
Freescale MSD FATFS
API Reference Manual

Document Number:MSDFATFSAPIRM
Rev. 0

02/2011

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© 1994-2008 ARC™ International. All rights reserved.

© Freescale Semiconductor, Inc. 2011. All rights reserved.

Document Number: MSDFATFSAPIRM
Rev. 0
02/2011

MSDFATFSAPI Reference Manual, Rev. 0

Freescale Semiconductor iii

Revision History

To provide the most up-to-date information, the revision of Freescale documents on the World Wide Web
are the most current. Your printed copy may be an earlier revision. To verify you have the latest
information available, refer to:

http://www.freescale.com

The following revision history table summarizes changes contained in this document.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

© Freescale Semiconductor, Inc., 2011. All rights reserved.

Revision number Revision date Description of changes

Rev. 0 02/2011 Initial release

http://www.freescale.com

MSDFATFSAPI Reference Manual, Rev. 0

iv Freescale Semiconductor

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor v

Chapter 1
Before Beginning

1.1 About this book .1
1.2 Reference Material .1
1.3 Acronyms and abbreviations .2
1.4 Function listing format .2

Chapter 2
FATFS API Overview

2.1 Introduction .5
2.2 API overview .5
2.3 Using API .6

Chapter 3
FATFS API

3.1 FATFS API Function Listing .7
3.1.1 f_mount() .7
3.1.2 f_open() .8
3.1.3 f_close() .10
3.1.4 f_read() .11
3.1.5 f_write() .12
3.1.6 f_lseek() .13
3.1.7 f_truncate() .14
3.1.8 f_sync() .15
3.1.9 f_opendir() .16
3.1.10 f_readdir() .17
3.1.11 f_getfree() .18
3.1.12 f_stat() .19
3.1.13 f_mkdir() .20
3.1.14 f_unlink() .21
3.1.15 f_chmod() .22
3.1.16 f_utime() .23
3.1.17 f_rename() .24
3.1.18 f_mkfs() .25
3.1.19 f_forward() .26
3.1.20 f_chdir() .27
3.1.21 f_chdrive() .28
3.1.22 f_getcwd() .29
3.1.23 f_gets() .30
3.1.24 f_putc() .31

MSDFATFS API Reference Manual, Rev. 0

vi Freescale Semiconductor

3.1.25 f_puts() .32
3.1.26 f_printf() .33

Chapter 4
Data Structures

4.1 Data Structure Listings .35
4.1.1 FATFS .35
4.1.2 FIL .37
4.1.3 DIR .38
4.1.4 FILINFO .39
4.1.5 DATE .40
4.1.6 TIME .40

Appendix A
Path Name and Unicode API Information

A.1 Path Name Format .41
A.2 Correspondence between logical and physical drive .42
A.3 Unicode API .42

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 1

Chapter 1
Before Beginning

1.1 About this book
This book describes the MSD FATFSAPI functions. It describes in detail the API functions that can be
used to develop FATFS applications. Table 1-1 shows the summary of chapters included in this book.

1.2 Reference Material
Use this book in conjunction with:

• Freescale MSD FATFS User Guide (document MSDFATFSUG, Rev. 0)

• MSD FATFS source code

For better understanding, refer to the following documents:

• USB Specification Revision 1.1

• USB Specification Revision 2.0

• USB Common Class Specification Revision 1.0

• FATFS Generic FAT File System Module document from the following website
http://elm-chan.org/fsw/ff/00index_e.html

Table 1-1. MSDFATFS_APIRM Summary

Chapter Title Description

Before Beginning This chapter provides the prerequisites for reading this book.

FATFS API Overview This chapter gives an overview of the API functions and how to use them for
developing new applications.

FATFS API This chapter discusses the FATFS API functions.

Data Structures This chapter discusses the various data structures used in the FATFS API functions.

Path Name and Unicode API
Information

This chapter provides information about path name format and Unicode file name

Before Beginning

MSDFATFS API Reference Manual, Rev. 0

2 Freescale Semiconductor

1.3 Acronyms and abbreviations

1.4 Function listing format
This is the general format of an entry for a function, compiler intrinsic, or macro.

function_name()

A short description of what function function_name() does.

Synopsis

Provides a prototype for function function_name().

<return_type> function_name(
<type_1> parameter_1,
<type_2> parameter_2,
...
<type_n> parameter_n)

Parameters

parameter_1 [in] — Pointer to x
parameter_2 [out] — Handle for y
parameter_n [in/out] — Pointer to z

Parameter passing is categorized as follows:

• in — Means the function uses one or more values in the parameter you give it without storing any
changes.

• out — Means the function saves one or more values in the parameter you give it. You can examine
the saved values to find out useful information about your application.

• in/out — Means the function changes one or more values in the parameter you give it and saves
the result. You can examine the saved values to find out useful information about your application.

API Application Programming Interface.

DBCS Double-Byte Character Set

FAT File Allocation Table

FATFS File Allocation Table File System

MBR Master Boot Record

MSD Mass Storage Device.

OEM Original Equipment Manufacturer

PC Personal computer.

SCSI Small Computer Systems Interface

USB Universal Serial Bus.

Before Beginning

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 3

Description

Describes the function function_name(). This section also describes any special characteristics or
restrictions that might apply:

• function blocks or might block under certain conditions

• function must be started as a task

• function creates a task

• function has pre-conditions that might not be obvious

• function has restrictions or special behavior

Return Value

Specifies any value or values returned by function function_name().

See Also

Lists other functions or data types related to function function_name().

Example

Provides an example (or a reference to an example) that illustrates the use of function function_name().

Before Beginning

MSDFATFS API Reference Manual, Rev. 0

4 Freescale Semiconductor

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 5

Chapter 2 FATFS API Overview

2.1 Introduction
The FATFS API consists of the functions that can be used at the application level. These enable you to
implement file system application.

