn_resultnotused
[no]lmissingreturn

Issues warning messages when a return without a value in non-void-returning
function occurs. Enabled when most is used. Equivalent to

#pragma warn_missingreturn
[no]unusedexpr

Issues warning messages when encountering the use of expressions as statements
without side effects. Equivalent to

#pragma warn_no_side_effect
[no]lptrintconv

Issues warning messages when lossy conversions occur from pointers to integers.
Enabled when full is used.

[no]anyptrintconv

Issues warning messages on any conversion of pointers to integers. Enabled when
full is used. Equivalent to

#pragma warn_ptr_int_conv
[no]undef [macro]

Issues warning messages on the use of undefined macros in #1if and #elif
conditionals. Enabled when full is used. Equivalent to

#pragma warn_undefmacro
[no] filecaps

Issues warning messages when #include " directives use incorrect
capitalization. Enabled when most is used. Equivalent to

#pragma warn_filenamecaps
[nolsysfilecaps

Issue warning messages when #include <> statements use incorrect
capitalization. Enabled when most is used. Equivalent to

#pragma warn_filenamecaps_system
[no] tokenpasting

Issue warning messages when token is not formed by the ## preprocessor operator.
Enabled when most is used. Equivalent to

#pragma warn_illtokenpasting

CodeWarrior Build Tools Reference for Power Architecture® Processors 77

Command-Line Options for Diagnostic Messages

[no]lrelax_1i2i_conv

Relax implicit arithmetic conversion warnings on certain implicit conversions.
Equivalent to

#pragma relax_ 1i2i_conv
display | dump

Display list of active warnings.

Remarks

Table 7.1 lists the equivalent command option of the warning messages turned on
by the -w[arnings] on command.

Table 7.1 Warnings turned on by the -w[arnings] on command

on/most all (includes most) full (includes all and
most)

nolpragmas | nolimplicitfconv no]notinlined
nolillpragmas

no]possible | nolimpl_int2float no]notused
noJunwanted

nolempty[decl nolimpl_float2int no]ptrintconv
nolJunusedarg [nolimpl_signedunsigned [noJanyptrintconv
nolunusedvar noJundef[macro
noJunused nolpadding

nolextracomma |
nojcomma

nolextended

noJhidevirtual |
nolhidden][virtual

nollargeargs
nojstructclass
[no]missingreturn
noJunusedexpr
nolfilecaps

78 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Diagnostic Messages

Table 7.1 Warnings turned on by the -w[arnings] on command (continued)

on/most all (includes most)

full (includes all and
most)

nolsysfilecaps

noltokenpasting

-wraplines
Controls the word wrapping of messages.

Syntax
-wraplines

-nowraplines

CodeWarrior Build Tools Reference for Power Architecture® Processors 79

Command-Line Options for Diagnostic Messages

80 CodeWarrior Build Tools Reference for Power Architecture® Processors

8

Command-Line Options for
Preprocessing

-convertpaths

Instructs the compiler to interpret #include file paths specified for a foreign operating
system. This command is global.

Syntax

- [no]convertpaths

Remarks

The CodeWarrior compiler can interpret file paths from several different operating
systems. Each operating system uses unique characters as path separators. These
separators include:

¢ Mac OS® —colon “:” (:sys:stat.h)
¢ UNIX - forward slash “/” (sys/stat.h)
* Windows® operating systems — backward slash “\” (sys\stat.h)

When convertpaths is enabled, the compiler can correctly interpret and use
paths like <sys/stat.h>or <:sys:stat.h>. However, when enabled, (/)
and (:) separate directories and cannot be used in filenames.

NOTE This is not a problem on Windows systems since these characters are already
disallowed in file names. It is safe to leave this option on.

When noconvertpaths is enabled, the compiler can only interpret paths that
use the Windows form, like <\sys\stat .h>.

CodeWarrior Build Tools Reference for Power Architecture® Processors 81

Command-Line Options for Preprocessing

-cwd

Controls where a search begins for #include files.

Syntax
-cwd keyword
The options for keyword are:
explicit
No implicit directory. Search -T or -ir paths.
include
Begins searching in directory of referencing file.
proj
Begins searching in current working directory (default).
source

Begins searching in directory that contains the source file.

Remarks

The path represented by keyword is searched before searching access paths defined
for the build target.

Same as the ~define option.

Syntax
-D+name

The parameters are:
name

The symbol name to define. Symbol is set to 1.

-define

Defines a preprocessor symbol.

82

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Preprocessing

Syntax
-d[efine] namel[=value]
The parameters are:
name

The symbol name to define.
value

The value to assign to symbol name. If no value is specified, set symbol value
equal to 1.

Tells the command-line tool to preprocess source files.

Syntax
-BE

Remarks

This option is global and case sensitive.

Tells the command-line tool to preprocess source files that are stripped of #1ine
directives.

Syntax

-EP

Remarks

This option is global and case sensitive.

-gccincludes

Controls the compilers use of GCC #include semantics.

CodeWarrior Build Tools Reference for Power Architecture® Processors 83

Command-Line Options for Preprocessing

Syntax

-gccinc[ludes]

Remarks

Use -gccincludes to control the CodeWarrior compiler understanding of Gnu
Compiler Collection (GCC) semantics. When enabled, the semantics include:

¢ Adds -I- paths to the systems list if —-I- is not already specified

» Search referencing file’s directory first for #include files (same as —cwd
include) The compiler and IDE only search access paths, and do not take the
currently #include file into account.

This command is global.

Changes the build target’s search order of access paths to start with the system paths list.

Syntax
- I -

_i-

Remarks

The compiler can search #include files in several different ways. Use —-I- to set
the search order as follows:

¢ For include statements of the form #include "xyz", the compiler first
searches user paths, then the system paths

* For include statements of the form #include <xyz>,the compiler searches
only system paths

This command is global.

Appends a non-recursive access path to the current #include list.

Syntax
-I+path

84 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Preprocessing

-i path
The parameters are:
path

The non-recursive access path to append.

Remarks

This command is global and case-sensitive.

-include

Defines the name of the text file or precompiled header file to add to every source file
processed.
Syntax
-include file
file

Name of text file or precompiled header file to prefix to all source files.
Remarks

With the command line tool, you can add multiple prefix files all of which are
included in a meta-prefix file.

-ir
Appends a recursive access path to the current #include list. This command is global.
Syntax
-ir path
path
The recursive access path to append.
-P

Preprocesses the source files without generating object code, and send output to file.

CodeWarrior Build Tools Reference for Power Architecture® Processors

85

Command-Line Options for Preprocessing

Syntax

-P

Remarks

This option is global and case-sensitive.

-precompile

Precompiles a header file from selected source files.

Syntax
-precompile file | dir | ""
file
If specified, the precompiled header name.
dir
If specified, the directory to store the header file.
If " " is specified, write header file to location specified in source code. If neither
argument is specified, the header file name is derived from the source file name.
Remarks
The driver determines whether to precompile a file based on its extension. The
option
-precompile filesource
is equivalent to
-c -o filesource
-preprocess

Preprocesses the source files. This command is global.

Syntax

-preprocess

86

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Preprocessing

-ppopt

Specifies options affecting the preprocessed output.

Syntax

-ppopt keyword [,...]

The arguments for keyword are:

[nolbreak
Emits file and line breaks. This is the default.

[no]lline
Controls whether #line directives are emitted or just comments. The default is
line.

[no] full[path]
Controls whether full paths are emitted or just the base filename. The default is
fullpath.

[no]pragma
Controls whether #pragma directives are kept or stripped. The default is pragma.

[no] comment
Controls whether comments are kept or stripped.

[no] space
Controls whether whitespace is kept or stripped. The default is space.

Remarks
The default settings is break.

-prefix

Adds contents of a text file or precompiled header as a prefix to all source files.

Syntax

-prefix file

CodeWarrior Build Tools Reference for Power Architecture® Processors 87

Command-Line Options for Preprocessing

-noprecompile

Do not precompile any source files based upon the filename extension.

Syntax

-noprecompile

-nosyspath

Performs a search of both the user and system paths, treating # include statements of the
form #include <xyz> the same as the form #include "xyz".

Syntax

-nosyspath

Remarks

This command is global.

-stdinc

Uses standard system include paths as specified by the environment variable
SMWCIncludes%.

Syntax
-stdinc

-nostdinc

Remarks
Add this option after all system - I paths.

Same as the -undefine option.

88

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Preprocessing

Syntax

-U+name

-undefine

Undefines the specified symbol name.

Syntax
-u[ndefine] name
-U+name

name

The symbol name to undefine.

Remarks

This option is case-sensitive.

CodeWarrior Build Tools Reference for Power Architecture® Processors

89

Command-Line Options for Preprocessing

90 CodeWarrior Build Tools Reference for Power Architecture® Processors

9

Command-Line Options for
Library and Linking

-keepobjects

Retains or deletes object files after invoking the linker.

Syntax
-keepobj[ects]

-nokeepobj [ects]

Remarks

Use -keepobjects to retain object files after invoking the linker. Use
-nokeepobjects to delete object files after linking. This option is global.

NOTE Object files are always kept when compiling.

-nolink

Compiles the source files, without linking.

Syntax

-nolink

Remarks

This command is global.

CodeWarrior Build Tools Reference for Power Architecture® Processors 91

Command-Line Options for Library and Linking

Specifies the output filename or directory for storing object files or text output during
compilation, or the output file if calling the linker.

Syntax

-o file | dir
file

The output file name.
dir

The directory to store object files or text output.

92

CodeWarrior Build Tools Reference for Power Architecture® Processors

10

Command-Line Options for
Object Code

Instructs the compiler to compile but not invoke the linker to link the object code.

Syntax

-C

Remarks
This option is global.

-codegen

Instructs the compiler to compile without generating object code.

Syntax
-codegen

-nocodegen

Remarks
This option is global.

-enum

Specifies the default size for enumeration types.

CodeWarrior Build Tools Reference for Power Architecture® Processors 93

Command-Line Options for Object Code

Syntax
-enum keyword
The arguments for keyword are:
int
Uses int size for enumerated types.
min

Uses minimum size for enumerated types. This is the default.

-min_enum_size

Specifies the size, in bytes, of enumerated types.

Syntax

-min_enum_size 1 | 2 | 4

Remarks

Specifying this option also invokes the ~enum min option by default.

-ext
Specifies which file name extension to apply to object files.
Syntax
-ext extension
extension

The extension to apply to object files. Use these rules to specity the extension:

¢ Limited to a maximum length of 14 characters

* Extensions specified without a leading period replace the source file’s
extension. For example, if extension is “o” (without quotes), then
source. cpp becomes source. o.

* Extensions specified with a leading period (. extension) are appended to the
object files name. For example, if extensionis “.o” (without quotes), then
source. cpp becomes source. cpp.o.

94 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Object Code

Remarks

This command is global. The default setting is . o.

-strings
Controls how string literals are stored and used.

Remarks

-str[ings] keyword[, ...]
The keyword arguments are:
[no]pool

All string constants are stored as a single data object so your program needs one
data section for all of them.

[no]lreuse

All equivalent string constants are stored as a single data object so your program
can reuse them. This is the default.

[no]readonly

Make all string constants read-only. This is the default.

CodeWarrior Build Tools Reference for Power Architecture® Processors 95

Command-Line Options for Object Code

96 CodeWarrior Build Tools Reference for Power Architecture® Processors

11

Command-Line Options for
Optimization

-inline

Specifies inline options. Default settings are smart, noauto.

Syntax
-inline keyword
The options for keyword are:
off | none

Turns off inlining.
on | smart

Turns on inlining for functions declared with the inline qualifier. This is the

default.
auto
Attempts to inline small functions even if they are declared with inline.
noauto
Does not auto-inline. This is the default auto-inline setting.
deferred
Refrains from inlining until a file has been translated. This allows inlining of
functions in both directions.
level=n
Inlines functions up to n levels deep. Level O is the same as -inline on. For n,
enter 1 to 8 levels. This argument is case-sensitive.
all

Turns on aggressive inlining. This option is the same as ~inline on, -inline
auto. This does not turn on the aggressive_inline feature.

CodeWarrior Build Tools Reference for Power Architecture® Processors 97

Command-Line Options for Optimization

-ipa

Controls Interprocedural Analysis (IPA) that lets the compiler generate better

optimizations by evaluating all the functions and data objects in a file before generating

code.

Syntax

-ipa file | function | off

function | off
Per-function optimization. This is the default option.

file
Per file optimization.

Remarks
See “Interprocedural Analysis™ on page 281.

WARNING!
Using IPA mode from command-line tools is more complicated.
Use the of £ or function arguments to turn interprocedural analysis off. This is
the default setting.
Use the £11e argument to apply interprocedural analysis at the file level. For
example, if the name of the compiler is mwcc, this command:
mwcc -ipa file -c¢ filel.c file2.c
generates object code and applies this optimization to file filel . ¢ and then
file2. c, but does not apply the optimization across both files. For each source
file, this command generates a regular object code file (a file with a name that ends
with “.0” or “.obj”’), which is empty. It also generates an additional file ending with
“irobj”. This additional object code file contains the object code to which the
compiler has applied interprocedural analysis.
This example compiles the same source files again, applies file-level analysis, then
links object code into an output file named myprog:
mwcc -o myprog -ipa file -c filel.c file2.c

98 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Optimization

Sets optimization settings to —opt level=2.

Syntax

-0

Remarks

Provided for backwards compatibility.

Controls optimization settings.

Syntax

-O+keyword [, ...]

The keyword arguments are:

0

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

Equivalent to -opt

off.

level=1.

level=2.

level=3.

level=4,intrinsics.

speed.

space.

CodeWarrior Build Tools Reference for Power Architecture® Processors

99

Command-Line Options for Optimization

Remarks

Options can be combined into a single command. Command is case-sensitive.

-opt

Specifies code optimization options to apply to object code.

Remarks
-optkeyword [,...]
The keyword arguments are:
off | none
Suppresses all optimizations. This is the default.
on
Same as —opt level=2
all | full
Same as —opt speed, level=4,intrinsics,noframe
llevell=num
Sets a specific optimization level. The options for num are:

¢ 0 — Global register allocation only for temporary values. Equivalent to
#pragma optimization_level 0.

¢ 1 — Adds dead code elimination, branch and arithmetic optimizations,
expression simplification, and peephole optimization. Equivalent to #pragma
optimization_level 1.

¢ 2 — Adds common subexpression elimination, copy and expression propagation,
stack frame compression, stack alignment, and fast floating-point to integer
conversions. Equivalent to: #pragma optimization_level 2.

* 3 — Adds dead store elimination, live range splitting, loop-invariant code
motion, strength reduction, loop transformations, loop unrolling (with —opt
speed only), loop vectorization, lifetime-based register allocation, and
instruction scheduling. Equivalent to optimization_level 3.

e 4 —Like level 3, but with more comprehensive optimizations from levels 1 and
2. Equivalent to #pragma optimization_level 4.

For num options 0 through 4 inclusive, the default is 0.

[no]lspace

100

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line Options for Optimization

Optimizes object code for size. Equivalent to #pragma optimize_for_size
on.

[no] speed

Optimizes object code for speed. Equivalent to #pragma
optimize_for_size off.

[nolcse | [no]commonsubs

Common subexpression elimination. Equivalent to #pragma
opt_common_subs.

[no]deadcode
Removes dead code. Equivalent to #pragma opt_dead_code.
[no]deadstore

Removes dead assignments. Equivalent to #pragma
opt_dead_assignments.

[no]lifetimes

Computes variable lifetimes. Equivalent to #pragma opt_lifetimes.
[no]loop[invariants]

Removes loop invariants. Equivalent to #pragma opt_loop_invariants.
[nolproplagation]

Propagation of constant and copy assignments. Equivalent to #pragma
opt_propagation.

[no]lstrength

Strength reduction. Reducing multiplication by an array index variable to addition.
Equivalent to #pragma opt_strength_reduction.

[noldead

Same as -opt [no]deadcode and [no]deadstore. Equivalent to
#pragma opt_dead_code on | off and #pragma
opt_dead_assignments.

[nolpeep[hole]

Peephole optimization. Equivalent to #pragma peephole.
[no] schedule

Performs instruction scheduling.
display | dump

Displays complete list of active optimizations.

CodeWarrior Build Tools Reference for Power Architecture® Processors 101

Command-Line Options for Optimization

102 CodeWarrior Build Tools Reference for Power Architecture® Processors

12

Command-Line for Power
Architecture Processors

This chapter describes how to use the command-line tools to generate, examine, and
manage source code and object code for Power Architecture processors.

* Naming Conventions

* Specifying Source File Locations

¢ Licensing Command-Line Options

* Diagnostic Command-Line Options

¢ Library and Linking Command-Line Options
¢ Code Generation Command-Line Options

¢ Optimization Command-Line Options

Naming Conventions

Table 12.1 lists the names of the CodeWarrior command line tools.

Table 12.1 Power Architecture command line tools

This tool... does these tasks...

mwasmeppc translates assembly language source code into
object code

mwcceppc translates C and C++ source code into object code

mwldeppc links object code into a loadable image file

Specifying Source File Locations

The build tools use several environment variables at build time to search for include
files, libraries, and other source files. All of the variables mentioned here are lists which

are separated by semicolons (*“;) in Windows operating systems and colons (“:”) in
Solaris operating systems.

CodeWarrior Build Tools Reference for Power Architecture® Processors 103

A 4
4\

Command-Line for Power Architecture Processors
Licensing Command-Line Options

Unless -nodefaults is passed to on the command line, the compiler searches for an
environment variable called MWCEABIPPCIncludes or MWCIncludes (in that order).
These variables contain a list of system access paths to be searched after the system access
paths specified by the user. The assembler also does this, using the variables
MWAsmEABIPPCIncludes or MWAsmIncludes.

Analogously, unless -nodefaults or ~disassemble is given, the linker will search
the environment for a list of system access paths and system library files to be added to the
end of the search and link orders. The variable MWEABIPPCLibraries or
MWLibraries contains a list of system library paths to search for files, libraries, and
command files.

Associated with this list is the variable MWEABIPPCLibraryFiles or
MWLibraryFiles which contains a list of libraries (or object files or command files) to
add to the end of the link order. These files may be located in any of the cumulative access
paths at runtime.

If you are only building for one target, it is okay to use MWCIncludes,
MWAsmIncludes, MWLibraries, and MWLibraryFiles. The target-specific
versions of the variables come in handy when targeting multiple targets, since the target-
specific variables override the generic variables. Note that if the target-specific variable
exists, the generic variable will not be used; the contents of the two variables will not be
combined.

Licensing Command-Line Options

-fullLicenseSearch

Continues the search for a license file on the host computer.

Syntax

-fulllLicenseSearch

Remarks

A license file unlocks features and capabilities in CodeWarrior tools. This option
extends the normal search for a valid 1 icense . dat file.

Each time they are invoked, the command-line compiler, stand-alone assembler,
and linker search on the host computer in this order until they find a valid license
file in this order:

* the directory specified in a -1icense option

* the directory containing the command-line tool

104

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Diagnostic Command-Line Options

* the current working directory
* the directory containing the CodeWarrior IDE

When this option is not used, the tool stops when it finds a valid license file. With
this option, the tool searches all paths to read all valid licenses.

-license

Specifies a location on the host computer to search for a license file.

Syntax
-license location

where location is the path of a directory that contains a valid license file named
license.dat.

Remarks

A license file unlocks features and capabilities in CodeWarrior tools.

Diagnostic Command-Line Options

g
Generates DWARF 1.x-conforming debugging information.
Syntax
-g[dwarf]
Remarks
This option is global. This option is equivalent to
-sym dwarf-1, full
-gdwarf-2

Generates DWARF-2.x-conforming debugging information.

CodeWarrior Build Tools Reference for Power Architecture® Processors 105

A 4
4\

Command-Line for Power Architecture Processors
Diagnostic Command-Line Options

Syntax
-gdwarf-2

Remarks

This option is global. This option is equivalent to

-sym dwarf-2, full

-fmt
Equivalent to the -format option.

Syntax

-fmt x | nox

-format
Specifies the style of mnemonics to show in disassemblies.

Syntax

-format x | nox

Remarks
To show extended mnemonics in a disassembly, use
-format x
This option is the default.
To show regular mnemonics in a disassembly, use
-format nox

This is a linker option.

-listclosure

Controls the appearance of symbol closures in the linker’s map file.

106 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Diagnostic Command-Line Options

Syntax
-listclosure

-nolistclosure

Remarks

This option also generates a map file if the —-map option has not already been
specified.

This is a linker option.

-listdwarf
Controls the appearance of DWARF debugging information in the linker’s map file.

Syntax
-listdwarf

-nolistdwarf

Remarks

This option also generates a map file if the —-map option has not already been
specified.

This is a linker option.

-map
Generates a text file that describes the contents of the linker’s output file.

Syntax

-map [filename]

Remarks

The default value for filename is the name of the linker’s output file with a . MAP
file name extension.

This is a linker option.

CodeWarrior Build Tools Reference for Power Architecture® Processors 107

y
A

Command-Line for Power Architecture Processors
Diagnostic Command-Line Options

-mapunused
Controls the appearance of a list of unused symbols in the map file.

Syntax
-mapunused

-nomapunused

Remarks

This option also generates a map file if the -map option has not already been
specified.

This is a linker option.

-sym
Specifies global debugging options.

Syntax

-sym keyword[,...]

The choices for keyword are:

off

Do not generate debugging information. This option is the default.
on

Generate DWARF-1-conforming debugging information.
dwarf-1

Generate DWARF-1-conforming debugging information.
full [path]

Store absolute paths of source files instead of relative paths.
dwarf-2

Generate DWARF-2-conforming debugging information.

108 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

-unused
Equivalent to the -mapunused option.

Syntax
-unused

-nounused

Library and Linking Command-Line Options

-codeaddr
Sets the runtime address of the executable code.

Syntax
-codeaddr addr

Remarks

The addr value is an address, in decimal or hexadecimal format. Hexadecimal
values must begin with 0x. The default is 65536.

The linker ignores this option if you invoke the linker with the —1c £ option.

This is a linker option.

-ConvertArchiveToPartialLink

Extracts all objects from the library files (.a) and then puts them into a partially linked file
(plf).

Syntax

-ConvertArchiveToPartiallink archives -o filename

where archives is the list of archive files, and filename is the name of the output PLF file.

CodeWarrior Build Tools Reference for Power Architecture® Processors 109

A 4
4\

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

Example

Smwldeppc.exe -ConvertArchiveToPartialLink
MSL_C.PPCEABI.bare.E.UC.a Runtime.PPCEABI.E.UC.a -0
XXX.plf

Remarks

This linker command can be used for a project with only archive files (MSL C
archive) as the project would normally generate an empty pl1f.

Use -o option to specify the name of the output PLF file. If -o option is not
provided to the linker then the linker will generate the file with a default a . out
filename.

While working with this linker command, if we link any object file (* . o), other
than archive (* . a), then the output file (* . p1£) will even contain the contents of
linked object file, along with the usual archive contents.

It has been observed that all .pl1f files converted from the MSL archives have the
.ctorand .dtor section. .plf files converted from Wii archives do not have
the .ctor and . dtor section.

While working with the CodeWarrior IDE:
« the output file is set by default to debug. el £, it should be changed to *.plf.

¢ the PLF also contains dwarf info because default dwarf info option is enabled.

-dataaddr

Sets the loading address of the data.

Syntax
-dataaddr addr

Remarks

The addr value is an address, in decimal or hexadecimal format. Hexadecimal
values must begin with 0x. The default is the address after the code and large
constant sections.

The linker ignores this option if the linker is invoked with the -1c £ option.

This is a linker option.

110

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

-genbinary
Controls the generation of a binary file.

Syntax

-genbinary none one | multiple

Remarks
To generate no binary file even if s-record generation is on, use
-genbinary none
This option is the default.

To generate a single binary file with all the loadable code and data, even if s-record
generation is of £, use

-genbinary one

To generate separate binary files for each MEMORY directive, even if s-record
generation is off, use

-genbinary multiple

This is a linker option.

-heapaddr
Sets the runtime address of the heap.

Syntax
-heapaddr addr

Remarks

The addr value is an address, in decimal or hexadecimal format. Hexadecimal
values must begin with 0x. The default is

stack_address - (heap_size + stack_size)

where stack_address is the address of the stack, heap_size is the size of the heap,
and stack_size is the size of the stack.

This is a linker option.

CodeWarrior Build Tools Reference for Power Architecture® Processors 111

y
A

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

-heapsize

Sets the runtime size of the heap, in kilobytes.

Syntax

-heapsize size

Remarks

The default value for size is 1024.

This is a linker option.

-lcf

Uses the code and data addresses specified in a linker command file.

Syntax

-1lcf filename

Remarks

The filename argument is the name of a linker command file. The file must have a
. 1cf file name extension. The linker ignores the -codeaddr, ~dataaddr,
-sdataaddr, and -sdata2addr options if it uses the -1c £ option.

This is a linker option.

-library

Generates a static library.

Syntax
-library

Remarks

This option is global. This is a linker option.

112

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

-linkmode

Controls the performance of the linker.

Syntax
-linkmode keyword
The choices for keyword are:
lessram
Use little memory but take more processing time.
normal
Use a medium amount of memory for medium processing time. This is the default.
moreram

Use lots of memory to improve processing time.

Remarks

This is a linker option.

-main

Specifies the main entry point for the executable image.

Syntax
-m[ain] symbol

Remarks
The maximum length of symbol is 63 characters. The defaultis __start.

This is a linker option.

-model

Specifies the addressing mode that the linker uses when resolving references.

CodeWarrior Build Tools Reference for Power Architecture® Processors 113

A 4
4\

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

Syntax
-model keyword
The choices for keyword are:
absolute
Use absolute executable and data addressing. This choice is the default.
sda_pic_pid

Use position-independent addressing executable code and data.

Remarks

This is a linker option.

-noentry

Specifies no entry point for the executable image.

Syntax

-noentry

Remarks

The linker uses the main entry point to determine which objects/functions to add to
your application that are referenced from that entry point. In absence of an entry
point, the application will be empty (completely deadstripped) resulting in an
linker error.

There are several ways to pass other entry points to the linker for objects that are
not referenced from the main entry point.

¢ use the linker command file directives TERM or INIT
e use __declspec (export)
¢ use the Icf directives FORCEFILES or FORCEACTIVE

For example, if you have a simple reset vector function which simply calls your
startup code (call the startup code __start and __reset for the reset vector function
for this example), you could do the following :

e use -m __start at the command prompt
e use ENTRY (__start) in the Linker Command File
e use INIT(__ reset) at the command prompt

¢ use FORCEACTIVE (__reset) in the Linker Command File

114

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

e use _ declspec (export) void __ reset(void) {__start;} in
the source.

-nomain
Equivalent to —noentry.

Syntax

-nomain

-opt_partial
Finishes a partial link operation.

Syntax
-opt_partial

Remarks

This option allows the use of a linker command file, creates tables for C++ static
constructors, C++ static destructors, and C++ exceptions. This option also tells the
linker to build an executable image even if some symbols cannot be resolved.

This is a linker option.

-partial
Does not report error messages for unresolved symbols.

Syntax

-partial

Remarks

This option tells the linker to build a reloadable object file even if some symbols
cannot be resolved.

This is a linker option.

CodeWarrior Build Tools Reference for Power Architecture® Processors 115

y
A

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

Equivalent to -partial.

Syntax
-r
Remarks

This option tells the linker to build a reloadable object file even if some symbols
cannot be resolved.

This is a linker option.

Equivalent to -opt_partial.

Syntax
-rl

Remarks

This option allows the use of a linker command file, creates tables for C++ static
constructors, C++ static destructors, and C++ exceptions. This option tells the
linker to build a reloadable object file even if some symbols cannot be resolved.

This is a linker option.

Equivalent to ~-resolved_partial.

Syntax
-r2
Remarks

This option first allows the use of a linker command file, creates tables for C++
static constructors, C++ static destructors, and C++ exceptions.

116

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

This is a linker option.

-resolved_partial
Finishes a partial link operation and issues error messages for unresolved symbols.

Syntax

-resolved_partial

Remarks

This option first allows the use of a linker command file, creates tables for C++
static constructors, C++ static destructors, and C++ exceptions.

This is a linker option

-sdataaddr

Sets the loading address of small data.

Syntax
-sdataaddr addr

Remarks

The addr value is an address, in decimal or hexadecimal format. Hexadecimal
values must begin with 0x. The default is the address after the large data section.

The linker ignores this option if the linker is invoked with the -1cf option.

This is a linker option.

-sdata2addr

Sets the loading address of small constant data.

Syntax
-sdata2addr addr

CodeWarrior Build Tools Reference for Power Architecture® Processors 117

y
A

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

Remarks

The addr value is an address, in decimal or hexadecimal format. Hexadecimal
values must begin with 0x. The default is the address after the small data section.

The linker ignores this option if the linker is invoked with the -1c £ option.

This is a linker option.

-sdatathreshold

Limits the size of the largest objects in the small data section.

Syntax

-sdata[threshold] size

Remarks

The size value specifies the maximum size, in bytes, of all objects in the small data section
(typically named “.sdata”). The linker places objects that are greater than this size in the
data section (typically named “.data”) instead.

You can override this option for a variable in your source code like this

__declspec(section ".sdata") extern int bigobj[25];
The default value for size is 8.

This is a linker option.

-sdata2threshold

Limits the size of the largest objects in the small constant data section.

Syntax

-sdata2 [threshold] size

Remarks

The size value specifies the maximum size, in bytes, of all objects in the small constant
data section (typically named “.sdata2”). The linker places constant objects that are greater
than this size in the constant data section (typically named “.rodata”) instead.

You can override this option for a variable in your source code like this

_ _declspec(section ".sdata2") extern int bigobj[] =

118

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9 1};
The default for size is 8.

This is a linker option.

-show

Specifies the information to list in a disassembly.

Syntax

-show keywordl[, ...]
The choices for keyword are:
only | none

Shows no disassembly. Begin a list of choices with only or none to prevent
default information from appearing in the disassembly.

all

Shows binary, executable code, detailed, data, extended, and exception information
in the disassembly.

binary | nobinary

Shows or does not show address and op-code values.
code | nocode

Shows or does not show executable code sections.
text | notext

Equivalent to the code and nocode choices, respectively.
data | nodata

Shows or does not show data sections.
detail | nodetail

Shows or does not show extra information.
extended | noextended

Shows or does not show extended mnemonics.
exceptions | noexceptions

Shows or does not show C++ exception tables. This option also shows data
sections.

CodeWarrior Build Tools Reference for Power Architecture® Processors 119

y
A

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

xtab[les] | noxtab[les]

Equivalent to the exceptions and noexceptions choices, respectively.
headers | noheaders

Shows or does not show object header information.
debug | nodebug

Shows or does not show debugging information.
dwarf | nodwarf

Equivalent to the debug and nodebug choices, respectively.
tables | notables

Shows or does not show character string and symbol tables.
source | nosource

Interleaves the code dissassembly with ¢ or c++ source code.

Remarks
The default setting for this option is

-show binary, code,data, extended, headers, tables

This is a linker option.

-sortsrec
Sort the records in an S-record file in ascending address order.

Syntax

-sortsrec

Remarks

This option also generates an S-record file if the -srec option has not already
been specified. This is a linker option.

-srec

Generates an S-record file.

120 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

Syntax

-srec [file-name]

Remarks

The default value for file-name is the name of the linker’s output file with a .mot
file name extension.

This is a linker option.

-sreceol

Specifies the end-of-line style to use in an S-record file.

Syntax
-sreceol keyword
The choices for keyword are:
mac
Use Mac OS®-style end-of-line format.
dos
Use Microsoft® Windows®-style end-of-line format. This is the default choice.
unix

Use a UNIX-style end-of-line format.

Remarks

This option also generates an S-record file if the -srec option has not already
been specified.

This is a linker option.

-sreclength
Specity the length of S-records.
Syntax

-sreclength value

The choices for value are from 8 to 255. The default is 26.

CodeWarrior Build Tools Reference for Power Architecture® Processors 121

y
A

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

Remarks

This option also generates an S-record file if the —-srec option has not already
been specified.

This is a linker option.

-stackaddr

Sets the runtime address of the stack.

Syntax

-stackaddr addr

Remarks

The addr value is an address, in decimal or hexadecimal format. Hexadecimal
values must begin with 0x. The default is 0x3d££0.

This is a linker option.

-stacksize

Sets the runtime size of the stack, in kilobytes.

Syntax

-stacksize size

Remarks
The default value for size is 64.

This is a linker option.

-strip_partial
Removes unreferenced objects on a partially linked image.

Syntax

-strip_partial

122 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

Remarks

Use this option with either the —opt_partial or -resolved_partial
options.

This is a linker option.

-tune_relocations

Ensures that references made by the linker conform to the PowerPC EABI (Embedded
Application Binary Interface) or position-independent ABI (Application Binary Interface).

Syntax

-tune_relocations

Remarks

Use this option only with the ~abi eabi and -abi sda_pic_pid option to
ensure that references in the executable image conform to these ABIs.

To conform to both of these ABIs, the linker will modify relocations that do not
reach the desired executable code. The linker first converts near branch
instructions to far branch instructions. Then it will convert absolute branches to
PC-relative branches. For branches that cannot be converted to far or PC-relative
addressing, the linker will generate branch islands.

To conform to the SDA PIC/PID ABI, the linker will generate the appropriate style
of addressing.

This option is global. This is a linker option.

-xtables

Equivalent to ~show exceptions or -~-show noexceptions.

Syntax

-xtables on | off

Remarks

This is a linker option.

CodeWarrior Build Tools Reference for Power Architecture® Processors 123

y
A

Command-Line for Power Architecture Processors
Library and Linking Command-Line Options

-stdlib

Uses standard system library access paths as specified by the environment variable
$MWLibraries$% to add system libraries as specified by the environment variable
$MWLibraryFiles% at the end of link order.

Syntax

-stdlib

-nostdlib

Remarks

This command is global. This is a linker option.

Adds a new library search path to the default settings list.

Syntax
-L+path
-1 path
The parameters are:
path
The search path to append.

Remarks

This command is global and case-sensitive.

Adds a recursive library search path to the default settings list.

Syntax
-1lr path

The parameters are:

124 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

path

The recursive library search path to append.

Remarks

This command is global. This is a linker option.

Adds a library by searching access path for a specified library filename.

Syntax
-l+file

The parameters are:
file

Name of the library file to search.

Remarks

The linker searches access path for the specified 1ib<file>.<ext>, where
<ext> is a typical library extension. If the file is not found then search for
<file>. This command is case-sensitive.

Code Generation Command-Line Options

-abi

Chooses which ABI (Application Binary Interface) to conform to.

Syntax
-abi keyword
The choices for keyword are:
eabi
Use the Power Architecture Embedded ABI. This choice is the default.
SysV
Use the UNIX System V ABI without GNU extensions.

CodeWarrior Build Tools Reference for Power Architecture® Processors 125

y
A

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

SuSE

Use the SuSE® Linux ABI with GNU extensions.
YellowDog

Use the Yellow Dog™ Linux ABI with GNU extensions
sda_pic_pid

Use position-independent addressing executable code and data.

Remarks
This option is global.

-align
Specifies structure and array alignment.

Syntax
-align keyword[,...]
The choices for keyword are:
power [pc]
Use conventional Power Architecture alignment. This choice is the default.
mac68k
Use conventional Mac OS® 68K alignment.
mac68kdbyte
Use Mac OS® 68K 4-byte alignment.
array [members]

Align members of arrays, too.

-altivec_move_block
Controls the use of Altivec instructions to optimize block moves.

Syntax
—altivec_move_block

-noaltivec_move_block

126 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

Remarks

The default setting is -noaltivec_move_block.

-big

Generates object code and links an executable image to use big-endian data formats.
Syntax
-big

Remarks

This is the default setting for the compiler and linker.

-common

Moves uninitialized data into a common section.

Syntax

-common on | off

Remarks
The default is of £.

-fatext

Use eppc . o as the file name extension for object files.

Syntax

-fatext

Remarks

Normally, the compiler generates object code files that have a file name extension
of . o. This option tells the compiler to use eppc . o as a file name extension
instead. If the compiler is invoked with this option and the compiler invokes the

CodeWarrior Build Tools Reference for Power Architecture® Processors 127

y
A

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

linker, the linker will search for object files that use the eppc . o file name
extension.

Controls floating-point code generation.

Syntax
-fp keyword
The choices for keyword are:
none | off
No floating point code generation.
soft [ware]
Use software libraries to perform floating-point operations. This is the default.
hard([ware]

Use the processor’s built-in floating-point capabilities to perform floating-point
operations.

dpfp

Use the processor’s double-precision floating-point capabilities on the e500v2
processor.

spfp

Use software libraries for floating-point operations that use the double data type
and use the e500 SPE-EFPU floating-point capabilities for other floating-point
operations.

spfp_only

Use to have the compiler consider double and 1ong double data types as
floating point. This option is only supported for €200 (Zen or VLE) and
e500v1 processors that support SPFP APU.

NOTE When you downgrade from double data type to a floating point you will lose
precision and range. If your expected numbers are within the range supported
bya floating point data type, then this option might dramatically speed
up and shrink your code. Do not use this option if you have instances in your
project that depend on the size of a double data type.

128 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

fmadd

Equivalent to -fp hard -fp_contract.

Remarks

When using the -fp spfp_only option, the size of a double data type
changestoa floating point data type, if you have existing code that is
expecting to find certain bits at certain locations of the exponent or significand,
then you will have to change that code to expect 4 byte doubles. Your code can
make a test as shown in Listing 12.1.

Listing 12.1 Example Test Code

if (sizeof (double) == 4) {

} else {

}

The 500 and VLE library project files have targets and pre-built libraries (with SP
in the name) that support this feature. Ensure you pick the right libraries to include
in a project that supports this feature else you may call a function with a 8 byte
double parameter and only passa 4 byte double argument. The linker will
report with a warning if you mix up the libraries - make sure you have linker
warnings enabled.

If you have a library that doesn't use floating point, try setting it to none for the
floating point model by using the -fp none option. Libaries with none floating
point do not cause a warning when added to projects using another floating point
model.

The sample code in Listing 12.2 assumes that you are using the -fp spfp_only
option and have included SP libraries. Your existing code makes a call to a MSL
math function and a user defined function that takes a double argument and
returns a double data type.

Listing 12.2 Sample Code

#include <math.h>
extern double my_func (double) ;
extern double dl, d2;

void main ()

{

di
d2

= pow(d2, 2.0);
my_func(dl) ;

CodeWarrior Build Tools Reference for Power Architecture® Processors 129

A 4
4\

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

Following can be observed while executing the sample code in Listing 12.2:

e 2.0 will be treated as a 4 byte double constant (exactly like 2. 0f).

* Storage for d1 and d2 will be 4 bytes each (exactly like floats).

e MSL will either inline or call a stub function for pow which will call powf.

e my_func will receive and return a 4 byte double. Aslong as my_func
doesn't do bit twiddling or require numbers not representable in a float, it will do
its job correctly.

NOTE If you are using a Zen processor and are using the -fp spfp_only option,
ensure passing -spe_addl_vector instead of -spe_vector in order to
have the compiler generate Multiply-Add instructions.

-fp_contract
Generates fused multiply-addition instructions.

Syntax

-fp_contract

Remarks

This option is the same as the -maf option.

-func_align
Specifies alignment of functions in executable code.

Syntax
-func_align 4 | 8 | 16 | 32 | 64 | 128

Remarks

The default alignment is 4. However, at an optimization level 4, the alignment
changes to 16. If you are using -func_align 4 (or none) and if you are
compiling for VLE, then the linker will compress gaps between VLE functions:

« if those functions are not called by a Classic PPC function

* the function has an alignment greater than 4.

130 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

NOTE Compression of the gaps will only happen on files compiled by the
CodeWarrior compiler.

-gen-fsel

Deprecated. Use —use_fsel instead.

Syntax
-gen-fsel

-no-gen-fsel

-little
Generates object code and links an executable image to use little-endian data formats.
Syntax
-little

-maf

Controls the use of fused multiply-addition instructions.

Syntax

-maf on | off

Remarks

The -maf on option tells the compiler to generate fused multiply-addition
operations instead of separate multiplication and addition instructions. The -ma f
of f option tells the compiler to use separate multiplication and addition
instructions.

CodeWarrior Build Tools Reference for Power Architecture® Processors 131

y
A

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

-ordered-fp-compares
Controls the assumption of no unordered values in comparisons.

Syntax
-ordered-fp-compares

-no-ordered-fp-compares

Remarks

The default is -no-ordered-fp-compares.

-pool
Controls the grouping of similar-sized data objects.

Syntax
-pool[data] on | off

Remarks

Use this option to reduce the size of executable object code in functions that refer
to many object of the same size. These similar-sized objects do not need to be of

the same type. The compiler only applies this option to a function if the function

refers to at least 3 similar-sized objects. The objects must be global or static.

At the beginning of the function, the compiler generates instructions to load the
address of the first similar-sized object. The compiler then uses this address to
generate 1 instruction for each subsequent reference to other similar-sized objects
instead of the usual 2 instructions for loading an object using absolute addressing.

This option is equivalent to the pool_data pragma.

The default is on.

-processor

Generates and links object code for a specific processor.

132 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

Syntax
-proc[essor] keyword

The choices for keyword are:

401 | 403 | 405 | 505 | 509 | 5100 | 5200 | 555 | 56x |
601 | 602 | 603 | 603e | 604 | 60de | 740 | 74x | 750 |
75x | 801 | 821 | 823 | 850 | 85x | 860 | 86x | 87x | 88x
| 7400 | 744x | 7450 | 745x | 82xx| 8240 | 824x | 8260 |
827x | 8280 | 85xx | e300vl | e300cl | e300c2 | e300c3 |
e300c4 | e500vl | e500v2 | e600 | Zen | 5565 | gekko |
generic

Remarks

The keyword parameter specifies the processor core. The default for keyword is
generic. To identify which core your target device uses, refer to the product
page of the target device on the Freescale web site.

If you specity the keyword as e500v1, e500v2, or Zen, the compiler uses
unsigned as the default parameter for the -char switch.

The e300v1 keyword is deprecated.

-profile

Controls the appearance of calls to a profiler library at the entry and exit points of each
function.

Syntax

-profile on | off

Remarks

The default is of £.

-ppc_asm_to_vle

Converts regular Power Architecture assembler mnemonics to equivalent VLE (Variable
Length Encoded) assembler mnemonics in the inline assembler.

Syntax

-ppc_asm_to_vle

CodeWarrior Build Tools Reference for Power Architecture® Processors 133

A 4
4\

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

Remarks

While translating assembly statements in C or C++ source code, the compiler will
replace each regular Power Architecture assembler mnemonic with its matching
VLE instruction if one exists. The mnemonics for VLE (Variable Length
Encoding) instructions begin with “se_" or “e_". The compiler’s inline assembler
recognizes these mnemonics when the compiler is configured to generate VLE
object code.

”»

VLE instructions give extra flexibility in instruction encoding and alignment,
allowing the compiler and linker to greatly reduce the size of runtime object code
with only a small penalty in execution performance.

-rambuffer

Specifies a runtime address in which to store the executable image in RAM so that it may
be transferred to flash memory.

Syntax

-rambuffer addr

Remarks

This option specifies information for a legacy flashing tool (some development
boards that used the Power Architecture 821 processor). This tool required that the
executable image must first be loaded to an area in RAM before being transferred
to ROM. Do not use this option if your flash memory tool does not follow this
behavior.

The CodeWarrior tools ignore this option if it is not used with the -romaddr
option.

-readonlystrings

Places string constants in a read-only section.

Syntax

-readonlystrings

134 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

-relax_ieee
Controls the use of relaxed IEEE floating point operations.

Syntax
-relax_ieee

-norelax_ieee

Remarks

The defaultis ~-relax_ ieee.

-romaddr

Generates a ROM image and specifies the image’s starting address at runtime.

Syntax

-romaddr addr

-rostr
Equivalent to the ~-readonlystrings option.
Syntax
-rostr

-schedule

Controls the rearrangement of instructions to reduce the effects of instruction latency.

Syntax

-schedule on | off

CodeWarrior Build Tools Reference for Power Architecture® Processors 135

y
A

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

Remarks
The defaultis of £.

-spe_vector
Enables the SPE vector support.

Syntax

-spe_vector

Remarks

This option needs to be enabled when the floating point is set to SPFP or DPFP as
both SPFP and DPFP require support from the SPE vector unit. If the option is not

turned on, the compiler generates a warning and automatically enables the SPE
vector generation.

-spe2_vector
Enables the SPE2 vector support

Syntax

-spe2_vector

Remarks
In order to use the SPE2 intrinsics:
¢ Include <spe.h> in the source file.
¢ From the EPPC Processor settings panel:
— Select Zen from the Processor list box.

— Select spe2 from the vector list box.

NOTE SPE2 instructions are supported in standalone assembler and compiler's inline

assembler. These instructions are currently not fully validated, users must use
them at their own risks.

136 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

-spe_addl_vector
Enables the additional SPE fused multiply-add and multiply-subtract instuctions support.

Syntax

-spe_addl_vector

Remarks

The €200 z3 and z6 cores support 8 additional SPE fused multiply-add and
multiply-subtract instructions. This option tells the compiler to generate the
additional SPE instructions, when appropriate, for more optimized codes.

This option also turns on the -spe_vector option.

-strict_ieee
Specifies the use of strict IEEE floating point operations.

Syntax

-strict_ieee

Remarks

This option is the same as the -norelax_ieee option.

-use_Imw_stmw

Controls the use of multiple load and store instructions for function prologues and
epilogues.
Syntax

-use_lmw_stmw on | off

Remarks

This option is only available for big-endian processors. This option is not available
for big-endian e500v1 and e500v2 architectures when vector and double-precision
floating-point instructions are used. The default is off.

CodeWarrior Build Tools Reference for Power Architecture® Processors 137

y
A

Command-Line for Power Architecture Processors
Code Generation Command-Line Options

-use fsel

Controls the use of f£sel instructions.

Syntax

-use_fsel on | off

Remarks

Do not turn on this option if the Power Architecture processor of your target
platform does not have hardware floating-point capabilities that includes fsel.
This option only has an effect if ~-relax_ieee is also specified on the command
line. The defaultis of £.

-use_isel

Controls the use of isel instructions.

Syntax

-use_isel on | off

Remarks

Do not turn on this option if the Power Architecture processor of your target
platform does not implement the Freescale ISEL APU. The default is of £.

-vector
Specifies AltiVec™ vector options.
Syntax
-vector keywordl[, ...]
The options for keyword are:
on
Generate AltiVec vectors and related instructions.
138 CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Optimization Command-Line Options

off

Do not generate AltiVec vectors and related instructions.

vrsave

Generate AltiVec vectors and instructions that use VRSAVE prologue and epilogue
code.

novrsave

Do not use VRSAVE code. This option is the default.

-vie
Controls the use of the Variable Length Encoded (VLE) instruction set.

Syntax

-vle

Remarks

This option tells the compiler and linker to generate and lay out Variable Length
Encoded (VLE) instructions, available on Zen variants of Power Architecture
processors. VLE instructions give extra flexibility in instruction encoding and
alignment, allowing the compiler and linker to greatly reduce the size of runtime
object code with only a small penalty in execution performance.

This option also turns on the -processor Zen option.

Optimization Command-Line Options

-code_merging
Removes duplicated functions to reduce object code size.

Syntax
-code_merging keyword[,...]

The choices for keyword are:

CodeWarrior Build Tools Reference for Power Architecture® Processors 139

3
4

y
A

Command-Line for Power Architecture Processors
Optimization Command-Line Options

all

Use the all argument to specify that the linker should remove all duplicate
functions except one.

safe

Use the safe argument to specify that only duplicate functions marked as weak
should be reduced to one function.

aggressive

Use the aggressive option to specify that the linker should ignore references to
function addresses when considering which duplicate functions to remove.

off

Use the of £ argument to disable code merging optimization.

Remarks

This linker optimization removes duplicate copies of functions with identical
executable code.

The linker does not apply this optimization to functions that have been declared
with the __declspec (no_linker_opts) directive.

By default the code merging optimization is off.

-far_near_addressing

Simplifies address computations to reduce object code size and improve performance.

Syntax
-far_near_addressing

-nofar_near_addressing

Remarks

This linker optimization simplifies address computations in object code. If an
address value is within the range that can be stored in the immediate field of the
load immediate instruction, the linker replaces the address’s two-instruction
computation with a single instruction. An address value that is outside this range
still requires two instructions to compute.

The ranges of values that may be stored in the immediate field is -0x7££f to
0x8000 for the regular 11 instruction and -0x7£££f to 0x80000 fore_11,
the VLE (Variable Length Encoding) instruction.

140

CodeWarrior Build Tools Reference for Power Architecture® Processors

Command-Line for Power Architecture Processors
Optimization Command-Line Options

The linker does not apply this optimization to functions that have been declared
with the __declspec (no_linker_opts) directive.

-vle_bl_opt
Replaces branch instructions to reduce object code size.

Syntax
-ble_bl_opt
-noble_bl_opt

Remarks

This linker optimization replaces each 32-bit e_b1 instruction with a 16-bit
se_Dbl instruction for a function call when the span of memory between the
calling function and called function is sufficiently close.

This optimization requires that the target processor has the Variable Length
Encoding (VLE) extension.

The linker does not apply this optimization to functions that have been declared
with the __declspec (no_linker_opts) directive.

-vle_enhance_merging

Removes duplicated functions that are called by functions that use VLE instructions to
reduce object code size.

Syntax

-vle_enhance_merging

-novle_enhance_merging

Remarks

When applying the code merging optimization (-code_merging), this linker
optimization ensures that function calls that use VLE (Variable Length Encoding)
instructions will still be able to reach a function that has been removed. This
optimization replaces the 16-bit se_b1 instruction with a 32-bit e_b1 instruction.

When this option is not used, the linker does not merge functions that are called by
functions that use VLE instructions.

CodeWarrior Build Tools Reference for Power Architecture® Processors 141

y
A

Command-Line for Power Architecture Processors
Optimization Command-Line Options

This optimization requires that the target processor has the Variable Length
Encoding (VLE) extension. This optimization has no effect when the linker is not
applying the code merging optimization.

The linker does not apply this optimization to functions that have been declared
with the __declspec (no_linker_opts) directive.

-volatileasm

Controls whether or not inline assembly statements will be optimized.

Syntax
-volatileasm

-novolatileasm

142 CodeWarrior Build Tools Reference for Power Architecture® Processors

13

Assembler

This chapter descibes the assembler:
e Syntax
* Directives

* Macros

¢ GNU Compatibilit

Syntax

This section describes the syntax of assembly language statements. It consists of these
topics:

* Assembly [anguage Statements

e Statement Syntax

* Symbols

¢ Constants

* Expressions
¢ Comments

¢ Data Alignment

Assembly Language Statements

The three types of assembly language statements are:
¢ Machine instructions
¢ Macro calls
* Assembler directives

Instructions, directives, and macro names are case insensitive: the assembler considers
LWZ, Lwz, and Iwz to be the same instruction

CodeWarrior Build Tools Reference for Power Architecture® Processors 143

y
A

Assembler
Syntax

Listing 13.1

Remember these rules for assembly language statements:
1. The maximum length of a statement or an expanded macro is 512 characters.

2. A statement must reside on a single line. However, you can concatenate two or more
lines by typing a backslash (\) character at the end of the line.

3. Each line of the source file can contain only one statement unless the assembler is
running in GNU mode. (This mode allows multiple statements on one line, with
semicolon separators.)

Statement Syntax

Listing 13.1 shows the syntax of an assembly language statement. Table 13.1 describes the
elements of this syntax.

Statement Syntax

statement
comment]

operation

operand

::= [symbol] operation [operand] [,operand]... |[

machine instruction | assembler _directive | macro_call

::= symbol | constant | expression | register_ name

Table 13.1 Syntax Elements

Element Description

symbol A combination of characters that represents a value.
machine_instruction A machine instruction for your target processor.
assembler_directive A special instruction that tells the assembler how to process

other assembly language statements. For example, certain
assembler directives specify the beginning and end of a

macro.

macro_call A statement that calls a previously defined macro.

constant A defined value, such as a string of characters or a numeric
value.

expression A mathematical expression.

144

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler

Syntax
Table 13.1 Syntax Elements (continued)
Element Description
register_name The name of a register; these names are processor-
specific.
comment Text that the assembler ignores, useful for documenting
your code.

Symbols

A symbol is a group of characters that represents a value, such as an address, numeric
constant, string constant, or character constant. There is no length limit to symbols.

The syntax of a symbol is:
symbol ::= label | equate
In general, symbols have file-wide scope. This means:

1. You can access the symbol from anywhere in the file that includes the symbol
definition.

2. You cannot access the symbol from another file.

However, it is possible for symbols to have a different scope, as described in the following
sub-sections.

* Labels

¢ Non-Local Labels
* Local Labels

* Relocatable Labels

* Equates
¢ (Case-Sensitive Identifiers

Labels

A label is a symbol that represents an address. A label’s scope depends on whether the
label is local or non-local.

The syntax of a label is:

label ::= local _label [:] | non-local_label[:]

The default settings are that each label ends with a colon (:), a label can begin in any
column. However, if you port existing code that does not follow this convention, you
should clear the Labels must end with "' checkbox of the Assembler settings. After you

CodeWarrior Build Tools Reference for Power Architecture® Processors 145

3
4

y
A

Assembler
Syntax

clear the checkbox, you may use labels that do not end with colons, but such labels must
begin in column 1.

Non-Local Labels

A non-local label is a symbol that represents an address and has file-wide scope. The first
character of a non-local label must be a:

¢ letter (a-z or A-Z),
e period (.),
¢ question mark (?), or an
¢ underscore (_).
Subsequent characters can be from the preceding list or a:
¢ numeral (0-9), or

e dollar sign ($).

Local Labels

A local label is a symbol that represents an address and has local scope: the range forward
and backward within the file to the points where the assembler encounters non-local
labels.

The first character of a local label must be an at-sign (@). The subsequent characters of a
local label can be:

¢ letters (a-z or A-Z)
¢ numerals (0-9)

¢ underscores (_)

¢ question marks (?)
« dollar sign. ($)

e periods (.)

NOTE You cannot export local labels; local labels do not appear in debugging tables.

Within an expanded macro, the scope of local labels works differently:
* The scope of local labels defined in macros does not extend outside the macro.

* A non-local label in an expanded macro does not end the scope of locals in the
unexpanded source.

Listing 13.2 shows the scope of local labels in macros: the @ SKIP label defined in the
macro does not conflict with the @SKIP label defined in the main body of code.

146

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Syntax

Listing 13.2 Local Label Scope in a Macro

MAKEPOS .MACRO

cmpwi 0,r3,0
bge @SKIP
neg r3,r3
@QSKIP: ; Scope of this label is within
; the macro
. ENDM
START:
1wz r3, COUNT
cmpw 0,r3, r4d
beg @SKIP
MAKEPOS
@SKIP: ; Scope of this label is START to
; END excluding lines arising
; from macro expansion
addic r3,r3,1
END: blr

Relocatable

Labels

The assembler assumes a flat 32-bit memory space. You can use the expressions of Table

13.2 to specity the rel

ocation of a 32-bit label.

NOTE The assembler for your target processor may not allow all of these expressions.

Table 13.2 Relocatable Label Expressions

Expression Represents

label The offset from the address of the label to the base of its section,
relocated by the section base address. It also is the PC-relative
target of a branch or call. It is a 32-bit address.

label @1 The low 16-bits of the relocated address of the symbol.

label@h The high 16-bits of the relocated address of the symbol. You can
OR this with label@1 to produce the full 32-bit relocated address.

label@ha The adjusted high 16-bits of the relocated address of the symbol.
You can add this to label@1 to produce the full 32-bit relocated
address.

CodeWarrior Build Tools Reference for Power Architecture® Processors

147

'
A

Assembler
Syntax

Table 13.2 Relocatable Label Expressions

Expression Represents

label @ sdax For labels in a small data section, the offset from the base of the
small data section to the label. This syntax is not allowed for labels
in other sections.

label @ got For processors with a global offset table, the offset from the base of
the global offset table to the 32-bit entry for label.

Equates
An equate is a symbol that represents any value. To create an equate, use the . equ or
. set directive.
The first character of an equate must be a:
¢ letter (a-z or A-Z),
e period (.),
¢ question mark (?), or
¢ underscore (_)
Subsequent characters can be from the preceding list or a:
¢ numeral (0-9) or
e dollar sign ($).

The assembler allows forward equates. This means that a reference to an equate can be in
a file before the equate’s definition. When an assembler encounters such a symbol whose
value is not known, the assembler retains the expression and marks it as unresolved. After
the assembler reads the entire file, it reevaluates any unresolved expressions. If necessary,
the assembler repeatedly reevaluates expressions until it resolves them all or cannot
resolve them any further. If the assembler cannot resolve an expression, it issues an error
message.

NOTE The assembler must be able to resolve immediately any expression whose
value affects the location counter.
If the assembler can make a reasonable assumption about the location counter,
it allows the expression.

The code of Listing 13.3 shows a valid forward equate.

148 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Syntax

Listing 13.3 Valid Forward Equate

.data
.long alloc_size
alloc_size .set rec_size + 4
; a valid forward equate on next line
rec_size .set table_start-table_end
.text

table_start:

table_end:

However, the code of Listing 13.4 is not valid. The assembler cannot immediately resolve
the expression in the . space directive, so the effect on the location counter is unknown.

Listing 13.4 Invalid Forward Equate

;invalid forward equate on next line

rec_size .set table_start-table_end
.space rec_size
.text;

table_start:

table_end:

Case-Sensitive Identifiers

The Case-sensitive identifiers checkbox of the Assembler settings panel lets you
control case-sensitivity for symbols:

¢ Check the checkbox to make symbols case sensitive — SYM1, syml, and Sym1 are
three different symbols.

¢ Clear the checkbox to make symbols not case-sensitive — SYM1, syml1, and Sym1l
are the same symbol. (This is the default setting.)

Constants

The assembler recognizes three kinds of constants:

¢ Integer Constants
¢ Floating-Point Constants

¢ Character Constants

CodeWarrior Build Tools Reference for Power Architecture® Processors 149

'
A

Assembler
Syntax

Integer Constants

Table 13.3 lists the notations for integer constants. Use the preferred notation for new
code. The alternate notations are for porting existing code.

Table 13.3 Preferred Integer Constant Notation

Type

Preferred Notation Alternate Notation

Hexadecimal

¢ followed by string of hexadecimal 0x followed by a string of hexadecimal
digits, such as sdeadbeef. digits, such as 0xdeadbeef.

0 followed by a string of hexadecimal
digits, ending with h, such as
Odeadbeefh.

Decimal

String of decimal digits, such as String of decimal digits followed by 4,
12345678. such as 123456784d.

Binary

% followed by a string of binary digits, String of binary digits followed by b, such
such as $01010001. as 01010001b.

NOTE The assembler uses 32-bit signed arithmetic to store and manipulate integer
constants.

Floating-Point Constants

You can specify floating-point constants in either hexadecimal or decimal format. The
decimal format must contain a decimal point or an exponent. Examples are 1E-10 and
1.0.

You can use floating-point constants only in data generation directives such as . float
and . double, or in floating-point instructions. You cannot such constants in expressions.

Character Constants

Enclose a character constant in single quotes. However, if the character constant includes
a single quote, use double quotes to enclose the character constant.

NOTE A character constant cannot include both single and double quotes.

The maximum width of a character constant is 4 characters, depending on the context.
Examples are 'A', 'ABC', and ' TEXT'.

A character constant can contain any of the escape sequences that Table 13.4 lists.

150

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Syntax

Table 13.4 Character Constant Escape Sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)
\r Return (ASCII character 13)

\t Tab

\" Double quote

\ Backslash

\nnn Octal value of \nnn

During computation, the assembler zero-extends a character constant to 32 bits. You can
use a character constant anywhere you can use an integer constant.

Expressions

The assembler uses 32-bit signed arithmetic to evaluates expressions; it does not check for
arithmetic overflow.

As different processors use different operators, the assembler uses an expression syntax
similar to that of the C language. Expressions use C operators and follow C rules for
parentheses and associativity.

NOTE To refer to the program counter in an expression, use a period (.), dollar sign
($), or asterisk (*).

Table 13.5 lists the expression operators that the assembler supports.

CodeWarrior Build Tools Reference for Power Architecture® Processors 151

y
A

Assembler
Syntax

Table 13.5 Expression Operators

Category Operator Description
Binary + add
- subtract
* multiply
/ divide
% modulo
Il logical OR
&& logical AND
| bitwise OR
& bitwise AND
A bitwise XOR
<< shift left
>> shift right (zeros are shifted into high order bits)
== equal to
I= not equal to
<= less than or equal to
>= greater than or equal to
< less than
> greater than
Unary + unary plus
- unary minus
~ unary bitwise complement

152 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Syntax

Table 13.5 Expression Operators (continued)

Category Operator Description
Alternate <> not equal to
% modulo
| logical OR
Il logical XOR

Operator precedence is:

l. unary + - ~
x /g
binary + -

<< >>

< <= > >=

°g

-
10. &&
1. ||

W X 9L AW

Comments

There are several ways to specify comments:

1. Use either type of C-style comment, which can start in any column:

// This 1is a comment.

/* This is a comment. */

2. Start the comment with an asterisk (*) in the first column of the line.

NOTE The asterisk (*) must be the first character of the line for it to specify a
comment. The asterisk has other meanings if it occurs elsewhere in a line.

3. Clear the Allow space in operand field checkbox of the Assembler settings panel.
Subsequently, if you type a space in an operand field, all the remaining text of the line

is a comment.

CodeWarrior Build Tools Reference for Power Architecture® Processors

153

3
4

y
A

Assembler
Directives

4. Anything following a # character is considered to be a comment. For example,

st r3,0(r4) # Store total

5. Anything following a ; character is considered to be a comment, except in GNU
compatibility mode, where ; is a statement separator.

Data Alignment

The assembler’s default alignment is on a natural boundary for the data size and for the
target processor family. To turn off this default alignment, use the alignment keyword
argument with to the . option directive.

NOTE The assembler does not align data automatically in the . debug section.

Directives

Some directives may not be available for the assembler for your target processor.

The default starting character for most directives is the period (.). However, if you
clear the Directives begin with "." checkbox of the Assembler settings panel, you
can omit the period.

You can use the C/C++ preprocessor format to specify several preprocessor
directives .

Explanations are in these sections:

Macro Directives

Conditional Preprocessor Directives

Section Control Directives

Scope Control Directives

Symbol Definition Directives
Data Declaration Directives

Assembler Control Directives

Debugging Directives

Macro Directives

These directives let you create macros:

macro

endm

154

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

e mexit
o #define

For more information on macros, see “‘Macros” on page 187.

macro

Starts the definition of a macro.

label .macro [parameter] [,parameter]

Parameters
label

Name you give the macro.
parameter

Optional parameter for the macro.

endm

Ends the definition of a macro.
.endm

mexit

Stops macro execution before it reaches the .endm directive. Program execution continues
with the statement that follows the macro call.

.mexit

#define

Defines a C pre-processor macro with the specified parameters. Note that the C pre-
processor is run on the assembler file before normal assembly. C pre-processor macros

CodeWarrior Build Tools Reference for Power Architecture® Processors 155

3
4

y
A

Assembler
Directives

should not be confused with normal macros declared using the MACRO and ENDM
directives.