2.2 API overview
This section describes the list of API functions and their use.

Table 2-1 summarizes the FATFS API functions.

Table 2-1. Summary of Host Layer API Functions

No. API function Description

1 f_mount Register/Unregister a work area

2 f_open Open/Create a file

3 f_close Closes a file

4 f_read Read data from file

5 f_write Write data to file

6 f_lseek Move read/write file pointer, Expand file size

7 f_truncate Truncate file

8 f_sync Flush cached data of a write file

9 f_opendir Open a directory

10 f_readdir Read a directory item

11 f_getfree Get free cluster

12 f_stat Get status of a file or a directory

13 f_mkdir Create a directory

14 f_unlink Remove a file or directory

15 f_chmod Change attribute of a file or directory

16 f_utime Change timestamp of a file or directory

17 f_rename Rename/Move a file or directory

18 f_mkfs Create a file system on the drive

19 f_forward Forward file data to the stream directly

FATFS API Overview

MSDFATFS API Reference Manual, Rev. 0

6 Freescale Semiconductor

NOTE
• f_eof, f_error, f_tell, f_size are implemented as macros instead of

functions.

• FATFS module is very flexible. It provides many module configuration
options. User can select options that are best suitable for his device. For
the further information, refer to Section 4.2 Configuration Options of
MSDFATFS User Guide document.

2.3 Using API
Steps to use FATFS APIs similar to the second method to use the Host Layer API of Freescale USB Stack
with PHDC Host API Reference Manual. The only thing needs change that is in Step 8. After the INTF
event is notified in the callback function, issue FATFS API instead of class-specific API.

20 f_chdir Change current directory

21 f_chdrive Change current drive

22 f_getcwd Retrieve the current directory

23 f_gets Read a data string from a file

24 f_putc Write a character to file

25 f_puts Write a data string to file

26 f_printf Write a formatted string to file

27 f_eof Check whether file pointer is the end of a file

28 f_error Check whether file has error

29 f_tell Return the current position of file pointer

30 f_size Return the size of file

No. API function Description

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 7

Chapter 3 FATFS API

3.1 FATFS API Function Listing

3.1.1 f_mount()

The function registers/unregisters a work area to the FATFS module.
Synopsis

FRESULT f_mount(
BYTE Drive,

 FATFS* FileSystemObject)

Parameters
Driver [IN] — Interface Logical drive number (0-9) to register/unregister the work area
FileSystemObject [IN] — Points to the work area (file system object) to be registered

Description
The f_mount() function registers/unregisters a work area to the FATFS module. The work area must be
given to the each volume with this function prior to use any other file function. To unregister a work area,
specify a NULL to the FileSystemObject, and then the work area can be discarded.
This function always succeeds regardless of the drive status. No media access is occurred in this function
and it only initializes the given work area and registers its address to the internal table. The volume mount
process is performed on first file access after f_mount() function or media change.

Return Value

• FR_OK: The function succeeded

• FR_INVALID_DRIV: The drive number is invalid

See also

 FATFS

FATFS API

MSDFATFS API Reference Manual, Rev. 0

8 Freescale Semiconductor

3.1.2 f_open()

The function creates a file object to be used to access the file.
Synopsis

FRESULT f_open (
 FIL* FileObject,
 const TCHAR* FileName,
 BYTE ModeFlags)

Parameters
FileObject [OUT] — Pointer to the file object structure to be created
FileName [IN] — Pointer to a null-terminated string that specifies the file name to create or open
ModeFlags [IN] — Specifies the type of access and open method for the file. It is specified by a

combination of the flags in Table 2-1.

Description
A file object is created when the function succeeded. The file object is used for subsequent read/write
functions to refer to the file. When close an open file object, use f_close() function. If the modified file is
not closed, the file data can be collapsed.
Before using any file function, a work area (file system object) must be given to the logical drive with
f_mount() function. All file functions can work after this procedure.
Return Value

• FR_OK: The function succeeded and the file object is valid

• FR_NO_FILE: Could not find the file

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The file name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_EXIST: The file has already existed

• FR_DENIED: The required access was denied due to one of the following reasons:

– Write mode open against a read-only file

Table 3-1. File Access Types

Value Description

FA_READ Specifies read access to the object. Data can be read from the file. For read - write access,
combine with FA_WRITE.

FA_WRITE Specifies write access to the object. Data can be written to the file. For read - write access,
combine with FA_READ.

FA_OPEN_EXISTING Open an existing file. The function fails if the file does not exist.

FA_OPEN_ALWAYS Open the file if it exists. If not, a new file is created. To append data to the file, use f_lseek
function after file open in this method.

FA_CREATE_NEW Create a new file. The function fails with FR_EXIST if the file has already existed.

FA_CREATE_ALWAYS Create a new file. If the file has already existed, it is truncated and overwritten.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 9

– File cannot be created due to a directory or read-only file is existing

– File cannot be created due to the directory table is full

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

• FR_LOCKED: The function was rejected due to file sharing policy

See also
 f_read(), f_write(), f_close(), FIL, FATFS

FATFS API

MSDFATFS API Reference Manual, Rev. 0

10 Freescale Semiconductor

3.1.3 f_close()

The function closes an opening file.
Synopsis

FRESULT f_close (
 FIL* FileObject)

Parameters
FileObject [IN] — Points to the open file objects structure to be closed.