#define name [(parms)] assembly statement [; 1 [\]
assembly statement [; 1 [\ 1]

assembly. statement

parms ::= parameter [,parameter]...
Parameters
name

Name you give the macro.
parms

List of parameters, separated by commas.
assembly_statement

Any valid assembly statement.

Remarks

To extend an assembly_statement, type a backslash (\) and continue the statement
on the next line. To specify multiple assembly statements in the macro, type a
semicolon and backslash (;\), then type a new assembly statement on the next line.
If the assembler is in GNU mode, multiple statements can be on one line of code
— separate them with semicolon characters (;).

NOTE For more information, see ‘‘Using the #define Directive” on page 193.

Conditional Preprocessor Directives

Conditional directives let you control whether compilation includes a block of code. These
directives let you make multiple builds that are slightly different.

You must use conditional directives together to form a complete block. Several
conditional directives are variations of . i f that make it easier to establish blocks that test
strings for equality, test whether a symbol is defined, and so on.

NOTE You can use the C/C++ preprocessor format to specify these conditional

directives:
#if #ifdef #ifndef
#telse #elif #endif

With two exceptions, these directives function identically whether their
starting character is a pound sign (#) or a period. The exceptions are:

156

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

1. You cannot use the pound sign format in a macro.
2. The period form of #elifis .elseif.

The conditional preprocessor directives are:

e if

e ifdef

e ifndef

e ifc

* ifnc

* endif

* elseif

* else

e Compatibility Conditional Directives

if
Starts a conditional assembly block, making assembly conditional on the truth of a
boolean expression.

.if bool-expr

Parameter
bool-expr

Any boolean expression.

Remarks

If bool-expr is true, the assembler processes the statements of the block. If
bool-expr is false, the assembler skips the statements of the block.

Each . if directive must have a matching . endif directive.

ifdef

Starts a conditional assembly block, making assembly conditional on the definition of a
symbol.

#ifdef symbol

CodeWarrior Build Tools Reference for Power Architecture® Processors 157

3
4

y
A

Assembler

Directives

Parameter
symbol
Any valid symbol.

Remarks

If previous code includes a definition for symbo1l, the assembler processes the
statements of the block. If symbo1l is not defined, the assembler skips the
statements of the block.

Each . ifdef directive must have a matching . endif directive.

ifndef

Starts a conditional assembly block, making assembly conditional on a symbol not being
defined.

.ifndef symbol

Parameter
symbol
Any valid symbol.

Remarks

If previous code does not include a definition for symbo1l, the assembler
processes the statements of the block. If there is a definition for symbo1l, the
assembler skips the statements of the block.

Each . ifndef directive must have a matching . endi £ directive.

ifc
Starts a conditional assembly block, making assembly conditional on the equality of two
strings.
.ifc stringl, string2
Parameters
stringl
Any valid string.
158 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

string?2

Any valid string.

Remarks

If stringl and string?2 are equal, the assembler processes the statements of
the block. (The equality comparison is case-sensitive.) If the strings are not equal,
the assembler skips the statements of the block.

Each . ifc directive must have a matching .endi £ directive.

ifnc
Starts a conditional assembly block, making assembly conditional on the inequality of two
strings.
.ifnc stringl, string?2
Parameters
stringl
Any valid string.
string?2
Any valid string.
Remarks
If stringl and string?2 are not equal, the assembler processes the statements
of the block. (The inequality comparison is case-sensitive.) If the strings are equal,
the assembler skips the statements of the block.
Each . ifnc directive must have a matching . endif directive.
endif

Ends a conditional assembly block. A matching . endif directive is mandatory for each
type of . if directive.

.endif

CodeWarrior Build Tools Reference for Power Architecture® Processors 159

y
A

Assembler
Directives

elseif

Starts an alternative conditional assembly block, making assembly conditional on the truth
of a boolean expression.

.elseif bool-expr

Parameter

bool-expr

Any boolean expression.

Remarks

If bool-expr is true, the assembler processes the statements of the block. If
bool-expr is false, the assembler skips the statements of the block.

You can use this directive to create a logical, multilevel if-then-else statement,
according to this syntax:

.if bool-expr statement-group

[
[

.elseif bool-expr statement-group]...

.else statement-group]

.endif

(In this syntax, statement-group is any group of assembly-language
statements.)

The . elseif directive can be part of more complicated logical structures, such

as:

.if bool-expr-1

statement-group-1

.elseif bool-expr-2

statement-group-2

.elseif bool-expr-3

statement-group-3

.elseif bool-expr-4

statement-group-4

.else

statement-group-5

.endif

160

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

If this structure’s bool -expr-1 is true, the assembler executes the
statement-group-1 assembly-language statements, then goes to the
.endif directive.

If bool-expr-1 is false, the assembler skips statement-group-1,
executing the first . elseif directive. f bool-expr-2 is true, the assembler
executes statement-group-2, then goes to the . endif directive.

If bool-expr-2 also is false, the assembler skips statement-group-2,
executing the second . elseif directive.

The assembler continues evaluating the boolean expressions of succeeding
.elseif directives until it comes to a boolean expression that is true.

If none of the boolean expressions are true, the assembler processes
statement-group->5, because this structure includes an . else directive.
(If none of the boolean values were true and there were no . else directive, the
assembler would not process any of the statement groups.)

else

Starts an alternative conditional assembly block.

.else

Remarks

This directive is optional. The assembler processes the statements of the alternative
conditional assembly block only if the expressions for an . i f directive and any
associated .elseif directives are false.

Compatibility Conditional Directives

For compatibility with other assemblers, the assembler supports these additional
conditional directives:

o .ifne if not equal

o Liflt if less than

o ifle if less than or equal

o ifgt if greater than

o .ifge if greater than or equal

CodeWarrior Build Tools Reference for Power Architecture® Processors 161

y
A

Assembler

Directives

.ifeq

if equal
Starts a conditional assembly block, making assembly conditional on a string value being
equal to zero.

.ifeqg string

Parameter
string

Any valid string.

Remarks

If the string value equals 0, the assembler processes the statements of the block.

If the string value does not equal 0, the assembler skips the statements of the
block.

.ifne

if not equal
Starts a conditional assembly block, making assembly conditional on a string value not
being equal to zero.

.ifne string

Parameter
string

Any valid string.

Remarks

If the string value is not equal to 0, the assembler processes the statements of

the block. If the string value does equal 0, the assembler skips the statements of
the block.

.iflt if less than
Starts a conditional assembly block, making assembly conditional on a string value being
less than zero.
.iflt string

162 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

Parameter
string

Any valid string.

Remarks

If the string value is less than 0, the assembler processes the statements of the
block. If the string value equals or exceeds 0, the assembler skips the
statements of the block.

ifle

if less than or equal
Starts a conditional assembly block, making assembly conditional on a string value being
less than or equal to zero.

.ifle string

Parameter
string

Any valid string.

Remarks

If the string value is less than or equal to O, the assembler processes the
statements of the block. If the string value is greater than 0, the assembler skips
the statements of the block.

.ifgt

if greater than

Starts a conditional assembly block, making assembly conditional on a string value being
greater than zero.

.ifgt string

Parameter
string

Any valid string.

CodeWarrior Build Tools Reference for Power Architecture® Processors 163

3
4

y
A

Assembler
Directives
Remarks
If the string value is greater than 0, the assembler processes the statements of
the block. If the string value is less than or equal to 0, the assembler skips the
statements of the block.
.ifge if greater than or equal

Starts a conditional assembly block, making assembly conditional on a the string value
being greater than or equal to zero.

.ifge string

Parameter
string

Any valid string.

Remarks

If the string value is greater than or equal to O, the assembler processes the
statements of the block. If the string value is less than 0, the assembler skips the
statements of the block.

Section Control Directives

These directives identify the different sections of an assembly file:

* Ltext

¢ data

* rodata

* bss

¢ sdata

* sdata2

* sbss

e text vle
¢ debug

e previous
e offset

* section

164

CodeWarrior Build Tools Reference for Power Architecture® Processors

g |

Assembler
Directives

text
Specifies an executable code section; must be in front of the actual code in a file.
.text
data
Specifies an initialized read-write data section.
.data
rodata
Specifies an initialized read-only data section.
.rodata
bss
Specifies an uninitialized read-write data section.
.bss
sdata
Specifies a small data section as initialized and read-write.
.sdata
sdata2

Specifies a small data section as initialized and read-only.

.sdata2

CodeWarrior Build Tools Reference for Power Architecture® Processors 165

4
A

Assembler
Directives

sbss

Specifies a small data section as uninitialized and read-write.

.sbss

text_vle

Specifies a Variable length encoded section as read/execute.

.text_vle

debug

Specifies a debug section.

.debug

Remarks

If you enable the debugger, the assembler automatically generates some debug
information for your project. However, you can use special directives in the debug section
that provide the debugger with more detailed information. For more information on the
debug directives, see “Debugging Directives” on page 184.

previous

Reverts to the previous section; toggles between the current section and the previous
section.

.previous

offset

Starts a record definition, which extends to the start of the next section.

.offset [expression]

166

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler

Directives
Parameter
expression
Optional initial location-counter value.
Remarks
Table 13.6 lists the only directives your can use inside a record.
Table 13.6 Directives within a Record
.align .double .org .textequ
.ascii .equ .set
.asciz .float .short
.byte .long .space

Data declaration directives such as .byte and . short update the location counter, but
do not allocate any storage.

Example

Listing 13.5 shows a sample record definition.

Listing 13.5 Record Definition with Offset Directive

.offset
top: .short 0
left: .short 0
bottom: .short 0
right: .short 0
rectSize .equ *
section

Defines a section of an ELF (Executable and Linkable Format) object file.

.section name

[,alignment

[,type [,flags]l]]

CodeWarrior Build Tools Reference for Power Architecture® Processors

167

3
4

y
A

Assembler
Directives

Parameters
name

Name of the section.
alignment

Alignment boundary.
type

Numeric value for the ELF section type, per Table 13.7. The default type value is
1: (SHT_PROGBITS).

flags

Numeric value for the ELF section flags, per Table 13.8. The default £1ags value
is 0x00000002, 0x00000001: (SHF_ALLOC+SHF_WRITE).

Table 13.7 ELF Section Header Types (SHT)

Type Name Meaning

0 NULL Section header is inactive.

1 PROGBITS Section contains information that the program
defines.

2 SYMTAB Section contains a symbol table.

3 STRTAB Section contains a string table.

4 RELA Section contains relocation entries with explicit
addends.

5 HASH Section contains a symbol hash table.

6 DYNAMIC Section contains information used for dynamic
linking.

7 NOTE Section contains information that marks the file,
often for compatibility purposes between programs.

8 NOBITS Section occupies no space in the object file.

9 REL Section contains relocation entries without explicit
addends.

168 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

Table 13.7 ELF Section Header Types (SHT) (continued)

Type Name Meaning

10 SHLIB Section has unspecified semantics, so does not
conform to the Application Binary Interface (ABI)
standard.

11 DYNSYM Section contains a minimal set of symbols for
dynamic linking.

Table 13.8 ELF Section Header Flags (SHF)

Flag Name Meaning

0x00000001 WRITE Section contains data that is writable during
execution.

0x00000002 ALLOC Section occupies memory during execution.

0x00000004 EXECINSTR Section contains executable machine
instructions.

0xF0000000 MASKPROC Bits this mask specifies are reserved for
processor-specific purposes.

Remark

Use this directive to create arbitrary relocatable sections, including sections to be
loaded at an absolute address.

Possible syntax forms

The section directive accepts a number of different syntax forms, partly for
convenience and partly for compatibility with other assemblers. A section
declaration requires four pieces of information: a section name, alignment, ELF
section type (for example, SHT_PROGBITS) and ELF section flags (for example,
SHF_ALLOC+SHF_EXECINSTR).

The possible syntax forms are as follows:

¢ Specify built-in section name.

.section text

This example specifies a built-in section name text. Equivalently, . text is
also a valid syntax form.

CodeWarrior Build Tools Reference for Power Architecture® Processors 169

y
A

Assembler
Directives

Table 13.9 provides a list of all the possible values, together with their ELF
types and ELF Section Header Flags.

Table 13.9 Built-in Section names with their ELF Types and Flags

Name ELF Type ELF Flag

text SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.data SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.rodata SHT_PROGBITS SHF_ALLOC

.bss SHT_NOBITS SHF_ALLOC+SHF_WRITE

.sdata SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.sdata0 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.sdata2 SHT_PROGBITS SHF_ALLOC

.sbss SHT_NOBITS SHF_ALLOC+SHF_WRITE

.sbss0 SHT_NOBITS SHF_ALLOC+SHF_WRITE

.sbss2 SHT_PROGBITS SHF_ALLOC

.debug SHT_PROGBITS 0

text_vle SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR+
SHF_PE_EXECINSTR

.PPC.EMB.sdata0 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.PPC.EMB.sbss0 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

In general, . text is for instructions, . data for initialised data, .rodata for
read-only data (constants) and . bss for uninitialised data. The additional forms
like .sdata are for small data areas. The built-in section names are
architecture-specific, and are intended to make access to data more efficient.
The alignment used for these sections is architecture-specific and is usually 4.

* Specify your own section name but get the attributes of the built-in section type.
.section mySection, text

This example is equivalent to writing . text except that the section will be
called mySection.

* Specify the alignment, and optionally the ELF type and flags.

.section name [,alignment [,type [,flags]]]

170 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

In the syntax above, if the alignment is not specified it defaults to 16. If the
type or flags are not specified, the defaults are as follows:

— If the name parameter is a built-in section name, the type and the flags are
taken as specified in the Table 13.9 .
For example, in the syntax form.section text, 8
the type is SHT_PROGBITS and the flags value is
SHF_ALLOC+SHF_EXECINSTR.

— In all other cases, the default type is SHT_PROGBITS and the default flags
value is SHF_ALLOC+SHF_WRITE, corresponding to a writeable data
section.

* Specify the type and flags parameters in pre-defined characters, optionally in
double quotes.

.section mySection, 4, "rx" or .section mySection,4,rx

The values are additive. For example, rx is equivalent to
SHF_ALLOC+SHF_WRITE+SHF_EXECINSTR

NOTE If the syntax doesn't specify a type it defaults to SHT_PROGBITS

Table 13.10 provides a list of all the possible characters and their corresponding
ELF Type and ELF Flags.

Table 13.10 Characters and their corresponding ELF Type and ELF Flags

Character ELF Type ELF Flag

b SHT_NOBITS SHF_ALLOC+SHF_WRITE

[¢ SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

d SHT_PROGBITS SHF_ALLOC+SHF_WRITE

m SHT_PROGBITS SHF_ALLOC+SHF_WRITE+
SHF_EXECINSTR

r 0 SHF_ALLOC

w 0 SHF_ALLOC+SHF_WRITE

X 0 SHF_ALLOC+SHF_EXECINSTR

Scope Control Directives

These directives let you import and export labels:

e global

CodeWarrior Build Tools Reference for Power Architecture® Processors 171

A 4
4\

Assembler
Directives

* extern
e public

For more information on labels, see “Labels’” on page 145.

NOTE You cannot import or export equates or local labels.

global
Tells the assembler to export the specified labels, that is, make them available to other
files.
.global label [,label]..

Parameter
label
Any valid label.

extern
Tells the assembler to import the specified labels, that is, find the definitions in another
file.

.extern label [,label]..

Parameter
label
Any valid label.

public

Declares specified labels to be public.

.public label [,label]..

172 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

Parameter
label
Any valid label.

Remarks

If the labels already are defined in the same file, the assembler exports them (makes them
available to other files). If the labels are not already defined, the assembler imports them
(finds their definitions in another file).

Symbol Definition Directives

These directives let you create equates:
e set

e equal sign (=)

* equ
e textequ

set

Defines an equate, assigning an initial value. You can change this value at a later time.

equate .set expression

Parameters
equate

Name of the equate.
expression

Temporary initial value for the equate.

equal sign (=)

Defines an equate, assigning an initial value. You can change this value at a later time.

equate = expression

CodeWarrior Build Tools Reference for Power Architecture® Processors 173

y
A

Assembler

Directives

Parameters
equate

Name of the equate.
expression

Temporary initial value for the equate.

Remarks

This directive is equivalent to . set. It is available only for compatibility with
assemblers provided by other companies.

equ

Defines an equate, assigning a permanent value. You cannot change this value at a later
time.

equate .equ expression

Parameters
equate

Name of the equate.
expression

Permanent value for the equate.

textequ

Defines a text equate, assigning a string value.

equate .textequ "string"

Parameters
equate

Name of the equate.
string

String value for the equate, in double quotes.

174

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

Remarks

This directive helps port existing code. You can use it to give new names to
machine instructions, directives, and operands.

Upon finding a text equate, the assembler replaces it with the string value before
performing any other processing on that source line.

Examples
dc.b .textequ ".byte"
endc .textequ ".endif"

Data Declaration Directives

These directive types initialize data:

¢ Integer Directives

» String Directives
¢ Floating-Point Directives

Integer Directives

These directives let you initialize blocks of integer data:

* byte
o £fi11

¢ incbin

byte
Declares an initialized block of bytes.
[label] .byte expression [,expression]..
Parameters
label

Name of the block of bytes.

CodeWarrior Build Tools Reference for Power Architecture® Processors 175

y
A

Assembler
Directives

expression

Value for one byte of the block; must fit into one byte.

fill

Declares a block of bytes, initializing each byte to zero.

[label] .fill expression

Parameters
label

Name of the block of bytes.
expression

Number of bytes in the block.

incbin
Tells the assembler to include the binary content of the specified file.

incbin filename|[,start[, length]]

Parameters
filename
Name of a binary file.
start
Offset from start of file at which to begin including data.
length

Number of bytes of data to include.

Remarks

This directive is useful when you wish to include arbitrary data directly in the program
being assembled, e.g.

176 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

logoPicture: .incbin "CompanyLogo.jpg"

long
Declares an initialized block of 32-bit short integers.
[label] .long expression [,expression]..
Parameters
label
Name of the block of integers.
expression
Value for 32 bits of the block; must fit into 32 bits.
short
Declares an initialized block of 16-bit short integers.
[label] .short expression [,expression]J..
Parameters
label
Name of the block of integers.
expression
Value for 16 bits of the block; must fit into 16 bits.
space
Declares a block of bytes, initializing each byte to zero.
[label] .space expression
Parameters
label

Name of the block of bytes.

CodeWarrior Build Tools Reference for Power Architecture® Processors 177

|
y

'
A

Assembler
Directives

Table 13.11

expression

Number of bytes in the block.

String Directives

These directives initialize blocks of character data:
* ascii
e asciz

A string can contain any of the escape sequences Table 13.11 lists.

Escape sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)
\r Return (ASCII character 13)
\t Tab

\ " Double quote

\\ Backslash

\nnn Octal value of \nnn

ascii

Declares a block of storage for a string; the assembler allocates a byte for each character.

[label] .ascii "string"

Parameters
label

Name of the storage block.
string

String value to be stored, in double quotes.

178

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

asciz

Declares a zero-terminated block of storage for a string.

[label] .asciz "string"

Parameters
label

Name of the storage block.
string

String value to be stored, in double quotes.

Remarks

The assembler allocates a byte for each string character. The assembler then allocates
an extra byte at the end, initializing this extra byte to zero.

Floating-Point Directives

These directives initialize blocks of floating-point data:
e float
¢ double

float

Declares an initialized block of 32-bit, floating-point numbers; the assembler allocates 32
bits for each value.

[label] .float wvalue [,value]..

Parameters
label

Name of the storage block.
value

Floating-point value; must fit into 32 bits.

CodeWarrior Build Tools Reference for Power Architecture® Processors 179

y
A

Assembler
Directives

double

Declares an initialized block of 64-bit, floating-point numbers; the assembler allocates 64
bits for each value.

[label] .double wvalue [,value]..

Parameters
label

Name of the storage block.
value

Floating-point value; must fit into 64 bits.

Assembler Control Directives

These directives let you control code assembly:

e align

e endian

* error

e include

* pragma

¢ org

e option

align
Aligns the location counter to the next multiple of the specified power of 2.

.align expression

Parameter
expression

Power of 2, such as 2, 4, 8, 16, or 32.

180 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

endian

Specifies byte ordering for the target processor; valid only for processors that permit
change of endianness.

.endian big | little

Parameters
big

Big-endian specifier.
little

Little-endian specifier.

error

Prints the specified error message to the IDE Errors and Warnings window.

.error "error"

Parameter
error

Error message, in double quotes.

include

Tells the assembler to take input from the specified file.

.include filename

Parameter
filename

Name of an input file.

Remarks

When the assembler reaches the end of the specified file, it takes input from the
assembly statement line that follows the . include directive. The specified file
can itself contain an . include directive that specifies yet another input file.

CodeWarrior Build Tools Reference for Power Architecture® Processors 181

y
A

Assembler
Directives

pragma

Tells the assembler to use a particular pragma setting as it assembles code.

.pragma pragma-type setting

Parameters
pragma-type

Type of pragma.
setting

Setting value.

org

Changes the location-counter value, relative to the base of the current section.

.org expression

Parameter
expression
New value for the location counter; must be greater than the current location-
counter value.
Remarks
Addresses of subsequent assembly statements begin at the new expression value
for the location counter, but this value is relative to the base of the current section.
Example

In Listing 13.6, the label Alpha reflects the value of . text + 0x1000. If the linker
places the . text section at 0x10000000, the runtime Alpha value is 0x10001000.

Listing 13.6 Address-Change Example

.text
.org

Alpha:

blr

0x1000

182

CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

NOTEY ou must use the CodeWarrior IDE and linker to place code at an absolute address.

option

Sets an assembler control option as Table 13.12 describes.

.option keyword setting

Parameters
keyword
Control option.

setting

Setting value appropriate for the option: OFF, ON, RESET, or a particular number
value. RESET returns the option to its previous setting.

Table 13.12 Option Keywords

Keyword

Description

alignment off | on | reset

Controls data alignment on a natural boundary. Does not
correspond to any option of the Assembler settings panel.

branchsize 8 1 16 | 32

Specifies the size of forward branch displacement. Applies
only to x86 and 68K assemblers. Does not correspond to
any option of the Assembler settings panel.

case off | on | reset

Specifies case sensitivity for identifiers. Corresponds to
the Case-sensitive identifiers checkbox of the Assembler
settings panel.

colon off | on | reset

Specifies whether labels must end with a colon (:). The
OFF setting means that you can omit the ending colon
from label names that start in the first column.
Corresponds to the Labels must end with ':' checkbox of
the Assembler settings panel.

no_at_macros off | on

Controls $AT use in macros. The OFF setting means that
the assembler issues a warning if a macro uses $AT.
Applies only to the MIPS Assembler.

CodeWarrior Build Tools Reference for Power Architecture® Processors 183

'
A

Assembler
Directives

Table 13.12 Option Keywords (continued)

Keyword Description

period off | on | reset Controls period usage for directives. The ON setting
means that each directive must start with a period.
Corresponds to the Directives begin with '.' checkbox of
the Assembler settings panel.

reorder off | on | reset Controls NOP instructions after jumps and branches. The
ON setting means that the assembler inserts a NOP
instruction, possibly preventing pipeline problems. The
OFF setting means that the assembler does not insert a
NOP instruction, so that you can specify a different
instruction after jumps and branches. Applies only to the
MIPS Assembler.

space off | on | reset Controls spaces in operand fields. The OFF setting means
that a space in an operand field starts a comment.
Corresponds to the Allow space in operand field
checkbox of the Assembler settings panel.

Debugging Directives

When you enable the debugger, the assembler automatically generates some debug
information for your project. However, you can use these directives in the debug section to
provide additional information to the debugger:

e file
e function
e line
* size

* type

NOTE These debugging directives are valid only in the . debug and . text sections
of an assembly file.
Additionally, you must enable debugging for the file that contains the
debugging directives; you use the Project window to enable this debugging.

184 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Directives

file
Specifies the source-code file; enables correlation of generated assembly code and source
code.

.file "filename"

Parameter
filename

Name of source-code file, in double quotes.

Remarks

Must precede other debugging directives in the assembly file. If you write your
own DWAREF code, you must use the . function and .1line directives as well
as this . £ile directive.

Example
Listing 13.7 shows how to use the . £i1le directive for your own DWAREF code.

Listing 13.7 DWARF Code Example

.file "“MyFile.c”

.text

.globl _MyFunction

.function "MyFunction",_MyFunction, _MyFunctionEnd -_MyFunction
_MyFunction:

.line 1

lwz r3, 0(r3)

.line 2

blr
_MyFunctionEnd:

CodeWarrior Build Tools Reference for Power Architecture® Processors 185

y
A

Assembler
Directives

function

Tells the assembler to generate debugging data for the specified subroutine.

.function "func", label, length

Parameters
func

Subroutine name, in double quotes.
label

Starting label of the subroutine.
length

Number of bytes in the subroutine.

line
Specifies the absolute line number (of the current source file) for which the assembler
generates subsequent code or data.
.line number
Parameter
number
Line number of the file; the file’s first line is number 1.
size

Specifies a length for a symbol.

.size symbol, expression

Parameters
symbol

Symbol name.
expression

Number of bytes.

186 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Macros

type

Specifies the type of a symbol.
.type symbol, @function | @object

Parameters
symbol

Symbol name.
@function

Function type specifier.
Qobject

Variable specifier.

Macros

This chapter explains how to define and use macros. You can use the same macro
language regardless of your target processor.

This chapter includes these topics:
¢ Defining Macros
¢ Invoking Macros

Defining Macros

This section explains how to define macros.

¢ Macro Definition Syntax

» Using Macro Arguments
¢ Creating Unique Labels and Equates
¢ Referring to the Number of Arguments

Macro Definition Syntax

A macro definition is one or more assembly statements that define:
 the name of a macro

¢ the format of the macro call

CodeWarrior Build Tools Reference for Power Architecture® Processors 187

y
A

Assembler
Macros

* the assembly statements of the macro

To define a macro, use either the , macro or the #define directive.

NOTE If you use a local label in a macro, the scope of the label is limited to the
expansion of the macro. (Local labels begin with the @ character.)

Using the .macro Directive

The .macro directive is part of the first line of a macro definition. Every macro
definition ends with the . endm directive .Listing 13.8 shows the full syntax, and Table
13.13 explains the syntax elements.

Listing 13.8 Macro Definition Syntax: .macro Directive

name: .macro [parameter] [,parameter]
macro_body
.endm

Table 13.13 Syntax Elements: .macro Directive

Element Description
name Label that invokes the macro.
parameter Operand the assembler passes to the macro

for us in the macro body.

macro_body One or more assembly language statements.
Invoking the macro tell the assembler to
substitutes these statements.

The body of a simple macro consists of just one or two statements for the assembler to
execute. Then, in response to the . endm directive, the assembler resumes program
execution at the statement immediately after the macro call.

But not all macros are so simple. For example, a macro can contain a conditional assembly
block, The conditional test could lead to the .mexit directive stopping execution early,
before it reaches the . endm directive.

Listing 13.9 is the definition of macro addto, which includes an .mexit directive.
Listing 13.10 shows the assembly-language code that calls the addto macro. Listing
13.11 shows the expanded addto macro calls.

188 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Macros

Listing 13.9 Conditional Macro Definition

//define a macro
addto: .macro dest,val
.if val==0
nop
.elseif val >= -32768 && val <= 32767
addi dest,dest,val // use compact instruction
.else
addi dest,dest,val@l // use 32-bit add
addis dest,dest,val@ha
.endif
// end macro definition
.endm

Listing 13.10 Assembly Code that Calls addto Macro

// specify an executable code section
.text

11 r3,0

// call the addto macro

addto r3,0

addto r3,1

addto r3,2

addto r3,0x12345678

Listing 13.11 Expanded addto Macro Calls

1i r3,0

nop

addi r3,r3,1

addi r3,r3,2

addi r3,r3,0x12345678@1

addis r3,r3,0x12345678@ha

Using Macro Arguments

You can refer to parameters directly by name. Listing 13.12 shows the setup macro,
which moves an integer into a register and branches to the label _final_setup. Listing
13.13 shows a way to invoke the setup macro., and Listing 13.14 shows how the
assembler expands the setup macro.

CodeWarrior Build Tools Reference for Power Architecture® Processors 189

4
A

Assembler
Macros

Listing 13.12 Setup Macro Definition

setup: .macro name
1i r3,name
bl _final_setup
.endm

Listing 13.13 Calling Setup Macro

VECT: .equ 0
setup VECT

Listing 13.14 Expanding Setup Macro

1i r3,VECT
bl _final_setup

If you refer to named macro parameters in the macro body, you can precede or follow the
macro parameter with &&. This lets you embed the parameter in a string. For example,
Listing 13.15 shows the smallnum macro, which creates a small float by appending the
string E-20 to the macro argument. Listing 13.16 shows a way to invoke the smallnum
macro, and Listing 13.17 shows how the assembler expands the smallnum macro.

Listing 13.15 Smallnum Macro Definition

smallnum: .macro mantissa
.float mantissa&&E-20
endm

Listing 13.16 Invoking Smallnum Macro

smallnum 10

Listing 13.17 Expanding Smallnum Macro

.float 10E-20

190 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
Macros

Creating Unique Labels and Equates

Use the backslash and at characters \@) to have the assembler generate unique labels and
equates within a macro. Each time you invoke the macro, the assembler generates a unique
symbol of the form ?2nnnn, such as 220001 or 220002.

In your code, you refer to such unique labels and equates just as you do for regular labels
and equates. But each time you invoke the macro, the assembler replaces the \@ sequence
with a unique numeric string and increments the string value.

Listing 13.18 shows a macro that uses unique labels and equates. Listing 13.19 shows two
calls to the put str macro. Listing 13.20 shows the expanded code after the two calls.

Listing 13.18 Unique Label Macro Definition

putstr: .macro string
1lis r3, (str\@)eh
oris r3,r3, (str\@)@l
bl put_string
b skip\e

str\@: .asciz string
.align 4

skip\@:
.endm

Listing 13.19 Invoking putstr Macro

putstr 'SuperSoft Version 1.3
putstr 'Initializing...'

Listing 13.20 Expanding putstr Calls

lis r3, (str??20000)@h
oris r3,r3, (str??20000)@1
bl put_string
b skip??0000
str??20000: .asciz 'SuperSoft Version
.align 4
skip??0000:
lis r3, (str??20001)ch
oris r3,r3, (str??20001)@l
bl put_string
b skip??0001
str??20001: .asciz 'Initializing..."
.align 4

CodeWarrior Build Tools Reference for Power Architecture® Processors 191

y
A

Assembler
Macros

skip??0001:

Referring to the Number of Arguments

To refer to the number of non-null arguments passed to a macro, use the special symbol
narg. You can use this symbol during macro expansion.

Invoking Macros

To invoke a macro, use its name in your assembler listing, separating parameters with
commas. To pass a parameter that includes a comma, enclose the parameter in angle
brackets.

For example, Listing 13.21 shows macro pattern, which repeats a pattern of bytes
passed to it the number of times specified in the macro call. Listing 13.22 shows a
statement that calls pattern, passing a parameter that includes a comma. Listing 13.23
is another example calling statement; the assembler generates the same code in response to
the calling statement of either Listing 13.22 or Listing 13.23.

Listing 13.21 Pattern Macro Definition
pattern: .macro times,bytes
.rept times
.byte bytes
.endr
.endm
Listing 13.22 Macro Argument with Commas
.data
halfgrey: pattern 4,<0xAA, 0x55>
Listing 13.23 Alternate Byte-Pattern Method
halfgrey: .byte 0xAA,0x55,0xAA,0x55,0xAA, 0x55, 0xAA, 0x55
192 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
GNU Compatibility

Using the #define Directive

Another way to define a macro is to use the #define directive. This will define a pre-
processor style macro using a syntax that will be familiar to C programmers. Note that C
pre-processor macros are complementary to the assembler’s main MACRO. . . ENDM
macro language.

Listing 13.24 shows the full syntax, and explains the syntax elements.

Listing 13.24 Macro Definition Syntax: #define Directive

#define name [(parms)] assembly statement [; 1 [\]
assembly statement [; 1 [\ 1
assembly statement

parms ::= parameter [,parameter]...

NOTE If you specify parameters for a macro, you must enclose them in parentheses.

Table 13.14 Syntax Elements: #define Directive

Element Description

name Label that invokes the macro.

parameter Operand the assembler passes to the macro.
assembly_statement An assembly language statement. To extend the statement

beyond the length of one physical line, type a backslash (\)
at the end of a line, then continue the statement on the next
line.

To specify multiple statements on the same line, separate
then with semicolon and backslash characters (;\).

GNU Compatibility

The Codewarrior Assembler supports several GNU-format assembly language extensions.

¢ GNU Compatible Syntax option
* Supported Extensions
* Unsupported Extensions

CodeWarrior Build Tools Reference for Power Architecture® Processors 193

A 4
4\

Assembler
GNU Compatibility

GNU Compatible Syntax option

Only in cases where GNU’s assembler format conflicts with that of the CodeWarrior
assembler does the GNU Compatible Syntax option have any effect. Specifically:

¢ Defining Equates
Whether defined using .equ or .set, all equates can be re-defined.
* Ignored directives
The .type directive ignored.
¢ Undefined Symbols
Undefined symbols are automatically treated as imported
* Arithmetic Operators
< and > mean left-shift and right-shift instead of less than and greater than.
! means bitwise-or-not instead of logical not.
* Precedence Rules

Precedence rules for operators are changed to be compatible with GNU rather than
with C.

¢ Local Labels

Local labels with multi-number characters are supported (example: "1000:"). There
is no limit on the number of digits in the label name. Multiple instances of the label
are allowed. When referenced, you get the nearest one - forwards or backwards
depending on whether you append 'f' or 'b' to the number.

¢ Numeric Constants

Numeric constants beginning with 0 are treated as octal.
¢ Semicolon Use

Semicolons can be used as a statement separator.
¢ Unbalanced Quotes

A single unbalanced quote can be used for character constants. For example: .byte 'a

Supported Extensions

Some GNU extensions are always available, regardless whether you enable GNU
compatible syntax. Specifically:

* Lines beginning with # * or ; are always treated as comment, even if the comment
symbol for that assembler is someting different.

* Escape characters in strings extended to include \xNN for hex digits and \NNN for
octal.

194 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
GNU Compatibility

¢ Binary constants may begin with 0b.

¢ Supports the GNU macro language, with macros defined by:

.macro

.endm

name, argl [=defaultl],arg2...sl

Arguments may have default values as shown, and when called may be specified by
value or position. See the GNU documentation for details.

¢ New or enhanced directives (see GNU documentation for details)

Table 13.15 Supported GNU Assembler Directives

Directive Description Comment

.abort End assembly Supported

.align N,[pad] Align Now accepts optional padding byte
.app-file name Source name Synonym for .file

.balign[wl] N,[pad]

Align

Align to N (with optional padding value)

.comm name,length

Common data

Reserve space in BSS for global symbol

.def Debugging Accepted but ignored
.desc Debugging Accepted but ignored
dim Debugging Accepted but ignored
.eject Eject page Accepted but ignored
.endr End repeat See .irp, .irpc

.endef Debugging Accepted but ignored

fill N,[size],[val]

Repeat data

Emit N copies of width 'size’, value 'val'

.hword val.. Half-word Synonym for .short

.ident Tags Accepted but ignored

.ifnotdef name Conditional Synonym for .ifndef

.include name Include file Now accepts single, double or no quotes
.intval.. Word Synonm for .long

.irp name,values Repeat Repeat up to .endr substituting values for

name

CodeWarrior Build Tools Reference for Power Architecture® Processors

195

y
A

Assembler
GNU Compatibility

Table 13.15 Supported GNU Assembler Directives

Directive Description Comment

.irpc name,chars Repeat Repeat up to .endr substituting chars for
name

.lcomm name,length | Local common Reserve length bytes in bss

Iflags Ignored Accepted but ignored

.In lineno Line number Synonym for .line

list Listing on Switch on listing

.local name Local macro var | Declare name as local to macro

.macro name, args.. | Macros Supports Gnu syntax, default values, etc

.nolist Listing off Disable listing

.org pos;fill Origin Now allows fill value ot be specified

.p2align[wl] N[,pad] Align Align to 2**N, using pad value 'pad'

.psize Page size Accepted but ignored

.rept N Repeat Repeat block up to .endr N times

.sbttl Subtitle Accepted but ignored

.scl Debugging Accepted but ignored

.size name,N Set size Set size of name to N

.skip N[,pad] Space Skip N bytes, pad with 'pad'

.space N[,pad] Space Skip N bytes, pad with 'pad'

.stabd Debugging Accepted but ignored

.stabn Debugging Accepted but ignored

.stabs Debugging Accepted but ignored

.str “string” Constant string Synonym for .asciz

.string “string” Constant string Synonym for .asciz

tag Debugging Accepted but ignored

title Title Accepted but ignored

196 CodeWarrior Build Tools Reference for Power Architecture® Processors

Assembler
GNU Compatibility

Table 13.15 Supported GNU Assembler Directives

Directive Description Comment

type Debugging Ignored in Gnu mode
val Debugging Accepted but ignored
.word Word Synonym for .long

Unsupported Extensions

Among the GNU extensions that the CodeWarrior Assembler does not support are:

Sub-sections (such as ". text 2"). The sub-section number will be ignored.

As a workaround, you can create your own sections with the . section <name>
directive. You may have an arbitrary number of text subsections with the names
.textl, . text2, etc.

Assignment to location counter (suchas ". = .+4")
As a workaround, you can advance the location counter with . space <expr>

Empty expressions defaulting to 0. Example:
"byte ,"equivalentto".byte 0,0")

There is no workaround for this. You must always supply the arguments.
.linkonce directive

The linker automatically detects logically-identical sections, and uses the following
factors to determine whether to keep only one or both in the final image:

— the binding of the symbols associated with each section

— the location of these two sections. For example, are the sections in the same
overlay or overlay group? Is one in main, and the other in an overlay group?

.octa

We do not support 16-byte numbers directly. As a workaround, you may use
consecutive . long directives to build a large number in memory.

.quad

We do not support eight-byte numbers directly. As a workaround, you may use
consecutive . long directives to build a large number in memory.

CodeWarrior Build Tools Reference for Power Architecture® Processors 197

A 4

4\

Assembler

GNU Compatibility
198

CodeWarrior Build Tools Reference for Power Architecture® Processors

14

Linker

The compiler organizes its object code into sections that the linker arranges when it
creates its output file.

To generate an output file, the linker reads from input ELF (Executable and Linkable
Format) files generated by compiler and other tools. The linker also reads a linker
command file to determine how to build its output file. The linker then writes to its output
file, an ELF file. This output file is the executable image, ready to load and run on the
target platform.

This chapter explains the sections in the object code of and how to arrange them in the
linker’s output file:

¢ Specifying Link Order in the IDE

¢ Dead-Stripping

¢ Defining the Target’s Memory Map

¢ Defining Sections in the Output File

* Associating Input Sections With Output Sections
* Controlling Alignment

* Specifying Memory Area Locations and Sizes

¢ Creating Symbols
¢ Linker Command File Syntax

¢ Commands. Directives., and Keywords

Specifying Link Order in the IDE

To specity link order, use the Link Order page of the CodeWarrior IDE’s Project
window. (For certain targets, the name of this page is Segments.)

Regardless of the order that the Link Order page specifies, the linker always processes
source code files before it processes relocatable (. o) files or archive (. a) files. This
policy means that the linker prefers using a symbol definition from a source file rather
than a library file definition for the same symbol.

CodeWarrior Build Tools Reference for Power Architecture® Processors 199

3
4

y
A

Linker

Dead-Stripping

There is an exception, however: if the source file defines a weak symbol, the linker uses a
global-symbol definition from a library. Use #pragma overload to create weak
symbols.

Well-constructed projects usually do not have strong link-order dependencies.

The linker ignores executable files of the project. You may find it convenient to keep the
executable files in the project folder so that you can disassemble it. If a build is successful,
a check mark disappears in the touch column on the left side of the project window. The
check mark indicates that the new file in the project is out of date. If a build is
unsuccessful, the IDE will not be able to find the executable file and it stops the build with
an appropriate message.

Dead-Stripping

Normally, the CodeWarrior linker ignores object code that is not referred to by other
object code. If the linker detects that an object is not referred to by the rest of the program
being linked, the linker will not place that object in its output file. In other words, the
linker “dead-strips” objects that are not used.

Dead-stripping ensures the smallest possible output file. Also, dead-stripping relieves you
from having to manually exclude unused source code from the compiler and unused object
code from the linker.

There are some objects, however, that need to be in the linker’s output file even if these
objects are not explicitly referred to by other parts of your program. For example, an
executable image might contain an interrupt table that the target platform needs, but this
interrupt table is not referred to by the rest of the image.

Use the FORCEACTIVE directive in a linker command file to specify to the linker which
objects must not be dead-stripped.

Listing 14.1 shows an example from a linker command file that tells the linker not to dead-
strip an object named InterruptVectorTable.

Listing 14.1 FORCEACTIVE example

FORCEACTIVE { InterruptVectorTable }

Use FORCEFILES directive to prevent deadstripping entire files. Listing 14.1 shows an
example from a linker command file that prevents the linker dead-stripping entire files.

Listing 14.2 FORCEFILES example

FORCEFILES { segfault.o }

200

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Defining the Target’s Memory Map

Defining the Target’s Memory Map

Use the linker command file’s MEMORY directive to delineate areas in the target platform’s
memory map and associate a name for each of these areas. Names defined in a MEMORY
directive may be used later in the linker command file to specify where object code should
be stored. Listing 14.3 shows an example.

Listing 14.3 MEMORY directive example

MEMORY

{
ISR_table : org = 0x00000000, len = 0x400
data : org 0x00000400, 1len 0x10000
flash: org 0x10000000, 1len 0x10000
text : org 0x80000000

This example defines 4 memory areas named ISR_table, data, flash, and text.
The org argument specifies the beginning byte address of a memory area. The 1en
argument is optional, It specifies how many bytes of data or executable code the linker
may store in an area. The linker issues a warning message if an attempt to store object
code in an area exceeds its length.

Defining Sections in the Output File

Use the linker command file’s SECTIONS directive to
* define sections in the linker’s output file

¢ to specify in which memory area on the target platform a section in the output file
should be loaded at runtime

Use GROUP directives in a SECTIONS directive to organize objects.

The linker will only create a section in the output file if the section is not empty, even if
the section is defined in a SECTIONS or GROUP directive.

Listing 14.4 shows an example.

Listing 14.4 SECTIONS and GROUP example

SECTIONS
{
GROUP
{
.text : {}

CodeWarrior Build Tools Reference for Power Architecture® Processors 201

A 4
4\

Linker
Associating Input Sections With Output Sections

.rodata : {}
} > text

GROUP
{
.sdata : {}
.sbss : {}
} > data

GROUP
{
.sdata2 : {}
.sbss2 : {}
} > data

This example defines the . text and . rodata sections in the output file and specifies
that they should be loaded in the memory area named text on the target platform at
runtime. The example then defines sections named . sdata and . sbss. These sections
will be loaded in the memory named data. The last GROUP directive in the example
defines sections named . sdata2, and . sbss2. These sections will also be loaded in the
memory area named data, after the sections . sdata and . sbss.

Associating Input Sections With Output
Sections

Normally the linker stores sections from input object code in the sections of the linker’s
output file that have the same name. The linker command file’s SECTIONS and GROUP
directives allow you to specify other ways to associate input object code with sections in
linker output. Listing 14.5 shows an example.

Listing 14.5 Associating object code with sections in linker output

SECTIONS
{
GROUP
{
.myText : { main.o (.text) }
.text @ (*(.text) }
} > text
}

This example defines a section in the output file named .myText. This section will
contain the objects that are in the . text section in the object code taken from the input

202 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Associating Input Sections With Output Sections

file named main. o. The example also defines a section in the output file named . text.
This section will contain all objects in the . text sections of all input files containing
object code. Both these sections in the output file, .myText and . text, will be loaded
in the memory area named text on the target platform.

The SECTIONS and GROUP directives also allow you to filter what kinds of object code
from input files will be stored in a section in the output file. Table 14.1 shows the kinds of
data that may be filtered.

Table 14.1 Filter types for object code in input files

This filter allows input objects that and contain this kind of
have these permissions object code

TEXT readable, executable initialized

CODE readable, executable initialized

DATA readable, writable initialized

BSS readable, writable uninitialized

CONST readable initialized

MIXED readable, writable, executable initialized

VLECODE readable, executable initialized

Listing 14.6 shows an example.

Listing 14.6 Filtering objects from input files

SECTIONS
{
.text (TEXT) : { } > text
.bss (BSS) : { } > data
}

This example defines a section in the output file named . text. The linker will only store
objects from input object code that are readable, executable, and initialized. This example
also defines a section in the output file named . bss. This section will only contain
objects from the linker’s input files that are readable, writable, and uninitialized.

CodeWarrior Build Tools Reference for Power Architecture® Processors 203

y
A

Linker
Controlling Alignment

Controlling Alignment

Use the ALTGN argument in a SECTIONS or GROUP directive to specify an alignment
relative to the start of the physical address.

Listing 14.7 shows an example.

Listing 14.7 Example of the ALIGN directive

SECTIONS
{
GROUP:
{
.init ALIGN(0x1000) : {}
.text ALIGN(0x1000) : {}
} > text

This example defines two sections named .init and . text. At runtime, each section
will be loaded at the next available address that is evenly divisible by 0x1000 in the
memory area named text on the target platform.

Specifying Memory Area Locations and
Sizes

Normally, the linker stores sections in the output file in sequential order. Each object from
the linker’s output is stored after the last object in the output file. Use the BIND, ADDR,
and SIZEOF keywords in SECTIONS and GROUP directives to precisely specify where
sections in the output file will be loaded.

Listing 14.8 shows an example.

Listing 14.8 BIND, ADDR, and SIZEOF example

SECTIONS

{
.text BIND(0x00010000) : ()
.rodata : {}

.data BIND(ADDR(.rodata + SIZEOF(.rodata)) ALIGN(0x010) : {}

This example defines a section in the output file named . text. This section will be
loaded at address 0x00010000 on the target platform at runtime. The next section,
.rodata, will be loaded at the address immediately proceeding the last byte in the

204 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Creating Memory Gaps

. text section. The last section, . data, will be loaded at the address that is the sum of
the beginning of the . rodata section’s address and the size of the . rodata section.
This last section will be aligned at the next address that is evenly divisible by 0x10.

The dot keyword (““.”), is a convenient way to set the linker’s place in the current output
section.

Listing 14.9 shows an example.

Listing 14.9 Skipping areas of memory

SECTIONS
{
GROUP
{
.ISR_Table : {1}
. = 0x2000
} > flash

GROUP
{

.paramsection : {}
} > flash

This example defines two sections. The first section, . ISRTable, will be loaded at
beginning of the memory area named f£1lash on the target platform at runtime. The
second section, . paramsection, will be loaded at the address that is 0x2000 bytes
past the beginning of the memory area named flash.

Creating Memory Gaps

You can create gaps in memory by performing alignment calculations such as
= (. + 0x20) & ~0x20;

This kind of calculation can occur between output_specs, between input_specs,
or even in address_modifiers. A “.” refers to the current address. You may assign
the . to a specific unallocated address or just do alignment as the example shows. The gap
is filled with zeroes, in the case of an alignment (but not with ALIGN ()).

You can specify an alternate fill pattern with = <short_value>, as in
.text ¢+ { . = (. + 0x20) & ~0x20; *(.text) } = OxAB > text

short_value is 2 bytes long. Note that the fill pattern comes before the
memory_spec. You can add a fill to a GROUP or to an individual output_spec

CodeWarrior Build Tools Reference for Power Architecture® Processors 205

y
A

Linker
Creating Symbols

section. Fills cannot be added between .bss type sections. All calculations must end in a

@
H

Creating Symbols

You can create symbols that you can use in your program by assigning a symbol to some
value in your linker command file.

.text : { _red_start = .; *(.text) _red_ end = .;} > text

In the example above, the linker generates the symbols _red_start and _red_end
as 32 bit values that you can access in your source files. _red_start is the address of
the first byte of the . text section and _red_end is the byte that follows the last byte of
the . text section.

You can use any of the pseudo functions in the address_modifiers in a calculation.

The CodeWarrior linker automatically generates symbols for the start address, the end
address, and the start address for the section if it is to be burned into ROM. For a section
.red,wecreate _f_red, _e_red, and _f_red_rom. Inall cases, any “ . ” in the
name is replaced with a “_". Addresses begin with an “_£”, addresses after the last byte in
section begin with an “_e”, and ROM addresses end in a “_rom”. See the header file

ppc_eabi_linker.h for further details.

All user defined sections follow the preceding pattern. However, you can override one or
more of the symbols that the linker generates by defining the symbol in the linker
command file.

NOTE BSS sections do not have a ROM symbol.

Linker Command File Syntax

Linker command file syntax is a notation and implies what an LCF file includes. Listing
14.10 shows the syntax for linker command files.

Listing 14.10 Linker Command File Syntax

linker-command-file =
command* memory? command* sections? command*

This syntax implies that an LCF file can contain:

Zero or more command directives followed by
Zero or at most one memory directive followed by
Zero or more command directives followed by

206 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Linker Command File Syntax

Zero or at most one sections directive followed by
Zero or more command directives.

Table 14.2 lists the notations used in the linker command file syntax.

Table 14.2 Linker Command File Notations

Notation Description

*

Implies zero or any number of directives

? Implies zero or at most one directive

Listing 14.11 shows the syntax of all valid linker command file keywords, directives, and
commands.

Listing 14.11 Linker Command File Syntax (Commands, Directives, and Keywords)

command =
exclude-files |
force-active |
force-files |
include-dwarf |
keep |
ref-include |
shorten-names-for-tornado-101 |
cats-bss-mod |
cats-header-mod |
data-type-converts |
entry |
init |
term |
external-symbol |
internal-symbol |
memory-gaps

exclude-files =
"EXCLUDEFILES" "{" file-name+ "}"

force-active =
"FORCEACTIVE" "{" symbol+ "}"

CodeWarrior Build Tools Reference for Power Architecture® Processors 207

y
A

Linker
Linker Command File Syntax

file-name =
(letter |"_") (letter |digit ["_")*
(".")2(letter |digit |"_")*

section-name =
(letter |"_") (letter |digit ["_")*
object-file =
(letter |u_u) (letter |digit |u_u)* (u.u) (uou|uou)

archive-file =
(letter |u_u) (letter | digit |u_u)* (u.u) (uau|uAu)

include-dwarf =
"INCLUDEDWARF" "{" file-name "}"

keep =
“KEEP”" (" *(section-name)")"

ref-include =
“REF_INCLUDE” “{"“ section-name+ “}”

shorten-names-for-tornado-101=
"SHORTEN_NAMES_FOR_TOR_101"

cats-bss-mod =
"CATS_BSS_MOD"

cats-header-mod =
"CATS_HEADER_MOD"

data-type-converts =
"DATA_TYPE_CONVERTS"

entry =

" ENTRY n n (n SYIleOl n) n
init =

n INITH n (n Symbol n) n

term =
"TERM" " (" symbol my

external-symbol =
"EXTERNAL_SYMBOL" "{" symbol ["," symbol] "}"

internal-symbol =
"INTERNAL_SYMBOL" "{" symbol ["," symbol] "}"

208 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Linker Command File Syntax

group=
"GROUP" address-modifiers ":"
"{" (section-spec)* "}" ["=" fill-shortnumber]

["> " mem-area-symbol]

hexadigit =
0 [Tz r3r a5 e e
‘A'|'B'|'C'|'D'|'E'|'a'|'b'|'c'|'d | e’
digit =

o[t r2 3 a5 e [t e | e

hexadecimal-number =
"0 ("x"|"X")hexadigit+

decimal-number =
digit+

number =
hexadecimal-number | decimal-number

binary-op

R e R A S B e By P I N I ESSrl Y
est |] S P I E - I U BT B
unary-op =
R e U N
postfix-unary-op =
R T
symbol-declaration =
(symbol "=" address-spec) |
("PROVIDE" " (" identifier "=" address=spec ")") |
(“EXPORTSYMTAB”") |
(“EXPORTSTRTAB”) |
(“BYTE” “(“ address-spec “)”
(“SHORT” “(“ address-spec “)” |
(“LONG” “(“ address-spec “)”
symbol =
(letter |"_") (letter|"_"|digit)*
operand =
number |
("ADDR" " (" output-section-spec | address-expr ")") |
("ROMADDR" " (" output-section-spec | address-expr ")" |

CodeWarrior Build Tools Reference for Power Architecture® Processors 209

y
A

Linker
Linker Command File Syntax

("SIZEOF" " (" output-section-spec | address-expr ")") |
("SIZEOF_ROM" " (" output-section-spec | address-expr ")")

address-spec =
number |
o
operand |
(address-spec binary-op operand) |
(unary-op address-spec) |
(address-spec postfix-unary-op)

memory-spec =

memory-area-symbol ":" "origin" |
"org" |

"o" "=" number " , noon length " |
"len" |

" l n n_n number

[*>” file-name]

memory-gaps =
"." "=" address-spec

memory =
"MEMORY" "{" memory-spec + "}"

sections =
"SECTIONS" "{"
(section-spec | memory-gaps | symbol-declaration | group)*

||}||

section-spec =
output-section-name ":"
[u (u input—type u) ||]

[address-modifiers] "{"
[(input-section-spec)*] "}
[= fill-shortnumber] [(">"|">>") memory-area-symbol]

output-section-name =
section-name

input-type =
["TEXT" | "DATA" | "BSS" | "CONST" | "MIXED" "ZTEXT" | "ZCODE" |
"VLECODE"]

address-modifiers =

["BIND" " (" address-spec ")"]
["ALIGN" " (" address-spec ")" 1]
["NEXT" " (" address-spec ")"]

210 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

["LOAD" " (" address-spec ")"]
["INTERNAL_LOAD" " (" address-spec ")"]

input-section-spec =
(file-name |
file-name " (" section-name ")" |
"x (" section-name ")" |
symbol-declaration |
data-write)+

data-write =
("T,ONG" | "SHORT" | "BYTE") " (" number ") "

fill-shortnumber =
number

Commands, Directives, and Keywords

The rest of this chapter consists of explanations of all valid LCF functions, keywords,
directives, and commands, in alphabetic order.

. (location counter)
Denotes the current output location.

Remarks

The period always refers to a location in a sections segment, so is valid only in a
sections-section definition. Within such a definition, '."' may appear anywhere a
symbol is valid.

Assigning a new, greater value to '.' causes the location counter to advance. But it
is not possible to decrease the location-counter value, so it is not possible to assign
anew, lesser value to '."' You can use this effect to create empty space in an output
section, as the Listing 14.12 example does.

Example

The code of Listing 14.12 moves the location counter to a position 0x10000 bytes
past the symbol __start.

CodeWarrior Build Tools Reference for Power Architecture® Processors 211

4
A

Linker
Commands, Directives, and Keywords

Listing 14.12 Moving the Location Counter

..data :
{
. (data)
* . (bss)
* . (COMMON)
__start = .;
= _ start + 0x10000;
__end = .;
} > DATA

ADDR

Returns the address of the named section or memory segment.

ADDR (sectionName | segmentName)

Parameters
sectionName

Identifier for a file section.
segmentName

Identifier for a memory segment

Example

The code of Listing 14.13 uses the ADDR function to assign the address of ROOT to
the symbol __rootbasecode.

Listing 14.13 ADDR() Function

MEMORY {
ROOT : origin = 0x80000400, length = 0
}

SECTIONS{
.code
{
__rootbasecode = ADDR (ROOT) ;
* . (text);
} > ROOT

212 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

ALIGN

Returns the location-counter value, aligned on a specified boundary.

ALIGN (alignValue)

Parameter
alignvalue

Alignment-boundary specifier; must be a power of two.

Remarks

The ALIGN function does not update the location counter; it only performs
arithmetic. Updating the location counter requires an assignment such as:

= ALIGN(0x10); #update location counter to
16-byte alignment

BIND

Specifies a section modifier for setting an address.

BIND (address)

Parameter
address

A memory address, such as 0x80000400.

BIN_FILE_TYPE

Controls the generation of a binary file. By default, the linker does not generate any binary
file, even if the s-record generation is enabled.

BIN_FILE_TYPE (NO_BIN FILE | ONE_BIN FILE
| MULTIPLE BIN_ FILES)

Parameters

NO_BIN_FILE

No binary file will be generated even if s-record generation is on.

CodeWarrior Build Tools Reference for Power Architecture® Processors 213

y
A

Linker
Commands, Directives, and Keywords

ONE_BIN_FILE

Generates a single binary file with all the loadable code and data, even if s-record
generation is off.

MULTIPLE_BIN_FILES

A separate binary file is generated for each MEMORY directive. When selected,
the hexidecimal address of the location, the file should be loaded is inserted
between the filename and extension.

Example

Listing 14.14 is an example of a binary file generated using the
MULTIPLE_BIN_FILES parameter for a non-ROM Image build.

Listing 14.14 Binary File for a non-ROM Image Build Example

Memory map:

Starting Size File S-Record Bin File Bin File

address Offset Line Offset Name
.init 00002000 00000318 000001cO 2 00000000 Test.00002000.bin
.text 00002320 00042250 000004e0 42 00000000 Test.00002320.bin

Listing 14.15 is an example of a binary file generated using the
MULTIPLE_BIN_FILES parameter for a ROM Image build.

Listing 14.15 Binary File for a ROM Image Build Example

Memory map:

Starting Size File ROM RAM Buffer S-Record Bin File Bin File
address Offset Address Address Line Offset
.init ££fe00000 00000318 00000300 ffe00000 ££fe00000
.text 00002000 0004£9d0 00086500 £fe00318 ££fe00318

Name
2 00000000 Test.ffe00000.bin
42 00000000 Test.ffe00318.bin

The code of Listing 14.16 uses the MULTIPLE_BIN_FILES parameter to change
the name of a binary file in the MEMORY directive.

Listing 14.16 Change Binary File Name in the MEMORY Directive

MEMORY {
code : org = 0x00002000 > my binary file.xyz

Any MEMORY directive without a custom name will be given a name like

Test.f££e00000.bin, where the binary file reflects the ROM address of the
segement.

214 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

The code of Listing 14.17 uses the MULTIPLE_BIN_FILES parameter to merge
some binary files together, assuming that there are no segments between them.

Listing 14.17 Merge Binary Files Together Example

MEMORY {
code : org = 0x00002000 > my_binary file.xyz
special : org = 0x00004000 > my binary_ file.xyz

BYTE

Inserts a byte of data at the current address of a section.

BYTE (expression) ;

Parameter
expression

Any expression that returns a value 0x00 to 0xFF.

EXCEPTION

Creates the exception table index in the output file.

EXCEPTION

Remarks

Only C++ code requires exception tables. To create an exception table, add the
EXCEPTION command, with symbols __exception_table_start__ and
__exception_table_end__, to the end of your code section segment, just as
Listing 14.18 shows. (At runtime, the system knows the values of the two
symbols.)

Example
Listing 14.18 shows the code for creating an exception table.

Listing 14.18 Creating an Exception Table

__exception_table_start_ =
EXCEPTION

.7

CodeWarrior Build Tools Reference for Power Architecture® Processors 215

y
A

Linker
Commands, Directives, and Keywords

__exception_table_end = .;

EXCLUDEFILES

Ignores object code in files.

Syntax
EXCLUDEFILES { file-name }

Remarks

This directive is for partial link projects only. It makes your partial link file
smaller. EXCLUDEFILES can be used independently of INCLUDEDWAREF.
Unlike INCLUDEDWARF, EXCLUDEFILES can take any number of executable
files.

In this example
EXCLUDEFILES { kernel.elf }

kernel.elf is added to your project but the linker does not add any section
from kernel.elf to your project. However, it does delete any weak symbol
from your partial link that also exists in kernel . el £f. Weak symbols can come
from templates or out-of-line inline functions.

EXPORTSTRTAB

Creates a string table from the names of exported symbols.

EXPORTSTRTAB

Remarks

Table 14.3 shows the structure of the export string table. As with an ELF string
table, the system zero-terminates the library and symbol names.

Table 14.3 Export String Table Structure

0x00 1 byte

library name varies

216 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

Table 14.3 Export String Table Structure (continued)

symbol1 name varies
symboR2 name varies
Example

Listing 14.19 shows the code for creating an export string table.

Listing 14.19 Creating an Export String Table

.expstr:

{
EXPORTSTRTAB
} > EXPSTR

EXPORTSYMTAB

Creates a jump table of the exported symbols.
EXPORTSYMTAB

Remarks

Table 14.4 shows the structure of the export symbol table. The start of the export
symbol table must be aligned on at least a four-byte boundary.

Table 14.4 Export Symbol Table Structure

Size (in bytes) of export table 4 bytes
Index to library name in export symbol table 4 bytes
Index to symbol1 name in export symbol table 4 bytes
Address of symbol1 4 bytes
A5 value for symbol1 4 bytes
Index to symbol2 name in export symbol table 4 bytes
Address of symbolf2 4 bytes
A5 value for symbol2 4 bytes

CodeWarrior Build Tools Reference for Power Architecture® Processors 217

y
A

Linker

Commands, Directives, and Keywords

Example

Listing 14.20 shows the code for creating an export symbol table.

Listing 14.20 Creating an Export Symbol Table

. expsym:
{

EXPORTSYMTAB
} > EXPSYM

EXTERNAL_SYMBOL

Specifies objects that may be referred to by modules outside of an object code file.

Syntax

EXTERNAL_SYMBOL { symbol [, symbol]* }

Remarks

The symbols must be the link time symbol names. In the case of C++ object code,
these names must be the mangled.

FORCEACTIVE

Specifies objects that must not be deadstripped.
Syntax
FORCEACTIVE { symbol [, symboll* }

GROUP
Organizes objects listed in a linker command file.
Syntax
GROUP address-modifiers : { section-spec [, section-specl* }
[> memory-area-name]
218 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

Remarks
The GROUP directive lets you organize the linker command file.

Listing 14.21 shows that each group starts at a specified address. If no
address_modifiers are present, it would start following the previous section
or group. Although you normally do not have an address_modifier for an
output_spec within a group; all sections in a group follow contiguously unless
there is an address_modifier for that output_spec.

The optional memory-area-name clause specifies a name defined with the
MEMORY directive. Using this clause specifies the memory space in the target
platform where the group’s object code should be placed.

Listing 14.21 Example of linker GROUP directive

SECTIONS {
GROUP BIND(0x00010000) : {
.text : {}
.rodata : {*(.rodata) * (extab) * (extabindex)}

}

GROUP BIND(0x2000) : {
.data : {}

.bss : {}

.sdata BIND(0x3500) : {}
.sbss : {3

.sdata2 : {}

.sbss2 : {3}

}

GROUP BIND (0xffff8000) : {
.PPC.EMB.sdata0 : {}
.PPC.EMB.sbss0 : {}

}

IMPORTSTRTAB

Creates a string table from the names of imported symbols.

IMPORTSTRTAB

CodeWarrior Build Tools Reference for Power Architecture® Processors 219

y
A

Linker
Commands, Directives, and Keywords

Remarks

Table 14.5 shows the structure of the import string table. As with an ELF string
table, the system zero-terminates the library and symbol names.