Description
The f_close() function closes an open file object. If any data has been written to the file, the cached
information of the file is written back to the disk. After the function succeeded, the file object is no longer
valid and it can be discarded.
Return Value

• FR_OK: The file object has been closed successfully

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_INVALID_OBJECT: The file object is invalid

See also
 f_open(), f_read(), f_write(), FATFS.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 11

3.1.4 f_read()

This function reads data from a file.
Synopsis

FRESULT f_read(
 FIL* FileObject,
 void* Buffer,
 UINT ByteToRead,
 UINT* ByteRead)

Parameters
FileObject [IN] — Pointer to the open file object
Buffer [OUT] — Pointer to the buffer to store read data
ByteToRead [IN] — Number of bytes to read in range of integer
ByteRead [OUT] — Pointer to the UINT variable to return number of bytes read. The value is

always valid after the function call regardless of the result.
Description
The file pointer of the file object increases in number of bytes read. After the function succeeded,
*ByteRead should be checked to detect the end of file. In case of *ByteRead < ByteToRead, it means the
read pointer reached end of the file during read operation.

Return Value
• FR_OK: The function succeeded

• FR_DENIED: The function denied due to the file has been opened in non-read mode

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_INVALID_OBJECT: The file object is invalid

See also
 f_open(), f_gets(), f_write(), f_close(), FIL

FATFS API

MSDFATFS API Reference Manual, Rev. 0

12 Freescale Semiconductor

3.1.5 f_write()

The function writes data to a file.
Synopsis

FRESULT f_write(
 FIL* FileObject,
 const void* Buffer,
 UINT ByteToWrite,
 UINT* ByteWritten)

Parameters
FileObject [IN] — Pointer to the open file object structure
Buffer [IN] — Pointer to the data to be written
ByteToWrite [IN] — Specifies number of bytes to write in range of UINT
ByteWritten [OUT] — Pointer to the UINT variable to return the number of bytes written. The

value is always valid after the function call regardless of the result
Description
The write pointer in the file object is increased in number of bytes written. After the function succeeded,
*ByteWritten should be checked to detect the disk full. In case of *ByteWritten < ByteToWrite, it means
the volume got full during the writing operation. The function can take a time when the volume is full or
close to full.
Return

• FR_OK: The function succeeded

• FR_DENIED: The function denied due to the file has been opened in non-write mode

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_INVALID_OBJECT: The file object is invalid

See also
 f_open(), f_read(), f_putc(), f_puts(), f_printf(), f_close(), FIL.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 13

3.1.6 f_lseek()

The function moves the file read/write pointer of an open file object.
Synopsis

FRESULT f_lseek(
FIL* FileObject,

 DWORD Offset)

Parameters
FileObject [IN] — Pointer to the open file object
Offest [IN] — Number of bytes from the start of file

Description
The f_lseek() function moves the file read/write pointer of an open file. The offset can be specified in
only origin from top of the file. When an offset above the file size is specified in write mode, the file size
is increased and the data in the expanded area is undefined. This is suitable to create a large file quickly,
for fast writing operation. After the f_lseek() function succeeded, member fptr in the file object should be
checked in order to make sure the read/write pointer has been moved correctly. In case of fptr is not the
expected value, either of followings has been occurred.

• End of file. The specified Offset was clipped at the file size because the file has been opened in
read-only mode.

• Disk full. There is insufficient free space on the volume to expand the file size.

When _USE_FASTSEEK is set to 1 and cltbl member in the file object is not NULL, the fast seek
feature is enabled. This feature enables fast backward/long seek operations without FAT access by cluster
link information stored on the user defined table. The cluster link information must be created prior to do
the fast seek. The required size of the table is (number of fragments + 1) * 2 items. For example, when the
file is fragmented in 5, 12 items will be required to store the cluster link information. The file size cannot
be expanded when the fast seek feature is enabled.
Return Value

• FR_OK: The function succeeded

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_INVALID_OBJECT: The file object is invalid

• FR_NOT_ENOUGH_CORE: Insufficient size of link map table for the file

See also
 f_open(), f_truncate(), FIL.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

14 Freescale Semiconductor

3.1.7 f_truncate()

The function trancates the file size
Synopsis

FRESULT f_truncate(
 FIL* FileObject)

Parameters
FileObject [IN] — Pointer to the open file object

Description
The f_truncate() function truncates the file size to the current file read/write point. This function has no
effect if the file read/write pointer is already pointing end of the file.
Return Value

• FR_OK: The function succeeded

• FR_DENIED: The function denied due to the file has been opened in non-write mode

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_INVALID_OBJECT: The file object is invalid

See also
 f_open(), f_lseek(), FIL.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 15

3.1.8 f_sync()

The function flushes cached data of a written file.
Synopsis

FRESULT f_sync(
 FIL* FileObject)

Parameters
FileObject [IN] — Pointer to the open file objects to be flushed.

Description
The f_sync() function performs the same process as f_close() function but the file is left opened and can
continue read/write/seek operations to the file. This is suitable for the applications that open files for a
long time in write mode, such as data logger. Performing f_sync() of periodic or immediately after
f_write() can minimize the risk of data loss due to a sudden blackout or an unintentional disk removal.
However, f_sync() immediately before f_close() has no advantage because f_close() performs f_sync()
in it. In other words, the difference between those functions is that the file object is invalidated or not
Return Value

• FR_OK: The function succeeded

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_INVALID_OBJECT: The file object is invalid

See also
 f_close()

FATFS API

MSDFATFS API Reference Manual, Rev. 0

16 Freescale Semiconductor

3.1.9 f_opendir()

The function opens a directory.
Synopsis

FRESULT f_opendir(
 DIR* DirObject,
 const TCHAR* DirName)

Parameters
DirObject [OUT] — Pointer to the blank directory objects to be created
DirName [IN] — Pointer to the null-terminated string that specifies the directory name to be

opened
Description
The f_opendir() function opens an existing directory and creates the directory object for subsequent calls.
The directory object structure can be discarded at any time without any procedure.
Return Value

• FR_OK: The function succeeded and the directory object is created. It is used for subsequent calls
to read the directory entries

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The path name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

See also
 f_readdir(), DIR

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 17

3.1.10 f_readdir()