Table 14.5 Import String Table Structure

0x00 1 byte

library name varies

symbol1 name varies

symbol2 name varies
Example

Listing 14.22 shows the code for creating an import string table.

Listing 14.22 Creating an Import String Table

.impstr:

{
IMPORTSTRTAB

} > IMPSTR

IMPORTSYMTAB

Creates a jump table of the imported symbols.

IMPORTSYMTAB

Remarks

Table 14.6 shows the structure of the import symbol table. The start of the import
symbol table must be aligned on at least a four-byte boundary.

Table 14.6 Import Symbol Table Structure

Size (in bytes) of import table 4 bytes
Index to library1 name in import string table 4 bytes
Number of entries in library1 4 bytes

220 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

Table 14.6 Import Symbol Table Structure (continued)

Index to symbol1 name in import string table 4 bytes

Address of symbol1 vector in export string table 4 bytes

Index to symbol2 name in import string table 4 bytes

Address of symbol2 vector in export string table 4 bytes

Index to library2 name in import string table 4 bytes

Number of entries in library2 4 bytes
Example

Listing 14.23 shows the code for creating an import symbol table.

Listing 14.23 Creating an Import Symbol Table

.expsym:

{
IMPORTSYMTAB
} > EXPSYM

INCLUDEDWARF

Allows source-level kernel debugging.

Syntax
INCLUDEDWARF { file-name }

Remarks
In this example
INCLUDEDDWARF { kernel.elf }

the linker inserts the . debug and . line sections of kernel.elf to your
application. These sections let you debug source level code in the kernel while
debugging your application.

You are limited to one executable file when using this directive. If you need to
process more than one executable, add this directive to another file.

CodeWarrior Build Tools Reference for Power Architecture® Processors 221

y
A

Linker

Commands, Directives, and Keywords

INTERNAL_LOAD

Loads one or several segments at an address not specified at link time.

Syntax

INTERNAL_LOAD (address)

Parameter
address

A memory address, such as 0x80000400.

Remarks

Use INTERNAL_LOAD directive to specify an internal ROM addr_mode.

INTERNAL_SYMBOL

Symbols created in a linker command file are considered external unless they are
redefined using INTERNAL_SYMBOL

Syntax

INTERNAL_SYMBOL { symbol [, symbol]* }

KEEP

Forces the linker to not dead strip the unused symbols in the specified section.

Syntax

KEEP (* (sectionType))

Parameter
sectionType

Identifier for any user-defined or predefined section.

Example
Listing 14.24 shows the sample usage.

222

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

Listing 14.24 KEEP Directive Usage

GROUP : {
.text (TEXT) : {}
.mycode (TEXT) : {KEEP(*(.mycode))}

LOAD

Loads one or several segments at a specific address.

Syntax

LOAD (address)

Parameter
address

A memory address, such as 0x80000400.

Remarks
¢ Use LOAD directive to specify an external ROM addr_mode.
e The LOAD directive can be used on all the sections going into ROM.

¢ The directive is ignored in links if Generate ROM image is not checked in the
linker preference panel.

* Inconsistent initialized data sections copied from ROM to RAM may need a
reference to a ROM address. For example, to store the .data and . sdata
sections in ROM such that they are immediately after the . text section, try the

following:
.text LOAD(ADDR(.text)) : {} > rom
.data LOAD(ROMADDR (.text) + SIZEOF(.text)): {} > code
.sdata LOAD(ROMADDR (.data) + SIZEOF(.data)): {} > code

LONG

Inserts a word of data at the current address of a section.

LONG (expression) ;

CodeWarrior Build Tools Reference for Power Architecture® Processors 223

y
A

Linker

Commands, Directives, and Keywords

Parameter
expression

Any expression that returns a value 0x00000000 to OXFFFFFFFF.

MEMORY

Starts the LCF memory segment, which defines segments of target memory.

MEMORY { memory_spec|[, memory_spec] }

Parameters
memory._spec

segmentName: origin = address,
length = length [> fileName]

segmentName

Name for a new segment of target memory. Consists of alphanumeric characters;
can include the underscore character.

address

A memory address, such as 0x80000400, or an AFTER command. The format of
the AFTER command is AFTER (name[, name]);this command specifies
placement of the new memory segment at the end of the named segments.

length

Size of the new memory segment: a value greater than zero. Optionally, the value
zero for autolength, in which the linker allocates space for all the data and code of
the segment. (Autolength cannot increase the amount of target memory, so the
feature can lead to overflow.)

fileName

Optional, binary-file destination. The linker writes the segment to this binary file
on disk, instead of to an ELF program header. The linker puts this binary file in the
same folder as the ELF output file. This option has two variants:

e > fileName: writes the segment to a new binary file.

e >> fileName: appends the segment to an existing binary file.

Remarks

The LCF contains only one MEMORY directive, but this directive can define as
many memory segments as you wish.

224

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

For each memory segment, the ORIGIN keyword introduces the starting address,
and the LENGTH keyword introduces the length value.

There is no overflow checking for the autolength feature. To prevent overflow, you
should use the AFTER keyword to specify the segment’s starting address.

If an AFTER keyword has multiple parameter values, the linker uses the highest
memory address.

MAX_BIN_GAP

Controls the maximum gap size value between two segments.

MAX_ BIN_GAP (nnnnn)

Parameters
nnnnn

Size of the maximum gap allowed between segments.

Remarks

The directive can be placed in the LCF anyway except within the MEMORY and
SECTIONS directives.

This directive can only be used if you are generating a single binary file.

NEXT

Specifies an expression for setting an address.

NEXT (address)

Parameter
address

A memory address, such as 0x80000400.

NO_TRAILING_BSS_IN_BIN_FILES

Removes uninitiallized data contained in a binary file.

CodeWarrior Build Tools Reference for Power Architecture® Processors 225

y
A

Linker
Commands, Directives, and Keywords

Syntax

NO_TRAILING_BSS_IN_BIN_FILES

Remarks

This directive can only be used if the last section or sections of a binary file
contains uninitialized data.

Example

Listing 14.25 is an example use of the NO_TRAILING_BSS_IN_BIN_FILES
directive.

Listing 14.25 NO_TRAILING_BSS_IN_BIN_FILES Directive Example

SECTIONS
{
GROUP {
.text: {}
}>code
}
NO_TRAILING_BSS_IN_BIN FILES

OBJECT

Sections-segment keyword that specifies a function. Multiple OBJECT keywords control
the order of functions in the output file.

OBJECT (function, sourcefile.c)

Parameters
function

Name of a function.
sourcefile.c

Name of the C file that contains the function.

Remarks

If an OBJECT keyword tells the linker to write an object to the output file, the
linker does not write the same object again, in response to either the GROUP
keyword or the '*' wildcard character.

226 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

REF_INCLUDE

Starts an optional LCF closure segment that specifies sections the linker should not
deadstrip, if program code references the files that contain these sections.

REF_INCLUDE{ sectionTypel, sectionType] }

Parameter
sectionType

Identifier for any user-defined or predefined section.

Remarks

Useful if you want to include version information from your source file
components.

REGISTER

Use the REGISTER directive to assign one of the EPPC processor’s non-volatile registers
to a user-defined small data section.

REGISTER(nn [, limit])

Parameter
nn

Specifies one of the predefined small data base registers, a non-volative EPPC
register, or any of the following values:

« 0, 2, 13

These registers are for the predefined small data sections:

0 - .PPC.EMB.sdataO/.PPC.EMB.sbss0
2 - .sdata2/sbss2
13 - .sdata/sbss
You do not have to define these sections using REGISTER because they are
predefined.
¢« 14 - 31

Match any value in this range with the register reserved by your global register
variable declaration.

. -1

CodeWarrior Build Tools Reference for Power Architecture® Processors 227

3
4

y
A

Linker
Commands, Directives, and Keywords

This “register” value instructs the linker to treat relocations that refer to objects in
your small data section as non-small data area relocations. These objects are
converted to near absolute relocations, which means that the objects referenced
must reside within the first 32 KB of memory. If they do not, the linker emits a
“relocation out of range” error. To fix this problem, rewrite your code such that the
offending objects use large data relocations.

limit
Specifies the maximum size of the small data section to which register nn is

bound. This value is the size of the initialized and uninitialized sections of the
small data section combined. If 1imit is not specified, 0x00008000 is used.

NOTE Each small data section you create makes one less register available to the
compiler; it is possible to starve the compiler of registers. As a result, create
only the number of small data sections you need.

ROMADDR

Equivalent to ADDR. Returns ROM address.

ROMADDR (sectionName | segmentName)

Parameters
sectionName

Identifier for a file section.
segmentName

Identifier for a memory segment

Example

The code of Listing 14.26 uses the ROMADDR function to assign the address of ROM
to the symbol __rootbasecode.

Listing 14.26 ROMADDR() Function

MEMORY {
ROM : origin = 0x80000400, length = 0
}

SECTIONS{
.code

{

228 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

__rootbasecode = ROMADDR (ROM) ;
* . (text) ;
} > ROM

SECTIONS

Starts the LCF sections segment, which defines the contents of target-memory sections.
Also defines global symbols to be used in the output file.

SECTIONS { section_spec[, section_spec] }

Parameters
section_spec

sectionName : [LOAD (loadAddress)] {contents}
> segmentName

sectionName

Name for the output section. Must start with a period.
LOAD

Loads one or several segments at a specific address.
contents

Statements that assign a value to a symbol or specify section placement, including
input sections.

segmentName

Predefined memory-segment destination for the contents of the section. The two
variants are:

* > gsegmentName: puts section contents at the beginning of memory segment
segmentName.

* >> segmentName: appends section contents to the end of memory segment
segmentName.

Example
Listing 14.27 is an example sections-segment definition.

Listing 14.27 SECTIONS Directive Example

SECTIONS {

CodeWarrior Build Tools Reference for Power Architecture® Processors 229

3
4

y
A

Linker

Commands, Directives, and Keywords

.text

.data
.bss

{
_textSegmentStart = .;
alpha.c (.text)

= ALIGN (0x10);
beta.c (.text)
_textSegmentEnd =

.

(.data) }

SHORT

Inserts a halfword of data at the current address of a section.

SHORT (expression) ;

Parameter
expression

Any expression that returns a value 0x0000 to OxFFFF

SIZEOF

Returns the size (in bytes) of the specified segment or section.

SIZEOF (segmentName | sectionName)

Parameters
segmentName

Name of a segment; must start with a period.
sectionName

Name of a section; must start with a period.

230

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker
Commands, Directives, and Keywords

SIZEOF_ROM

Returns the size (in bytes) that a segment occupies in ROM.

SIZEOF_ROM (segmentName)

Parameter
segmentName

Name of a ROM segment; must start with a period.

Remarks

Always returns the value 0 until the ROM is built. Accordingly, you should use
SIZEOF_ROM only within an expression inside a BYTE, SHORT, or LONG function.

Furthermore, you need STZEOF_ROM only if you use the COMPRESS option on the
memory segment. Without compression, there is no difference between the return values
of SIZEOF_ROM and SIZEOF.

WRITESOCOMMENT

Inserts an SO comment record into an S-record file.

WRITESOCOMMENT "comment"

Parameter
comment

Comment text: a string of alphanumerical characters 0-9, A-Z, and a-z, plus
space, underscore, and dash characters. Double quotes must enclose the comment
string. (If you omit the closing double-quote character, the linker tries to put the
entire LCF into the SO comment.)

Remarks

This command, valid only in an LCF sections segment, creates an SO record of the
form:

S0aa0000bbbbbbbbbbbbbbbbdd

* aa — hexadecimal number of bytes that follow
* bb — ASCII equivalent of comment

e dd — the checksum

CodeWarrior Build Tools Reference for Power Architecture® Processors 231

A 4
4\

Linker
Commands, Directives, and Keywords

This command does not null-terminate the ASCII string.

Within a comment string, do not use these character sequences, which are reserved
for LCF comments: # /* */ //

Example

This example shows that multi-line SO comments are valid:
WRITESOCOMMENT "Line 1 comment

Line 2 comment"

232 CodeWarrior Build Tools Reference for Power Architecture® Processors

15

Linker for Power
Architecture Processors

This chapter describes how to use the features in the CodeWarrior linker that are specific
to Power Architecture software development.

¢ Predefined Sections

¢ Additional Small Data Sections

¢ Linker Map File
¢ Deadstripping

¢ Linker Command Files

Predefined Sections

Table 15.1 describes the sections that the compiler creates.

NOTE The Compiler-defined section names are case sensitive. For example, using
.binary instead of .BINARY will not give expected results.

Table 15.1 Compiler-defined sections

Name Description

.bss uninitialized global data

.BINARY Binary files.

.ctors C++ constructors and Altivec vector constructors
.dtors C++ destructors

.data initialized global data

extab C++ exception tables

extabindex C++ exception tables

CodeWarrior Build Tools Reference for Power Architecture® Processors 233

'
A

Linker for Power Architecture Processors
Predefined Sections

Table 15.1 Compiler-defined sections

Name

Description

.init

initialization executable code from the runtime library

.init_vle

Initialization executable code for VLE compilers

.PPC.EMB. sda
tal

Initialized data with addressing relative to address 0

.PPC.EMB. sbs
s0

Uninitialized data with addressing relative to address 0

.rodata literal values and initialization values in the application’s source
code

.sdata initialized small global data

.sdata2 initialized global small data defined with the const keyword

.sbss uninitialized global small data

.sbss2 uninitialized global constant small data defined with the const
keyword

.text application code

.text_vle application code for VLE compilers

Linking Binary Files
You can link external binary files/data (tables, Bitmap graphics, sound records) into the

project image. The following sections explain how to link binary files using CodeWarrior
IDE and Command line:

¢ Using CodeWarrior IDE

¢ Using Command-Line

Using CodeWarrior IDE

To link a binary file using CodeWarrior IDE, perform the following steps:
1. Launch CodeWarrior and open the desired project to add the binary file.
2. Add abinary file (bin_data.bin) to project (Figure 15.1).

234 CodeWarrior Build Tools Reference for Power Architecture® Processors

P

Linker for Power Architecture Processors
Predefined Sections

Figure 15.1 Add a Binary File

|
[# intemal FLaSH By @

Files | Link Drderl Targetsl

| Fie | Code | Data 404 [=]

¢ [readme.tst nda nia s
¥ EE3 Sources 0 0+ « =
'3 -8 bin_data.bin nda nia =l
3 i 0 0« « =
3 0 0« « =
'3 R Intcintermupts.c] 0« « =
[#{_3 Header Files] 0 =l
¥ [#{_] Startup Code] 0+ « =
@ E-E3 Lk Files 0 0« |
-f MPC5554_DEBUG.lof na néa u
L M tPCEE54.Icf na nia « u
¥ [#{] Runtime] 0 =l

[

18 files 0 0 A

3. Add binary file extension into project's File Mappings preference panel (if not
existing) and give it Flag of Resource File (Figure 15.2).

Figure 15.2 File Mappings Preference Panel

i ginternal_FLASH Settings [Binary_CWIDE_example.mcp]

2|
IE Target Settings Panels IE File b appings
= Target -
?argetSettings I |E File Type | Extenzion |@ |ﬁ? | |o | Compiler
- Access Paths TEXT 5 M Assembler PPC EABI ;I
- Build Extras TEXT 0 M Assembler PPC EABI
- File M appings TE=T txt Mone
- Source Trees .a b Lib Import PPC EABI
- O5EK Sysgen g
- EPPC Target J
- Language Seftings elf b Lib Import PPC EABI
- CAC++ Language irabj M C/C++ PPC EABI
- C/C++ Preprocessor ib A Lib Import PPC EABI LI
o CAC++ Warnings — Mapping Infa
=N EodEengn2?§;;:1b|EI File: Type: I MI Extension: I_bin
- [Global Optimizations — Flags: E [;Dmp“e,:lm
+ EPPC Processor v Resource File
~ EPPC Disassembler Edit Langua L Add | Change | Femove |
= Linker LI = aunchal.JIe
H Precompiled
Factory Settr 1anored by Make Import Pangl... | Export Panel... |

QK | Cancel | Apply |

4. Update linker command file (.Icf) and place .BINARY section into memory. Listing
15.1 shows a sample linker command file with .BINARY section.

CodeWarrior Build Tools Reference for Power Architecture® Processors 235

y
A

Linker for Power Architecture Processors
Predefined Sections

Listing 15.1 Linker Command File with .BINARY section

MEMORY

{
resetvector: org = 0x00000000, len = 0x00000008
init: org = 0x00000020, len = 0x00000FEQ
exception_handlers: org = 0x00001000, len = 0x00001000
internal_flash: org = 0x00002000, len = 0x001FDOO0OO
my_binary data: org = 0x001FE000, len = 0x00001000

}

SECTIONS

{

.__bam_ bootarea LOAD (0x00000000): {} > resetvector

.binaryl_area:

binarylStart = .;
bin_datal.bin
binarylEnd = .;

} > my binary_data

}

.binary2_area:

{

binary2Start = .;
bin_data2.bin
binary2End = .;

} > my_binary_data

}

}

Using Command-Line

To link a binary file using Command line, perform the following steps:

1. Linker recognizes .bin extension as a binary data input file. If binary file has
another extension it may not be recognized correctly by the command line linker.

2. Update linker command file (. 1cf) and place . BINARY section into memory. Listing
15.1 shows a sample linker command file with . BINARY section.

236

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker for Power Architecture Processors
Ad(ditional Small Data Sections

3. Add a binary file (.bin) as an input file for linker (MWLDEPPC.exe)

mwldeppc main.o msl.lib bin_data.bin -o myapp.elf -1lcf
commandfile.lcf

Additional Small Data Sections

The PowerPC EABI specification mandates that compliant build tools predefine three
small data sections. The EPPC Linker target settings panel lets you specify the address at
which the CodeWarrior linker puts two of these sections (if the default locations are
unsatisfactory).

CodeWarrior Development Studio, MPC55xx Edition lets you create small data sections
in addition to those mandated by the PowerPC EABI specification. The Code Warrior tools
let you specify that the contents of a given user-defined section will be accessed by the
small data base register selected from the available non-volatile registers. To do this, you
use a combination of source code statements and linker command file directives.

To create one additional small data area, follow these steps:

1.

Open the CodeWarrior project in which you want to create an additional small data
section.

Select the build target in which you want to create an additional small data section.

3. Press ALT-F7

The IDE displays the Target Settings window.

. In the left pane of the Target Settings window, select C/C++ Preprocessor .

The C/C++ Preprocessor target settings panel appears in the right side of the Target
Settings window.

Open the prefix file whose name appears in the Prefix File text box in an editor
window.

Add the statements that define a small data section to the top of the prefix file:
a. Add a statement that creates a global register variable.

For example, to create a global register variable for register 14, add this statement
to the prefix file:

// _dummy does not have to be defined
extern int _dummy asm(“rld”);

b. Create a user-defined section using the section pragma; include the clause
data_mode = sda_rel so the section can use small data area addressing.

For example:

// you do not have to use the names in this example
// .red is the initialized part of the section

CodeWarrior Build Tools Reference for Power Architecture® Processors 237

) 4

Linker for Power Architecture Processors
Ad(ditional Small Data Sections

.blue is the uninitialized part of the section

#pragma section RW “.red” “.blue” data_mode = sda_rel

NOTE

If you want your small data area to be the default section for all small data, use
the following form of the section pragma instead of the one above:
#pragma section sdata_type “.red” “blue” data_mode =
sda_rel

7. Save the prefix file and close the editor window.

8. In each header or source file that declares or defines a global variable that you want to
put in a small data section, put the storage-class modifier __declspec (section
"initialized_small_sect_nm") in front of the definition or declaration.

For example, the statement:

_ declspec(section ".red") int x = 5;

instructs the compiler to put the global variable x into the small data section named

.red

CAUTION The section name specified in the

__declspec(section <section_name>) statement must be the
name of an initialized data section. It is an error to use the uninitialized
data section name.

NOTE

The semantics of __declspec (section ".sdata") int x; istouse
the section pair . sdata and . sbss to store x. The location where x is stored
is determined by whether or not x is explicitly initialized.

NOTE

If you want your small data section to be the default section for all small data,

use

#pragma section sdata_type ".foo" ".bar" data_mode =

sda_rel

Use __declspec(section ".foo")only when the object is greater than
the size threshold for small data.

9. In the left pane of the Target Settings window, select EPPC Linker .

The EPPC Linker target settings panel appears.

10. In the Segment Addresses group box, check the Use Linker Command File checkbox.

The other checkboxes and text boxes in the group become disabled.

11. In the left pane of the Target Settings window , select EPPC Target .

The EPPC Target settings panel appears.

238

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker for Power Architecture Processors
Ad(ditional Small Data Sections

12. From the Code Model listbox, select Absolute Addressing.
13. From the ABI listbox, select EABI.
14. Click OK.
The IDE saves your settings and closes the Target Settings window.

15. Modify the project’s linker command file such that it instructs the linker to use the
global register declared above as the base register for your new small data section.

To do this, follow these steps:

a. In the linker command file, add two REGISTER directives, one for the initialized
part of the small data section and one for uninitialized part.

For example, to make register 14 the base register, add statements like these:

.red REGISTER(14) : {} > ram
.blue REGISTER(14) : {} > ram

b. Add the linker command file to each build target in which you want to use the new
small data section.

16. Open the CodeWarrior project for the runtime library used by your project. The
runtime library project is here:

InstallDir\PowerPC_EABI_Support\
Runtime\Project\Runtime.PPCEABI.mcp

17. In the build target listbox of the runtime library project window, select the build target
of the runtime library that your main project uses.

18. Open this build target’s prefix file in a CodeWarrior editor window.

19. Add the same statements to this prefix file that you added to the prefix file of the main
project.

20. Save the prefix file and close the editor window.
21.0pen __start.c in a CodeWarrior editor window.

22.Find the string __init_registers(void) and add statements that initialize the
small data section base register you are using near the end of this function
(immediately above the terminating b1 r instruction).

For example, to initialize register 14, add these statements:

lis rl4, _SDAl4 BASE_Gha
addi rl4, rld, _SDAl4_BASE_@l

23.Save __start.c and close the editor window.

24.0Open __ppc_eabi_linker.h in a CodeWarrior editor window.

CodeWarrior Build Tools Reference for Power Architecture® Processors 239

3
4

y
A

Linker for Power Architecture Processors
Linker Map File

25. Find the string _SDA_BASE_ [] in this file and add this statement after the block of
statements that follow this string:

// SDAnn_BASE is defined by the linker if
// the REGISTER(nn) directive appears in the .lcf file
_ declspec(section “.init”) extern char _SDAl14_BASE_[];

26.Save __ppc_eabi_linker.h and close the editor window.
27. Press F17.
The IDE builds a new runtime library.
28. Close the runtime library project.
29. Return to your main project.
30. Press F7 .
The IDE builds your project.

You can now use the new small data section in this project.

NOTE You can create more small data segments by following the procedure above.
Remember, however, that for each small data section created, the compiler
loses one non-volatile register to use for other purposes.

Linker Map File

A linker map file is a text file containing information about a program’s global symbols,
source file and source line numbers. The linker names the map file with the base name of
the program and the extension .map. The linker map consists of the following sections:

¢ Closure

* Section Layout

¢ Memory Map

¢ Linker Generated Symbols

Closure

The linker lists all the required objects under the closure section with the following details:

e Level of closure: ObjectBisin Object A's closure if and only if, the level of
B is higher than the level of A and one of the following conditions is true:

Condition 1: There is no object in between B and A.

Condition 2: There are objects between B and A, and the level of A is lower than the
levels of all the objects between B and A.

240

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker for Power Architecture Processors
Linker Map File

* Object name: specifies the name of an object.

* Object characterstics: specifies the characteristics of an object. They can
be one of the following:

— function, local | global | weak
— section, local | global | weak
— object, local | global | weak
— notype, local | global | weak
* Object locations: specifies an object location.

Listing 15.2 shows a sample closure section.

Listing 15.2 Sample closure section

1] reset (func,global) found in reset.o

2] __reset (func,global) found in 8568mds_init.o
3] __start (func,global) found in Runtime.PPCEABI.E2.UC.a __start.o
4] _ _init_registers (func,weak) found in Runtime.PPCEABI.E2.UC.a __start.o

5] _stack_addr found as linker generated symbol
5] _SDA2_BASE_ found as linker generated symbol
5] _SDA_BASE_ found as linker generated symbol
4] __init_hardware (func,global) found in _ ppc_eabi_init.o
5] usr_init (func,global) found in 8568mds_init.o
6] gInterruptVectorTable (notype,global) found in eppc_exception.o
71 gInterruptVectorTableEnd (notype,global) found in eppc_exception.o
71 .intvec (section,local) found in eppc_exception.o
8] InterruptHandler (func,global) found in interrupt.o
9] @21 (object,local) found in interrupt.o
9] printf (func,global) found in MSL_C.PPCEABI.bare.E2.UC.a printf.o
9] _ msl_count_trailing_zero64 (func,weak) found in MSL_C.PPCEABI.bare.E.a
math_double.o
9] >>> UNREFERENCED DUPLICATE _ msl_count_trailing zero64
9] >>> (func,weak) found in MSL_C.PPCEABI.bare.E.a math_float.o
9] >>> (func,weak) found in MSIL_C.PPCEABI.bare.E.a math_longdouble.o

9] >>> (func,weak) found in MSL_C.PPCEABI.bare.E.a math_ppc.o

In the sample above:
e __ reset isinthe closure of reset because:
— __reset isoflevel 2, reset isoflevel 1 and
— there is no object in between __reset and reset
e SDA_BASE_isintheclosure of _ init_registers because:

— _SDA_BASE_isoflevel 5, _init_registers is of level 4; and

— the objects between __init_registers and _SDA_BASE_ are all of level 5
and are higher than the level of __init_registers

¢ InterruptHandler isin the closure of __init_hardware because:

— InterruptHandler isoflevel 8, init_hardware is of level 4; and

CodeWarrior Build Tools Reference for Power Architecture® Processors 241

A 4
4\

Linker for Power Architecture Processors
Linker Map File

— the objects between __init_hardware and InterruptHandler are of
level 5, 6, 7 respectively and are all higher than the level of
__init_hardware

e _ init_hardware is NOT in the closure of _init_registers because:
— they both are of level 4

¢ gInterruptVectorTableEnd is NOT in the closure of
_ _init_registers because:

— the objects between gInterruptVectorTableEnd and
__init_registers are not all of a higher level than __init_registers

— _ _init_hardwareis of the same levelas __init_registers.

Weak symbols are allowed by the ABI and are global. They can have the same name as
another symbol. The line before the UNREFERENCED DUPLICATE lists the first weak
symbol found by the linker, that appears in the executable.

The line after the UNREFERENCED DUPLICATE lists other versions of a same object
found by the linker. Linker will not copy the duplicate objects to the executable.

Section Layout

The linker lists information of all the objects within a section in a section layout. Listing
15.3 shows a sample . text section layout.

Listing 15.3 Sample .text section layout

.text section layout

Starting Virtual File

address Size address offset

00000084 000030 fffcl964 0000lced 1 .text

00000084 00000c fffcl964 00001lced 4 __init_user __ppc_eabi_init.o
00000090 000020 £f£ffcl970 00001cf0 4 exit __ppc_eabi_init.o
000000b0 000004 £f£ffc1990 00001410 4 _ExitProcess __ppc_eabi_init.o
UNUSED 000030 __copy Runtime.PPCEABI.E2.UC.a CPlusLibPPC.o
UNUSED 000084o.o... __init_arr Runtime.PPCEABI.E2.UC.a CPlusLibPPC.o

The first line of a section layout specifies the name of a section. Starting from the 5th line
(the line after the dotted line separator), objects within section are listed with the following
information:

* Starting address: specifies the starting address of an object. The object is
listed as UNUSED if it is dead-stripped.

* Size: specifies the size of each object in a section.

e Virtual address: specifies the virtual address of the object.

242

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker for Power Architecture Processors
Linker Map File

e File offset: specifies the offset of an object in the section.

e Alignment : specifies the alignment of an objects. For legacy reasons, the
alignment of all section symbols is 1. In reality, a section symbol is the highest
alignment of all symbols in its section which in the above listing is 4.

* Object name: specifies the name of an object. The names are the C or mangled
C++, depending on the language. The name of an object is similar to the one in a
disassembled file.

* Object location: specifies the location an object. This is usually a name of the
object file (.0), when no other column exists. In presence of an other column, the
library file information is listed here.

In the sample above, note that the 5th line has a section name and that its Starting address,
Virtual address and File offset values are similarto __init_user values. The 5th line
is the section symbol for the objects that follow it. Its Size column is the total size of the
section in the executable file (after dead stripping) and its alignment (column 5) is 1.

Although Listing 15.3 is from a normal . o file, if this project had an input file which was
a partially linked file, then you would see a section symbol between each merged section
from each input file used to create the partially linked file. For example,ifplf.oisa
partially linked file, and it is composed of a . 0 and b . o and each of those files had a

. text section, then plf .o would have one . text section but two . text section
symbols. The . text content from a . o would follow the first section symbol and the
content from b . o would follow the second section symbol.

Memory Map

You can verify segment allocation from the Memory map section in a linker map file.
Listing 15.4 shows a sample Memory map section.

Listing 15.4 Verifying segment allocation in a .MAP file

Memory map:

Starting Size File ROM RAM Buffer S-Record Bin File Bin File

address Offset Address Address Line Offset Name
.init ££e00000 00000318 00000300 ffe00000 ££e00000 2 00000000 Test.ffe00000.bin
.text 00002000 0004£f9d0 00086500 £fe00318 ffe00318 42 00000000 Test.ffe00318.bin

* Starting address: specifies the starting address for each section. Constant and
executable object code are allocated in ROM space and data object code is allocated
in RAM space.

* Size: specifies the size of each sections.

e File offset: specifies the offset of a section in the file.

CodeWarrior Build Tools Reference for Power Architecture® Processors 243

3
4

y
A

Linker for Power Architecture Processors
Linker Map File

* ROM Address: specifies the address of the section in the ROM image. For
executable code and constants sections, Starting address is equal to ROM
Address. For data sections, ROM Address specifies the address in ROM where
the initialization values are stored.

* RAM Buffer Address: specifies the address in RAM that is to be used as a
buffer for the flash image programmer. It is important to note that the RAM buffer is
not used when the RAM address equals to the ROM address.

* S-Record Line: specifies the line number of a section in the S-Record file in
decimal format.

* Bin File Offset: specifies the offset of a section in the binary file.

* Bin File Name: specifies the binary file name of the section. The file name also
reflects the ROM address of the section.

Linker Generated Symbols

You can find a complete list of the linker generated symbols and user-defined symbols in
either the C include file __ _ppc_eabi_linker.h or the assembly include file
__ppc_eabi_linker.i. The CodeWarrior linker automatically generates symbols
for the start address, the end address (the first byte after the last byte of the section), and
the start address for the section if it will be burned into ROM. With a few exceptions, all
CodeWarrior linker-generated symbols are immediate 32 bit values. Listing 15.5 shows a
sample list of linker-generated symbols.

Listing 15.5 Sample list of linker-generated symbols

_f_init 000034ds8

_f init_rom 00003448
_e_init 000035b0
_f_init_vle 000035b0

_f init vle_rom 000035b0
_e_init_vle 00003864
_f_text 00003864

_f text_rom 00003864
_e_text 00003864
_f_text_vle 00003870

_f text_vle_rom 00003870
_e_text_vle 00003ad4

If addresses are declared in your source file as unsigned char _f_text[]; you
can treat _f_text justas a C variable even though it is a 32-bit immediate value.

unsigned int textsize = _e_text - _f_text;

If you do need linker symbols that are not addresses, you can access them from C.

244

CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker for Power Architecture Processors
Deadstripping

unsigned int size = (unsigned int)&_text_size;
The linker generates four symbols:

* __ctors — an array of static constructors

e __ dtors — an array of destructors

e _ rom_copy_info — an array of a structure that contains all of the necessary
information about all initialized sections to copy them from ROM to RAM

e _ bss_init_info — asimilar array that contains all of the information
necessary to initialize all of the bss-type sections. Please see __init_datain
_ _start.c.

These four symbols are actually not 32-bit immediate values but are variables with
storage. You access them just as C variables. The startup code now automatically handles
initializing all bss type sections and moves all necessary sections from ROM to RAM,
even for user defined sections.

Deadstripping

If the Pool Data checkbox is checked in the CodeWarrior IDE’s EPPC Processor panel,
the pooled data is not stripped. However, all small data and code is still subject to
deadstripping.

Linker Command Files

Linker command files are an alternative way of specifying segment addresses. The other
method of specifying segment addresses is by entering values manually in the Segment
Addresses area of the EPPC Linker settings panel.

Only one linker command file is supported per target in a project. The linker command
filename must end in the . 1cf extension.

Setting up CodeWarrior IDE to accept LCF
files

Projects created with the CodeWarrior IDE version 3 or earlier may not recognize the
. 1cf extension. Therefore, you may not be able to add a filename with the .1cf
extension to the project. You need to create a file mapping to avoid this.

To add the . 1c £ file mapping to your project:
1. Select Edit > Target Settings, where Target is the name of the current build target.

2. Select the File Mappings panel.

CodeWarrior Build Tools Reference for Power Architecture® Processors 245

A 4
4\

Linker for Power Architecture Processors
Linker Command Files

. In the File Type text box, type TEXT

3
4. In the Extension text box, type . 1cf
5. From the Compiler listbox, select None
6. Click Add to save your settings.

Now, when you add an . 1cf file to your project, the compiler recognizes the file as a
linker command file.

Linker Command File Commands

The CodeWarrior Power Architecture linker supports these additional commands listed
below:

* AGGRESSIVE MERGE

* AGGRESSIVE MERGE FILES

* AGGRESSIVE MERGE SECTIONS
* DO NOT MERGE

* DO_NOT MERGE FILES

« DO NOT MERGE SECTIONS

e INIT

* FORCEFILES

* SHORTEN NAMES FOR TOR 101

AGGRESSIVE_MERGE

Specifies functions that should be considered for aggressive merging when applying the
code merging optimization.

Syntax
DO_NOT_MERGE { symbol [, symboll* }

AGGRESSIVE_MERGE_FILES

Specifies that all functions in object code files should be considered for aggressive
merging when applying the code merging optimization.

246 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker for Power Architecture Processors
Linker Command Files

Syntax
DO_NOT_MERGE_FILES { file-name [, file-namel]l* }

AGGRESSIVE_MERGE_SECTIONS

Specifies that all functions in object code sections should be considered for aggressive
merging when applying the code merging optimization.

Syntax

AGGRESSIVE_MERGE_SECTIONS { section-name [, section-namel* }

DO_NOT_MERGE

Specifies functions that should not be removed when applying the code merging
optimization.

Syntax

DO_NOT_MERGE { symbol [, symboll* }

Remarks

This directive specifies functions that the linker should keep in the output file when
applying the code merging optimization even if other functions with identical
object code exist.

DO_NOT_MERGE_FILES

Specifies that all functions in a file should not be removed when applying the code
merging optimization.

Syntax
DO_NOT_MERGE_FILES { file-name [, file-namel]l* }

CodeWarrior Build Tools Reference for Power Architecture® Processors 247

y
A

Linker for Power Architecture Processors
Linker Command Files

DO_NOT_MERGE_SECTIONS

Specifies that all functions in an object code section should not be removed when applying
the code merging optimization.

Syntax

DO_NOT_MERGE_SECTIONS { section-name [, section-namel* }

INIT

Defines the initialization entry point for the application.

Syntax

INIT (FunctionName)

Remarks

This command is mandatory for assembly application and optional otherwise. It cannot be
specified more than once in the prm file. When you specify the INIT command in the
prm file, the linker uses the specified function as application entry point. This is either the
main routine or a startup routine calling the main routine.

When INIT is not specified in the prm file, the linker looks for a function named
___start and uses it as the application entry point.
Example

INIT (MyGlobStart) /* Specify a global variable as
application entry point.*/

FORCEFILES

Specifies that the contents of object code files must not be deadstripped.

Syntax

FORCEFILES { file-name [, file-namel* }

248 CodeWarrior Build Tools Reference for Power Architecture® Processors

Linker for Power Architecture Processors
Linker Command Files

Remarks

Use FORCEFILES to list source files, archives, or archive members that you do not want
dead-stripped. All objects in each of the files are included in the linker’s output file even if
the linker has determined that those objects are not referenced by other objects.

If you only have a few symbols that you do not want deadstripped, use FORCEACTIVE.

SHORTEN_NAMES_FOR_TOR_101

The directive SHORTEN_NAMES_FOR_TOR_101 instructs the linker to shorten long
template names for the benefit of the WindRiver® Systems Target Server. To use this
directive, simply add it to the linker command file on a line by itself.

SHORTEN_NAMES_FOR_TOR_101

WindRiver Systems Tornado Version 1.0.1 (and earlier) does not support long template
names as generated for the MSL C++ library. Therefore, the template names must be
shortened if you want to use them with these versions of the WindRiver Systems Target
Server.

CodeWarrior Build Tools Reference for Power Architecture® Processors 249

A 4

4\
Linker for Power Architecture Processors
Linker Command Files
250

CodeWarrior Build Tools Reference for Power Architecture® Processors

16
C Compiler

This chapter explains the CodeWarrior implementation of the C programming language:
» Extensions to Standard C
* C99 Extensions
* GCC Extensions

Extensions to Standard C

The CodeWarrior C compiler adds extra features to the C programming language. These
extensions make it easier to port source code from other compilers and offer some
programming conveniences. Note that some of these extensions do not conform to the
ISO/IEC 9899-1990 C standard (“C90”).

¢ Controlling Standard C Conformance
e C++-style Comments

* Unnamed Arguments

» Extensions to the Preprocessor

* Non-Standard Keywords

¢ Declaring Variables by Address

Controlling Standard C Conformance

The compiler offers settings that verify how closely your source code conforms to the
ISO/TEC 9899-1990 C standard (“C90”). Enable these settings to check for possible errors
or improve source code portability.

Some source code is too difficult or time-consuming to change so that it conforms to the
ISO/IEC standard. In this case, disable some or all of these settings.

CodeWarrior Build Tools Reference for Power Architecture® Processors 251

'
A

C Compiler
Extensions to Standard C

Table 16.1 shows how to control the compiler’s features for ISO conformance.

Table 16.1 Controlling conformance to the ISO/IEC 9899-1990 C language

To control this option from use this setting
here...
CodeWarrior IDE ANSI Strict and ANSI Keywords Only in

the C/C++ Language Settings panel

source code #pragma ANSI_strict

#pragma only_ std_keywords

command line -ansi

C++-style Comments

When ANSI strictness is off, the C compiler allows C++-style comments. Listing 16.1
shows an example.

Listing 16.1 C++ Comments

// This is a C++-style comment.
/* This is a regular C-style comment. */

Unnamed Arguments

When ANSI strictness is off, the C compiler allows unnamed arguments in function
definitions. Listing 16.2 shows an example.

Listing 16.2 Unnamed Arguments

void f(int) {} /* OK if ANSI Strict is disabled. */
void f(int i) {} /* Always OK. */

Extensions to the Preprocessor

When ANSI strictness is off, the C compiler allows a # to prefix an item that is not a
macro argument. It also allows an identifier after an #endif directive. Listing 16.3 and
Listing 16.4 show examples.

252

CodeWarrior Build Tools Reference for Power Architecture® Processors

C Compiler
Extensions to Standard C

Listing 16.3 Using # in Macro Definitions

#define addl (x) #x #1
/* OK, i1f ANSI_strict is disabled,
but probably not what you wanted:
addl (abc) creates "abc"#1
*/

#define add2 (x) #x "2"
/* Always OK: add2 (abc) creates "abc2". */

Listing 16.4 Identifiers After #endif

#ifdef _ CwWCC__
VA

#endif _ CWCC__ /* OK if ANSI_strict is disabled.

#ifdef _ CWCC__
A
#endif /*_ _CWCC__*/ /* Always OK. */

*/

Non-Standard Keywords

When the ANSI keywords setting is off, the C compiler recognizes non-standard

keywords that extend the language.

Declaring Variables by Address

The C compiler lets you explicitly specify the address that contains the value of a variable.
For example, the following definition states that the variable MemErr contains the

contents of the address 0x220:

short MemErr:0x220;

You cannot disable this extension, and it has no corresponding pragma or setting in a

panel.

CodeWarrior Build Tools Reference for Power Architecture® Processors 253

y
A

C Compiler
C99 Extensions

C99 Extensions

The CodeWarrior C compiler accepts the enhancements to the C language specified by the
ISO/IEC 9899-1999 standard, commonly referred to as “C99.”

¢ Controlling C99 Extensions
* Trailing Commas in Enumerations

¢ Compound Literal Values

¢ Designated Initializers
¢ Predefined Symbol __func

¢ Implicit Return From main()

* Non-constant Static Data Initialization

¢ Variable Argument Macros
* Extra C99 Keywords

¢ C++-Style Comments
e C++-Style Digraphs

e Empty Arrays in Structures

* Hexadecimal Floating-Point Constants
e Variable-Length Arrays

¢ Unsuffixed Decimal Literal Values

¢ (99 Complex Data Types

Controlling C99 Extensions

Table 16.2 shows how to control C99 extensions.

Table 16.2 Controlling C99 extensions to the C language

To control this option from use this setting

here...

CodeWarrior IDE Enable C99 Extensions in the C/C++
Language Settings panel

source code #pragma c99

command line -c99

254 CodeWarrior Build Tools Reference for Power Architecture® Processors

C Compiler
C99 Extensions

Trailing Commas in Enumerations

When the C99 extensions setting is on, the compiler allows a comma after the final item in
a list of enumerations. Listing 16.5 shows an example.

Listing 16.5 Trailing comma in enumeration example

enum
{
violet,
blue
green,
yvellow,
orange,

red, /* OK: accepted if C99 extensions setting is on. */

Compound Literal Values

When the C99 extensions setting is on, the compiler allows literal values of structures and
arrays. Listing 16.6 shows an example.

Listing 16.6 Example of a Compound Literal

#pragma c99 on
struct my_struct {
int 1i;
char c[2];
} my_var;

my_var = ((struct my_struct) {x + vy, 'a', 0});

Designated Initializers

When the C99 extensions setting is on, the compiler allows an extended syntax for
specifying which structure or array members to initialize. Listing 16.7 shows an example.

Listing 16.7 Example of Designated Initializers

#pragma c99 on

struct X {
int a,b,c;
}x={ .c =3, .a=1, 2 };

CodeWarrior Build Tools Reference for Power Architecture® Processors 255

y
A

C Compiler
C99 Extensions

union U {
char a;
long b;
.b = 1234567 };

int
int

arrl[6] { 1,2,
arr2[6] = { 1, [1 ... 4

, 2, [4] = 3,4}
] =3,4 }; /* GCC only, not part of C99. */

Predefined Symbol _ func__

When the C99 extensions setting is on, the compiler offers the ___func___ predefined
variable. Listing 16.8 shows an example.

Listing 16.8 Predefined symbol _ func__

void abc (void)

{
}

puts(_ func_); /* Output: "abc" */

Implicit Return From main()

When the C99 extensions setting is on, the compiler inserts this statement at the end of a
program’s main() function if the function does not return a value:

return O;

Non-constant Static Data Initialization

When the C99 extensions setting is on, the compiler allows static variables to be
initialized with non-constant expressions.

Variable Argument Macros

When the C99 extensions setting is on, the compiler allows macros to have a variable
number of arguments. Listing 16.9 shows an example.

Listing 16.9 Variable argument macros example

#define MYLOG(...) fprintf (myfile,

VA_ARGS__)

256

CodeWarrior Build Tools Reference for Power Architecture® Processors

C Compiler
C99 Extensions

#define MYVERSION 1
#define MYNAME "SockSorter"

int main(void)

{

MYLOG ("%d %s\n", MYVERSION, MYNAME) ;
/* Expands to: fprintf (myfile, "%d %$s\n", 1, "SockSorter"); */

return O;

Extra C99 Keywords

When the C99 extensions setting is on, the compiler recognizes extra keywords and the
language features they represent. Table 16.3 lists these keywords.

Table 16.3 Extra C99 Keywords

This keyword or combination of represents this language feature
keywords...

_Bool boolean data type

long long integer data type

restrict type qualifier

inline function qualifier

_Complex complex humber data type
_Imaginary imaginary number data type

C++-Style Comments

When the C99 extensions setting is on, the compiler allows C++-style comments as well
as regular C comments. A C++-style comment begins with

//

and continues until the end of a source code line.
A C-style comment begins with

/*

ends with

*/

CodeWarrior Build Tools Reference for Power Architecture® Processors 257

'
A

C Compiler
C99 Extensions

and may span more than one line.

C++-Style Digraphs

When the C99 extensions setting is on, the compiler recognizes C++-style two-character

combinations that represent single-character punctuation. Table 16.4 lists these digraphs.
Table 16.4 C++-Style Digraphs

This digraph is equivalent to this character

<: [

\%

]

A
o°
-~

oe
A%
-

o
+=

Empty Arrays in Structures

When the C99 extensions setting is on, the compiler allows an empty array to be the last
member in a structure definition. Listing 16.10 shows an example.

Listing 16.10 Example of an Empty Array as the Last struct Member

struct {

int r;

char arr|[];
} os;

Hexadecimal Floating-Point Constants

Precise representations of constants specified in hexadecimal notation to ensure an
accurate constant is generated across compilers and on different hosts. The compiler
generates a warning message when the mantissa is more precise than the host floating
point format. The compiler generates an error message if the exponent is too wide for the
host float format.

Examples:

0x2f.3a2p3

258 CodeWarrior Build Tools Reference for Power Architecture® Processors

C Compiler
C99 Extensions

OxEplf
0x1.8p0L

The standard library supports printing values of type £1oat in this format using the “%a”
and “%A” specifiers.

Variable-Length Arrays

Variable length arrays are supported within local or function prototype scope, as required
by the ISO/IEC 9899-1999 (“C99”) standard. Listing 16.11 shows an example.

Listing 16.11 Example of C99 Variable Length Array usage

#pragma c99 on

void f(int n) {
int arr[n];
/* L. */

While the example shown in Listing 16.12 generates an error message.

Listing 16.12 Bad Example of C99 Variable Length Array usage

#pragma c99 on

int n;

int arr[n];

// ERROR: variable length array

// types can only be used in local or
// function prototype scope.

A variable length array cannot be used in a function template’s prototype scope or in a
local template typedef, as shown in Listing 16.13.

Listing 16.13 Bad Example of C99 usage in Function Prototype

#pragma c99 on

template<typename T> int f(int n, int A[n][n]);

{

Y

// ERROR: variable length arrays

// cannot be used in function template prototypes
// or local template variables

CodeWarrior Build Tools Reference for Power Architecture® Processors 259

y
A

C Compiler
GCC Extensions

Unsuffixed Decimal Literal Values

Listing 16.14 shows an example of specifying decimal literal values without a suffix to

specify the literal’s type.

Listing 16.14 Examples of C99 Unsuffixed Constants

#pragma c99 on // Note: ULONG_MAX == 4294967295
sizeof (4294967295) == gsizeof (long long)
sizeof (4294967295u) == sizeof (unsigned long)

#pragma c99 off

sizeof (4294967295) == sizeof (unsigned long)
sizeof (4294967295u) == sizeof (unsigned long)

C99 Complex Data Types

The compiler supports the C99 complex and imaginary data types when the
C99 extensions option is enabled. Listing 16.15 shows an example.

Listing 16.15 C99 Complex Data Type

#include <complex.h>
complex double cd = 1 + 2*I;

NOTE This feature is currently not available for all targets.

Use #if _ has_feature (C99_COMPLEX) to check if this feature is

available for your target.

GCC Extensions

The CodeWarrior compiler accepts many of the extensions to the C language that the GCC
(Gnu Compiler Collection) tools allow. Source code that uses these extensions does not

conform to the ISO/IEC 9899-1990 C (“C90”) standard.
¢ Controlling GCC Extensions

* Initializing Automatic Arrays and Structures
¢ The sizeof() Operator

» Statements in Expressions

260 CodeWarrior Build Tools Reference for Power Architecture® Processors

C Compiler

GCC Extensions
¢ Redefining Macros
¢ The typeof() Operator
¢ Void and Function Pointer Arithmetic
e The builtin constant p() Operator
¢ Forward Declarations of Static Arrays
¢ Omitted Operands in Conditional Expressions
e The builtin_expect() Operator
¢ Void Return Statements
¢ Minimum and Maximum Operators
¢ Local Labels
Controlling GCC Extensions
Table 16.5 shows how to turn GCC extensions on or off.
Table 16.5 Controlling GCC extensions to the C language

To control this option from use this setting

here...

CodeWarrior IDE Enable GCC Extensions in the C/C++

Language Settings panel
source code #pragma gcc_extensions
command line -gcc_extensions

Initializing Automatic Arrays and
Structures

When the GCC extensions setting is on, array and structure variables that are local to a
function and have the automatic storage class may be initialized with values that do not
need to be constant. Listing 16.16 shows an example.

Listing 16.16 Initializing arrays and structures with non-constant values

void f(int 1)
{
int j = 1 * 10; /* Always OK. */

/* These initializations are only accepted when GCC extensions
* are on. */

CodeWarrior Build Tools Reference for Power Architecture® Processors 261

y
A

C Compiler
GCC Extensions

struct { int x, y; } s = {1 + 1, i + 2 };
int af2] = { i, i + 2 };

The sizeof() Operator

When the GCC extensions setting is on, the sizeof () operator computes the size of
function and void types. In both cases, the sizeof () operator evaluates to 1. The ISO/
IEC 9899-1990 C Standard (““C90) does not specify the size of the void type and
functions. Listing 16.17 shows an example.

Listing 16.17 Using the sizeof() operator with void and function types

int f(int a)

{
return a * 10;

}

void g(void)

{
size_t voidsize = sizeof (void); /* voidsize contains 1 */
size_t funcsize = sizeof(f); /* funcsize contains 1 */

}

Statements in Expressions

When the GCC extensions setting is on, expressions in function bodies may contain
statements and definitions. To use a statement or declaration in an expression, enclose it
within braces. The last item in the brace-enclosed expression gives the expression its
value. Listing 16.18 shows an example.

Listing 16.18 Using statements and definitions in expressions

#define POW2 (n) ({ int i,r; for(r=1l,i=n; 1>0; --i) r *= 2; r;})

int main()
{

return POW2 (4) ;
}

262 CodeWarrior Build Tools Reference for Power Architecture® Processors

C Compiler
GCC Extensions

Redefining Macros

When the GCC extensions setting is on, macros may be redefined with the #define
directive without first undefining them with the #undef directive. Listing 16.19 shows
an example.

Listing 16.19 Redefining a macro without undefining first

#define SOCK_MAXCOLOR 100
#undef SOCK_MAXCOLOR
#define SOCK_MAXCOLOR 200 /* OK: this macro is previously undefined. */

#define SOCK_MAXCOLOR 300

The typeof() Operator

When the GCC extensions setting is on, the compiler recognizes the typeof () operator.
This compile-time operator returns the type of an expression. You may use the value
returned by this operator in any statement or expression where the compiler expects you to
specify a type. The compiler evaluates this operator at compile time. The

___typeof ()__ operator is the same as this operator. Listing 16.20 shows an example.

Listing 16.20 Using the typeof() operator

int *ip;

/* Variables iptr and jptr have the same type. */
typeof (ip) iptr;

int *jptr;

/* Variables i and j have the same type. */
typeof (*ip) 1i;
int j;

Void and Function Pointer Arithmetic

The ISO/IEC 9899-1990 C Standard does not accept arithmetic expressions that use
pointers to void or functions. With GCC extensions on, the compiler accepts arithmetic
manipulation of pointers to void and functions.

CodeWarrior Build Tools Reference for Power Architecture® Processors 263

'
A

C Compiler
GCC Extensions

The __builtin_constant_p() Operator

When the GCC extensions setting is on, the compiler recognizes the
__builtin_constant_p () operator. This compile-time operator takes a single
argument and returns 1 if the argument is a constant expression or 0 if it is not.

Forward Declarations of Static Arrays

When the GCC extensions setting is on, the compiler will not issue an error when you
declare a static array without specifying the number of elements in the array if you later
declare the array completely. Listing 16.21 shows an example.

Listing 16.21 Forward declaration of an empty array

static int al[]; /* Allowed only when GCC extensions are on. */
/* L. *)
static int a[l10]; /* Complete declaration. */

Omitted Operands in Conditional
Expressions

When the GCC extensions setting is on, you may skip the second expression in a
conditional expression. The default value for this expression is the first expression. Listing
16.22 shows an example.

Listing 16.22 Using the shorter form of the conditional expression

void f(int i, int jJj)

{
int a =1 ? 1 : J;
int b = 1 ?: j; /* Equivalent to int b =1 2 i : j; */
/* Variables a and b are both assigned the same value. */

The __ builtin_expect() Operator

When the GCC extensions setting is on, the compiler recognizes the
__builtin_expect () operator. Use this compile-time operator in an i f or while
statement to specify to the compiler how to generate instructions for branch prediction.

This compile-time operator takes two arguments:

« the first argument must be an integral expression

264 CodeWarrior Build Tools Reference for Power Architecture® Processors

C Compiler
GCC Extensions

 the second argument must be a literal value

The second argument is the most likely result of the first argument. Listing 16.23 shows an
example.

Listing 16.23 Example for __builtin_expect() operator

void search(int *array, int size, int key)

{
int 1i;
for (1 = 0; 1 < size; ++1)
{
/* We expect to find the key rarely. */
if (__builtin_expect(array[i] == key, 0))
{

rescue (i) ;

}

Void Return Statements

When the GCC extensions setting is on, the compiler allows you to place expressions of
type voidin a return statement. Listing 16.24 shows an example.

Listing 16.24 Returning void

void f(int a)
{

/* L. *

return; /* Always OK. */
}

void g(int b)
{
/* L. */
return f(b); /* Allowed when GCC extensions are on. */

Minimum and Maximum Operators

When the GCC extensions setting is on, the compiler recognizes built-in minimum (<?)
and maximum (> ?) operators.

CodeWarrior Build Tools Reference for Power Architecture® Processors 265

y
A

C Compiler
GCC Extensions

Listing 16.25 Example of minimum and maximum operators

int a
int b

1 <? 2; // 1 is assigned to a.
1 >? 2; // 2 is assigned to b.

Local Labels

When the GCC extensions setting is on, the compiler allows labels limited to a block’s
scope. A label declared with the __1abel__ keyword is visible only within the scope of
its enclosing block. Listing 16.26 shows an example.

Listing 16.26 Example of using local labels

void f(int 1)

{

if (1 >= 0)
{

_ _label__ again; /* First again. */

if (--1i > 0)

goto again; /* Jumps to first again. */

}
else
{

__label__ again; /* Second again. */
if (++1 < 0)
goto again; /* Jumps to second again. */

266 CodeWarrior Build Tools Reference for Power Architecture® Processors

17

C++ Compiler

This chapter explains the CodeWarrior implementation of the C++ programming
language:

¢ C++ Compiler Performance

¢ Extensions to Standard C++

* Implementation-Defined Behavior
¢ GCC Extensions

C++ Compiler Performance

Some options affect the C++ compiler’s performance. This section explains how to
improve compile times when translating C++ source code:

¢ Precompiling C++ Source Code
» Using the Instance Manager

Precompiling C++ Source Code

The CodeWarrior C++ compiler has these requirements for precompiling source code:

¢ C source code may not include precompiled C++ header files and C++ source code
may not include precompiled C header files.

* C++ source code can contain inline functions
¢ C++ source code may contain constant variable declarations

* A C++ source code file that will be automatically precompiled must have a . pch++
file name extension.

Using the Instance Manager

The instance manager reduces compile time by generating a single instance of some kinds
of functions:

* template functions

 functions declared with the inline qualifier that the compiler was not able to insert
in line

CodeWarrior Build Tools Reference for Power Architecture® Processors 267

'
A

C++ Compiler
Extensions to Standard C++

The instance manager reduces the size of object code and debug information but does not
affect the linker’s output file size, though, since the compiler is effectively doing the same
task as the linker in this mode.

NOTE

Table 17.1 shows how to control the C++ instance manager.

Table 17.1 Controlling the C++ instance manager

To control this option from use this setting

here...

CodeWarrior IDE Use Instance Manager in the C/C++
Language Settings panel

source code #pragma instmgr_file

command line -instmgr

Extensions to Standard C++

The CodeWarrior C++ compiler has features and capabilities that are not described in the
ISO/IEC 14882-1998 C++ standard:

. PRETTY_FUNCTION___ Identifier

¢ Standard and Non-Standard Template Parsing

__PRETTY FUNCTION Identifier

The __PRETTY_FUNCTION___ predefined identifier represents the qualified
(unmangled) C++ name of the function being compiled.

Standard and Non-Standard Template
Parsing

CodeWarrior C++ has options to specify how strictly template declarations and
instantiations are translated. When using its strict template parser, the compiler expects the
typename and template keywords to qualify names, preventing the same name in
different scopes or overloaded declarations from being inadvertently used. When using its
regular template parser, the compiler makes guesses about names in templates, but may
guess incorrectly about which name to use.

268

CodeWarrior Build Tools Reference for Power Architecture® Processors

g |

C++ Compiler
Extensions to Standard C++

A qualified name that refers to a type and that depends on a template parameter must begin
with typename (ISO/IEC 14882-1998 C++, §14.6). Listing 17.1 shows an example.

Listing 17.1 Using the typename keyword

template <typename T> void f ()

{
T::name *ptr; // ERROR: an attempt to multiply T::name by ptr
typename T::name *ptr; // OK

}

The compiler requires the template keyword at the end of ““.” and “->" operators, and
for qualified identifiers that depend on a template parameter. Listing 17.2 shows an
example.

Listing 17.2 Using the template keyword

template <typename T> void f(T* ptr)

{
ptr->f<int>(); // ERROR: f is less than int
ptr->template f<int>(); // OK

}

Names referred to inside a template declaration that are not dependent on the template
declaration (that do not rely on template arguments) must be declared before the
template’s declaration. These names are bound to the template declaration at the point
where the template is defined. Bindings are not affected by definitions that are in scope at
the point of instantiation. Listing 17.3 shows an example.

Listing 17.3 Binding non-dependent identifiers

void f (char) ;

template <typename T> void tmpl_func ()

{
f(1); // Uses f(char); f(int), below, is not defined yet.
g(); // ERROR: g() is not defined yet.

}

void g();

void f (int);

Names of template arguments that are dependent in base classes must be explicitly
qualified (ISO/IEC 14882-1998 C++, §14.6.2). See Listing 17.4.

CodeWarrior Build Tools Reference for Power Architecture® Processors 269

y
A

C++ Compiler
Extensions to Standard C++

Listing 17.4 Qualifying template arguments in base classes

template <typename T> struct Base
{
void f();
}
template <typename T> struct Derive: Base<T>
{
void g/()
{
£(); // ERROR: Base<T>::f() is not visible.
Base<T>::f(); // OK

When a template contains a function call in which at least one of the function’s arguments
is type-dependent, the compiler uses the name of the function in the context of the
template definition (ISO/IEC 14882-1998 C++, §14.6.2.2) and the context of its
instantiation (ISO/IEC 14882-1998 C++, §14.6.4.2). Listing 17.5 shows an example.

Listing 17.5 Function call with type-dependent argument

void f (char);

template <typename T> void type_dep_func/()
{
f(1); // Uses f(char), above; f(int) is not declared yet.

f(T()); // £() called with a type-dependent argument.
}

void f (int);
struct A{};
void f(A);

int main()

{
type_dep_func<int>(); // Calls f(char) twice.
type_dep_func<A>(); // Calls f(char) and f(A4);
return 0;

}

The compiler only uses external names to look up type-dependent arguments in function
calls. See Listing 17.6.

270 CodeWarrior Build Tools Reference for Power Architecture® Processors

C++ Compiler
Implementation-Defined Behavior

Listing 17.6 Function call with type-dependent argument and external names

static void f(int); // f() is internal.

template <typename T> void type_dep_fun_ext ()
{

£(T()); // £() called with a type-dependent argument.
}

int main()
{

type_dep_fun_ext<int>(); // ERROR: f(int) must be external.
}

The compiler does not allow expressions in inline assembly statements that depend on
template parameters. See Listing 17.7.

Listing 17.7 Assembly statements cannot depend on template arguments

template <typename T> void asm_tmpl ()
{

asm { move #sizeof (T), DO); // ERROR: Not supported.
}

The compiler also supports the address of template-id rules. See Listing 17.8.

Listing 17.8 Address of Template-id Supported

template <typename T> void funcA(T) {}
template <typename T> void funcB(T) {}

funcA{ &funcB<int>); // now accepted

Implementation-Defined Behavior

Annex A of the ISO/IEC 14882-1998 C++ Standard lists compiler behaviors that are
beyond the scope of the standard, but which must be documented for a compiler
implementation. This annex also lists minimum guidelines for these behaviors, although a
conforming compiler is not required to meet these minimums.

The CodeWarrior C++ compiler has these implementation quantities listed in Table 17.2,
based on the ISO/IEC 14882-1998 C++ Standard, Annex A.

CodeWarrior Build Tools Reference for Power Architecture® Processors 271

y
A

C++ Compiler
Implementation-Defined Behavior

NOTE The term unlimited in Table 17.2 means that a behavior is limited only by the
processing speed or memory capacity of the computer on which the
CodeWarrior C++ compiler is running.

Table 17.2 Implementation Quantities for C/C++ Compiler (ISO/IEC 14882-1998 C++, §A)

Behavior Standard CodeWarrior
Minimum Limit
Guideline

Nesting levels of compound statements, 256 Unlimited

iteration control structures, and selection
control structures

Nesting levels of conditional inclusion 256 256

Pointer, array, and function declarators (in 256 Unlimited
any combination) modifying an arithmetic,
structure, union, or incomplete type in a
declaration

Nesting levels of parenthesized expressions 256 Unlimited
within a full expression

Number of initial characters in an internal 1024 Unlimited
identifier or macro name

Number of initial characters in an external 1024 Unlimited
identifier

External identifiers in one translation unit 65536 Unlimited
Identifiers with block scope declared in one 1024 Unlimited
block

Macro identifiers simultaneously defined in 65536 Unlimited

one translation unit

Parameters in one function definition 256 Unlimited
Arguments in one function call 256 Unlimited
Parameters in one macro definition 256 256
Arguments in one macro invocation 256 256
Characters in one logical source line 65536 Unlimited

272 CodeWarrior Build Tools Reference for Power Architecture® Processors

C++ Compiler
Implementation-Defined Behavior

Table 17.2 Implementation Quantities for C/C++ Compiler (ISO/IEC 14882-1998 C++, §A)

Behavior Standard CodeWarrior
Minimum Limit
Guideline

Characters in a character string literal or 65536 Unlimited

wide string literal (after concatenation)

Size of an object 262144 2GB
Nesting levels for #include files 256 256
Case labels for a switch statement 16384 Unlimited
(excluding those for any nested switch

statements)

Data members in a single class, structure, or | 16384 Unlimited
union

Enumeration constants in a single 4096 Unlimited
enumeration

Levels of nested class, structure, or union 256 Unlimited

definitions in a single struct-declaration-list

Functions registered by atexit () 32 64

Direct and indirect base classes 16384 Unlimited
Direct base classes for a single class 1024 Unlimited
Members declared in a single class 4096 Unlimited
Final overriding virtual functions in a class, 16384 Unlimited

accessible or not

Direct and indirect virtual bases of a class 1024 Unlimited
Static members of a class 1024 Unlimited
Friend declarations in a class 4096 Unlimited
Access control declarations in a class 4096 Unlimited
Member initializers in a constructor definition | 6144 Unlimited
Scope qualifications of one identifier 256 Unlimited
Nested external specifications 1024 Unlimited

CodeWarrior Build Tools Reference for Power Architecture® Processors 273

'
A

C++ Compiler
GCC Extensions

Table 17.2 Implementation Quantities for C/C++ Compiler (ISO/IEC 14882-1998 C++, §A)

Behavior Standard CodeWarrior
Minimum Limit
Guideline
Template arguments in a template 1024 Unlimited
declaration
Recursively nested template instantiations 17 64 (adjustable upto
30000 using #pragma
template_depth(<n>))
Handlers per try block 256 Unlimited
Throw specifications on a single function 256 Unlimited
declaration

GCC Extensions

The CodeWarrior C++ compiler recognizes some extensions to the ISO/IEC 14882-1998
C++ standard that are also recognized by the GCC (GNU Compiler Collection) C++
compiler.