The function reads a directory item.
Synopsis

FRESULT f_readdir(
 DIR* DirObject,
 FILINFO* FileInfo)

Parameters
DirObject [IN] — Pointer to the open directory object
FileInfo [OUT] — Pointer to the file information structure to store the read item

Description
The function reads directory entries in sequence. All items in the directory can be read by calling this
function repeatedly. When all directory entries have been read and no item to read, the function returns a
null string into f_name[] member of FiIenfo without any error. When a null pointer is given to the
FileInfo, the read index of the directory object will be rewinded.
If LFN feature is enabled, lfname and lfsize fields of FileInfo must be initialized with valid value prior to
use the f_readdir function. The lfname is a pointer to the string buffer to return the long file name. The
lfsize is the size of the string buffer in unit of character. If either the size of read buffer or LFN working
buffer is insufficient for the LFN or the object has no LFN, a null string will be returned to the LFN read
buffer. If the LFN contains any character that cannot be converted to OEM code, a null string will be
returned but this is not the case on Unicode API configuration. When lfname is a NULL, nothing of the
LFN is returned. When the object has no LFN, any small capitals can be contained in the SFN.
When relative path feature is enabled (_FS_RPATH == 1), "." and ".." entries are not filtered out and it
will appear in the read entries
Return Value

• FR_OK: The function succeeded

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_INVALID_OBJECT: The directory object is invalid

See also
 f_opendir(), f_stat(), FILINFO, DIR.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

18 Freescale Semiconductor

3.1.11 f_getfree()

This function gets number of free clusters of logical volume.
Synopsis

FRESULT f_getfree(
 const TCHAR* Path,
 DWORD* Clusters,
 FATFS** FileSystemObject)

Parameters
Path [IN] — Pointer to the null-terminated string that specifies the logical drive
Clusters [OUT] — Pointer to the DWORD variable to store number of free clusters
FileSystemObject [OUT] — Pointer to pointer that to store a pointer to the corresponding file

system object
Description
The function gets number of free clusters on the drive. The member FileSystemObject->csize reflects
number of sectors per cluster, so that the free space in unit of sector can be calculated with this. When
FSInfo structure on FAT32 volume is not in sync, this function can return an incorrect free cluster count.
Return Value

• FR_OK: The function succeeded. The *Clusters has number of free clusters and
*FileSystemObject points the file system object

• FR_INVALID_DRIVE: The drive number is invalid

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT partition on the drive

See also
 FATFS

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 19

3.1.12 f_stat()

The function get information of a file or directory.
Synopsis

FRESULT f_stat(
 const TCHAR* FileName,
 FILINFO* FileInfo)

Parameters
FileName [IN] — Pointer to the null-terminated string that specifies the file or directory to get its

information
FileInfo [OUT] — Pointer to the blank FILINFO structure to store the information

Description
The function gets the information of a file or directory. For details of the information, refer to the
FILINFO structure and f_readdir() function. This function is not supported in minimization level of >= 1.
Return Value

• FR_OK: The function succeeded

• FR_NO_FILE: Could not find the file or directory

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The file name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM; There is no valid FAT volume on the drive

See also
 f_opendir(), f_readdir(), FILINFO.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

20 Freescale Semiconductor

3.1.13 f_mkdir()

The function creates a new driectory.
Synopsis

FRESULT f_mkdir(
const TCHAR* DirName)

Parameters
DirName [IN] — Pointer to the null-terminated string that specifies the directory name to create

Description
The function creates a new directory.
Return Value

• FR_OK: The function succeeded

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The path name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_DENIED: The directory cannot be created due to directory table or disk is full

• FR_EXIST: A file or directory that has same name is already existing

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 21

3.1.14 f_unlink()

The function removes a file or directory.
Synopsis

FRESULT f_unlink(
const TCHAR* FileName)

Parameters
FileName [IN] — Pointer to the null-terminated string that specifies an object to be removed

Description
The function removes a file or directory object. It can not remove opened objects.
Return Value

• FR_OK: The function succeeded

• FR_NO_FILE: Could not find the file or directory

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The path name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_DENIED: The function was denied due to either of following reasons:

— The object has read-only attribute

— Not empty directory

— Current directory

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_WRITE_PROTECTED: The medium is write-protected

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

FATFS API

MSDFATFS API Reference Manual, Rev. 0

22 Freescale Semiconductor

3.1.15 f_chmod()

The function changes the attribute of file or directory.
Synopsis

FRESULT f_chmod(
 const TCHAR* FileName,
 BYTE Attribute,
 BYTE AttributeMask)

Parameters
FileName [IN] — Pointer to the null-terminated string that specifies a file or directory to be

changed
Attribute[IN] — Attribute flags to be set in one or more combination of the following flags. The

specified flags are set and others are cleared.

AttributeMask [IN] — Attribute mask that specifies which attribute is changed. The specified
attributes are set or cleared

Description
The f_chmod() function changes the attribute of a file or directory
Return Value

• FR_OK: The function succeeded

• FR_NO_FILE: Could not find the file

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The file name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

Table 3-2. File and Directory Attribute Flags

Attribute Description

AM_RDO Read Only

AM_ARC Archive

AM_SYS System

AM_HID Hidden

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 23

3.1.16 f_utime()

The function changes the timestamp of file and directory.
Synopsis

FRESULT f_utime(
 const TCHAR* FileName,
 const FILINFO* TimeDate)

Parameters
FileName [IN] — Pointer to the null-terminated string that specifies a file or directory to be

changed
TimeDate [OUT] — Pointer to the file information structure that has a timestamp to be set in

TimeDate -> fdate and TimeDate -> ftime. Do not care any other members

Description
The f_utime() function changes the timestamp of a file or directory.
Return Value

• FR_OK: The function succeeded

• FR_NO_FILE: Could not find the file

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The file name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• R_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

See also
 f_stat(), FILINFO.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

24 Freescale Semiconductor

3.1.17 f_rename()

The function renames/moves a file or directory.
Synopsis

FRESULT f_rename(
 const TCHAR* OldName,
 const TCHAR* NewName)

Parameters
OldName [IN] — Pointer to a null-terminated string specifies the old object name to be renamed
NewName [IN] — Pointer to a null-terminated string specifies the new object name without drive

number
Description
The function renames a object (file or directory). The logical drive number is determined by old name;
new name must not contain a logical drive number. It can also move object to other directory, in this case,
new name contain a logical drive number. Do not rename an opened object.
Return Value

• FR_OK: The function succeeded

• FR_NO_FILE: Could not find the old name

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The file name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_EXIST: The new name is colliding with an existing name

• FR_DENIED: The new name could not be created due to any reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 25

3.1.18 f_mkfs()

The function creates a file system on the drive.
Synopsis

FRESULT f_mkfs(
 BYTE Drive,
 BYTE PartitioningRule,
 UINT AllocSize)

Parameters
Drive [IN] — Logical drive number (0-9) to be formatted.
PartitioningRule [IN] — When 0 is given, a partition table is created into the master boot record

and a primary DOS partition is created and then an FAT volume is created on the partition.
This is called FDISK format, used for hard disk and memory cards. When 1 is given, the
FAT volume starts from the first sector on the drive without partition table. This is called
SFD format, used for floppy disk and most optical disk.

AllocSize [IN] — Force the allocation unit (cluster) size in unit of byte. The value must be power
of 2 and between the sector size and 128 times sector size. When invalid value is
specified, the cluster size is determined depends on the volume size

Description
The function creates an FAT volume on the drive. There are two partitioning rules, FDISK and SFD, for
removable media. The FDISK format is recommended for the most case. This function currently does
not support multiple partition, so that existing partitions on the physical drive will be deleted and
re-created a new partition occupies entire disk space.
The FAT sub-type, FAT12/FAT16/FAT32, is determined by number of clusters on the volume and nothing
else, according to the FAT specification issued by Microsoft. Thus which FAT sub-type is selected, is
depends on the volume size and the specified cluster size. The cluster size affects performance of the file
system and large cluster increases the performance.
When the number of clusters gets near the FAT sub-type boundaries, the function can fail with
FR_MKFS_ABORTED
Return Value

• FR_OK: The function succeeded

• FR_INVALID_DRIVE: The drive number is invalid

• FR_NOT_READY: The drive cannot work due to any reason

• FR_NOT_ENABLED: The logical drive has no work area

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_MKFS_ABORTED; The function aborted before start in format due to one of following
reasons:

— The disk size is too small.

— Invalid parameter was given to any parameter.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

26 Freescale Semiconductor

— Not allowable cluster size for this drive. This can occur when number of clusters gets near the
0xFF7 and 0xFFF7.

3.1.19 f_forward()

The function forwards file data to the stream directly.
Synopsis

FRESULT f_forward (
 FIL* FileObject,
 UINT (*Func)(const BYTE*,UINT),
 UINT ByteToFwd,
 UINT* ByteFwd)

Parameters
FileObject [IN] — Pointer to the open file object
Func [IN] — Pointer to the user-defined data streaming function
ByteToFwd [IN] — Number of bytes to forward in range of integer
ByteFwd [OUT] — Pointer to the integer variable to return number of bytes forwarded

Description
The function reads the data from the file and forwards it to the outgoing stream without data buffer. This
is suitable for small memory system because it does not require any data buffer at application module.
The file pointer of the file object increases in number of bytes forwarded. In case of *ByteFwd <
ByteToFwd without error, it means the requested bytes could not be transferred due to end of file or
stream goes busy during data transfer.
Return Value

• FR_OK: The function succeeded

• FR_DENIED: The function denied due to the file has been opened in non-read mode

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_INVALID_OBJECT: The file object is invalid

See also
 f_open(), f_gets(), f_write(), f_close(), FIL.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 27

3.1.20 f_chdir()

The function changes current directory of a drive.
Synopsis

FRESULT f_chdir(
 const TCHAR* Path)

Parameters
Path [IN] — Pointer to the null-terminated string that specifies a directory to go

Description
The function changes the current directory of the logical drive. The current directory of a drive is
initialized to the root directory when the drive is auto-mounted. Note that the current directory is retained
in the each file system object so that it also affects other tasks that using the drive.
Return Value

• FR_OK: The function succeeded

• FR_NO_PATH: Could not find the path

• FR_INVALID_NAME: The path name is invalid

• FR_INVALID_DRIVE: The drive number is invalid

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

See also
 f_chdrive(), f_getcwd().

FATFS API

MSDFATFS API Reference Manual, Rev. 0

28 Freescale Semiconductor

3.1.21 f_chdrive()

The function changes the current drive.
Synopsis

FRESULT f_chdrive(
 BYTE Drive)

Parameters
Drive [IN] — Specifies the logical drive number to be set as the current drive

Description
The function changes the current drive. The initial value of the current drive number is 0. Note that the
current drive is retained in a static variable so that it also affects other tasks that using the file functions.
Return Value

• FR_OK: The function succeeded

• FR_INVALID_DRIVE: The drive number is invalid

See also
 f_chdir(), f_getcwd().