The compiler allows the use of the :: operator, of the form class: : member, in a class
declaration.

Listing 17.9 Using the :: operator in class declarations

class MyClass {
int MyClass::getval () ;
Y

274 CodeWarrior Build Tools Reference for Power Architecture® Processors

18

Precompiling

Each time you invoke the CodeWarrior compiler to translate a source code file, it
preprocesses the file to prepare its contents for translation. Preprocessing tasks include
expanding macros, removing comments, and including header files. If many source code
files include the same large or complicated header file, the compiler must preprocess it
each time it is included. Repeatedly preprocessing this header file can take up a large
portion of the time that the compiler operates.

To shorten the time spent compiling a project, CodeWarrior compilers can precompile a
file once instead of preprocessing it every time it is included in project source files. When
it precompiles a header file, the compiler converts the file’s contents into internal data
structures, then writes this internal data to a precompiled file. Conceptually, precompiling
records the compiler’s state after the preprocessing step and before the translation step of
the compilation process.

This section shows you how to use and create precompiled files:

* What Can be Precompiled
¢ Using a Precompiled File

* Creating a Precompiled File

What Can be Precompiled

A file to be precompiled does not have to be a header file (. h or . hpp files, for example),
but it must meet these requirements:

» The file must be a source code file in text format.
You cannot precompile libraries or other binary files.

* The file must not contain any statements that generate data or executable code.
However, the file may define static data.

* Precompiled header files for different IDE build targets are not interchangeable.

CodeWarrior Build Tools Reference for Power Architecture® Processors 275

y
A

Precompiling
Using a Precompiled File

Using a Precompiled File

To use a precompiled file, simply include it in your source code files like you would any
other header file:

* A source file may include only one precompiled file.

* A file may not define any functions, variables or types before including a
precompiled file.

* Typically, a source code file includes a precompiled file before anything else (except
comments).

Listing 18.1 shows an example.

Listing 18.1 Using a precompiled file

/* sock_main.c */

#include "sock.mch" /* Precompiled header file. */
#include "wool.h /* Regular header file. */

/* oo */

Creating a Precompiled File

This section shows how to create and manage precompiled files:
¢ Precompiling a File in the CodeWarrior IDE
* Precompiling a File on the Command Line

¢ Updating a Precompiled File Automatically

¢ Preprocessor Scope in Precompiled Files

Precompiling a File in the CodeWarrior IDE

To precompile a file in the CodeWarrior IDE, follow these steps:
1. Start the CodeWarrior IDE.

2. Open or create a project.

3. Choose or create a build target in the project.

The IDE will use the settings in the project’s active build target when preprocessing
and precompiling the file.

276 CodeWarrior Build Tools Reference for Power Architecture® Processors

Precompiling
Creating a Precompiled File

4. Open the source code file to precompile.

From the Project menu, choose Precompile. A save dialog box appears.
5. Choose a location and enter a name for the new precompiled file.
6. Click Save.

The save dialog box closes, and the IDE precompiles the file you opened, saving it in
the folder you specified, giving it the name you specified.

You may now include the new precompiled file in source code files.

Precompiling a File on the Command Line

To precompile a file on the command line, follow these steps:
1. Start a command line shell.
2. Issue this command

mwcc h_file -precompile p_file

where mwcc is the name of the CodeWarrior compiler tool, 4_file is the name of the
header to precompile, and p_file is the name of the resulting precompiled file.

Updating a Precompiled File Automatically

Use the CodeWarrior IDE’s project manager to update a precompiled header
automatically. The IDE creates a precompiled file from a source code file during a
compile, update, or make operation if the source code file meets these criteria:

¢ The text file name ends with . pch .
» The file is in a project’s build target.

¢ The file uses the precompile_target pragma.

* The file, or files it depends on, have been modified.

See the CodeWarrior IDE User Guide for information on how the IDE determines a
file’s dependencies.

The IDE uses the build target’s settings to preprocess and precompile files.

CodeWarrior Build Tools Reference for Power Architecture® Processors 277

3
4

y
A

Precompiling
Creating a Precompiled File

Preprocessor Scope in Precompiled Files

When precompiling a header file, the compiler preprocesses the file too. In other words, a
precompiled file is preprocessed in the context of its precompilation, not in the context of
its later compilation.

The preprocessor also tracks macros used to guard #include files to reduce parsing
time. If a file’s contents are surrounded with

#ifndef MYHEADER_H
#define MYHEADER_H

/* file contents */
#endif

the compiler will not load the file twice, saving some time in the process.

Pragma settings inside a precompiled file affect only the source code within that file. The
pragma settings for an item declared in a precompiled file (such as data or a function) are
saved then restored when the precompiled header file is included.

For example, the source code in Listing 18.2 specifies that the variable xxx is a far
variable.

Listing 18.2 Pragma Settings in a Precompiled Header

/* my_pch.pch */

/* Generate a precompiled header named pch.mch. */
#pragma precompile_target "my_ pch.mch"

#pragma far_data on
extern int xxx;

The source code in Listing 18.3 includes the precompiled version of Listing 18.2.

Listing 18.3 Pragma Settings in an Included Precompiled File

/* test.c */

/* Far data is disabled. */
#pragma far_data off

/* This precompiled file sets far_data on. */
#include "my_pch.mch"

/* far_data is still off but xxx is still a far variable. */

The pragma setting in the precompiled file is active within the precompiled file, even
though the source file including the precompiled file has a different setting.

278 CodeWarrior Build Tools Reference for Power Architecture® Processors

Precompiling
Creating a Precompiled File

CodeWarrior Build Tools Reference for Power Architecture® Processors 279

A 4
4\

Precompiling
Creating a Precompiled File

280 CodeWarrior Build Tools Reference for Power Architecture® Processors

19

Intermediate Optimizations

After it translates a program’s source code into its intermediate representation, the
compiler optionally applies optimizations that reduce the program’s size, improve its
execution speed, or both. The topics in this chapter explains these optimizations and how
to apply them:

¢ Interprocedural Analysis

* Intermediate Optimizations
¢ Inlining

Interprocedural Analysis

Most compiler optimizations are applied only within a function. The compiler analyzes a
function’s flow of execution and how the function uses variables. It uses this information
to find shortcuts in execution and reduce the number of registers and memory that the
function uses. These optimizations are useful and effective but are limited to the scope of a
function.

The CodeWarrior compiler has a special optimization that it applies at a greater scope.
Widening the scope of an optimization offers the potential to greatly improve performance
and reduce memory use. Interprocedural analysis examines the flow of execution and
data within entire files and programs to improve performance and reduce size.

¢ Invoking Interprocedural Analysis

» File-Level Optimization

CodeWarrior Build Tools Reference for Power Architecture® Processors 281

'
A

Intermediate Optimizations
Intermediate Optimizations

Invoking Interprocedural Analysis

Table 19.1 explains how to control interprocedural analysis.

Table 19.1 Controlling interprocedural analysis

Turn control this option | use this setting

from here...

CodeWarrior IDE Choose an item in the IPA option of the C/C++
Language Settings settings

source code #pragma ipa file | on | function | off

command line -ipa file | function | off

Function-Level Optimization

Interprocedural analysis may be disabled by setting it to either of £ or function. If IPA
is disabled, the compiler generates instructions and data as it reads and analyzes each
function. This setting is equivalent to the “no deferred codegen” mode of older compilers.

File-Level Optimization

When interprocedural analysis is set to optimize at the file level, the compiler reads and
analyzes an entire file before generating instructions and data.

At this level, the compiler generates more efficient code for inline function calls and C++
exception handling than when interprocedural analysis is off. The compiler is also able to
increase character string reuse and pooling, reducing the size of object code. This is
equivalent to the “deferred inlining” and “deferred codegen” options of older compilers.

The compiler also safely removes static functions and variables that are not referred to
within the file, which reduces the amount of object code that the linker must process,
resulting in better linker performance.

Intermediate Optimizations

After it translates a function into its intermediate representation, the compiler may
optionally apply some optimizations. The result of these optimizations on the intermediate
representation will either reduce the size of the executable code, improve the executable
code’s execution speed, or both.

282

CodeWarrior Build Tools Reference for Power Architecture® Processors

Intermediate Optimizations
Intermediate Optimizations

¢ Dead Code Elimination

¢ Expression Simplification

¢ Common Subexpression Elimination
* Copy Propagation

¢ Dead Store Elimination

¢ Live Range Splitting

¢ Loop-Invariant Code Motion

» Strength Reduction

¢ Loop Unrolling

Dead Code Elimination

The dead code elimination optimization removes expressions that are not accessible or are
not referred to. This optimization reduces size and increases execution speed.

Table 19.2 explains how to control the optimization for dead code elimination.

Table 19.2 Controlling dead code elimination

Turn control this option | use this setting

from here...

CodeWarrior IDE Choose Level 1, Level 2, Level 3, or Level 4 in the
Global Optimizations settings panel.

source code #pragma opt_dead_code on | off |
reset

command line -opt [noldeadcode

In Listing 19.1, the call to funcl () will never execute because the if statement that it is
associated with will never be true. Consequently, the compiler can safely eliminate the call
to funcl (), as shown in Listing 19.2.

Listing 19.1 Before dead code elimination

void func_from(void)

{
if (0)
{
funcl () ;
}

CodeWarrior Build Tools Reference for Power Architecture® Processors 283

y
A

Intermediate Optimizations
Intermediate Optimizations

func2 () ;

Listing 19.2 After dead code elimination

void func_to (void)
{

func2 () ;
}

Expression Simplification

The expression simplification optimization attempts to replace arithmetic expressions with
simpler expressions. Additionally, the compiler also looks for operations in expressions
that can be avoided completely without affecting the final outcome of the expression. This
optimization reduces size and increases speed.

Table 19.3 explains how to control the optimization for expression simplification.
Table 19.3 Controlling expression simplification

Turn control this option
from here...

use this setting

CodeWarrior IDE

Choose Level 1, Level 2, Level 3, or Level 4 in the
Global Optimizations settings panel.

source code

There is no pragma to control this optimization.

command line

-opt level=1l, -opt level=2, -opt level=3, -
opt level=4

For example, Listing 19.3 contains a few assignments to some arithmetic expressions:

¢ addition to zero

» multiplication by a power of 2

¢ subtraction of a value from itself

« arithmetic expression with two or more literal values

Listing 19.3 Before expression simplification

void func_from(int* resultl, int*
int x)

{

result2, int* result3, int* result4,

284 CodeWarrior Build Tools Reference for Power Architecture® Processors

Intermediate Optimizations
Intermediate Optimizations

*resultl = x + 0;
*result2 = x * 2;
*result3 = x - X;
*resultd = 1 + x + 4;

Listing 19.4 shows source code that is equivalent to expression simplification. The

compiler has modified these assignments to:

¢ remove the addition to zero

 replace the multiplication of a power of 2 with bit-shift operation

¢ replace a subtraction of x from itself with O

¢ consolidate the additions of 1 and 4 into 5

Listing 19.4 After expression simplification

void func_to(int* resultl,
int x)
{
*resultl = x;
*result2 = x << 1;
*result3 = 0;
*resultd = 5 + x;

int* result2, int* result3, int* result4,

Common Subexpression Elimination

Common subexpression elimination replaces multiple instances of the same expression

with a single instance. This optimization reduces size and increases execution speed.

Table 19.4 explains how to control the optimization for common subexpression

elimination.

Table 19.4 Controlling common subexpression elimination

Turn control this
option from here...

use this setting

CodeWarrior IDE

Choose Level 2, Level 3, or Level 4 in the Global
Optimizations settings panel.

source code

#pragma opt_common_subs on | off | reset

command line

-opt [nolcse

CodeWarrior Build Tools Reference for Power Architecture® Processors

285

y
A

Intermediate Optimizations
Intermediate Optimizations

For example, in Listing 19.5, the subexpression x * vy occurs twice.

Listing 19.5 Before common subexepression elimination

void func_from(int* vec, int size, int x, int y, int value)
{
if (x * v < size)
{
vec[x * yv - 1] = value;

}

Listing 19.6 shows equivalent source code after the compiler applies common

subexpression elimination. The compiler generates instructions to compute x * y and
store it in a hidden, temporary variable. The compiler then replaces each instance of the

subexpression with this variable.

Listing 19.6 After common subexpression elimination

void func_to(int* vec, int size, int x, int y, int value)

{

int temp = x * y;
if (temp < size)
{
vec[temp - 1] = value;
}

Copy Propagation
Copy propagation replaces variables with their original values if the variables do not
change. This optimization reduces runtime stack size and improves execution speed.
Table 19.5 explains how to control the optimization for copy propagation.

Table 19.5 Controlling copy propagation

Turn control this use this setting
option from here...

CodeWarrior IDE Choose Level 2, Level 3, or Level 4 in the Global
Optimizations settings panel.

source code #pragma opt_propagation on | off | reset

command line -opt [nolproplagation]

286 CodeWarrior Build Tools Reference for Power Architecture® Processors

Intermediate Optimizations
Intermediate Optimizations

For example, in Listing 19.7, the variable j is assigned the value of x. But j’s value is
never changed, so the compiler replaces later instances of j with x, as shown in Listing
19.8.

By propagating x, the compiler is able to reduce the number of registers it uses to hold
variable values, allowing more variables to be stored in registers instead of slower
memory. Also, this optimization reduces the amount of stack memory used during
function calls.

Listing 19.7 Before copy propagation

void func_from(int* a, int x)
{

int 1i;

int j;

j = x;

for (1 = 0; 1 < J; 1++)

{
}

Listing 19.8 After copy propagation

void func_to(int* a, int x)
{

int 1i;

int j;

j = x;

for (1 = 0; 1 < x; 1++)

{
}

Dead Store Elimination

Dead store elimination removes unused assignment statements. This optimization reduces
size and improves speed.

CodeWarrior Build Tools Reference for Power Architecture® Processors 287

y
A

Intermediate Optimizations
Intermediate Optimizations

Table 19.6 explains how to control the optimization for dead store elimination.
Table 19.6 Controlling dead store elimination

Turn control this use this setting

option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings panel.

source code #pragma opt_dead_assignments on | off
reset

command line -opt [no]deadstore

For example, in Listing 19.9 the variable x is first assigned the value of y * y. However,
this result is not used before x is assigned the result returned by a call to getresult ().

In Listing 19.10 the compiler can safely remove the first assignment to x since the result
of this assignment is never used.

Listing 19.9 Before dead store elimination

void func_from(int x, int vy)
{
X =y *vy;
otherfuncl (y);
x = getresult();
otherfunc2(y) ;

Listing 19.10 After dead store elimination

void func_to(int x, int vy)

{
otherfuncl (y) ;
x = getresult();
otherfunc2(y) ;

}

Live Range Splitting

Live range splitting attempts to reduce the number of variables used in a function. This
optimization reduces a function’s runtime stack size, requiring fewer instructions to
invoke the function. This optimization potentially improves execution speed.

288 CodeWarrior Build Tools Reference for Power Architecture® Processors

Intermediate Optimizations
Intermediate Optimizations

Table 19.7 explains how to control the optimization for live range splitting.

Table 19.7 Controlling live range splitting

Turn control this
option from here...

use this setting

CodeWarrior IDE

Choose Level 3 or Level 4 in the Global Optimizations

settings panel.

source code

There is no pragma to control this optimization.

command line

-opt level=3, -opt level=4

For example, in Listing 19.11 three variables, a, b, and c, are defined. Although each
variable is eventually used, each of their uses is exclusive to the others. In other words, a
is not referred to in the same expressions as b or ¢, b is not referred to with a or ¢, and ¢

is not used with a or b.

In Listing 19.12, the compiler has replaced a, b, and ¢, with a single variable. This
optimization reduces the number of registers that the object code uses to store variables,
allowing more variables to be stored in registers instead of slower memory. This

optimization also reduces a function’s stack memory.

Listing 19.11 Before live range splitting

void func_from(int x, int vy)

{
int a;
int b;
int c;

a=x*y;
otherfunc (a) ;

b=x+vy;
otherfunc (b) ;

c=x-Y;
otherfunc (c) ;

Listing 19.12 After live range splitting

void func_to(int x, int vy)

{

CodeWarrior Build Tools Reference for Power Architecture® Processors 289

'
A

Intermediate Optimizations

Intermediate Optimizations

int a_b_or_c;

a_b or_c =x *vy;
otherfunc (temp) ;

a_b_or_c =x + vy;
otherfunc (temp) ;

a_b_or_c =x - vy;
otherfunc (temp) ;

Loop-Invariant Code Motion

Loop-invariant code motion moves expressions out of a loop if the expressions are not
affected by the loop or the loop does not affect the expression. This optimization improves
execution speed.

Table 19.8 explains how to control the optimization for loop-invariant code motion.

Table 19.8 Controlling loop-invariant code motion

Turn control this use this setting

option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings panel.

source code #pragma opt_loop_invariants on | off | reset

command line -opt [nollooplinvariants]

For example, in Listing 19.13, the assignment to the variable circ does not refer to the
counter variable of the for loop, i. But the assignment to circ will be executed at each
loop iteration.

Listing 19.14 shows source code that is equivalent to how the compiler would rearrange
instructions after applying this optimization. The compiler has moved the assignment to
circ outside the for loop so that it is only executed once instead of each time the for
loop iterates.

Listing 19.13 Before loop-invariant code motion

void func_from(float* vec,

{

float circ;

int max, float wval)

290 CodeWarrior Build Tools Reference for Power Architecture® Processors

Intermediate Optimizations
Intermediate Optimizations

int 1i;
for (1 = 0; 1 < max; ++1i)
{
circ = val * 2 * PI;
vec[i] = circ;
}

Listing 19.14 After loop-invariant code motion

void func_to(float* vec, int max, float val)

{

float circ;

int 1i;
circ = val * 2 * PI;
for (1 = 0; 1 < max; ++1)
{
vec[i] = circ;

}

Strength Reduction

Strength reduction attempts to replace slower multiplication operations with faster
addition operations. This optimization improves execution speed but increases code size.

Table 19.9 explains how to control the optimization for strength reduction.

Table 19.9 Controlling strength reduction

Turn control this use this setting
option from here...

CodeWarrior IDE Choose Level 3 or Level 4 in the Global Optimizations
settings panel.

source code #pragma opt_strength _reduction on | off
reset
command line -opt [no]lstrength

For example, in Listing 19.15, the assignment to elements of the vec array use a
multiplication operation that refers to the for loop’s counter variable, 1.

CodeWarrior Build Tools Reference for Power Architecture® Processors 291

y
A

Intermediate Optimizations
Intermediate Optimizations

In Listing 19.16, the compiler has replaced the multiplication operation with a hidden
variable that is increased by an equivalent addition operation. Processors execute addition
operations faster than multiplication operations.

Listing 19.15 Before strength reduction

void func_from(int* vec, int max, int fac)

{
int 1i;
for (1 = 0; 1 < max; ++1i)
{
vec[i] = fac * 1i;
}
}

Listing 19.16 After strength reduction

void func_to(int* vec, int max, int fac)

{
int 1i;
int hidden_strength_red;
hidden_strength_red = 0;
for (1 = 0; 1 < max; ++1)
{
vec[i] = hidden_strength_red;
hidden_strength_red = hidden_strength_red + fac;
}
}

Loop Unrolling

Loop unrolling inserts extra copies of a loop’s body in a loop to reduce processor time
executing a loop’s overhead instructions for each iteration of the loop body. In other
words, this optimization attempts to reduce the ratio of time that the processor executes a
loop’s completion test and branching instructions compared to the time the processor
executes the loop’s body. This optimization improves execution speed but increases code
size.

292 CodeWarrior Build Tools Reference for Power Architecture® Processors

Intermediate Optimizations
Intermediate Optimizations

Table 19.10 explains how to control the optimization for loop unrolling.

Table 19.10 Controlling loop unrolling

Turn control this
option from here...

use this setting

CodeWarrior IDE

Choose Level 3 or Level 4 in the Global Optimizations
settings panel.

source code

#pragma opt_unroll loops on | off | reset

command line

-opt level=3, -opt level=4

For example, in Listing 19.17, the for loop’s body is a single call to a function,
otherfunc (). For each time the loop’s completion test executes

for (1 = 0; 1 < MAX; ++1i)

the function executes the loop body only once.

In Listing 19.18, the compiler has inserted another copy of the loop body and rearranged

the loop to ensure that variable i is incremented properly. With this arrangement, the

loop’s completion test executes once for every 2 times that the loop body executes.

Listing 19.17 Before loop unrolling

const int MAX = 100;
void func_from(int* wvec)

{

int 1i;

for (1 = 0; 1 < MAX; ++1)

{

otherfunc(vec[i]);

}

Listing 19.18 After loop unrolling

const int MAX = 100;
void func_to(int* vec)
{
int 1i;
for (i = 0; i < MAX;)
{

otherfunc(vec[i]);

++1;

otherfunc (vecl[i]) ;

CodeWarrior Build Tools Reference for Power Architecture® Processors

293

y
A

Intermediate Optimizations
Inlining

++1;

Inlining

Inlining replaces instructions that call a function and return from it with the actual
instructions of the function being called. Inlining functions makes your program faster
because it executes the function code immediately without the overhead of a function call
and return. However, inlining can also make your program larger because the compiler
may insert the function’s instructions many times throughout your program.

The rest of this section explains how to specify which functions to inline and how the
compiler performs the inlining:

¢ Choosing Which Functions to Inline
¢ Inlining Techniques

Choosing Which Functions to Inline

The compiler offers several methods to specify which functions are eligible for inlining.

To specify that a function is eligible to be inlined, precede its definition with the inline,
__inline_,or___inline keyword. To allow these keywords in C source code, turn
off ANSI Keywords Only in the CodeWarrior IDE’s C/C++ Language settings C/C++
Language panel or turn off the only_ std_keywords pragma in your source code.

To verify that an eligible function has been inlined or not, use the Non-Inlined Functions
option in the IDE’s C/C++ Warnings panel or the warn_notinlined pragma. Listing
19.19 shows an example.

Listing 19.19 Specifying to the compiler that a function may be inlined

#pragma only_std _keywords off
inline int attempt_to_inline(void)
{

return 10;

}

To specity that a function must never be inlined, follow its definition’s specifier with
__attribute_ ((never_inline)). Listing 19.20 shows an example.

294 CodeWarrior Build Tools Reference for Power Architecture® Processors

Intermediate Optimizations
Inlining

Listing 19.20 Specifying to the compiler that a function must never be inlined

int never_inline(void) __ _attribute__ ((never_inline))
{
return 20;

}

To specify that no functions in a file may be inlined, including those that are defined with
the inline, __inline_ ,or__inline keywords, use the dont_inline pragma.
Listing 19.21 shows an example.

Listing 19.21 Specifying that no functions may be inlined

#pragma dont_inline on

/* Will not be inlined. */
inline int attempt_to_inline(void)
{

return 10;

}

/* Will not be inlined. */
int never_inline(void) __attribute__ ((never_inline))
{

return 20;

}

#pragma dont_inline off
/* Will be inlined, if possible. */
inline int also_attempt_to_inline(void)
{

return 10;

}

Some kinds of functions are never inlined:
» functions with variable argument lists
¢ functions defined with __attribute_ ((never_inline))

» functions compiled with #pragma optimize_for_size on or the Optimize
For Size setting in the IDE’s Global Optimizations panel

¢ functions which have their addresses stored in variables

NOTE The compiler will not inline these functions, even if they are defined with the
inline, __inline_ ,or__inline keywords.

CodeWarrior Build Tools Reference for Power Architecture® Processors 295

y
A

Intermediate Optimizations
Inlining

» functions that return class objects that need destruction
» functions with class arguments that need destruction

The compiler will inline functions that need destruction, without any dependency on the
ISO C++ templates, if the class has a trivial empty constructor. Listing 19.22 shows an
example.

Listing 19.22 Inlining function with an empty destructor

struct X {

int n;
X(int a) { n = a; }
~X() {1}
Y
inline X f£(X x) { return X(x.n + 1); }

int main()
{

return f£(X(1)).n;
}

Inlining Techniques

The depth of inlining explains how many levels of function calls the compiler will inline.
The Inline Depth setting in the IDE’s C/C++ Language settings panel and the
inline_depth pragma control inlining depth.

Normally, the compiler only inlines an eligible function if it has already translated the
function’s definition. In other words, if an eligible function has not yet been compiled, the
compiler has no object code to insert. To overcome this limitation, the compiler can
perform interprocedural analysis (IPA). This lets the compiler evaluate all the functions in
a file or even the entire program before inlining the code. The IPA setting in the IDE’s C/
C++ Language settings panel.

The compiler normally inlines functions from the first function in a chain of function calls
to the last function called. Alternately, the compiler may inline functions from the last
function called to the first function in a chain of function calls. The Bottom-up Inlining
option in the IDE’s C/C++ Language settings panel and the inline_bottom_up and
inline_bottom_up_once pragmas control this reverse method of inlining.

Some functions that have not been defined with the inline, _ _inline ,or
___inline keywords may still be good candidates to be inlined. Automatic inlining
allows the compiler to inline these functions in addition to the functions that you explicitly

296 CodeWarrior Build Tools Reference for Power Architecture® Processors

Intermediate Optimizations
Inlining

specify as eligible for inlining. The Auto-Inline option in the IDE’s C/C++ Language
panel and the auto_inline pragma control this capability.

When inlining, the compiler calculates the complexity of a function by counting the
number of statements, operands, and operations in a function to determine whether or not
to inline an eligible function. The compiler does not inline functions that exceed a
maximum complexity. The compiler uses three settings to control the extent of inlined
functions:

* maximum auto-inlining complexity: the threshold for which a function may be auto-
inlined

* maximum complexity: the threshold for which any eligible function may be inlined

* maximum total complexity: the threshold for all inlining in a function

The inline_max_auto_size, inline_max_size, and
inline_max_total_size pragmas control these thresholds, respectively.

CodeWarrior Build Tools Reference for Power Architecture® Processors 297

A 4

4\
Intermediate Optimizations
Inlining

298

CodeWarrior Build Tools Reference for Power Architecture® Processors

20

Power Architecture
Optimizations

This chapter describes optimizations specific to Power Architecture platforms that the
CodeWarrior compiler applies to your object code:

¢ Code Merging

Code Merging

Code merging reduces the size of object code by removing identical functions. Two or
more functions are identical when their executable code is identical.

The CodeWarrior build tools can only apply this optimization to object files generated by
the CodeWarrior compilers. The CodeWarrior build tools can only apply this optimization
to object code translated from C and C++ source code; the tools cannot apply this
optimization to object code generated from assembly files.

TIP For example, the C++ compiler often generates several copies of the same
function when it instantiates template functions. These functions have different
names, and these names are considered weak. Under normal circumstances, the
linker will issue an error message if it encounters duplicate names. But the linker
ignores duplicate names that are marked as weak.

The code merging optimization removes all but one of a group of identical functions.
Table 20.1 shows how to invoke this optimization for all functions. Table 20.2 shows how
to invoke this optimization for weak functions.

Table 20.1 Controlling code merging for all identical functions

Control this option from
here...

use this setting

CodeWarrior IDE

Choose All from the Code Merging option of the
Linker Optimizations settings panel.

command line

-code_merging all

CodeWarrior Build Tools Reference for Power Architecture® Processors 299

'
A

Power Architecture Optimizations
Code Merging

Table 20.2 Controlling code merging for weak functions only

Control this option from | use this setting

here...

CodeWarrior IDE Choose Safe from the Code Merging option of the
Linker Optimizations settings panel.

command line -code_merging safe

The code merging optimization will not remove an identical copy of a function if your
program refers to its address. In this case, the compiler keeps this copied function but
replaces its executable code with a branch instruction to the original function.

To ignore references to function addresses, use aggressive code merging. Table 20.3
shows how to invoke aggressive code merging.

Table 20.3 Controlling aggressive code merging

Control this option from | use this setting

here...

CodeWarrior IDE Choose Aggressive Merge in the Linker
Optimizations settings pane.|

command line -code_merging all,aggressive, or

-code_merging safe,aggressive

To specify that the compiler and linker must not apply code merging to a function, use this
directive in your source code:

_ _declspec (do_not_merge) fname;
where fname is the name of a function.

To specity to the linker how to apply code merging to functions, object files, or sections,
use these directives in linker command file:

DO_NOT_MERGE
DO_NOT_MERGE_FILES
DO_NOT_MERGE_SECTIONS
AGGRESSIVE_MERGE
AGGRESSIVE_MERGE_FILES
AGGRESSIVE_MERGE_SECTIONS

300 CodeWarrior Build Tools Reference for Power Architecture® Processors

21

Inline-Assembly for Power
Architecture Build Tools

This chapter explains how to use the inline assembler built into the CodeWarrior™ C and
C++ compilers for Power Architecture processors. The compiler’s inline assembler allows
you to embed assembly language statements in C and C++ functions.

The chapter does not describe the standalone CodeWarrior assembler. For information
about this tool, refer to the chapter titled Assembler.

This chapter does not document all the instructions in the Power Architecture instruction
set. For complete documentation of this instruction set, see Programming Environments
Manual for 32-Bit Implementations of the PowerPC™ Architecture, published by
Freescale.

Finally, refer to this web page for documentation of Freescale’s entire Power Architecture
product line:

http://www.freescale.com/powerarchitecture

The sections in this chapter are:

¢ Assembly Syntax
* Referring to Assembly. C, and C++ Variables

¢ Assembler Directives

¢ Intrinsic Functions

Assembly Syntax

The compiler’s inline assembler allows a variety of ways to insert assembly language
statements in your C or C++ source code:

* Specifying Inline Assembly Statements
* Function-Level Inline Assembly

* Statement-Level Inline Assembly

¢ GCC-Style Inline Assembly

¢ Branch Prediction

* PC-Relative Addressing

CodeWarrior Build Tools Reference for Power Architecture® Processors 301

http://www.freescale.com/powerarchitecture

A 4
4\

Inline-Assembly for Power Architecture Build Tools
Assembly Syntax

¢ Normal, Record, and Overflow Forms

* Creating Statement Labels

¢ Using Comments
¢ Using the Preprocessor

Specifying Inline Assembly Statements

To specity that a block of C or C++ source code should be interpreted as assembly
language, use the asm keyword.

NOTE To ensure that the C/C++ compiler recognizes the a sm keyword, you must
clear the ANSI Keywords Only checkbox in the C/C++ Language panel.

As an alternative, the compiler also recognizes the keyword __asm even if the ANSI
Keywords Only checkbox is checked.

There are a few ways to use assembly language with the CodeWarrior compilers.
* Function-level assembly language: an entire function is in assembly language.

* Statement-level assembly language: mix assembly language with regular C or C++
statements.

¢ Intrinsic functions: the compiler makes some assembly instructions available as
functions that your program calls as regular C or C++ functions.

Keep these tips in mind as you write inline assembly statements:
¢ All statements must follow this syntax:
[label:] (instruction | directive) [operands]
¢ Each inline assembly statement must end with a newline or a semicolon (;).
* Hexadecimal constants must be in C-style.
For example: 1i r3, OxABCDEF

¢ Assembler directives, instructions, and registers are case-sensitive and must be in
lowercase.

Function-Level Inline Assembly

The compiler accepts function definitions that are composed entirely of assembly
statements. Function-level assembly code uses this syntax:

asm function-definition

A function that uses function-level assembly must end with a b1r instruction.

302

CodeWarrior Build Tools Reference for Power Architecture® Processors

Inline-Assembly for Power Architecture Build Tools
Assembly Syntax

Listing 21.1 Example Assembly Language Function

asm void mystrcpy (char *tostr, char *fromstr)

{
addi
addi
@l 1lbzu
cmpwi
stbu
bne
blr

tostr, tostr, -1
fromstr, fromstr, -1
r5,1 (fromstr)

r5,0

r5,1(tostr)

@l

Statement-Level Inline Assembly

The compiler accepts functions that mix regular C/C++ statements with inline assembly.
Statement-level assembly language acts as a block of assembly language that may appear
anywhere that the compiler allows a regular C or C++ statement. It has this syntax:

asm { one or more instructions }

Listing 21.2 Example of statement-level inline assembly

void g(void)

{

asm { add r2,r3,r4d ; }

}

NOTE If you check the Inlined Assembler is Volatile checkbox in the EPPC
Processor panel, functions that contain an a sm block are only partially
optimized. The optimizer optimizes the function, but skips any asm blocks of
code. If the Inlined Assembler is Volatile checkbox is clear, the compiler also
optimizes asm statements.

GCC-Style Inline Assembly

The CodeWarrior compiler accepts GCC (Gnu Compiler Collection) syntax for inline
assembly statements:

asm ("assembly-statements")

where assembly-statements represents inline assembly statements that follow the syntax
recognized by the GCC C/C++ compiler.

CodeWarrior Build Tools Reference for Power Architecture® Processors 303

y
A

Inline-Assembly for Power Architecture Build Tools
Assembly Syntax

Listing 21.3 Example of GCC-style inline assembly

void g(void)
{

asm ("add r2,r3,r4\n\t");
}

NOTE Refer to this web page for details on extensions priovided by the GNU
Compiler Collection (GCC):

http://gcc.gnu.org/onlinedocs/gec/C-Extensions.html#C-Extensions

Branch Prediction

To set the branch prediction () bit for those branch instructions that can use it, use plus
(+) or minus (-). For example:

@1l bne+ @2
@2 bne- @1

PC-Relative Addressing

The compiler does not accept references to addresses that are relative to the program
counter. For example, the following is not supported:

asm(b *+8);
Instead, use one of the following:

1. Use labels to specify an address in executable code.

Listing 21.4 Using a label instead if PC-relative addressing

asm(b next) ;
asm(next:) ;

/* OR */
asm{

b nextl
nextl:

2. Use relative branch in the function-level assembly instead of statement level.

304 CodeWarrior Build Tools Reference for Power Architecture® Processors

http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions

Inline-Assembly for Power Architecture Build Tools
Assembly Syntax

Listing 21.5 Using relative branching in the function-level assembly

asm void functionLevel () ;
asm void functionLevel () {
b *+8
nop
blr

Normal, Record, and Overflow Forms

Most integer instructions have four forms:
e normal form — add r3,r4,r5
e record form —add. r3,r4,r5

This form ends in a period. This form sets register C 0 to whether the result is less,
than, equal to, or greater than zero.

e overflow — addo r3,r4,r5

This form ends in the letter (O). This form sets the SO and OV bits in the XER if the
result overflows.

¢ overflow and record — addo. r3,r4,r5
This form ends in (O .). This form sets both registers.

Some instructions only have a record form (with a period). Always make sure to include
the period. For example:

andi. r3,r4,7
andis. r3,r4,7
stwex. r3,r4,r5

Creating Statement Labels

The name of an inline assembly language statement label must follow these rules:

¢ A label name cannot be the same as the identifier of any local variables of the
function in which the label name appears.

¢ A label name does not have to start in the first column of the function in which it
appears; a label name can be preceded by white space.

A label name can begin with an “at-sign” character (@) unless the label immediately
follows a local variable declaration.

CodeWarrior Build Tools Reference for Power Architecture® Processors 305

A 4
4\

Inline-Assembly for Power Architecture Build Tools
Assembly Syntax

¢ A label name must end with a colon character (:) unless it begins with an at-sign
character (@).
For example, red: and @red are valid, but red is not valid.
¢ A label name can be the same as an assembly language statement mnemonic.
For example, this statement is valid:
add: add r3, r4, rb
Examples:
asm void funcl() {
int 1i;
@x: 1i r0,1 //Invalid !!!
}

asm void func2 () {
int 1i;

x: 1i r0,1 //OK

@y: add r3, r4, r5 //OK
}

This is an example of a complete inline assembly language function:

asm void red(void) {
x1: add r3,r4,r5
@x2: add r6,r7,r8

Using Comments

You cannot begin comments with a pound sign (#) because the preprocessor uses the
pound sign. For example, this format is invalid:

add r3,rd,r5 # Comment
Use C and C++ comments in this format:

add r3,rd,r5 // Comment
add r3,rd,r5 /* Comment */

Using the Preprocessor

You can use all preprocessor features, such as comments and macros, in the assembler. In
multi-line macros, you must end each assembly statement with a semicolon (;) because
the (\) operator removes newlines. For example:

#define remainder (x,y,z) \
divw z,x,v; \

306

CodeWarrior Build Tools Reference for Power Architecture® Processors

Inline-Assembly for Power Architecture Build Tools
Referring to Assembly, C, and C++ Variables

mullw z,z,v; \
subf z,z,x

asm void newPointlessMath (void)
{

remainder (r3,r4,r5)

blr

Referring to Assembly, C, and C++ Variables

The compiler’s inline assembler has access to the local and global variables declared in C
or C++ source code. The assembler also allows access to members of array, struct, and
class objects:

» Using Local Variables and Arguments
* Creating a Stack Frame
» Referring to Variables in Instruction Operands

¢ Referring to Variables in Memory

» Referring to Registers

* Referring to Labels

* Using Variable Names as Memory Locations
¢ Using Immediate Operands

Using Local Variables and Arguments

To refer to a memory location, you can use the name of a local variable or argument.

The rule for assigning arguments to registers or memory depends on whether the function
has a stack frame.

If function has a stack frame, the inline assembler assigns:
« scalar arguments declared as register to general purpose registers r14 to r31
« floating-point arguments declared as register to floating point fp14 to fp31

¢ other arguments to memory locations

If a function has no stack frame, the inline assembler assigns arguments that are declared
register and kept in registers. If you have variable or non-register arguments, the
compiler will warn you that you should use frfree

CodeWarrior Build Tools Reference for Power Architecture® Processors 307

y
A

Inline-Assembly for Power Architecture Build Tools
Referring to Assembly, C, and C++ Variables

NOTE Some op-codes require registers, and others require objects. For example, if
you use nofralloc with function arguments, you may run into difficulties.

Creating a Stack Frame

You need to create a stack frame for a function if the function:
» calls other functions.
 declares non-register arguments or local variables.

To create a stack frame, use the fralloc directive at the beginning of your function and
the frfree directive just before the blr statement. The directive fralloc
automatically allocates (while f free automatically de-allocates) memory for local
variables, and saves and restores the register contents.

Listing 21.6 Example of creating a stack frame

asm void red ()
{
fralloc
// Your code here
frfree
blr

The fralloc directive has an optional argument, number, that lets you specify the size,
in bytes, of the parameter area of the stack frame. The stack frame is an area for storing
parameters used by the assembly code. The compiler creates a 0-byte parameter area for
you to pass variables into your assembly language functions.

Function arguments are passed using registers. If your assembly-language routine calls
any function that requires more parameters than will fit into registers r3 to r10 and
fp1l to £p8, you need to pass that size to fralloc. In the case of integer values,
registers ¥3 — 110 are used. For floating-point values, registers fpl — fp8 are
used.

As an example, if you pass 12 values of type long integer to your assembly function,
this would consume 16 bytes of the parameter area. Registers 3 — r1 0 will hold eight
integers, leaving 4 byte integers in the parameter area.

308 CodeWarrior Build Tools Reference for Power Architecture® Processors

Inline-Assembly for Power Architecture Build Tools
Referring to Assembly, C, and C++ Variables

Referring to Variables in Instruction
Operands

For instructions that require register operands, (such as the add instruction), global
variables, function parameters, and local variables must be declared with the keyword
register.

Listing 21.7 shows inline assembly language statements that correctly use C-language
variables as operands in instructions that require register operands.

Listing 21.7 Using C Variables with Instructions that Require Register Operands

register int my global = 25; /* global variable */

asm void red(register int *my_param)

{

register int my_loc = 1; /* my_loc is in register, not the stack */
register int result;

fralloc

add result, 1, my_global /* line 10 */
add result, my_global, my_ param /* line 11 */
add result, my_param, my_loc, /* line 12 */
frfree

blr

In Listing 21.7, the statement on line 10, 11, and 12 are all correct because their operands
are all declared with the register keyword.

Referring to Variables in Memory

For instructions that take a memory operand (such as the 1wz instruction), follow these
rules when using a C-language variable as an operand:

¢ Global variables and function parameters must:
Be declared with the register keyword.

— Adhere to the syntax below when used as operands, so they are treated as an
offset from zero.

instrName regName, 0 (globalVarName)
or

instrName regName, 0 (parameterName)

CodeWarrior Build Tools Reference for Power Architecture® Processors 309

y
A

Inline-Assembly for Power Architecture Build Tools
Referring to Assembly, C, and C++ Variables

¢ Local variable declarations must not use the register keyword.

Listing 21.8 shows inline assembly language statements that correctly use C-language
variables as operands in instructions that take a memory operand.

Listing 21.8 Using C Variables with Instructions that Take a Memory Operand

register int my _global = 25; /* global variable */

asm void red(register int *my_param)

{
int my_loc = 1; /* my_loc is on the stack, not in a register */
fralloc
lwz r4, O(my_global) /* line 9 */
lwz r4, 0 (my_param) /* line 10 */
lwz r4, my_loc /* line 11 */
lwz r4, my_loc(SP) /* line 12 - equivalent to statement 11 */
frfree
blr
}

In Listing 21.8:
¢ The statement on line 9 is correct.

— The operand is fully expressed (because it is an offset from zero).

— The argument my_global is in a register.
* The statement on line 10 is correct for the same reasons as stated above.
* The statement on line 11 is correct.

The CodeWarrior inline assembler automatically adds the contents of the SP register
to local variable my_loc.

* The statement on line 12 is correct.
Note that statements 11 and 12 are equivalent.

As mentioned above, the inline assembler automatically adds the SP register to local
variable my_1oc, so explicitly including (SP) is redundant.

Referring to Registers

For a register operand, you must use one of the register names of the appropriate kind for
the instruction. The register names are case-sensitive. You also can use a symbolic name
for an argument or local variable that was assigned to a register.

310 CodeWarrior Build Tools Reference for Power Architecture® Processors

Inline-Assembly for Power Architecture Build Tools
Referring to Assembly, C, and C++ Variables

The general registers are SP, r0 to r31, and gpr0 to gpr31. The floating-point registers
are fpO0 to £p31 and £0 to £31. The condition registers are cxr0 to cr7.

Referring to Labels

For a label operand, you can use the name of a label. For long branches (such as b and b1
instructions) you can also use function names. For bla and 1la instructions, use absolute
addresses.

For other branches, you must use the name of a label. For example,
* b @3 — correct syntax for branching to a local label
* b red — correct syntax for branching to external function red
* bl @3 — correct syntax for calling a local label

¢ bl red— correct syntax for calling external function red

¢ bne red — incorrect syntax; short branch outside function red

NOTE You cannot use local labels that have already been declared in other functions.

Using Variable Names as Memory
Locations

Whenever an instruction, such as a load instruction, a store instruction, or 1a, requires a
memory location, you can use a local or global variable name. You can modify local
variable names with struct member references, class member references, array subscripts,
or constant displacements. For example, all the local variable references in Listing 21.9
are valid.

Listing 21.9 Example of referring to variables stored in memory locations

asm void red(void) {
long myVar;
long myArray[1];
Rect myRectArray[3];

fralloc

lwz r3,myVar (SP)

la r3,myVar (SP)

lwz r3,myRect.top

lwz r3,myArray[2] (SP)

lwz r3,myRectArray[2].top

1lbz r3,myRectArray[2].top+1(SP)

frfree

CodeWarrior Build Tools Reference for Power Architecture® Processors 311

y
A

Inline-Assembly for Power Architecture Build Tools
Referring to Assembly, C, and C++ Variables

blr

You can also use a register variable that is a pointer to a struct or class to access a
member of the object, shown in Listing 21.10.

Listing 21.10 Example of referring to a struct or class member

void red(void) {
Rect qg;
register Rect *p = &qg;
asm {
lwz r3,p->top;
}

You can use the @hiword and @1 oword directives to access the high and low four
bytes of 8 byte long longs and software floating-point doubles (Listing 21.11).

Listing 21.11 Example of referring to high and low words

long long gTheLongLong = 5;
asm void Red(void) ;
asm void Red(void)
{
fralloc
lwz r5, gTheLongLong@hiword
lwz r6, gTheLongLong@loword
frfree
blr

Using Immediate Operands

For an immediate operand, you can use an integer or enum constant, Sizeof
expression, and any constant expression using any of the C dyadic and monadic arithmetic
operators.

These expressions follow the same precedence and associativity rules as normal C
expressions. The inline assembler carries out all arithmetic with 32-bit signed integers.

An immediate operand can also be a reference to a member of a struct or class type. You
can use any struct or class name from a typedef statement, followed by any number
of member references. This evaluates to the offset of the member from the start of the
struct. For example:

312 CodeWarrior Build Tools Reference for Power Architecture® Processors

Inline-Assembly for Power Architecture Build Tools
Assembler Directives

1wz r4d,Rect.top(r3)
addi 1r6,r6,Rect.left

As aside note, la rD,d(rA) isthe same as addi rD, rA,d.

You also can use the top or bottom half-word of an immediate word value as an immediate
operand by using one of the @ modifiers (Listing 21.12).

Listing 21.12 Example of referring to immediate operands

long gTheLong;
asm void red(void)

{

fralloc
lis ré6,
addi r6,
lis r7,
ori r7,
frfree
blr

gTheLong@ha

r6, gTheLong@h
gTheLong@h
br7, gTheLong@l

The access patterns are:

lis x,var@ha
la x,var@l(x)

or

lis x,var@h
ori x,x,var@l

In this example, 1a is the simplified form of addi to load an address. The instruction
las is similar to 1a but shifted. Refer to the Freescale Power Architecture manuals for
more information.

Using @ha is preferred since you can write:

lis x,var@ha
lwz v,var@l (x)

You cannot do this with @h because it requires that you use the ori instruction.

Assembler Directives

This section describes some special assembler directives that the PowerPC built-in
assembler accepts. These directives are:

e entry
e fralloc

CodeWarrior Build Tools Reference for Power Architecture® Processors 313

A 4
4\

Inline-Assembly for Power Architecture Build Tools
Assembler Directives

o frfree
¢ machine
¢ nofralloc

e opword

entry

Defines an entry point into the current function.
entry [extern | static] name

Use the extern qualifier to declare a global entry point; use the static
qualifier to declare a local entry point. If you leave out the qualifier, extern is
assumed.

NOTE Inline-assembly directive entry can be used only with Function-level
assembly code.

Listing 21.13 shows how to use the entry directive.

Listing 21.13 Using the entry directive

void __ save_fpr_15(void) ;
void _ save_fpr_16(void) ;
asm void __save_fpr_14(void)

{
stfd fpld,-144(SP)
entry _ save_fpr 15
stfd fpl5,-136(SP)
entry _ save_fpr 16
stfd fpl6,-128(SP)
//
blr

}

fralloc

Creates a stack frame for a function and reserves registers for local register variables.
fralloc [number]
You need to create a stack frame for a function if the function:

¢ calls other functions.

314 CodeWarrior Build Tools Reference for Power Architecture® Processors

Inline-Assembly for Power Architecture Build Tools
Assembler Directives

 uses more arguments than will fit in the designated parameters (r3 — r10,
fpl — £p8).

¢ declares local registers.
» declares non-registered parameters.

The fralloc directive has an optional argument number that lets you specity the
size in bytes of the parameter area of the stack frame. The compiler creates a 0-byte
parameter area. If your assembly language routine calls any function that requires
more parameters than will fitin ¥r3 — r10 and £pl — £p8, you must specify a
larger amount.

frfree

Frees a function’s stack frame and restores local register variables.

frfree

This directive frees the stack frame and restores the registers that fralloc
reserved.

The frfree directive does not generate a b1r instruction. If your function uses
function-level inline assembly, you must explicitly terminate it with this
instruction.

machine

Specifies the processor that the assembly language targets.

machine number

The value of number must be one of those listed in Table 21.1.

Table 21.1 CPU Identifiers

505

509 555 56x

all

generic

If you use generic, the compiler supports the core instructions for the 603, 604,
740, and 750 processors. In addition, the compiler supports all optional
instructions.

If you use all, the compiler recognizes assembly instructions for all core and
optional instructions for all Power Architecture processors.

If you do not use the machine directive, the compiler uses the settings you
selected from the Processor listbox of the EPPC Processor settings panel.

CodeWarrior Build Tools Reference for Power Architecture® Processors 315

A 4
4\

Inline-Assembly for Power Architecture Build Tools
Intrinsic Functions

nofralloc

Specifies that the function will build a stack frame explicitly.
nofralloc

Use the nofralloc directive so that an inline assembly function does not build a
stack frame. When you use nofralloc, if you have local variables, parameters
or make function calls, you are responsible for creating and deleting your own
stack frame. For an example of nofralloc, see the file __start.c inthe
directory:

InstallDir\ PowerPC_EABI_Support\Runtime\Src

where InstallDir is the name of the directory on your host computer where you
installed your CodeWarrior development tools.

opword

Inserts raw bytes into the object code.
opword value
This directive inserts value into the object code. For example
opword 0x7C0802A6
is equivalent to
mflr r0

The compiler does not check the validity of value; the compiler simply copies it
into the object code that it generates.

Intrinsic Functions

Intrinsic functions are a mechanism you can use to get assembly language into your source
code without using the asm keyword. Intrinsic functions are not part of the ISO/IEC C or
C++ standards. They are an extension provided by the CodeWarrior compilers.

There is an intrinsic function for several common processor op-codes (instructions).
Rather than using inline assembly syntax and specifying the op-code in an asm block,
you call the intrinsic function that matches the op-code.

When the compiler encounters the intrinsic function call in your source code, it does not
actually make a function call. The compiler substitutes the assembly instruction that
matches your function call. As a result, no function call occurs in the final object code.
The final code is the assembly language instructions that correspond to the intrinsic
functions.

316

CodeWarrior Build Tools Reference for Power Architecture® Processors

Inline-Assembly for Power Architecture Build Tools
Intrinsic Functions

Low-Level Processor Synchronization

These functions perform low-level processor synchronization.

e void _ eieio(void) — Enforce in-order execution of I/O
e void __sync(void) — Synchronize
e void __isync(void) — Instruction synchronize

For more information on these functions, see the instructions eieio, sync, and
isync in PowerPC Microprocessor Family: The Programming Environments by
Freescale.

Absolute Value Functions

These functions generate inline instructions that take the absolute value of a number.
e int _ abs(int) — Absolute value of an integer
e float _ fabs(float) — Absolute value of a float
e float __ fnabs(float) — Negative absolute value of a float
e long __labs(long) — Absolute value of a long int

_ fabs(float)and _ fnabs(float) are not available if the Hardware option
button is cleared in the EPPC Processor settings panel.

Byte-Reversing Functions

These functions generate inline instructions that can dramatically speed up certain code
sequences, especially byte-reversal operations.

e int _ lhbrx(const void *, int) — Load halfword byte; reverse indexed
e int _ lwbrx(const void *, int) — Load word byte; reverse indexed
e void __ sthbrx(unsigned short, const void *, int) — Store

halfword byte; reverse indexed

e void __ stwbrx(unsigned int, const void *, int)— Store word
byte; reverse indexed

Setting the Floating-Point Environment

This function lets you change the Floating Point Status and Control Register (FPSCR). It
sets the FPSCR to its argument and returns the original value of the FPSCR.

This function is not available if you select the None option button in the EPPC Processor
settings panel.

float _ setflm(float);

CodeWarrior Build Tools Reference for Power Architecture® Processors 317

y
A

Inline-Assembly for Power Architecture Build Tools
Intrinsic Functions

shows how to set and restore the FPSCR.

Listing 21.14 Example of setting the FPSCR

double old_fpscr;
/* Clear flag/exception/mode bits, save original settings */
oldfpscr = _ setflm(0.0);

/* Peform some floating-point operations */

_ setflm(old_fpscr); /* Restores the FPSCR */

Manipulating the Contents of a Variable or
Register

These functions rotate the contents of a variable to the left:

e int _ rlwinm(int, int, int, int) — Rotate left word (immediate),
then AND with mask

e int _ rlwnm(int, int, int, int) — Rotate left word, then AND with
mask

e int _ rlwimi(int, int, int, int, int) — Rotate Left word

(immediate), then mask insert

The first argument to ___r1wimi is overwritten. However, if the first parameter is a local
variable allocated to a register, it is both an input and output parameter. For this reason,
this intrinsic should always be written to put the result in the same variable as the first
parameter as shown here:

ra = _ rlwimi(ra, rs, sh, mb, me);
You can count the leading zeros in a register using this intrinsic:
int _ _cntlzw(int);

You can use inline assembly for a complete assembly language function, as well as
individual assembly language statements.

318 CodeWarrior Build Tools Reference for Power Architecture® Processors

Inline-Assembly for Power Architecture Build Tools
Intrinsic Functions

Data Cache Manipulation

The intrinsics shown in Table 21.2 map directly to Power Architecture assembly
instructions

Table 21.2 Data Cache Intrinsics

Intrinsic Prototype Power Architecture Instruction
void __dcbf (const void *, int); dcbf

void __dcbt(const void *, int); dcbt

void __dcbst (const void *, int); dcbst

void __dcbtst(const void *, int); dcbtst

void __dcbz(const void *, int); dcbz

void __dcba(const void *, int); dcba

Math Functions

Table 21.3 lists intrinsic functions for mathematical operations.
Table 21.3 Math Intrinsics

Intrinsic Prototype Power Architecture
Instruction
int _ mulhw(int, int); mulhw
uint _ mulhwu(uint, uint); mulhwu
double __ fmadd(double, double, double); fmadd
double __ fmsub(double, double, double); fmsub
double __ fnmadd(double, double, double); fnmadd
double __ fnmsub(double, double, double); fnmsub
float __ fmadds(float, float, float); fmadds
float _ fmsubs(float, float, float); fmsubs
float __ fnmadds(float, float, float); fnmadds
float __ fnmsubs(float, float, float); fnmsubs
double _ mffs(void) ; mffs

CodeWarrior Build Tools Reference for Power Architecture® Processors 319

y
A

Inline-Assembly for Power Architecture Build Tools
Intrinsic Functions

Table 21.3 Math Intrinsics (continued)

float __ fabsf(float); fabsft

float __ fnabsf (float); fnabsf

Buffer Manipulation

Some intrinsics allow control over areas of memory, so you can manipulate memory
blocks.

void *__alloca(ulong) ;

__alloca implements alloca () in the compiler.
char *__strcpy(char *, const char *);

__strcpy () detects copies of constant size and calls ___memcpy (). This intrinsic
requires that a ___strcpy function be implemented because if the string is not a constant
it will call __strcpy to do the copy.

void *__ _memcpy(void *, const void *, size_t);

__memcpy () provides access to the block move in the code generator to do the block
move inline.

320

CodeWarrior Build Tools Reference for Power Architecture® Processors

22

Power Architecture Code
Generation

This chapter describes the conventions that the C/C++ compiler and linker follow to
generate object code for Power Architecture processors, the data types that the compiler
recognizes, and how to specify to the compiler the byte-alignment of data in object code.

¢ ABI Conformance

* Data Representation

¢ Data Addressing

¢ Aligning Data

¢ Small Data Area PIC/PID Support
* Variable Length Encoding

¢ Building a ROM Image

* Specifying Jump Table Location

ABI Conformance

The CodeWarrior compiler for Power Architecture processors follows the application
binary interface (ABI) specified by PowerPC Embedded Binary Interface, 32-Bit
Implementation.

Data Representation

The compiler recognizes ISO standard data types and some Power Architecture-specific
types:

¢ Boolean Type

* Character Types

¢ Integer Types

» Floating-Point

e AltiVec™ Data Types

CodeWarrior Build Tools Reference for Power Architecture® Processors 321

'
A

Power Architecture Code Generation
Data Representation

Boolean Type

Table 22.1 lists the name, size, and range of the boolean data type. The compiler
recognizes this data type when compiling C99 (ISO/IEC 9899-1999) source code.

Table 22.1 C99 boolean data type

This type has this size and holds this range of
values
_Bool 8 bits when pragma uchar_bool is 0 (“false”) and 1 (“true”)

on, 32 bits when pragma
uchar_bool is of £

Table 22.2 lists the name, size, and range of the C++ boolean data type. The C++ compiler
does not recognize the C99 _Bool type.

Table 22.2 Boolean data type

This type has this size and holds this range of values

bool 8 bits when pragma true, false
uchar_bool is on, 32
bits when pragma
uchar_bool is of £

Character Types

Table 22.3 lists the name, size, and range of the character data types.
Table 22.3 Character data types

This type has this size and holds this range of
values

char 8 bits either -128to 127 or 0 to
255

unsigned char 8 bits 0to 255

signed char 8 bits -128to 127

322 CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Data Representation

Table 22.4 lists the name, size, and range of the C++ wchar_t data types.

Table 22.4 Character data types

This type has this size and holds this range of values
wchar_t 16 bits either -32768 to 32767 or 0 to 65535
unsigned wchar_t 16 bits 0 to 65535

signed wchar_t 16 bits -32768 to 32767

The pragma unsigned_char controls whether or not the compiler treats the wchar_t
and char types as signed or unsigned.

Integer Types

Table 22.5 lists the name, size, and range of the integer data types.

Table 22.5 Integer data type

This type has this size and holds this range of values

short 16 bits -32,768 to 32,767

unsigned short 16 bits 0 to 65,535

int 32 bits -2,147,483,648 to 2,147,483,647

unsigned int 32 bits 0 to 4,294,967,295

long 32 bits -2,147,483,648 to 2,147,483,647

unsigned long 32 bits 0 to 4,294,967,295

long long 64 bits -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

unsigned long 64 bits 0 to 18,446,744,073,709,551,615

long

The compiler recognizes the long long data type when pragma longlong is on or
when compiling C99 source code (ISO/IEC 9899-1999 standard).

CodeWarrior Build Tools Reference for Power Architecture® Processors 323

'
A

Power Architecture Code Generation
Data Representation

Floating-Point

Table 22.6 lists the floating point data types
Table 22.6 Power Architecture Floating Point Types

Type Size Range

float 32 bits 1.17549e-38 to 3.40282e+38
double 64 bits 2.22507e-308 to 1.79769e+308
long double 64 bits 2.22507e-308 to 1.79769e+308

AltiVec™ Data Types

There are vector data types for use in writing AltiVec-specific code. (See Table 22.7).
All the types are a constant size, 16 bytes (128 bits). This is due to the AltiVec
programming model which is optimized for quantities of this size.

Table 22.7 AltiVec Vector Data Types

Vector Data Type Contents Possible

Values
vector unsigned char 16 unsigned char | 0to 255
vector signed char 16 signed char -128 to 127
vector bool char 16 unsigned char | 0 (“false”), 1 (“true”)
vector unsigned short [int] 8 unsigned short 0 to 65535
vector signed short [int] 8 signed short -32768 to 32767
vector bool short [int] 8 unsigned short 0 (“false”), 1 (“true”)
vector unsigned long [int] 4 unsigned int 0to232-1
vector signed long [int] 4 signed int 231 40 2314
vector bool long [int] 4 unsigned int 0 (“false”), 1 (“true”)
vector float 4 float any |IEEE-754 value
vector pixel 8 unsigned short 1/5/5/5 pixel

In Table 22.7, the [int] portion of the Vector Data Type is optional.

324 CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Data Addressing

There are two additional keywords besides pixel and vector, __pixel and
__vector.

The bool keyword is not a reserved word in C unless it is used as an AltiVec vector data
type.

Data Addressing

In absolute addressing, the compiler generates two instructions to fetch the address of a
variable. For example the compiler translates Listing 22.1 into the instructions in Listing

222,

Listing 22.1 Source Code

int red;
int redsky;
void sky ()
{
red = 1;
redsky = 2;
}

Listing 22.2 Generated Code

11 r3,1

lis r4,red@ha

addi r4,r4,red@l
stw r3,0(r4)

1i r5,2

lis r6,redsky@ha
addi r6,r6,redsky@l
stw r5,0(r6)

Each variable access takes two instructions and a total of four bytes to make a simple
assignment. If you set the small data threshold to be at least the size of an int data type,
the compiler generates instructions to fetch variables with one instruction (Listing 22.3).

Listing 22.3 Fetching variables with one instruction

1i r3,1
stw r3,red
1i rd,2

stw r4,redsky

CodeWarrior Build Tools Reference for Power Architecture® Processors

y
A

Power Architecture Code Generation
Aligning Data

Because small data sections are limited in size you might not be able to put all of your
application data into the small data and small data2 sections. We recommend that you
make the threshold as high as possible until the linker reports that you have exceeded the
size of the section.

If you do exceed the available small data space, consider using pooled data.
Because the linker can not deadstrip unused pooled data, you should:

1. Check the Generate Link Map and List Unused Objects checkboxes in the
CodeWarrior IDE’s EPPC Linker panel.

2. Link and examine the map for data objects that are reported unused.
3. Delete or comment out those used definitions in your source.

4. Check the Pool Data checkbox.

The code in Listing 22.4 has a zero small data threshold.

Listing 22.4 Zero Small Data Threshold

lis
addi
11
stw
1i
stw

r3,...bss.0@ha
r3,r3,...bss.0@1l

r0,0(xr3)

r0,4(r3)

When pooled data is implemented, the first used variable of either the . data, .bss or
.rodata section gets a two-instruction fetch of the first variable in that section.
Subsequent fetches in that function use the register containing the already-loaded section
address with a calculated offset.

NOTE Youcan access small data in assembly files with the two-instruction fetch used
with large data, because any data on your board can be accessed as if it were
large data. The opposite is not true; large data can never be accessed with small
data relocations (the linker issues an error if you try to do so). External
declarations of empty arrays (for example, extern int red [];)are
always treated as if they were large data. If you know that the size of the array
fits into a small data section, specify the size in the brackets.

Aligning Data

This section contains these topics:

* Alignment Attribute Syntax

326

CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Aligning Data

¢ Aligning a Variable Declaration

¢ Alignment in a Structure Definition
¢ Typedef Declaration

¢ Structure Member
Bitfields

Alignment Attribute Syntax

Use __attribute_ ((aligned(...))) directive to specify to the compiler on
what memory boundary to store data objects. This directive specifies which multiple of
bytes to store an object.