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 29

3.1.22 f_getcwd()

The function retrieves the current directory.
Synopsis

FRESULT f_getcwd (
 TCHAR* Buffer,
 UINT BufferLen)

Parameters
Buffer [OUT] — Pointer to the buffer to receive the current directory string.
BufferLen [IN] — Size of the buffer in unit of TCHAR

Description
The function retrieves the current directory of the current drive in full path string including drive number.
Return Value

• FR_OK: The function succeeded

• FR_NOT_READY: The disk drive cannot work due to no medium in the drive or any other reason

• FR_DISK_ERR: The function failed due to an error in the disk function

• FR_INT_ERR: The function failed due to a wrong FAT structure or an internal error

• FR_NOT_ENABLED: The logical drive has no work area

• FR_NO_FILESYSTEM: There is no valid FAT volume on the drive

• FR_NOT_ENOUGH_CORE: Insufficient size of Buffer

See also
 f_chdrive(), f_chdir()

FATFS API

MSDFATFS API Reference Manual, Rev. 0

30 Freescale Semiconductor

3.1.23 f_gets()

The function reads a string from the file.
Synopsis

TCHAR* f_gets(
 TCHAR* Str,
 int Size,
 FIL*)

Parameters
Str [OUT] — Pointer to read buffer to store the read string
Size [IN] — Size of the read buffer in unit of character
FileObject [IN] — Pointer to the open file object structure

Description
f_gets() is a wrapper function of f_read(). The read operation continues until a '\n' is stored, reached end
of the file or the buffer is filled with Size - 1 (characters). The read string is terminated with a '\0'. When
no character to read or any error occurred during read operation, f_gets() returns a null pointer. The end
of file and error status can be examined with f_eof() and f_error() macros.
When the FATFS is configured to Unicode API (_LFN_UNICODE == 1), the file is read in UTF-8
encoding and stored it to the buffer in UCS-2. If not the case, the file will be read in one byte per
character without any code conversion.
Return Value
When the function succeeded, Str will be returned
See also
 f_open(), f_read(), f_putc(), f_puts(), f_printf(), f_close(), FIL.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 31

3.1.24 f_putc()

The function puts a character to the file.
Synopsis

int f_putc(
 TCHAR Chr,
 FIL* FileObject)

Parameters
Chr [IN] — A character to be put.
FileObject [IN] — Pointer to the open file objects structure

Description
The f_putc() is a wrapper function of f_write() .
Return Value
When the character was written successfully, the function returns 1. When the function failed due to disk
full or any error, an EOF (-1) will be returned.
When the FATFS is configured to Unicode API (_LFN_UNICODE = 1), the UCS-2 character is written
to the file in UTF-8 encoding. If not this case, the byte will be written directly.
See also
 f_open(), f_puts(), f_printf(), f_gets(), f_close(), FIL.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

32 Freescale Semiconductor

3.1.25 f_puts()

The function writes a string to the file.
Synopsis

int f_puts(
 const TCHAR* Str,
 FIL* FileObject)

Parameters
Str [IN] — Pointer to the null terminated string to be written. The null character will not be

written.
FileObject [IN] — Pointer to the open file objects structure

Description
The f_puts() is a wrapper function of f_putc().
Return Value
When the function succeeded, number of characters written that is not minus value is returned. When the
function failed due to disk full or any error, an EOF (-1) will be returned.When the FATFS is configured
to Unicode API (_LFN_UNICODE = 1), the UCS-2 string is written to the file in UTF-8 encoding. If not
the case, the byte stream will be written directly.
See also
 f_open(), f_putc(), f_printf(), f_gets(), f_close(), FIL.

FATFS API

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 33

3.1.26 f_printf()

The function writes formatted string to the file.
Synopsis

int f_printf (
 FIL* FileObject,
 const TCHAR* Format,
 ...)

Parameters
FileObject [IN] — Pointers to the open file object structure
Format [IN] — Pointer to the null terminated format string

Description
The function is a wrapper function of f_putc() and f_puts(). The format tags follow this prototype:
%[flags][width][.precision][length] specifier
The specifier is a sub-set of standard library shown as following:

The tag can also contain flags, width, .precision and modifiers sub-specifiers, which are optional and
follow these specifications:

Table 3-3. Specifier in format string

Specifier Description Example

c Character ‘a’

s String of characters “sample”

d Signed decimal integer 392

u Unsigned decimal integer 7235

x Unsigned hexadecimal integer 7fa

b Binary number 111

Table 3-4. Flags in format string

Flags Description

0 Left-pads the number with zeroes (0) instead of spaces, where padding is specified (see
width sub-specifier).

FATFS API

MSDFATFS API Reference Manual, Rev. 0

34 Freescale Semiconductor

Return Value
When the function succeeded, number of characters written is returned. When the function failed due to
disk full or any error, an EOF (-1) will be returned.
See also
 f_open(), f_putc(), f_puts(), f_gets(), f_close(), FIL.

Table 3-5. Width in format string

Width Description

(number) Minimum number of characters to be printed. If the value to be printed is shorter than
this number, the result is padded with blank spaces. The value is not truncated even if
the result is larger.

Table 3-6. Precision in format string

.precision Description

.number For integer specifiers (d, u, x): precision specifies the minimum number of digits to be
written. If the value to be written is shorter than this number, the result is padded with
leading zeros. The value is not truncated even if the result is longer. A precision of 0
means that no character is written for the value 0.
For s: this is the maximum number of characters to be printed. By default, all
characters are printed until the ending null character is encountered.
For c type: it has no effect.
When no precision is specified, the default is 1. If the period is specified without an
explicit value for precision, 0 is assumed.

Table 3-7. Length in format string

length Description

1 The argument is interpreted as a long int or unsigned long int for integer specifiers (d,
u, x), and as a wide character or wide character string for specifiers c and s.

L The argument is interpreted as a long double.

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 35

Chapter 4
Data Structures

4.1 Data Structure Listings

4.1.1 FATFS

This structure keeps information of a drive's file system.
Synopsis

typedef struct {
 uint_8 fs_type;
 uint_8 drv;
 uint_8 csize;
 uint_8 n_fats;
 uint_8 wflag;
 uint_8 fsi_flag;
 uint_16 id;
 uint_16 n_rootdir;

#if _MAX_SS != 512
 uint_16 ssize;

#endif
#if !_FS_READONLY

 uint_32 last_clust;
 uint_32 free_clust;
 uint_32 fsi_sector;

#endif
#if _FS_RPATH

 uint_32 cdir;
#endif

 uint_32 n_fatent;
 uint_32 fsize;
 uint_32 fatbase;
 uint_32 dirbase;
 uint_32 database;
 uint_32 winsect;
 uint_8 win[_MAX_SS];

} FATFS;
Fields

fs_type — FAT sub-type (0: Not mounted)
drive — Physical drive number
csize — Sectors per cluster (1, 2, 4... 128)
n_fats — Number of FAT copies (1, 2)
wflag — win[] dirty flag (1:must be written back)

Data Structures

MSDFATFS API Reference Manual, Rev. 0

36 Freescale Semiconductor

fsi_flag — file system information dirty flag (1: must be written back)
id — File system mount ID
n_rootdir — Number of root directory entries (FAT12/16)
ssize — Bytes per sector (512, 1024, 2048, 4096)
last_clust — Last allocated cluster
free_clust — Number of free clusters
fsi_sector — fsinfo sector (FAT32)
cdir — Current directory start cluster (0:root)
n_fatent — Number of FAT entries (= number of clusters + 2)
fsize — Sectors per FAT
fatbase — FAT start sector
dirbase — Root directory start sector (FAT32:Cluster#)
database — Data start sector
winsect — Current sector appearing in the win[]
win[_MAX_SS] — Disk access window for Directory, FAT (and Data on tiny configuration)

Data Structures

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 37

4.1.2 FIL

This structure keeps information of data file

Synopsis
typedef struct {

 FATFS* fs;
uint_16 id;

 uint_8 flag;
 uint_8 pad1;
 uint_32 fptr;
 uint_32 fsize;
 uint_32 org_clust;
 uint_32 curr_clust;
 uint_32 dsect;

#if !_FS_READONLY
 uint_32 dir_sect;
 uint_8* dir_ptr;

#endif
#if _USE_FASTSEEK

 uint_32* cltbl;
#endif
#if _FS_SHARE

 uint_32 lockid;
#endif
#if !_FS_TINY

 uint_8 buf[_MAX_SS];
#endif
} FIL;

Fields
fs — Pointer to the owner file system object
id — Owner file system mount ID
flag — File status flags
pad1 — Pad
fptr — File read/write pointer (0 on file open)
fsize — File size
org_clust — File start cluster (0 when fsize==0)
curr_clust — Current cluster
dsect — Current data sector
dir_sect — Sector containing the directory entry
dir_ptr — Points to the directory entry in the window
cltbl — Pointer to the cluster link map table (null on file open)
lockid — File lock ID (index of file semaphore table)
buf[_MAX_SS] — File data read/write buffer

Data Structures

MSDFATFS API Reference Manual, Rev. 0

38 Freescale Semiconductor

4.1.3 DIR
This structure keeps information of a directory.

Synopsis
typedef struct {

 FATFS* fs;
uint_16 id;

 uint_16 index;
 uint_32 sclust;
 uint_32 clust;
 uint_32 sect;
 uint_8* dir;
 uint_8* fn;

#if _USE_LFN
 uint_8* lfn;
 uint_16 lfn_idx;

#endif
} DIR;

Fields
fs — Pointer to the owner file system object
id — Owner file system mount ID
index — Current read/write index number
sclust — Table start cluster (0:Root dir)
clust — Current cluster
sect — Current sector
dir — Pointer to the current SFN (sort file name) entry in the win[]
fn — Pointer to the SFN (in/out) {file[8], ext[3], status[1]}
lfn — Pointer to the LFN working buffer
lfn_idx — Last matched LFN index number (0xFFFF: No LFN)

Data Structures

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 39

4.1.4 FILINFO
This structure contains information of file and directory.

Synopsis
typedef struct {

uint_32 fsize;
DATE fdate;
TIME ftime;
uint_8 fattrib;
TCHAR fname[13];

#if _USE_LFN
TCHAR*lfname;
uint_32 lfsize;

#endif
} FILINFO;

Fields
fsize — File size
fdate — Last modified date
ftime — Last modified time
fattrib — Attribute
fname[13] — Short file name (8.3 format)
lfname — Pointer to the LFN (long file name) buffer
lfsize — Size of LFN buffer in CHAR

Data Structures

MSDFATFS API Reference Manual, Rev. 0

40 Freescale Semiconductor

4.1.5 DATE
This structure contains date information

Synopsis
typedef union{

 uint_16 Word;
 struct{
 uint_16 day:5; /* Day (1..31) */
 uint_16 month:4; /* Month (1..12) */
 uint_16 year:7; /* Year origin from 1980 (0..127) */
 }Bits;

} DATE;

Fields
Word — 16-bits value contains date information
day — 5-bits value specifies last modified date
month — 4-bits value specifies last modified date
year — 7-bits value specifies last modified date

4.1.6 TIME

This structure contains time information.

Synopsis
typedef union{

 uint_16 Word;
 struct{
 uint_16 second:5; /* Second / 2 (0..29) */
 uint_16 minute:6; /* Minute (0..59) */
 uint_16 hour:5; /* Hour (0..23) */
 }Bits;

}TIME;
Fields

Word — 16-bits value contains time information
second — 5-bits value specifies last modified time
minute — 6-bits value specifies last modified time
hour — 5-bits value specifies last modified time

MSDFATFS API Reference Manual, Rev. 0

Freescale Semiconductor 41

Appendix A
Path Name and Unicode API Information

A.1 Path Name Format
The path name format on the FATFS module is similar to the filename specs of DOS/Windows as follows:

"[drive#:][/]directory/file"

The FATFS module supports long file name (LFN) and 8.3 format file name (SFN). The LFN can be used
when LFN feature is enabled (_USE_LFN > 0). The sub directories are separated with a \ or / in the same
way as DOS/Windows API. Only a difference is that the logical drive is specified in a numeral with a
colon. When the drive number is omitted, it is assumed as default drive (0 or current drive).