The format of this directive is
__attribute_ ((aligned(x))

where x is a decimal number of a power of 2 from 1 to 4096.

Aligning a Variable Declaration

Use the alignment attribute to specify a variable’s alignment. For example, the following
variable declaration aligns V1 on a 16-byte boundary.

int V1[4] __ _attribute__ ((aligned (16)));
The following variable declaration aligns V2 on a 2-byte boundary.
int V2[4] __attribute_ ((aligned (2)));

Alignment in a Structure Definition

Use the alignment attribute to specify how instances of a structure should be aligned. You
must specify a minimum alignment of at least 4 bytes for structures. Specifying a lower
number might cause alignment exceptions at runtime.

For example, this definition aligns all definitions of struct S1 on an §-byte boundary.

struct S1 { short f[3]; }
__attribute_ ((aligned (8)));
struct S1 sl;

The following definition aligns all definitions of struct S2 on a 4-byte boundary.

struct S2 { short f[3]; }
__attribute__ ((aligned (1)));
struct S2 s2;

CodeWarrior Build Tools Reference for Power Architecture® Processors 327

A 4
4\

Power Architecture Code Generation
Aligning Data

Structure Member

Use the alignment attribute to specify how to align a member in a structure.

For example, the following structure member definition aligns all definitions of struct
S3 on an 8-byte boundary, where a is at offset 0 and b is at offset 8.

struct S3 {
char a;
int b _ attribute__ ((aligned (8)));
}s
struct S3 s3;
The following struct member definition aligns all definitions of struct S4 on a 4-byte
boundary, where a is at offset 0 and b is at offset 4.

struct S4 {

char a;

int b _ attribute__ ((aligned (2)));
Y
struct S4 s4;

NOTE Specifying __attribute__ ((aligned (2))) does not affect the
alignment of S4 because 2 is less than the natural alignment of int.

Typedef Declaration

Use the alignment attribute to specify how objects of a specific type should be aligned.

For example, the following typedef declaration aligns all definitions of T1 on an 8-byte
boundary.

typedef int T1 _ attribute_ ((aligned (8)));
Tl tl1;

The following typedef declaration aligns all definitions of T2 on an 1-byte boundary.

typedef int T2 __ attribute_ ((aligned (1)));
T2 t2;

Bitfields

If your program’s structure has bitfields and the Power Architecture alignment does not
give you as small a structure as you desire, double-check that you are specifying the
smallest integer size for your bitfields.

For example, Listing 22.5 would be smaller if it were written as shown in Listing 22.6.

328 CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Small Data Area PIC/PID Support

Listing 22.5 Before

typedef struct red {
unsigned a: 1;
unsigned b: 1;
unsigned c: 1;

} red;

Listing 22.6 After

typedef struct red {
unsigned char a: 1;
unsigned char b: 1;
unsigned char c: 1;

} red;

Small Data Area PIC/PID Support

The basic requirement for position independent code and data in the small data area is, at
runtime, maintaining the link time address relationships between the startup code
(.init) and the . sdata and . sdata2 segments. For example, if the link time
addresses are:

.init = 0x00002000
.sdata2 = 0x00003000
.sdata = 0x00004000

but . init somehow is executed at 0x00002500, then those link time addresses must all
increment by 0x00000500 for their runtime addresses.

Any segment that does not maintain the address relationship at runtime is considered
external and must be addressed with absolute addresses. Segments that do maintain their
link time address relationship at runtime are considered internal and must be addressed
with PC-relative and SDA-relative addressing.

 Internal and External Segments and References

¢ PIC/PID Linker Command File Directives

¢ Linker-defined Symbols
e Uses for SDA PIC/PID

¢ Building an SDA PIC/PID Application
 Internal and External Addressing Modes

CodeWarrior Build Tools Reference for Power Architecture® Processors 329

3
4

y
A

Power Architecture Code Generation
Small Data Area PIC/PID Support

Internal and External Segments and
References

The linker determines at link time whether code and data segments are external or internal.
Internal segments reference their data as far or near offsets of the small data registers r2
and r13. Their code references are normally PC-relative, but if far code references are
needed, they also use offsets of the small data registers.

Internal segments can also reference code and data in other internal segments with the
same addressing that they would use for their own code and data.

By default, the linker considers all segments in your application to be internal with the
exception of segments that are at absolute addresses. Segments with names such as
. abs . xxxxxxxx, Where xxxxxxxx is a hex address, are considered external.

External segments reference their data with absolute addressing and code references
within the segment may be either PC-relative or absolute. Any other segment must use
absolute references to reference code or data in external segments. External segments
must reference an internal segment with small data registers for code and data.

Related to external segments are external symbol references. These are symbols, usually
linker-generated, that are determined not to be within any segment in your application.
They are referenced with absolute addressing. All symbols in an external segment are
considered to be external symbol references.

PIC/PID Linker Command File Directives

A few linker command file directives override PIC/PID related linker default settings:
¢ MEMORY
¢ INTERNAL_SYMBOL
¢ EXTERNAL_SYMBOL

Linker-defined Symbols

The linker-generated start and end symbols that are automatically generated for loadable
segments are internal if they are addresses into internal segments, and external if they are
for external segments. All other linker defined symbols you create in a LCF are considered
external unless you redefine them with INTERNAL_ SYMBOL. The linker also defines
some linker defined symbols for its own use (Table 22.8).

330

CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation

Small Data Area PIC/PID Support

Table 22.8 Linker-defined Symbols

Symbol Name

Value

Description

_stack_addr

top of the stack -

External. Comes from settings panel
settings.

_stack_end

bottom of the stack

External. Comes from settings panel
settings.

_heap_addr bottom of the heap External. Comes from settings panel
settings.
_heap_end top of the heap External. Comes from settings panel
settings.
_SDA_BASE_ .sdata + 0x00008000 Internal per EABI requirement. May
not be redefined.
_SDA2_BASE__ .sdata2 + Internal per EABI requirement. May
0x00008000 not be redefined.

_ABS_SDA_BASE_

.sdata + 0x00008000

External version of _SDA_BASE_
that can be used as an absolute.
May not be redefined.

_ABS_SDA2_BASE

.sdata2 +
0x00008000

External version of _SDA2_BASE_
that can be used as an absolute.
May not be redefined.

_nbfunctions

number of functions in
program

Deprecated. External. This is a
number, not an address. May not be
redefined.

SIZEOF_HEADERS

size of the segment
headers

External. This is a number, not an
address. May not be redefined.

NOTE

The symbols _SDA_BASE_ and _SDA2_BASE are not accessible until the

small data registers are properly initialized before being accessible. The
symbols _ABS_SDA_BASE and _ABS_SDA2_BASE allow you to access
those pointers as absolutes addresses, as it is difficult to initialize those pointers
without accessing them as absolute addresses.

CodeWarrior Build Tools Reference for Power Architecture® Processors 331

3
4

y
A

Power Architecture Code Generation
Small Data Area PIC/PID Support

NOTE The stack and heap linker generated symbols are external. It may be more
practical in a SDA PIC/PID application to make the heap and stack be
contiguous with an internal segment and define them as internal.

Uses for SDA PIC/PID

The PIC/PID runtime can be used for different scenarios:

1. All code and data segments are internal. The simplest case would be for all segments
to use the same MEMORY directive and to have all of the . bss type segments at the
end. In such a simple case, the application could be converted to a binary file and
linked into another application which could copy it to RAM and jump to its entry
point.

2. All of the essential segments are internal and therefore moveable. But, there may be
some external segments which are absolute. This situation is probably difficult to test
but we can download the entire application to the chip and at least debug it at its link
time addresses.

3. There are internal and external segments, but the application is linked as a ROM image
(the application does not need to be flashed to ROM, however). It is possible to change
the ROM Image Address to be an address into RAM and have the debugger download
the image to the RAM address. Alternatively, we could have the ROM image
converted to a binary file and linked into another application as in 1, above. The
structures used in __init_data(),_rom_copy_info and
__bss_init_info, have been modified for SDA PIC/PID to have an extra field
which tells the runtime where the segment is internal or external so that the internal
segments are copied to position-relative addresses and the external segments copied to
absolute addresses.

Building an SDA PIC/PID Application

To build a SDA PIC/PID application, select SDA PIC/PID in the ABI list box in the
CodeWarrior IDE’s EPPC Target target preferences panel. The compiler defines a simple
variable that we can use to guard PIC/PID source.

#if _ option(sda_pic_pid) // is true if we have chosen SDA
PIC/PID ABI

At link-time, the linker generates a table used for the runtime files
ppc_eabi_init.cppand _ ppc_eabi_init.c.

If our application contains absolute addressing relocations, we will receive linker
warnings telling us that those relocations may cause a problem. To resolve these warnings,
either:

332

CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Small Data Area PIC/PID Support

¢ change the Code Model listbox in the CodeWarrior IDE’s EPPC Target target
preferences panel to be SDA Based PIC/PID Addressing for all of our sources and
libraries

¢ check the Tune Relocations checkbox in the EPPC Target target preferences panel.
This new option is only available for the EABI and SDA PIC/PID ABIs. For EABI, it
changes 14-bit branch relocations to 24-bit branch relocations, but only if they can
not reach the calling site from the original relocation.

For SDA PIC/PID, this option changes absolute-addressed references of data from
code to use a small data register instead of r0 and changes absolute code-to-code
references to use the PC-relative relocations.

Linking Assembly Files

It is always possible to link in an assembly file that does not behave in a standard way. For
example, taking the address of a variable with:

addis rx,r0,object@h

ori rx,rx,objec@l

generally can not be converted by the linker to SDA PIC/PID Addressing and the linker
will warn us if it finds an occurrence.

The following will work with Absolute Addressing as well as allow the linker to convert
the instructions to SDA PIC/PID Addressing:

addis rx,r0,object@ha
addi rx,rx,objec@l

Another possible problem may arise if we put constant initialized pointers into a read-only
section, thereby not letting the runtime convert the addresses.

Modifications to the Section Pragma

The pragma #pragma section has been modified to accept far_sda_rel for the
data_mode and code_mode options, even if we are not using Code Model SDA Based
PIC/PID Addressing. If we omit these options, the compiler uses the Code Model to
determine the appropriate modes.

* Absolute Addressing

data_mode = far_abs
code_mode = pc_rel

* SDA Based PIC/PID Addressing

data_mode = far_sda_rel
code_mode = pc_rel

CodeWarrior Build Tools Reference for Power Architecture® Processors 333

3
4

'
A

Power Architecture Code Generation
Small Data Area PIC/PID Support

Internal and External Addressing Modes

An address mode is applied to a memory segment as a part of the ROM image or at the
executing (or logical) address of the segment. Following address modes can be applied to
a memory segment:

* Internal—the segment executes from an address not specified at link time.
* External— the segment must execute from the address specified at the link time.

Consider an example where the segment . foo is a part of ROM Image and will be copied
to a RAM location. The link time addresses are:

¢ ROM = 0x00100000

¢ RAM = 0x00002000
NOTE Both the link time addresses can be external or internal.

Also assume that the real time (physical) ROM address is 0x00200000 instead of the link
time specified address 0x00100000. Table 22.9 lists the possible address mode scenarios.

Table 22.9 Possible addr_mode Scenarios

Scenario

ROM
addr_mode

RAM
addr_mode

Description

internal

external

Runtime correctly figures out
that the ROM address is
0x00200000 and copies it to
0x00002000

internal

internal

Runtime correctly figures out
that the ROM address is
0x00200000 and copies it to
0x00102000

external

external

Runtime incorrectly assumes
that the ROM address is
0x00100000 and copies it to
0x00002000

external

internal

Runtime incorrectly assumes
that the ROM address is
0x00100000 and copies it to
0x00102000

334 CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Variable Length Encoding

In the above possible scenarios only A and B are correct. The difference between
scenario A and B is that in A, the executing (logical) address of . foo is absolute and that
in B, the executing (logical) address of . foo is relative.

Scenario C and D are possible if . foo is flashed to ROM at its correct ROM address and
all other segments are at an offset from their link time ROM addresses.

NOTE .init segment determines the correct address of an application. If . init is
at its link time ROM address, then all the segments in the application will be
treated as external.

Specifying ROM addr_mode
Use the following directives to specify ROM addr_mode:

* LOAD— To specify an external ROM addr_mode.

e INTERNAL_LOAD—To specify an internal ROM addr_mode.
By default the ROM addresses are external.

Specifying RAM addr_mode

Use MEMORY directive and any of the following parameters to specify the RAM
addr_mode.

addr_mode = external—To specify an external RAM addr_mode.
addr_mode = internal—To specify an internal RAM addr_mode.

By default the RAM addresses are internal.

For example, RAM : org = 0x000e0000, addr_mode = external will make
sections defined in the RAM external.

NOTE addr_mode is ignored if SDA PIC/PID in the ABI list box in the
CodeWarrior IDE’s EPPC Target target preferences panel is not selected.

Variable Length Encoding

The Variable Length Encoding (VLE) instruction set architecture is an extension to the
instruction set specified in Freescale Semiconductor’s Book E Implementation Standard
(EIS) for Power Architecture processors. This instruction set adds a few identically
operating counterparts to the regular EIS instruction set. But where regular EIS
instructions occupy 32 bits and must be aligned to 32-bit boundaries, VLE instructions are
either 16 or 32 bits long and can be aligned to 16-bit boundaries. This extra flexibility in

CodeWarrior Build Tools Reference for Power Architecture® Processors 335

V¥ ¢
i

Power Architecture Code Generation
Variable Length Encoding

instruction encoding and alignment allows the compiler and linker to greatly compress the
size of runtime object code with only a small penalty in execution performance.

These topics describe how and when to configure the build tools to generate VLE object
code:

¢ Processors With VLE Capability

¢ Compiling VLE Instructions

¢ Assembling VLE Instructions

¢ Linking VLE Object Code

Processors With VLE Capability

The VLE (Variable Length Encoding) instruction set is an extension to the instruction set
specified in the Freescale Book E Implementation Standard (EIS). Not all Power
Architecture processors have VLE capability. Refer to the manufacturer’s documentation
for the processor you are targeting. For information on the Book E and VLE programming
models, see EREF: A Programmer’s Reference Manual for Freescale Book E Processors,
published by Freescale Semiconductor.

Compiling VLE Instructions

Table 22.10 shows how to control VLE (Variable Length Encoding) code generation.
Table 22.10 Controlling VLE code generation

To control this option from use this setting
here...
CodeWarrior IDE Select Zen in the Processor drop-down list

box of the EPPC Processor settings panel,
then check Generate VLE Instructions in
e500/Zen Options panel.

C/C++ source code __declspec (vle_on)
__declspec(vle_off)

command line -vle

Assembling VLE Instructions

The mnemonics for VLE (Variable Length Encoding) instructions begin with “se_" or
“e_". The compiler’s inline assembler recognizes these mnemonics when the compiler is
configured to generate VLE object code.

336 CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Variable Length Encoding

Only a subset of EIS instructions have equivalent VLE instructions. To save you time and
effort, the inline assembler can convert regular EIS instructions to equivalent VLE
instructions automatically. In other words, the inline assembler can generate VLE object
code from inline assembly statements that use only regular mnemonics. Table 22.11
shows how to control VLE code generation for inline assembly statements.

Table 22.11 Controlling VLE inline assembly

To control this option from use this setting
here...
CodeWarrior IDE Select Zen in the Processor drop-down list

box of the EPPC Processor settings panel,
then check Translate PPC Asm to VLE
ASM in €500/Zen Options panel.

command line -ppc_asm_to_vle

The stand-alone assembler also recognizes and generates VLE instructions. Table 22.12
shows how to control VLE code generation with the standalone assembler.

Table 22.12 Controlling VLE code generation for the standalone assembler

To control this option from use this setting
here...
CodeWarrior IDE Select Zen in the Processor drop-down list

box of the EPPC Processor settings panel,
then check Generate VLE Instructions in
e500/Zen Options panel.

command line -vle

To specify that a section containing executable code should be executed in the processor’s
VLE mode, use the text_vle identifier with the . section directive. Listing 22.7
shows examples.

Listing 22.7 Examples of specifying VLE sections in standalone assembly

.section .text_vle # Section name 1is .text_vle
.section .text,text_vle # Section name is .text
.section .littletext,text_vle # Section name is .littletext

CodeWarrior Build Tools Reference for Power Architecture® Processors 337

y
A

Power Architecture Code Generation
Variable Length Encoding

Unlike the inline assembler, the standalone assembler does not offer the option to convert
regular instruction mnemonics to VLE instructions. To perform this conversion
automatically, copy and paste standalone assembly source code into a C or C++ source
file, shown in Listing 22.8.

Listing 22.8 Using automatic VLE instruction conversion

extern asm void my_func (void)
{
nofralloc /* No stack frame. */
/* Paste standalone assembly source code here. */

Linking VLE Object Code

A processor capable of executing VLE (Variable Length Encoding) instructions must use
separate memory pages for VLE and regular instructions. The compiler and linker ensure
this separation by placing executable code that uses VLE instructions and regular
instructions in separate object code sections.

To maintain this separation in your own linker command file, specify output sections for
VLE and regular instructions. Listing 22.9 shows an example. This linker control file
specifies that output sections named .init_wvle and . text_vle should only contain
object code that the compiler has tagged with VLECODE.

Listing 22.9 Separating VLE and regular object code in the linker’s output file

.init : { } > code

.init_vle (VLECODE) : {
*(.init)
*(.init_vle)

} > code

.text : { } > code
.text_vle (VLECODE) : {
*(.text)

*(.text_vle)

} > code

To save memory space, the linker compresses VLE object code by shortening the gaps
between functions. A VLE function must meet these criteria to be re-aligned:

¢ The VLE function is referred to only by other VLE functions.

The linker will not re-align a function if it is referred to by a non-VLE function.

¢ The VLE function’s alignment is 4 bytes.

338 CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Building a ROM Image

The linker will not re-align a function if the compiler’s function alignment settings
specify an explicit alignment value.

* The object code was generated by the CodeWarrior compiler.

Building a ROM Image

The CodeWarrior compiler and linker can generate a program image that may be stored in
and started from ROM (read-only memory). This section uses the term ROM to mean any
kind of persistent main storage, including ROM and flash memory.

To create an image for read-only memory, you must configure the compiler and linker:
¢ Linking a ROM Image
* ROM Image Addresses
* Specifying A Single ROM Block
¢ Specifying Several ROM Blocks

¢ Specifying Jump Table Location

¢ Specifying Constant Data L.ocation

Linking a ROM Image

Table 22.13 compares the differences between the linker’s default RAM image layout and
how you should configure your program for loading into and running from ROM.

Table 22.13 Comparing RAM and ROM images

RAM image properties ROM image properties

The S record file contains executable One or more memory areas defined in the
code, constants, and initialization linker's . 1cf file specifies where store the
values for data. program image in the target system’s

memory map.

Executable code, constants, and data Initialization values for data are copied from
are loaded for execution by the the ROM image to RAM at program startup.
debugger or the program loader. Executable code and constant data may also

be copied to RAM to improve performance
(while requiring more RAM space).

The linker’s output ELF file for a ROM image contains a segment named
.PPC.EMB. seginfo. This segment describes which segments in the image will be
copied from ROM to RAM at runtime. The linker uses this non-loadable segment to

CodeWarrior Build Tools Reference for Power Architecture® Processors 339

y
A

Power Architecture Code Generation
Building a ROM Image

generate a data structure named _rom_copy_info. At startup, the program uses the
_rom_copy_info structure to determine which segments to move from ROM to RAM.

Listing 22.10 shows the part of an example disassembly that lists the contents of segment
.PPC.EMB.seginfo. When is_rom_copy is set to 1, the corresponding segment is
copied from ROM to its final destination during startup. In this example, these sections
will be copied from ROM to RAM at startup:

.bss, .data, .sdata, .sbss, .sdata2.

Listing 22.10 Example of segments to copy to RAM at startup

entry
0]
1]
2]
3]
4]
5]
6]
71
8]
9]
10]
11]
121]
13]
14]
15]

is_rom_copy name ram index
.abs.00010000 0
.reset 0
.init 0
.text 0
.rodata 0
.dtors 0
.bss 7
.bss 0
.data 9
.data 0
.sdata 11
.sdata 0
.sbss 3
.sbss 0
.sdata2 15
.sdata?2 0

O ORPOROFRORPROOOOOO
=

ROM Image Addresses

The program ROM image is usually the whole image of the program. The ROM image
allocates RAM space for its variables, and optionally for its executable code, at
application startup. A ROM image is defined by these addresses:

* ROM image address: is the address where you want the ROM image to be allocated.

Usually it is the start address of one of the memory blocks defined in the linker
. 1cf file.

* RAM buffer address: specifies the address in RAM that is to be used as a buffer for
the flash image programmer.

To specify these addresses in the CodeWarrior IDE, turn on Generate ROM Image in the
EPPC Linker settings panel, then enter addresses in the RAM Buffer Address and
ROM Image Address fields.

340

CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Building a ROM Image

Specifying A Single ROM Block

When specifying a single ROM memory block in a . 1c £ file, the start address of this
memory block can be used as ROM image address. All executable code and constant
sections will be allocated in ROM and all variables initialization values will be copied
from ROM to RAM during startup.

Listing 22.11 shows an example . 1cf file for a single ROM block.

Listing 22.11 Configuring a linker file for a ROM image

MEMORY {
ram : org
rom : org

0x00c02000
0x00000000 // desired ROM address (boot
// address for 555)

}

SECTIONS {
.reset : {} > rom
.init : {} > rom
GROUP : {
.text (TEXT) ALIGN(0x1000) : {}
.rodata (CONST) : {
* (.rdata)
*(.rodata)
}
.ctors : {}
.dtors : {}
extab : {}
extabindex : {}

} > rom // for ROM images, this can be 'rom' if you want
// to execute in ROM or 'ram' if you want to
// execute in RAM

GROUP : {
.data : {}
.sdata : {}
.sbss : {}
.sdata2 : {}
.sbss2 : {}
.bss : {}

.PPC.EMB.sdata0 : {}
.PPC.EMB.sbss0 : {}
} > ram

CodeWarrior Build Tools Reference for Power Architecture® Processors 341

y
A

Power Architecture Code Generation
Building a ROM Image

Specifying Several ROM Blocks

To specity several ROM blocks in a . 1c £ file, the start address of the main memory
block must be the ROM image address.

To prevent all executable code or constants allocated in other ROM blocks to be copied
during startup, use the LOAD linker directive. To prevent a specific executable code or
constant section from being copied to its runtime RAM destination, specify the final
destination address in the LOAD directive.

Listing 22.12 shows an example . 1c£ file that specifies several ROM blocks.

Listing 22.12 Configuring linker file for an image with several ROM blocks

MEMORY
{
APPL_INT_VECT : org= 0x00010000, len= 0x000000FF
// If org is changed, make sure to adjust start address in
// .applexctbl LOAD (0x00010000): {} > APPL_INT VECT
// accordingly
CST_DATA : org= 0x00010100, len= 0x000000FF
APPL_CODE_FLASH : org= 0x00010200, len= 0xO000EFE0O
// APPL_CODE_FLASH= int. flash area for application
// external RAM
EXT_RAM_A : org= 0x00800000, len= 0x00100000
}

SECTIONS {
.applexctbl LOAD (0x0001000): {} > APPL_INT_VECT
.syscall: {} > APPL_CODE_FLASH
.reset : {} > APPL_CODE_FLASH
.init: {} > APPL_CODE_FLASH
GROUP : {
.text (TEXT) : {}
.rodata (CONST) : {
* (.rdata)
* (.rodata)
}
.ctors : {}
.dtors {3}
extab : {1}
extabindex : {}

} > APPL_CODE_FLASH

GROUP : {
.bss : {3}
.data {1}
.sdata : {}
.sbss : {3}

342 CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Building a ROM Image

.sdata2 : {}
.sbss2 : {3}
.PPC.EMB.sdatalO: {}
.PPC.EMB.sbss0 : {}
} > EXT_RAM_A //DPTRAM_AB
GROUP: {
.CstData LOAD (0x00010100): {}
} > CST_DATA

If several sections must be allocated in one of the secondary memory areas, use the
linker’s ROMADDR directive to evaluate the final destination address of the sections.
Listing 22.13 shows an example.

Listing 22.13 Placing several sections in a secondary memory area

.applexctbl LOAD (0x0010000): {} > APPL_INT_VECT
.syscall LOAD (ROMADDR(.applexctbl)+SIZEOF (.applexctbl)):{}

> APPL_INT_VECT

If the program contains an absolute code section, a section which contains object code that
must not be copied at startup, the section must also be specified in the . 1 c £ file with the
LOAD directive. Listing 22.14 shows example C source code that generates an interrupt
service routine that must be placed at a specific address at runtime. Listing 22.15 shows
the linker directives that ensure that this routine’s object code will be loaded at a specific

address at runtime.

Listing 22.14 Absolute code example

#pragma push

#pragma section code_type ".abs.00010000" code_mode=pc_rel

asm void _ISRVectorTable (void)
{
b InterruptHandler
nop
nop
b InterruptHandler
}
#pragma pop

Listing 22.15 Linker commands for absolute code in ROM

MEMORY

{
//internal Flash

CodeWarrior Build Tools Reference for Power Architecture® Processors

343

y
A

Power Architecture Code Generation
Building a ROM Image

APPL_INT_VECT : org= 0x00010000, len= 0x000000FF;
// If org is changed, make sure to adjust start
// address in .abs.00010000 LOAD (0x00010000): {} >
// APPL_INT_VECT accordingly
//
}
SECTIONS {

.abs.00010000 LOAD (0x00010000): {} > APPL_INT_VECT

<..>

Specifying Jump Table Location

By default the CodeWarrior compiler and linker allocate jump tables for switch
statements in RAM. When the application executes from ROM, it is sometimes better to
have the switch table allocated in ROM to reduce RAM requirements.

To tell the compiler and linker to place jump tables in an object code section that will be
placed in ROM, use this directive in your C or C++ source code:

#pragma read_only_switch_tables on

Alternately, to tell the compiler to generate a branch tree in executable code instead of a
jump table in a data section, use this directive in C or C++:

#pragma switch_tables off

Specifying Constant Data Location

By default, the CodeWarrior compiler allocates all constant values of a size greater than 8
bytes in the . rodata section. There are two solutions for storing constants with sizes
smaller than 8 bytes to be allocated in this section:

Solution 1: Define the variable in section . rodata using the
__declspec (section) directive in C or C++ source code. Listing 22.16 shows an
example.

Listing 22.16 Using __declspec(section) to store small constants in .rodata

#define SMALL_ROM_CONST _ declspec(section ".rodata")

SMALL_ROM_CONST const unsigned int MyInt2 = 0x4534

344 CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Embedded C++

Solution 2: Enter 0 in the Small Data2 option in the CodeWarrior IDE’s EPPC Target
settings panel.

Embedded C++

Embedded C++ (EC++) is a subset of the ISO/IEC 14882-1998 C++ language that is
intended to compile into smaller, faster executable code suitable for embedded systems.
Embedded C++ source code is upwardly compatible with ISO/IEC C++ source code.

Activating EC++
Differences Between ISO C++ and EC++

EC++ Specifications

Activating EC++

Table 22.14 shows how to control Embedded C++ conformance.

Table 22.14 Controlling Embedded C++ conformance

To control this option from use this setting

here...

CodeWarrior IDE EC++ Compatibility Mode in the C/C++
Language Settings panel

source code #pragma ecplusplus

command line -dialect ec++

To test for EC++ compatibility mode at compile time, use the
__embedded_cplusplus predefined symbol.

Differences Between ISO C++ and EC++

The EC++ proposal does not support the following ISO/IEC 14882-1998 C++ features:

Templates

Libraries

File Operations

Localization

Exception Handling
Unsupported Language Features

CodeWarrior Build Tools Reference for Power Architecture® Processors 345

V¥ ¢
i

Power Architecture Code Generation
Embedded C++

Templates

ISO/IEC C++ specifies templates. The EC++ proposal does not include template support
for class or functions.

Libraries

The EC++ proposal supports the <string>, <complex>, <ios>, <streambuf>,
<istream>, and <ostream> classes, but only in a non-template form. The EC++
specifications do not support any other ISO/IEC C++ libraries, including the STL-type
algorithm libraries.

File Operations

The EC++ proposal does not support any file operations except simple console input and
output file types.

Localization

The EC++ proposal does not contain localization libraries because of the excessive
memory requirements.

Exception Handling

The EC++ proposal does not support exception handling.

Unsupported Language Features

The EC++ proposal does not support the following language features:
* mutable specified
e RTTI
¢ namespace
* multiple inheritance

¢ virtual inheritance

EC++ Specifications

Topics in this section describe how to design software that adhere to the EC++ proposal:
* Language Related Issues
e Library-Related Issues

346

CodeWarrior Build Tools Reference for Power Architecture® Processors

Power Architecture Code Generation
Embedded C++

Language Related Issues

To make sure your source code complies with both ISO/IEC 14882-1998 C++ and EC++
standards, follow these guidelines:

¢ Do not use RTTI (Run Time Type Identification).
* Do not use exception handling, namespaces, or other unsupported features.

* Do not use multiple or virtual inheritance.

Library-Related Issues

Do not refer to routines, data structures, and classes in the Main Standard Library (MSL)
for C++.

CodeWarrior Build Tools Reference for Power Architecture® Processors 347

A 4

4\
Power Architecture Code Generation
Embedded C++
348

CodeWarrior Build Tools Reference for Power Architecture® Processors

23
Libraries and Support Code

CodeWarrior software includes libraries and support files you can add to your project.
This chapter describes these libraries and how to choose among them:

¢ Main Standard Libraries (MSL): ISO/IEC-standard C and C++ libraries
* runtime libraries: support for higher-level C and C++ language features
¢ board initialization: low-level startup routines

The sections of this chapter are:
¢ Main Standard Libraries

¢ Third Party Standard Libraries
¢ Embedded Warrior Library

¢ Runtime Libraries

¢ Board Initialization Code

Main Standard Libraries
This section explains how to use the Power Architecture version of the Main Standard
Libraries (MSL).

* Using the Main Standard Libraries
¢ Choosing an MSL Library

¢ Using Console I/0
¢ Allocating Additional Heap Space

For more information refer to the MSL C Reference and the MSL C++ Reference.

Using the Main Standard Libraries

The Main Standard Libraries (MSL) are a complete, configurable set of C and C++
standard libraries. These libraries also include MSL Extras, which extends the standard
library and adds compatibility with common UNIX libraries. All of the source files
required to build MSL are included in your CodeWarrior product, along with project files
for different MSL configurations.

CodeWarrior Build Tools Reference for Power Architecture® Processors 349

3
4

y
A

Libraries and Support Code
Main Standard Libraries

To use the MSL library, you must also use a runtime library. To support custom hardware
capabilities, such as a new memory configuration, make changes to the runtime libraries
instead of the MSL library’s source files. Then, if necessary, reconfigure and recompile
the MSL library. Refer to the MSL C Reference or MSL C++ Reference for more
information.

Choosing an MSL Library

If your program uses features in the MSL libraries, you must choose a configuration that
matches your software and hardware requirements.

The filenames of the configurations of MSL libraries follow a naming convention to
describe each library’s capabilities and features. Table 23.1 lists the types of MSL
configurations.

Table 23.1 MSL Library Naming Conventions

These

charactersina | Applicable? mean that the library has these

filename... features....

fdlibm No High-level math functions, including as the
trigonometric functions.

MSL_C Yes C standard library.

MSL_C++ No C++ standard library.

MSL_EC++ No Embedded C++ standard library.

MSL_SUPP_TRK No CodeWarrior TRK support.

MSL_SUPP_UART No UART (serial communications).

.bare No Boards with no operating system.

PPCEABI Yes Conforms to the PowerPC Embedded
Application Binary Interface (EABI) standard.

Sz No Optimized for size.

SP Yes Single Precision Floating Point only.

A No AltiVec™ support.

c No Code compression.

E Yes €500 and e200z (formerly Zen) targets.

350

CodeWarrior Build Tools Reference for Power Architecture® Processors

Libraries and Support Code
Main Standard Libraries

Table 23.1 MSL Library Naming Conventions (continued)

These
charactersina | Applicable? mean that the library has these
filename... features....

E2 No e500v2 targets, with double-precision floating-
point operations.

H No Hardware floating-point operations.

HC No Hardware floating-point operations and code
compression.

S No Software emulation of floating-point operations.

N Yes No floating-point support.

NC No No floating-point support, but with code
compression.

LE No Little-endian mode.

uc Yes Function parameters declared char are treated
as if they were declared unsigned char.

Use a UC library in build targets for which the
Use Unsigned Chars option is enabled. Use a
non-ucC library in build targets for which this
option is disabled.

If the option used by the build target is different
from the option used to generate the build
target’s runtime library, the linker issue a
warning.

\ No Uses VLE instructions SPFP/SPE floating point
operations in software routines. Use only with
processors that have an €200z (formerly Zen)
core.

Vs No Uses VLE instructions, single-precision floating
point operations using native processor
instructions, and double-precision floating point
operations using software routines.

sc Yes Function parameters declared char are treated
as if they were declared signed char.

CodeWarrior Build Tools Reference for Power Architecture® Processors 351

3
4

'
A

Libraries and Support Code
Third Party Standard Libraries

Using Console I/O

The default MSL configuration for Power Architecture processors provides the stdout,
stderr, and stdin file streams through serial I/O on most evaluation boards. The C++
standard library assigns cin, cout, and cerr to the target board’s serial port. Also, I/O
functions that refer to the standard streams implicitly, such as printf (), are available.

This configuration does not provide disk I/O, so functions such as fprintf () are not
available.

To use the MSL console I/O functions, you must include a special serial I/O library in
your project. Your hardware must be initialized properly to work with this library.

Allocating Additional Heap Space

The heap you define using the Heap Address option of the EPPC Linker panel is the
default heap. The default heap needs no initialization. The CodeWarrior linker will only
link the object code for memory management if your program calls malloc () or
new().

You may find that you do not have enough contiguous memory available for your needs.
In this case, you can initialize multiple memory pools to form a large heap.

You create each memory pool by calling init_alloc (). You can find an example of
this callin__ppc_eabi_init.cand __ ppc_eabi_init.cpp. You do not need to
initialize the memory pool for the default heap.

Third Party Standard Libraries

You might be able to use a third-party C standard library with your CodeWarrior tools. To
determine if the CodeWarrior tools will generate object code that is compatible with a
third-party library, compare the file stdarg.h from the third-party library with
stdarg.h from the MSL library. The CodeWarrior C/C++ compiler for Power
Architecture processors uses the MSL files stdarg.h and runtime library file
__va_arg.c to generate variable-length parameter functions. Your third-party library
must be compatible with these files.

You cannot use a third-party standard C++ library with your CodeWarrior product.

Embedded Warrior Library

This section explains how to use the Power Architecture version of the Embedded Warrior
Library (EWL) .

¢ Using the Embedded Warrior Libraries

352

CodeWarrior Build Tools Reference for Power Architecture® Processors

Libraries and Support Code
Embedded Warrior Library

 EWL Naming Convention
¢ How to Rebuild the EWL Libraries

For more information refer to the EWL C Reference and the EWL C++ Reference.

Using the Embedded Warrior Libraries

Embedded Warrior Library (EWL) is the next generation of MSL. With this release, EWL
will be an alternative library. The sources are based on MSL and are more MISRA
compliant. Existing standard prefix file name, library (archive) names have been
modified. some of the legacy libraries have been depricated and a greater number of
processor core specific libraries are introduced.

NOTE EWL is not supported by all products. All of your existing projects and
makefile access paths will not use the EWL unless you specifically select it.

EWL Naming Convention

Each archive name has 3 pieces: prefix, core and flags. Following are the details of each
piece:

* The prefix is one of the following:
— libm_ - mean that the library has math features
— librt_ - mean that the library has runtime features
— libc_ - mean that the library has reduced code size C features

— 1ibc99_ - mean that the library has faster and increased C99 conformant C
features

— libstdc++__ - mean that the library has latest C++ features
— libc++_ - mean that the library has reduced code size C++ features

* The core starts with the processor family (like €200 or e500) and optionally ends
with the core name (such as z750).

* Current flags are VLE, Soft (software floating point) and SPFP_Only (math library
only has single precision sources and source file doubles are treated as if they are
single precision). SPFP_Only is only used with €200 and €500 which have single
precision floating point instructions but no double precision instructions.

NOTE EWL can only build unsigned char libraries. CodeWarrior no longer provides
signed char library in EWL as it is not compliant with EABI. If required, users
must build their own signed char libraries.

CodeWarrior Build Tools Reference for Power Architecture® Processors 353

A 4
4\

Libraries and Support Code
Embedded Warrior Library

The Prefix Name used in EWL also differs from that of the MSL Prefix Name. For
example, the prefix name ansi_prefix.PPCEABI.bare.h in MSL is referred to as
ansi_prefix.PA_EABI.bare.hin EWL.

Table 23.2 lists the EWL Library Core And Flag Name and its equivalent MSL Suffix
Name.

NOTE Some of the libraries listed in Table 23.2 may not be available in the current
release.

Table 23.2 EWL Library Core and Flag Name and its equivalent MSL Suffix Name

EWL Library Core and Flag Name Equivalent MSL Suffix Name
Generic_N PPCEABI.N.UC
82xx_soft PPCEABI.S.UC
E200z0_VLE_Soft PPCEABI.VS.UC
E200z150_VLE_Soft PPCEABI.VS.UC
E200z335_VLE PPCEABI.V.UC
E200z335_VLE_SPFP_Only PPCEABI.V.SP.UC
E200z336_VLE PPCEABI.V.UC
E200z336_VLE_SPFP_Only PPCEABI.V.SP.UC
E200z446_VLE PPCEABI.V.UC
E200z446_VLE_SPFP_Only PPCEABI.V.SP.UC
E200z448_VLE PPCEABI.V.UC
E200z448_VLE_SPFP_Only PPCEABI.V.SP.UC
E200z650 PPCEABI.E.UC
E200z650_SPFP_Only PPCEABI.E.SP.UC
E200z650_VLE PPCEABI.V.UC
E200z650_VLE_SPFP_Only PPCEABI.V.SP.UC
E200z652 PPCEABI.E.UC
E200z652_SPFP_Only PPCEABI.E.SP.UC

354 CodeWarrior Build Tools Reference for Power Architecture® Processors

Libraries and Support Code
Embedded Warrior Library

Table 23.2 EWL Library Core and Flag Name and its equivalent MSL Suffix Name

EWL Library Core and Flag Name

Equivalent MSL Suffix Name

E200z652_VLE

PPCEABI.V.UC

E200z652_VLE_SPFP_Only

PPCEABI.V.SP.UC

E200z750_VLE

PPCEABI.V.UC

E200z750_VLE_SPFP_Only

PPCEABI.V.SP.UC

E200z760_VLE

PPCEABI.V.UC

E200z760_VLE_SPFP_Only

PPCEABI.V.SP.UC

E300cl PPCEABI.H.UC
E300c2 PPCEABI.H.UC
E300c3 PPCEABI.H.UC
E300c4 PPCEABI.H.UC
E500V1 PPCEABI.E.UC

E500V1_SPFP_Only

PPCEABI.E.SP.UC

E500V2

PPCEABI.E2.UC

E600

PPCEABI.A.UC

How to Rebuild the EWL Libraries

The EWL library files are present in the ew1\ 1ib folder. To rebuild the EWL library

files, perform the following steps:

NOTE Ensure that you have access to a make utility within DOS, before rebuilding

the EWL libraries.

1. Open a DOS command prompt.

2. Define the CWINSTALL environment variable.

For example, if your PA product layout is in the folder
C:\Program Files\Freescale\CW for MPC55xx and MPC56xx 2.10
then you can define CWINSTALL as follows:

set CWINSTALL='C:\Program Files\Freescale\CW for MPC55xx

and MPC56xx 2.10'

CodeWarrior Build Tools Reference for Power Architecture® Processors 355

) 4

Libraries and Support Code
Embedded Warrior Library

NOTE The single quote character (') is important because there are spaces in the path.

3.

5.

Change your working directory to the ewl folder, for example,

cd C:\Program Files\Freescale\CW for MPC55xx and MPC56xx
2.10\PA_Support\ewl

. Modify 'TOOLS_ROOT = $ (CWFOLDER) /PA_Tools'to 'TOOLS_ROOT =

$ (CWFOLDER) /PowerPC_EABI_Tools'in the EWL_C.PA.mak,
EWL_C++.PA.mak and EWL_Runtime.PA.mak ewl makefiles.

Clean the existing library files using the following command:

<path_to_make_utility>\make -f makefile clean PLATFORM=PA
TARGETS="1libm_XXX libc_XXX 1libc99_XXX"

NOTE Youcould skip the <path_to_make_utility> if you have make in your

PATH variable.

For example, the following command will delete only the 1ibm_E200z650.a,
libc_E200z650.a, 1ibc99_E200z650. a library files.

make -f makefile clean PLATFORM=PA TARGETS="libm_E200z650
libc_E200z650 1ibc99_E200z650"

Rebuild a C or math or C99 library fileusing the following command:

make -f EWL_C.PA.mak -C EWL_C TARGETS="libm XXX libc_XXX
1ibc99_XXX"

For example:

make -f EWL_C.PA.mak -C EWL_C TARGETS="libm E200z650
libc_E200z650 1libc99_E200z650" (for building
libm_E200z650.a, libc_E200z650.a 1ibc99_E200z650.a)

NOTE Re-building any particular C and C99 library, requires math library of the

same target. It is suggested that the math library is built prior to building the
C99 or C libraries.

7. Rebuild a C++ or 1ibc++ library file using the following command:

make -f EWL_C++.PA.mak -C EWL_C++ TARGETS="libstdc++_XXX
libc++_XXX"

For example:

make -f EWL_C++.PA.mak -C EWL_C++
TARGETS="1libstdc++_E200z0_VLE_Soft

356

CodeWarrior Build Tools Reference for Power Architecture® Processors

Libraries and Support Code
Runtime Libraries

libc++_E200z0_VLE_Soft" (for building
libstdc++_E200z0_VLE_Soft.a, libc++_E200z0_VLE_Soft.a)

8. Rebuild a Runtime library file using the following command:
make -f EWL_Runtime.PA.mak -C EWL_Runtime "librt_XXX"
For example:

make -f EWL_Runtime.PA.mak -C EWL_Runtime "librt_E300cl"
(for building librt_E300cl.a)

9. Upon successful execution of the make command, check the lib folder for PA EWL
libraries.

Runtime Libraries

A runtime library provides low-level functions that support high-level C and C++
language features, such as memory management and file system access. Conceptually, a
runtime library acts as an interface between a target system’s hardware or operating
system and the CodeWarrior C or C++ runtime environment.

This CodeWarrior product includes many runtime libraries and support code files. These
files are here:

installDir\PowerPC_EABI_Support\Runtime
where installDiris a placeholder for the path in which you installed your product.

For your projects to build and run, you must include the correct runtime library and startup
code. These sections explain how to pick the correct files:

¢ Required Libraries and Source Code Files

* Allocating Additional Heap Space
¢ Choosing a Runtime Library

Required Libraries and Source Code Files

Every CodeWarrior project must include a runtime library.

Select the library appropriate for your project, given the language your are using (C or
C++), the processor on your target board, and your target setting choices. Use the
information in Table 23.3 to help you pick the correct library.

The runtime libraries are in this directory:
installDir\PowerPC_EABRI_Support\Runtime\Lib\

Along with the pre-built runtime libraries, this CodeWarrior product includes the source
code and project files required to build the runtime libraries. As a result, you can modify
them as necessary.

CodeWarrior Build Tools Reference for Power Architecture® Processors 357

3
4

y
A

Libraries and Support Code
Runtime Libraries

All runtime library source code files are in this directory:
installDir\PowerPC_EABI_Support\Runtime\Src

The runtime library project files are in this directory:
installDir\PowerPC_EABI_Support\Runtime\Project

The project names are Runt ime . PPCEABT .mcp and Run_EC++ . PPCEABT . mcp.
Each project has a different build target for each configuration of the runtime library.

For more information about customizing the runtime libraries, read the comments in the
source code files as well as the runtime library release notes.

NOTE The C and C++ runtime libraries do not initialize hardware. The CodeWarrior
tools assume that you load and run the programs linked with these libraries
with the CodeWarrior debugger. When your program is ready to run as a
standalone application, you must add the required hardware initialization code.

Finally, in addition to a runtime library, every C and C++ project must include one of the
startup files listed below. These files contain functions called by the runtime code that you
can customize if necessary. One kind of customization is board-specific initialization. For
other customization examples, see either of these files:

. ppc_eabi_init.c (for C language projects)
. ppc_eabi_init.cpp (for C++ projects)

Allocating Additional Heap Space

If you specify a heap size in the EPPC Target settings panel, the linker creates a default
heap of this size. The default heap needs no initialization.

You can create additional heaps by:

¢ Defining ALLOC_ADDITIONAL_HEAPS equal to 1 in either
ppc_eabi_init.cor__ppc_eabi_init.cpp.

Doing so causes the stub implementation of A11ocMoreHeaps () to be called by
the runtime initialization code.

¢ Implementing the Al1locMoreHeaps () stubby calling init_alloc () as many
times as desired.

Each time init_alloc () is called, the heap is expanded by the amount specified.

Choosing a Runtime Library

Substrings embedded in the name of a runtime library indicate the type of support the
library provides. Use these substrings to pick the runtime library appropriate for your
project. Table 23.3 lists and defines the meaning of each library filename substring.

358

CodeWarrior Build Tools Reference for Power Architecture® Processors

Libraries and Support Code
Runtime Libraries

Table 23.3 Runtime Library Naming Conventions

Substring | Meaning

Runtime The library is a C language library.

Run_EC++ The library is an embedded C++ library.

PPCEABI The library conforms to the PowerPC Embedded Application Binary
Interface (EABI) standard.

A The library provides AltiVec™ support.
E The library is for €500 and €200z (formerly, Zen) targets.
E.fast The library is for €500 and €200z (formerly, Zen) targets. Further, this

library’s floating-point operations are faster than those of a . E library, but
they do not strictly conform to the IEEE floating-point standard.

E2 The library is for e500v2 targets and supports double-precision floating-
point operations.

H The library supports hardware floating-point operations.

HC The library supports hardware floating-point operations and code
compression.

S The library provides software emulation of floating-point operations.
SP Single Precision Floating Point only.

N The library provides no floating-point support.

NC The library provides no floating-point support, but supports code

compression.

LE The library is for a processor running in little-endian mode.

uc The library was built with the Use Unsigned Chars option of the C++
Language target settings panel enabled.

As a result, all library function parameters declared char are treated as
if the were declared unsigned char.

Use a uc library in build targets for which the Use Unsigned Chars option
is enabled. Use a non-uc library in build targets for which this option is
disabled.

If the option used by the build target is different from the option used to
generate the build target’s runtime library, the linker issue a warning.

CodeWarrior Build Tools Reference for Power Architecture® Processors 359

'
A

Libraries and Support Code
Board Initialization Code

Table 23.3 Runtime Library Naming Conventions (continued)

Substring | Meaning

Y The library’s functions:

¢ Contain VLE instructions.

* Perform single-precision floating point operations using the
core's SPE auxiliary processing unit (APU).

* Perform double-precision floating using software routines.
Use only with processors that have an SPE APU.

Vs The library’s functions:

¢ Contain VLE instructions.

* Perform all floating-point operations using softare routines
Use only with processors that have an e200z (formerly Zen) core.

Board Initialization Code

For each supported board, CodeWarrior for Power Architecture Processors includes a
hardware initialization routine. Each routine is in a source code file whose name reflects
the board for which the routine is designed. These files are in this directory:

installDir\PowerPC_EABI_Support\Runtime\Src

The initialization routines are in source code form, so you can modify them to work with
different configurations of a board or with a different board.

If you run your program under control of the CodeWarrior debugger, the program must
not perform hardware initialization because the debugger performs the required board
initialization.

However, if your program is running standalone (that is, without the debugger), the
program may need to execute hardware initialization code. The easiest way to include this
code in your program is to add the appropriate board initialization file to your project.

Each board initialization file includes a function named usr_init (). This function
performs the required hardware initialization for your board. usr_init () is
conditionally called by the __init_hardware () function in ppc_eabi_init.c
(orin ppc_eabi_init.cpp, if you are using C++) . The startup code always calls
__init_hardware().

The default implementation of the __init_hardware () function callsusr_init ()
if either the ROM_VERSION or CACHE_VERSION preprocessor constant is defined. (See
Listing 23.1.) However, you can change the implementation of __init_hardware ()
to suit your project’s requirements.

360

CodeWarrior Build Tools Reference for Power Architecture® Processors

Libraries and Support Code
Board Initialization Code

Listing 23.1 Code Showing call of usr_init() in __init_hardware()

asm voi
{

/*

*

*

*

*

*/

nofr
/* ...
#if def

mflr

bl

mtlr
#endif

blr

d _ init_hardware (void)

If not running with the CodeWarrior debugger, initialize the
board. Define the preprocessor symbols for the initialization
your program requires. You may need to perform other
initializations.

alloc

code omitted */

ined (ROM_VERSION) || defined (CACHE_VERSION)
r31l /* save off return address in NV reg */
usr_init /* init board hardware */
r31l /* get saved return address */

To get you program to perform hardware initialization when run outside the CodeWarrior
debugger, follow these steps:

1. Add the appropriate board initialization file to your project.

2. Change the preprocessor symbol that conditionalizes the usr_init () call in
__init_hardware () to a symbol that makes sense for your project.

3. Define this symbol in the prefix file for each build target for which you want to run the
hardware initialization code.

CodeWarrior Build Tools Reference for Power Architecture® Processors 361

A 4
4\

Libraries and Support Code
Board Initialization Code

362 CodeWarrior Build Tools Reference for Power Architecture® Processors

24

Declaration Specifications

Declaration specifications describe special properties to associate with a function or
variable at compile time. You insert these specifications in the object’s declaration.

¢ Syntax for Declaration Specifications

¢ Declaration Specifications

Syntax for Declaration Specifications

The syntax for a declaration specification is
_ _declspec(spec [options]) function-declaration;

where spec is the declaration specification, options represents possible arguments for the
declaration specification, and function-declaration represents the declaration of the
function. Unless otherwise specified in the declaration specification’s description, a
function’s definition does not require a declaration specification.

Declaration Specifications

__declspec(never_inline)

Specifies that a function must not be inlined.

Syntax

__declspec (never_inline) function_prototype;

Remarks

Declaring a function’s prototype with this declaration specification tells the
compiler not to inline the function, even if the function is later defined with the
inline, __inline_ ,or__inline keywords.

CodeWarrior Build Tools Reference for Power Architecture® Processors 363

y
A

Declaration Specifications
Syntax for Attribute Specifications

Syntax for Attribute Specifications

The syntax for an attribute specification is
__attribute_ ((list-of-attributes))

where list-of-attributes is a comma-separated list of zero or more attributes to associate
with the object. Place an attribute specification at the end of the delcaration and definition
of a function, function parameter, or variable. Listing 24.1 shows an example.

Listing 24.1 Example of an attribute specification

int f(int x __attribute_ ((unused))) _ attribute__ ((never_inline));
int f(int x __attribute_ ((unused))) _ attribute__ ((never_inline))
{

return 20;

}

Attribute Specifications

__attribute__ ((deprecated))

Specifies that the compiler must issue a warning when a program refers to an object.

Syntax

variable-declaration __attribute_ ((deprecated)) ;
variable-definition __attribute_ ((deprecated)) ;
function-declaration __attribute_ ((deprecated)) ;
function-definition __attribute_ ((deprecated)) ;
Remarks

This attribute instructs the compiler to issue a warning when a program refers to a
function or variable. Use this attribute to discourage programmers from using
functions and variables that are obsolete or will soon be obsolete.

Listing 24.2 Example of deprecated attribute

int velocipede(int speed) _ attribute_ ((deprecated)) ;
int bicycle(int speed) ;

364 CodeWarrior Build Tools Reference for Power Architecture® Processors

Declaration Specifications
Attribute Specifications

int f(int speed)
{
return velocipede (speed); /* Warning. */

}

int g(int speed)
{

return bicycle(speed * 2); /* OK */
}

__attribute__ ((force_export))
Prevents a function or static variable from being dead-stripped.

Syntax

function-declaration __attribute_ ((force_export));
function-definition __attribute_ ((force_export)) ;
variable-declaration __attribute_ ((force_export));

variable-definition __attribute_ ((force_export));

Remarks

This attribute specifies that the linker must not dead-strip a function or static
variable even if the linker determines that the rest of the program does not refer to
the object.

__attribute__((malloc))

Specifies that the pointers returned by a function will not point to objects that are already
referred to by other variables.

Syntax
function-declaration __attribute_ ((malloc));
function-definition __attribute__ ((malloc)) ;

CodeWarrior Build Tools Reference for Power Architecture® Processors 365

3
4

y
A

Declaration Specifications
Attribute Specifications

Remarks

This attribute specification gives the compiler extra knowledge about pointer
aliasing so that it can apply stronger optimizations to the object code it generates.

__attribute__ ((noalias))

Prevents access of data object through an indirect pointer access.

Syntax

function-parameter _ _attribute_ ((nocalias));
variable-declaration __attribute_ ((noalias));
variable-definition __attribute__ ((noalias));
Remarks

This attribute specifies to the compiler that a data object is only accessed directly,

helping the optimizer to generate a better code. The sample code in Listing 24.3
will not return a correct result if ip is pointed to a.

Listing 24.3 Example of the noalias attribute

extern int a _ attribute_ ((noalias));
int f(int *ip)
{

a = 1;

*ip = 0;

return a; // optimized to return 1;

}

__attribute__((returns_twice))

Specifies that a function may return more than one time because of multithreaded or non-
linear execution.

Syntax
function-declaration __attribute_ ((returns_twice));
function-definition __attribute__ ((returns_twice));

366 CodeWarrior Build Tools Reference for Power Architecture® Processors

Declaration Specifications
Attribute Specifications

Remarks

This attribute specifies to the compiler that the program’s flow of execution might
enter and leave a function without explicit function calls and returns. For example,
the standard library’s setjmp () function allows a program to change its
execution flow arbitrarily.

With this information, the compiler limits optimizations that require explicit
program flow.

__attribute__ ((unused))

Specifies that the programmer is aware that a variable or function parameter is not referred

to.

Syntax

function-parameter __attribute_ ((unused)) ;
variable-declaration __attribute_ ((unused)) ;
variable-definition __attribute_ ((unused)) ;
Remarks

This attribute specifies that the compiler should not issue a warning for an object if
the object is not referred to. This attribute specification has no effect if the
compiler’s unused warning setting is off.

Listing 24.4 Example of the unused attribute

void f(int a _ attribute_ ((unused))) /* No warning for a. */
{

int b __attribute_ ((unused)); /* No warning for b. */

int c; /* Possible warning for c. */

return 20;

}

__attribute__ ((used))

Prevents a function or static variable from being dead-stripped.

CodeWarrior Build Tools Reference for Power Architecture® Processors 367

3
4

y
A

Declaration Specifications
Attribute Specifications

Syntax
function-declaration __attribute__ ((used)) ;
function-definition __attribute_ ((used));

variable-declaration __attribute_ ((used)) ;

variable-definition __attribute_ ((used)) ;

Remarks

This attribute specifies that the linker must not dead-strip a function or static
variable even if the linker determines that the rest of the program does not refer to
the object.

368

CodeWarrior Build Tools Reference for Power Architecture® Processors

25

Declaration Specifications
for Power Architecture Code

Declaration specifications describe special attributes to associate with a function at
compile time. For example, these attributes might change how the compiler translates the
function, describe what properties it has, or pass other information to the compiler.

* Syntax for Declaration Specifications

» Declaration Specifications

Syntax for Declaration Specifications

The syntax for a declaration specification is
_ declspec(spec [options]) function-prototype;

where spec is the declaration specification, options represents possible arguments for the
declaration specification, and function-prototype represents the declaration of the
function. Unless otherwise specified in the declaration specification’s description, a
function’s definition does not require a matching declaration specification.

Declaration Specifications

e _ declspec(do_not_merge)

e __declspec(final)

e __declspec(force export)

e __declspec(interrupt)

e __declspec(no_linker_opts)
e __declspec(section name)

e _ declspec(vle off)

. declspec(vle_on)

CodeWarrior Build Tools Reference for Power Architecture® Processors 369

A 4
4\

Declaration Specifications for Power Architecture Code
Declaration Specifications

__declspec(do_not_merge)

Specifies that a function must not be removed from object code during code merging
optimization.

Syntax

__declspec (do_not_merge) function-declaration;

Remarks

When you declare or define a function with this declaration specification the linker
does not consider this function when applying the code merging optimization. This
declaration specification ensures that the linker will not remove a function from

object code during code merging if another function with identical object code
exists.

Use this declaration specification for functions that your program refers to with
function pointers.

__declspec(final)

Provides Java-style function override checking.

Syntax

_ declspec(final) declaration

Example

struct A {
virtual _ declspec(final) void vfl();

Y
struct B : A {
void vfl(); /* Error : the final function A::vf ()
is overridden by B::vfl() */
Y

__declspec(force_export)

Specifies that a function or variable must not be dead-stripped.

370

CodeWarrior Build Tools Reference for Power Architecture® Processors

Declaration Specifications for Power Architecture Code
Declaration Specifications

Syntax
_ declspec(force_export) function-declaration;

_ declspec (force_export) variable-declaration;

Remarks

When the linker determines that a function or static variable is not referred to by
the rest of the program, the linker removes the object from the final executable
image. The linker does not remove a static variable or function declared with this
specification even if this object is not referred to.

__declspec(interrupt)
Controls the compilation of object code for interrupt service routines.

Syntax

__declspec (interrupt [option [optionN]]) void
__InterruptHandler__ (void) ;

declspec (interrupt [option [optionN]]) void
__InterruptHandler__ (void)

{

/* oL %/
}

where option and optionN are zero or more of the following choices:

NOTE If no choice is specified, save_spe is enabled.

enable

Enables interrupts while this interrupt handler is executing.

SRR

Saves the appropriate save/restore register (SRRO or SRR1) on the stack.
DAR

Saves the data address register on the stack.
DSISR

Saves the DSI status register on the stack.
save_fprs

Saves the floating-point registers on the stack.

CodeWarrior Build Tools Reference for Power Architecture® Processors 371

A 4
4\

Declaration Specifications for Power Architecture Code
Declaration Specifications

save_altivec

Saves the Altivec® registers on the stack.
save_spe

Saves the special-purpose embedded registers on the stack. This is the default.
nowarn

Does not issue a warning message if the function being compiled as an interrupt
service routine is larger than the processor’s interrupt vector area (256 bytes/64
instructions).

noncritical | critical | machine | debug

Specify the type of interrupt service routine to generate. Specifically, the compiler
choose a return instruction based on this choice. The default is noncritical.

vlie_multiple

Enables generation of new VLE instructions in the interrupt prolog/epilog in C-
functions by the compiler. This option is only valid for €200 (Zen) core. Compile
error will be returned if this option is used for any other cores.

When enabled, the compiler:
e emits e_lmvgprw and e_stmvgprw if any of [r3,r12] needs to be saved to stack

* emits e_lmvsprw and e_stmvsprw if any of the CR, LR, CTR and XER needs to
be saved to stack

e emits e_lmvsrrw and e_stmvsrr if any of the SRRO and SRR1 needs to be saved
to stack

¢ emits e_lmvcsrrw and e_stmvcesrrw if any of the CSRRO and CSRR1 needs to be
saved to stack

¢ emits e_lmvdsrrw and e_stmvdsrrw if any of the DSRRO and DSRR1 needs to
be saved to stack.

NOTE Enabling vle_multiple could increase the space being taken up by the
stack, especially when saving the volatile gprs.

Remarks

When you declare or define a function with this declaration specification the
compiler generates a special prologue and epilogue for the function so that it can
respond to a processor interrupt. For convenience, the compiler also marks
interrupt functions so that the linker does not dead-strip them.

372 CodeWarrior Build Tools Reference for Power Architecture® Processors

Declaration Specifications for Power Architecture Code
Declaration Specifications

__declspec(no_linker_opts)
Specifies that the linker must not apply its optimizations to a function.

Syntax

_ declspec(no_linker_ opts) function-declaration

__declspec(section name)

Specifies where to store a variable or function in a section that has been predefined or
defined with the #pragma section directive.

Syntax
_ _declspec(section <section_name>) declaration

declspec (section <section_name>) definition

Parameters
section_name

Specifies the name of an initialized data section.
NOTE The name of a section must be enclosed in double-quotes (""). To use a user
defined section, create the section using #pragma section directive
before using ___declspec (section <section_name>).

Remarks

* When you specify an uninitialized section name while declaring or defining a
function or variable with this declaration specification, the compiler generates
an error.

For example, if youuse __declspec (section ".bss") extern
int my_ var;,where .bss is an uninitialized section you will get a
descriptive error. In this case, use __declspec (section ".data")
extern int my_var; as .data is normally paired with .bss and .data
is an initialized section. Assuming the variable you are attaching this
__declspec tois an uninitialized object (which is the case with my_var),
the object will go into . bss.

CodeWarrior Build Tools Reference for Power Architecture® Processors 373

'
A

Declaration Specifications for Power Architecture Code
Declaration Specifications

¢ When youuse __declspec on the definition, ___declspec on a declaration
is ignored. Listing 25.1 shows an example of __declspec used to put data
and code objects into specific sections.

Listing 25.1 Example of a declaration specification

_ _declspec (section ".init") extern void cache_initl (void) ;
_ _declspec (section ".text") extern void cache_init2 (void) ;
extern void cache_init3 (void) ;

void cache_initl(){} // goes into .init if the prototype is visible for
this definition

_ _declspec (section ".init") void cache_init2(){} // ignores previous
section .text and goes into .init

_ declspec (section ".init") void cache_init3(){} // by default the
declaration implies .text but the definition forces it to .init

Predefined sections and default sections

The predefined sections set with an object type become the default section for that
type. The compiler predefines the sections in Table 25.1.

Table 25.1 Predefined sections

Type Name Data mode Code mode

code_type " text" data_mode=far_abs code_mode=pc_rel

data_type ".data” data_mode=far_abs code_mode=pc_rel

const_type " .rodata” data_mode=far_abs code_mode=pc_rel

sdata_type ".sdata” data_mode=sda_rel code_mode=pc_rel

sconst_type ".sdata2” ".sbss2" data_mode=sda_rel code_mode=pc_rel
" .PPC.EMB.sdata0” data_mode=sda_rel code_mode=pc_rel
" .PPC.EMB.sbss0"

NOTE

The “.PPC.EMB.sdata0” and “.PPC.EMB. sbss0” sections are
predefined as an alternative to the sdata_type object type.

374

CodeWarrior Build Tools Reference for Power Architecture® Processors

Declaration Specifications for Power Architecture Code
Declaration Specifications

__declspec(vie_off)

Forces the compiler to use the regular instruction set instead of the Variable Length
Encoded (VLE) instruction set.

Syntax
_ declspec (vle_off) function prototype;

Remarks

Declaring a function’s prototype with this declaration specification tells the
compiler to use the regular instruction set defined by the Freescale Book E
Implementation Standard (EIS) for Power Architecture processors. The compiler
and linker must arrange such instructions more rigidly than VLE instructions,
resulting in larger object code.

For information on the availability of VLE instructions, refer to your processor’s
documentation.

This declaration specification overrides other compiler settings for VLE code
generation.

__declspec(vie_on)

Forces the compiler to use the VLE (Variable Length Encoded) instruction set for a
function.

Syntax

_ _declspec (vle_on) function_prototype;

Remarks

Declaring a function’s prototype with this declaration specification tells the
compiler to use the VLE instruction set when generating object code for the
function. The compiler and linker can arrange VLE instructions more compactly
than regular instructions.

The VLE instruction set extends the regular instruction set defined by the Freescale
Book E Implementation Standard (EIS). For information on the availability of
VLE instructions, refer to your processor’s documentation.

This declaration specification overrides other compiler settings for VLE code
generation.

CodeWarrior Build Tools Reference for Power Architecture® Processors 375

A 4
4\

Declaration Specifications for Power Architecture Code
Declaration Specifications

376 CodeWarrior Build Tools Reference for Power Architecture® Processors

26

Predefined Macros

The compiler preprocessor has predefined macros (some refer to these as predefined
symbols). The compiler simulates variable definitions that describe the compile-time
environment and properties of the target processor.

This chapter lists the predefined macros that all CodeWarrior compilers make available.

e __COUNTER__
e __ cplusplus

e _CWBUILD__
e __CWCC

. embedded_cplusplus

e _ func
e _ FUNCTION
e __ide_target()
e __LINE
¢ __ MWERKS
e __PRETTY_FUNCTION
e __ profile
STDC
TIME

_ COUNTER__

Preprocessor macro that expands to an integer.

Syntax
__ COUNTER___

Remarks

The compiler defines this macro as an integer that has an initial value of 0
incrementing by 1 every time the macro is used in the translation unit.

CodeWarrior Build Tools Reference for Power Architecture® Processors 377

Predefined Macros

The value of this macro is stored in a precompiled header and is restored when the
precompiled header is used by a translation unit.

__cplusplus
Preprocessor macro defined if compiling C++ source code.

Syntax

_ cplusplus

Remarks

The compiler defines this macro when compiling C++ source code. This macro is
undefined otherwise.

__ CWBUILD__

Preprocessor macro defined as the build number of the Code Warrior compiler.

Syntax
_ CWBUILD_

Remarks

For example, in Help->About Freescale CodeWarrior, click
Installed Product, and expand Plugins->Compiler-
>ppc_eabi.dll. If the value in the Version columnis 4.3 180, the
corresponding value of _ CWBUILD__ is 180.

The ISO standards do not specify this symbol.

__CcwcC__

Preprocessor macro defined as the version of the Code Warrior compiler frontend.

Syntax
__cwWee_

378 CodeWarrior Build Tools Reference for Power Architecture® Processors

Predefined Macros

Remarks

CodeWarrior compilers issued after 2006 define this macro with the compiler’s
frontend version. For example, if the compiler frontend version is 4.2.0, the value
of _ CWCC__ is 0x4200.

CodeWarrior compilers issued prior to 2006 used the pre-defined macro
__ MWERKS__.The _ MWERKS___ predefined macro is still functional as an alias
for ___CwCC__.

The ISO standards do not specify this symbol.

_ DATE__

Preprocessor macro defined as the date of compilation.

Syntax

__ _DATE___

Remarks

The compiler defines this macro as a character string representation of the date of
compilation. The format of this string is

"Mmm dd yyyy"

where Mmm is the a three-letter abbreviation of the month, dd is the day of the
month, and yyyy is the year.

__embedded_cplusplus

Defined as 1 when compiling embedded C++ source code, undefined otherwise.

Syntax
_ embedded_cplusplus

Remarks

The compiler defines this macro as 1 when the compiler’s settings are configured
to restrict the compiler to translate source code that conforms to the Embedded
C++ proposed standard. The compiler does not define this macro otherwise.

CodeWarrior Build Tools Reference for Power Architecture® Processors 379

Predefined Macros

__FILE__

Preprocessor macro of the name of the source code file being compiled.

Syntax

_ FILE__

Remarks

The compiler defines this macro as a character string literal value of the name of
the file being compiled, or the name specified in the last instance of a #1ine
directive.

__func__
Predefined variable of the name of the function being compiled.

Prototype

static const char _ func_ [] = "function-name";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to ___func__ . The character string contained by this array,
function-name, is the name of the function being compiled.

This implicit variable is undefined outside of a function body. This variable is also
undefined when C99 (ISO/IEC 9899-1999) or GCC (GNU Compiler Collection)
extension settings are off.

_ _FUNCTION__

Predefined variable of the name of the function being compiled.

Prototype

static const char _ FUNCTION__[] = "function-name";

380 CodeWarrior Build Tools Reference for Power Architecture® Processors

Predefined Macros

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to __ FUNCTION__ . The character string contained by this
array, function-name, is the name of the function being compiled.

This implicit variable is undefined outside of a function body.

__ide_target()
Preprocessor operator for querying the IDE about the active build target.

Syntax
__ide_target (" target_name")
target-name

The name of a build target in the active project in the CodeWarrior IDE.

Remarks

Expands to 1 if rarget_name is the same as the active build target in the
CodeWarrior IDE’s active project. Expands to 0 otherwise. The ISO standards do
not specify this symbol.

__LINE__

Preprocessor macro of the number of the line of the source code file being compiled.

Syntax
__ LINE__

Remarks

The compiler defines this macro as a integer value of the number of the line of the
source code file that the compiler is translating. The #11ine directive also affects
the value that this macro expands to.

_ MWERKS__

Deprecated. Preprocessor macro defined as the version of the CodeWarrior compiler.

CodeWarrior Build Tools Reference for Power Architecture® Processors 381

Predefined Macros

Syntax

_ MWERKS___

Remarks
Replaced by the built-in preprocessor macro _ CWCC__.

CodeWarrior compilers issued after 1995 define this macro with the compiler’s
version. For example, if the compiler version is 4.0, the value of __ MWERKS___is
0x4000.

This macro is defined as 1 if the compiler was issued before the CodeWarrior CW7
that was released in 1995.

The ISO standards do not specify this symbol.

_ PRETTY_FUNCTION__

Predefined variable containing a character string of the “unmangled” name of the C++
function being compiled.

Syntax

Prototype

static const char _ PRETTY FUNCTION__[] = "function-name";

Remarks

The compiler implicitly defines this variable at the beginning of each function if
the function refers to ___PRETTY_FUNCTION__. This name, function-name, is
the same identifier that appears in source code, not the “mangled” identifier that
the compiler and linker use. The C++ compiler “mangles” a function name by
appending extra characters to the function’s identifier to denote the function’s
return type and the types of its parameters.

The ISO/IEC 14882-1998 C++ standard does not specify this symbol.

__profile__

Preprocessor macro that specifies whether or not the compiler is generating object code
for a profiler.

382

CodeWarrior Build Tools Reference for Power Architecture® Processors

Predefined Macros

Syntax
profile_

Remarks

Defined as 1 when generating object code that works with a profiler. Undefined
otherwise. The ISO standards does not specify this symbol.

__STDC__

Defined as 1 when compiling ISO/IEC Standard C source code, undefined otherwise.

Syntax
__STDC___

Remarks

The compiler defines this macro as 1 when the compiler’s settings are configured
to restrict the compiler to translate source code that conforms to the ISO/IEC 9899-
1990 and ISO/IEC 9899-1999 standards. The compiler does not define this macro
otherwise.

__TIME__

Preprocessor macro defined as a character string representation of the time of compilation.

Syntax

_ TIME_

Remarks

The compiler defines this macro as a character string representation of the time of
compilation. The format of this string is

"hh:mm: ss"

where hh is a 2-digit hour of the day, mm is a 2-digit minute of the hour, and ss is a
2-digit second of the minute.

CodeWarrior Build Tools Reference for Power Architecture® Processors 383

Predefined Macros

384 CodeWarrior Build Tools Reference for Power Architecture® Processors

27

Predefined Macros for
Power Architecture
Compiler

As listed in the previous chapter, the compiler preprocessor has predefined macros. The
macros in the previous chapter are available to all architecture. This chapter describes the
predefined macros available specifically for the Power Architecture compiler.

e __ALTIVEC
e _ PPCBROADWAY
* _ PPCGECKO

__ALTIVEC__

Preprocessor macro defined if language extensions for using Power Architecture
AltiVec™ instructions are available.

Syntax
__ALTIVEC_ _

Remarks

The compiler defines this macro when pragma altivec_model is on. This
macro is undefined otherwise.

_ PPCBROADWAY__

Preprocessor macro defined if the compiler is generating object code for the Power
Architecture “Broadway” processor.

CodeWarrior Build Tools Reference for Power Architecture® Processors 385

Predefined Macros for Power Architecture Compiler

Syntax
__ PPCBROADWAY___

Remarks

The compiler defines this macro as 1 when generating object code for the
“Broadway” processor. The __ PPCGECKO___ macro is also defined.

This macro is undefined otherwise.

_ PPCGECKO__

Preprocessor macro defined if the compiler is generating object code for the Power
Architecture “Gecko” processor.

Syntax
___PPCGECKO__

Remarks

The compiler defines this macro as 1 when generating object code for the “Gecko”
processor. This macro is undefined otherwise.

386 CodeWarrior Build Tools Reference for Power Architecture® Processors

28

Using Pragmas

The #pragma preprocessor directive specifies option settings to the compiler to control the
compiler and linker’s code generation.

¢ Checking Pragma Settings

* Saving and Restoring Pragma Settings

¢ Determining Which Settings Are Saved and Restored
¢ Invalid Pragmas

Checking Pragma Settings

The preprocessor function __option () returns the state of pragma settings at compile-
time. The syntax is

__option(setting-name)

where setting-name is the name of a pragma that accepts the on, off, and reset
arguments.

If setting-name is on, __option (setting-name) returns 1. If setting-name is of £,
__option(setting-name) returns 0. If setting-name is not the name of a pragma,
__option(setting-name) returns false. If setting-name is the name of a pragma
that does not accept the on, of £, and reset arguments, the compiler issues a warning
message.

Listing 28.1 shows an example.

Listing 28.1 Using the __option() preprocessor function

#if _ option(ANSI_strict)

#include "portable.h" /* Use the portable declarations. */
#else

#include “custom.h” /* Use the specialized declarations. */
#endif

CodeWarrior Build Tools Reference for Power Architecture® Processors 387

y
A

Using Pragmas
Saving and Restoring Pragma Settings

Saving and Restoring Pragma Settings

There are some occasions when you would like to apply pragma settings to a piece of
source code independently from the settings in the rest of the source file. For example, a
function might require unique optimization settings that should not be used in the rest of
the function’s source file.

Remembering which pragmas to save and restore is tedious and error-prone. Fortunately,
the compiler has mechanisms that save and restore pragma settings at compile time.
Pragma settings may be saved and restored at two levels:

¢ all pragma settings
¢ some individual pragma settings

Settings may be saved at one point in a compilation unit (a source code file and the files
that it includes), changed, then restored later in the same compilation unit. Pragma settings
cannot be saved in one source code file then restored in another unless both source code
files are included in the same compilation unit.

Pragmas push and pop save and restore, respectively, most pragma settings in a
compilation unit. Pragmas push and pop may be nested to unlimited depth. Listing 28.2
shows an example.

Listing 28.2 Using push and pop to save and restore pragma settings

/* Settings for this file. */
#pragma opt_unroll_loops on
#pragma optimize_for_size off
void fast_func_ A (void)

{

/* L. */

}

/* Settings for slow_func(). */

#pragma push /* Save file settings. */
#pragma optimization_size 0

void slow_func (void)

{

/* oL x/

}

#pragma pop /* Restore file settings. */

void fast_func_B(void)
{

/* L. */

}

388 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Pragmas
Determining Which Settings Are Saved and Restored

Pragmas that accept the reset argument perform the same actions as pragmas push and
pop, but apply to a single pragma. A pragma’s on and of £ arguments save the pragma’s
current setting before changing it to the new setting. A pragma’s reset argument
restores the pragma’s setting. The on, of f, and reset arguments may be nested to an
unlimited depth. Listing 28.3 shows an example.

Listing 28.3 Using the reset option to save and restore a pragma setting

/* Setting for this file. */
#pragma opt_unroll_loops on

void fast_func_ A (void)

{

VA

}

/* Setting for smallslowfunc(). */

#pragma opt_unroll_loops off
void small_func (void)

{

/* oL */

}

/* Restore previous setting. */
#pragma opt_unroll_loops reset

void fast_func_B(void)
{

/* L. K/

}

Determining Which Settings Are Saved and
Restored

Not all pragma settings are saved and restored by pragmas push and pop. Pragmas that
do not change compiler settings are not affected by push and pop. For example, pragma
message cannot be saved and restored.

Listing 28.4 shows an example that checks if the ANST_ strict pragma setting is saved
and restored by pragmas push and pop.

Listing 28.4 Testing if pragmas push and pop save and restore a setting

/* Preprocess this source code. */
#pragma ANSI_strict on

CodeWarrior Build Tools Reference for Power Architecture® Processors 389

'
A

Using Pragmas
Invalid Pragmas

#pragma push

#pragma ANSI_strict off

#pragma pop

#if _ option (ANSI_strict)

#error "Saved and restored by push and pop."
#else

#error "Not affected by push and pop."
#endif

Invalid Pragmas

If you enable the compiler’s setting for reporting invalid pragmas, the compiler issues a
warning when it encounters a pragma it does not recognize. For example, the pragma
statements in Listing 28.5 generate warnings with the invalid pragmas setting enabled.

Listing 28.5 Invalid Pragmas

#pragma silly data off // WARNING: silly data is not a pragma.
#pragma ANSI_strict select // WARNING: select is not defined
#pragma ANSI_strict on // OK

Table 28.1 shows how to control the recognition of invalid pragmas.

Table 28.1 Controlling invalid pragmas

To control this option from use this setting

here...

CodeWarrior IDE lllegal Pragmas in the C/C++ Warnings
panel

source code #pragma warn_illpragma

command line -warnings illpragmas

Pragma Scope

The scope of a pragma setting is limited to a compilation unit (a source code file and the
files that it includes).

At the beginning of compilation unit, the compiler uses its default settings. The compiler
then uses the settings specified by the CodeWarrior IDE’s build target or in command-line
options.

390 CodeWarrior Build Tools Reference for Power Architecture® Processors

Using Pragmas
Pragma Scope

The compiler uses the setting in a pragma beginning at the pragma’s location in the
compilation unit. The compilers continues using this setting:

 until another instance of the same pragma appears later in the source code
« until an instance of pragma pop appears later in the source code

 until the compiler finishes translating the compilation unit

CodeWarrior Build Tools Reference for Power Architecture® Processors 391

A 4
4\

Using Pragmas
Pragma Scope

392 CodeWarrior Build Tools Reference for Power Architecture® Processors

29

Pragmas for Standard C
Conformance

ANSI_strict

Controls the use of non-standard language features.

Syntax

#pragma ANSI_strict on | off | reset

Remarks

If you enable the pragma ANSI_strict, the compiler generates an error message
if it encounters some CodeWarrior extensions to the C language defined by the
ISO/IEC 9899-1990 (“C90”) standard:

¢ C++-style comments
* unnamed arguments in function definitions
¢ non-standard keywords

This pragma corresponds to the ANSI Strict setting in the CodeWarrior IDE’s C/
C++ Language settings panel. By default, this pragma is of £.

c99

Controls the use of a subset of ISO/IEC 9899-1999 (“C99”) language features.

Syntax
#pragma c99 on | off | reset

Remarks

If you enable this pragma, the compiler accepts many of the language features
described by the ISO/IEC 9899-1999 standard:

CodeWarrior Build Tools Reference for Power Architecture® Processors 393

Pragmas for Standard C Conformance

* More rigid type checking.

¢ Trailing commas in enumerations.

¢ GCC/C99-style compound literal values.

¢ Designated initializers.

e _ func__ predefined symbol.

e Implicit return 0; inmain().

* Non-const static data initializations.

¢ Variable argument macros (__VA_ARGS_).
* bool and _Bool support.

* long long support (separate switch).

e restrict support.

e // comments.

¢ inline support.

¢ Digraphs.

¢ _Complexand _Imaginary (treated as keywords but not supported).
* Empty arrays as last struct members.

¢ Designated initializers

* Hexadecimal floating-point constants.

¢ Variable length arrays are supported within local or function prototype scope (as
required by the C99 standard).

* Unsuffixed decimal constant rules.

¢ ++bool-- expressions.

e (T) (int-1list) are handled/parsed as cast-expressions and as literals.
e _ STDC_HOSTED_ is 1.

This pragma corresponds to the Enable C99 Extensions setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
disabled.

c9x

Equivalent to #pragma c99.

394 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Standard C Conformance

ignore_oldstyle

Controls the recognition of function declarations that follow the syntax conventions used
before ISO/IEC standard C (in other words, “K&R” style).

Syntax

#pragma ignore_oldstyle on | off | reset

Remarks

If you enable this pragma, the compiler ignores old-style function declarations and
lets you prototype a function any way you want. In old-style declarations, you
specify the types of arguments on separate lines instead of the function’s argument
list. For example, the code in Listing 29.1 defines a prototype for a function with
an old-style definition.

Listing 29.1 Mixing Old-style and Prototype Function Declarations

int f(char x, short y, float z);
#pragma ignore_oldstyle on

f(x, v, z)
char x;
short vy;
float z;
{
return (int)x+y+z;

}

#pragma ignore_oldstyle reset

This pragma does not correspond to any panel setting. By default, this setting is
disabled.

only_std_keywords

Controls the use of ISO/IEC keywords.

Syntax
#pragma only std_keywords on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 395

Pragmas for Standard C Conformance

Remarks

The compiler recognizes additional reserved keywords. If you are writing source
code that must follow the ISO/IEC C standards strictly, enable the pragma
only_std_keywords.

This pragma corresponds to the ANSI Keywords Only setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this pragma is disabled.

require_prototypes
Controls whether or not the compiler should expect function prototypes.

Syntax

#pragma require_prototypes on | off | reset

Remarks
This pragma only affects non-static functions.

If you enable this pragma, the compiler generates an error message if you use a
function that does not have a preceding prototype. Use this pragma to prevent error
messages caused by referring to a function before you define it. For example,
without a function prototype, you might pass data of the wrong type. As a result,
your code might not work as you expect even though it compiles without error.

In Listing 29.2, function main () calls PrintNum () with an integer argument
even though PrintNum () takes an argument of type £loat.

Listing 29.2 Unnoticed Type-mismatch

#include <stdio.h>

void main (void)
{
PrintNum(l); /* PrintNum() tries to interpret the
integer as a float. Prints 0.000000. */
}

volid PrintNum(float x)
{

printf ("$f\n", x);
}

396 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Standard C Conformance

When you run this program, you could get this result:
0.000000

Although the compiler does not complain about the type mismatch, the function
does not give the result you intended. Since PrintNum () does not have a
prototype, the compiler does not know to generate instructions to convert the
integer to a floating-point number before calling PrintNum () . Consequently, the
function interprets the bits it received as a floating-point number and prints
nonsense.

A prototype for PrintNum (), as in Listing 29.3, gives the compiler sufficient
information about the function to generate instructions to properly convert its
argument to a floating-point number. The function prints what you expected.

Listing 29.3 Using a Prototype to Avoid Type-mismatch

#include <stdio.h>
void PrintNum(float x); /* Function prototype. */

void main(void)
{

PrintNum (1) ; /* Compiler converts int to float.
1 Prints 1.000000. */

void PrintNum(float x)
{

printf ("%f\n", x);
}

In other situations where automatic conversion is not possible, the compiler
generates an error message if an argument does not match the data type required by
a function prototype. Such a mismatched data type error is easier to locate at
compile time than at runtime.

This pragma corresponds to the Require Function Prototypes setting in the
CodeWarrior IDE’s C/C++ Language settings panel.

CodeWarrior Build Tools Reference for Power Architecture® Processors 397

Pragmas for Standard C Conformance

398 CodeWarrior Build Tools Reference for Power Architecture® Processors

30

Pragmas for C++

access_errors

Controls whether or not to change invalid access errors to warnings.

Syntax

#pragma access_errors on | off | reset

Remarks

If you enable this pragma, the compiler issues an error message instead of a
warning when it detects invalid access to protected or private class members.

This pragma does not correspond to any IDE panel setting. By default, this pragma
is on.

always_inline
Controls the use of inlined functions.

Syntax

#pragma always_inline on | off | reset

Remarks

This pragma is deprecated. We recommend that you use the inline_depth ()
pragma instead.

arg_dep_lookup

Controls C++ argument-dependent name lookup.

CodeWarrior Build Tools Reference for Power Architecture® Processors 399

Pragmas for C++

Syntax
#pragma arg_dep_lookup on | off | reset

Remarks

If you enable this pragma, the C++ compiler uses argument-dependent name
lookup.

This pragma does not correspond to any IDE panel setting. By default, this setting
is on.

ARM_conform

This pragma is no longer available. Use ARM_scoping instead.

ARM_scoping

Controls the scope of variables declared in the expression parts of 1 f, while, do, and
for statements.

Syntax

#pragma ARM_scoping on | off | reset

Remarks

If you enable this pragma, any variables you define in the conditional expression of
an if, while, do, or for statement remain in scope until the end of the block
that contains the statement. Otherwise, the variables only remain in scope until the
end of that statement. Listing 30.1 shows an example.

This pragma corresponds to the Legacy for-scoping setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this pragma is of .

Listing 30.1 Example of Using Variables Declared in for Statement

for(int i=1; 1i<1000; i++) { /* . . . */ }
return i; // OK if ARM_scoping is on, error if ARM_scoping is off.

400 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

array_new_delete

Enables the operator new[] and delete[] in array allocation and deallocation
operations, respectively.

Syntax

#pragma array_new_delete on | off | reset

Remarks

By default, this pragma is on.

auto_inline
Controls which functions to inline.

Syntax

#pragma auto_inline on | off | reset

Remarks

If you enable this pragma, the compiler automatically chooses functions to inline
for you, in addition to functions declared with the inline keyword.

Note that if you enable either the Do not Inline setting or the dont_inline
pragma, the compiler ignores the setting of the auto_inline pragma and does
not inline any functions.

This pragma corresponds to the Auto-Inline setting in the CodeWarrior IDE’s C/
C++ Language settings panel. By default, this pragma is disabled.

bool

Determines whether or not bool, true, and false are treated as keywords in C++
source code.

Syntax

#pragma bool on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 401

Pragmas for C++

Remarks

If you enable this pragma, you can use the standard C++ bool type to represent
true and false. Disable this pragma if bool, true, or false are defined in
your source code.

Enabling the bool data type and its true and false values is not equivalent to
defining them in source code with typedef, enum, or #define. The C++
bool type is a distinct type defined by the ISO/IEC 14882-1998 C++ Standard.
Source code that does not treat bool as a distinct type might not compile properly.

This pragma corresponds to the Enable bool Support setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this setting is on.

cplusplus

Controls whether or not to translate subsequent source code as C or C++ source code.

Syntax

#pragma cplusplus on | off | reset

Remarks

If you enable this pragma, the compiler translates the source code that follows as
C++ code. Otherwise, the compiler uses the suffix of the filename to determine
how to compile it. If a file name ends in . c, . h, or . pch, the compiler
automatically compiles it as C code, otherwise as C++. Use this pragma only if a
file contains both C and C++ code.

NOTE The CodeWarrior C/C++ compilers do not distinguish between uppercase and
lowercase letters in file names and file name extensions except on UNIX-based
systems.

This pragma corresponds to the Force C++ Compilation setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
disabled.

cppix
Controls whether or not to enable support to experimental features made available in the
1x version of C++ standard.

402 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

Syntax
#pragma cpplx on | off | reset

Remarks

If you enable this pragma, you can use the following extensions to the 1x or 05
version of the C++ standard that would otherwise be invalid:

* Enables support for __alignof__ .

¢ Enables support for __decltype__, which is a reference type preserving
typeof.

* Enables support for nullptr.
* Enables support to allow >> to terminate nested template argument lists.

¢ Enables support for __static_assert.

NOTE This pragma enables support to experimental and unvalidated implementations
of features that may or may not be available in the final version of the C++
standard. The features should not be used for critical or production code.

cpp_extensions
Controls language extensions to ISO/IEC 14882-1998 C++.

Syntax

#pragma cpp_extensions on | off | reset

Remarks

If you enable this pragma, you can use the following extensions to the ISO/IEC
14882-1998 C++ standard that would otherwise be invalid:

* Anonymous struct & union objects. Listing 30.2 shows an example.

Listing 30.2 Example of Anonymous struct & union Objects

#pragma cpp_extensions on
void func()
{
union {
long hilo;
struct { short hi, lo; }; // anonymous struct

Y

CodeWarrior Build Tools Reference for Power Architecture® Processors 403

Pragmas for C++

hi=0x1234;
lo=0x5678; // hilo==0x12345678

}

¢ Unqualified pointer to a member function. Listing 30.3 shows an example.

Listing 30.3 Example of an Unqualified Pointer to a Member Function

#pragma cpp_extensions on
struct RecA { void f£(); }
void RecA::f ()

{
(RecA::*ptmfl) () = &RecA::f; // ALWAYS OK
void (RecA::*ptmf2) () = f£; // OK if you enable cpp_extensions.
}
¢ Inclusion of const data in precompiled headers.
By default, this pragma is disabled.
debuginline

Controls whether the compiler emits debugging information for expanded inline function

calls.

Syntax

#pragma debuginline on | off | reset

Remarks

If the compiler emits debugging information for inline function calls, then the
debugger can step to the body of the inlined function. This behavior more closely
resembles the debugging experience for un-inlined code.

NOTE Since the actual “call” and “return” instructions are no longer present when
stepping through inline code, the debugger will immediately jump to the body
of an inlined function and “return” before reaching the return statement for the
function. Thus, the debugging experience of inlined functions may not be as
smooth as debugging un-inlined code.

This pragma does not correspond to any panel setting. By default, this pragma is
on.
404

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

def_inherited
Controls the use of inherited.

Syntax

#pragma def_inherited on | off | reset

Remarks

The use of this pragma is deprecated. It lets you use the non-standard inherited
symbol in C++ programming by implicitly adding

typedef base inherited;
as the first member in classes with a single base class.
NOTE The ISO/IEC 14882-1998 C++ standard does not support the inherited
symbol. Only the CodeWarrior C++ language implements the inherited

symbol for single inheritance.

By default, this pragma is of f.

defer_codegen

Obsolete pragma. Replaced by interprocedural analysis options. See “Interprocedural
Analysis” on page 281.

defer_defarg_parsing
Defers the parsing of default arguments in member functions.

Syntax

#pragma defer_defarg_parsing on | off

Remarks

To be accepted as valid, some default expressions with template arguments will

require additional parenthesis. For example, Listing 30.4 results in an error
message.

CodeWarrior Build Tools Reference for Power Architecture® Processors 405

Pragmas for C++

Listing 30.4 Deferring parsing of default arguments

template<typename T, typename U> struct X { T t; U u; };

struct Y {
// The following line is not accepted, and generates
// an error message with defer_defarg_parsing on.
void f (X<int,int> = X<int,int>());

Y

Listing 30.5 does not generate an error message.

Listing 30.5 Correct default argument deferral

template<typename T, typename U> struct X { T t; U u; };

struct Y {
// The following line is OK if the default
// argument is parenthesized.
void f(X<int,int> = (X<int,int>()));

Y

This pragma does not correspond to any panel setting. By default, this pragma is
on.

direct_destruction

This pragma is obsolete. It is no longer available.

direct_to_som

This pragma is obsolete. It is no longer available.

dont_inline
Controls the generation of inline functions.

Syntax

#pragma dont_inline on | off | reset

406 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

Remarks

If you enable this pragma, the compiler does not inline any function calls, even
those declared with the inline keyword or within a class declaration. Also, it
does not automatically inline functions, regardless of the setting of the
auto_inline pragma, described in “auto_inline” on page 401. If you disable
this pragma, the compiler expands all inline function calls, within the limits you set
through other inlining-related pragmas.

This pragma corresponds to the Do not Inline setting in the CodeWarrior IDE’s C/
C++ Language settings panel. By default, this pragma is of £.

ecplusplus
Controls the use of embedded C++ features.

Syntax

#pragma ecplusplus on | off | reset

Remarks

If you enable this pragma, the C++ compiler disables the non-EC++ features of
ISO/IEC 14882-1998 C++ such as templates, multiple inheritance, and so on.

This pragma corresponds to the EC++ Compatibility Mode setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
off.

exceptions
Controls the availability of C++ exception handling.

Syntax

#pragma exceptions on | off | reset

Remarks

If you enable this pragma, you can use the try and catch statements in C++ to
perform exception handling. If your program does not use exception handling,
disable this setting to make your program smaller.

You can throw exceptions across any code compiled by the CodeWarrior C/C++
compiler with #pragma exceptions on.

CodeWarrior Build Tools Reference for Power Architecture® Processors 407

Pragmas for C++

You cannot throw exceptions across libraries compiled with #pragma
exceptions off. If you throw an exception across such a library, the code
calls terminate () and exits.

This pragma corresponds to the Enable C++ Exceptions setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
on.

inline_bottom_up
Controls the bottom-up function inlining method.

Syntax

#pragma inline bottom up on | off | reset

Remarks

Bottom-up function inlining tries to expand up to eight levels of inline leaf
functions. The maximum size of an expanded inline function and the caller of an
inline function can be controlled by the pragmas shown in Listing 30.6 and Listing
30.7.

Listing 30.6 Maximum Complexity of an Inlined Function

// Maximum complexity of an inlined function
#pragma inline_max_size(max) // default max == 256

Listing 30.7 Maximum Complexity of a Function that Calls Inlined Functions

// Maximum complexity of a function that calls inlined functions
#pragma inline_max_total_size(max) // default max == 10000

where max loosely corresponds to the number of instructions in a function.

If you enable this pragma, the compiler calculates inline depth from the last
function in the call chain up to the first function that starts the call chain. The
number of functions the compiler inlines from the bottom depends on the values of
inline_depth, inline_max_size, and inline_max_total_size.
This method generates faster and smaller source code for some (but not all)
programs with many nested inline function calls.

If you disable this pragma, top-down inlining is selected, and the inline_depth
setting determines the limits for top-down inlining. The inline_max_size and

408 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

inline_max_ total_size pragmas do not affect the compiler in top-down

mode.

This pragma corresponds to the Bottom-up setting of the Inline Depth menu in
the CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma

is disabled.

inline_bottom_up_once
Performs a single bottom-up function inlining operation.

Syntax

#pragma inline_bottom up_once on | off | reset

Remarks
By default, this pragma is of f.

inline_depth
Controls how many passes are used to expand inline function calls.

Syntax
#pragma inline_depth (n)

#pragma inline_depth (smart)

Parameters

n

Sets the number of passes used to expand inline function calls. The number 7 is an

integer from 0 to 1024 or the smart specifier. It also represents the distance

allowed in the call chain from the last function up. For example, if d is the total
depth of a call chain, then functions below a depth of d-n are inlined if they do not

exceed the following size settings:
#pragma inline_max_size(n);

#pragma inline_max_total_size(n);

The first pragma sets the maximum function size to be considered for inlining; the

second sets the maximum size to which a function is allowed to grow after the

functions it calls are inlined. Here, n is the number of statements, operands, and

CodeWarrior Build Tools Reference for Power Architecture® Processors

409

Pragmas for C++

operators in the function, which turns out to be roughly twice the number of
instructions generated by the function. However, this number can vary from
function to function. For the inline_max_size pragma, the default value of n
is 256; for the inline_max_total_size pragma, the default value of n is
10000.

smart

The smart specifier is the default mode, with four passes where the passes 2-4 are
limited to small inline functions. All inlineable functions are expanded if
inline_depthis setto 1-1024.

Remarks

The pragmas dont_inline and always_inline override this pragma. This

pragma corresponds to the Inline Depth setting in the CodeWarrior IDE’s C/C++
Language settings panel. Setting the Inline Depth option to "Do not
Inline" in the settings panel will also override this pragma. By
default, this pragma is disabled.

inline_max_auto_size

Determines the maximum complexity for an auto-inlined function.

Syntax

#pragma inline_max_auto_size (complex)

Parameters
complex

The complex value is an approximation of the number of statements in a
function, the current default value is 15. Selecting a higher value will inline more
functions, but can lead to excessive code bloat.

Remarks

This pragma does not correspond to any panel setting.

inline_max_size

Sets the maximum number of statements, operands, and operators used to consider the
function for inlining.

410

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

Syntax

#pragma inline_max_size (size)

Parameters

size
The maximum number of statements, operands, and operators in the function to
consider it for inlining, up to a maximum of 256.

Remarks

This pragma does not correspond to any panel setting.

inline_max_total_size
Sets the maximum total size a function can grow to when the function it calls is inlined.

Syntax

#pragma inline_max_total_size (max_size)

Parameters

max_size
The maximum number of statements, operands, and operators the inlined function
calls that are also inlined, up to a maximum of 7000.

Remarks

This pragma does not correspond to any panel setting.

internal
Controls the internalization of data or functions.

Syntax

#pragma internal on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 411

Pragmas for C++

#pragma internal list namel [, name2]1*

Remarks

When using the #pragma internal on format, all data and functions are
automatically internalized.

Use the #pragma internal list format to tag specific data or functions for
internalization. It applies to all names if it is used on an overloaded function. You
cannot use this pragma for C++ member functions or static class members.

Listing 30.8 shows an example:

Listing 30.8 Example of an Internalized List

extern int f£(), g;
#pragma internal list f,g

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

iso_templates

Controls whether or not to use the new parser supported by the CodeWarrior 2.5 C++
compiler and issue warning messages for missing typenames.

Syntax

#pragma iso_templates on | off | reset

Remarks

This pragma combines the functionality of pragmas parse_func_templ,
parse_mfunc templ and warn no_typename.

This pragma ensures that your C++ source code is compiled using the newest
version of the parser, which is stricter than earlier versions. The compiler issues a
warning message if a typenames required by the C++ standard is missing but can
still be determined by the compiler based on the context of the surrounding C++
syntax.

By default, this pragma is on.

412

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

new_mangler

Controls the inclusion or exclusion of a template instance’s function return type to the
mangled name of the instance.
Syntax

#pragma new_mangler on | off | reset

Remarks

The C++ standard requires that the function return type of a template instance to be
included in the mangled name, which can cause incompatibilities. Enabling this
pragma within a prefix file resolves those incompatibilities.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

no_conststringconv

Disables the deprecated implicit const string literal conversion (ISO/IEC 14882-1998
C++, §4.2).

Syntax

#pragma no_conststringconv on | off | reset

Remarks

When enabled, the compiler generates an error message when it encounters an
implicit const string conversion.

Listing 30.9 Example of const string conversion

#pragma no_conststringconv on

char *cp = "Hello World"; /* Generates an error message. */

This pragma does not correspond to any panel setting. By default, this pragma is
off.

CodeWarrior Build Tools Reference for Power Architecture® Processors 413

Pragmas for C++

no_static_dtors
Controls the generation of static destructors in C++.

Syntax

#pragma no_static_dtors on | off | reset

Remarks

If you enable this pragma, the compiler does not generate destructor calls for static
data objects. Use this pragma to generate smaller object code for C++ programs
that never exit (and consequently never need to call destructors for static objects).

This pragma does not correspond to any panel setting. By default, this setting is
disabled.

nosyminline
Controls whether debug information is gathered for inline/template functions.

Syntax

#pragma nosyminline on | off | reset

Remarks

‘When on, debug information is not gathered for inline/template functions.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

old_friend_lookup

Implements non-standard C++ friend declaration behavior that allows friend declarations
to be visible in the enclosing scope.

#pragma old_friend lookup on | off | reset

Example

This example shows friend declarations that are invalid without #pragma
old_friend_lookup.

414 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

Listing 30.10 Valid and invalid declarations without #pragma old_friend_lookup

class C2;

void f£2();

struct S {
friend class C1l;
friend class C2;
friend void f1();
friend void f2();

Y
Cl *cpl; // error, Cl is not visible without namespace declaration
C2 *cp2; // OK
int main()
{
f1(); // error, fl() is not visible without namespace declaration
t2(); // OK
}
old_pods
Permits non-standard handling of classes, structs, and unions containing pointer-to-pointer
members
Syntax
#pragma old_pods on | off | reset
Remarks
According to the ISO/IEC 14882:2003 C++ Standard, classes/structs/unions that
contain pointer-to-pointer members are now considered to be plain old data (POD)
types.
This pragma can be used to get the old behavior.
old_vtable

This pragma is no longer available.

CodeWarrior Build Tools Reference for Power Architecture® Processors 415

Pragmas for C++

opt_classresults

Controls the omission of the copy constructor call for class return types if all return
statements in a function return the same local class object.

Syntax

#pragma opt_classresults on | off | reset

Remarks
Listing 30.11 shows an example.

Listing 30.11 Example #pragma opt_classresults

#pragma opt_classresults on

struct X {

X();
X (const X&) ;
//

Y

X £() {

X x; // Object x will be constructed in function result buffer.
//
return x; // Copy constructor is not called.

}

This pragma does not correspond to any panel setting. By default, this pragma is
on.

parse_func_templ

Controls whether or not to use the new parser supported by the CodeWarrior 2.5 C++
compiler.

Syntax

#pragma parse_func_templ on | off | reset

416 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

Remarks

If you enable this pragma, your C++ source code is compiled using the newest
version of the parser, which is stricter than earlier versions.

This option actually corresponds to the ISO C++ Template Parser option

(together with pragmas parse_func_templ and warn_no_typename). By default,
this pragma is disabled.

parse_mfunc_templ

Controls whether or not to use the new parser supported by the CodeWarrior 2.5 C++
compiler for member function bodies.
Syntax

#pragma parse_mfunc_templ on | off | reset

Remarks

If you enable this pragma, member function bodies within your C++ source code is
compiled using the newest version of the parser, which is stricter than earlier
versions.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

RTTI

Controls the availability of runtime type information.

Syntax

#pragma RTTI on | off | reset

Remarks

If you enable this pragma, you can use runtime type information (or RTTI) features
such as dynamic_cast and typeid. The other RTTI expressions are available
even if you disable the Enable RTTTI setting. Note that

*type_info: :before(const type_info&) isnotimplemented.

This pragma corresponds to the Enable RTTI setting in the CodeWarrior IDE’s C/
C++ Language settings panel.

CodeWarrior Build Tools Reference for Power Architecture® Processors 417

Pragmas for C++

suppress_init_code

Controls the suppression of static initialization object code.

Syntax

#pragma suppress_init_code on | off | reset

Remarks
If you enable this pragma, the compiler does not generate any code for static data

initialization such as C++ constructors.

WARNING! Using this pragma because it can produce erratic or unpredictable
behavior in your program.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

template_depth

Controls how many nested or recursive class templates you can instantiate.

#pragma template_depth (n)

Remarks

This pragma lets you increase the number of nested or recursive class template
instantiations allowed. By default, n equals 64; it can be set from 1 to 30000. You
should always use the default value unless you receive the error message

template too complex or recursive

This pragma does not correspond to any panel setting.

thread_safe init

Controls the addition of extra code in the binary to ensure that multiple threads cannot
enter a static local initialization at the same time.

418

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

Syntax

#pragma thread_safe_init on | off | reset

Remarks

A C++ program that uses multiple threads and static local initializations introduces
the possibility of contention over which thread initializes static local variable first.
When the pragma is on, the compiler inserts calls to mutex functions around each
static local initialization to avoid this problem. The C++ runtime library provides
these mutex functions.

Listing 30.12 Static local initialization example

int func(void) {
// There may be synchronization problems if this function is
// called by multiple threads.
static int countdown = 20;

return countdown--;

NOTE This pragma requires runtime library functions which may not be implemented
on all platforms, due to the possible need for operating system support.

Listing 30.13 shows another example.

Listing 30.13 Example thread_safe_init

#pragma thread_safe_init on

void thread_heavy_func ()

{
// Multiple threads can now safely call this function:
// the static local variable will be constructed only once.
static std::string localstring = thread_unsafe_func();

}

NOTE When an exception is thrown from a static local initializer, the initializer is
retried by the next client that enters the scope of the local.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

CodeWarrior Build Tools Reference for Power Architecture® Processors 419

Pragmas for C++

warn_ hidevirtual

Controls the recognition of a non-virtual member function that hides a virtual function in a
superclass.

Syntax

#pragma warn_hidevirtual on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if you declare a
non-virtual member function that hides a virtual function in a superclass. One
function hides another if it has the same name but a different argument type.
Listing 30.14 shows an example.

Listing 30.14 Hidden Virtual Functions

class A {

public:
virtual void f(int);
virtual void g(int);

Y

class B: public A {
public:
void f (char); // WARNING: Hides A::f (int)
virtual void g(int); // OK: Overrides A::g(int)
}i

The ISO/IEC 14882-1998 C++ Standard does not require this pragma.

NOTE A warning message normally indicates that the pragma name is not recognized,
but an error indicates either a syntax problem or that the pragma is not valid in
the given context.

This pragma corresponds to the Hidden Virtual Functions setting in the
CodeWarrior IDE’s C/C++ Language settings panel.

420 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

warn_no_explicit_virtual

Controls the issuing of warning messages if an overriding function is not declared with a
virtual keyword.

Syntax

#pragma warn_no_explicit_virtual on | off | reset

Remarks
Listing 30.15 shows an example.

Listing 30.15 Example of warn_no_explicit_virtual pragma

#pragma warn_no_explicit_virtual on

struct A {
virtual void f();
Y

struct B {
void f();
// WARNING: override B::f() is declared without virtual keyword

TIP This warning message is not required by the ISO/IEC 14882-1998 C++ standard,
but can help you track down unwanted overrides.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_no_typename

Controls the issuing of warning messages for missing typenames.

Syntax

#pragma warn_no_typename on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 421

Pragmas for C++

Remarks

The compiler issues a warning message if a typenames required by the C++
standard is missing but can still be determined by the compiler based on the context
of the surrounding C++ syntax.

This pragma does not correspond to any panel setting. This pragma is enabled by
the ISO/IEC 14882-1998 C++ template parser.

warn_notinlined
Controls the issuing of warning messages for functions the compiler cannot inline.

Syntax

#pragma warn_notinlined on | off | reset

Remarks

The compiler issues a warning message for non-inlined inline (i.e., on those
indicated by the inline keyword or in line in a class declaration) function calls.

This pragma corresponds to the Non-Inlined Functions setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
disabled.

warn_structclass

Controls the issuing of warning messages for the inconsistent use of the class and
struct keywords.
Syntax

#pragma warn_structclass on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if you use the
class and struct keywords in the definition and declaration of the same
identifier.

422 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for C++

Listing 30.16 Inconsistent use of class and struct

class X;
struct X { int a; }; // WARNING

Use this warning when using static or dynamic libraries to link with object code
produced by another C++ compiler that distinguishes between class and structure
variables in its name “mangling.”

This pragma corresponds to the Inconsistent ‘class’ / ‘struct’ Usage setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
disabled.

wchar_type

Controls the availability of the wchar_t data type in C++ source code.

Syntax
#pragma wchar_type on | off | reset

Remarks
If you enable this pragma, wchar_ t is treated as a built-in type. Otherwise, the

compiler does not recognize this type.

This pragma corresponds to the Enable wchar_t Support setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
enabled.

CodeWarrior Build Tools Reference for Power Architecture® Processors 423

Pragmas for C++

424 CodeWarrior Build Tools Reference for Power Architecture® Processors

31

Pragmas for Language
Translation

asmpoundcomment

Controls whether the “#” symbol is treated as a comment character in inline assembly.

Syntax

#pragma asmpoundcomment on | off | reset

Remarks

Some targets may have additional comment characters, and may treat these
characters as comments even when

#pragma asmpoundcomment off
is used.
Using this pragma may interfere with the function-level inline assembly language.

This pragma does not correspond to any panel setting. By default, this pragma is

on.
asmsemicolcomment
Controls whether the *“;”” symbol is treated as a comment character in inline assembly.
Syntax
#pragma asmsemicolcomment on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 425

Pragmas for Language Translation

Remarks

Some targets may have additional comment characters, and may treat these
characters as comments even when

#pragma asmsemicolcomment off
is used.
Using this pragma may interfere with the assembly language of a specific target.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

const_strings
Controls the const-ness of character string literals.

Syntax

#pragma const_strings [on | off | reset]

Remarks

If you enable this pragma, the type of string literals is an array const char [n],
or const wchar_t [n] for wide strings, where 7 is the length of the string
literal plus 1 for a terminating NUL character. Otherwise, the type char [n] or
wchar_t [n] is used.

By default, this pragma is on when compiling C++ source code and of £ when
compiling C source code.

dollar_identifiers
Controls use of dollar signs ($) in identifiers.

Syntax

#pragma dollar_identifiers on | off | reset

Remarks

If you enable this pragma, the compiler accepts dollar signs ($) in identifiers.
Otherwise, the compiler issues an error if it encounters anything but underscores,
alphabetic, numeric character, and universal characters (\uxxxx, \UXXXXXXXX)
in an identifier.

426 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Language Translation

This pragma does not correspond to any panel setting. By default, this pragma is
off.

gcc_extensions

Controls the acceptance of GNU C language extensions.

Syntax

#pragma gcc_extensions on | off | reset

Remarks

If you enable this pragma, the compiler accepts GNU C extensions in C source
code. This includes the following non-ANSI C extensions:

Initialization of automatic struct or array variables with non-const
values.

Illegal pointer conversions

sizeof(void) == 1

sizeof (function-type) == 1

Limited support for GCC statements and declarations within expressions.
Macro redefinitions without a previous #undef.
The GCC keyword typeof

Function pointer arithmetic supported

void* arithmetic supported

Void expressions in return statements of void
__builtin_constant_p (expr) supported
Forward declarations of arrays of incomplete type
Forward declarations of empty static arrays
Pre-C99 designated initializer syntax (deprecated)
shortened conditional expression (¢ ?: y)

long _ _builtin_expect (long exp, long c) now accepted

This pragma corresponds to the Enable GCC Extensions setting in the
CodeWarrior IDE’s C/C++ Language settings panel. By default, this pragma is
disabled.

CodeWarrior Build Tools Reference for Power Architecture® Processors 427

Pragmas for Language Translation

mark

Adds an item to the Function pop-up menu in the IDE editor.

Syntax

#pragma mark itemName

Remarks

This pragma adds itemName to the source file’s Function pop-up menu. If you
open the file in the CodeWarrior Editor and select the item from the Function pop-
up menu, the editor brings you to the pragma. Note that if the pragma is inside a
function definition, the item does not appear in the Function pop-up menu.

If itemName begins with “~-", a menu separator appears in the IDE’s Function
pop-up menu:

#pragma mark --

This pragma does not correspond to any panel setting.

mpwc_newline

Controls the use of newline character convention.

Syntax

#pragma mpwc_newline on | off | reset

Remarks

If you enable this pragma, the compiler translates ' \n' as a Carriage Return
(0x0D) and '\r' as a Line Feed (0x0A). Otherwise, the compiler uses the ISO
standard conventions for these characters.

If you enable this pragma, use ISO standard libraries that were compiled when this
pragma was enabled.

If you enable this pragma and use the standard ISO standard libraries, your
program will not read and write ' \n' and ' \r' properly. For example, printing
"\n' brings your program’s output to the beginning of the current line instead of
inserting a newline.

This pragma does not correspond to any IDE panel setting. By default, this pragma
is disabled.

428

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Language Translation

mpwc_relax
Controls the compatibility of the char* and unsigned char* types.

Syntax

#pragma mpwc_relax on | off | reset

Remarks

If you enable this pragma, the compiler treats char* and unsigned char* as
the same type. Use this setting to compile source code written before the ISO C
standards. Old source code frequently uses these types interchangeably.

This setting has no effect on C++ source code.

NOTE Turning this option on may prevent the compiler from detecting some
programming errors. We recommend not turning on this option.

Listing 31.1 shows how to use this pragma to relax function pointer checking.

Listing 31.1 Relaxing function pointer checking

#pragma mpwc_relax on
extern void f (char *);

/* Normally an error, but allowed. */
extern void(*fpl) (void *) = &f;

/* Normally an error, but allowed. */
extern void(*fp2) (unsigned char *) = &f;

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

multibyteaware

Controls how the Source encoding option in the IDE is treated

Syntax

#pragma multibyteaware on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 429

Pragmas for Language Translation

Remarks
This pragma is deprecated. See #pragma text_encoding for more details.

This pragma does not correspond to any panel setting, but the replacement option
Source encoding appears in the CodeWarrior IDE’s C/C++ Preprocessor settings
panel. By default, this pragma is of £.

multibyteaware_preserve_literals

Controls the treatment of multibyte character sequences in narrow character string literals.

Syntax

#pragma multibyteaware_preserve_literals on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

text_encoding

Identifies the character encoding of source files.

Syntax

#pragma text_encoding ("name" | unknown reset [, globall])

Parameters
name

The IANA or MIME encoding name or an OS-specific string that identifies the text
encoding. The compiler recognizes these names and maps them to its internal
decoders:

system US-ASCII ASCII ANSI_X3.4-1968
ANSI_X3.4-1968 ANSI_X3.4 UTF-8 UTF8 IS0-2022-JP
CSIS02022JP IS02022JP CSSHIFTJIS SHIFT-JIS
SHIFT_JIS SJIS EUC-JP EUCJP UCS-2 UCS-2BE
UCS-2LE UCS2 UCS2BE UCS2LE UTF-16 UTF-16BE
UTF-16LE UTF1l6 UTF16BE UTF1l6LE UCS-4 UCS-4BE

430

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Language Translation

UCS-4LE UCS4 UCS4BE UCS4LE 10646-1:1993
IS0-10646-1 IS0O-10646 unicode
global

Tells the compiler that the current and all subsequent files use the same text
encoding. By default, text encoding is effective only to the end of the file.

Remarks

By default, #pragma text_encoding is only effective through the end of file.
To affect the default text encoding assumed for the current and all subsequent files,
supply the “global” modifier.

This pragma corresponds to the Source Encoding option in the CodeWarrior
IDE’s C/C++ Preprocessor settings panel. By default, this setting is ASCIT.

trigraphs
Controls the use trigraph sequences specified in the ISO standards.

Syntax

#pragma trigraphs on | off | reset

Remarks

If you are writing code that must strictly adhere to the ANSI standard, enable this
pragma.

Table 31.1 Trigraph table

Trigraph Character
??= #
??/ \
27 ~
2?2 ([
?7?)]
272! |
27< {

CodeWarrior Build Tools Reference for Power Architecture® Processors 431

Pragmas for Language Translation

Table 31.1 Trigraph table

Trigraph Character
27> }
?7- ~

NOTE Use of this pragma may cause a portability problem for some targets.

Be careful when initializing strings or multi-character constants that contain
question marks.

Listing 31.2 Example of Pragma trigraphs

char ¢ = '????'; /* ERROR: Trigraph sequence expands to '??" */
char 4 "\?\?\?\?'; /* OK */

This pragma corresponds to the Expand Trigraphs setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this pragma is disabled.

unsigned_char
Controls whether or not declarations of type char are treated as unsigned char.

Syntax

#pragma unsigned_char on | off | reset

Remarks

If you enable this pragma, the compiler treats a char declaration as if it were an
unsigned char declaration.

NOTE If you enable this pragma, your code might not be compatible with libraries
that were compiled when the pragma was disabled. In particular, your code
might not work with the ISO standard libraries included with CodeWarrior.

This pragma corresponds to the Use unsigned chars setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this setting is disabled.

432 CodeWarrior Build Tools Reference for Power Architecture® Processors

32

Pragmas for Diagnostic
Messages

extended_errorcheck

Controls the issuing of warning messages for possible unintended logical errors.

Syntax

#pragma extended_errorcheck on | off | reset

Remarks

If you enable this pragma, the compiler generates a warning message (not an error)
if it encounters some common programming errors:

It also issues a warning message when it encounters a delete operator for a class or
structure that has not been defined yet. Listing 32.1 shows an example.

Listing 32.1 Attempting to delete an undefined structure

#pragma extended_errorcheck on

struct X;
int func(X *xp)
{
delete xp; // Warning: deleting incomplete type X
}

* Aninteger or floating-point value assigned to an enum type. Listing 32.2 shows
an example.

Listing 32.2 Assigning to an Enumerated Type

enum Day { Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday } d;

d = 5; /* WARNING */

CodeWarrior Build Tools Reference for Power Architecture® Processors 433

Pragmas for Diagnostic Messages

d = Monday; /* OK */
(Day)3; /* OK */

[oh}
|

* Anempty return statement in a function that is not declared void. For
example, Listing 32.3 results in a warning message.

Listing 32.3 A non-void function with an empty return statement

int MyInit (void)

{
int err = GetMyResources();
if (err '= -1)
{
err = GetMoreResources() ;
}

return; /* WARNING: empty return statement */

Listing 32.4 shows how to prevent this warning message.

Listing 32.4 A non-void function with a proper return statement

int MyInit(void)
{
int err = GetMyResources|();
if (err != -1)
{
err = GetMoreResources() ;
}

return err; /* OK */

}
This pragma corresponds to the Extended Error Checking setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this setting is
off.

maxerrorcount

Limits the number of error messages emitted while compiling a single file.

Syntax

#pragma maxerrorcount (num | off)

434 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Parameters
num

Specifies the maximum number of error messages issued per source file.
off

Does not limit the number of error messages issued per source file.

Remarks
The total number of error messages emitted may include one final message:
Too many errors emitted

This pragma does not correspond to any panel setting. By default, this pragma is
off.

message

Tells the compiler to issue a text message to the user.

Syntax

#pragma message(msg)

Parameter
msg

Actual message to issue. Does not have to be a string literal.

Remarks

In the CodeWarrior IDE, the message appears in the Errors & Warnings window
. On the command line, the message is sent to the standard error stream.

This pragma does not correspond to any panel setting.

showmessagenumber
Controls the appearance of warning or error numbers in displayed messages.

Syntax

#pragma showmessagenumber on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 435

Pragmas for Diagnostic Messages

Remarks

When enabled, this pragma causes messages to appear with their numbers visible.
You can then use the warning pragma with a warning number to suppress the
appearance of specific warning messages.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

show_error_filestack

Controls the appearance of the current #include file stack within error messages
occurring inside deeply-included files.

Syntax

#pragma show_error_filestack on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

suppress_warnings

Controls the issuing of warning messages.

Syntax

#pragma suppress_warnings on | off | reset

Remarks

If you enable this pragma, the compiler does not generate warning messages,
including those that are enabled.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

sym

Controls the generation of debugger symbol information for subsequent functions.

436 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Syntax
#pragma sym on | off | reset

Remarks

The compiler pays attention to this pragma only if you enable the debug marker for
a file in the IDE project window. If you disable this pragma, the compiler does not
put debugging information into the source file debugger symbol file (SYM or
DWAREF) for the functions that follow.

The compiler always generates a debugger symbol file for a source file that has a
debug diamond next to it in the IDE project window. This pragma changes only
which functions have information in that symbol file.

This pragma does not correspond to any panel setting. By default, this pragma is
enabled.

unused

Controls the suppression of warning messages for variables and parameters that are not
referenced in a function.

Syntax
#pragma unused (var_name [, var_name]...)

var_name

The name of a variable.

Remarks

This pragma suppresses the compile time warning messages for the unused
variables and parameters specified in its argument list. You can use this pragma
only within a function body. The listed variables must be within the scope of the
function.

In C++, you cannot use this pragma with functions defined within a class definition
or with template functions.

Listing 32.5 Example of Pragma unused() in C

#pragma warn_unusedvar on
#pragma warn_unusedarg on

static void ff (int a)

{

CodeWarrior Build Tools Reference for Power Architecture® Processors 437

Pragmas for Diagnostic Messages

int b;

#pragma unused(a,b)
/* Compiler does not warn that a and b are unused. */

}

Listing 32.6 Example of Pragma unused() in C++

#pragma warn_unusedvar on
#pragma warn_unusedarg on

static void ff(int /* No warning */)

{
int b;

#pragma unused (b)
/* Compiler does not warn that b is unused. */

}

This pragma does not correspond to any CodeWarrior IDE panel setting.

warning

Controls which warning numbers are displayed during compiling.

Syntax
#pragma warning on | off | reset (num [, ...1)
This alternate syntax is allowed but ignored (message numbers do not match):
#pragma warning(warning type : warning num_ list [,
warning type: warning num 1ist, ...])
Parameters
num
The number of the warning message to show or suppress.
warning type
Specifies one of the following settings:
e default
« disable

« enable

438

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

warning num_list

The warning num I1istis alist of warning numbers separated by spaces.

Remarks

Use the pragma showmessagenumber to display warning messages with their
warning numbers.

This pragma only applies to CodeWarrior front-end warnings. Using the pragma
for the Power Architecture back-end warnings returns invalid message number
warning.

The CodeWarrior compiler allows, but ignores, the alternative syntax for
compatibility with Microsoft® compilers.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

warning_errors
Controls whether or not warnings are treated as errors.

Syntax

#pragma warning_errors on | off | reset

Remarks

If you enable this pragma, the compiler treats all warning messages as though they
were errors and does not translate your file until you resolve them.

This pragma corresponds to the Treat All Warnings as Errors setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel.

warn_any_ptr_int_conv

Controls if the compiler generates a warning message when an integral type is explicitly
converted to a pointer type or vice versa.

Syntax

#pragma warn_any_ ptr_int_conv on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 439

Pragmas for Diagnostic Messages

Remarks

This pragma is useful to identify potential 64-bit pointer portability issues. An
example is shown in.

Listing 32.7 Example of warn_any_ptr_int_conv

#pragma warn_ptr_int_conv on
short i, *ip
void func () {

i = (short)ip;

/* WARNING: short type is not large enough to hold pointer. */
}

#pragma warn_any_ptr_int_conv on

void bar() {
i = (int)ip; /* WARNING: pointer to integral conversion. */
ip = (short *)i; /* WARNING: integral to pointer conversion. */
}
Remarks

This pragma corresponds to the Pointer/Integral Conversions setting in the
CodeWarrior IDE’s C/C++ Warnings settings panel. By default, this pragma is
off.

warn_emptydecl
Controls the recognition of declarations without variables.

Syntax

#pragma warn_emptydecl on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning message when it
encounters a declaration with no variables.

440 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Listing 32.8 Examples of empty declarations in C and C++

#pragma warn_emptydecl on
int ; /* WARNING: empty variable declaration. */
int i; /* OK */

long j;; /* WARNING */
long j; /* OK */

Listing 32.9 Example of empty declaration in C++

#pragma warn_emptydecl on
extern "C" {
}; /* WARNING */

This pragma corresponds to the Empty Declarations setting in the CodeWarrior
IDE’s C/C++ Warnings panel. By default, this pragma is disabled.

warn_extracomma
Controls the recognition of superfluous commas in enumerations.

Syntax

#pragma warn_extracomma on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a trailing comma in enumerations. For example, Listing 32.10 is
acceptable source code but generates a warning message when you enable this
setting.

Listing 32.10 Warning about extra commas

#pragma warn_extracomma on
enum { mouse, cat, dog, };
/* WARNING: compiler expects an identifier after final comma. */

The compiler ignores terminating commas in enumerations when compiling source
code that conforms to the ISO/IEC 9899-1999 (“C99”) standard.

This pragma corresponds to the Extra Commas setting in the CodeWarrior IDE’s
C/C++ Warnings panel. By default, this pragma is disabled.

CodeWarrior Build Tools Reference for Power Architecture® Processors 441

Pragmas for Diagnostic Messages

warn_filenamecaps

Controls the recognition of conflicts involving case-sensitive filenames within user
includes.

Syntax

#pragma warn_filenamecaps on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when an
#include directive capitalizes a filename within a user include differently from
the way the filename appears on a disk. It also detects use of “8.3” DOS filenames
in Windows® operating systems when a long filename is available. Use this
pragma to avoid porting problems to operating systems with case-sensitive file
names.

By default, this pragma only checks the spelling of user includes such as the
following:

#include "file"

For more information on checking system includes, see
warn filenamecaps system.

This pragma corresponds to the Include File Capitalization setting in the
CodeWarrior IDE’s C/C++ Warnings panel. By default, this pragma is of .

warn_filenamecaps_system

Controls the recognition of conflicts involving case-sensitive filenames within system
includes.
Syntax

#pragma warn_filenamecaps_system on | off | reset

Remarks

If you enable this pragma along with warn_ filenamecaps, the compiler issues
a warning message when an #include directive capitalizes a filename within a
system include differently from the way the filename appears on a disk. It also
detects use of “8.3” DOS filenames in Windows® systems when a long filename is

442

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

available. This pragma helps avoid porting problems to operating systems with
case-sensitive file names.

To check the spelling of system includes such as the following:
#include <file>
Use this pragma along with the warn_filenamecaps pragma.

This pragma corresponds to the Check System Includes setting in the
CodeWarrior IDE’s C/C++ Warnings panel. By default, this pragma is off.

NOTE Some SDKs (Software Developer Kits) use “colorful” capitalization, so this
pragma may issue a lot of unwanted messages.

warn_hiddenlocals
Controls the recognition of a local variable that hides another local variable.

Syntax

#pragma warn_hiddenlocals on | off | reset

Remarks

When on, the compiler issues a warning message when it encounters a local
variable that hides another local variable. An example appears in Listing 32.11.

Listing 32.11 Example of hidden local variables warning

#pragma warn_hiddenlocals on

void func (int a)
{
{
int a; /* WARNING: this 'a' obscures argument 'a'.

}

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this setting is of .

CodeWarrior Build Tools Reference for Power Architecture® Processors 443

Pragmas for Diagnostic Messages

warn_illpragma

Controls the recognition of invalid pragma directives.

Syntax

#pragma warn_illpragma on | off | reset

Remarks

If you enable this pragma, the compiler displays a warning message when it
encounters a pragma it does not recognize.

This pragma corresponds to the Illegal Pragmas setting in the CodeWarrior IDE’s
C/C++ Warnings panel. By default, this setting is of £.

warn_illtokenpasting

Controls whether or not to issue a warning message for improper preprocessor token
pasting.
Syntax

#pragma warn_illtokenpasting on | off | reset

Remarks
An example of this is shown below:
#define PTR(x) x##* / PTR(y)

Token pasting is used to create a single token. In this example, y and x cannot be
combined. Often the warning message indicates the macros uses “##”
unnecessarily.

This pragma does not correspond to any panel setting. By default, this pragma is
on.

warn_illunionmembers

Controls whether or not to issue a warning message for invalid union members, such as
unions with reference or non-trivial class members.

444

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Syntax

#pragma warn_illunionmembers on | off | reset

Remarks

This pragma does not correspond to any panel setting. By default, this pragma is
on.

warn_impl_f2i_conv
Controls the issuing of warning messages for implicit float-to-int conversions.

Syntax

#pragma warn_impl_f£f2i _conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting floating-point values to integral values. Listing 32.12 provides an
example.

Listing 32.12 Example of Implicit £loat-to-int Conversion

#pragma warn_impl_f2i_conv on

float £f;
signed int si;

int main()
{
f = si; /* WARNING */

#pragma warn_impl_f2i_conv off
si = £f; /* OK */
}

This pragma corresponds to the Float to Integer setting in the CodeWarrior IDE’s
C/C++ Warnings panel. By default, this pragma is on.