Control characters (\0 to \x1F) are recognized as end of the path name. Leading/embedded spaces in the
path name are valid as a part of the name on LFN configuration but they are recognized as end of the path
name on non-LFN configuration. Trailing spaces and dots are ignored.

In default configuration (_FS_RPATH == 0), it does not have a concept of current directory like OS
oriented file system. All objects on the volume are always specified in full path name that follows from
the root directory. Dot directory names are not allowed. Heading separator is ignored and it can be exist or
omitted. The default drive number is fixed to 0.

When relative path feature is enabled (_FS_RPATH == 1), specified path is followed from the root
directory if a heading separator is exist. If not, it is followed from the current directory set with f_chdir
function. Dot names are also allowed for the path name. The default drive is the current drive set with
f_chdrive function. The following table lists set of invalid path names:

Table 4-1. Invalid path names

Path Name RPATH = 0 RPATH = 1

file.txt A file in the root directory of the drive 0 A file in the current directory of the current drive

/file.txt A file in the root directory of the drive 0 A file in the current directory of the current drive

The root directory of the drive 0 The current directory of the current drive

/ The root directory of the drive 0 The root directory of the current drive

2: The root directory of the drive 2 The current directory of the drive 2

2:/ The root directory of the drive 2 The root directory of the drive 2

2:file.txt A file in the root directory of the drive 2 A file in the current directory of the drive 2

../file/txt Invalid name A file in the parent directory

. Invalid name This directory

Path Name and Unicode API Information

MSDFATFS API Reference Manual, Rev. 0

42 Freescale Semiconductor

A.2 Correspondence between logical and physical drive
The FATFS module has work areas that called file system object for each volume (logical drive). In default,
the logical drive is bound to the physical drive that has same drive number, and the first partition is
mounted. When _MULTI_PARTITION == 1 is specified in configuration option, each individual logical
drive can be bound to any physical drive/partition. In this case, a drive number resolution table must be
defined as follows:

Example: Logical drive 0-2 are assigned to three primary partitions on the physical drive 0 (fixed disk)

Logical drive 3 is assigned to physical drive 1 (removable disk)

const PARTITION Drives[] = {
{0, 0}, /* Logical drive 0 ==> Physical drive 0, 1st partition */
{0, 1}, /* Logical drive 1 ==> Physical drive 0, 2nd partition */
{0, 2}, /* Logical drive 2 ==> Physical drive 0, 3rd partition */
{1, 0} /* Logical drive 3 ==> Physical drive 1 */
};

There are some considerations when use _MULTI_PARTITION configuration.

• Only primary partition (0-3) can be mounted.

• When the physical drive has no partition table (SFD format), the partition number is ignored

A.3 Unicode API
FATFS supports ANSI/OEM code set on the API in default but FATFS can also switch the code set to
Unicode.

The path names are input/output in either ANSI/OEM code (SBCS/DBCS) or Unicode depends on the
configuration options. The type of arguments that specifies the file names are defined as TCHAR which
is an alias of char in default. The code set of the file name string is the ANSI/OEM code set specified by
_CODE_PAGE. When _LFN_UNICODE is set to 1 under LFN configuration, the type of the TCHAR is
switched to unsigned short (UCS-2 character) to support Unicode. In this case, the LFN feature is fully
supported and the Unicode specific characters, can also be used for the path name. It also affects data types
and encoding of the string I/O functions. To define literal strings, _T(s) and _TEXT(s) macro are available
to select either ANSI/OEM or Unicode automatically. The code shown below is an example to define the
literal strings.

f_open(fp, "filename.txt", FA_READ); /* ANSI/OEM only */
f_open(fp, L"filename.txt", FA_READ); /* Unicode only */
f_open(fp, _T("filename.txt"), FA_READ); /* Changed automatically */

.. Invalid name Parent directory of the current directory

dir1/.. Invalid name The current directory

../ Invalid name The root directory (sticks the top level)

Table 4-1. Invalid path names

Path Name RPATH = 0 RPATH = 1

	Freescale MSD FATFS
	Revision History

	Chapter 1 Before Beginning
	1.1 About this book
	1.2 Reference Material
	1.3 Acronyms and abbreviations
	1.4 Function listing format

	Chapter 2 FATFS API Overview
	2.1 Introduction
	2.2 API overview
	2.3 Using API

	Chapter 3 FATFS API
	3.1 FATFS API Function Listing
	3.1.1 f_mount()
	3.1.2 f_open()
	3.1.3 f_close()
	3.1.4 f_read()
	3.1.5 f_write()
	3.1.6 f_lseek()
	3.1.7 f_truncate()
	3.1.8 f_sync()
	3.1.9 f_opendir()
	3.1.10 f_readdir()
	3.1.11 f_getfree()
	3.1.12 f_stat()
	3.1.13 f_mkdir()
	3.1.14 f_unlink()
	3.1.15 f_chmod()
	3.1.16 f_utime()
	3.1.17 f_rename()
	3.1.18 f_mkfs()
	3.1.19 f_forward()
	3.1.20 f_chdir()
	3.1.21 f_chdrive()
	3.1.22 f_getcwd()
	3.1.23 f_gets()
	3.1.24 f_putc()
	3.1.25 f_puts()
	3.1.26 f_printf()

	Chapter 4 Data Structures
	4.1 Data Structure Listings
	4.1.1 FATFS
	4.1.2 FIL
	4.1.3 DIR
	4.1.4 FILINFO
	4.1.5 DATE
	4.1.6 TIME

	Appendix A Path Name and Unicode API Information
	A.1 Path Name Format
	A.2 Correspondence between logical and physical drive
	A.3 Unicode API