CodeWarrior Build Tools Reference for Power Architecture® Processors 445

Pragmas for Diagnostic Messages

warn_impl_i2f_conv
Controls the issuing of warning messages for implicit int-to-f1loat conversions.

Syntax

#pragma warn_impl_i2f conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting integral values to floating-point values. Listing 32.13 shows an
example.

Listing 32.13 Example of implicit int-to-f1oat conversion

#pragma warn_impl_i2f conv on

float f;
signed int si;

int main()
{
si = f£; /* WARNING */

#pragma warn_impl_i2f conv off
f = si; /* OK */

This pragma corresponds to the Integer to Float setting in the CodeWarrior IDE’s
C/C++ Warnings panel. By default, this pragmais of f.

warn_impl_s2u_conv

Controls the issuing of warning messages for implicit conversions between the signed
int and unsigned int data types.

Syntax

#pragma warn_impl_s2u_conv on | off | reset

446 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Remarks

If you enable this pragma, the compiler issues a warning message for implicitly
converting either from signed int tounsigned int or vice versa. Listing
32.14 provides an example.

Listing 32.14 Example of implicit conversions between signed int and unsigned int

#pragma warn_impl_s2u_conv on

signed int si;
unsigned int ui;

int main()

{
ui = si; /* WARNING */
si = ui; /* WARNING */

#pragma warn_impl_s2u_conv off
ui = si; /* OK */
si =wui; /* OK */

This pragma corresponds to the Signed / Unsigned setting in the CodeWarrior
IDE’s C/C++ Warnings panel. By default, this pragma is enabled.

warn_implicitconv
Controls the issuing of warning messages for all implicit arithmetic conversions.

Syntax

#pragma warn_implicitconv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message for all implicit
arithmetic conversions when the destination type might not represent the source
value. Listing 32.15 provides an example.

Listing 32.15 Example of Implicit Conversion

#pragma warn_implicitconv on

float £;

CodeWarrior Build Tools Reference for Power Architecture® Processors 447

Pragmas for Diagnostic Messages

signed int si;
unsigned int ui;

int main()

{
f = si; /* WARNING */
si = f; /* WARNING */
ui = si; /* WARNING */
si = ui; /* WARNING */
}

NOTE This option “opens the gate” for the checking of implicit conversions. The sub-
pragmas warn_impl_f2i_conv,warn_impl_i2f_ conv, and
warn_impl_s2u_conv control the classes of conversions checked.

This pragma corresponds to the Implicit Arithmetic Conversions setting in the
CodeWarrior IDE’s C/C++ Warnings panel. By default, this pragma is of £.

warn_largeargs

Controls the issuing of warning messages for passing non-"int” numeric values to
unprototyped functions.
Syntax

#pragma warn_largeargs on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if you attempt to
pass a non-integer numeric value, such as a float or long long, to an
unprototyped function when the require_prototypes pragma is disabled.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_missingreturn

Issues a warning message when a function that returns a value is missing a return
statement.

448 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Syntax

#pragma warn_missingreturn on | off | reset

Remarks
An example is shown in Listing 32.16.

Listing 32.16 Example of warn_missingreturn pragma

#pragma warn_missingreturn on

int func()
{

/* WARNING: no return statement. */
}

This pragma corresponds to the Missing ‘return’ Statements setting in the
CodeWarrior IDE’s C/C++ Warnings panel.

warn_no_side effect

Controls the issuing of warning messages for redundant statements.

Syntax

#pragma warn_no_side_effect on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a statement that produces no side effect. To suppress this warning
message, cast the statement with (void). Listing 32.17 provides an example.

Listing 32.17 Example of Pragma warn_no_side_effect

#pragma warn_no_side_effect on

void func(int a,int b)

{
a+b; /* WARNING: expression has no side effect */
(void) (a+b); /* OK: void cast suppresses warning. */

This pragma corresponds to the Expression Has No Side Effect panel setting in
the CodeWarrior IDE’s C/C++ Warnings panel. By default, this pragma is of £.

CodeWarrior Build Tools Reference for Power Architecture® Processors 449

Pragmas for Diagnostic Messages

warn_padding

Controls the issuing of warning messages for data structure padding.

Syntax

#pragma warn_padding on | off | reset

Remarks

If you enable this pragma, the compiler warns about any bytes that were implicitly
added after an ANSI C struct member to improve memory alignment.

This pragma corresponds to the Pad Bytes Added setting in the CodeWarrior
IDE’s C/C++ Warnings panel. By default, this setting is of £.

warn_pch_portability

Controls whether or not to issue a warning message when #pragma once onisusedina
precompiled header.

Syntax

#pragma warn_pch_portability on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when you use
#pragma once onina precompiled header. This helps you avoid situations in
which transferring a precompiled header from machine to machine causes the
precompiled header to produce different results. For more information, see pragma
once.

This pragma does not correspond to any panel setting. By default, this setting is
off.

warn_possunwant

Controls the recognition of possible unintentional logical errors.

450

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Syntax

#pragma warn_possunwant on | off | reset

Remarks

If you enable this pragma, the compiler checks for common, unintended logical
errors:

* An assignment in either a logical expression or the conditional portion of an i £,
while, or for expression. This warning message is useful if you use = when
you mean to use ==. Listing 32.18 shows an example.

Listing 32.18 Confusing = and == in Comparisons

if (a=b) f£(); /* WARNING: a=b is an assignment. */
if ((a=b)!=0) £(); /* OK: (a=b)!=0 is a comparison. */
if (a==b) f(); /* OK: (a==b) is a comparison. */

* An equal comparison in a statement that contains a single expression. This
check is useful if you use == when you meant to use =. Listing 32.19 shows an
example.

Listing 32.19 Confusing = and == Operators in Assignments

== 0; // WARNING: This is a comparison.

a
a = 0; // OK: This is an assignment, no warning

* A semicolon (;) directly afterawhile, if, or for statement.

For example, Listing 32.20 generates a warning message.

Listing 32.20 Empty statement

i = sockcount () ;
while (--i); /* WARNING: empty loop. */
matchsock (i) ;

If you intended to create an infinite loop, put white space or a comment between
the while statement and the semicolon. The statements in Listing 32.21
suppress the above error or warning messages.

CodeWarrior Build Tools Reference for Power Architecture® Processors 451

Pragmas for Diagnostic Messages

Listing 32.21 Intentional empty statements

while (i++) ; /* OK: White space separation. */
while (i++) /* OK: Comment separation */ ;

This pragma corresponds to the Possible Errors setting in the CodeWarrior IDE’s
C/C++ Warnings panel. By default, this pragmais of £.

warn_ptr_int_conv

Controls the recognition the conversion of pointer values to incorrectly-sized integral
values.
Syntax

#pragma warn_ptr_int _conv on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message if an expression
attempts to convert a pointer value to an integral type that is not large enough to
hold the pointer value.

Listing 32.22 Example for #pragma warn_ptr_int_conv

#pragma warn_ptr_int_conv on

char *my_ptr;
char too_small = (char)my_ptr; /* WARNING: char is too small. */

See also “warn_any_ptr_int_conv” on page 439.

This pragma corresponds to the Pointer / Integral Conversions setting in the
CodeWarrior IDE’s C/C++ Warnings panel. By default, this pragma is off.

warn_resultnotused

Controls the issuing of warning messages when function results are ignored.

Syntax

#pragma warn_resultnotused on | off | reset

452 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a statement that calls a function without using its result. To prevent this,
cast the statement with (void). Listing 32.23 provides an example.

Listing 32.23 Example of Function Calls with Unused Results

#pragma warn_resultnotused on

extern int bar();
void func ()

{
bar(); /* WARNING: result of function call is not used. */

void(bar()); /* OK: void cast suppresses warning. */

This pragma does not correspond to any panel setting. By default, this pragma is
off.

warn_undefmacro

Controls the detection of undefined macros in #1if and #elif directives.

Syntax

#pragma warn_undefmacro on | off | reset

Remarks
Listing 32.24 provides an example.

Listing 32.24 Example of Undefined Macro

#1if BADMACRO == 4 /* WARNING: undefined macro. */

Use this pragma to detect the use of undefined macros (especially expressions)
where the default value 0 is used. To suppress this warning message, check if
defined first.

NOTE A warning message is only issued when a macro is evaluated. A short-circuited
“&&” or “| | test or unevaluated “? : ” will not produce a warning message.

CodeWarrior Build Tools Reference for Power Architecture® Processors 453

Pragmas for Diagnostic Messages

This pragma corresponds to the Undefined Macro in #if setting in the
CodeWarrior IDE’s C/C++ Warnings panel. By default, this pragma is of .

warn_uninitializedvar

Controls the compiler to perform some dataflow analysis and emits warning messages
whenever local variables are initialized before being used.

Syntax

#pragma warn_uninitializedvar on | off | reset

Remarks

This pragma has no corresponding setting in the CodeWarrior IDE. By default, this
pragma is on.

warn_unusedarg
Controls the recognition of unreferenced arguments.

Syntax

#pragma warn_unusedarg on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it encounters an
argument you declare but do not use.

This check helps you find arguments that you either misspelled or did not use in your
program. Listing 32.25 shows an example.

Listing 32.25 Warning about unused function arguments

void func(int temp, int error);
{

error = do_something(); /* WARNING: temp is unused. */
}

To prevent this warning, you can declare an argument in a few ways:

¢ Use the pragma unused, as in Listing 32.26.

454 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Diagnostic Messages

Listing 32.26 Using pragma unused() to prevent unused argument messages

void func(int temp, int error)
{
#pragma unused (temp)
/* Compiler does not warn that temp is not used. */

error=do_something() ;

}

* Do not give the unused argument a name. Listing 32.27 shows an example.

The compiler allows this feature in C++ source code. To allow this feature in C
source code, disable ANSI strict checking.

Listing 32.27 Unused, Unnamed Arguments

void func(int /* temp */, int error)
{

/* Compiler does not warn that "temp" is not used. */

error=do_something() ;

}

This pragma corresponds to the Unused Arguments setting in the C/C++
Warnings Panel. By default, this pragma is of £.

warn_unusedvar
Controls the recognition of unreferenced variables.

Syntax

#pragma warn_unusedvar on | off | reset

Remarks

If you enable this pragma, the compiler issues a warning message when it
encounters a variable you declare but do not use.

This check helps you find variables that you either misspelled or did not use in
your program. Listing 32.28 shows an example.

CodeWarrior Build Tools Reference for Power Architecture® Processors 455

Pragmas for Diagnostic Messages

Listing 32.28 Unused Local Variables Example

int error;
void func(void)
{
int temp, errer; /* NOTE: errer is misspelled. */
error = do_something(); /* WARNING: temp and errer are unused. */

If you want to use this warning but need to declare a variable that you do not use, include
the pragma unused, as in Listing 32.29.

Listing 32.29 Suppressing Unused Variable Warnings

void func (void)
{

int i, temp, error;

#pragma unused (i, temp) /* Do not warn that i and temp */
error = do_something() ; /* are not used */

}

This pragma corresponds to the Unused Variables setting in the CodeWarrior
IDE’s C/C++ Warnings panel. By default, this pragma is off.

456 CodeWarrior Build Tools Reference for Power Architecture® Processors

33

Pragmas for Preprocessing

check_header_flags

Controls whether or not to ensure that a precompiled header’s data matches a project’s
target settings.

Syntax
#pragma check_header_ flags on | off | reset

Remarks
This pragma affects precompiled headers only.

If you enable this pragma, the compiler verifies that the precompiled header’s
preferences for double size, int size, and floating point math correspond to the
build target’s settings. If they do not match, the compiler generates an error
message.

If your precompiled header file depends on these settings, enable this pragma.
Otherwise, disable it.

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is of f.

faster_pch_gen
Controls the performance of precompiled header generation.

Syntax

#pragma faster_pch gen on | off | reset

Remarks

If you enable this pragma, generating a precompiled header can be much faster,
depending on the header structure. However, the precompiled file can also be
slightly larger.

CodeWarrior Build Tools Reference for Power Architecture® Processors 457

Pragmas for Preprocessing

This pragma does not correspond to any panel setting. By default, this setting is
off.

flat_include
Controls whether or not to ignore relative path names in #include directives.

Syntax

#pragma flat_include on | off | reset

Remarks
For example, when on, the compiler converts this directive
#include <sys/stat.h>
to
#include <stat.h>

Use this pragma when porting source code from a different operating system, or
when a CodeWarrior IDE project’s access paths cannot reach a given file.

By default, this pragma is of f.

fullpath_file
Controls if __FILE__ macro expands to a full path or the base file name.

Syntax
#pragma fullpath_file on | off | reset

Remarks

When this pragma on, the _ FILE___ macro returns a full path to the file being
compiled, otherwise it returns the base file name.

fullpath_prepdump

Shows the full path of included files in preprocessor output.

458 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Preprocessing

Syntax
#pragma fullpath_prepdump on | off | reset

Remarks

If you enable this pragma, the compiler shows the full paths of files specified by
the #include directive as comments in the preprocessor output. Otherwise, only
the file name portion of the path appears.

This pragma corresponds to the Show full paths option in the CodeWarrior IDE’s
C/C++ Preprocessor settings panel. By default, this pragma is of £.

keepcomments
Controls whether comments are emitted in the preprocessor output.

Syntax

#pragma keepcomments on | off | reset

Remarks

This pragma corresponds to the Keep comments option CodeWarrior IDE’s
C/C++ Preprocessor settings panel. By default, this pragma is of £.

line_prepdump
Shows #1ine directives in preprocessor output.

Syntax
#pragma line prepdump on | off | reset

Remarks

If you enable this pragma, #1ine directives appear in preprocessing output. The
compiler also adjusts line spacing by inserting empty lines.

Use this pragma with the command-line compiler’s -E option to make sure that
#1ine directives are inserted in the preprocessor output.

This pragma corresponds to the Use #line option in the CodeWarrior IDE’s C/C++
Preprocessor settings panel. By default, this pragma is of £.

CodeWarrior Build Tools Reference for Power Architecture® Processors 459

Pragmas for Preprocessing

macro_prepdump

Controls whether the compiler emits #define and #undef directives in preprocessing
output.

Syntax

#pragma macro_prepdump on | off | reset

Remarks

Use this pragma to help unravel confusing problems like macros that are aliasing
identifiers or where headers are redefining macros unexpectedly.

msg_show_lineref

Controls diagnostic output involving #1ine directives to show line numbers specified by
the #1ine directives in error and warning messages.

Syntax

#pragma msg_show_lineref on | off | reset

Remarks

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is on.

msg_show_realref

Controls diagnostic output involving #1ine directives to show actual line numbers in
error and warning messages.

Syntax

#pragma msg_show_realref on | off | reset

Remarks

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is on.

460

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Preprocessing

notonce

Controls whether or not the compiler lets included files be repeatedly included, even with
#pragma once on.

Syntax

#pragma notonce

Remarks

If you enable this pragma, files can be repeatedly #included, even if you have
enabled #pragma once on. For more information, see “once” on page 461.

This pragma does not correspond to any CodeWarrior IDE panel setting.

old_pragma_once

This pragma is no longer available.

once

Controls whether or not a header file can be included more than once in the same
compilation unit.

Syntax

#pragma once [on]

Remarks

Use this pragma to ensure that the compiler includes header files only once in a
source file. This pragma is especially useful in precompiled header files.

There are two versions of this pragma:
#pragma once

and

#pragma once on

Use #pragma once in a header file to ensure that the header file is included only
once in a source file. Use #pragma once on in a header file or source file to

CodeWarrior Build Tools Reference for Power Architecture® Processors 461

Pragmas for Preprocessing

ensure that any file is included only once in a source file. When a once option or
pragma is used, a header file of same name in another directory is not included.

Beware that when using #pragma once on, precompiled headers transferred
from one host machine to another might not give the same results during
compilation. This inconsistency is because the compiler stores the full paths of
included files to distinguish between two distinct files that have identical file
names but different paths. Use the warn_pch_portability pragma to issue a
warning message when you use #pragma once on in a precompiled header.

Also, if you enable the 01d_pragma_once on pragma, the once pragma
completely ignores path names.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

pop, push

Saves and restores pragma settings.

Syntax

#pragma push

#pragma pop

Remarks

The pragma push saves all the current pragma settings. The pragma pop restores
all the pragma settings that resulted from the last push pragma. For example, see
Listing 33.1.

Listing 33.1 push and pop example

#pragma ANSI_strict on

#pragma push /* Saves all compiler settings. */
#pragma ANSI_strict off

#pragma pop /* Restores ANSI_strict to on. */

TIP

This pragma does not correspond to any panel setting. By default, this pragma is
off.

Pragmas directives that accept on | of f | reset already form a stack of previous
option values. It is not necessary to use #pragma pop or #pragma push with
such pragmas.

462

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Preprocessing

pragma_prepdump
Controls whether pragma directives in the source text appear in the preprocessing output.

Syntax
#pragma pragma_prepdump on | off | reset
Remarks
This pragma corresponds to the Emit #pragmas option in the CodeWarrior IDE’s

C/C++ Preprocessor settings panel. By default, this pragma is of £.

TIP When submitting bug reports with a preprocessor dump, be sure this option is
enabled.

precompile_target
Specifies the file name for a precompiled header file.

Syntax

#pragma precompile_target filename

Parameters
filename

A simple file name or an absolute path name. If filename is a simple file name, the
compiler saves the file in the same folder as the source file. If filename is a path
name, the compiler saves the file in the specified folder.

Remarks

If you do not specify the file name, the compiler gives the precompiled header file
the same name as its source file.

Listing 33.2 shows sample source code from a precompiled header source file. By
using the predefined symbols __cplusplus and the pragma
precompile_target, the compiler can use the same source code to create
different precompiled header files for C and C++.

CodeWarrior Build Tools Reference for Power Architecture® Processors 463

Pragmas for Preprocessing

Listing 33.2 Using #pragma precompile_target

#ifdef __ _cplusplus

#pragma precompile_target "MyCPPHeaders"
#else

#pragma precompile_target "MyCHeaders"
#endif

This pragma does not correspond to any panel setting.

simple_prepdump
Controls the suppression of comments in preprocessing output.

Syntax

#pragma simple_prepdump on | off | reset

Remarks

By default, the compiler adds comments about the current include file being in
preprocessing output. Enabling this pragma disables these comments.

This pragma corresponds to the Emit file changes option in the CodeWarrior
IDE’s C/C++ Preprocessor settings panel. By default, this pragma is of £.

space_prepdump

Controls whether or not the compiler removes or preserves whitespace in the
preprocessor’s output.
Syntax

#pragma space_prepdump on | off | reset

Remarks

This pragma is useful for keeping the starting column aligned with the original
source code, though the compiler attempts to preserve space within the line. This
pragma does not apply to expanded macros.

This pragma corresponds to the Keep whitespace option in the CodeWarrior
IDE’s C/C++ Preprocessor settings panel. By default, this pragma is of £.

464 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Preprocessing

srcrelincludes
Controls the lookup of #include files.

Syntax

#pragma srcrelincludes on | off | reset

Remarks

When on, the compiler looks for #include files relative to the previously
included file (not just the source file). When of £, the compiler uses the
CodeWarrior IDE’s access paths or the access paths specified with the -ir option.

Use this pragma when multiple files use the same file name and are intended to be
included by another header file in that directory. This is a common practice in
UNIX programming.

This pragma corresponds to the Source-relative includes option in the Access
Paths panel. By default, this pragma is of £.

syspath_once
Controls how included files are treated when #pragma once is enabled.

Syntax

#pragma syspath_once on | off | reset

Remarks

When this pragma and pragma once are set to on, the compiler distinguishes
between identically-named header files referred to in

#include <file-name>
and
#include "file-name".

When this pragma is of £ and pragma once is on, the compiler will ignore a file
that uses a

#include <file-name>
directive if it has previously encountered another directive of the form

#include "file-name"

CodeWarrior Build Tools Reference for Power Architecture® Processors 465

Pragmas for Preprocessing

for an identically-named header file.
shows an example.
This pragma does not correspond to any panel setting. By default, this setting is

on.

Listing 33.3 Pragma syspath_once example

#pragma syspath_once off

#pragma once on /* Include all subsequent files only once. */
#include "sock.h"

#include <sock.h> /* Skipped because syspath once is off. */

466 CodeWarrior Build Tools Reference for Power Architecture® Processors

34

Pragmas for Library and
Linking

always_import

Controls whether or not #include directives are treated as #pragma import
directives.

Syntax

#pragma always_import on | off | reset

Remarks

If you enable this pragma, the compiler treats all #include statements as
#pragma import statements.

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is of f.

export
Controls the exporting of data and functions to be accessible from outside a program or
library.
Syntax
#pragma export on | off | reset
#pragma export list namel [, name2, ...]

namel, nameZ2

Names of functions or global variables to export.

CodeWarrior Build Tools Reference for Power Architecture® Processors 467

Pragmas for Library and Linking

Remarks

When using the #pragma export on format, all functions in the source file
being compiled will be accessible from outside the program or library that the
compiler and linker are building.

Use the #pragma export 1list format to specify global variables and
functions for exporting. In C++, this form of the pragma applies to all variants of
an overloaded function. You cannot use this pragma for C++ member functions or
static class members. Listing 34.1 shows an example:

Listing 34.1 Example of an Exported List

extern int f(),g;
#pragma export list f,g

import
Controls the importing of global data or functions.

Syntax

#pragma import on | off | reset

#pragma import list namel [, name2, ...]
namel, nameZ2

Names of functions or global variables to import.

Remarks

When using the #pragma import on format, all functions are automatically
imported.

Use the #pragma import 1list format to specify data or functions for
importing. In C++, this form of the pragma applies to all variants of an overloaded
function. You cannot use this pragma for C++ member functions or static class
members.

Listing 34.2 shows an example:

Listing 34.2 Example of an Imported List

extern int f£(),g;
#pragma import list f,g

468 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Library and Linking

This pragma does not correspond to any CodeWarrior IDE panel setting. By
default, this pragma is of f.

lib_export
Controls the exporting of data or functions.

Syntax
#pragma lib_export on | off | reset

#pragma lib_export list namel [, name2 1*

Remarks

When using the #pragma lib_export on format, the linker marks all data
and functions that are within the pragma’s scope for export.

Use the #pragma 1lib_export 1list format to tag specific data or functions
for exporting. In C++, this form of the pragma applies to all variants of an
overloaded function. You cannot use this pragma for C++ member functions or
static class members.

Listing 34.3 shows an example:

Listing 34.3 Example of a 1ib_export List

extern int f£(),g;
#pragma lib_export list f,g

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

CodeWarrior Build Tools Reference for Power Architecture® Processors 469

Pragmas for Library and Linking

470 CodeWarrior Build Tools Reference for Power Architecture® Processors

35

Pragmas for Code
Generation

aggressive_inline
Specifies the size of enumerated types.

Syntax

#pragma aggressive_inline on | off | reset

Remarks
The IPA-based inliner (-ipa file) will inline more functions when this option
is enabled. This option can cause code bloat in programs that overuse inline

functions. Default is off.

dont_reuse_strings

Controls whether or not to store identical character string literals separately in object code.

Syntax

#pragma dont_reuse_strings on | off | reset

Remarks

Normally, C and C++ programs should not modify character string literals. Enable
this pragma if your source code follows the unconventional practice of modifying
them.

If you enable this pragma, the compiler separately stores identical occurrences of
character string literals in a source file.

CodeWarrior Build Tools Reference for Power Architecture® Processors 471

Pragmas for Code Generation

If this pragma is disabled, the compiler stores a single instance of identical string
literals in a source file. The compiler reduces the size of the object code it
generates for a file if the source file has identical string literals.

The compiler always stores a separate instance of a string literal that is used to
initialize a character array. Listing 35.1 shows an example.

Although the source code contains 3 identical string literals, "cat", the compiler
will generate 2 instances of the string in object code. The compiler will initialize
strl and str2 to point to the first instance of the string and will initialize str3
to contain the second instance of the string.

Using str2 to modify the string it points to also modifies the string that strl
points to. The array str3 may be safely used to modify the string it points to
without inadvertently changing any other strings.

This pragma corresponds to the Reuse Strings setting in the CodeWarrior IDE’s
C/C++ Language settings panel. By default, this pragma is of f.

Listing 35.1 Reusing string literals

#pragma dont_reuse_strings off
void strchange (void)

{
const char* strl = "cat";
char* str2 = "cat";
char str3[] = “cat”;
str2 = 'h'; / strl and str2 point to "hat"! */
str3[0] = 'b';
/* OK: str3 contains "bat", *strl and *str2 unchanged.
}
enumsalwaysint

Specifies the size of enumerated types.

Syntax

#pragma enumsalwaysint on | off | reset

Remarks

If you enable this pragma, the C/C++ compiler makes an enumerated type the same
size as an int. If an enumerated constant is larger than int, the compiler
generates an error message. Otherwise, the compiler makes an enumerated type the

472 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Code Generation

size of any integral type. It chooses the integral type with the size that most closely
matches the size of the largest enumerated constant. The type could be as small as a
char or as large as a long long.

Listing 35.2 shows an example.

Listing 35.2 Example of Enumerations the Same as Size as int

enum SmallNumber { One = 1, Two = 2 };
/* If you enable enumsalwaysint, this type is
the same size as an int. Otherwise, this type is
the same size as a char. */

enum BigNumber
{ ThreeThousandMillion = 3000000000 };
/* If you enable enumsalwaysint, the compiler might
generate an error message. Otherwise, this type is
the same size as a long long. */

This pragma corresponds to the Enums Always Int setting in the CodeWarrior
IDE’s C/C++ Language settings panel. By default, this pragma is of £.

errno_name
Tells the optimizer how to find the errno identifier.

Syntax

#pragma errno_name id |

Remarks

When this pragma is used, the optimizer can use the identifier errno (either a
macro or a function call) to optimize standard C library functions better. If not
used, the optimizer makes worst-case assumptions about the effects of calls to the
standard C library.

NOTE The MSL C library already includes a use of this pragma, so you would only
need to use it for third-party C libraries.

If errno resolves to a variable name, specify it like this:

#pragma errno_name _Errno

CodeWarrior Build Tools Reference for Power Architecture® Processors 473

Pragmas for Code Generation

If errno is a function call accessing ordinarily inaccessible global variables, use
this form:

#pragma errno_name
Otherwise, do not use this pragma to prevent incorrect optimizations.

This pragma does not correspond to any panel setting. By default, this pragma is
unspecified (worst case assumption).

explicit_zero_data

Controls the placement of zero-initialized data.

Syntax

#pragma explicit_zero_data on | off | reset

Remarks

Places zero-initialized data into the initialized data section instead of the BSS
section when on.

By default, this pragmais of £.

float_constants

Controls how floating pointing constants are treated.

Syntax

#pragma float_constants on | off | reset

Remarks

If you enable this pragma, the compiler assumes that all unqualified floating point
constant values are of type £1oat, not double. This pragma is useful when
porting source code for programs optimized for the “f1oat” rather than the
“double” type.

When you enable this pragma, you can still explicitly declare a constant value as
double by appending a “D” suffix.

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

474

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Code Generation

instmgr_file

Controls where the instance manager database is written, to the target data directory or to a
separate file.
Syntax

#pragma instmgr_file "name"

Remarks

When the Use Instance Manager option is on, the IDE writes the instance
manager database to the project’s data directory. If the #pragma
instmgr_fileis used, the database is written to a separate file.

Also, a separate instance file is always written when the command-line tools are
used.

NOTE Should you need to report a bug, you can use this option to create a separate
instance manager database, which can then be sent to technical support with
your bug report.

NOTE

longlong
Controls the availability of the long long type.

Syntax

#pragma longlong on | off | reset

Remarks

When this pragma is enabled and the compiler is translating “C90” source code
(ISO/IEC 9899-1990 standard), the compiler recognizes a data type named long
long. The long long type holds twice as many bits as the 1ong data type.

This pragma does not correspond to any CodeWarrior IDE panel setting.

By default, this pragma is on for processors that support this type. It is of £ when
generating code for processors that do not support, or cannot turn on, the 1ong
long type.

CodeWarrior Build Tools Reference for Power Architecture® Processors 475

Pragmas for Code Generation

longlong_enums
Controls whether or not enumerated types may have the size of the long long type.

Syntax

#pragma longlong_enums on | off | reset

Remarks

This pragma lets you use enumerators that are large enough to be long long
integers. It is ignored if you enable the enumsalwaysint pragma (described in
“enumsalwaysint” on page 472).

This pragma does not correspond to any panel setting. By default, this setting is
enabled.

min_enum_size
Specifies the size, in bytes, of enumeration types.

Syntax
#pragma min_enum_size 1 | 2 | 4
Remarks

Turning on the enumsalwaysint pragma overrides this pragma. The default is
1.

pool_strings
Controls how string literals are stored.

Syntax
#pragma pool_strings on | off | reset
Remarks

If you enable this pragma, the compiler collects all string constants into a single
data object so your program needs one data section for all of them. If you disable

476 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Code Generation

this pragma, the compiler creates a unique data object for each string constant.
While this decreases the number of data sections in your program, on some
processors it also makes your program bigger because it uses a less efficient
method to store the address of the string.

This pragma is especially useful if your program is large and has many string
constants or uses the CodeWarrior Profiler.

NOTE If you enable this pragma, the compiler ignores the setting of the
pcrelstrings pragma.

This pragma corresponds to the Pool Strings setting in the CodeWarrior IDE’s C/
C++ Language settings panel.

readonly_strings
Controls whether string objects are placed in a read-write or a read-only data section.

Syntax

#pragma readonly_strings on | off | reset

Remarks

If you enable this pragma, literal strings used in your source code are output to the
read-only data section instead of the global data section. In effect, these strings act
like const char *, even though their type is really char *.

This pragma does not correspond to any IDE panel setting.

reverse_bitfields

Controls whether or not the compiler reverses the bitfield allocation.

Syntax

#pragma reverse_bitfields on | off | reset

Remarks

This pragma reverses the bitfield allocation, so that bitfields are arranged from the
opposite side of the storage unit from that ordinarily used on the target. The
compiler still orders the bits within a single bitfield such that the lowest-valued bit
is in the right-most position.

CodeWarrior Build Tools Reference for Power Architecture® Processors 477

Pragmas for Code Generation

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

NOTE Limitation: please be aware of the following limitations when this pragma is
set to on:
- the data types of the bit-fields must be the same data type
- the structure (struct) or class must not contain non-bit-field members;
however, the structure (struct) can be the member of another structure

store_object_files

Controls the storage location of object data, either in the target data directory or as a
separate file.

Syntax

#pragma store_object_files on | off | reset

Remarks
By default, the IDE writes object data to the project’s target data directory. When

this pragma is on, the object data is written to a separate object file.

NOTE For some targets, the object file emitted may not be recognized as actual object
data.

This pragma does not correspond to any panel setting. By default, this pragma is
off.

478 CodeWarrior Build Tools Reference for Power Architecture® Processors

36

Pragmas for Optimization

global_optimizer

Controls whether the Frontend IR Optimizer is invoked by the compiler.

Syntax

#pragma global_optimizer on | off | reset

Remarks

In most compilers, this #pragma determines whether the Frontend IR Optimizer is
invoked. If disabled, only simple optimizations and back-end optimizations are
performed.

NOTE This is not the same as #pragma optimization_level. The Frontend IR
Optimizer is invoked even at optimization_level 0 if #pragma
global_optimizer is enabled.

This pragma does not correspond to any panel setting. By default, this setting is
on.

ipa

Specifies how to apply interprocedural analysis optimizations.

Syntax

#pragma ipa file | on | function | off

Remarks

See “Interprocedural Analysis” on page 281.

CodeWarrior Build Tools Reference for Power Architecture® Processors 479

Pragmas for Optimization

Place this pragma at the beginning of a source file, before any functions or data
have been defined. There arelevels of interprocedural analysis:

» file-level: the compiler translates each file and applies this optimization to the
file

» function-level: the compiler does not apply interprocedural optimization

The options £ile and on are equivalent. The options function and of f are
equivalent.

ipa_inline_max_auto_size
Determines the maximum complexity for an auto-inlined function.

Syntax

#pragma ipa_inline_max_auto_size (intval)

Parameters
intval

The intwval value is an approximation of the number of statements in a function,
the current default value is 500, which is approximately equal to 100 satement
function. Selecting a zero value will disable the IPA auto inlining.

Remarks

The size of the code objects that are not referenced by address and are only called
once is specified above a certain threshold using this pragma, preventing them
from being marked as inline.

opt_common_subs
Controls the use of common subexpression optimization.

Syntax

#pragma opt_common_subs on | off | reset

480 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Optimization

Remarks

If you enable this pragma, the compiler replaces similar redundant expressions
with a single expression. For example, if two statements in a function both use the
expression

a *b *c+ 10

the compiler generates object code that computes the expression only once and
applies the resulting value to both statements.

The compiler applies this optimization to its own internal representation of the
object code it produces.

This pragma does not correspond to any panel setting. By default, this settings is
related to the global optimizer pragma.

opt_dead_assignments
Controls the use of dead store optimization.

Syntax

#pragma opt_dead_assignments on | off | reset

Remarks

If you enable this pragma, the compiler removes assignments to unused variables
before reassigning them.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 479 level.

opt_dead_code
Controls the use of dead code optimization.

Syntax

#pragma opt_dead_code on | off | reset

Remarks

If you enable this pragma, the compiler removes a statement that other statements
never execute or call.

CodeWarrior Build Tools Reference for Power Architecture® Processors 481

Pragmas for Optimization

This pragma does not correspond to any panel setting. By default, this settings is

related to the “global_optimizer” on page 479 level.

opt_lifetimes
Controls the use of lifetime analysis optimization.

Syntax

#pragma opt_lifetimes on | off | reset

Remarks

If you enable this pragma, the compiler uses the same processor register for
different variables that exist in the same routine but not in the same statement.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 479 level.

opt_loop_invariants
Controls the use of loop invariant optimization.

Syntax

#pragma opt_loop_invariants on | off | reset

Remarks

If you enable this pragma, the compiler moves all computations that do not change
inside a loop outside the loop, which then runs faster.

This pragma does not correspond to any panel setting.

opt_propagation
Controls the use of copy and constant propagation optimization.

Syntax

#pragma opt_propagation on | off | reset

482 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Optimization

Remarks

If you enable this pragma, the compiler replaces multiple occurrences of one
variable with a single occurrence.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 479 level.

opt_strength_reduction

Controls the use of strength reduction optimization.

Syntax

#pragma opt_strength_reduction on | off | reset

Remarks

If you enable this pragma, the compiler replaces array element arithmetic
instructions with pointer arithmetic instructions to make loops faster.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global_optimizer” on page 479 level.

opt_strength_reduction_strict
Uses a safer variation of strength reduction optimization.

Syntax

#pragma opt_strength_reduction_strict on | off | reset

Remarks

Like the opt strength reduction pragma, this setting replaces
multiplication instructions that are inside loops with addition instructions to speed
up the loops. However, unlike the regular strength reduction optimization, this
variation ensures that the optimization is only applied when the array element
arithmetic is not of an unsigned type that is smaller than a pointer type.

This pragma does not correspond to any panel setting. The default varies according
to the compiler.

CodeWarrior Build Tools Reference for Power Architecture® Processors 483

Pragmas for Optimization

opt_unroll_loops
Controls the use of loop unrolling optimization.

Syntax

#pragma opt_unroll_loops on | off | reset

Remarks

If you enable this pragma, the compiler places multiple copies of a loop’s
statements inside a loop to improve its speed.

This pragma does not correspond to any panel setting. By default, this settings is
related to the “global optimizer” on page 479 level.

opt_vectorize_loops
Controls the use of loop vectorizing optimization.

Syntax
#pragma opt_vectorize_loops on | off | reset
Remarks
If you enable this pragma, the compiler improves loop performance.
NOTE Do not confuse loop vectorizing with the vector instructions available in some
processors. Loop vectorizing is the rearrangement of instructions in loops to

improve performance. This optimization does not optimize a processor’s
vector data types.

By default, this pragmais of f.

optimization_level
Controls global optimization.

Syntax

#pragma optimization_level 0 | 1 | 2 | 3 | 4 | reset

484 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Optimization

Remarks

This pragma specifies the degree of optimization that the global optimizer
performs.

To select optimizations, use the pragma optimization_level with an
argument from O to 4. The higher the argument, the more optimizations performed
by the global optimizer. The reset argument specifies the previous optimization
level.

These pragmas correspond to the settings in the Global Optimizations panel. By
default, this pragma is disabled.

optimize_for_size

Controls optimization to reduce the size of object code.

#pragma optimize_for_size on | off | reset

Remarks

This setting lets you choose what the compiler does when it must decide between
creating small code or fast code. If you enable this pragma, the compiler creates
smaller object code at the expense of speed. It also ignores the inline directive
and generates function calls to call any function declared inline. If you disable
this pragma, the compiler creates faster object code at the expense of size.

The pragma corresponds to the Optimize for Size setting on the Global
Optimizations panel.

optimizewithasm

Controls optimization of assembly language.

Syntax

#pragma optimizewithasm on | off | reset

Remarks

If you enable this pragma, the compiler also optimizes assembly language
statements in C/C++ source code.

CodeWarrior Build Tools Reference for Power Architecture® Processors 485

Pragmas for Optimization

This pragma does not correspond to any panel setting. By default, this pragma is
disabled.

pack
Stores data to reduce data size instead of improving execution performance.

Syntax

#pragma pack/()

#pragma pack(0 | n | push | pop)
n

One of these integer values: 1, 2, 4, 8, or 16.

Remarks

Use this pragma to align data to use less storage even if the alignment might affect
program performance or does not conform to the target platform’s application
binary interface (ABI).

If this pragma’s argument is a power of 2 from 1 to 16, the compiler will store
subsequent data structures to this byte alignment.

The push argument saves this pragma’s setting on a stack at compile time. The
pop argument restores the previously saved setting and removes it from the stack.
Using this pragma with no argument or with 0 as an argument specifies that the
compiler will use ABI-conformant alignment.

Not all processors support misaligned accesses, which could cause a crash or
incorrect results. Even on processors which allow misaligned access, your
program’s performance might be reduced. Your program may have better
performance if it treats the packed structure as a byte stream, then packs and
unpacks each byte from the stream.

NOTE Pragmapackisimplemented somewhat differently by most compiler vendors,
especially when used with bitfields. If you need portability, you are probably
better off using explicit shift and mask operations in your program instead of
bitfields.

486 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Optimization

strictheaderchecking
Controls how strict the compiler checks headers for standard C library functions.

Syntax

#pragma strictheaderchecking on | off | reset

Remarks

The 3.2 version compiler recognizes standard C library functions. If the correct
prototype is used, and, in C++, if the function appears in the “std” or root
namespace, the compiler recognizes the function, and is able to optimize calls to it
based on its documented effects.

When this #pragma is on (default), in addition to having the correct prototype, the
declaration must also appear in the proper standard header file (and not in a user
header or source file).

This pragma does not correspond to any panel setting. By default, this pragma is
on.

CodeWarrior Build Tools Reference for Power Architecture® Processors 487

Pragmas for Optimization

488 CodeWarrior Build Tools Reference for Power Architecture® Processors

37

Pragmas for Power
Architecture Compiler

This chapter describes the pragmas that control how the compiler translates source code
into instructions and data for Power Architecture processors.

* Diagnostic Pragmas

¢ Debugging Information Pragmas
e Library and Linking Pragmas

¢ Code Generation Pragmas

* Optimization Pragmas

Diagnostic Pragmas

incompatible_return_small_structs

Warns when returning structures using the R3 and R4 registers.

Syntax

#pragma incompatible_return_small_structs on | off | reset

Remarks

This pragma makes CodeWarrior-built object files more compatible with those
created using a GNU compiler.

The PowerPC EABI specifies that structures that are up to 8 bytes in size should be
in registers R3 and R4, while larger structures are returned by accessing a hidden
argument in R3. GCC compilers always uses the hidden argument method
regardless of size.

The CodeWarrior linker checks to see if you are including objects in your project
that have incompatible EABI settings. If you do, a warning message is issued.

CodeWarrior Build Tools Reference for Power Architecture® Processors 489

y
A

Pragmas for Power Architecture Compiler
Diagnostic Pragmas

NOTE Different versions of GCC compilers may fix these incompatibilities, so you
should check your version if you will be mixing GCC and CodeWarrior
objects.

incompatible_sfpe_double_params
Warns when skipping registers for double data types.

Syntax

#pragma incompatible_sfpe_double_params on | off | reset

Remarks

This pragma makes CodeWarrior-built object files more compatible with those
created with a GCC compiler.

The PowerPC EABI states that software floating-point parameters of type double
always begin on an odd register. In other words, in the function

void red(long a, double Db)

a is passed in register R3 and b is passed in registers R5 and R6 (effectively

skipping R4). GCC compilers do not skip registers if objects of type double are
passed (although it does skip them for values of type long long).

The CodeWarrior linker checks to see if you are including objects in your project
that have incompatible EABI settings. If you do, a warning message is issued.

NOTE Different versions of GCC compilers may fix these incompatibilities, so you

should check your version if you will be mixing GCC and CodeWarrior object
code.

490 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Debugging Information Pragmas

Debugging Information Pragmas

dwarf2typedefchains
Generates DWARF2 debugging information typedef statements.

Syntax

#pragma dwarf2typedefchains on | off | reset

Remarks

When this pragma is on, the compiler generates DWARF2 debugging information
for type definitions.

By default, this option is of £.

dwarf2lexblockcodeaddrcalc

Calculates the first and the last instruction in a lexical block by inspecting the entire
lexical block start and end lines..
Syntax

#pragma dwarf2lexblockcodeaddrcalc on | off | reset

Remarks

When this pragma is off, the compiler looks for the instruction following the
lexical block start and end but, does not emit the correct address range for
unparenthesiszed loop expressions.

By default, this option is off.

CodeWarrior Build Tools Reference for Power Architecture® Processors 491

y
A

Pragmas for Power Architecture Compiler
Library and Linking Pragmas

Library and Linking Pragmas

force_active
Deprecated.
Syntax
#pragma force_active on | off | reset

Remarks

In source code, use ___declspec (force_export),
__attrbute_ ((force_export)),or__attrbute__ ((used)).

In a linker command file, use the FORCEACTIVE command.

prepare_compress

Ensures that generated code is suitable for compression by a post-link tool.
Syntax

#pragma prepare_compress on | off | reset

Remarks

This pragma prepares object code to be compressed for Power Architecture
processors that have on-chip decompression features.

section
This sophisticated and powerful pragma lets you arrange compiled object code into
predefined sections and sections you define.
NOTE Deprecated only when used without an associated
__declspec (section). To avoid C++ parsing ambiguities and other
possible inadvertent errors, use ___declspec (section) instead.
492

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Library and Linking Pragmas

Syntax

#pragma section [objecttype | permission] [iname] [uname]
[data_mode=datamode] [code_mode=codemode]

Parameter
objecttype

specifies where types of object data are stored. It may be one or more of these
values:

* code_type — executable object code

* data_type — non-constant data of a size greater than the size specified in
the small data threshold option in the EPPC Target settings panel

¢ sdata_type — non-constant data of a size less than or equal to the size
specified in the small data threshold option in the EPPC Target settings panel

* const_type — constant data of a size greater than the size specified in the
small const data threshold option in the EPPC Target settings panel

* sconst_type — constant data of a size less than or equal to the size specified
in the small const data threshold option in the EPPC Target settings panel

e all_types — all code and data
Specify one or more of these object types without quotes separated by spaces.

The CodeWarrior C/C++ compiler generates some of its own data, such as
exception and static initializer objects, which are not affected by #pragma
section.

NOTE To classify character strings, the CodeWarrior C/C++ compiler uses the setting
of the Make Strings Read Only checkbox in the EPPC Processor settings panel.
If the checkbox is checked, character strings are stored in the same section as
data of type const_type. If the checkbox is clear, strings are stored in the same
section as data for data_type.

permission
specifies access permission. It may be one or more of these values:
¢ R — read only permission
* W — write permission
¢ X — execute permission
Specify one or more of these object types without quotes separated by spaces.

For more information on access permission, see “Section access permissions” on
page 495.

CodeWarrior Build Tools Reference for Power Architecture® Processors 493

A 4
4\

Pragmas for Power Architecture Compiler
Library and Linking Pragmas

iname

specifies the name of the section where the compiler stores initialized objects.
Variables that are initialized at the time they are defined, functions, and character
strings are examples of initialized objects.

The iname parameter may be of the form . abs . xxxxxxxx wWhere XxXxxxxx
is an 8-digit hexadecimal number specifying the address of the section.

uname

specifies the name of the section where the compiler stores uninitialized objects.
This parameter is required for sections that have data objects. The uname
parameter value may be a unique name or it may be the name of any previous
iname or uname section. If the uname section is also an iname section then
uninitialized data is stored in the same section as initialized objects.

The special uname COMM specifies that uninitialized data will be stored in the
common section. The linker will put all common section data into the “.bss”
section. When the Use Common Section checkbox is checked in the EPPC
Processor panel, COMM is the default uname for the . data section. If the Use
Common Section checkbox is clear, .bss is the default name of .data
section.

The uname parameter value may be changed. For example, you may want most
uninitialized data to go into the .bss section while specific variables be stored in
the COMM section.

Listing 37.1 shows an example where specific uninitialized variables are stored in
the COMM section.

Listing 37.1 Storing Uninitialized Data in the COMM Section

#pragma push // save the current state
#pragma section ".data" "COMM"

int red;
int sky;

#pragma pop // restore the previous state

NOTE You may not use any of the object types, data modes, or code modes as the

names of sections. Also, you may not use pre-defined section names in the
PowerPC EABI for your own section names.

data_mode=datamode

specifies the compiler for the kind of addressing mode to be used for referring to
data objects for a section.

494

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Library and Linking Pragmas

The permissible addressing modes for datamode are:

* near_abs — objects must be within the range -65,536 bytes to 65,536 bytes
(16 bits on each side)

e far_ abs — objects must be within the first 32 bits of RAM

* sda_rel — objects must be within a 32K range of the linker-defined small
data base address

The sda_rel addressing mode may only be used with the “. sdata”,
“.sbss”, “.sdata2”, “.sbss2”, “.PPC.EMB.sdata0”, and
“.PPC.EMB. sbss0” sections.

The default addressing mode for large data sections is far_abs. The default
addressing mode for the predefined small data sections is sda_rel.

Specify one of these addressing modes without quotes.
code_mode=codemode

specifies the compiler for the kind of addressing mode to be used for referring to
executable routines of a section.

The permissible addressing modes for codemode are:

* pc_rel — routines must be within plus or minus 24 bits of where pc_rel is
called from

* near_abs — routines must be within the first 24 bits of memory address
space

e far_abs — routines must be within the first 32 bits of memory address space
The default addressing mode for executable code sections is pc_rel.

Specify one of these addressing modes without quotes.

NOTE All sections have a data addressing mode (data_mode=datamode) and a code
addressing mode (code_mode=codemode). Although the CodeWarrior C/C++
compiler for PowerPC embedded allows you to store executable code in data
sections and data in executable code sections, this practice is not encouraged.

Remarks

CodeWarrior compilers generate their own data, such as exception and static initializer
objects, which the #pragma section statement does not affect.

Section access permissions

When you define a section by using #pragma section, its default access permission
is read only. Changing the definition of the section by associating an object type with it
sets the appropriate access permissions for you. The compiler adjusts the access

CodeWarrior Build Tools Reference for Power Architecture® Processors 495

A 4
4\

Pragmas for Power Architecture Compiler
Library and Linking Pragmas

permission to allow the storage of newly-associated object types while continuing to allow
objects of previously-allowed object types. For example, associating code_type with a
section adds execute permission to that section. Associating data_type,
sdata_type, or sconst_type with a section adds write permission to that section.

Occasionally you might create a section without associating it with an object type. You
might do so to force an object into a section with the ___declspec keyword. In this case,
the compiler automatically updates the access permission for that section to allow the
object to be stored in the section, then issue a warning. To avoid such a warning, make
sure to give the section the proper access permissions before storing object code or data
into it. As with associating an object type to a section, passing a specific permission adds
to the permissions that a section already has.

Predefined sections and default sections

When an object type is associated with the predefined sections, the sections are set as
default sections for that object type. After assigning an object type to a non-standard

section, you may revert to the default section with one of the forms in “Forms for #pragma
section” on page 497.

The compiler predefines the sections in Listing 37.2.

Listing 37.2 Predefined sections

#pragma section code_type ".text" data_mode=far_abs code_mode=pc_rel

#pragma section data_type ".data" ".bss" data_mode=far_abs
code_mode=pc_rel

#pragma section const_type ".rodata" ".rodata" data_mode=far_abs
code_mode=pc_rel

#pragma section sdata_type ".sdata" ".sbss" data_mode=sda_rel
code_mode=pc_rel

#pragma section sconst_type ".sdata2" ".sbss2" data_mode=sda_rel
code_mode=pc_rel

#pragma section ".PPC.EMB.sdataO" ".PPC.EMB.sbss0" data_mode=sda_rel
code_mode=pc_rel

#pragma section RX ".init" ".init" data_mode=far_abs code_mode=pc_rel

NOTE The .PPC.EMB.sdatal and .PPC.EMB. sbss0 sections are predefined
as an alternative to the sdata_type object type. The . init section is also

496 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Library and Linking Pragmas

predefined, but it is not a default section. The . init section is used for startup
code.

Forms for #pragma section
#pragma section ".namel"

This form simply creates a section called . namel if it does not already exist. With this
form, the compiler does not store objects in the section without an appropriate, subsequent
#pragma section statement or an item defined with the __declspec keyword. If
only one section name is specified, it is considered the name of the initialized object
section, iname. If the section is already declared, you may also optionally specify the
uninitialized object section, uname. If you know that the section must have read and write
permission, use #pragma section RW .namel instead, especially if you use the
__declspec keyword.

#pragma section objecttype ".namel2"

With the addition of one or more object types, the compiler stores objects of the types
specified in the section .name2.If .name2 does not exist, the compiler creates it with
the appropriate access permissions. If only one section name is specified, it is considered
the name of the initialized object section, iname. If the section is already declared, you
may also optionally specify the uninitialized object section, uname .

#pragma section objecttype

When there is no iname parameter, the compiler resets the section for the object types
specified to the default section. Resetting the section for an object type does not reset its
addressing modes. You must reset them.

When declaring or setting sections, you also can add an uninitialized section to a section
that did not have one originally by specifying a uname parameter. The corresponding
uninitialized section of an initialized section may be the same.

Forcing individual objects into specific sections

You may store a specific object of an object type into a section other than the current
section for that type without changing the current section. Use the ___declspec
keyword with the name of the target section and put it next to the extern declaration or
static definition of the item you want to store in the section.

Listing 37.3 shows examples.

Listing 37.3 Using __declspec to Force Objects into Specific Sections

_ declspec(section ".data") extern int myVar;
#pragma section "constants"
_ _declspec(section "constants") const int myConst = 0x12345678

CodeWarrior Build Tools Reference for Power Architecture® Processors 497

y
A

Pragmas for Power Architecture Compiler
Code Generation Pragmas

Using #pragma section with #pragma push and #pragma pop

You can use this pragma with #pragma push and #pragma pop to ease complex or
frequent changes to sections settings.

See Listing 37.1 for an example.

NOTE The #pragma pop does not restore any changes to the access permissions of
sections that exist before or after the corresponding #pragma push.

Code Generation Pragmas

alignment_metrowerks
Determines which structure alignment policy to use.

Syntax

#pragma alignment_metrowerks on | off | reset

Remarks
This pragmas specifies which policy that
#pragma options align=power
will use for aligning data in structures. When this pragma is on, then this directive
#pragma options align=power
is equivalent to this directive
#pragma options align=power_mw
When this pragma is off, then this directive
#pragma options align=power
is equivalent to this directive

#pragma options align=power_gcc

498 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Code Generation Pragmas

altivec_codegen
Controls the use Power Architecture AltiVec™ instructions during optimization.

Syntax

#pragma altivec_codegen on | off | reset

Remarks

If this pragma is on, the compiler uses Power Architecture AltiVec instructions, if
possible, during optimization. When this pragma is o £ £, the pragma
altivec_model is also set to of f.

altivec_model
Controls the use Power Architecture AltiVec™ language extensions.

Syntax

#pragma altivec_model on | off | reset

Remarks

If you enable this pragma, the compiler allows language extensions to take
advantage of the AltiVec instructions available on some Power Architecture
processors. When this pragma is on the compiler sets #pragma
altivec_codegen to on and defines the __ VEC___ preprocessor directive.

altivec_pim_warnings
Controls how the compiler translates literal values for AltiVec vectors.

Syntax

#pragma altivec_pim warnings on | off | reset

Remarks

When this pragma is on, the compiler follows the syntax rules described in
AltiVec™ Technology Programming Interface Manual (“PIM”) to specify literal
values for vector objects. This syntax specifies these requirements:

CodeWarrior Build Tools Reference for Power Architecture® Processors 499

y
A

Pragmas for Power Architecture Compiler
Code Generation Pragmas

* vector values must be enclosed in parentheses
* vector values must be preceded by a type specifier

When this pragma is o £, the compiler expects a style more consistent with C
source code conventions:

¢ vector values must be enclosed in braces
¢ vector values do not need to be preceded by a type specifier

Listing 37.4 shows an example.

Listing 37.4 Example of using altivec_pim_warnings

#pragma altivec_pim_warnings on
vector signed int vsil = (__vector signed int) (1, 2, 3, 4);

#pragma altivec_pim warnings off
vector signed int vsi2 = {1, 2, 3, 4};

altivec_vrsave

Controls which AltiVec™ registers to save to the stack between function calls.

Syntax

#pragma altivec_vrsave on | off | reset | allon

Parameter
allon

Tells the compiler to set all bits in the VRSAVE register.

Remarks

When generating instructions to call a function, the compiler uses the VRSAVE
register’s contents to determine which AltiVec registers should be saved to and
restored from the stack.

When this pragma is on, the compiler determines which AltiVec registers a
function uses. It generates instructions to record this information in the VRSAVE
register.

When this pragma is of £, the compiler clears the VRSAVE register and
consequently does not save AltiVec registers on the stack.

500

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Code Generation Pragmas

When this pragma is set to allon, the compiler sets the VRSAVE register to
specify that all AltiVec registers should be saved and restored on the stack.

b_range
Tests that all branch instructions branch no further than value.
Syntax
#pragma b_range value | off | default
Parameter
value
Branch value. Default value is (0x04000000 - 1).
Remarks
Use this pragma for executable code that runs on Power Architecture processors
with on-chip decompression capabilities.
bc_range
Ensures that all branch conditional instructions branch no further than value.
Syntax
#pragma bc_range value | off | default
Parameter
value
Branch value.
If prepare_compress is of £, default value is:
(0x00010000 - 1)
If prepare_compress is on, deafult value is:
(0x00001000 - 1)
Remarks

Use this pragma for executable code that runs on Power Architecture processors
with on-chip decompression capabilities.

CodeWarrior Build Tools Reference for Power Architecture® Processors 501

y
A

Pragmas for Power Architecture Compiler
Code Generation Pragmas

cats

Controls the generation of relative . rela. * sections inthe .elf file

Syntax

#pragma cats on | off | reset
Remarks

The default for this pragma is of £ for Freescale Power Architecture processors.

NOTE Standard libraries should be rebuild using #pragma cats off in order to
getrid of all .rela.* symbolsinthe internal_ FLASH.elf file.

disable_registers

Controls compatibility for the ISO/IEC standard library function setjmp ().

Syntax

#pragma disable_registers on | off | reset

Remarks

If this pragma is on, the compiler disables certain optimizations for any function
that calls setjmp (). It also disables global optimization and does not store local
variables and arguments in registers. These changes ensure that all local variables
have correct values when the setjmp () function saves the processor state.

Use this pragma only if you are porting code that relies on this feature because it
makes your program much larger and slower. In new code, declare a variable to be
volatile if you expect its value to persist across setjmp() calls.

e500_floatingpoint

Generates single-precision floating point instructions for the Power Architecture e500
SPE (Signal Processing Unit) APU (Auxiliary Processing Unit).

502

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Code Generation Pragmas

Syntax

#pragma e500_floatingpoint on | off | reset

e500v2_floatingpoint

Generates double-precision floating point instructions for the Power Architecture e500v2
SPE (Signal Processing Unit) APU (Auxiliary Processing Unit).

Syntax

#pragma e500v2_floatingpoint on | off | reset

function_align

Aligns the executable object code of functions on a specified byte boundary.

Syntax
#pragma function_align 4 | 8 | 16 | 32 | 64 | 128 | reset

gen_fsel

Controls the use of the floating-point select instruction, fsel.

Syntax
#pragma gen_fsel on | off | number | always

where number is a value from 1 to 255.

Remarks

The compiler uses this pragma to determine how often it generates the f£sel
instruction. The number argument specifies how aggressively the compiler should
use this instruction, 1 is equivalent to “rarely” and 255 is equivalent to always.
The on choice is equivalent to a value of 10.

CodeWarrior Build Tools Reference for Power Architecture® Processors 503

y
A

Pragmas for Power Architecture Compiler
Code Generation Pragmas

gen_isel
Controls the use of the integer select instruction, isel.

Syntax

#pragma gen_isel on | off | number | always

where number is a value from 1 to 255.

Remarks

The compiler uses this pragma to determine how often it generates the isel
instruction. The number argument specifies how aggressively the compiler should
use this instruction, 1 is equivalent to “rarely” and 255 is equivalent to always.
The on choice is equivalent to a value of 10.

gprfloatcopy

Takes advantage of simpler alignment restrictions for copying floating point data.

Syntax

#pragma gprfloatcopy on | off | reset

Remarks

When this pragma is on, the compiler uses integer load and store instructions for
memory-to-memory assignments for objects of type double and float, which
improves the speed of memory-to-memory assignments of unaligned floating-point

data. When this pragma is of £, the compiler issues floating-point load and store
instructions instead.

has8bytebitfields
Controls the use of bitfields that fit in the 1ong long data type.

Syntax

#pragma has8bytebitfields on | off | reset

504 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Code Generation Pragmas

Remarks

When this pragma is on, the compiler allows bitfields in the 1long long data
type. Such bitfields may occupy up to 64 bits (8 bytes). When this pragma is of £,
the compiler allows bitfields only in integer types of the same size or smaller than
the long type.

Listing 37.5 Example for pragma has8bytebitfields

#pragma has8bytebitfields on

struct X {
long long fielda : 12;
long long fieldb : 18;
long long fieldc : 32;
long long fieldd : 2;

Y

interrupt

Deprecated. To avoid C++ parsing ambiguities and other possible inadvertent errors, use
_ declspec (interrupt) instead.

legacy_struct_alignment

Avoids the possibility of misaligned load or store instructions caused by promoting the
alignment of global and local data objects to a minimum of 4 bytes.

Syntax

#pragma legacy_struct_alignment on | off | reset

Remarks

The default for this pragma is of £ for Freescale Power Architecture processors as
the big endian systems do not crash and misalignment is rare.

merge_float_consts

Each floating point constant is placed in a unique variable such that the linker will merge
floating point constants which have the same value. (The variable names are not legal C/

CodeWarrior Build Tools Reference for Power Architecture® Processors 505

A 4
4\

Pragmas for Power Architecture Compiler
Code Generation Pragmas

C++ and are not accessible by the user). This option works with either small data in TOC
on or off. This option minimizes TOC entry usage for programs which frequently use the
same floating point constant in many different source files.

Syntax
#pragma merge_float_consts on|off
Remarks

The default for this pragma is of£ £ for Freescale Power Architecture processors.

min_struct_align

Increases aggregate alignments for better memory access.

Syntax

#pragma min_struct_align 4 | 8 | 16 | 32 | 64 | 128 | on | off
| reset

Remarks

When this pragma is of £, the compiler aligns objects to their regular alignments.
The default alignment is 4.

NOTE This pragma only applies if the optimization level is greater than 0.

misaligned_mem_access

Controls how the compiler copies structures that are not aligned to 4-byte boundaries.

Syntax

#pragma misaligned _mem_access on | off | reset

Remarks

When this pragma is on, the compiler uses 4-byte load and store instructions to
copy structures that are not aligned to 4-byte boundaries. By using these
misaligned load and store instructions, the compiler improves runtime performance
and reduces code size.

506

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Code Generation Pragmas

When this pragma is of £, the compiler uses 1-, 2-, and 4-byte load and store
instructions to copy structures that are aligned on corresponding boundaries.

However, misaligned load and store instructions on some Power Architecture
processors give poor performance or even generate processor exceptions. For these
processors, turn this pragma off. Desktop variants of the Power Architecture
processor family do not have this limitation.

Consult the processor manufacturer's documentation for information on the
processor's behavior when loading and storing 4-byte values that are not aligned to
4-byte boundaries.

The default for this pragma is on for processors that allow misaligned memory
access. The default is o f £ for processors that have limited misaligned memory
access performance or generate an exception.

no_register_save_helpers

Controls the save and restore registers without calling helper functions

Syntax

#pragma no_register_save_helpers on | off | reset

options

Specifies how to align structure and class data.

Syntax

#pragma options align= alignment

Parameter

alignment

Specifies the boundary on which structure and class data is aligned in memory.
Values for alignment range from 1 to 16, or use one of the following preset values:

CodeWarrior Build Tools Reference for Power Architecture® Processors 507

'
A

Pragmas for Power Architecture Compiler
Code Generation Pragmas

Table 37.1 Structs and Classes Alignment

If alignmentis ... The compiler ...

mac68k Aligns every field on a 2-byte boundaries, unless a field is
only 1 byte long. This is the standard alignment for 68K
Mac OS alignment.

macé68kdbyte Aligns every field on 4-byte boundaries.

power Aligns every field on its natural boundary. For example, it
aligns a character on a 1-byte boundary and a 16-bit
integer on a 2-byte boundary. The compiler applies this
alignment recursively to structured data and arrays
containing structured data. So, for example, it aligns an
array of structured types containing an 4-byte floating
point member on an 4-byte boundary.

native Aligns every field using the standard alignment.

packed Aligns every field on a 1-byte boundary. It is not available
in any panel. This alignment causes your code to crash or
run slowly on many platforms. Use it with caution.

reset Resets to the value in the previous #pragma options
align statement.

NOTE There is a space between options and align.

Overload

pool_data

Controls whether data larger than the small data threshold is grouped into a single data
structure.

Syntax
#pragma pool_data on | off | reset

508 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Code Generation Pragmas

Remarks

When this pragma is on the compiler optimizes pooled data. You must use this
pragma before the function to which you apply it.

NOTE Even if this pragma is on, the compiler will only pool the data if there is a
performance improvement.

This pragma corresponds to the CodeWarrior IDE’s Pool Data setting in the
PowerPC Processor panel.

ppc_Ilvxl_stvxl_errata

Controls the instruction encoding for the 1vx1 and stvx1 instructions on the Power
Architecture 745x processors to correct a bug in the processors.

Syntax

#pragma ppc_lvxl_stvxl_errata on | off | reset

profile

Controls the generation of extra object code for use with the CodeWarrior profiler.

Syntax

#pragma profile on | off | reset

Remarks

If you enable this pragma, the compiler generates code for each function that lets
the CodeWarrior Profiler collect information on it.

This pragma corresponds to the CodeWarrior IDE’s Profiler Information setting
in the PPC Processor panel.

read_only_switch_tables

Controls where tables for switch statements are placed in object code.

CodeWarrior Build Tools Reference for Power Architecture® Processors 509

A 4
4\

Pragmas for Power Architecture Compiler
Code Generation Pragmas

Syntax

#pragma read_only_switch_tables on | off | reset

Remarks

This option specifies where the compiler places executable code addresses for
switch statements. When this option is on, the compiler places these tables in a
read-only section (. rodata), allowing the linker to place this object code in a
ROM area instead of RAM.

When this option is of £, the compiler places these switch tables in an object
code section that is readable and writable (. data). Putting these tables in a read/
write section allows relocation at runtime. The System V ABI, SuSE, YellowDog,
and SDA PIC/PID application binary interfaces (ABIs) allow relocatable object
code at runtime.

strict_ieee_fp

Controls generation of executable code that conforms to the IEEE floating point standard.

Syntax

#pragma strict_ieee_fp on | off | reset

Remarks

Disabling this option may improve performance but may change the results
generated.

¢ Use Fused Mult-Add/Sub

Uses a single instruction to do a multiply accumulate. This runs faster and
generates slightly more accurate results than specified by IEEE, as it has an
extra rounding bit between the multiply and the add/subtract).

¢ Generate fsel instruction

The £sel instruction is not accurate for denormalized numbers, and may have
issues related to unordered compares, but generally runs faster.

¢ Assume Ordered Compares

Ignore the unordered issues when comparing floating point which allows
converting:

if (a <= b)
into

if (! (a > b))

510

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Code Generation Pragmas

switch_tables
Controls the generation of switch tables.

Syntax

#pragma switch_tables on | off | reset

Remarks

When on, the compiler translates switch statements into tables of addresses
where each address in the list corresponds to a case statement. Using tables
improves the performance of switch statements but may increase the size of the
executable code if there are many case statements or if the case label values are
not contiguous.

When of £, the compiler translates switch statements into a series of
comparisons, one comparison for each case statement.

uchar_bool
Controls the size of the _Bool and bool data types.

Syntax

#pragma uchar_bool on | off | reset

Remarks

When on, the compiler translates the _Boo1l data type in C99 (ISO/IEC 9899-
1999) source code and the bool data type in C++ source code to 8 bit values.
When of £, these data types are 32 bits. Use this pragma only before any
declarations.

When this pragma is off (boolean values are 32-bits), use bitfields to ensure that a
boolean value is 8 bits. Listing 37.6 shows an example.

Listing 37.6 Example of overriding uchar_bool in a structure in C++

#pragma uchar_bool off /* Boolean values are 32 bits */

typedef struct
{

CodeWarrior Build Tools Reference for Power Architecture® Processors 511

y
A

Pragmas for Power Architecture Compiler
Code Generation Pragmas

bool sockclean:8 /* This value will only occupy 8 bits. */
} sockrec;

use_Imw_stmw
Controls the use of 1mw and stmw instructions.

Syntax

#pragma use_lmw_stmw on | off | reset

Remarks

Use of 1mw and stmw may be slower on some processors.

ushort_wchar_t
Controls the size of wchar_t.

Syntax
#pragma ushort_wchar_t on | off | reset
Remarks

When this pragma is on, wchar_t changes from 4-bytes to 2-bytes.

vec2x32float_align_4

Controls the alignment of type ___vec2x32float__.

Syntax

#pragma vec2x32float_align 4 on | off | reset

Remarks

When the pragma is on, type __vec2x32float__ is aligned on 4byte
boundary.

The default value for this pragma is of £.

512 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Code Generation Pragmas

z4 16bit_cond_branch_errata_5116
Controls the use of 16-bit conditional instructions.

Syntax

#pragma z4_16bit_cond_branch_errata_ 5116 on | off | reset

Remarks

When the pragma is on, 32-bit conditional instructions are used instead of
l6-bit.

The default value for this pragma is of £.

z4 mtilr_se rfi_errata 26553

Ensures that there are at least three instructions between the mt1r and the se_rfi.

Syntax

#pragma z4_mtlr_se rfi_errata 26553 on | off | reset

Remarks

When the pragma is on and you are using either __declspec (interrupt) or
#pragma interrupt, the compiler ensures that there are at least three
instructions between the mt 1r and the se_rfi.

If your interrupt handler is written in function level assembler, compiler support
only happens if you do not use the nofralloc directive. Standalone assembler
does not include this support.

The default value for this pragma is of £.

NOTE Other forms of the se_rfi such as se_rfci and se_rfdi are also
supported.

CodeWarrior Build Tools Reference for Power Architecture® Processors 513

y
A

Pragmas for Power Architecture Compiler
Optimization Pragmas

Optimization Pragmas

aggressive_hoisting
Improves the number of variables that get hoisted out of a loop.

Syntax

#pragma aggressive_hoisting on | off | reset

Remarks

This pragma produces faster code and causes a slight increase in code size,
especially when optimizing for size. In some cases, hoisting variables out of a loop
when the loop does not have a lot of iterations can make your code slower.

The default value for this pragma is of £.

c9x_alias_by_type
Allows back-end optimizations to use alias type information.

Syntax

#pragma c9x_alias_by type on | off | reset

Remarks

When this pragma is on, the compiler’s back-end optimizations take advantage of
type information gathered during alias analysis. Turn this pragma on if your source

code follows the type rules specified by the ISO/IEC 9899-1999 C standard
(“C99”), section 6.5.

Turn this pragma off if your source code violates type rules. The information
collected from source code that violates these rules might lead the compiler to
apply its optimizations incorrectly.

This pragma does not have a corresponding IDE panel setting.

epilogue_helper_functions

Controls size optimization for function termination instructions.

514 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Optimization Pragmas

Syntax

#pragma epilogue_helper_functions on | off | reset

Remarks

When this pragma is on, the compiler reduces the size of object code in function
terminations. It performs this optimization by replacing several instructions for
function termination with fewer calls to special functions that perform the same
tasks. This optimization reduces executable code size but also slows the program’s
performance.

When this pragma is on, the compiler generates instructions that may appear as
inconsistent information in a symbolic debugger when stepping through the end of
a function.

This pragma does not correspond to any panel setting. By default, this pragma is
off. The compiler turns this optimization on implicitly when size optimization is on
and optimization level is equal to or greater than 2. For example, these pragma
settings will also turn on epilogue helper function generation:

#pragma optimization_level 2
#pragma optimize_for_size on

fp_contract

Controls the SPE additional fused multiply-add instructions codegen, when
-spe2_vector is selected.

Syntax

#pragma fp_contract on | off

Remarks

Floating point accuracy is maintained by turning off this optimization.

fp_contract_aggressive
Enables the peephole pattern to detect and convert the seperate instructions.

Syntax

#pragma fp_contract_aggressive on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 515

A 4
4\

Pragmas for Power Architecture Compiler
Optimization Pragmas

Remarks

#pragma fp_contract_aggressive on can be used to further optimize
multiply-add opportunities.

NOTE Precision could be lost due to rounding issues.

ipa_rescopes_globals

Rescopes the application global variables, that are only used in one function, to local
static. The change to static enables other optimizations that improve alias analysis and
load/store optimizations.

Syntax

#pragma ipa_rescopes_globals on | off

Remarks

Ensure that the following requirements are met to rescope the application global
variables to local static:

¢ Program IPA is enabled in all application source files

* use of #pragma ipa_rescopes_globals on in all application source
files (prefix file or with -flag ipa_rescopes_globals on the
commandline)

* main () is defined in one of the application files.

¢ Itis not necessary, or even desirable, to have standard library, runtime or startup
code compiled with program IPA and ipa_rescopes_globals on.
However, it is important to have as many of your application sources as possible
compiled with those options enabled.

NOTE As the third party libraries generally do not access the application variables,
these libraries can be kept in archive form.

For a simple example, compile/assemble your startup code without program IPA.
Compile all of the application code with program IPA, #pragma
ipa_rescopes_globals on and link the startup objects, your application
objects and the library archives (For more details on Program IPA linking
procedures, refer “Interprocedural Analysis”).

For a complex example where the application sources are put into groups,
compiled and then pre-built into several archives or partially linked objects and the

516 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Optimization Pragmas

build procedure cannot be matched with the simple example, following changes to
the build procedure are suggested:

¢ Try to make the build setup as similar to the simple example as possible. This
will help you identify if the code will benefit from
ipa_rescopes_globals or you will need to modify your source files to
get a successful link. For more details, refer “Generating a successful link”.

* All of your functions are not visible to the compiler at once during program IPA.
It is possible that a defined global variable in your core files may be used by
only one core file but might also be used in one of your application archives that
you were unable to build the simple way. If this is true,
ipa_rescopes_globals will rescope the variable and at link time, your
application archive will not be able to find the variable and you will get an
undefined symbol link error.

NOTE If you get a successful link you do not have to make any further changes to the
build or source.

Generating a successful link

Optimization prevents an improper build. If you do not get a successful link or you
only get a few such link errors, identify the source file that defines the "undefined"
symbol and try one of the following (in decreasing order of general preference):

* Move the definition of the symbol into the application archive. Symbols that are
undefined do not get rescoped.

¢ Force the export of the symbol with ___dec1spec(force_export). Symbols that
are exported do not get rescoped.

¢ Change the symbols to weak with __declspec(weak) by inserting before
definition. Weak symbols do not get rescoped.

* Change the symbols to volatile. Volatile symbols do not get rescoped.

with smaller, more efficient groups of instructions.

peephole
Controls the use peephole optimization.

Syntax

#pragma peephole on | off | reset

CodeWarrior Build Tools Reference for Power Architecture® Processors 517

y
A

Pragmas for Power Architecture Compiler
Optimization Pragmas

Remarks

If you enable this pragma, the compiler performs peephole optimizations. These
optimizations replace redundant or commonly occurring groups of instructions
with smaller, more efficient groups of instructions.

peephole_enable_16bit_load_store_inst
Enables use of 16-bit load/store instructions instead of 32-bit load/store instructions

Syntax

#pragma peephole_enable_l6bit_load_store_inst on | off |
reset

Remarks

This peephole optimization will replace the 32 bit load/store instructions with 16
bit load/store instructions.

This pragma is on by default under size optimization and off under speed
optimization.

Please note that this optimization is applicable only when VLE instruction set is
enabled.

Example
Converts the below pattern
e_stb r0,28(r3)
e_stb r0,32(r3)
e_stb rd,36(r3)
e_stb r4,40(xr3)
e_stb rd,41(r3)
e_stb rd,42(x3)
e_stb rd,43(r3)

to

518 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Optimization Pragmas

e_addleéi r3,r6,28

se_stb
se_stb
se_stb
se_stb
se_stb
se_stb

se_stb

r0,0(r3)
r0,4(r3)
r4,8(r3)
r4,12(x3)
rd4,13 (x3)
r4,14(x3)
r4,15(xr3)

ppc_opt_defuse_mem_limit

Controls memory consumed by compiler optimizations on the host computer.

Syntax

#pragma ppc_opt_defuse _mem limit on | off | reset | limit

Parameter

limit

Number of megabytes to use on the host computer when optimizing object code.
The default value is 150, which specifies 150 megabytes.

Remarks

Some optimizations need a lot of memory on the host computer, especially when
optimizing large functions that make many function calls or refer to many
variables. This pragma controls how much memory these optimizations consume.

If limit is set too low, the compiler will not be able to complete some optimizations
and will issue an error message.

NOTE This pragma is to be used when users see the compiler error or warning that the
compiler needs more memory to be allocated for usedef/defuse chain
computation.

CodeWarrior Build Tools Reference for Power Architecture® Processors 519

y
A

Pragmas for Power Architecture Compiler
Optimization Pragmas

ppc_unroll_instructions_limit

Limits number of instructions in an unrolled loop to value.

Syntax

#pragma ppc_unroll_instructions_limit value | on | off

Parameter
value

Count limit of instructions. The default is 70.

Remarks

Use this pragma to specify the maximum number of instructions to place in an
unrolled loop. The opt_unroll_loops pragma controls loop unrolling
optimization.

When this pragma is on, the compiler uses the default value.

ppc_unroll_speculative

Controls speculative unrolling of counting loops which do not have fixed counts.

Syntax

#pragma ppc_unroll_speculative on | off

Remarks

The compiler uses the value specified with the ppc_unroll_factor_limit
pragma to compute how many times to unroll eligible loops. The compiler adjusts
the value specified with ppc_unroll_factor_limit so thatitis equal to or
less than the closest power of 2.

This optimization is only applied when:
* loop unrolling is turned on with the opt_unroll_loops pragma

¢ the loop iterator is a 32-bit value (int, long, unsigned int,unsigned
long)

 the loop’s body has no conditional statements

If you enable this pragma, the loop unrolling factor is a power of 2, less than or
equal to the value specified by the ppc_unroll_factor_limit pragma.

520

CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Optimization Pragmas

The opt_unroll_loops pragma controls all loop unrolling optimization. To
check this setting, use __option (ppc_unroll_speculative). By
default, this pragma is on when loop unrolling is enabled.

processor
Specifies the scheduling model used for instruction scheduling optimization.

Syntax

#pragma processor model
model

This argument is one of these choices:

401 | 403 | 405 | 505 | 509 | 5100 | 5200 | 555 | 56x |
601 | 602 | 603 | 603e | 604 | 604e | 74x | 75x | 801 |
821 | 823 | 85x | 86x | 87x | 88x | 7400 | 744x | 745x |
82xx| 85xx | e300vl | e500vl | e500v2 | €600 | Zen |
generic

prologue_helper_functions
Controls size optimization for function initialization instructions.

Syntax

#pragma prologue_helper_functions on | off | reset

Remarks

When this pragma is on, the compiler reduces the size of object code in function
initialization. It performs this optimization by replacing several instructions for
function initialization with fewer calls to special functions that perform the same
tasks. This optimization reduces executable code size but also reduces the
program’s performance.

This pragma does not correspond to any panel setting. By default, this pragma is
off. The compiler turns this optimization on implicitly when size optimization is on
and optimization level is equal to or greater than 2. For example, these pragma
settings will also turn on prologue helper function generation:

#pragma optimization_level 2
#pragma optimize_for_size on

CodeWarrior Build Tools Reference for Power Architecture® Processors 521

y
A

Pragmas for Power Architecture Compiler
Optimization Pragmas

remove_frsp_aggressive

Improves code optimization by transforming Power Architecture LFS and FRSP
instructions into the equivalent FMR instructions.

Syntax

#pragma remove_frsp_aggressive on | off | reset

Remarks

This pragma allows the compiler more opportunity to use copy propogation
optimizations to improve the generated code.

The default value for this pragma is of £.

schedule

Specifies the use of instruction scheduling optimization.

Syntax

#pragma schedule once | twice | altivec | off

Remarks

This pragma lets you choose how many times the compiler passes object code
through its instruction scheduler.

On highly optimized C code where loops were manually unrolled, running the
scheduler once seems to give better results than running it twice, especially in
functions that use the register specifier.

‘When the scheduler is run twice, it is run both before and after register colorizing.
If it is only run once, it is only run after register colorizing.

This pragma does not correspond to any panel setting. The default value for this
pragma is twice.

scheduling

Specifies the scheduling model used for instruction scheduling optimization.

522 CodeWarrior Build Tools Reference for Power Architecture® Processors

Pragmas for Power Architecture Compiler
Optimization Pragmas

Syntax

#pragma scheduling model | off
model

This argument is one of these choices:

401 | 403 | 405 | 505 | 509 | 5100 | 5200 | 555 | 56x |
601 | 602 | 603 | 603e | 604 | 604e | 74x | 75x | 801 |
821 | 823 | 85x | 86x | 87x | 88x | 7400 | 744x | 745x |
82xx| 85xx | e300vl | e500vl | e500v2 | e600 | Zen |
generic

spill_to_spe
Controls optimization for e500 and 200 cores that support SPE vectors.

Syntax

#pragma spill_to_spe on | off | reset

Remarks

In complex functions, sometimes the compiler is not able to color all registers
without spilling to the stack. The new optimization takes advantage of the unused
high half of the gpr vectors as storage and therefore avoids loading and storing to
the stack.

The optimization is of £ by default, unless the optimization level is 3 and higher.

volatileasm

Controls the optimization of inline assembly statements.

Syntax

#pragma volatileasm on | off | reset

Remarks

When this pragma is o £ £, the compiler applies peephole and scheduling
optimizations to inline assembly statements. If the pragma is on, the compiler does
not optimize these statements.

CodeWarrior Build Tools Reference for Power Architecture® Processors 523

y
A

Pragmas for Power Architecture Compiler
Optimization Pragmas

switch_op
Minimizes comparisions for “if” and “switch” statements.

Syntax

#pragma switch_op on | off

Remarks

When this pragma is on, the comparisions for “if”” and “switch” statements are
minimized. The compiler performs this optimization by using the constants

specified within the switch case (or if) statements and based on internal heuristics
that determine the cost.

By default, this pragma is of £. The compiler turns this optimization on implicitly
when the optimization level is equal to or greater than 2 and the user specifies

#pragma switch_op on. Forexample, these pragma settings will also turn on
switch optimization:

#pragma optimization_level 2

#pragma switch_op on

524 CodeWarrior Build Tools Reference for Power Architecture® Processors

g |

Index

Symbols
#include
diagnosing error messages 436
GCC policy 83
importing linker symbols 467
including once 461
letter case 77,442
levels 273
other operating systems 81
paths 458
precompiled files 267,276
searching 82,465
#include directive
IDE 42
letter case 47
location of files 103
searching 103
#line 459
$ 426
. (location counter) linker command 211
.1lcf 53
.PPC.EMB.seginfo 339

See also assignment, equals.
= (equal sign) symbol definition
directive 173
See also equals, assighment.
> 226
@ (at-sign) 146

__abs () 317

__attribute_ ((aligned())) 327
__attribute_ ((deprecated)) 364
__attribute_ ((force_export)) 365
___attribute_ ((malloc)) 365
__attribute_ ((returns_twice)) 366
__attribute__ ((unused)) 367
__attribute_ ((used)) 366,367

__cntlzw() 318

_ _cplusplus 378
_ CWBUILD__ 378
_ CWBUILD__ 378

__cwee_ 378

__DATE___ 377,379

_ declspec (do_not_merge) 370
_ declspec(final) 370
__declspec (force_export) 370
__declspec (interrupt) 371
__declspec (never_inline) 363
_ declspec (no_linker_opts) 373
_ declspec (section) 373

_ declspec(vle_off) 375
__declspec(vle_on) 375
__eieio() 317
__embedded_cplusplus 345,379
__fabs () 317

__FILE__ 380
___fnabs () 317
_ func__ 380

__ _FUNCTION___ 380
__ide_target 381
__isync() 317

__label__ 266
__labs() 317

_ _lhbrx() 317
_ LINE__ 381
_ lwbrx() 317
__ MWERKS___ 381
_ pixel 325

___PRETTY_ FUNCTION_ _ 268,382
_ _profile_ 382

_ rlwimi () 318

_ rlwinm() 318

(
__rlwnm() 318
__setflm() 317
_ STDC___ 383

__sthbrx () 317

_ stwbrx () 317
__sync() 317

__ _TIME__ 383
___vector 325
_ABS_SDA_BASE_ 331
_ABS_SDA2_BASE_ 331
_Bool type 322

CodeWarrior Build Tools Reference for Power Architecture® Processors 525

_heap_addr 331 asm keyword 302
_heap_end 331 asmpoundcomment 425
_nbfunctions 331 asmsemicolcomment 425
_rom_copy_info 340 assembler
_SDA_BASE_ 331 See also inline assembler
_SDA2_BASE_ 331 assembler control directives 180-184
_stack_addr 331 align 180
_stack_end 331 endian 181
error 181

A include 181
ABI. See application binary interface option 183
access_errors 399 org 182
ADDR linker command 212, 228, 229 pragma 182
addressing 140 assignment
aggressive_hoisting 514 accidental 451
aggressive_inline 471 at-sign (@) 146
alias 514 auto_inline 401
aliasing 366 auto_inline pragma 38
align assembler control directive 180
ALIGN linker command 213, 222,223 B
alignment keyword 183 b_range 501
alignment_metrowerks 498 bc_range 501
allocating additional heap space 358 bitfield 328,477, 504
Allow space in operand field 153 board initialization code 360
altivec_codegen 499 Book E Implementation Standard (EIS) 335
altivec_model 499 -bool 57
altivec_pim _warnings 499 bool 325,401
altivec_vrsave 500 branching 141
AltiVec™ branchsize keyword 183

data types 324 byte data declaration directive 175
always_import 467 BYTE linker command 215
always_inline 399
-ansi 55 C
ANSI_strict 393 C
appliation binary interface GNU Compiler Collection extensions 260
arg_dep_lookup 399 _c 93
arguments C++

list 395 embedded 345
-ARM 57 precompiling 267
ARM_scoping 400 C/C++ Warnings panel 44
array_new_delete 401 C99
ascii data declaration directive 178 type rules 514
asciz data declaration directive 179 c99 393
asm blocks not supported 302 c9x_alias_by type 514

526 CodeWarrior Build Tools Reference for Power Architecture® Processors

case keyword 183
Case-sensitive identifiers checkbox 149
catch statement 35, 407
-char 61
char type 41
character constants 150
character strings
See strings.
check_header_flags 457
choosing a runtime library 358
choosing an MSL library 350
Code 299
code merging 141, 246, 247, 248, 299, 370
-codegen 93
colon keyword 183
command files 53
command-line options
-ansi 55
-ARM 57
-bool 57
-c 93
-char 61
-codegen 93
-convertpaths 81
-Cpp_exceptions 57
-cwd 82
-D+ 82
-defaults 61
-define 82
-dialect 58
-disassemble 69
-E 83
-encoding 62
—enum 93
-EP 83
-ext 94
-flag 63
-for_scoping 58
-gcc_extensions 63
-gccext 63
-gccincludes 83
-help 69
-I- 84
-I+ 84

-include 85
-inline 97
-instmgr 59

-ir 85
-iso_templates 59
-keepobjects 91
-M 64

-make 64

-mapcr 64
-maxerrors 70
-maxwarnings 71
-MD 65
-min_enum_size 94
-MM 65

-MMD 65

-msext 66
-msgstyle 71
-nofail 72
-nolink 91
-noprecompile 88
-nosyspath 88

-0 99

-0 92

-0+ 99

-once 66

-opt 100

-P 85

-ppopt 87

-pragma 66
-precompile 86
-prefix 87
-preprocess 86
-progress 72
-relax_pointers 67
-requireprotos 67
-RTTI 60

-S 72

-search 67

-som 60
-som_env_check 60
-stderr 72
-stdinc 88
-stdkeywords 55
-strict 56

CodeWarrior Build Tools Reference for Power Architecture® Processors

527

-strings 95

-timing 73

-trigraphs 68

-U+ 88

-undefine 89

-verbose 73

-version 73

-warnings 74

-wchar_t 60

-wraplines 79
comments in inline assembler 306
comments statement syntax 153, 154
compiler

support for inline assembly 301
compound literal 255
compressing object code 335
conditional directives 156-164

else 161

elseif 160

endif 159

if 157

ifc 158

ifdef 157

ifeq 162

ifge 164

ifgt 163

ifle 163

iflt 162

ifnc 159

ifndef 158

ifne 162
console [/O 352
const_strings 426
constants

character 150

floating-point 150

integer 150
-convertpaths 81
cplusplus 402
-Cpp_exceptions 57
cpp_extensions 403
-cwd 82
cwinst.db 59

D
-D+ 82
data declaration directives 175-180

ascii 178

asciz 179

byte 175

double 180

£ill 176

float 179

long 177

short 177

space 177
data section control directive 165
deadstripping unused code 245
debug section control directive 166
debugging

inconsistent information 515

type definitions 491
debugging directives 184-187

file 185

function 186

line 186

size 186

type 187
debuginline 404
def_inherited 405
-defaults 61
defer_defarg_parsing 405
deferred

code generation 405

inlining 405
deferred codegen 282
deferred inlining 282
-define 82
#define macro directive 155
defining macros 187-192
-dialect 58
directives

#1line 459
Directives begin with .' checkbox 154
directives, assembler

entry 314

fralloc 314

frfree 315

528 CodeWarrior Build Tools Reference for Power Architecture® Processors

machine 315

nofralloc 316

opword 316
disable_registers 502
-disassemble 69
-disassemble 104
DLL

See libraries.
dollar sign 426
dollar_identifiers 426
Don’t Inline option 37
dont_inline 406
dont_inline pragma 37
dont_reuse_strings 471
dont_reuse_strings pragma 41
double data declaration directive 180
double type 324,474
DWARF

including in linker image 221

type definitions 491
dwarf2typedefchains 491
dynamic libraries

See libraries.
dynamic_cast keyword 36,417

E

-E 83

-E option 459
e500_floatingpoint 502
e500v2_floatingpoint 503
ecplusplus 407
ecplusplus pragma 345
__eieio() 317

EIS. See Book E Implementation Standard.

ELF

syntax of section directive 167
else conditional directive 161
elseif conditional directive 160
embedded C++ 345
Embedded Warrior Library 352
Enable Exception Handling option 35
-encoding 62
endian assembler control directive 181
endi f conditional directive 159

endm macro directive 155
entry assembly statement 314
entry directive 314
-enum 93
enumalwaysint 472
enumerated types 433
-EP 83
epilogue_helper_functions 514
equ symbol definition directive 174
equals

instead of assignment 451
equates

creating unique 191-7?

definition 148
errno_name 473
error assembler control directive 181
error messages

diagnosing #include directives 436
EWL 352
exception handling 35
EXCEPTION linker command 215,216
exceptions 407
EXCLUDEFILES 216
explicit_zero_data 474
export 467
EXPORTSTRTAB linker command 216
EXPORTSYMTAB linker command 217
-ext 94
extended_errorcheck 433
extensions

GNU C 427

GNU Compiler Collection 260
extern scope control directive 172
external segments 330, 334

F

faster_pch_gen 457

file debugging directive 185

f£i11 data declaration directive 176
final 370

-flag 63

flat_include 458

float data declaration directive 179
float type 324,474

CodeWarrior Build Tools Reference for Power Architecture® Processors 529

float_constants 474
floating-point constants 150
for statement 451
-for_scoping 58
force_active 492
FORCEACTIVE 218
FORCEFILES 248
forward equates, definition 148
FPSCR 317
fralloc assembly statement 308
fralloc directive 314
frfree assembly statement 308
frfree directive 315
fullpath file 458
fullpath prepdump 458
function

declarations 395

prototypes 395
function debugging directive 186
function level assembly 302
function_align 503

G
GCC. See Gnu Compiler Collection.
-gcc_extensions 63
gcc_extensions 427
-gccext 63
-gccincludes 83
gen_fsel 503
gen_isel 504
global scope control directive 172
global_optimizer 479
GNU C extensions 427
GNU Compiler Collection
extension to C 260
file include policy 83
gprfloatcopy 504
GROUP 218

H
has8bytebitfields 504
header files
including once 461
searching 465

-help 69

|
-I- 84
-I+ 84
identifier
$ 426
dollar signs in 426
if conditional directive 157
if statement 451
ifc conditional directive 158
ifdef conditional directive 157
ifeq conditional directive 162
ifge conditional directive 164
ifgt conditional directive 163
ifle conditional directive 163
iflt conditional directive 162
ifnc conditional directive 159
ifndef conditional directive 158
ifne conditional directive 162
ignore_oldstyle 395
import 468
IMPORTSTRTAB linker command 219
IMPORTSYMTAB linker command 220
-include 85
include assembler control directive 181
INCLUDEDDWAREF directive 221
incompatible_return_small_structs
489
incompatible_sfpe_double_params 4
90
infinite loop, creating 451
-inline 97
inline assembler
asm blocks not supported 302
comments 306
directives 313-316
function level support 302
instructions 301
labels
statement 305
local
variables 307
optimization 142

530 CodeWarrior Build Tools Reference for Power Architecture® Processors

preprocessor use 306 L

stack frame 308 labels

syntax 301 creating unique 191-2?
inline_bottom_up 408 definition 145

inline_bottom_up_once 409 in inline assembly language 305

inline_depth 409 Labels must end with ":' checkbox 145
inline_max_auto_size 410 local 266
inline_max_size 410 __labs() 317
inline max_total _size 411 legacy_struct_alignment 505
inlining lib_export 469

C++ 267 libraries

reducing object code size 267 console I/O 352

turning off 363

dynamic 423
instance manager 267

MSL for Power Architecture processors 349

-instmgr 268 static 423

-instmgr 59 using MSL 349
instmgr_file 475 license.dat 104,105
instmgr_file pragma 268 limitations

int type 323 reverse bitfields 477

integer constants 150

line debugging directive 186
internal 411

line_prepdump 459

internal segments 330, 334 link order 199

interprocedural analysis 98, 281, 479 linker

interrupt 505 and executable files 200

interrupt service routine 371 commands

intrinsic functions ADDR 212,228,229
described 316 ALIGN 213,222,223
See also inline assembler 316 BYTE 215

ipa 479 EXCEPTION 215,216

-ir 85 EXPORTSTRTAB 216

-iso_templates 59 EXPORTSYMTAB 217

ISR 371 IMPORTSTRTAB 219

IMPORTSYMTAB 220

K KEEP 222

KEEP linker command 222 location counter 211

keepcomments 459 LONG 223

-keepobjects 91 MEMORY 224-7?

keywords OBIJECT 226
dynamic_cast 36,417 REF_INCLUDE 227
register 522 SECTIONS 229,230
standard 252 SHORT 230
typeid 36,417 SIZEOF 230

SIZEOF_ROM 231
WRITEOCOMMENT 231

CodeWarrior Build Tools Reference for Power Architecture® Processors 531

importing with #include 467
including DWARF data 221
linker command files 53
linker generated symbols 244
linker-defined symbols 330
LOAD 342
local
labels 266
variables in inline assembler 307
local label 146
location counter linker command 211
long data declaration directive 177
long double type 324
LONG linker command 223
long long type 323
long type 323
longlong 475
longlong_enums 476
loop
infinite 451

M
-M 64
machine assembly statement 315
machine directive 315
macro directive 155
macro directives 154-156
#define directive 155
endm directive 155
macro directive 155
mexit directive 155
macro_prepdump 460
macros 377
arguments 189
defining with the #define directive 193
defining with the .macro directive 188
invoking 192
macro definition syntax 187
number of arguments (narg) 192
unique equates in 191
unique labels in 191
-make 64
Makefile 64, 65
mangled names 268, 423

-mapcr 64
mark 428
maxerrorcount 434
-maxerrors 70
-maxwarnings 71
-MD 65
MEMORY linker command 224-??
merge_float_consts 505
message 435
mexit macro directive 155
-min_enum_size 94
min_enum_size 476
min_struct_align 506
misaligned_mem_access 506
-MM 65
-MMD 65
mpwc_newline 428
mpwc_relax 429
-msext 66
msg_show_lineref 460
msg_show_realref 460
-msgstyle 71
MSL

choosing a library 350

for Power Architecture processors 349

using 349

using console /O 352
MSL naming conventions, table of 350
multibyteaware 429

multibyteaware_preserve_literals

430
MWASmMEABIPPCIncludes 104
MWAsmIncludes 104
MWCEABIPPCIncludes 104
MWClIncludes 50
MWCIncludes 104
MWEABIPPCLibraries 104
MWEABIPPCLibraryFiles 104
MW.Libraries 50
MWLibraries 104
MWLibraryFiles 104

N

naming conventions

532 CodeWarrior Build Tools Reference for Power Architecture® Processors

MSL 350 opt_strength_reduction pragma 291

runtime library 359 opt_strength_reduction_strict 483
new_mangler 413 opt_unroll_loops 484
no_at_macros keyword 183 opt_unroll_loops pragma 293
no_conststringconv 413 opt_vectorize_loops 484
no_register_save_helpers 507 optimization
no_static_dtors 414 addressing 140
-nodefaults 104 alias information 514
-nofail 72 assembly 142
nofralloc directive 316 branching 141
-nolink 91 code merging 141, 246, 247, 248, 299, 370
-noprecompile 88 compression 335
nosyminline 414 interprocedural analysis 98, 281, 479
-nosyspath 88 loops 293
notonce 461 opt_unroll_loops pragma 293

reducing function size 514, 521

(0) optimization_level 484
-0 99 optimize for size 485
092 optimizewithasm 485,524
—0+ 99 option 154
object code option assembler control directive 183

reducing size 267,335 option keywords
OBJECT linker command 226 alignment 183
offset section control directive 166 branchsize 183
0ld_friend_lookup 414 case 183
old_pods 415 colon 183
—_once 66 no_at_macros 183
once 461 period 184
only_ std_keywords 395 reorder 184
only_std_keywords pragma 252 space 184
—opt 100 options 507
opt_classresults 416 opword directive 316
opt_common_subs 480 org assembler control directive 182
opt_common_subs pragma 285
opt_dead_assignments 481 P
opt_dead_assignments pragma 288 -P 85
opt_dead_code 481 pack 486
opt_dead_code pragma 283 parse_func_templ 416
opt_lifetimes 482 parse_mfunc_templ 417
opt_loop_invariants 482 PATH 50
opt_loop_invariants pragma 290 peephole 517
opt_propagation 482 period keyword 184
opt_propagation pragma 286 PIC/PID 329
opt_strength reduction 483 building applications 332

CodeWarrior Build Tools Reference for Power Architecture® Processors 533

linker-defined symbols 330
scenarios 332
uses 332
pixel 325
pointer
aliasing 366
unqualified 404
pool_data 508
pool_strings 476
pop 462
position-independent code. See PIC/PID
position-independent data. See PIC/PID
-ppc_asm_to_vle 133,337
ppc_lvxl_stvxl_errata 509
ppc_opt_defuse_mem_limit 519

ppc_unroll_instructions_limit 520

ppc_unroll_speculative 520

-ppopt 87

-pragma 66

pragma assembler control directive 182

pragma_prepdump 463

pragmas
access_errors 399
aggressive_hoisting 514
aggressive_inline 471
alignment_metrowerks 498
altivec_codegen 499
altivec_model 499
altivec_pim_warnings 499
altivec_vrsave 500
always_import 467
always_inline 399
ANSI_ strict 393
arg_dep_lookup 399
ARM_scoping 400
array_new_delete 401
asmpoundcomment 425
asmsemicolcomment 425
auto_inline 401
b_range 501
bc_range 501
bool 401
c99 393
c9x_alias_by type 514

check_header_flags 457
const_strings 426
cplusplus 402
cpp_extensions 403
debuginline 404
def_inherited 405
defer_defarg_parsing 405
disable_registers 502
dollar_ identifiers 426
dont_inline 406
dont_reuse_strings 471
dwarf2typedefchains 491
e500_floatingpoint 502
e500v2_floatingpoint 503
ecplusplus 407
enumalwaysint 472
epilogue_helper_functions 514
errno_name 473
exceptions 407
explicit_zero_data 474
export 467
extended_errorcheck 433
faster_pch_gen 457
flat_include 458
float_constants 474
force_active 492
fullpath file 458
fullpath prepdump 458
function_align 503
gcc_extensions 427
gen_fsel 503
gen_isel 504
global_optimizer 479
gprfloatcopy 504
has8bytebitfields 504
ignore_oldstyle 395
import 468
incompatible_return_small_stru
cts 489
incompatible_sfpe_double_param
s 490
inline_bottom_up 408
inline_bottom_up_once 409
inline_depth 409

534 CodeWarrior Build Tools Reference for Power Architecture® Processors

inline_max_auto_size 410
inline_max_size 410
inline max_total _size 411
instmgr_file 475
internal 411
interrupt 505
ipa 479
keepcomments 459
legacy_struct_alignment 505
lib_export 469
line_prepdump 459
longlong 475
longlong_enums 476
macro_prepdump 460
mark 428
maxerrorcount 434
merge_float_consts 505
message 435
min_enum_size 476
min_struct_align 506
misaligned_mem_access 506
mpwc_newline 428
mpwc_relax 429
msg_show_lineref 460
msg_show_realref 460
multibyteaware 429
multibyteaware_preserve_litera
1s 430
new_mangler 413
no_conststringconv 413
no_register_save_helpers 507
no_static_dtors 414
nosyminline 414
notonce 461
o0ld_friend_lookup 414
old_pods 415
once 461
only_std_keywords 395
opt_classresults 416
opt_common_subs 480
opt_dead_assignments 481
opt_dead_code 481
opt_lifetimes 482
opt_loop_invariants 482

opt_propagation 482

opt_strength_reduction 483

opt_strength_reduction_strict
483

opt_unroll_loops 484

opt_vectorize_loops 484

optimization_level 484

optimize_for_size 485

optimizewithasm 485,524

options 507

pack 486

parse_func_templ 416

parse_mfunc_templ 417

peephole 517

pool_data 508

pool_strings 476

pop 462

ppc_lvxl_stvxl_errata 509

ppc_opt_defuse_mem_limit 519

ppc_unroll_instructions_limit
520

ppc_unroll_speculative 520

pragma_prepdump 463

precompile_target 463

prepare_compress 492

processor 521

profile 509

prologue_helper_functions 521

push 462

readonly strings 477

remove_frsp_aggressive 522

require_prototypes 396

reverse_bitfields 477

RTTI 417

schedule 522

scheduling 522

scope of 390

section 492

show_error_filestack 436

showmessagenumber 435

simple_prepdump 464

space_prepdump 464

srcrelincludes 465

store_object_files 478

CodeWarrior Build Tools Reference for Power Architecture® Processors 535

strict_ieee_fp 510
strictheaderchecking 487
suppress_init_code 418
suppress_warnings 436
switch_ tables 511
sym 436
syspath_once 465
template_depth 418
text_encoding 430
thread_safe_init 418
trigraphs 431
uchar_bool 511
unsigned_char 432
unused 437
use_lmw_stmw 512
ushort_wchar_t 512
volatileasm 523
warn_any_ ptr_int_conv 439
warn_emptydecl 440
warn_extracomma 441
warn_filenamecaps 442
warn_filenamecaps_system 442
warn_hiddenlocals 443
warn_hidevirtual 420
warn_illpragma 444
warn_illtokenpasting 444
warn_illunionmembers 444
warn_impl_f2i_conv 445
warn_impl_i2f_conv 446
warn_impl_s2u_conv 446
warn_implicitconv 447
warn_largeargs 448
warn_missingreturn 448
warn_no_explicit_virtual 421
warn_no_side_effectwarn_no_sid
e_effect 449
warn_no_typename 421
warn_notinlined 422
warn_padding 450
warn_pch_portability 450
warn_possunwant 450
warn_ptr_int_conv 452
warn_resultnotused 452
warn_structclass 422

warn_undefmacro 453
warn_uninitializedvar 454
warn_unusedarg 454
warn_unusedvar 455
warning 438
warning_ errors 439
wchar_type 423
pragmas, deprecated
always_inline 399
def_inherited 405
interrupt 505
multibyteaware 429
section 492
-precompile 86
precompile_target 463
precompiling
C++ 267
including files 267
predefined macros 377
-prefix 87
prepare_compress 492
-preprocess 86
preprocessor, using in inline assembler 306
___PRETTY FUNCTION__ 268
previous section control directive 166
processor 521
profile 509
-progress 72
prologue_helper_functions 521
prototypes
and old-style declarations 395
not requiring 395
requiring 40
pss section control directive 165
public scope control directive 172
push 462

R

-rambuffer 134

readonly strings 477
REF_INCLUDE linker command 227
register keyword 522
-relax_pointers 67
remove_frsp_aggressive 522

536 CodeWarrior Build Tools Reference for Power Architecture® Processors

reorder keyword 184
require_prototypes 396
required runtime libraries and source files 357
-requireprotos 67
return statement
empty 434
reverse_bitfields 477
_ rlwimi() 318
__rlwinm() 318
_ _rlwnm() 318
rodata section control directive 165
-romaddr 135
-RTTI 60
RTTI 417
runtime libraries 357
allocating additional heap space 358
choosing a 358
required libraries and source files 357

runtime library naming conventions, table of 359

runtime type information 36
run-time type information (RTTI) 60, 417

S
-S 72
sbss section control directive 166
schedule 522
scheduling 522
scope control directives 171-173
extern 172
global 172
public 172
scope, symbol 145
sdata section control directive 165
sdata?2 section control directive 165
-search 67
section
specifying in source code 373
section 492
section control directives 164-169
data 165
debug 166
offset 166
previous 166
pss 165

rodata 165

sbss 166

sdata 165

sdata2 165

section 167

text 165
section section control directive 167
SECTIONS linker command 229, 230
segments, internal/external 330, 334
semicolon

accidental 451
set symbol definition directive 173
__setflm() 317
setjmp () 367
settings panel

C/C++ Warnings 44
short data declaration directive 177
SHORT linker command 230
short type 322,323
SHORTEN_NAMES_FOR_TOR_101 249
show_error_filestack 436
showmessagenumber 435
signed wchar_t type 323
simple_prepdump 464
size debugging directive 186
SIZEOF linker command 230
SIZEOF_HEADERS 331
SIZEOF_ROM linker command 231
small data 329
-som 60
-som_env_check 60
space data declaration directive 177
space keyword 184
space_prepdump 464
srcrelincludes 465
stack frame in inline assembler 308
statements

catch 35,407

for 451

if 451

return 434

throw 35

try 35,407

while 451

CodeWarrior Build Tools Reference for Power Architecture® Processors

537

static libraries
See libraries.
-stderr 72
-stdinc 88
-stdkeywords 55
_ _sthbrx () 317
store_object_files 478
-strict 56
strictheaderchecking 487
-strings 95
strings
reusing 41
struct keyword
anonymous 403
unnamed 403
__stwbrx () 317
suppress_init_code 418
suppress_warnings 436
switch_tables 511
sym 436
symbol
definition 145
scope 145
symbol definition directives 173-175
= (equal sign) 173
equ 174
set 173
textequ 174
symbols
linker generated 244
symbols, linker-defined 330
__sync() 317
syntax
assembly language statement 144
comments 153, 154
constants 149-151
expression 151-153
forward equate 148
symbol 145-148
syspath_once 465

T

tables
MSL naming conventions 350

runtime library naming conventions 359
template 269
template_depth 418
templates

reducing object code size 267
terminate () 408
text section control directive 165
text_encoding 430
textequ symbol definition directive 174
thread_safe_init 418
throw statement 35
-timing 73
-trigraphs 68
trigraphs 431
try statement 35, 407
type

_Bool 322

char 41

double 324,474

float 324,474

int 323

long 323

long double 324

long long 323

short 322,323

signed wchar_t 323

unsigned 323

unsigned char 41

unsigned int 323

unsigned long 323

unsigned long long 323

unsigned wchar_t 323

vector 324

wchar_t 323
type debugging directive 187
type definitions

debugging 491
typeid keyword 36,417
typename 269
typeof 427

U
-U+ 88
uchar_bool 511

538 CodeWarrior Build Tools Reference for Power Architecture® Processors

-undefine 89 warn_impl_s2u_conv 446

unsigned char type 41 warn_implicitconv 447
unsigned int type 323 warn_largeargs 448
unsigned long long type 323 warn_missingreturn 448
unsigned long type 323 warn_no_explicit_virtual 421
unsigned short type 323 warn_no_typename 421
unsigned wchar_t type 323 warn_notinlined 422
unsigned_char 432 warn_padding 450
unsigned_char pragma 323 warn_pch_portability 450
unused 437 warn_possunwant 450
use_lmw_stmw 512 warn_ptr_int_conv 452
ushort_wchar_t 512 warn_resultnotused 452
warn_structclass 422
A\Y% warn_undefmacro 453
Variable Length Encoding warn_uninitializedvar 454
assembling 336 warn_unusedarg 454
compiling 336 warn_unusedvar 455
introduction 335 warning 438
linking 338 warning pragma 74,75,76,77
optimization 141 warning_errors 439
processors supported 336 -warnings 74
specifying in source code 375 warnings
vector 325 setting in the IDE 44
vector formats 324 -wchar_t 60
vector type 324 wchar_t type 323
-verbose 73 wchar_type 423
_version 73 while statement 451
-vle 139,336,337 -wraplines 79
VLE. See Variable Length Encoding. WRITEOCOMMENT linker command 231

volatileasm 523

W

warn_any_ptr_int_conv 439
warn_emptydecl 440
warn_extracomma 441
warn_filenamecaps 442
warn_filenamecaps_system 442
warn_hiddenlocals 443
warn_hidevirtual 420
warn_illpragma 444
warn_illtokenpasting 444
warn_illunionmembers 444
warn_impl_f2i_conv 445
warn_impl_i2f_conv 446

CodeWarrior Build Tools Reference for Power Architecture® Processors

539

540 CodeWarrior Build Tools Reference for Power Architecture® Processors

	Introduction
	Compiler Architecture
	Linker Architecture

	Using Build Tools with the CodeWarrior IDE
	Choosing Tools and Files
	IDE Options and Pragmas
	IDE Settings Panels
	C/C++ Language Settings Panel
	C/C++ Preprocessor Panel
	C/C++ Warnings Panel

	Using Build Tools on the Command Line
	Configuring Command-Line Tools
	Setting CodeWarrior Environment Variables
	Setting the PATH Environment Variable

	Invoking Command-Line Tools
	Getting Help
	Parameter Formats
	Option Formats
	Common Terms

	File Name Extensions

	Command-Line Options for Standard C Conformance
	-ansi
	-stdkeywords
	-strict

	Command-Line Options for Standard C++ Conformance
	-ARM
	-bool
	-Cpp_exceptions
	-dialect
	-for_scoping
	-instmgr
	-iso_templates
	-RTTI
	-som
	-som_env_check
	-wchar_t

	Command-Line Options for Language Translation
	-char
	-defaults
	-encoding
	-flag
	-gccext
	-gcc_extensions
	-M
	-make
	-mapcr
	-MM
	-MD
	-MMD
	-msext
	-once
	-pragma
	-relax_pointers
	-requireprotos
	-search
	-trigraphs

	Command-Line Options for Diagnostic Messages
	-disassemble
	-help
	-maxerrors
	-maxwarnings
	-msgstyle
	-nofail
	-progress
	-S
	-stderr
	-verbose
	-version
	-timing
	-warnings
	-wraplines

	Command-Line Options for Preprocessing
	-convertpaths
	-cwd
	-D+
	-define
	-E
	-EP
	-gccincludes
	-I-
	-I+
	-include
	-ir
	-P
	-precompile
	-preprocess
	-ppopt
	-prefix
	-noprecompile
	-nosyspath
	-stdinc
	-U+
	-undefine

	Command-Line Options for Library and Linking
	-keepobjects
	-nolink
	-o

	Command-Line Options for Object Code
	-c
	-codegen
	-enum
	-min_enum_size
	-ext
	-strings

	Command-Line Options for Optimization
	-inline
	-ipa
	-O
	-O+
	-opt

	Command-Line for Power Architecture Processors
	Naming Conventions
	Specifying Source File Locations
	Licensing Command-Line Options
	-fullLicenseSearch
	-license

	Diagnostic Command-Line Options
	-g
	-gdwarf-2
	-fmt
	-format
	-listclosure
	-listdwarf
	-map
	-mapunused
	-sym
	-unused

	Library and Linking Command-Line Options
	-codeaddr
	-ConvertArchiveToPartialLink
	-dataaddr
	-genbinary
	-heapaddr
	-heapsize
	-lcf
	-library
	-linkmode
	-main
	-model
	-noentry
	-nomain
	-opt_partial
	-partial
	-r
	-r1
	-r2
	-resolved_partial
	-sdataaddr
	-sdata2addr
	-sdatathreshold
	-sdata2threshold
	-show
	-sortsrec
	-srec
	-sreceol
	-sreclength
	-stackaddr
	-stacksize
	-strip_partial
	-tune_relocations
	-xtables
	-stdlib
	-L+
	-lr
	-l+

	Code Generation Command-Line Options
	-abi
	-align
	-altivec_move_block
	-big
	-common
	-fatext
	-fp
	-fp_contract
	-func_align
	-gen-fsel
	-little
	-maf
	-ordered-fp-compares
	-pool
	-processor
	-profile
	-ppc_asm_to_vle
	-rambuffer
	-readonlystrings
	-relax_ieee
	-romaddr
	-rostr
	-schedule
	-spe_vector
	-spe2_vector
	-spe_addl_vector
	-strict_ieee
	-use_lmw_stmw
	-use_fsel
	-use_isel
	-vector
	-vle

	Optimization Command-Line Options
	-code_merging
	-far_near_addressing
	-vle_bl_opt
	-vle_enhance_merging
	-volatileasm

	Assembler
	Syntax
	Assembly Language Statements
	Statement Syntax
	Symbols
	Constants
	Expressions
	Comments
	Data Alignment

	Directives
	Macro Directives
	macro
	endm
	mexit
	#define
	Conditional Preprocessor Directives
	if
	ifdef
	ifndef
	ifc
	ifnc
	endif
	elseif
	else
	Compatibility Conditional Directives
	.ifeq if equal
	.ifne if not equal
	.iflt if less than
	.ifle if less than or equal
	.ifgt if greater than
	.ifge if greater than or equal
	Section Control Directives
	text
	data
	rodata
	bss
	sdata
	sdata2
	sbss
	text_vle
	debug
	previous
	offset
	section
	Scope Control Directives
	global
	extern
	public
	Symbol Definition Directives
	set
	equal sign (=)
	equ
	textequ
	Data Declaration Directives
	byte
	fill
	incbin
	long
	short
	space
	ascii
	asciz
	float
	double
	Assembler Control Directives
	align
	endian
	error
	include
	pragma
	org
	option
	Debugging Directives
	file
	function
	line
	size
	type

	Macros
	Defining Macros
	Invoking Macros

	GNU Compatibility
	GNU Compatible Syntax option
	Supported Extensions
	Unsupported Extensions

	Linker
	Specifying Link Order in the IDE
	Dead-Stripping
	Defining the Target’s Memory Map
	Defining Sections in the Output File
	Associating Input Sections With Output Sections
	Controlling Alignment
	Specifying Memory Area Locations and Sizes
	Creating Memory Gaps
	Creating Symbols
	Linker Command File Syntax
	Commands, Directives, and Keywords
	. (location counter)
	ADDR
	ALIGN
	BIND
	BIN_FILE_TYPE
	BYTE
	EXCEPTION
	EXCLUDEFILES
	EXPORTSTRTAB
	EXPORTSYMTAB
	EXTERNAL_SYMBOL
	FORCEACTIVE
	GROUP
	IMPORTSTRTAB
	IMPORTSYMTAB
	INCLUDEDWARF
	INTERNAL_LOAD
	INTERNAL_SYMBOL
	KEEP
	LOAD
	LONG
	MEMORY
	MAX_BIN_GAP
	NEXT
	NO_TRAILING_BSS_IN_BIN_FILES
	OBJECT
	REF_INCLUDE
	REGISTER
	ROMADDR
	SECTIONS
	SHORT
	SIZEOF
	SIZEOF_ROM
	WRITES0COMMENT

	Linker for Power Architecture Processors
	Predefined Sections
	Linking Binary Files

	Additional Small Data Sections
	Linker Map File
	Closure
	Section Layout
	Memory Map
	Linker Generated Symbols

	Deadstripping
	Linker Command Files
	Setting up CodeWarrior IDE to accept LCF files
	Linker Command File Commands
	AGGRESSIVE_MERGE
	AGGRESSIVE_MERGE_FILES
	AGGRESSIVE_MERGE_SECTIONS
	DO_NOT_MERGE
	DO_NOT_MERGE_FILES
	DO_NOT_MERGE_SECTIONS
	INIT
	FORCEFILES
	SHORTEN_NAMES_FOR_TOR_101

	C Compiler
	Extensions to Standard C
	Controlling Standard C Conformance
	C++-style Comments
	Unnamed Arguments
	Extensions to the Preprocessor
	Non-Standard Keywords
	Declaring Variables by Address

	C99 Extensions
	Controlling C99 Extensions
	Trailing Commas in Enumerations
	Compound Literal Values
	Designated Initializers
	Predefined Symbol __func__
	Implicit Return From main()
	Non-constant Static Data Initialization
	Variable Argument Macros
	Extra C99 Keywords
	C++-Style Comments
	C++-Style Digraphs
	Empty Arrays in Structures
	Hexadecimal Floating-Point Constants
	Variable-Length Arrays
	Unsuffixed Decimal Literal Values
	C99 Complex Data Types

	GCC Extensions
	Controlling GCC Extensions
	Initializing Automatic Arrays and Structures
	The sizeof() Operator
	Statements in Expressions
	Redefining Macros
	The typeof() Operator
	Void and Function Pointer Arithmetic
	The __builtin_constant_p() Operator
	Forward Declarations of Static Arrays
	Omitted Operands in Conditional Expressions
	The __builtin_expect() Operator
	Void Return Statements
	Minimum and Maximum Operators
	Local Labels

	C++ Compiler
	C++ Compiler Performance
	Precompiling C++ Source Code
	Using the Instance Manager

	Extensions to Standard C++
	__PRETTY_FUNCTION__ Identifier
	Standard and Non-Standard Template Parsing

	Implementation-Defined Behavior
	GCC Extensions

	Precompiling
	What Can be Precompiled
	Using a Precompiled File
	Creating a Precompiled File
	Precompiling a File in the CodeWarrior IDE
	Precompiling a File on the Command Line
	Updating a Precompiled File Automatically
	Preprocessor Scope in Precompiled Files

	Intermediate Optimizations
	Interprocedural Analysis
	Invoking Interprocedural Analysis
	Function-Level Optimization
	File-Level Optimization

	Intermediate Optimizations
	Dead Code Elimination
	Expression Simplification
	Common Subexpression Elimination
	Copy Propagation
	Dead Store Elimination
	Live Range Splitting
	Loop-Invariant Code Motion
	Strength Reduction
	Loop Unrolling

	Inlining
	Choosing Which Functions to Inline
	Inlining Techniques

	Power Architecture Optimizations
	Code Merging

	Inline-Assembly for Power Architecture Build Tools
	Assembly Syntax
	Specifying Inline Assembly Statements
	Function-Level Inline Assembly
	Statement-Level Inline Assembly
	GCC-Style Inline Assembly
	Branch Prediction
	PC-Relative Addressing
	Normal, Record, and Overflow Forms
	Creating Statement Labels
	Using Comments
	Using the Preprocessor

	Referring to Assembly, C, and C++ Variables
	Using Local Variables and Arguments
	Creating a Stack Frame
	Referring to Variables in Instruction Operands
	Referring to Variables in Memory
	Referring to Registers
	Referring to Labels
	Using Variable Names as Memory Locations
	Using Immediate Operands

	Assembler Directives
	entry
	fralloc
	frfree
	machine
	nofralloc
	opword

	Intrinsic Functions
	Low-Level Processor Synchronization
	Absolute Value Functions
	Byte-Reversing Functions
	Setting the Floating-Point Environment
	Manipulating the Contents of a Variable or Register
	Data Cache Manipulation
	Math Functions
	Buffer Manipulation

	Power Architecture Code Generation
	ABI Conformance
	Data Representation
	Boolean Type
	Character Types
	Integer Types
	Floating-Point
	AltiVec™ Data Types

	Data Addressing
	Aligning Data
	Alignment Attribute Syntax
	Aligning a Variable Declaration
	Alignment in a Structure Definition
	Structure Member
	Typedef Declaration
	Bitfields

	Small Data Area PIC/PID Support
	Internal and External Segments and References
	PIC/PID Linker Command File Directives
	Linker-defined Symbols
	Uses for SDA PIC/PID
	Building an SDA PIC/PID Application
	Internal and External Addressing Modes

	Variable Length Encoding
	Processors With VLE Capability
	Compiling VLE Instructions
	Assembling VLE Instructions
	Linking VLE Object Code

	Building a ROM Image
	Linking a ROM Image
	ROM Image Addresses
	Specifying A Single ROM Block
	Specifying Several ROM Blocks
	Specifying Jump Table Location
	Specifying Constant Data Location

	Embedded C++
	Activating EC++
	Differences Between ISO C++ and EC++
	EC++ Specifications

	Libraries and Support Code
	Main Standard Libraries
	Using the Main Standard Libraries
	Choosing an MSL Library
	Using Console I/O
	Allocating Additional Heap Space

	Third Party Standard Libraries
	Embedded Warrior Library
	Using the Embedded Warrior Libraries
	EWL Naming Convention
	How to Rebuild the EWL Libraries

	Runtime Libraries
	Required Libraries and Source Code Files
	Allocating Additional Heap Space
	Choosing a Runtime Library

	Board Initialization Code

	Declaration Specifications
	Syntax for Declaration Specifications
	Declaration Specifications
	__declspec(never_inline)

	Syntax for Attribute Specifications
	Attribute Specifications
	__attribute__((deprecated))
	__attribute__((force_export))
	__attribute__((malloc))
	__attribute__((noalias))
	__attribute__((returns_twice))
	__attribute__((unused))
	__attribute__((used))

	Declaration Specifications for Power Architecture Code
	Syntax for Declaration Specifications
	Declaration Specifications
	__declspec(do_not_merge)
	__declspec(final)
	__declspec(force_export)
	__declspec(interrupt)
	__declspec(no_linker_opts)
	__declspec(section name)
	__declspec(vle_off)
	__declspec(vle_on)

	Predefined Macros
	__COUNTER__
	__cplusplus
	__CWBUILD__
	__CWCC__
	__DATE__
	__embedded_cplusplus
	__FILE__
	__func__
	__FUNCTION__
	__ide_target()
	__LINE__
	__MWERKS__
	__PRETTY_FUNCTION__
	__profile__
	__STDC__
	__TIME__

	Predefined Macros for Power Architecture Compiler
	__ALTIVEC__
	__PPCBROADWAY__
	__PPCGECKO__

	Using Pragmas
	Checking Pragma Settings
	Saving and Restoring Pragma Settings
	Determining Which Settings Are Saved and Restored
	Invalid Pragmas
	Pragma Scope

	Pragmas for Standard C Conformance
	ANSI_strict
	c99
	c9x
	ignore_oldstyle
	only_std_keywords
	require_prototypes

	Pragmas for C++
	access_errors
	always_inline
	arg_dep_lookup
	ARM_conform
	ARM_scoping
	array_new_delete
	auto_inline
	bool
	cplusplus
	cpp1x
	cpp_extensions
	debuginline
	def_inherited
	defer_codegen
	defer_defarg_parsing
	direct_destruction
	direct_to_som
	dont_inline
	ecplusplus
	exceptions
	inline_bottom_up
	inline_bottom_up_once
	inline_depth
	inline_max_auto_size
	inline_max_size
	inline_max_total_size
	internal
	iso_templates
	new_mangler
	no_conststringconv
	no_static_dtors
	nosyminline
	old_friend_lookup
	old_pods
	old_vtable
	opt_classresults
	parse_func_templ
	parse_mfunc_templ
	RTTI
	suppress_init_code
	template_depth
	thread_safe_init
	warn_hidevirtual
	warn_no_explicit_virtual
	warn_no_typename
	warn_notinlined
	warn_structclass
	wchar_type

	Pragmas for Language Translation
	asmpoundcomment
	asmsemicolcomment
	const_strings
	dollar_identifiers
	gcc_extensions
	mark
	mpwc_newline
	mpwc_relax
	multibyteaware
	multibyteaware_preserve_literals
	text_encoding
	trigraphs
	unsigned_char

	Pragmas for Diagnostic Messages
	extended_errorcheck
	maxerrorcount
	message
	showmessagenumber
	show_error_filestack
	suppress_warnings
	sym
	unused
	warning
	warning_errors
	warn_any_ptr_int_conv
	warn_emptydecl
	warn_extracomma
	warn_filenamecaps
	warn_filenamecaps_system
	warn_hiddenlocals
	warn_illpragma
	warn_illtokenpasting
	warn_illunionmembers
	warn_impl_f2i_conv
	warn_impl_i2f_conv
	warn_impl_s2u_conv
	warn_implicitconv
	warn_largeargs
	warn_missingreturn
	warn_no_side_effect
	warn_padding
	warn_pch_portability
	warn_possunwant
	warn_ptr_int_conv
	warn_resultnotused
	warn_undefmacro
	warn_uninitializedvar
	warn_unusedarg
	warn_unusedvar

	Pragmas for Preprocessing
	check_header_flags
	faster_pch_gen
	flat_include
	fullpath_file
	fullpath_prepdump
	keepcomments
	line_prepdump
	macro_prepdump
	msg_show_lineref
	msg_show_realref
	notonce
	old_pragma_once
	once
	pop, push
	pragma_prepdump
	precompile_target
	simple_prepdump
	space_prepdump
	srcrelincludes
	syspath_once

	Pragmas for Library and Linking
	always_import
	export
	import
	lib_export

	Pragmas for Code Generation
	aggressive_inline
	dont_reuse_strings
	enumsalwaysint
	errno_name
	explicit_zero_data
	float_constants
	instmgr_file
	longlong
	longlong_enums
	min_enum_size
	pool_strings
	readonly_strings
	reverse_bitfields
	store_object_files

	Pragmas for Optimization
	global_optimizer
	ipa
	ipa_inline_max_auto_size
	opt_common_subs
	opt_dead_assignments
	opt_dead_code
	opt_lifetimes
	opt_loop_invariants
	opt_propagation
	opt_strength_reduction
	opt_strength_reduction_strict
	opt_unroll_loops
	opt_vectorize_loops
	optimization_level
	optimize_for_size
	optimizewithasm
	pack
	strictheaderchecking

	Pragmas for Power Architecture Compiler
	Diagnostic Pragmas
	incompatible_return_small_structs
	incompatible_sfpe_double_params

	Debugging Information Pragmas
	dwarf2typedefchains
	dwarf2lexblockcodeaddrcalc

	Library and Linking Pragmas
	force_active
	prepare_compress
	section

	Code Generation Pragmas
	alignment_metrowerks
	altivec_codegen
	altivec_model
	altivec_pim_warnings
	altivec_vrsave
	b_range
	bc_range
	cats
	disable_registers
	e500_floatingpoint
	e500v2_floatingpoint
	function_align
	gen_fsel
	gen_isel
	gprfloatcopy
	has8bytebitfields
	interrupt
	legacy_struct_alignment
	merge_float_consts
	min_struct_align
	misaligned_mem_access
	no_register_save_helpers
	options
	pool_data
	ppc_lvxl_stvxl_errata
	profile
	read_only_switch_tables
	strict_ieee_fp
	switch_tables
	uchar_bool
	use_lmw_stmw
	ushort_wchar_t
	vec2x32float_align_4
	z4_16bit_cond_branch_errata_5116
	z4_mtlr_se_rfi_errata_26553

	Optimization Pragmas
	aggressive_hoisting
	c9x_alias_by_type
	epilogue_helper_functions
	fp_contract
	fp_contract_aggressive
	ipa_rescopes_globals
	peephole
	peephole_enable_16bit_load_store_inst
	ppc_opt_defuse_mem_limit
	ppc_unroll_instructions_limit
	ppc_unroll_speculative
	processor
	prologue_helper_functions
	remove_frsp_aggressive
	schedule
	scheduling
	spill_to_spe
	volatileasm
	switch_op

	Index

